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Cyclic forms on DG-Lie algebroids and semiregularity
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Abstract – Given a transitive DG-Lie algebroid .A; �/ over a smooth separated scheme X of
finite type over a field K of characteristic zero, we define a notion of connection
rWR�.X;Ker �/! R�.X; �1

X
Œ�1� ˝ Ker �/ and construct an L1-morphism between

DG-Lie algebras f WR�.X;Ker �/ R�.X;��1

X
Œ2�/ associated to a connection and to a

cyclic form on the DG-Lie algebroid. In this way, we obtain a lifting of the first component of
the modified Buchweitz–Flenner semiregularity map in the algebraic context, which has an
application to the deformation theory of coherent sheaves on X admitting a finite locally free
resolution. Another application is to the deformations of (Zariski) principal bundles on X .
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1. Introduction

Let F be a coherent sheaf admitting a finite locally free resolution on a smooth
variety X over a field K of characteristic zero. The Buchweitz–Flenner semiregularity
map, introduced in [7], and generalising the semiregularity map of Bloch [5], is defined
by the formula

(1.1) � WExt2X .F ;F / �!
Y
q�0

H qC2.X;�
q
X /; �.c/ D Tr.exp.�At.F // ı c/;

where Tr denotes the trace maps TrWExtiX .F ;F ˝�
j
X /! H i .X;�

j
X / for i; j � 0,

and the exponential of the opposite of the Atiyah class At.F / 2 Ext1X .F ;F ˝�1X / is
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defined via the Yoneda pairing

ExtiX .F ;F ˝�
i
X / � ExtjX .F ;F ˝�

j
X / �! ExtiCjX .F ;F ˝�

iCj
X /

.a; b/ 7�! a ı b;

exp.�At.F // 2
Y
q�0

ExtqX .F ;F ˝�
q
X /:

We refer to [20] for a discussion of the role of the Buchweitz–Flenner semiregularity
map in deformation theory and of the reason why it is more convenient in this setting
to consider the modified Buchweitz–Flenner semiregularity map, obtained as follows.
Denote by �q WExt2X .F ;F /! H qC2.X;�

q
X / the components of the semiregularity

map � D
P
�q , for every q � 0 denote by��qX D .

Lq
iD0�

i
X Œ�i �; ddR/ the truncated

de Rham complex, and consider the composition

�qWExt2X .F ;F /
�q

�! H qC2.X;�
q
X / D H

2.X;�
q
X Œq�/

iq
�! H2.X;�

�q
X Œ2q�/;

where the map iq is induced by the inclusion of complexes �qX Œq� � �
�q
X Œ2q�. The

map �q is the q-component of the modified Buchweitz–Flenner semiregularity map.
A lifting to an L1-morphism of the first component �1 of the modified Buchweitz–

Flenner semiregularity map was constructed in [20] in the context of complex manifolds:
for every connection of type .1; 0/ (also called connections compatible with the holo-
morphic structure, see e.g. [16]) on a finite complex of locally free sheaves E on a
complex manifold X , the existence of an L1-morphism between DG-Lie algebras

gWA
0;�
X .Hom�OX

.E;E// 
A
�;�
X

A
�2;�
X

Œ2�

was proved, whose linear component induces �1 in cohomology. As a consequence,
recalling that Ext2X .F ;F / is the obstruction space for the functor of deformations of a
coherent sheaf F , the map �1 annihilates all obstructions to deformations of a coherent
sheaf admitting a finite locally free resolution. We refer again to [20] for a survey on the
existing literature in this regard; we only note here that this fact was proved by Mukai
and Artamkin [1] for the 0th component of the Buchweitz–Flenner semiregularity
map, in [17] with some mild assumptions for the Bloch semiregularity map, in [7] for
curvilinear obstructions for the map � when the Hodge to de Rham spectral sequence
of X degenerates at E1, and finally in the general case for all obstructions and for the
maps �q in [28].

The fact that the construction of the L1-morphism can also be realised in the
algebraic case was outlined in [20, Section 5] and is expanded on here: given a simplicial
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connection on the finite complex of locally free sheaves E , the map �1 can be lifted to
an L1-morphism

gWTot.U;Hom�OX
.E;E// Tot.U; ��1X Œ2�/;

where Tot denotes the Thom–Whitney totalisation and U is an affine open cover of X .
Since Hom�OX

.E; E/ is the kernel of the anchor map of the transitive DG-Lie
algebroid of derivations of pairs D�.X; E/ of [18], it is natural to generalise this
construction to the framework of DG-Lie algebroids. In fact, the main result of this
paper, Theorem 3.12, is the construction of anL1-morphism between DG-Lie algebras

f WTot.U;L/ Tot.U; ��1X Œ2�/;

where L denotes the kernel of the anchor map of a transitive DG-Lie algebroid, which
is equipped with a connectionrWTot.U;L/! Tot.U;�1X Œ�1�˝L/ and a dTot-closed
cyclic form.

For this reason, in Section 2 we introduce connections on transitive DG-Lie alge-
broids, which are K-linear operators that play the role of connections of type .1; 0/ in
the construction of the L1-morphism. Connections on transitive DG-Lie algebroids
are associated to simplicial liftings of the identity; also associated to a simplicial lifting
of the identity is the extension cocycle, which generalises the notion of Atiyah cocycle.
Section 3 describes cyclic forms on DG-Lie algebroids, cyclic forms induced by DG-Lie
algebroid representations and the construction of the L1-morphism. Also contained
in Section 3 is the following application to the deformation theory of coherent sheaves,
analogous to the one obtained for complex manifolds in [20].

Theorem 1.1 (Corollary 3.16). Let F be a coherent sheaf admitting a finite
locally free resolution on a smooth separated scheme X of finite type over a field K of
characteristic zero. Then every obstruction to the deformations of F belongs to the
kernel of the map

�1WExt2X .F ;F / �! H2.X;��1X Œ2�/:

If the Hodge to de Rham spectral sequence of X degenerates at E1, then every obstruc-
tion to the deformations of F belongs to the kernel of the map

�1WExt2X .F ;F / �! H 3.X;�1X /; �1.a/ D �Tr.At.F / ı a/:

Lastly, since to every principal bundle one can naturally associate the Atiyah Lie
algebroid of [2], Section 4 contains the following application to the deformation theory
of (Zariski) principal bundles.



E. Lepri 88

Theorem 1.2 (Corollary 4.12). Let P be a principal bundle on a smooth separated
scheme X of finite type over an algebraically closed field K of characteristic zero and
let

h�;�iWTot.U; �iX Œ�i �˝ ad.P // � Tot.U; �jX Œ�j �˝ ad.P //

�! Tot.U; �iCjX Œ�i � j �/;

for i; j � 0, be a dTot-closed cyclic form. Then every obstruction to the deformations
of P belongs to the kernel of the map

f1WH
2.X;ad.P // �! H2.X;��1X Œ2�/; f1.x/ D hAt.P /; xi;

where At.P / denotes the Atiyah class of the principal bundle P .

Notation

By K we always denote a characteristic zero field. Given two complexes F and G

of OX -modules, F ˝ G denotes F ˝OX
G . If V D

L
V i is either a graded vector

space or a graded sheaf, xv denotes the degree of a homogeneous element v 2 V . For
every integer p, the symbol Œp� denotes the shift functor, defined by V Œp�i D V pCi .
For complexes E;F of OX -modules we denote by Hom�OX

.E;F / the graded sheaf of
OX -linear morphisms

Hom�OX
.E;F / D

M
i

Homi
OX
.E;F /;

where
Homi

OX
.E;F / D

Y
j

HomOX
.Ej ;F iCj /:

If L is a DG-Lie algebra, H�.L/ always denotes the cohomology of the underlying
cochain complex, which inherits a graded bracket from the one on L.

2. DG-Lie algebroids, connections and extension cocycles

The goal of this section is to define K-linear operators

rWTot.U;L/ �! Tot.U; �1X Œ�1�˝L/

called connections on the kernel L of the anchor map of a transitive DG-Lie algebroid.
A short review of the Thom–Whitney totalisation functor Tot is given. In order to
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construct a connection, we introduce the notion of simplicial lifting of the identity. The
section ends with the definition of the extension cocycle associated to a simplicial lifting
of the identity, which generalises the notion of Atiyah cocycle. Different notions of
Atiyah classes for DG-Lie algebroids have been considered elsewhere in the literature,
see e.g. [3, 6, 26].

LetX be a smooth separated scheme of finite type over a field K of characteristic zero,
and let‚X ;�

1
X D�

1
X=K denote its tangent and cotangent sheaves respectively. Often, it

will be useful to consider the cotangent sheaf as a trivial complex of sheaves concentrated
in degree one, so as to have an inclusion �1X Œ�1�! ��X , where ��X D

L
p�

p
X Œ�p�

denotes the de Rham complex.

Definition 2.1. A DG-Lie algebroid over X is a complex of sheaves of OX -
modules A equipped with a K-bilinear bracket Œ�;��WA �A! A which defines a
DG-Lie algebra structure on the spaces of sections, and with a morphism of complexes
of OX -modules �WA! ‚X , called the anchor map, such that the induced map on the
spaces of sections is a homomorphism of DG-Lie algebras. Moreover, for any sections
a1; a2 of A and f of OX , the following Leibniz identity holds:

Œa1; fa2� D f Œa1; a2�C �.a1/.f /a2:

Example 2.2. The sheaf‚X is a trivial example of a DG-Lie algebroid concentrated
in degree zero, with anchor map given by the identity. A DG-Lie algebroid over Spec K

is exactly a DG-Lie algebra over the field K. Every sheaf of DG-Lie algebras over OX

can be considered as a DG-Lie algebroid over X with trivial anchor map.

Definition 2.3. Let .A; �/ and .B; �/ be DG-Lie algebroids overX . A morphism
of DG-Lie algebroids'WA!B is a morphism of complexes of sheaves which preserves
brackets and commutes with the anchor maps:

A
'

//

�
  

B

�
}}

‚X

Let .A; �/ be a DG-Lie algebroid over X and assume that L D Ker � is a finite
complex of locally free sheaves. Notice that on L there is a naturally induced graded
Lie bracket: for sections x; y of L,

Œx; y�´ Œi.x/; i.y/�;
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where i WL!A denotes the inclusion. This bracket is OX -linear, in fact for any sections
x; y of L and f of OX one has

Œx; fy�´ Œi.x/; i.fy/� D Œi.x/; f i.y/� D f Œi.x/; i.y/�C �.i.x//.f /y

D f Œi.x/; i.y/� D f Œx; y�;

so that L is a sheaf of DG-Lie algebras over OX .

Definition 2.4 ([22, Chapter 3]). A DG-Lie algebroid .A; �/ over X is transitive
if the anchor map �WA! ‚X is surjective.

Let now .A; �/ be a transitive DG-Lie algebroid over X , consider the short exact
sequence of complexes of sheaves

0 �! L
i
�! A

�
�! ‚X �! 0

and tensor it with the shifted cotangent sheaf�1X Œ�1� to obtain the short exact sequence

(2.1) 0 �! �1X Œ�1�˝L
Id˝i
�! �1X Œ�1�˝A

Id˝�
�! �1X Œ�1�˝‚X �! 0:

Because of the isomorphisms

�1X Œ�1�˝‚X Š Hom�OX
.�1X ; �

1
X Œ�1�/ Š Hom�OX

.�1X ; �
1
X /Œ�1�;

one can consider Id�1 2 �.X;�1X Œ�1�˝‚X / as an element of degree one.

Definition 2.5. A lifting of the identity is a global sectionD in�.X;�1X Œ�1�˝A/

such that .Id˝ �/.D/ D Id�1 2 �.X;�1X Œ�1�˝‚X /.

Since in general the map Id˝ � is not surjective on global sections, a lifting of
the identity does not always exist. However, a germ of a lifting of the identity, i.e., a
preimage of Id�1 in �1X Œ�1�˝A, always exists.

Example 2.6. For particular DG-Lie algebroids, the notion of lifting of the identity
can be related to the more familiar notion of algebraic connection. Let .E; ıE/ be a
finite complex of locally free sheaves. Following [18, Section 5], define the complex
of derivations of pairs

D�.X;E/ D

²
.h; u/ 2 ‚X �Hom�K.E;E/

ˇ̌̌̌
u.fe/ D f u.e/C h.f /e

for all f 2 OX and e 2 E

³
:

The complex D�.X;E/ is a finite complex of coherent sheaves and the natural map

˛WD�.X;E/ �! ‚X ; .h; u/ 7�! h;
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which is called the anchor map, is surjective, see [18]. The graded Lie bracket is defined
as

Œ.h; u/; .h0; u0/� D .Œh; h0�; Œu; u0�/;

where the (graded) Lie brackets on‚X and Hom�K.E;E/ are the (graded) commutators
of the composition products. For f 2 OX we then have that

Œ.h; u/; f .h0; u0/� D Œ.h; u/; .f h0; f u0/� D .Œh; f h0�; Œu; f u0�/

D
�
h.f /h0 C f hh0 � f h0h; f uu0 C h.f /u0 � .�1/xu

xu0f u0u
�

D
�
h.f /h0 C f Œh; h0�; h.f /u0 C f Œu; u0�

�
D f .Œh; h0�; Œu; u0�/C h.f /.h0; u0/

D f Œ.h; u/; .h0; u0/�C ˛..h; u//.f /.h0; u0/;

hence .D�.X;E/; ˛/ is a transitive DG-Lie algebroid over X . By an algebraic connec-
tion on the complex E , we mean the data ¹Diº of algebraic connections on each E i ,
i.e., for every i , a K-linear map Di WE i ! �1X ˝ E i such that for e 2 E i , f 2 OX ,

Di .fe/ D ddRf ˝ e C fD
i .e/:

Here, ddR denotes the universal derivation ddRWOX ! �1X .

D.fe/ D ddRf ˝ e C fD.e/;

where ddR denotes the universal derivation ddRWOX ! �1X . A global algebraic con-
nection on Eneeds not to exist. The kernel of the anchor map ˛ is the sheaf of DG-Lie
algebras Hom�OX

.E; E/, the graded sheaf of OX -linear endomorphisms of E , with
bracket equal to the graded commutator

Œf; g� D fg � .�1/
xf xggf;

and differential given by
g 7�! ŒıE ; g� D ıEg � .�1/

xggıE :

The short exact sequence in (2.1) in this case is isomorphic to

0�!Hom�OX
.E;�1X Œ�1�˝ E/

g 7!.0;g/
������! J�

�1

.ˇ;g/ 7!ˇ
������!Der�K.OX ;�

1
X Œ�1�/�! 0;

where the complex J�
�1 is defined as the subcomplex of

Der�K.OX ; �
1
X Œ�1�/ �Hom�K.E; �

1
X Œ�1�˝ E/

of elements .ˇ; v/, with ˇ 2 Der�K.OX ; �
1
X Œ�1�/ and v 2 Hom�K.E; �

1
X Œ�1�˝ E/,

such that
v.f x/ D f v.x/C ˇ.f /˝ x;
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for all x 2 E and f 2OX ; see also [20, Section 5]. In this case, a lifting of the identity is
exactly a global algebraic connection on the complex of sheaves E: via the isomorphism
�1X Œ�1�˝D�.X;E/ Š J�

�1 a lifting of the identity D corresponds to K-linear maps
D0WE i ! �1X Œ�1�˝ E i for all i such that D0.fe/ D fD0.e/C ddR.f /˝ e for all
f 2 OX and e 2 E i .

Before defining connections on the kernel of the anchor map of a transitive DG-Lie
algebroid, it is useful to give a brief review of the definition and some of the main
properties of the Thom–Whitney totalisation functor Tot; for more details see e.g.
[11,12, 17,24, 27]. The Thom–Whitney totalisation is a functor from the category of
semicosimplicial DG-vector spaces to the category of DG-vector spaces. For every
n � 0 consider

An D
KŒt0; : : : ; tn; dt0; : : : ; dtn�

.1 �
P
i ti ;

P
i dti /

;

the commutative differential graded algebra of polynomial differential forms on the
affine standard n-simplex, and the maps

ı�k WAn �! An�1; 0 � k � n; ı�k.ti / D

8̂̂<̂
:̂
ti i < k;

0 i D k;

ti�1 i > k:

Definition 2.7. The Thom–Whitney totalisation of a semicosimplicial DG-vector
space V ,

V W V0
ı0 //

ı1

// V1

ı0 //
ı1
//

ı2

// V2

//
//
//
//
� � � ;

is the DG-vector space

Tot.V / D
°
.xn/ 2

Y
n�0

An ˝ Vn

ˇ̌̌
.ı�k ˝ Id/xn D .Id˝ ık/xn�1 for all 0 � k � n

±
;

with differential induced by the one on
Q
n�0An ˝ Vn. To simplify the notation, we

will denote this differential by dTot D dA C dV , where dA denotes the differential of
polynomial differential forms, and dV the differential on V .

If f W V ! W is a morphism of semicosimplicial DG-vector spaces, then the
morphism Tot.f /WTot.V /! Tot.W / is defined as the restriction of the mapY

Id˝ f W
Y
n�0

An ˝ Vn �!
Y
n�0

An ˝Wn:
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The Tot functor is exact (see e.g. [10,27]): given semicosimplicial DG-vector spaces
V;W;Z and morphisms f WV !W , gWW !Z such that for every n� 0 the sequence

0 �! Vn
f
�! Wn

g
�! Zn �! 0

is exact, one obtains an exact sequence

0 �! Tot.V /
f
�! Tot.W /

g
�! Tot.Z/ �! 0:

Given two semicosimplicial DG-vector spaces V and W , Tot.V �W / is naturally
isomorphic to Tot.V / � Tot.W /. An important consequence is the preservation of
multiplicative structures; in particular, we will use the fact that the functor Tot sends
semicosimplicial DG-Lie algebras to DG-Lie algebras.

Example 2.8. Let E be a finite complex of quasi-coherent sheaves on X , and
U D ¹Uiº an open cover of X . Denote by Ui1:::in D Ui1 \ � � � \ Uin , and consider the
semicosimplicial DG-vector space of Čech cochains:

E.U/ W
Y
i

E.Ui /
ı0 //

ı1

//

Y
i;j

E.Uij /

ı0 //
ı1
//

ı2

//

Y
i;j;k

E.Uijk/
//
//
//
//
� � � :

The Whitney integration theorem states that there exists a quasi-isomorphism between
the Tot complex Tot.U;E/ and the complex of Čech cochains C �.U;E/ of E (see [32]
for theC1 version, [9,13,21,27] for the algebraic version used here). Hence, if the open
cover U is affine, the cohomology of Tot.U;E/ is isomorphic to the hypercohomology
of the complex of sheaves E . In this case, the complex Tot.U;E/ is a model for the
module R�.X;E/ of derived global sections of E , see e.g. [12, 25].

Moreover, there is a canonical inclusion of the global sections of E in the totalisation
Tot.U;E/: in fact, the injection

�W�.X;E/ �!
Y
i

E.Ui /

is such that ı0� D ı1� and therefore for every a 2 �.X;E/,

.1˝ �.a/; 1˝ ı0�.a/; 1˝ ı
2
0�.a/; : : :/

belongs to Tot.U; E/. It is easy to see that if the complex E has trivial differential,
every global section gives a cocycle in Tot.U;E/.

We are now ready to define connections on L D Ker �, the kernel of the anchor
map of a transitive DG-Lie algebroid .A; �/ over X . Assume that L is a finite complex
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of locally free sheaves and fix an affine open cover U D ¹Uiº of X . The short exact
sequence

0 �! �1X Œ�1�˝L
Id˝i
�! �1X Œ�1�˝A

Id˝�
�! �1X Œ�1�˝‚X �! 0

gives a short exact sequence of the corresponding semicosimplicial complexes of Čech
cochains, and since the functor Tot is exact there is an exact sequence

0 �! Tot.U; �1X Œ�1�˝L/
Id˝i
�! Tot.U; �1X Œ�1�˝A/ �� � �

Id˝�
� � �! Tot.U; �1X Œ�1�˝‚X / �! 0:

Denote by d the differential on A and L, which can be extended to �1X Œ�1�˝A and
to �1X Œ�1�˝L by setting

d.�˝ x/ D .�1/x��˝ dx D ��˝ dx:

Denote bydTot the differentials on all the above Tot complexes: for Tot.U;�1X Œ�1�˝L/

and Tot.U;�1X Œ�1�˝A/ the differential dTot is equal to dAC d , while for the complex
Tot.U; �1X Œ�1� ˝ ‚X / one has that dTot is just dA, where dA is the differential of
polynomial differential forms on the affine simplex, see Definition 2.7.

Because of the natural inclusion of global sections in the totalisation remarked in
Example 2.8, Id�1 belongs to Tot.U; �1X Œ�1�˝‚X /, where it has degree one.

Definition 2.9. A simplicial lifting of the identity is an elementD of the complex
Tot.U; �1X Œ�1�˝A/ such that .Id˝ �/.D/ D Id�1 in Tot.U; �1X Œ�1�˝‚X /.

It is clear that a simplicial lifting of the identity always exists and thatD has degree
one in Tot.U; �1X Œ�1�˝A/.

Remark 2.10. Notice that via the isomorphism

�1X Œ�1�˝‚X D �
1
X Œ�1�˝DerK.OX ;OX / Š Der�K.OX ; �

1
X Œ�1�/

we have .Id˝ �/.D/ D ddR 2 Tot.U;Der�K.OX ; �
1
X Œ�1�//.

In order to define a connection on L, it is necessary to define a Lie bracket

Œ�;��WTot.U; �1X Œ�1�˝A/ � Tot.U;L/ �! Tot.U; �1X Œ�1�˝L/;

induced by the bracket of the following lemma.

Lemma 2.11. There exists a well-defined K-bilinear bracket

Œ�;��W .�1X Œ�1�˝A/ �L �! �1X Œ�1�˝L:
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Proof. Denote by i WL!A the inclusion, take �˝ awith � 2�1X Œ�1� and a 2A,
and define for x 2 L

Œ�˝ a; x�´ �˝ Œa; i.x/�:

Notice that the Leibniz identity in Definition 2.1 implies that

Œfa1; a2� D f Œa1; a2� � .�1/
a1 a2�.a2/.f /a1:

Hence, the bracket Œ�˝ a; x� is well defined: for any f 2 OX

Œ�˝ fa; x� D �˝ Œfa; x� D �˝
�
f Œa; x� � .�1/xa xx�.x/.f /a

�
D �˝ f Œa; x�

D f �˝ Œa; x� D Œf �˝ a; x�:

It is clear that Œ�˝ a; x� belongs to �1X Œ�1�˝L:

.Id˝ �/.Œ�˝ a; x�/ D .Id˝ �/.�˝ Œa; x�/ D �˝ Œ�.a/; �.x/� D 0:

Since the functor Tot preserves products, the map

Œ�;��W .�1X Œ�1�˝A/ �L! �1X Œ�1�˝L

induces a K-bilinear map

(2.2) Œ�;��WTot.U; �1X Œ�1�˝A/ � Tot.U;L/ �! Tot.U; �1X Œ�1�˝L/;

which is defined componentwise as the restriction of

An ˝
Y
.�1X Œ�1�˝A/.Ui1:::in/ � An ˝

Y
L.Ui1:::in/

Œ�;��

��

An ˝
Y
.�1X Œ�1�˝L/.Ui1:::in/;

Œ�n ˝ .ti1:::in/; �n ˝ .ui1:::in/� D �n�n ˝ .Œ.�1/
�n ti1:::in ti1:::in ; ui1:::in �/;

for �n; �n in An, ti1:::in in .�1X Œ�1�˝A/.Ui1:::in/, and ui1:::in in L.Ui1:::in/.

Definition 2.12. A connection on L is the adjoint operator of a simplicial lifting
of the identity D 2 Tot.U; �1X Œ�1�˝A/,

r D ŒD;��WTot.U;L/ �! Tot.U; �1X Œ�1�˝L/;

where Œ�; ��W Tot.U; �1X Œ�1� ˝ A/ � Tot.U;L/ ! Tot.U; �1X Œ�1� ˝ L/ is the
bracket in (2.2). It is a K-linear operator.
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We will now examine the relationship between connections and particular represen-
tatives of extension classes. The short exact sequence

(2.3) 0 �! L �! A
�
�! ‚X �! 0

gives an extension class Œu�� 2 Ext1X .‚X ;L/. It is possible to give a representative of
Œu�� in the totalisation Tot.U;�1X Œ�1�˝L/ with respect to an affine open cover U of
X .

Definition 2.13. An extension cocycle u of the transitive DG-Lie algebroid A

is the differential of a simplicial lifting of the identity D in Tot.U; �1X Œ�1� ˝A/,
u D dTotD.

Notice that u belongs to Tot.U; �1X Œ�1�˝L/:

.Id˝ �/u D .Id˝ �/dTot.D/ D dTot.Id˝ �/D D dTotId�1 D 0;

where the last equality is a consequence of the fact that Id�1 is a global section and
�1X Œ�1�˝‚X has trivial differential (see Example 2.8). Note that u has degree two in
Tot.U; �1X Œ�1�˝L/ and that dTotu D dTotdTotD D 0.

Using the isomorphisms

�1X Œ�1�˝L Š Hom�OX
.‚X Œ1�;L/ Š Hom�OX

.‚X ;L/Œ�1�;

the cohomology class of u belongs to

H 2.Tot.U; �1X Œ�1�˝L// Š H 2.Tot.U;Hom�OX
.‚X ;L/Œ�1�//

Š H2.X;Hom�OX
.‚X ;L/Œ�1�/

Š H1.X;Hom�OX
.‚X ;L//

Š Ext1X .‚X ;L/:

This cohomology class does not depend on the chosen simplicial lifting of the identity:
ifD andD0 are two simplicial liftings of the identity in Tot.U;�1X Œ�1�˝A/, we have
.Id˝ �/.D �D0/ D Id�1 � Id�1 D 0, so D �D0 belongs to Tot.U; �1X Œ�1�˝L/,
and dTotD and dTotD

0 differ by the coboundary dTot.D
0 �D/. It is easy to see that the

cohomology class of u is trivial if and only if the short exact sequence in (2.3) splits.

Lemma 2.14. Let rWTot.U;L/! Tot.U; �1X Œ�1�˝L/ be a connection on L,
associated to the simplicial lifting of the identity D 2 Tot.U; �1X Œ�1� ˝ A/. Let
u D dTotD be the corresponding extension cocycle. Then, for every x in Tot.U;L/ we
have

r.dTotx/ D Œu; x� � dTotr.x/:
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Proof. Recall that d denotes the differential of A and L, which can be extended to
�1X Œ�1�˝A and to�1X Œ�1�˝L by setting d.�˝ x/D .�1/x��˝ dx D��˝ dx. It
is easy to see that for the K-bilinear map Œ�;��W .�1X Œ�1�˝A/ �L! �1X Œ�1�˝L

of Lemma 2.11,

dŒ�˝ a; x� D Œd.�˝ a/x�C .�1/x�CxaŒ�˝ a; dx�:

A straightforward calculation then shows that for z 2 Tot.U; �1X Œ�1�˝A/ and w 2
Tot.U;L/,

dTotŒz; w� D ŒdTotz; w�C .�1/
xzŒz; dTotw�;

and the conclusion follows from the fact u D dTotD.

3. Cyclic forms and L1-morphisms

This section describes cyclic forms on DG-Lie algebroids and illustrates how DG-
Lie algebroid representations give rise to cyclic forms. We then discuss induced cyclic
forms on the Thom–Whitney totalisation and the property of dTot-closure. The central
result is the construction of a L1-morphism associated to a connection and to a dTot-
closed cyclic form for a transitive DG-Lie algebroid. This allows us to state the results
of [20] for a coherent sheaf admitting a finite locally free resolution on a smooth
separated scheme of finite type over a field K of characteristic zero.

Let A be a DG-Lie algebroid over a smooth separated scheme X of finite type over
a field K of characteristic zero, with anchor map �WA! ‚X . Assume that the kernel
of the anchor map L is a finite complex of locally free sheaves. Notice that for any
a 2 A and x 2 L, the bracket Œa; x� belongs to L:

�.Œa; x�/ D Œ�.a/; �.x/� D 0:

Definition 3.1. A cyclic bilinear form on a DG-Lie algebroid .A; �/ is a graded
symmetric OX -bilinear product of degree zero on L D Ker �,

h�;�iWL �L! OX ;

such that for all sections x; y of L and a of A

(3.1) hŒa; x�; yi C .�1/xa xxhx; Œa; y�i D �.a/.hx; yi/:

Notice that the definition implies that for all x; y; z 2 L

(3.2) hx; Œy; z�i D hŒx; y�; zi:

These two properties will be discussed after giving some examples.
In the following two examples, the cyclicity of the forms will follow from Lemma 3.5.
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Example 3.2. An example of a cyclic form on .A; �/ is induced by the Killing
form. Consider the adjoint representation as a morphism of sheaves of DG-Lie algebras

adWL �! Hom�OX
.L;L/; a 7�! Œa;��

and consider the trace map TrWHom�OX
.L;L/! OX , which is a morphism of sheaves

of DG-Lie algebras (when considering OX as a trivial sheaf of DG-Lie algebras). Then
one can define the form

h�;�iWL �L �! OX ; .x; y/ 7�! Tr.ad x ady/:

Example 3.3. For the DG-Lie algebroid D�.X;E/ of Example 2.6,

0 �! Hom�OX
.E;E/ �! D�.X;E/ �! ‚X �! 0;

a natural bilinear form on the complex Hom�OX
.E; E/ is induced by the trace map

TrWHom�OX
.E;E/! OX as

Hom�OX
.E;E/ �Hom�OX

.E;E/ �! OX ; hf; gi ´ �Tr.fg/:

Example 3.3 explains the definition of cyclic form: (3.2) reflects the cyclicity
property of the trace map TrWHom�OX

.E;E/! OX , Tr.ab/ D .�1/xa xb Tr.ba/, while
(3.1) is related to the properties of the extension of the trace map to D�.X;E/, for
which we refer to [18].

The Leibniz identity of Definition 2.1,

Œa; f x� D f Œa; x�C �.a/.f /x for all a 2 A, x 2 L, and f 2 OX ;

can be restated by noting that for all a in A the operator .�.a/; Œa;��/ belongs to
D�.X;L/ of Example 2.6. Hence, there is a morphism of DG-Lie algebroids

adWA! D�.X;L/:

The morphism adWA!D�.X;L/ restricts to the morphism adWL!Hom�OX
.L;L/

of Example 3.2, so that the following diagram commutes

0 // L
i //

ad
��

A
�

//

ad
��

‚X // 0

0 // Hom�OX
.L;L/ // D�.X;L/

˛ // ‚X // 0

This motivates the following definition.
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Definition 3.4. A representation of a DG-Lie algebroid .A; �/ over X is a mor-
phism of DG-Lie algebroids � WA!D�.X;E/, where E is a finite complex of locally
free sheaves over X :

A
� //

�
  

D�.X;E/

˛
zz

‚X

Every representation � WA! D�.X;E/ induces a form h�;�i� WL �L! OX :
for any x 2 L we have ˛ ı �.x/ D �.x/ D 0, so that

� jLWL �! Hom�OX
.E;E/;

and using the trace map TrWHom�OX
.E; E/! OX we can define for every pair of

sections x; y of L,
hx; yi� ´ Tr.�.x/�.y//:

Forms obtained in this way are cyclic, as shown in the following lemma.

Lemma 3.5. For any DG-Lie algebroid representation � WA! D�.X; E/, the
induced form h�;�i� WL �L! OX is cyclic.

Proof. For a 2 A and x; y 2 L,

hŒa; x�; yi� C .�1/
xa xx
hx; Œa; y�i�

D Tr.�.Œa; x�/�.y/C .�1/xa xx�.x/�.Œa; y�//
D Tr.Œ�.a/; �.x/��.y/C .�1/xa xx�.x/Œ�.a/; �.y/�/

D Tr.�.a/�.x/�.y/ � .�1/xa.xxCxy/�.x/�.y/�.a//
D Tr.Œ�.a/; �.x/�.y/�/:

Notice that if xa ¤ 0 then a belongs to L, so that �.a/ belongs to Hom�OX
.E;E/, and

it is clear that Tr.Œ�.a/; �.x/�.y/�/ D 0, by the properties of the trace map.
The only remaining non-trivial case is when xa D xx C xy D 0. Let ¹eki º with i D

1; : : : ; nk be a local basis of Lk , and let

�.a/.eki / D
X
j

Akij e
k
j ; �.x/�.y/.eki / D

X
j

Bkij e
k
j ; Akij ; B

k
ij 2 OX :



E. Lepri 100

Then

Œ�.a/; �.x/�.y/�.eki / D �.a/�.x/�.y/.e
k
i / � �.x/�.y/�.a/.e

k
i /

D �.a/
�X
j

Bkij e
k
j

�
� �.x/�.y/

�X
j

Akij e
k
j

�
D

X
j

Bkij �.a/.e
k
j /C

X
j

.˛ ı �/.a/.Bkij /e
k
j �

X
j;s

AkijB
k
jse

k
s

D

X
j;s

BkijA
k
jse

k
s C

X
j

�.a/.Bkij /e
k
j �

X
j;s

AkijB
k
jse

k
s :

The trace of Œ�.a/; �.x/�.y/� is hence equal toX
k

.�1/k
�X
j;i

BkijA
k
ji C

X
i

�.a/.Bkii / �
X
j;i

AkijB
k
ji

�
D

X
k;i

.�1/k�.a/.Bkii / D �.a/
�X
k;i

.�1/kBkii

�
D �.a/Tr.�.x/�.y// D �.a/.hx; yi� /:

For every i � 0, let �iX Œ�i � denote the sheaf �iX seen as a trivial complex con-
centrated in degree i . Any cyclic form h�;�iWL � L! OX can be extended to a
collection of OX -bilinear forms

h�;�iW .�iX Œ�i �˝L/ � .�
j
X Œ�j �˝L/ �! �

iCj
X Œ�i � j �; i; j � 0;

according to the Koszul sign rule, by setting for x;y 2L,! 2�iX Œ�i �, and �2�jX Œ�j �,

h! ˝ x; �˝ yi D .�1/xxj! ^ �hx; yi:

It is immediate to see that this form is cyclic, in the sense that

hŒb; x�; yi C .�1/
xb xx
hx; Œb; y�i D .Id˝ �/.b/.hx; yi/

for all b 2 �1X Œ�1�˝A and x; y 2 L, where the bracket is the one of Lemma 2.11,
and the anchor map has been extended to�1X Œ�1�˝A by setting .Id˝ �/.! ˝ a/´
! ˝ �.a/.

Definition 3.6. A cyclic form h�;�iWL�L!OX is d -closed if for all z;w 2L

hdz;wi C .�1/xzhz; dwi D 0:

Lemma 3.7. For any DG-Lie algebroid representation � WA ! D�.X; E/ the
induced cyclic form h�;�i� WL �L! OX is d -closed.
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Proof. Since � jLWL! Hom�OX
.E;E/ is a morphism of DG-Lie algebroids, it

commutes with differentials: for x 2 L,

�.dx/ D dHom�.E;E/.�.x// D ŒdE ; �.x/�:

For x; y sections of L,

hdx; yi� C .�1/
xx
hx; dyi� D Tr.�.dx/�.y/C .�1/x�.x/�.dy//

D Tr.ŒdE ; �.x/��.y/C .�1/
x�.x/ŒdE ; �.y/�/

D Tr.dE�.x/�.y/ � .�1/
xxCxy�.x/�.y/dE/

D Tr.ŒdE ; �.x/�.y/�/ D 0:

It follows from the properties of the Thom–Whitney totalisation functor Tot that
every collection of cyclic forms

h�;�iW .�iX Œ�i �˝L/ � .�
j
X Œ�j �˝L/ �! �

iCj
X Œ�i � j �;

with i; j � 0, induces a collection of K-bilinear forms

h�;�iWTot.U; �iX Œ�i �˝L/ � Tot.U; �jX Œ�j �˝L/ �! Tot.U; �iCjX Œ�i � j �/:

Recalling Definition 2.7, the required forms are induced componentwise by the restric-
tion of

An ˝
Y
i1:::in

.�iX Œ�i �˝L/.Ui1:::in/ � An ˝
Y
i1:::in

.�
j
X Œ�j �˝L/.Ui1:::in/

��

An ˝
Y
i1:::in

�
iCj
X Œ�i � j �.Ui1:::in/;

h�n ˝ .xi1:::in/; !n ˝ .yi1:::in/i ´ �n!n.h.�1/
!n .xi1:::in /xi1:::in ; yi1:::ini/;

with xi1:::in in .�iX Œ�i �˝L/.Ui1:::in/, yi1:::in in .�jX Œ�j �˝L/.Ui1:::in/, and �n; !n
in An.

Let .��X D
L
p�

p
X Œ�p�;ddR/ denote the de Rham complex. In the following, when

working with Tot.U; ��X /, the differential is denoted by dTot if ��X D
L
p�

p
X Œ�p� is

considered as complex with trivial differential, and by dTot C ddR if it is considered as
a complex with the de Rham differential.

Lemma 3.8. The form induced on the totalisation by a cyclic form h�;�iWL�L!

OX is cyclic: for all b 2 Tot.U; �1X Œ�1�˝A/ and z; w 2 Tot.U;L/ one has that

hŒb; z�; wi C .�1/
xb xz
hz; Œb; w�i D .Id˝ �/.b/.hz; wi/:
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Moreover, if the form h�;�iWL �L! OX is d -closed (see Definition 3.6), then for
the induced form, for z 2 Tot.U; �iX Œ�i �˝L/ and w 2 Tot.U; �jX Œ�j �˝L/, we
have that

hdTotz; wi C .�1/
xz
hz; dTotwi D dTothz; wi:

The above condition will be called dTot-closure.

Proof. For the first part of the statement, since everything is defined component-
wise, it suffices to prove that for every a 2 An ˝

Q
.�1X Œ�1�˝A/.Ui1:::in/ and every

x; y 2 An ˝
Q

L.Ui1:::in/,

hŒa; x�; yi C .�1/xa xxhx; Œa; y�i D .Id˝ �/.a/.hx; yi/

for every n � 0. By linearity, let a D !n ˝ zn, with !n 2 An and zn 2
Q
.�1X Œ�1�˝

A/.Ui1:::in/; let x D �n ˝ xn and y D �n ˝ yn, with �n; �n in An and xn; yn inQ
L.Ui1:::in/. Then

hŒa; x�; yi C .�1/xa xxhx; Œa; y�i

D hŒ!n ˝ zn; �n ˝ xn�; �n ˝ yni

C .�1/xa xxh�n ˝ xn; Œ!n ˝ zn; �n ˝ yn�i

D .�1/�n znh!n�n ˝ Œzn; xn�; �n ˝ yni

C .�1/xa xxh�n ˝ xn; .�1/
�n zn!n�n ˝ Œzn; yn�i

D .�1/�n.znCxn/C�n zn
�
!n�n�nhŒzn; xn�; yni

C .�1/!n �nCzn xn�n!n�nhxn; Œzn; yn�i
�

D .�1/�n.znCxn/C�n zn!n�n�n
�
hŒzn; xn�; yni

C .�1/xn znhxn; Œzn; yn�i
�

D .�1/�n.znCxn/C�n zn!n�n�n.Id˝ �/.zn/.hxn; yni/
D .Id˝ �/.a/.hx; yi/:

For the second part of the statement, recall that dTot is the differential on Tot.U; ��X /
when considering ��X as a complex with trivial differential. Again, since everything is
defined componentwise, it is sufficient to prove that

hdTot.�n ˝ xn/; !n ˝ yni C .�1/
xnC�nh�n ˝ xn; dTot.!n ˝ yn/i

D dToth�n ˝ xn; !n ˝ yni;
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for �n;!n 2 An, xn 2
Q
.�iX Œ�i �˝L/.Ui1:::in/, and yn 2

Q
.�

j
X Œ�j �˝L/.Ui1:::in/.

Then

hdTot.�n ˝ xn/; !n ˝ yni C .�1/
xnC�nh�n ˝ xn; dTot.!n ˝ yn/i

D hdAn
�n ˝ xn C .�1/

�n�n ˝ dxn; !n ˝ yni

C .�1/xnC�nh�n ˝ xn; dAn
!n ˝ yn C .�1/

!n!n ˝ dyni

D .�1/!n xndAn
.�n/!nhxn; yni

C .�1/�nC!n.xnC1/�n!nhdxn; yni

C .�1/xnC�nC.!nC1/xn�ndAn
.!n/hxn; yni

C .�1/xnC�nC!nC!n xn�n!nhxn; dyni

D .�1/!n xndAn
.�n!n/hxn; yni

C .�1/�nC!n.xnC1/�n!n.hdxn; yni C .�1/
xnhxn; dyni/

D .�1/!n xndAn
.�n!n/hxn; yni

D dAn
h�n ˝ xn; !n ˝ yni

D dToth�n ˝ xn; !n ˝ yni;

where dAn
denotes the differential on An, the differential graded algebra of polynomial

differential forms on the affine n-simplex.

Corollary 3.9. Let D in Tot.U; �1X Œ�1� ˝ A/ be a simplicial lifting of the
identity and let

r D ŒD;��WTot.U;L/ �! Tot.U; �1X Œ�1�˝L/

be its associated connection, as in Definition 2.12. Then for any cyclic form

h�;�iWTot.U; �iX Œ�i �˝L/ � Tot.U; �jX Œ�j �˝L/ �! Tot.U; �iCjX Œ�i � j �/;

with i; j � 0; we have

hr.x/; yi C .�1/xxhx;r.y/i D ddRhx; yi

for x; y 2 Tot.U;L/.

Proof. It follows from the cyclicity of the form and by Remark 2.10.

The next part is dedicated to defining an L1-morphism associated to a connection
and to a dTot-closed cyclic form on a transitive DG-Lie algebroid. We assume that the
reader is familiar with the notions and basic properties of DG-Lie algebras and L1-
morphisms between them; details can be found in [13, 19, 23, 24] and in the references
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therein. The definition of an L1-morphism between a DG-Lie algebra and an abelian
DG-Lie algebra, i.e., a DG-Lie algebra with trivial bracket is recalled here, because it
will be needed for explicit calculations.

Let V be a graded vector space over a field of characteristic zero. Let � be a
permutation of ¹1; : : : ; nº, and let v1; : : : ; vn be homogeneous vectors of V ; denote by
�.� I v1; : : : ; vn/ D ˙1 the antisymmetric Koszul sign, defined by the relation

v�.1/ ^ � � � ^ v�.n/ D �.� I v1; : : : ; vn/ v1 ^ � � � ^ vn

in the nth exterior power V ^n. If the vectors v1; : : : ; vn are clear from the context we
will write �.�/ instead of �.� I v1; : : : ; vn/. Given two non-negative integers p and q,
S.p; q/ denotes the set of .p; q/-shuffles, the permutations � of the set ¹1; : : : ; p C qº
such that

�.1/ < �.2/ < � � � < �.p/I �.p C 1/ < � � � < �.p C q/:

Recall that the cardinality of S.p; q/ is
�
pCq
p

�
. Because of the universal property of

wedge powers, every linear map V ^p ! W will be interpreted as a graded skew-
symmetric p-linear map V � � � � � V ! W .

Definition 3.10. Let .V; ı; Œ�;��/ be a DG-Lie algebra and .M;d/ an abelian DG-
Lie algebra. AnL1-morphism gWV !M is a sequence of maps gnWV ^n!M , n� 1,
with gn of degree 1� n such that, for every n and every homogeneous v1; : : : ; vn 2 V ,
the following conditions (Ci ) are satisfied for all i 2 N.

(C1) dg1.v1/ D g1.ıv1/;

and

dgn.v1; : : : ; vn/(Cn)

D .�1/1�n
X

�2S.1;n�1/

�.�/gn.ıv�.1/; v�.2/; : : : ; v�.n//

C .�1/2�n
X

�2S.2;n�2/

�.�/gn�1.Œv�.1/; v�.2/�; v�.3/; : : : ; v�.n//:

Remark 3.11. Notice that condition (C1) entails that the linear component g1
induces a map in cohomology g1WH�.V /! H�.M/. It is clear that the cohomology
H�.M/ of an abelian DG-Lie algebra M is an abelian graded Lie algebra. Condition
(C2) can be written as

g1.Œv1; v2�/ D dg2.v1; v2/C g2.ıv1; v2/C .�1/
v1g2.v1; ıv2/;

which implies that the map induced by g1 in cohomology is a morphism of graded Lie
algebras.
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Recall that since the functor Tot sends semicosimplicial DG-Lie algebras to DG-Lie
algebras, the complex Tot.U;L/ is a DG-Lie algebra. The complex of OX -modules
��1X D OX

ddR
�! �1X can be considered as a sheaf of abelian DG-Lie algebras, hence

it gives rise to a semicosimplicial abelian DG-Lie algebra; therefore, the complex
Tot.U; ��1X Œ2�/ is an abelian DG-Lie algebra.

Theorem 3.12. Let .A;�/ be a transitive DG-Lie algebroid over a smooth separated
scheme X of finite type over a field K of characteristic zero. Let L D Ker � be a finite
complex of locally free sheaves and let, for i; j � 0,

h�;�iWTot.U; �iX Œ�i �˝L/ � Tot.U; �jX Œ�j �˝L/ �! Tot.U; �iCjX Œ�i � j �/

be a cyclic form which is dTot-closed. For every simplicial lifting of the identity D 2
Tot.U; �1X Œ�1�˝A/ there exists a L1-morphism between DG-Lie algebras on the
field K,

f WTot.U;L/ Tot.U; ��1X Œ2�/;

with components
f1.x/ D hu; xi;

f2.x; y/ D
1

2

�
hr.x/; yi � .�1/xx xyhr.y/; xi

�
;

f3.x; y; z/ D �
1

2
hx; Œy; z�i;

fn D 0 8n � 4;

where r D ŒD;��WTot.U;L/! Tot.U; �1X Œ�1�˝L/ denotes the connection asso-
ciated to the simplicial lifting of the identity D, and u D dTotD its extension cocycle.

Proof. The strategy of the proof is to check that the conditions (Cn) of Defini-
tion 3.10 hold for n D 1; 2; 3; 4. In fact, since fn D 0 for n � 4, the conditions are
automatically satisfied for n � 5.

Denote by dTot the differential on Tot.U;L/, and by dTot C ddR the differential on
Tot.U; ��1X Œ2�/. Condition (C1) requires that

f1.dTotx/ D .dTot C ddR/f1.x/I

notice, however, that since u belongs to Tot.U; �1X Œ�1�˝L/, we have the equality
.dTot C ddR/f1 D dTotf1 in Tot.U; ��1X Œ2�/. Then, by the dTot-closure of the cyclic
form and by the fact that u is closed,

f1.dTotx/ D hu; dTotxi D .�1/
xudTothu; xi � .�1/

xu
hdTotu; xi

D dTothu; xi D dTotf1.x/:
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For n D 2 the condition is

f2.dTotx; y/C .�1/
xxf2.x; dToty/ D f1.Œx; y�/ � .dTot C ddR/f2.x; y/:

By definition of f2, we have again that .dTot C ddR/f2 D dTotf2, and then, using
Lemma 2.14,

f2.dTotx; y/C .�1/
xf2.x; dToty/

D
1

2

�
hr.dTotx/; yi � .�1/

.xxC1/xy
hr.y/; dTotxi

C .�1/xxhr.x/; dTotyi � .�1/
xx xy
hr.dToty/; xi

�
D
1

2

�
�hdTotr.x/; yi C hŒu; x�; yi

� .�1/.xxC1/xyhr.y/; dTotxi C .�1/
xx
hr.x/; dTotyi

C .�1/xx xyhdTotr.y/; xi � .�1/
xx xy
hŒu; y�; xi

�
D
1

2

�
hu; Œx; y�i � .�1/xx xyhu; Œy; x�i

� dTothr.x/; yi C .�1/
xx xydTothr.y/; xi

�
D hu; Œx; y�i �

1

2
dTot.hr.x/; yi � .�1/

xx xy
hr.y/; xi/

D f1.Œx; y�/ � dTotf2.x; y/:

Condition .C3/ is the following:

.dTot C ddR/f3.x; y; z/ D f3.dTotx; y; z/ � .�1/
xx xyf3.dToty; x; z/

C .�1/xz.xxCxy/f3.dTotz; x; y/ � f2.Œx; y�; z/

C .�1/xy xzf2.Œx; z�; y/ � .�1/
xx.xyCxz/f2.Œy; z�; x/;

and we begin by noting that by the dTot-closure

f3.dTotx; y; z/ � .�1/
xx xyf3.dToty; x; z/C .�1/

xz.xCxy/f3.dTotz; x; y/

D �
1

2

�
hdTotx; Œy; z�i � .�1/

xx xy
hdToty; Œx; z�i C .�1/

xz.xxCxy/
hdTotz; Œx; y�i

�
D �

1

2

�
hdTotx; Œy; z�i � .�1/

xx xy
hŒdToty; x�; zi C .�1/

xxCxy
hŒx; y�; dTotzi

�
D �

1

2

�
hdTotx; Œy; z�i C .�1/

xx
hŒx; dToty�; zi C .�1/

xxCxy
hx; Œy; dTotz�i

�
D �

1

2

�
hdTotx; Œy; z�i C .�1/

xx
hx; dTotŒy; z�i

�
D �

1

2
dTothx; Œy; z�i D dTotf3.x; y; z/:
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On the other hand, by Corollary 3.9,

� f2.Œx; y�; z/C .�1/
xy xzf2.Œx; z�; y/ � .�1/

xx.xyCxz/f2.Œy; z�; x/

D �
1

2

�
hr.Œx; y�/; zi � .�1/xz.xxCxy/hr.z/; Œx; y�i � .�1/xy xzhr.Œx; z�/; yi

C .�1/xx xyhr.y/; Œx; z�i C .�1/xx.xyCxz/hr.Œy; z�/; xi � hr.x/; Œy; z�i
�

D �
1

2

�
hŒr.x/; y�; zi C .�1/xxhŒx;r.y/�; zi � .�1/xz.xxCxy/hr.z/; Œx; y�i

� .�1/xy xzhŒr.x/; z�; yi � .�1/xy xzCxxhŒx;r.z/�; yi

C .�1/xx xyhr.y/; Œx; z�i C .�1/xx.xyCxz/hŒr.y/; z�; xi

C .�1/xx.xyCxz/CxyhŒy;r.z/�; xi � hr.x/; Œy; z�i
�

D �
1

2

�
hr.x/; Œy; z�i C .�1/xxhx;r.Œy; z�/i

�
D �

1

2
ddRhx; Œy; z�i D ddRf3.x; y; z/:

Lastly, condition .C4/ is

f3.Œa1; a2�; a3; a4/C .�1/
.a1Ca2/.a3Ca4/f3.Œa3; a4�; a1; a2/

C .�1/a1.a2Ca3/f3.Œa2; a3�; a1; a4/

� .�1/a3 a4Ca1 a2Ca1 a4f3.Œa2; a4�; a1; a3/

� .�1/a2 a3f3.Œa1; a3�; a2; a4/

C .�1/a4.a2Ca3/f3.Œa1; a4�; a2; a3/ D 0

By the graded Jacobi identity we have

�
1

2

�
hŒa1; a2�; Œa3; a4�i � .�1/

a2 a3hŒa1; a3�; Œa2; a4�i

C .�1/a4.a2Ca3/hŒa1; a4�; Œa2; a3�i

C .�1/.a1Ca2/.a3Ca4/hŒa3; a4�; Œa1; a2�i

� .�1/a3 a4Ca1 a2Ca1 a4hŒa2; a4�; Œa1; a3�i

C .�1/a1.a2Ca3/hŒa2; a3�; Œa1; a4�i
�

D �.hŒa1; a2�; Œa3; a4�i � .�1/
a2 a3hŒa1; a3�; Œa2; a4�i

C .�1/a4.a2Ca3/hŒa1; a4�; Œa2; a3�i/

D �.ha1; Œa2; Œa3; a4��i � .�1/
a2 a3ha1; Œa3; Œa2; a4��i

C .�1/a4.a2Ca3/ha1; Œa4; Œa2; a3��i/

D �ha1; Œa2; Œa3; a4�� � .�1/
a2 a3 Œa3; Œa2; a4�� � ŒŒa2; a3�; a4�i D 0
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We can now state the results of [20] for a coherent sheaf admitting a finite locally free
resolution on a smooth separated scheme X of finite type on a field K of characteristic
zero.

Remark 3.13. It is not very restrictive to require that a coherent sheaf on X has
a finite locally free resolution: in fact, by [14, III, Exercises 6.8, 6.9] every coherent
sheaf on a smooth, Noetherian, integral, separated scheme admits a finite locally free
resolution.

Let .E; dE/ be a finite complex of locally free sheaves. Consider the DG-Lie
algebroid of derivations of pairs D�.X;E/ of Example 2.6 (see also [18]), and the
short exact sequence

0 �! Hom�OX
.E;E/ �! D�.X;E/

˛
�! ‚X �! 0I

it was noted in Example 2.6 that by tensoring with �1X Œ�1� one obtains

0�!Hom�OX
.E;�1X Œ�1�˝ E/

g 7!.0;g/
������! J�

�1

.ˇ;g/ 7!ˇ
������!DerK.OX ;�

1
X Œ�1�/�! 0:

Fixing an affine open cover U ofX and applying the Tot functor, we get the short exact
sequence

0 �! Tot.U;Hom�OX
.E; �1X Œ�1�˝ E// �! Tot.U;J�

�1/ �� � �

� � �! Tot.U;DerK.OX ; �
1
X Œ�1�// �! 0:

We have already remarked that a lifting of the identity in J�
�1 is equivalent to a

global algebraic connection on every component E i ; hence, a lifting to Tot.U;J��/ of
the universal derivation ddRWOX ! �1X Œ�1� in Tot.U;DerK.OX ; �

1
X Œ�1�// can be

termed a simplicial connection on the complex of locally free sheaves E . As seen in
Example 3.3, a natural cyclic form to consider is the one induced by

Hom�OX
.E;E/ �Hom�OX

.E;E/ �! OX ; .a; b/ 7�! �Tr.ab/;

where TrWHom�OX
.E;E/! OX is the usual trace map. Then the L1-morphism of

Theorem 3.12 yields the following.

Corollary 3.14. Let E be a finite complex of locally free sheaves on a smooth
separated scheme X of finite type over a field K of characteristic zero. For every
simplicial connection D 2 Tot.U;J�

�1/ there exists an L1-morphism between DG-
Lie algebras on the field K

gWTot.U;Hom�OX
.E;E// Tot.U; ��1X Œ2�/;
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with components

g1.x/ D �Tr.ux/;

g2.x; y/ D �
1

2
Tr.r.x/y � .�1/xx xyr.y/x/;

g3.x; y; z/ D
1

2
Tr.x; Œy; z�/;

gn D 0 8n � 4:

Hence, the applications to deformation theory of [20], stated in the context of
complex manifolds, are also valid in the algebraic context, as announced.

Let F be a coherent sheaf onX admitting a finite locally free resolution, and denote

� D
X
q�0

�qWExt2X .F ;F / �!
Y
q�0

H qC2.X;�
q
X /; �.c/ D Tr.exp.�At.F // ı c/;

the Buchweitz–Flenner semiregularity map of [7]. In the previous formula, we have
that At.F / 2 Ext1X .F ;F ˝�1X / denotes the Atiyah class of F , the exponential of its
opposite

exp.�At.F // 2
Y
q�0

ExtqX .F ;F ˝�
q
X /

is obtained via the Yoneda pairing

ExtiX .F ;F ˝�
i
X / � ExtjX .F ;F ˝�

j
X / �! ExtiCjX .F ;F ˝�

iCj
X /

.a; b/ 7�! a ı b;

and Tr denotes the trace maps

TrWExtiX .F ;F ˝�
j
X / �! H i .X;�

j
X /; i; j � 0:

For every q � 0 one can consider the composition

�qWExt2X .F ;F /
�q

�! H qC2.X;�
q
X / D H

2.X;�
q
X Œq�/

iq
�! H2.X;�

�q
X Œ2q�/;

where��qX D .
Lq
iD0�

i
X Œ�i �;ddR/ is the truncated de Rham complex and iq is induced

by the inclusion of complexes �qX Œq� � �
�q
X Œ2q�. The map �q is the q-component of

the modified Buchweitz–Flenner semiregularity map. It is convenient to also consider
the maps

�qWExt�X .F ;F / �! H�.X;�
q
X Œq�/

�qWExt�X .F ;F /
�q

�! H�.X;�
q
X Œq�/

iq
�! H�.X;��qX Œ2q�/

defined by the same formulas.
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Corollary 3.15. Let F be a coherent sheaf admitting a finite locally free resolution
E on a smooth separated scheme X of finite type over a field K of characteristic zero.
Then every simplicial connection on the resolution E gives a lifting of the map

�1WExt�X .F ;F / �! H�.X;��1X Œ2�/

to an L1-morphism

gWTot.U;Hom�OX
.E;E// Tot.U; ��1X Œ2�/:

Recall that to a DG-Lie algebra M over a field K of characteristic zero we can
associate a functor DefM WArtK! Set, the functor of Maurer–Cartan solutions modulo
gauge action (for more details see e.g. [11,17,18,23,24]). It is well known that the second
cohomology H 2.M/ of the cochain complex underlying M is an obstruction space
for the deformation functor DefM . Recall also that an L1-morphism between DG-Lie
algebras gWV  M gives a morphism of deformation functors gWDefV ! DefM such
that the map induced in cohomology commutes with obstruction maps. If the DG-Lie
algebraM has trivial bracket, every obstruction in DefM is trivial, and therefore every
obstruction in DefV belongs to the kernel of the map gWH 2.V /! H 2.M/.

Corollary 3.16. Let F be a coherent sheaf admitting a finite locally free resolution
on a smooth separated scheme X of finite type over a field K of characteristic zero.
Then every obstruction to the deformations of F belongs to the kernel of the map

�1WExt2X .F ;F / �! H2.X;��1X Œ2�/:

If the Hodge to de Rham spectral sequence of X degenerates at E1, then every obstruc-
tion to the deformations of F belongs to the kernel of the map

�1WExt2X .F ;F / �! H 3.X;�1X /; �1.a/ D �Tr.At.F / ı a/:

Proof. If E is a finite locally free resolution of F , then the DG-Lie algebra
Tot.U;Hom�OX

.E;E// controls the deformations of F , see e.g. [11]. According to
Corollary 3.15, the map

�1WExt2X .F ;F / �! H2.X;��1X Œ2�/

lifts to an L1-morphism

gWTot.U;Hom�OX
.E;E// Tot.U; ��1X Œ2�/;

whose linear component g1 commutes with obstruction maps of the associated defor-
mation functors. By construction, the DG-Lie algebra Tot.U; ��1X Œ2�/ is abelian and
therefore every obstruction of the associated deformation functor is trivial.
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If the Hodge to de Rham spectral sequence ofX degenerates atE1 then the inclusion
of complexes Tot.U; �1X Œ1�/! Tot.U; ��1X Œ2�/ is injective in cohomology, so that
H 3.X;�1X / ,! H2.X;��1X Œ2�/ and the maps � and � have the same kernel.

Remark 3.17. In the setting of Theorem 3.12, if the cyclic form is induced by
a DG-Lie algebroid representation � WA ! D�.X; E/, the L1-morphism can be
obtained up to a sign from the the L1-morphism of Corollary 3.14 as follows. Let
D 2 Tot.U; �1X Œ�1�˝A/ denote a simplicial lifting of the identity, and denote by

Id˝ � WTot.U; �1X Œ�1�˝A/ �! Tot.U; �1X Œ�1�˝D�.X;E// Š Tot.U;J��/

the induced map on the totalisation. Denoting as usual by ˛ the anchor map of the
transitive DG-Lie algebroid D�.X;E/, it is clear that .Id˝ �/.D/ is a simplicial lifting
of the identity in Tot.U; �1X Œ�1�˝D�.X;E//:

.Id˝ ˛/.Id˝ �/.D/ D Id˝ .˛ ı �/.D/ D .Id˝ �/.D/
D Id�1 2 Tot.U; �1X Œ�1�˝‚X /:

Let u D dTotD 2 Tot.U;�1X Œ�1�˝L/ denote the extension cocycle associated to
D, then

.Id˝ �/.u/ D .Id˝ �/.dTotD/ D dTot.Id˝ �/.D/:

Therefore, the L1-morphism f WTot.U;L/ Tot.U; ��1X Œ2�/ associated to D and
to h�;�i� is the composition of the DG-Lie algebra morphism

� WTot.U;L/ �! Tot.U;Hom�OX
.E;E//

and of the L1-morphism

�gWTot.U;Hom�OX
.E;E// Tot.U; ��1X Œ2�/

associated to the simplicial lifting of the identity .Id˝ �/.D/ and to the cyclic form
.a; b/ 7! Tr.ab/.

4. The L1-morphism for the Atiyah Lie algebroid of a principal bundle

Since Lie algebroids arise naturally in connection with principal bundles, we give
an application of the L1-morphism constructed in Theorem 3.12 to the deformation
theory of principal bundles.

LetX be a smooth separated scheme of finite type over an algebraically closed field
K of characteristic zero, let G be an affine algebraic group with Lie algebra g, and let
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P ! X be a principal G-bundle on X . By G-principal bundle we mean a G-fibration
which is locally trivial for the Zariski topology, see e.g. [30]. We begin by finding a
DG-Lie algebra that controls the deformations of P , using an argument similar to those
in [4, 24, 31]. Let ArtK be the category of Artin local K-algebras with residue field
K. For any A in ArtK denote by mA its maximal ideal and by 0 the closed point in
SpecA.

To every semicosimplicial Lie algebra h over K,

h W h0
ı0 //

ı1

// h1

ı0 //
ı1
//

ı2

// h2

//
//
//
//
� � � ;

there are associated two functors Z1h;H
1
h WArtK ! Set, which here are described in

brief; for more details see[12,24]. The functor of non-abelian cocyclesZ1h is defined as

Z1h.A/ D ¹e
x
2 exp.h1 ˝mA/ j e

ı1.x/ D eı2.x/eı0.x/º:

For every A 2 ArtK there is a left action of exp.h0 ˝mA/ on Z1h.A/

exp.h0 ˝mA/ �Z
1
h.A/ �! Z1h.A/;

.ea; ex/ 7�! eı1.a/exe�ı0.a/:

The functor H 1
h WArtK ! Set is then defined as

H 1
h .A/ D

Z1h.A/

exp.h0 ˝mA/
:

Consider the Thom–Whitney totalisation functor Tot from semicosimplicial DG-
vector spaces to DG-vector spaces (see Definition 2.7), and recall it takes semicosimpli-
cial Lie algebras to DG-Lie algebras. We then have the following result, see [12,15,24].

Proposition 4.1. For every semicosimplicial Lie algebra h there exists a natural
isomorphism of functors H 1

h Š DefTot.h/.

Definition 4.2 ([4, 8]). An infinitesimal deformation of P over A 2 ArtK is the
data of a principal G-bundle PA ! X � SpecA and an isomorphism � W i�.PA/ Š P .

P

p

��

// PA

pA

��

X
i // X � SpecA:

Two deformations .PA; �/ and .P 0A; �
0/ are isomorphic if there exists an isomorphism

of principal G-bundles �WPA ! P 0A such that � D � 0 ı i�.�/.
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This defines a functor DefP WArtK ! Set such that DefP .A/ is the set of isomor-
phism classes of deformations of P over A 2 ArtK. For every A 2 ArtK, the set
DefP .A/ contains the trivial deformation P � SpecA! X � SpecA.

If M is a DG-Lie algebra such that DefP Š DefM , where DefM is the functor of
Maurer-Cartan solutions modulo gauge action, one says that M controls the deforma-
tions of P .

Fix an open cover U D ¹Uiº of X such that P is trivial on every Ui , and let
¹gij WUij ! Gº denote the transition functions for P . Let g be the Lie algebra of G.

• Let ad P D P �G g denote the adjoint bundle of P , with transition functions
¹Adgij

º, and let .P / denote the sheaf of sections of the vector bundle adP .

• The groupG acts on itself by conjugation; denote by AdP DP �G G the associated
bundle corresponding to this action. Recall that �.X;Ad.P // Š Gauge.P /, where
Gauge.P / is the group of bundle automorphisms of P .

There is a one to one correspondence between first order deformations of P , i.e.,
deformations over KŒt �=.t2/ 2 ArtK, andH 1.X;ad.P //, see e.g. [8,31]. This implies
that on every affine open set the deformations of P are trivial.

Lemma 4.3. Let P �G .g˝mA/ be the associated bundle induced by the action
Ad˝ IdWG � g˝mA ! g˝mA. Then there is an isomorphism

�.P �G .g˝mA// Š �.ad.P //˝mA:

Proof. A section of P �G .g˝mA/ is the data of

¹!i WUi ! g˝mA j !i .p/ D .Adgij .p/ ˝ Id/!j .p/ for all p 2 Uij º:

Let t1; : : : ; tn be a basis of the finite dimensional vector space mA, then for every
p 2 Ui one can write !i .p/ D

P
k hi;k.p/˝ tk . Since the action of G on g˝mA is

defined as
g � .x ˝ t / D Adg.x/˝ t;

the maps hi;k are such that hi;k.p/ D Adgij .p/ hj;k.p/ for every p 2 Uij .
An element of �.ad.P //˝mA is a finite sum

P
k �k ˝ tk , with �k being sections

of adP , so that each �k is the data of

¹�k;i WUi ! g j �k;i .p/ D Adgij .p/ �k;j .p/ for all p 2 Uij º:

Then, setting .�k;i ˝ tk/.p/D �k;i .p/˝ tk for everyp 2Ui , the data ¹�k;i ˝ tk WUi !
g˝mAº is exactly a section of P �G .g˝mA/.
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Lemma 4.4. For every A 2 ArtK there is an isomorphism of groups

exp.�.ad.P //˝mA/ Š

²automorphisms of the trivial
deformation P � SpecA

³
:

Proof. Denote by G0.A/ the group of morphisms f W Spec A ! G such that
f .0/D IdG , and recall that there is an isomorphism of groups exp.g˝mA/Š G

0.A/

(see e.g. [29, Section 10]). The group structure on G0.A/ is induced by the group
structure on G, while exp.g˝mA/ is a group with the Baker–Campbell–Hausdorff
product. By Lemma 4.3,

�.ad.P //˝mA Š �.P �
G .g˝mA//;

so that we can work with exp.�.P �G .g˝mA///. Consider the associated bundle
P �G G0.A/, induced by the adjoint action ofG onG0.A/; the isomorphism exp.g˝
mA/ŠG

0.A/ induces an isomorphism exp.�.P �G .g˝mA///Š �.P �
G G0.A//.

In fact, a section of P �G .g˝mA/ is the data of

¹�i WUi ! g˝mA j �i .p/ D .Adgij .p/ ˝ Id/�j .p/ for all p 2 Uij º;

and composing with the exponential expWg˝mA ! G0.A/ we obtain

¹exp ı �i WUi ! G0.A/ j exp ı �i .p/D gij .p/exp ı �j .p/gij .p/�1 for all p 2 Uij º:

Notice that this data is equivalent to²
�i WUi � SpecA! G

ˇ̌̌̌
�i .p; 0/ D IdG for all p 2 Ui ;
�i .p/ D gij .p/�j .p/gij .p/

�1 for all p 2 Uij

³
;

which is a section of the associated bundle Ad.P � SpecA/ D .P � SpecA/ �G G,
where G acts on itself by conjugation.

For anyG-principal bundleQ the global sections of the associated bundle Ad.Q/D
Q�G G correspond to bundle automorphisms ofQ. Therefore, the ¹�iº give an element
F 2 Gauge.P � SpecA/, and the condition �i .p; 0/D IdG for all p 2 Ui is equivalent
to the fact that the automorphism F induces the identity when restricted to P , so that
F is an automorphism of the trivial deformation.

Proposition 4.5. Let U D ¹Uiº be an affine open cover of X and let ad.P /.U/

be the semicosimplicial Lie algebra of Čech cochainsY
i

ad.P /.Ui /
//
//

Y
i;j

ad.P /.Uij /
//
//
//

Y
i;j;k

ad.P /.Uijk/
//
//
//
//
� � � :

There is a natural isomorphism of functors H 1
ad.P /.U/

! DefP .
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Proof. Recall that all deformations of P on an affine open set are trivial, as
mentioned above. Fix A 2 ArtK; by Lemma 4.4 an element f of Z1

ad.P /.U/
.A/ is the

data for every Uij of isomorphisms fij WP jUij
� SpecA! P jUij

� SpecA, which
restrict to the identity P jUij

! P jUij
and such that fik D fijfjk for all i; j; k.

The last condition means that the ¹fij º glue to obtain a principal G-bundle PA !
X � SpecA and isomorphisms

fi WPAjUi�SpecA �! P jUi
� SpecA

such that fij D fif �1j . Such isomorphisms coincide when restricted to

xfi W i
�.PAjUi�SpecA/ �! P jUi

and hence glue to an isomorphism of principal bundles i�.PA/! P . This means that
an element of Z1

ad.P /.U/
.A/ gives a locally trivial deformation of P over A 2 ArtK.

An element of exp.
Q
i ad.P /.Ui / ˝mA/ is again by Lemma 4.4 the data, for

every Ui , of automorphisms �i WP jUi
� SpecA! P jUi

� SpecA which restrict to
the identity P jUi

! P jUi
. Two elements f D ¹fij º, h D ¹hij º of Z1

ad.P /.U/
.A/ are

equivalent under the action of � 2 exp.
Q
i ad.P /.Ui /˝mA/ if and only if hij D

�ifij�
�1
j for all i; j .

PAjUi�SpecA
fi //

�

��

P jUi
� SpecA

�i

��

P 0AjUi�SpecA
hi // P jUi

� SpecA

This can be expressed as h�1i �ifi D h
�1
j �jfj , which means that the ¹�iº glue to a

bundle isomorphism �WPA! P 0A, where PA is the deformation corresponding to ¹fij º,
and P 0A to ¹hij º. Since each �i restricts to the identity on P jUi

, � is an isomorphism
of deformations.

Corollary 4.6. If UD ¹Uiº is an affine open cover ofX , there is an isomorphism

DefP Š DefTot.U;ad.P //;

i.e., the DG-Lie algebra Tot.U;ad.P // controls the deformations of P .

Proof. Consequence of Propositions 4.5 and 4.1 .

We now specialise the L1-morphism of Section 3 to the Atiyah Lie algebroid of
the principal G-bundle P .



E. Lepri 116

A Lie algebroid is a DG-Lie algebroid (see Definition 2.1) concentrated in degree
zero. Consider the Atiyah Lie algebroid of the principal bundle P introduced in [2],
which is a Lie algebroid structure on the sheaf Q of sections of the vector bundle
Q D TP =G, the quotient of the tangent bundle of the total space TP by the canonical
induced G-action. There is a canonical short exact sequence of locally free sheaves
over X

(4.1) 0 �! ad.P / �! Q
�
�! ‚X �! 0;

where ad.P / denotes the sheaf of sections of the adjoint bundle adP D P �G g and
�WQ! ‚X is the anchor map. The vector bundle Q is the bundle of invariant tangent
vector fields on P , and the Lie bracket on Q is induced by the Lie bracket of vector
fields.

Definition 4.7 ([2]). A connection on the principal bundle P ! X is a splitting
of the exact sequence in (4.1). The Atiyah class of P is the extension class AtX .P / 2
Ext1X .‚X ;ad.P // Š H 1.X;�1X ˝ ad.P // of the short exact sequence (4.1).

Therefore, the Atiyah class AtX .P / is trivial if and only if there exists a connection
on P .

Let �1X denote the cotangent sheaf, and �1X Œ�1� the cotangent sheaf considered
as a trivial complex of sheaves concentrated in degree one. As in Section 2, one can
tensor the short exact sequence (4.1) with �1X Œ�1� to obtain a short exact sequence of
complexes of sheaves

0 �! �1X Œ�1�˝ ad.P / �! �1X Œ�1�˝Q
Id˝�
�! �1X Œ�1�˝‚X �! 0:

Fix an affine open cover UD ¹Uiº ofX ; as in Section 2 the short exact sequence above
induces a short exact sequence of DG-vector spaces

0 �! Tot.U; �1X Œ�1�˝ ad.P // �! Tot.U; �1X Œ�1�˝Q/ �� � �

Id˝�
� � �! Tot.U; �1X Œ�1�˝‚X / �! 0;

and we denote by dTot the differentials of the above complexes.
It is easily seen that a lifting of the identity Id�1 2 �.X;�1X Œ�1�˝‚X / to D 2

�.X;�1X Œ�1�˝Q/ is equivalent to a splitting of the exact sequence in (4.1). Hence,
in the case of a principal bundle P , a lifting of the identity can be identified with a
connection on P . Therefore, we call a preimage of Id�1 in �1X Œ�1�˝Q a germ of a
connection on P , and we use the following terminology.

Definition 4.8. A simplicial connection on the principal bundle P is a lifting D
in Tot.U; �1X Œ�1�˝Q/ of the identity Id�1 in Tot.U; �1X Œ�1�˝‚X /.
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Definition 4.9. The Atiyah cocycle of P is

u D dTotD 2 Tot.U; �1X Œ�1�˝ ad.P //:

It is natural to use the name Atiyah cocycle instead of extension cocycle of Defini-
tion 2.13, because its cohomology class is equal to the Atiyah class of Definition 4.7.

As in Definition 2.12, given a simplicial connection D 2 Tot.U; �1X Œ�1�˝Q/ it
is possible to define an adjoint operator

r D ŒD;��WTot.U;ad.P // �! Tot.U; �1X Œ�1�˝ ad.P //:

A cyclic form on the Atiyah Lie algebroid Q is a symmetric bilinear form

h�;�iWad.P / � ad.P /! OX

such that for all x; y 2 ad.P / and q 2 Q,

hŒq; x�; yi C hx; Œq; y�i D �.q/.hx; yi/;

where �WQ! ‚X is the anchor map of the Atiyah Lie algebroid Q.

Example 4.10. The cyclic form induced by the adjoint representation of a DG-Lie
algebroid of Example 3.2 in this case can be constructed in an equivalent way, starting
from the Killing form of the Lie algebra g of the group G,

KWg˝K g �! K; K.g; h/ D Tr.adg ad h/:

Take x; y in ad.P /.U / and let U D
S
i Ui with Ui open sets trivialising the principal

bundle P , then

x D ¹xi WUi ! g j xi .p/ D Adgij .p/ xj .p/ for all p 2 Uij º;

and analogously for y. Define hx; yi as ¹hxi ; yi iWUi ! Kº, where for p 2 Ui

hxi ; yi i.p/ D K.xi .p/; yi .p//:

This is well defined because the Killing form is invariant under automorphisms of the
Lie algebra g, so that for p 2 Uij ,

K.xi .p/; yi .p// D K.Adgij .p/ xj .p/;Adgij .p/ yj .p//

D K.xj .p/; yj .p//:

Recall that Tot preserves multiplicative structures, hence Tot.U;ad.P // is a DG-
Lie algebra. In the sequel, Tot.U;��1X Œ2�/ D Tot.U;OX Œ2�

ddR
�! �1X Œ1�/ is considered

as a DG-Lie algebra with trivial bracket; its differential is denoted by dTot C ddR.
Theorem 3.12 then yields the following.
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Corollary 4.11. For every simplicial connection D on a principal bundle P on
a smooth separated scheme X of finite type over an algebraically closed field K of
characteristic zero, endowed with a dTot-closed cyclic form

h�;�iWTot.U; �iX Œ�i �˝ ad.P // � Tot.U; �jX Œ�j �˝ ad.P //

�! Tot.U; �iCjX Œ�i � j �/;

for i; j � 0, there exists an L1-morphism of DG-Lie algebras on the field K

f WTot.U;ad.P // Tot.U; ��1X Œ2�/;

with components

f1.x/ D hu; xi;

f2.x; y/ D
1

2

�
hr.x/; yi � .�1/xx xyhr.y/; xi

�
;

f3.x; y; z/ D �
1

2
hx; Œy; z�i;

fn D 0 8n � 4:

As seen in Remark 3.11, the linear component f1 of the L1-morphism induces a
map of graded Lie algebras

f1WH
�.Tot.U;ad.P /// �! H�.Tot.U; ��1X Œ2�//;

which, since the open cover U is affine, becomes

f1WH
�.X;ad.P // �! H�.X;��1X Œ2�/:

Corollary 4.12. Let P be a principal bundle on a smooth separated scheme X
of finite type over an algebraically closed field K of characteristic zero and let

h�;�iWTot.U; �iX Œ�i �˝ ad.P // � Tot.U; �jX Œ�j �˝ ad.P //

�! Tot.U; �iCjX Œ�i � j �/;

for i; j � 0, be a dTot-closed cyclic form. Then every obstruction to the deformations
of P belongs to the kernel of the map

f1WH
2.X;ad.P // �! H2.X;��1X Œ2�/; f1.x/ D hAt.P /; xi;

where At.P / denotes the Atiyah class of the principal bundle P .
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Proof. The proof is analogous to the one of Corollary 3.16: the linear component
of the L1-morphism of DG-Lie algebras of Corollary 4.11 induces a morphism in
cohomology which commutes with the obstruction maps of the associated deformation
functors, and the deformation functor associated to an abelian DG-Lie algebra has trivial
obstructions. By Corollary 4.6, if U D ¹Uiº is an affine open cover of X , the DG-Lie
algebra Tot.U;ad.P // controls the deformations of P and an obstruction space is
H 2.Tot.U;ad.P /// Š H 2.X;ad.P //. Since the DG-Lie algebra Tot.U; ��1X Œ2�/ is
abelian, we obtain that f1 annihilates all obstructions.

Acknowledgments – I thank my supervisor Marco Manetti for the help during
the preparation of this paper.
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