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Abstract – In this article, we define the m-prismatic site and the m-q-crystalline site, which
are higher-level analogs of the prismatic site and the q-crystalline site respectively. We prove
a certain equivalence between the category of crystals on the m-prismatic site (resp. the
m-q-crystalline site) and that on the prismatic site (resp. the q-crystalline site), which can
be regarded as the prismatic (resp. the q-crystalline) analog of the Frobenius descent due
to Berthelot and the Cartier transform due to Ogus–Vologodsky, Oyama and Xu. We also
prove equivalence between the category of crystals on the m-prismatic site and that on the
.m � 1/-q-crystalline site.
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1. Introduction

Fix a prime p. In [5], Bhatt and Scholze defined two new p-adic cohomology
theories generalizing crystalline cohomology, called prismatic cohomology and q-
crystalline cohomology. They are defined as the cohomologies of the corresponding
sites called the prismatic site and the q-crystalline site respectively. The notion of
a prismatic site .X=A/aa is defined for a p-adic formal scheme X over A=I , where
.A; I / is a bounded prism. Also, the q-crystalline site .X=D/q-crys is defined for a
p-completely smooth affine formal scheme X overD=I , where .D; I / is a q-PD pair.
(The assumptions imply that A,D are endowed with a lift � of Frobenius on A=pA,
D=pD respectively. Also, D is a ZpJq � 1K-algebra such that .D; Œp�qD/, where
Œp�q D

qp�1
q�1
, is a bounded prism and I � ��1.Œp�qD/. Moreover, when q D 1 inD,

the q-PD pair .D; I / is a PD ring.) Among other things, they proved the following
comparison theorems:

(1) If .D; I / is a q-PD pair andX is a p-completely smooth affine formal scheme over
D=I , then the q-crystalline cohomology of X over D is isomorphic to the pris-
matic cohomology of its Frobenius pullbackX 0 WDX y�Spf.D=I/;�� Spf.D=Œp�qD/
overD ([5, Theorem 16.18]).

(2) If .D; I / is a q-PD pair with q D 1 inD and X is an affine p-completely smooth
formal scheme over D=I , then the q-crystalline cohomology of X over D is
isomorphic to the crystalline cohomology of X over D (a special case of [5,
Theorem 16.14]).

On the other hand, for an integer m � 0, Berthelot ([2]; see also the works of Le
Stum–Quirós [13] and Miyatani [14]) defined the notion of a crystalline cohomology
of level m as the cohomology of the m-crystalline site. The notion of an m-crystalline
site .X=D/m-crys can be defined for a smooth scheme X overD=I , where .D; J; I; 
/
is a p-torsion-free p-complete m-PD ring or an m-PD ring in which p is nilpotent
such that the ideal I contains p. When m D 0, it coincides with the usual crystalline
site. He proved the following results, which are called the Frobenius descent:

(3) The category of crystals on the m-crystalline site of X over D is equivalent
to that on the crystalline site of X 0 over D, where X 0 WD X �Spec.D=I/;.�m/�

Spec.D=I / is the pullback of X by the m-fold iteration �m of the Frobenius lift
([3, Corollaire 2.3.7, Théorème 4.1.3] in local situation). (See also the equivalence
Q�� in Section 5.)

(4) The crystalline cohomology of levelm ofX overD is isomorphic to the crystalline
cohomology of X 0 over D, where X 0 is as above ([14, Proposition 5.4], [13,
Proposition 5.5]).
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The purpose of the present article is to introduce the notion of an m-prismatic site
and an m-q-crystalline site, which are the level-m versions of the prismatic site and
the q-crystalline site respectively, and prove a prismatic and a q-crystalline version
of the equivalence of (3) in Theorems 2.25, 3.18. The q-crystalline version of (3) is
actually compatible with the equivalence of (3) when q D 1 and p 2 I . We also prove
the equivalences of categories of crystals corresponding to the higher-level versions of
(1) and (2) in Theorem 4.2 and Proposition 5.28 respectively.
Let us explain the content of each section. In Section 2, for a bounded prism .A; I /

and a smooth and separated formal scheme X over A=J with J WD .�m/�1.I /, we
first define the m-prismatic site .X=A/m-aa (Definition 2.1). Next we prove that the
category of crystals on the m-prismatic site .X=A/m-aa is equivalent to that on the
prismatic site .X 0=A/aa, where X 0 WD X y�Spf.A=J /;.�m/� Spf.A=I / (Theorem 2.25).
We work with the category of crystals with respect to certain categories of modules
with some technical conditions (Definition 2.16) so that our argument works. Our
proof of equivalence is based on the idea developed by Oyama [17] and Xu [20] in
their study of the Cartier transform in positive characteristic or the case modulo pn:
we define a functor �W .X=A/m-aa ! .X 0=A/aa of sites and prove that it induces an
equivalence of topoiB.X=A/m-aa ! B.X 0=A/aa (Theorem 2.15) and, moreover, that this
equivalence preserves the categories of crystals on both sides.
In Section 3, for a q-PD pair .D; I / and a smooth and separated formal

scheme X over D=J with J WD .�m/�1.I /, we first define the m-q-crystalline site
.X=D/m-q-crys (Definition 3.3). Next we prove that the category of crystals on
.X=D/m-q-crys is equivalent to that on the q-crystalline site .X 0=D/q-crys, where
X 0 WD X y�Spf.D=J /;.�m/� Spf.D=I / (Theorem 3.18). The proof of equivalence is
parallel to that in Section 2. We also introduce the category of stratifications, which is
equivalent to the category of crystals on .X=D/m-q-crys (Definition 3.21, Proposition
3.22).
In Section 4 we compare the category of crystals on the m-prismatic site with

that on the .m � 1/-q-crystalline site. By the comparison theorems in (1) and (4)
above, it is natural to regard the prismatic cohomology as a kind of “level-(�1) q-
crystalline cohomology”. So it would be natural to compare the m-prismatic site
with the .m � 1/-q-crystalline site. Based on this observation, for a q-PD pair .D; I /
with Jq WD .�m�1/�1.I /, Jaa WD .�m/�1.Œp�qD/ and a smooth and separated formal
scheme X overD=Jq , we prove that the category of crystals on the m-prismatic site
. zX=D/m-aa is equivalent to that on the .m � 1/-q-crystalline site .X=D/.m�1/-q-crys,
where zX WD X y�Spf.D=Jq/ Spf.D=Jaa/ (Theorem 4.2). The category of stratifications
we introduced in Section 3 plays a central role in the proof.
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In Section 5 we relate our equivalence in Section 3 to the Frobenius descent in
(3). Let .D; J; I; 
/ be a p-torsion-free p-complete m-PD ring with p 2 I , and
let zX be a smooth and separated scheme over D=I . First we give an alternative
site-theoretic proof (a proof based on the idea of Oyama [17] and Xu [20]) of the
equivalence in (3), namely, equivalence between the category of crystals on the m-
crystalline site . zX=D/m-crys and that on the crystalline site .X 0=D/crys, where X 0 WD
zX �Spec.D=I/;.�m/� Spec.D=I / (Corollary 5.21). Note that the original definition of
the (m-)crystalline site is not suitable to apply the site-theoretic argument of Oyama and
Xu. Our strategy is to introduce the variants .X=D/m-crys;new (whereX WD zX �Spec.D=I/
Spec.D=J /) and .X 0=D/crys;new of the (m-)crystalline site (Definition 5.12) which do
not change the categories of crystals and for which the site-theoretic argument works.
Next, assuming that .D; I / is a q-PD pair with q D 1 inD and p 2 I , we prove that
the equivalence of categories of crystals in Section 3 is compatible with the Frobenius
descent by comparing the categories of crystals on the (m-)q-crystalline site and those
on the variants of the (m-)crystalline site.
In Section 6 we establish relationships between our result and results in the works

of Xu [20], Gros–Le Stum–Quirós [7] and Morrow–Tsuji [15]. We will see that our
equivalences between the category of crystals on the prismatic site, that on the 1-
prismatic site and that on the q-crystalline site are compatible with the equivalence
of the Cartier transform in the case modulo pn by Xu, and the equivalence between
the category of twisted hyper-stratified modules of level .�1/ and that of level 0 by
Gros–Le Stum–Quirós. The equivalence of categories of crystals in Section 2 also
fits naturally into the diagram involving the category of generalized representations,
the category of modules with flat q-Higgs field and the category of modules with flat
q-connection that appeared in the work of Morrow–Tsuji.
The original motivation for introducing m-crystalline cohomology would be to

develop a p-adic cohomology theory over a ramified base, for example, when the base
is a complete discrete valuation ring V of mixed characteristic .0; p/ in which p is not
a uniformizer. However, there exists no ı-ring structure on the ring V above. So our
definition of the m-prismatic site and the m-q-crystalline site is not enough for this
purpose. We hope to generalize our results to the case of a possibly ramified base in
the future.

2. The m-prismatic site

In this section we first define them-prismatic site, which is a higher-level analog of
the prismatic site defined in [5] as well as a prismatic analog of the level-m crystalline
site. Next we prove that there exists an equivalence between the category of crystals
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on the m-prismatic site of a smooth formal scheme X and that on the usual prismatic
site of X 0, where X 0 is the pullback of X by the m-fold iteration �m of the Frobenius
lift � on the base prism.
We fix a non-negative integer m and a bounded prism .A; I /. Then I is closed for

the p-adic topology of A. (Indeed, I is p-adically complete because I is invertible
as an A-module, and the boundedness of the prism .A; I / implies that the p-adic
topology of I coincides with the topology on I induced by the p-adic topology of
A by the argument in the proof of [6, Proposition 4.3].) Also, the map �WA! A is
continuous for the p-adic topology by [5, Lemma 2.17]. Thus .�m/�1.I / is closed for
the p-adic topology of A.

Definition 2.1. Let J D .�m/�1.I /, and letX be a p-adic formal scheme smooth
and separated over A=J . We define the m-prismatic site .X=A/m-aa of X over A as
follows. Objects are maps .A; I / ! .E; IE / of bounded prisms together with a
map Spf.E=JE /! X over A=J satisfying the following condition, where JE D
.�m/�1.IE /:

.�/ Spf.E=JE /! X factors through some affine open Spf.R/ � X .

We will often denote such an object by

.Spf.E/ Spf.E=JE /! X/ 2 .X=A/m-aa

or .E; IE / if no confusion arises. A morphism

.Spf.E 0/ Spf.E 0=JE 0/! X/! .Spf.E/ Spf.E=JE /! X/

is a map of bounded prisms .E; IE /! .E 0; IE 0/ over .A; I / such that the induced
morphism

Spf.E 0=JE 0/! Spf.E=JE /

is compatible with the maps Spf.E 0=JE 0/! X , Spf.E=JE /! X . When we denote
such an object by .E; IE /, we will write .E; IE / ! .E 0; IE 0/ (not .E 0; IE 0/ !
.E; IE /) for a morphism from .E 0; IE 0/ to .E; IE /. A map (E; IE )! (E 0; IE 0) in
.X=A/m-aa is a cover if it is a faithfully flat map of prisms, i.e.,E 0 is .p; IE /-completely
faithfully flat over E.

Remark 2.2. By [5, Lemma 3.5], for an object .E; IE / of .X=A/m-aa, the ideal
IE is always equal to the ideal IE.

We need to check that the category .X=A/m-aa endowed with the topology as defined
above forms a site. Thanks to [15, Lemma 3.8], we have the following lemma:
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Lemma 2.3. Let .E1; IE1/
f
 � .E; IE /

g
�! .E2; IE2/ be maps in .X=A/m-aa such

that f is a cover. Let E3 WD E1 y̋E E2, where the completion is the classical .p; I /-
completion. Then .E3; IE3/ is the object that represents the coproduct .E1; IE1/
t.E;IE/ .E2; IE2/ in .X=A/m-aa, and the canonical map .E2; IE2/! .E3; IE3/ is a
cover.

By Lemma 2.3, the set of covers in Definition 2.1 actually forms a pretopology on
the category .X=A/m-aa.

Remark 2.4. When m D 0, we denote the site .X=A/m-aa simply by .X=A/aa and
call it the prismatic site. This is equal to the prismatic site defined in [5, Definition
4.1], except that the technical condition .�/ in Definition 2.1, which we imposed to
facilitate some arguments below, is not assumed in [5]. One easily checks that the
topos is unchanged even if we do not impose condition .�/.

In order to establish equivalence between the category of crystals on the m-
prismatic site and that on the usual prismatic site, we first construct a functor between
these sites.

Construction 2.5. Under the notation and assumption in Definition 2.1, let
X 0 D X y�Spf.A=J /;.�m/� Spf.A=I /. Then we have a diagram:

Spf.A/ Spf.A=J / X

Spf.A/ Spf.A=I / X 0:

�.�m/� .�m/�

We define a functor � from the m-prismatic site of X over A to the usual prismatic
site of X 0 over A in the following way: for an object (Spf.E/ Spf.E=JE /! X)
of .X=A/m-aa, we define the object �.Spf.E/ Spf.E=JE /! X/ of .X 0=A/aa by

.Spf.E/ Spf.E=IE /
f
�! X 0/;

where the right map f is defined as

Spf.E=IE /
g
�! Spf.E=JE / y�

Spf.A=J /;.�m/�
Spf.A=I /

! X y�
Spf.A=J /;.�m/�

Spf.A=I / D X 0:

Here the first map g is induced by the map of rings

E=JE y̋

A=J;�m
A=I ! E=IE ; e ˝ a 7! �m.e/a:

This defines the functor �W .X=A/m-aa ! .X 0=A/aa.
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Next we want to show that � induces an equivalence of topoi. We follow the proof
of [20, Theorem 9.2], where the author proved an analogous result for the Oyama topoi.
The main properties of the functor � that we need are summarized in the following
propositions.

Proposition 2.6 (Cf. [20, Proposition 9.3 (i)]). The functor � is fully faithful.

Proof. The functor � is clearly faithful. To prove fullness, suppose that

˛W �.Spf.E 0/ Spf.E 0=JE 0/! X/! �.Spf.E/ Spf.E=JE /! X/

is a map in .X 0=A/aa. We consider the diagram

Spf.E 0=IE 0/ Spf.E 0=JE 0/

X 0 X

Spf.E=IE / Spf.E=JE /;

.�m/�

N̨ N̨

.�m/�

where the morphisms N̨ are induced by ˛ and the morphisms .�m/� are induced by
�m on E 0 and E. It is enough to check that the right triangle is commutative. Since
the left triangle, the outer square and the two trapezoids are commutative, it suffices to
prove the following claim:

Claim. Let fi W Spf.E 0=JE 0/! X (i D 1; 2) be maps which factor through some
affine opens Spf.Ri / � X (i D 1; 2) respectively, and satisfies

f1 ı .�
m/� D f2 ı .�

m/�WSpf.E 0=IE 0/! X:

Then f1 D f2.

We prove the claim. Let Spf.R3/ D Spf.R1/ \ Spf.R2/ (note that, since X is
separated by assumption, the intersection on the right-hand side is affine). Then the
map f1 ı .�m/�D f2 ı .�m/� factors through Spf.R3/. Since .�m/� is homeomorphic
as a map of topological spaces, this implies that both f1 and f2 factor through Spf.R3/.
If f �i denote the maps R3 ! E 0=JE 0 corresponding to fi (i D 1; 2), then we have
equality of the map of rings �m ı f �1 D �m ı f �2 WR3 ! E 0=IE 0 . Since the map
�mWE 0=JE 0!E 0=IE 0 is injective, we conclude that f �1 D f

�
2 , and hence f1D f2.

Proposition 2.7 (Cf. [20, Proposition 9.3 (ii)]). The functor � is continuous.
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Proof. By definition, ˛W .E;IE /! .E 0; IE 0/ is a cover in .X=A/m-aa if and only if
�.˛/W �.E; IE /! �.E 0; IE 0/ is a cover in .X 0=A/aa (note that the definition of covers
in the prismatic site is the m D 0 case of Definition 2.1). On the other hand, if

.E1; IE1/
f
 � .E; IE/

g
�! .E2; IE2/

are maps in .X=A/m-aa such that the map f is a cover, then by Lemma 2.3, we see
that �.E1 tE E2/! �.E1/ t�.E/ �.E2/ is an isomorphism. These imply that � is
continuous, as desired.

Proposition 2.8 (Cf. [20, Proposition 9.3 (ii)]). The functor � is cocontinuous.

Proof. Suppose that

˛0W .Spf.E 0/ Spf.E 0=IE 0/! X 0/! �.Spf.E/ Spf.E=JE /! X/

is a cover in .X 0=A/aa. Condition .�/ in Definition 2.1 ensures that the map Spf.E=JE /
! X factors through some affine open Spf.R/ � X . Then ˛0 induces the following
commutative diagram:

R0 D R y̋

A=J;�m
A=I E=JE y̋

A=J;�m
A=I E=IE E

E 0=IE 0 E 0;

g˝id

g0
N̨ 0 ˛0

where g (resp. g0) is the map induced by Spf.E=JE /! X (resp. Spf.E 0=IE 0/! X 0).
If we define g00 as the composite R! R0

g0
�! E 0=IE 0 , the commutativity of the above

diagram implies that the solid arrows in

R E=JE E=IE E

E 0=JE 0 E 0=IE 0 E 0

g

g00N̨ 0

�m

N̨ 0 ˛0

�m

commute. Then we can define the dotted arrow as the composite N̨ 0 ı g so that the
diagram commutes and that it defines an object (Spf.E 0/ Spf.E 0=JE 0/! X ) and
a morphism

.Spf.E 0/ Spf.E 0=JE 0/! X/! .Spf.E/ Spf.E=JE /! X/

in .X=A/m-aa. If we denote it by ˛, then �.˛/ D ˛0. The map ˛ is also a cover by
assumption. These imply that � is cocontinuous, as desired.



Prismatic and q-crystalline sites of higher level 145

In order to prove another important proposition to prove the equivalence of topoi,
we prepare several lemmas.

Lemma 2.9. Let A be an I -adically complete ring where I is a finitely generated
ideal. Let J � A be a closed ideal such that the image of J in A=I is a nil ideal, and
let Nf W xU ! Spf.A=J / be a smooth morphism (resp. an open immersion) with xU affine.
Then there is a unique smooth morphism (resp. open immersion) f WU ! Spf.A/
which lifts Nf . Moreover, U is affine.

Proof. We follow the proof of [16, Lemma 2.3.14], where the authors proved an
analogous results for log schemes. We may replace A by A=I n and Spf by Spec to
prove the lemma. Then J is a nil ideal of A and the morphism Nf W xU ! Spec.A=J / is
a smooth morphism (resp. an open immersion) of schemes.
We first treat the case that Nf is smooth. Express J as the inductive limit of the

inductive system .J�/� of finitely generated nilpotent ideals of A: J D lim
�!�

J�. Since

Spec.A=J / D lim
 �
�

Spec.A=J�/;

by [9, Théorème 8.8.2 (ii) and Proposition 17.7.8], there exists a smooth scheme
U� over Spec.A=J�/ for some � such that xU D U� �Spec.A=J�/ Spec.A=J /. By [9,
Théorème 8.10.5 (viii)], we may assume U� is affine. By replacing xU ! Spec.A=J /
by U� ! Spec.A=J�/, we may assume that J is a finitely generated nilpotent ideal.
Next, fix a generator x1; : : : ; xn of J and write A as the inductive limit of the inductive
system .A�/� of Noetherian subrings containing x1; : : : ; xn. If we write J� for the
ideal of A� generated by x1; : : : ; xn, we have

Spec.A=J / D lim
 �
�

Spec.A�=J�/:

Then, by a similar argument to above, we may replace J � A by J� � A� for some �
and so we may assume furthermore that A is Noetherian. Then the existence and the
uniqueness of U follows from [10, Exposé III, Corollaire 6.8].
It remains to check that the scheme U is affine. We can reduce to the case where J

is nilpotent by the argument above, and then we may assume that J 2 D 0. Let I be a
coherent ideal sheaf of OU . By the proof of [11, Theorem 3.7], for a scheme X , the
following conditions on X are equivalent:

(1) X is affine.

(2) H 1.X; I/ D 0 for all coherent ideal sheaves I.

So we need to prove thatH 1.U; I/ D 0. We consider the exact sequence

0! J I! I! I=J I! 0:
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As xU is affine, we see that H 1.U; I=J I/ D H 1. xU ; I=J I/ D 0. Similarly, one can
show thatH 1.U; J I/ D 0. HenceH 1.X; I/ D 0.
Next we consider the case that Nf is an open immersion. Then the existence of f

follows as Spec.A=J / is homeomorphic to Spec.A/. The uniqueness and the affinity
of U follow from the previous case because an open immersion is smooth. So we are
done.

Lemma 2.10. Let .E; IE / be a bounded prism. Let Nf be an open immersion

Nf WSpf.Ei /! Spf.E=IE /

or an open immersion
Nf WSpf.Ei /! Spf.E=JE /:

Then there is a unique open immersion f WSpf.Ei /! Spf.E/ which lifts Nf . Moreover,
the corresponding map of rings induces a map .E; IE /! .Ei ; IEEi / of bounded
prisms.

Proof. We first check that the images of IE , JE in E=.p; IE / are nil ideals. The
assertion is trivial for IE . For JE , it follows immediately from the definitions of JE
and the Frobenius lift �. Then the existence, the uniqueness and the affinity of the
lifting follow from Lemma 2.9. We denote the lifting by f WSpf.Ei /! Spf.E/.
As f is an open immersion, there exists an open cover

Spf.Ei / D
N[
jD1

Spf. yEgj /;

where yEgj is the classical .p; IE /-completion of the localization Egj of E by gj 2 E.
As Egj is an étale E-algebra, the derived .p; IE /-completion E

D
gj
of Egj is .p; IE /-

completely étale and it admits a unique ı-structure compatible with the one on E by
[5, Lemma 2.18]. Then .EDgj ; IEE

D
gj
/ is a bounded prism by [5, Lemma 3.7 (2), (3)],

and so yEgj is equal to E
D
gj
by [5, Lemma 3.7 (1)]. We see also that yEgj1 :::gjn is equal

to EDgj1 :::gjn for the same reason.
By the sheaf property and the vanishing of higher cohomologies of the structure

sheaf of Spf.Ei /, we have a quasi-isomorphism

Ei
'
�!

�Y
j

yEgj !
Y
j1<j2

yEgj1gj2
! � � � ! yEg1:::gN

�
:

We write K� for the complex on the right-hand side. As each yEgj1 :::gjn D E
D
gj1 :::gjn

is .p; IE /-completely flat over E, K� ˝LE N is concentrated in degree � 0 for any
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.p; IE /-torsion E-module N . On the other hand, Ei ˝LE N is concentrated in degree
� 0 by definition. Hence Ei ˝LE N is concentrated in degree 0. Then, since

Ei ˝
L
E E=.p; IE / D Ei=.p; IE /

is étale overE=.p;IE /,Ei is .p; IE /-completely étale overE. Thus it admits a unique
ı-structure compatible with the one on E by [5, Lemma 2.18] and then .Ei ; IEEi / is
a bounded prism by [5, Lemma 3.7 (2), (3)].

The next result will also be used to prove the equivalence of topoi.

Proposition 2.11 (Cf. [20, Lemma 9.8 (i)]). Let .E 0; IE 0/ be an object in .X 0=A/aa.
Then there exists an object .E; IE / in .X=A/m-aa and a cover of the form

.E 0; IE 0/! �.E; IE /:

Proof. Let X D
S
i Spf.Ri / be a finite affine open cover of X . By the definition

of X 0 in Construction 2.5, we see that

Spf.Ri / y�
X
X 0 D Spf.Ri y̋

A=J;�m
A=I/:

We denote this formal scheme by Spf.R0i /. On the other hand, condition .�/ in Defi-
nition 2.1 ensures that the map Spf.E 0=IE 0/! X 0 factors through some affine open
Spf.R00/ � X 0. As X 0 is separated by assumption, we see that Spf.R0i / \ Spf.R

00/ D

Spf.R�i / for some R
�
i . Then the formal scheme Spf.R

0
i / y�X 0 Spf.E

0=IE 0/ is identi-
fied with Spf.R0i y̋R�i E

0=IE 0/. In particular, it is affine. We denote this affine open
subscheme of Spf.E 0=IE 0/ by Spf.E 0i /. By Lemma 2.10, there is a unique bounded
prism .E 0i ; IE 0i / 2 .X

0=A/aa for which the corresponding formal scheme Spf.E 0i / is an
affine open formal subscheme of Spf.E 0/ and lifts Spf.E 0i /, namely E

0
i=IE 0i

D E 0i . By
construction, we see that

.E 0; IE 0/!
Y
i

.E 0i ; IE 0i
/

is a cover in .X 0=A/aa. To prove the proposition, we may replace .E 0; IE 0/ by .E 0i ; IE 0i /
to assume that the structure morphism Spf.E 0=IE 0/! X 0 factors through an affine
open Spf.R0/ � X 0 such that R0 is of the form R y̋A=J;�m A=I for some affine open
Spf.R/ � X .
As the map A=J ! R is smooth, [19, Tag 00TA] tells us that there exists an open

cover of Spf.R/ by standard opens Spf. �Rg/ such that each �Rg=p is standard smooth
over A=.p; J /. After refining the given cover of X in the previous paragraph we may
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assume that R=p is standard smooth over A=.p; J /. By [19, Tag 00T7], there exists a
surjection AŒx1; : : : ; xn�^ ! R whose kernel is the ideal (J; y1; : : : ; yr ) such that

y1; : : : ; yr 2 A=.p; J /Œx1; : : : ; xn�

form a regular sequence. On the other hand, there is a natural map

AŒx1; : : : ; xn�
^
! A¹x1; : : : ; xnº

^;

where the symbol ¹º denotes the adjoining of elements in the theory of ı-rings (see
[5, Notation 2.8]). By Corollary 2.13 below about the regular sequence, we see that
the sequence

�m.y1/; : : : ; �
m.yr/ 2 A¹x1; : : : ; xnº

^

is (p; I )-completely regular relative to A. Then we can construct a map

A¹x1; : : : ; xnº
^
! S

def
D
�
.A¹x1; : : : ; xnº/

^
®
K
I

¯�^
to the prismatic envelope by [5, Proposition 3.13], where K denotes the ideal .I;
�m.y1/; : : : ; �

m.yr// � A¹x1; : : : ; xnº
^. By the construction of the prismatic enve-

lope, �m.yi / 2 IS and so yi 2 JS D .�m/�1.IS / for all i . This gives a map R !
S=JS .
Next, letAŒx1; : : : ; xn�^!R y̋A;�m A be the base change ofAŒx1; : : : ; xn�^!R

in the previous paragraph along �mWA! A. Passing to the quotient then induces
AŒx1; : : : ; xn�

^ ! R0. The kernel of this map is the ideal (I; y01; : : : ; y
0
r ), where the

y0i are the images of the yi under the map AŒx1; : : : ; xn�
^ ! AŒx1; : : : ; xn�

^ sendingP
j ˛jx

j to
P
j �

m.˛j /x
j (here we write j WD .j1; : : : ; jn/ for the multi-index). By

the definition of the yi , the sequence y01; : : : ; y0r 2 A=.p; I /Œx1; : : : ; xn� is a regular
sequence. By Corollary 2.13 below, the sequence y01; : : : ; y

0
r 2 A¹x1; : : : ; xnº

^ is
(p; I )-completely regular relative to A. Then we can construct a map

A¹x1; : : : ; xnº
^
! S 0

def
D
�
.A¹x1; : : : ; xnº/

^
®
K0

I

¯�^
to the prismatic envelope, whereK 0 denotes the ideal .I;y01; : : : ;y

0
r/�A¹x1; : : : ;xnº

^.
Then we have a diagram:

A=I R0

A AŒx1; : : : ; xn�
^ A¹x1; : : : ; xnº

^ S 0
def
D
�
.A¹x1; : : : ; xnº/

^
®
K0

I

¯�^
:
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By the definitions of yi and y0i , we have a map of ı-A-algebras .�
m/0WS 0! S sending

xi to �m.xi /. By Proposition 2.14 below, we see that .�m/0 is .p; I /-completely
faithfully flat.
Let .E 0; IE 0/2 .X 0=A/aa be as above. We have a map f1WAŒx1; : : : ;xn�^!E 0=IE 0

determined as the composition of the map AŒx1; : : : ; xn�^ ! R0 in the above diagram
with R0 ! E 0=IE 0 . As AŒx1; : : : ; xn�^ is the completion of a polynomial ring, one
can choose a map f2WAŒx1; : : : ; xn�^ ! E 0 lifting f1. As E 0 is a ı-A-algebra, f2
extends uniquely to a ı-A-algebra map f3WA¹x1; : : : ; xnº^ ! E 0. By construction,
this extension carriesK 0 into IE 0 . By the universal property of S 0, f3 extends uniquely
to a ı-A-algebra map gWS 0 ! E 0. If we set hWE 0 ! E 0 y̋ S 0 S to be the base change
of .�m/0WS 0 ! S along g, then by .p; I /-complete faithful flatness of .�m/0, we see
that the same holds true for h.
It remains to check that the map h defines a morphism

.E 0; IE 0/! �
�
E 0 y̋

S 0
S; IE 0 y̋

S0
S

�
in .X 0=A/aa. To see this, it is enough to check that the bottom-right square in the
following diagram is commutative, in which all the other squares are commutative:

AŒx1; : : : ; xn�
^ S E 0 y̋

S 0
S

AŒx1; : : : ; xn�
^ R0 D R y̋

A=J;�m
A=I S=JS y̋

A=J;�m
A=I E 0 y̋

S 0
S=JE 0 y̋

S0
S
y̋

A=J;�m
A=I

E 0 E 0=IE 0 E 0 y̋
S 0
S=IE 0 y̋

S0
S :

i2

f2

i2

Nh

Here, i2 is the map to the second component of the coproduct in Lemma 2.3. We can
check the commutativity of the bottom-right square by tracing the elements xi :

xi xi 1˝ xi

xi xi ˝ 1 1˝ xi ˝ 1

f2.xi / f2.xi / 1˝ �m.xi / D f2.xi /˝ 1;

so the proposition follows.
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We prove the claims which were used in the proof above. We first review several
notions that appeared in [5, Section 2.6].
A map A! B of simplicial commutative rings is called flat if �0.A/! �0.B/

is flat and �i .A/˝�0.A/ �0.B/! �i .B/ is an isomorphism for all i . This can be
checked after the derived base change along A! �0.A/. For a commutative ring A, a
finitely generated ideal I D .f1; : : : ; fn/ � A and an I -completely flat commutative
A-algebra B , a sequence x1; : : : ; xr 2 B is I -completely regular relative to A if the
map of simplicial commutative rings

A˝LZŒf1;:::;fn� Z! B ˝LZŒf1;:::;fn;x1;:::;xr � Z

is flat. Here, the maps ZŒf1; : : : ; fn�! Z, ZŒf1; : : : ; fn; x1; : : : ; xr �! Z are defined
by sending each fi , xi to 0.

Lemma 2.12. LetA;I D .f1; : : : ; fn/�A and B be as above and let x1; : : : ; xr 2
B be a sequence of elements satisfying the following conditions:

(1) The images x1; : : : ; xr of x1; : : : ; xr in B=IB form a regular sequence.

(2) B=.I; x1; : : : ; xr/ is flat over A=I .

Then x1; : : : ; xr is I -completely regular relative to A.

Proof. We prove the flatness of the map

A˝LZŒf1;:::;fn� Z! B ˝LZŒf1;:::;fn;x1;:::;xr � Z:

This can be checked after the derived base change along

A˝LZŒf1;:::;fn� Z! �0.A˝
L
ZŒf1;:::;fn�

Z/ D A=I;

which is the composition of the maps

A˝LZŒf1;:::;fn� Z
f1
�! A=I ˝LZŒf1;:::;fn� Z

f2
�! A=I;

where f1 is the map induced by the projection A! A=I and f2 is the map taking the
degree 0 part of the Koszul complex. By taking the base change along f1, we obtain
the map

A=I ˝LZŒf1;:::;fn� Z! .A=I ˝LA B/˝
L
ZŒf1;:::;fn;x1;:::;xr �

Z

Š B=IB ˝LZŒf1;:::;fn;x1;:::;xr � Z

Š .B=IB ˝LZŒf1;:::;fn;x1;:::;xr � ZŒx1; : : : ; xr �/˝
L
ZŒx1;:::;xr �

Z;
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where the first isomorphism follows from the I -complete flatness of B over A. Then,
taking the base change along f2, we obtain the map

A=I ! B=IB ˝LZŒx1;:::;xr � Z:

Note that the complex B=IB ˝LZŒx1;:::;xr � Z is the Koszul complex corresponding to
B=IB and x1; : : : ; xr . As x1; : : : ; xr form a regular sequence in B=IB , we see that
the complex B=IB ˝LZŒx1;:::;xr � Z is identified with B=.I; x1; : : : ; xr/, which is flat
over A=I by assumption, as desired.

Corollary 2.13. With notation as in the proof of Proposition 2.11, the sequence
�m.y1/; : : : ;�

m.yr/ 2A¹x1; : : : ; xnº
^ and the sequence y01; : : : ; y0r 2A¹x1; : : : ; xnº^

are .p; I /-completely regular relative to A.

Proof. We first treat the case of the sequence y01; : : : ; y
0
r . Note that the map

A=.p; I /Œx1; : : : ; xn�! A=.p; I /¹x1; : : : ; xnº

is flat. Recall that y01; : : : ; y0r 2 A=.p; I /Œx1; : : : ; xn� form a regular sequence and
the ring AŒx1; : : : ; xn�=.p; I; y01; : : : ; y

0
r/ D R

0=pR0 is smooth (and hence flat) over
A=.p; I /, so the claim follows from Lemma 2.12.
Next we prove the claim for the sequence �m.y1/; : : : ; �m.yr/. Recall that the

sequence
y1; : : : ; yr 2 A=.p; J /Œx1; : : : ; xn�

is a regular sequence and AŒx1; : : : ; xn�=.p; J; y1; : : : ; yr/ D R=p is smooth over
A=.p; J /. If J .pm/ denotes the ideal generated by xpm for all elements x of J , then
we have .p; J .pm// � .p; I /. Since .p; J / is a nil ideal in A=.p; J .pm//Œx1; : : : ; xn�,
the Jacobian criterion for smoothness implies that

y1; : : : ; yr 2 A=.p; J
.pm//Œx1; : : : ; xn�

form a regular sequence and that the quotient AŒx1; : : : ; xn�=.p; J .p
m/; y1; : : : ; yr/

is smooth over A=.p; J .pm//. Then it implies that y1; : : : ; yr 2 A=.p; I /Œx1; : : : ; xn�
form a regular sequence and that the quotient AŒx1; : : : ; xn�=.p; I; y1; : : : ; yr/ is
smooth over A=.p; I /. As �m.yi / D yi p

m in A=.p; I /¹x1; : : : ; xnº, we see that

�m.y1/; : : : ; �m.yr/ 2 A=.p; I /¹x1; : : : ; xnº

form a regular sequence and that A¹x1; : : : ; xnº=.p; I; �m.y1/; : : : ; �m.yr// is flat
over A=.p; I /. By Lemma 2.12, we conclude that the sequence

�m.y1/; : : : ; �
m.yr/ 2 A¹x1; : : : ; xnº

^

is .p; I /-completely regular relative to A.
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Proposition 2.14. With notation as in the proof of Proposition 2.11, the map

.�m/0WS 0 ! S

is .p; I /-completely faithfully flat.

Proof. Since the map .�m/0 is the derived .p; I /-completion of the base change
of the ı-A-algebra map

.�m/00WA¹x1; : : : ; xnº
^
! A¹x1; : : : ; xnº

^; xi 7! �m.xi /;

it suffices to prove that .�m/00 is .p; I /-completely faithfully flat. By [5, Lemma 2.11],
the ı-A-algebra map

.�m/000WA¹x1; : : : ; xnº ! A¹x1; : : : ; xnº; xi 7! �m.xi /

is faithfully flat. As the map .�m/00 is the derived .p; I /-completion of the base
change of .�m/000 along A¹x1; : : : ; xnº ! A¹x1; : : : ; xnº

^, we conclude that .�m/00 is
.p; I /-completely faithfully flat.

We are now prepared to prove the equivalence of topoi. First, we note that the
functor of sites �W .X=A/m-aa! .X 0=A/aa in Construction 2.5 induces a functor between
the categories of presheaves of sets

O��W2.X 0=A/aa !2.X=A/m-aa; G 7! G ı �;

and it admits a right adjoint

O��W2.X=A/m-aa ! 2.X 0=A/aa:

By Propositions 2.7 and 2.8, we obtain a morphism of topoi

CWB.X=A/m-aa ! B.X 0=A/aa; C� D O��; C� D O��:

Theorem 2.15. The morphism CWB.X=A/m-aa ! B.X 0=A/aa is an equivalence of
topoi.

Proof. By [17, Proposition 4.2.1] (see also [20, Proposition 9.10]), we are reduced
to checking the conditions which were proved in Propositions 2.6, 2.7, 2.8 and 2.11.

We want to prove that C induces an equivalence between the categories of crystals.
First, we define a suitable category of crystals with some technical conditions so that
our argument works.
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Definition 2.16. Let .E; IE / be a bounded prism.

(1) Let zMaa.E; IE / be the category of E-modules M such that, for any map of
bounded prisms .E; IE /! .E0; IE0/ and any faithfully flat map of bounded
prisms .E0; IE0/! .E 00; IE 00

/; the sequence

0!M y̋E E0 !M y̋E E
0
0 !M y̋E .E

0
0
y̋E0 E

0
0/

is exact, where the completion is the classical .p; IE0/-completion.

(2) Let ¹Maa.E; IE / � zMaa.E; IE /º.E;IE/ be the largest family of full subcategories
such that, for anyM 2Maa.E; IE /, any map .E; IE /! .E 00; IE 00

/ of bounded
prisms and any faithfully flat map of bounded prisms .E0; IE0/! .E 00; IE 00

/, any
descent datum " onM y̋E E 00 (i.e., an isomorphism

.E 00 y̋E0 E
0
0/ y̋E 00

.M y̋E E
0
0/ Š .M y̋E E

0
0/ y̋E 00

.E 00 y̋E0 E
0
0/

satisfying the cocycle condition on E 00 y̋E0 E
0
0
y̋E0 E

0
0) descends uniquely to an

E0-moduleM0 2Maa.E0; IE0/.

We will need the following variant of Definition 2.16; in this variant, the ring E
does not necessarily admit a ı-structure, and we assume that the ideal IE above is
equal to .p/.

Definition 2.17. Let E be a p-torsion-free p-complete ring.

(1) Let zM.E/ be the category of E-modulesM such that, for any map E ! E0 of p-
torsion-free p-complete rings and any p-completely faithfully flat map E0 ! E 00
of p-torsion-free p-complete rings, the sequence

0!M y̋E E0 !M y̋E E
0
0 !M y̋E .E

0
0
y̋E0 E

0
0/

is exact, where the completion is the classical p-completion.

(2) Let ¹M.E/ � zM.E/ºE be the largest family of full subcategories such that, for
anyM 2M.E/, any map E ! E 00 of p-torsion-free p-complete rings and any
p-completely faithfully flat map E0 ! E 00 of p-torsion-free p-complete rings,
any descent datum " onM y̋E E 00 (i.e., an isomorphism

.E 00 y̋E0E
0
0/ y̋E 00

.M y̋E E
0
0/ Š .M y̋E E

0
0/ y̋E 00

.E 00 y̋E0 E
0
0/

satisfying the cocycle condition on E 00 y̋E0 E
0
0
y̋E0 E

0
0) descends uniquely to an

E0-moduleM0 2M.E0/.

The categories introduced above have the following properties.
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Proposition 2.18. We keep the notation above:

(1) For any M 2 zMaa.E; IE / and any map .E; IE /! .E 0; IE 0/ of bounded prisms,
M y̋E E

0 belongs to zMaa.E 0; IE 0/. An analogous property holds true for the other
categories Maa.E; IE /, zM.E/ and M.E/.

(2) Let f WM !M 0 be a morphism in zMaa.E; IE / and let .E; IE /! .E 0; IE 0/ be a
faithfully flat map of bounded prisms. Assume that f induces an isomorphism

M y̋E E
0
'M 0 y̋E E

0:

Then f is also an isomorphism. An analogous property holds true for zM.E/.

Proof. Part (1) follows immediately from the definition of zMaa.E; IE /. For part
(2), we consider the map of exact sequences:

0 M M y̋E E
0 M y̋E .E

0 y̋E E
0/

0 M 0 M 0 y̋E E
0 M 0 y̋E .E

0 y̋E E
0/:

f f y̋ id f y̋ .id y̋ id/

The map f y̋ id is an isomorphism by assumption. It follows that f y̋ .id y̋ id/ is
also an isomorphism. These imply that f is an isomorphism.

Remark 2.19. Let us make some remarks on the categories introduced above:

(1) LetMfp.E/ be the category of finite projective E-modules. Also, letMpn-tors.E/

be the category of´
.p; IE /

n-torsion E-modules .when .E; IE / is a bounded prism/;
pn-torsion E-modules .when E is a p-torsion-free p-complete ring/;

and letMtors.E/ be
S
n Mpn-tors.E/. Then we have an inclusion

Mfp.E/ �Maa.E; IE /; M.E/

by [1, Proposition A.12]. We also have an inclusion

Mtors.E/ �Maa.E; IE /; M.E/

by the usual descent argument.

(2) If E is a p-torsion-free p-complete ı-ring, then we have an inclusion

zM.E/ � zMaa.E; pE/

by the definition. The same holds true forM.E/ andMaa.E; pE/.
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We will simply write zMaa.E/ (resp.Maa.E/) for zMaa.E; IE / (resp.Maa.E; IE /).
Next we define the category of crystals with respect to the categories of modules

Maa.E/ in Definition 2.16.

Definition 2.20. Let Caa..X=A/m-aa/ (resp. Cfp..X=A/m-aa/, Ctors..X=A/m-aa/) be
the category of abelian presheaves F on .X=A/m-aa such that, for any object .E; IE /
in .X=A/m-aa, F.E; IE / 2Maa.E/ (resp.Mfp.E/,Mtors.E/), and for any morphism
.E; IE /! .E1; IE1/ in .X=A/m-aa, the map F.E; IE /! F.E1; IE1/ is compatible
with the module structures in the usual sense and the canonical map F.E; IE / y̋E
E1 ! F.E1; IE1/ is an isomorphism of E1-modules. This condition means that
Caa..X=A/m-aa/ (resp. Cfp..X=A/m-aa/, Ctors..X=A/m-aa/) is the category of crystals
with respect toMaa (resp.Mfp,Mtors).

Remark 2.21. Let us make some remarks on Definition 2.20:

(1) Presheaves F in the above definition are automatically sheaves by Definition
2.16 (1).

(2) One can prove that the category Caa..X=A/m-aa/ is unchanged even if we do not
impose condition .�/ in Definition 2.1.

In order to prove that the morphism C induces an equivalence between the cat-
egories of crystals, we will use the following propositions. We follow the proof of
[20, Theorem 9.12].

Proposition 2.22 (Cf. [20, Lemma 9.5]). Let .E; IE / be an object of .X=A/m-aa
and let gW�.E; IE /! .E 0; IE 0/ be a morphism in .X 0=A/aa. Then there exist an object
.E1; IE1/ of .X=A/m-aa and a morphism f W .E; IE /! .E1; IE1/ in .X=A/m-aa such
that g D �.f / (so .E1; IE1/ D .E 0; IE 0/ as a bounded prism).

If g is a cover, then so is f .

Proof. We have shown this result in the proof of Proposition 2.8.

Proposition 2.23 (Cf. [20, Lemma 9.8 (ii)]). Let gW .E 0; IE 0/! .E 01; IE 01
/ be

a morphism in .X 0=A/aa. Then there exist a morphism hW .E; IE / ! .E1; IE1/ in
.X=A/m-aa and covers f W .E 0; IE 0/ ! �.E; IE /, f1W .E 01; IE 01/ ! �.E1; IE1/ in
.X 0=A/aa such that the following diagram is a pushout diagram:

.E 01; IE 01
/ �.E1; IE1/

.E 0; IE 0/ �.E; IE /:

f1

q
g

f

�.h/
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Proof. Let f be the cover constructed in Proposition 2.11, and let .E 00; IE 00/ be
the pushout of the diagram .E 01; IE 01/

g
 � .E 0; IE 0/

f
�! �.E;IE /. Applying Proposition

2.22 to the map �.E; IE /! .E 00; IE 00/, we obtain the desired diagram.

Proposition 2.24 (Cf. [20, Lemma 9.9]). Let .E 0; IE 0/ be an object of .X 0=A/aa,
let .E; IE / be an object of .X=A/m-aa and let .E 0; IE 0/! �.E; IE / be a cover. Then
there exist an object .E2; IE2/ of .X=A/m-aa and two morphisms p1; p2W .E; IE /!
.E2; IE2/ in .X=A/m-aa such that

�.E2; IE2/ D �.E; IE / y̋

.E 0;IE0 /
�.E; IE /;

and �.p1/ (resp. �.p2/) is the map

�.E; IE /! �.E; IE / y̋

.E 0;IE0 /
�.E; IE /

to the first (resp. second) component.

Proof. Applying Proposition 2.22 to the coprojection

�.E; IE /! �.E; IE / y̋

.E 0;IE0 /
�.E; IE /

into the first component, we obtain the map p1W .E; IE /! .E2; IE2/ satisfying the
conditions. The existence of p2 follows from the fullness of �.

We are now prepared to prove the equivalence of categories of crystals.

Theorem 2.25. The functors C�, C� induce equivalences of categories

Caa..X=A/m-aa/� Caa..X 0=A/aa/

quasi-inverse to each other.

Proof. We want to prove that the functors C�, C� preserve crystals. For C�, it
follows easily from the equality

C�.F/.E; IE / D F.�.E; IE //:

We show the claim for C�. Let F be an object in Caa..X=A/m-aa/ and let gW .E 0; IE 0/
! .E 01; IE 01

/ be a morphism in .X 0=A/aa. We want to prove that C�.F/.E 0; IE 0/ 2
Maa.E 0/;C�.F/.E 01; IE 01/ 2Maa.E 01/ and that the map

C�.F/.E 0; IE 0/ y̋
E 0
E 01 ! C�.F/.E

0
1; IE 01

/
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is an isomorphism. By Proposition 2.23, we have a pushout diagram

.E 01; IE 01
/ �.E1; IE1/

.E 0; IE 0/ �.E; IE /

f1

q
g

f

�.h/

where f and f1 are covers. Then we have the following commutative diagram:

C�.F/.E 0; IE 0/ y̋
E 0
E 01 y̋

E 0
1

E1 C�.F/.E 0; IE 0/ y̋
E 0
E y̋

E
E1 C�.F/.�.E; IE // y̋

E
E1

C�.F/.E 01; IE 01/ y̋
E 0
1

E1 C�.F/.�.E1; IE1//:

'

Using Proposition 2.18, it is enough to show that C�.F/.E 0; IE 0/ 2 Maa.E 0/,
C�.F/.E 01; IE 01/ 2 Maa.E 01/ and that the left vertical arrow is an isomorphism. To
show that the left vertical arrow is an isomorphism, it suffices to check that the other
arrows are all isomorphisms. As C�C� ' id, we see that for each .E; IE / 2 .X=A/m-aa,

(2.1) F.E; IE / D C�C�.F/.E; IE / D C�.F/.�.E; IE //:

As F is a crystal, equality (2.1) implies that the right vertical arrow is an isomor-
phism. So it is enough to show that for any cover f W .E 0; IE 0/! �.E; IE /, one has
C�.F/.E 0; IE 0/ 2Maa.E 0/ and the map

C�.F/.E 0; IE 0/ y̋
E 0
E ! C�.F/.�.E; IE //

is an isomorphism.
In the following, we simply write E, E 0 for .E; IE /, .E 0; IE 0/ respectively in order

to lighten notation. We consider the diagram

E 0 �.E/ �.E/ y̋
E 0
�.E/ �.E/ y̋

E 0
�.E/ y̋

E 0
�.E/;

f

where all the arrows except f are the maps constructed by the coprojections. By
Proposition 2.24 and the definition of �, the above diagram may be rewritten as

E 0 �.E/ �.E2/ �.E3/;
f

where E2; E3 2 .X=A/m-aa such that

E2 D E y̋
E 0
E; E3 D E y̋

E 0
E y̋
E 0
E
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as prisms and all the arrows except f come from the morphisms in .X=A/m-aa. Then
we have a diagram

C�.F/.�.E// C�.F/.�.E2// C�.F/.�.E3//

which is identified with the following diagram by using equality (2.1):

F.E/ F.E2/ F.E3/:

As F is a crystal, the above diagram defines a descent datum on F.E/ relative to the
faithfully flat map of bounded prisms .E 0; IE 0/! .E; IE /. So it descends uniquely
to an object M in Maa.E 0/. In particular, we have an isomorphism of E-modules
M y̋E 0 E Š F.E/ and an exact sequence

0 M F.E/ F.E2/:

On the other hand, since C�.F/ is a sheaf, we have an exact sequence

0 C�.F/.E 0/ C�.F/.�.E// C�.F/.�.E2//:

By these two exact sequences and equality (2.1), we see that

C�.F/.E 0/ ŠM 2Maa.E 0/:

Thus,
C�.F/.E 0; IE 0/ y̋

E 0
E ! C�.F/.�.E; IE //

is an isomorphism, as desired.

The following is proved in exactly the same way as Theorem 2.25.

Corollary 2.26. The functors C�, C� induce equivalences of categories

Cfp..X=A/m-aa/� Cfp..X 0=A/aa/;

Ctors..X=A/m-aa/� Ctors..X 0=A/aa/

quasi-inverse to each other.

3. The m-q-crystalline site

In this section we prove a q-crystalline version of the theorems in the previous
section, namely, we define the m-q-crystalline site which is a higher-level analog of
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the q-crystalline site defined in [5, Section 16], and prove equivalence between the
category of crystals on the m-q-crystalline site of a smooth formal scheme X and that
on the usual q-crystalline site of X 0, where X 0 is the pullback of X by the m-fold
iteration �m of the Frobenius lift � on the base q-PD pair.
First, we give the definition of q-PD pairs we consider. Set A D ZpJq � 1K with

ı-structure given by ı.q/ D 0.

Definition 3.1. A q-PD pair is given by a derived .p; Œp�q/-complete ı-pair
.D; I / over .A; .q � 1// satisfying the following conditions:

(1) For any f 2 I , we have �.f / � Œp�qı.f / 2 Œp�qI .

(2) The pair .D; .Œp�q// is a bounded prism over .A; .Œp�q//, i.e., D is Œp�q-torsion-
free andD=.Œp�q/ has bounded p1-torsion.

(3) The ringD=.q � 1/ is p-torsion-free with finite .p; Œp�q/-complete Tor-amplitude
overD.

(4) D=I is classically p-complete.

Remark 3.2. Let us make some remarks on Definition 3.1:

(1) This definition of q-PD pairs follows that in [12, Section 7.1]. Condition (4)
enables us to consider the affine p-adic formal scheme Spf.D=I /, but this is
not imposed in [5, Definition 16.2]. Our notion of a q-PD pair differs from that
in [6, Definition 3.1]; conditions (3), (4) in Definition 3.1, the condition that
D=.Œp�q/ has bounded p1-torsion and the condition of .p; Œp�q/-completeness of
D are not imposed in [6, Definition 3.1] (but the latter two conditions are imposed
in the definition of the q-crystalline site in [6, Section 7]).

(2) By conditions (1) and (2), we see that for any x 2 I , the element


.x/
def
D �.x/=Œp�q � ı.x/ 2 I

is well defined.

(3) Let J D .�m/�1.I /. As � is continuous, the ideal J � D is closed for the p-adic
topology ofD. SoD=J is also classically p-complete.

(4) Condition (4) in Definition 3.1 implies that I is closed for the .p; Œp�q/-adic
topology ofD because

I C .p; Œp�q/
n
� I C .p; q � 1/n � I C .p/n:

Next we define the m-q-crystalline site, which is a higher-level analog of the
q-crystalline site as well as a q-analog of the level–m crystalline site. We fix a non-
negative integer m and a q-PD pair .D; I /.
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Definition 3.3. Let J D .�m/�1.I / and letX be a p-adic formal scheme smooth
and separated overD=J . We define the m-q-crystalline site .X=D/m-q-crys of X over
D as follows. Objects are maps .D; I / ! .E; IE / of q-PD pairs together with a
map Spf.E=JE /! X over D=J satisfying the following condition, where JE D
.�m/�1.IE /:

.�/ Spf.E=JE /! X factors through some affine open Spf.R/ � X .

We will often denote such an object by

.Spf.E/ Spf.E=JE /! X/ 2 .X=D/m-q-crys

or .E; IE / if no confusion arises. A morphism

.Spf.E 0/ Spf.E 0=JE 0/! X/! .Spf.E/ Spf.E=JE /! X/

is a map of q-PD pairs .E; IE /! .E 0; IE 0/ over .D; I / such that the induced mor-
phism

Spf.E 0=JE 0/! Spf.E=JE /

is compatible with the maps Spf.E 0=JE 0/! X , Spf.E=JE /! X . When we denote
such an object by .E; IE /, we will write .E; IE / ! .E 0; IE 0/ (not .E 0; IE 0/ !
.E; IE /) for a morphism from .E 0; IE 0/ to .E; IE /. A map (E; IE )! (E 0; IE 0) in
.X=D/m-q-crys is a cover if it is a .p; Œp�q/-completely faithfully flat map and satisfies

(3.1) IE 0 D IEE 0;

where the right-hand side means the .p; Œp�q/-complete ideal ofE 0 generated by IEE 0.

Remark 3.4. Note that equality (3.1) does not imply the equality JE 0 D JEE 0 in
general. Indeed, in the case of the inclusion

.E; IE / WD .ZpJq � 1K; .q � 1// ,! .ZpJq1=p � 1K; .q � 1// DW .E 0; IE 0/;

where the ı-ring structure on E 0 is defined by ı.q1=p/ D 0, we have IE 0 D IEE 0 but
JEE 0 D .q � 1/ ¤ .q

1=p � 1/ D JE 0 .

We need to check that the category .X=D/m-q-crys endowed with the topology
as defined above forms a site. We have the following lemma as in the case of the
m-prismatic site:

Lemma 3.5. Let .E1; IE1/
f
 � .E; IE /

g
�! .E2; IE2/ be maps in .X=D/m-q-crys

such that f is a cover. Let E3 WD E1 y̋E E2, where the completion is the classical
.p; Œp�q/-completion. Then .E3; IE2E3/ is the object that represents the coproduct

.E1; IE1/ t.E;IE/ .E2; IE2/

in .X=D/m-q-crys, and the canonical map .E2; IE2/! .E3; IE3/ is a cover.
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Proof. By Lemma 2.3, .E3; .Œp�q// represents the object .E1; .Œp�q// t.E;.Œp�q//
.E2; .Œp�q// in the category of bounded prisms. Also, by [5, Lemma 16.5 (5)],
.E3; IE2E3/ is a q-PD pair. We can check that it represents the object

.E1; IE1/ t.E;IE/ .E2; IE2/

in .X=D/m-q-crys by using Remark 3.2 (4).

By Lemma 3.5, the set of covers in Definition 3.3 actually forms a pretopology on
the category .X=D/m-q-crys.

Remark 3.6. When m D 0, we denote the site .X=D/m-q-crys simply by
.X=D/q-crys and call it the q-crystalline site. This site is similar to the one in [5]
and that in [12] but there are slight differences: First, the topology considered here
(flat topology) is different from the one in [5] (indiscrete topology) and the one in
[12] (étale topology). Second, we imposed the technical condition .�/ which is not
assumed in [5] and [12]. (However, we note that our topos is unchanged if we do not
impose condition .�/.) Third, X is assumed to be affine in [5] but we do not assume
that X is affine.

In order to establish equivalence between the category of crystals on the m-q-
crystalline site and that on the usual q-crystalline site, we first construct a functor
between these sites, as in the prismatic case.

Construction 3.7. Under the notation and assumption in Definition 3.3, let X 0

be X y�Spf.D=J /;.�m/� Spf.D=I /. Then we have a diagram:

Spf.D/ Spf.D=J / X

Spf.D/ Spf.D=I / X 0:

�.�m/� .�m/�

We define a functor � from the m-q-crystalline site of X over D to the usual q-
crystalline site of X 0 overD as in the case of the m-prismatic site: for an object

.Spf.E/ Spf.E=JE /! X/

of .X=D/m-q-crys, we define the object �.Spf.E/ Spf.E=JE /!X/ of .X 0=D/q-crys
by

.Spf.E/ Spf.E=IE /
f
�! X 0/;
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where the right map f is defined as

Spf.E=IE /
g
�! Spf.E=JE / y�

Spf.D=J /;.�m/�
Spf.D=I /

! X y�
Spf.D=J /;.�m/�

Spf.D=I / D X 0:

Here, the first map g is induced by the map of rings

E=JE y̋

D=J;�m
D=I ! E=IE ; e ˝ d 7! �m.e/d:

This defines the functor �W .X=D/m-q-crys ! .X 0=D/q-crys.

Next we want to show that � induces an equivalence of topoi. Since the m-q-
crystalline site is defined in a very similar way to the m-prismatic site, almost all
propositions can be proved in exactly the same way as in the case of the m-prismatic
site by replacing the bounded prism .A; I / with the q-PD pair .D; I /, and so we omit
the details. In particular, we have the following proposition.

Proposition 3.8. The functor � is fully faithful, continuous and cocontinuous.

As the construction of the q-PD envelope is different from that of the prismatic
envelope that appeared in the proof of Proposition 2.11, we give a proof of the q-analog
of Proposition 2.11. We will need the following q-analog of Lemma 2.10:

Lemma 3.9. Let .E; IE / be a q-PD pair. Let Nf be an open immersion

Nf WSpf.Ei /! Spf.E=IE /

or an open immersion
Nf WSpf.Ei /! Spf.E=JE /:

Then there is a unique open immersion f WSpf.Ei /! Spf.E/ which lifts Nf . Moreover,
the corresponding map of rings induces a map .E; IE /! .Ei ; IEEi / of q-PD pairs.

Proof. We first check that the images of IE , JE in E=.p; Œp�q/ are nil ideals. For
IE , it follows immediately from Definition 3.1 (1) and the definition of the Frobenius
lift �. For JE , we note that the image of JE in E=IE is a nil ideal by the definitions
of JE and �, so the claim follows. Then the existence, the uniqueness and the affinity
of the lifting follow from Lemma 2.9. We denote the lifting by f WSpf.Ei /! Spf.E/.
We can give a ı-structure on Ei such that the corresponding map E ! Ei is a map of
ı-rings as in the proof of Lemma 2.10 by replacing the ideal IE with the ideal .Œp�q/.
It remains to show that .Ei ;IEEi / is a q-PD pair. Condition (4) in Definition 3.1 fol-

lows as the ideal IEEi is closed. To prove the other conditions, by [5, Lemma 16.5 (5)],
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it is enough to prove that the map of ı-rings E ! Ei is .p; Œp�q/-completely flat.
Applying the same argument as in the proof of Lemma 2.10 by replacing the ideal
IE with the ideal .Œp�q/, we see that E ! Ei is .p; Œp�q/-completely flat (actually
.p; Œp�q/-completely étale), as desired.

The next result will be used to prove the equivalence of topoi.

Proposition 3.10. Let .E 0; IE 0/ be an object in .X 0=D/q-crys. Then there exists
an object .E; IE / in .X=D/m-q-crys and a cover of the form .E 0; IE 0/! �.E; IE /.

Proof. Let X D
S
i Spf.Ri / be a finite affine open cover of X . By the definition

of X 0 in Construction 3.7, we see that Spf.Ri / y�X X 0 D Spf.Ri y̋D=J;�m D=I/. We
denote this formal scheme by Spf.R0i /. On the other hand, condition .�/ in Defini-
tion 3.1 ensures that the map Spf.E 0=IE 0/! X 0 factors through some affine open
Spf.R00/ � X 0. As X 0 is separated by assumption, we see that Spf.R0i / \ Spf.R

00/ D

Spf.R�i / for some R
�
i . Then the formal scheme Spf.R

0
i / y�X 0 Spf.E

0=IE 0/ is identi-
fied with Spf.R0i y̋R�i E

0=IE 0/. In particular, it is affine. We denote this affine open
subscheme of Spf.E 0=IE 0/ by Spf.E 0i /. By Lemma 3.9, there is a unique q-PD pair
.E 0i ; IE 0E

0
i / 2 .X

0=D/q-crys for which the corresponding formal scheme Spf.E 0i / is an
affine open formal subscheme of Spf.E 0/ and lifts Spf.E 0i /, namely E

0
i=IE 0E

0
i D E

0
i .

By construction, we see that

.E 0; IE 0/!
Y
i

.E 0i ; IE 0E
0
i /

is a cover in .X 0=D/q-crys. To prove the proposition, we may replace .E 0; IE 0/ by
.E 0i ; IE 0E

0
i / to assume that the structure morphism Spf.E

0=IE 0/!X 0 factors through
an affine open Spf.R0/ � X 0 such that R0 is of the form R y̋D=J;�m D=I for some
affine open Spf.R/ � X .
As the mapD=J ! R is smooth, [19, Tag 00TA] tells us that there exists an open

cover of Spf.R/ by standard opens Spf.cRg/ such that each cRg=p is standard smooth
overD=.p; J /. After refining the given cover of X in the previous paragraph, we may
assume that R=p is standard smooth overD=.p; J /. By [19, Tag 00T7], there exists a
surjectionDŒx1; : : : ; xn�^ ! R whose kernel is the ideal (J; y1; : : : ; yr ) such that

y1; : : : ; yr 2 D=.p; J /Œx1; : : : ; xn�

form a regular sequence. On the other hand, there is a natural map

DŒx1; : : : ; xn�
^
! D¹x1; : : : ; xnº

^;
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where the symbol ¹º denotes the adjoining of elements in the theory of ı-rings. By a
similar argument to that in the proof of Corollary 2.13, we see that the sequence

�m.y1/; : : : ; �
m.yr/ 2 D¹x1; : : : ; xnº

^

is (p; Œp�q)-completely regular relative toD. Then we can construct a map

D¹x1; : : : ; xnº
^
! S

def
D

�
D

²
x1; : : : ; xn;

�mC1.y1/

Œp�q
; : : : ;

�mC1.yr/

Œp�q

³�^
to the q-PD envelope of .D¹x1; : : : ; xnº^;K/ by [5, Lemma 16.10], where K denotes
the ideal .I; �m.y1/; : : : ; �m.yr// � D¹x1; : : : ; xnº^. By the construction of the
q-PD envelope, �m.yi / 2 IS and so yi 2 JS D .�m/�1.IS / for all i . This gives a
map R! S=JS .
Next, letDŒx1; : : : ; xn�^! R y̋D;�m D be the base change ofDŒx1; : : : ; xn�^!

R in the previous paragraph along �mWD ! D. Passing to the quotient then induces
DŒx1; : : : ; xn�

^ ! R0. The kernel of this map is the ideal (I; y01; : : : ; y
0
r ), where the

y0i are the images of the yi under the mapDŒx1; : : : ; xn�
^! DŒx1; : : : ; xn�

^ sendingP
j ˛jx

j to
P
j �

m.˛j /x
j (here we write j WD .j1; : : : ; jn/ for the multi-index). By

the definition of the yi , the sequence y01; : : : ; y0r 2 D=.p; I /Œx1; : : : ; xn� is a regular
sequence. By a similar argument to that in the proof of Corollary 2.13, the sequence
y01; : : : ; y

0
r 2 D¹x1; : : : ; xnº

^ is (p; Œp�q)-completely regular relative toD. Then we
can construct a map

D¹x1; : : : ; xnº
^
! S 0

def
D

�
D

²
x1; : : : ; xn;

�.y01/

Œp�q
; : : : ;

�.y0r/

Œp�q

³�^
to the q-PD envelope of .D¹x1; : : : ; xnº^; K 0/, where K 0 denotes the ideal

.I; y01; : : : ; y
0
r/ � D¹x1; : : : ; xnº

^:

Then we have a diagram:

D=I R0

D DŒx1; : : : ; xn�
^ D¹x1; : : : ; xnº

^ S 0
def
D
�
D
®
x1; : : : ; xn;

�.y0
1
/

Œp�q
; : : : ;

�.y0r /

Œp�q

¯�^
:

By the definitions of yi and y0i , we have a map of ı-D-algebras .�
m/0WS 0! S sending

xi to �m.xi /. By Proposition 3.11 below, we see that .�m/0 is .p; Œp�q/-completely
faithfully flat.
Let .E 0; IE 0/ 2 .X 0=D/q-crys be as above. We have a map

f1WDŒx1; : : : ; xn�
^
! E 0=IE 0
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determined as the composition of the mapDŒx1; : : : ; xn�^! R0 in the above diagram
with R0 ! E 0=IE 0 . As DŒx1; : : : ; xn�^ is the completion of a polynomial ring, one
can choose a map f2WDŒx1; : : : ; xn�^ ! E 0 lifting f1. As E 0 is a ı-D-algebra, f2
extends uniquely to a ı-D-algebra map f3WD¹x1; : : : ; xnº^ ! E 0. By construction,
this extension carriesK 0 into IE 0 . By the universal property of S 0, f3 extends uniquely
to a ı-D-algebra map gWS 0 ! E 0. If we set hWE 0 ! E 0 y̋ S 0 S to be the base change
of .�m/0WS 0 ! S along g, then by .p; Œp�q/-complete faithful flatness of .�m/0, we
see that the same holds true for h.
It remains to check that the map h defines a morphism

.E 0; IE 0/! �
�
E 0 y̋

S 0
S; IE 0 y̋

S0
S

�
in .X 0=D/q-crys. To see this, it is enough to check that the bottom-right square in the
following diagram is commutative, in which all the other squares are commutative:

DŒx1; : : : ; xn�
^ S E 0 y̋

S 0
S

DŒx1; : : : ; xn�
^ R0 D R y̋

D=J;�m
D=I S=JS y̋

D=J;�m
D=I E 0 y̋

S 0
S=JE 0 y̋

S0
S
y̋

D=J;�m
D=I

E 0 E 0=IE 0 E 0 y̋
S 0
S=IE 0 y̋

S0
S :

i2

f2

i2

Nh

Here i2 is the map to the second component of the coproduct in Lemma 3.5. We can
check the commutativity of the bottom-right square by tracing the elements xi :

xi xi 1˝ xi

xi xi ˝ 1 1˝ xi ˝ 1

f2.xi / f2.xi / 1˝ �m.xi / D f2.xi /˝ 1;

so the proposition follows.

We prove the claim used in the proof above.

Proposition 3.11. With notation as in the proof of Proposition 3.10, the map

.�m/0WS 0 ! S

is .p; Œp�q/-completely faithfully flat.
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Proof. Since the map .�m/0 is the derived .p; Œp�q/-completion of the base change
of the ı-D-algebra map

.�m/00WD¹x1; : : : ; xnº
^
! D¹x1; : : : ; xnº

^; xi 7! �m.xi /;

it suffices to prove that .�m/00 is .p; Œp�q/-completely faithfully flat. By [5, Lemma
2.11], the ı-D-algebra map

.�m/000WD¹x1; : : : ; xnº ! D¹x1; : : : ; xnº; xi 7! �m.xi /

is faithfully flat. As the map .�m/00 is the derived .p; Œp�q/-completion of the base
change of .�m/000 alongD¹x1; : : : ; xnº ! D¹x1; : : : ; xnº

^, we conclude that .�m/00

is .p; Œp�q/-completely faithfully flat.

We are now prepared to prove the equivalence of topoi. First, we note that the
functor of sites �W .X=D/m-q-crys! .X 0=D/q-crys in Construction 3.7 induces a functor
between the categories of presheaves of sets

O��W 2.X 0=D/q-crys !2.X=D/m-q-crys; G 7! G ı �;

and it admits a right adjoint

O��W2.X=D/m-q-crys ! 2.X 0=D/q-crys:

By Proposition 3.8, we obtain a morphism of topoi

CWB.X=D/m-q-crys ! B.X 0=D/q-crys; C� D O��; C� D O��:

Theorem 3.12. The morphism CWB.X=D/m-q-crys! B.X 0=D/q-crys is an equivalence
of topoi.

Proof. By [17, Proposition 4.2.1] (see also [20, Proposition 9.10]), we are reduced
to checking the conditions which were proved in Propositions 3.8 and 3.10.

Next we define the category of crystals with respect to the categories of modules
Maa.E/ andM.E/ in Definition 2.16.

Definition 3.13. Let Maa.E/ and M.E/ be the categories of modules as in
Definitions 2.16 and 2.17:

(1) Let

Caa..X=D/m-q-crys/ .resp. Cfp..X=D/m-q-crys/; Ctors..X=D/m-q-crys//
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be the category of abelian presheaves F on .X=D/m-q-crys such that, for any object
.E; IE / in .X=D/m-q-crys, F.E; IE / 2Maa.E/ (resp.Mfp.E/,Mtors.E/), and for
any morphism .E; IE /! .E1; IE1/ in .X=D/m-q-crys, the map

F.E; IE /! F.E1; IE1/

is compatible with the module structures in the usual sense and the canonical map
F.E; IE / y̋E E1 ! F.E1; IE1/ is an isomorphism of E1-modules.

(2) Assume that .D; I / is a q-PD pair with q D 1 inD. Then we define the category
C..X=D/m-q-crys/ as the category of abelian presheaves F on .X=D/m-q-crys such
that, for any object .E; IE / in .X=D/m-q-crys, F.E; IE / 2 M.E/, and for any
morphism .E; IE /! .E1; IE1/ in .X=D/m-q-crys, the map

F.E; IE /! F.E1; IE1/

is compatible with the module structures in the usual sense and the canonical map
F.E; IE / y̋E E1 ! F.E1; IE1/ is an isomorphism of E1-modules.

Remark 3.14. As in Remark 2.21, one can prove that presheaves F in the above
definition are automatically sheaves and the category Caa..X=D/m-q-crys/ is unchanged
even if we do not impose condition .�/ in Definition 3.3.

We are now prepared to prove equivalence of categories of crystals. The following
results can be proved in exactly the same way as in the case of an m-prismatic site, so
we omit the details.

Proposition 3.15. Let .E; IE / be an object of .X=D/m-q-crys and let

gW �.E; IE /! .E 0; IE 0/

be a morphism in .X 0=D/q-crys. Then there exist an object .E1; IE1/ of .X=D/m-q-crys
and a morphism f W .E; IE /! .E1; IE1/ in .X=D/m-q-crys such that g D �.f /. If g
is a cover, then so is f .

Proposition 3.16. Let gW .E 0; IE 0/! .E 01; IE 01
/ be a morphism in .X 0=D/q-crys.

Then there exist a morphism hW .E; IE /! .E1; IE1/ in .X=D/m-q-crys and covers
f W .E 0; IE 0/! �.E; IE /, f1W .E 01; IE 01/! �.E1; IE1/ in .X 0=D/q-crys such that the
following diagram is a pushout diagram:

.E 01; IE 01
/ �.E1; IE1/

.E 0; IE 0/ �.E; IE /:

f1

q
g

f

�.h/
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Proposition 3.17. Let .E 0; IE 0/ be an object of .X 0=D/q-crys, let .E; IE / be an
object of .X=D/m-q-crys and let .E 0; IE 0/! �.E; IE / be a cover. Then there exist an
object .E2; IE2/ of .X=D/m-q-crys and two morphisms p1; p2W .E; IE /! .E2; IE2/ in
.X=D/m-q-crys such that �.E2; IE2/D �.E; IE / y̋ .E 0;IE0 / �.E; IE /, and �.p1/ (resp.
�.p2/) is the map �.E; IE /! �.E; IE / y̋ .E 0;IE0 / �.E; IE / to the first (resp. second)
component.

Theorem 3.18. The functors C�, C� induce equivalences of categories

Caa..X=D/m-q-crys/� Caa..X 0=D/q-crys/

quasi-inverse to each other.

Corollary 3.19. The functors C�, C� induce equivalences of categories

Cfp..X=D/m-q-crys/� Cfp..X 0=D/q-crys/;

Ctors..X=D/m-q-crys/� Ctors..X 0=D/q-crys/

quasi-inverse to each other.

Corollary 3.20. Assume that .D; I / is a q-PD pair with q D 1 in D. Then the
functors C�, C� induce equivalences of categories

C..X=D/m-q-crys/� C..X 0=D/q-crys/

quasi-inverse to each other.

Finally, we establish a relationship between the category of crystals on the m-q-
crystalline site and the category of certain stratifications.

Definition 3.21. Let .D; I / be a q-PD pair, let J D .�m/�1.I / and let X be a
p-adic formal scheme smooth and separated overD=J .

(1) We define the category Sm;.D;I/ as follows. Objects are maps � WT ! R, where
T is a finite set and Spf.R/ � X is an affine open formal subscheme such that
the induced map D=.p; J /! R=p is standard smooth in the sense of [19, Tag
00T6]; moreover, � is a map satisfying the following conditions:

(a)
f� WD� WD DŒxt �

^
t2T ! R;

xt 7! �.t/
is surjective.

(b) There exists a sequence y1; : : : ; yr 2 DŒxt �^t2T such that the kernel of f�
can be described as the ideal .J; .yw/w2W / (where W D ¹1; : : : ; rº), and
that y1; : : : ; yr 2 D=.p; J /Œxt �t2T form a regular sequence.
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A morphism from � WT ! R to � 0WT 0 ! R0 in Sm;.D;I/ is a pair .f; g/ where f
is a map of sets f WT ! T 0 and g is a map of p-complete rings gWR! R0, such
that the diagram

T R

T 0 R0

�

f g

� 0

commutes and that the map g�WSpf.R0/! Spf.R/ corresponding to g is compat-
ible with the open immersions Spf.R0/ � X;Spf.R/ � X .
Let � W T ! R and � 0W T 0 ! R0 be objects of Sm;.D;I/. Their sum � t � 0 is

given by the map
T t T 0 ! R y̋

D=J
R0 ! R00;

where the first map is given by t 7! �.t/˝ 1.t 2 T /, t 0 7! 1˝ � 0.t 0/ (t 0 2 T 0),R00

is defined by the equality Spf.R00/D Spf.R/\ Spf.R0/ � X (it is well defined as
X is separated) and the second map is induced by the open immersions Spf.R00/�
Spf.R/;Spf.R00/ � Spf.R0/. We will simply write Sm;D instead of Sm;.D;I/ if no
confusion arises.

(2) For � WT ! R 2 Sm;D , we define the ring S� in the same way as in the proof of
Proposition 3.10: namely, we define

S� D D

²
xt ;

�mC1.yw/

Œp�q

³^
t2T;w2W

as the q-PD envelope of .D¹xtº^t2T ;K/, where the idealK D .I; .�
m.yw//w2W /.

Note that it is independent of the choice of the elements yw.w 2 W /. Indeed,
the ideal .J; .yw/w2W / is independent of the choice when regarded as an ideal
of D¹xtº^t2T , and so is the ideal .I; .�

m.yw//w2W / D .I; �
m..J; .yw/w2W ///.

Since the q-PD envelope only depends on the ideal .I; .�m.yw//w2W / by [5,
Lemma 16.10], this gives the desired independence. In particular, we see that the
construction of S� is functorial in � 2 Sm;D .

(3) A stratification with respect to Sm;D andMaa is a pair

..M� /�2Sm;D ; .'�� 0/�!� 0/;

whereM� 2Maa.S� / and '�� 0 WM� y̋ S� S� 0
'
�!M� 0 is an isomorphism of S� 0-

modules satisfying the cocycle condition. If .D; I / is a q-PD pair with q D 1 in
D, then we can also define a stratification with respect to Sm;D andM as above
by replacingMaa withM. We denote the category of stratifications with respect to
Sm;D andMaa (resp.M) by Straa.Sm;D/ (resp. Str.Sm;D/).
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Proposition 3.22. There is an equivalence of categories

Caa..X=D/m-q-crys/
'
�! Straa.Sm;D/:

Proof. The functor Caa..X=D/m-q-crys/! Straa.Sm;D/ is given by

F 7!
�
.F.S� //�2Sm;D ;

�
F.S� / y̋

S�

S� 0
'
�! F.S� 0/

�
�!� 0

�
:

We can define the functor Straa.Sm;D/ ! Caa..X=D/m-q-crys/ as follows. Given
..M� /�2Sm;D ; .'�� 0/�!� 0/ 2 Straa.Sm;D/ and .E; IE / 2 .X=D/m-q-crys, we choose
an affine open Spf.R/ � X such that Spf.E=JE /! X factors through Spf.R/. There
exists an open cover of Spf.R/ by standard opens Spf.bRgi / such that eachbRgi =p is
standard smooth over D=.p; J / as in the proof of Proposition 3.10. Then the fiber
product Spf.bRgi y̋R E=JE / is an affine open of Spf.E=JE /. We denote the formal
scheme Spf.bRgi y̋R E=JE / by Spf.Ei /. By Lemma 3.9, there is a unique q-PD pair
.Ei ;1IEEi / 2 .X=D/m-q-crys for which the corresponding formal scheme Spf.Ei / is
an affine open formal subscheme of Spf.E/, and lifts Spf.Ei /.
First, we define F.Ei / for such Ei . By construction, Spf.Ei=JEi / ! X fac-

tors through some affine open Spf. zR/ which satisfies the condition in Definition
3.21 (1), so there exists an object in Sm;D of the form � WT ! zR. Then we have a map
f1WDŒxt �

^
t2T !Ei=JEi determined as the composition of the map f� WDŒxt �

^
t2T !

zR

and zR ! Ei=JEi . As DŒxt �
^
t2T is the completion of a polynomial ring, one can

choose a map f2WDŒxt �^t2T ! Ei lifting f1. As Ei is a ı-D-algebra, f2 extends
uniquely to a ı-D-algebra map f3WD¹xtº^t2T ! Ei . Since the image of yw (w 2
W ) under f3 belongs to JEi , the image of �

m.yw/ belongs to IEi . As f3 carries
K WD .I; .�m.yw//w2W / into IEi and S� is the q-PD envelope of .D¹xtº

^
t2T ;K/, f3

extends uniquely to a ı-D-algebra map gWS� ! Ei in .X=D/m-q-crys. We define

F.Ei / WDM� y̋
S�

Ei 2Maa.Ei /:

We must show that this is well defined. If we choose another affine open Spf. zR0/,
� 0WT 0 ! zR0 which is an object in Sm;D and a morphism S� 0 ! Ei , then we have a
diagram

S�

S�t� 0 Ei :

S� 0
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So we have the isomorphism

M� y̋
S�

Ei D

�
M� y̋

S�

S�t� 0
�
y̋

S�t�0
Ei

'�;�t�0
�����!
'

M�t� 0 y̋
S�t�0

Ei

'�0;�t�0
 ������
'

�
M� 0 y̋

S�0
S�t� 0

�
y̋

S�t�0
Ei

D M� 0 y̋
S�0

Ei :

Hence, F.Ei / is independent of the choice. Moreover, for a morphism

.Ei ; IEi /! .E 0; IE 0/

in .X=D/m-q-crys, F.E 0/ is defined as in the case of F.Ei /, and there exists a natural
isomorphism

F.Ei / y̋
Ei

E 0
'
�! F.E 0/

by definition.
Next we define F.E/ for general .E; IE / 2 .X=D/m-q-crys. Take .Ei /i for E

as in the first paragraph. Then there exists a cover .E; IE / !
Q
i .Ei ; IEEi / in

.X=D/m-q-crys. Then we define F.E/ as the kernel of
Q
i F.Ei /�

Q
i;j F.Ei y̋E Ej /:

as
F.Ei / y̋

Ei

�
Ei y̋

E
Ej

�
Š F

�
Ei y̋

E
Ej

�
Š F.Ej / y̋

Ej

�
Ei y̋

E
Ej

�
and each F.Ei / belongs toMaa.Ei /, we see that F.E/ 2Maa.E/ and that

F.E/ y̋
E
Ei Š F.Ei /:

For a morphism .E; IE /! .E 0; IE 0/ in .X=D/m-q-crys, we have the isomorphisms

F.Ei / y̋
Ei

�
Ei y̋

E
E 0
�
'
�! F

�
Ei y̋

E
E 0
�
;

F
�
Ei y̋

E
Ej

�
y̋
Ei y̋
E
Ej

�
Ei y̋

E
Ej y̋

E
E 0
�
'
�! F

�
Ei y̋

E
Ej y̋

E
E 0
�
;

and these induce the isomorphism

F.E/ y̋
E
E 0
'
�! F.E 0/:

Thus, F 2 Caa..X=D/m-q-crys/. So the functor Straa.Sm;D/! Caa..X=D/m-q-crys/ can
be defined by

..M� /�2Sm;D ; .'�� 0/�!� 0/ 7! F:

The two functors we constructed are quasi-inverse to each other.
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Assume that .D; I / is a q-PD pair with q D 1 inD. Then we can prove the result
for C..X=D/m-q-crys/ in the same way as Proposition 3.22.

Corollary 3.23. Assume that .D; I / is a q-PD pair with q D 1 inD. Then there
is an equivalence of categories

C..X=D/m-q-crys/
'
�! Str.Sm;D/:

4. The m-prismatic site and the (m � 1)-q-crystalline site

In [5], Bhatt and Scholze showed that the q-crystalline cohomology of a smooth
formal scheme X is isomorphic to the prismatic cohomology of the pullback of X by
the Frobenius lift � on the base ring. As the latter is isomorphic to the level 1-prismatic
cohomology of X by our result, it is then natural to wonder whether the m-prismatic
site can be compared with the .m � 1/-q-crystalline site. In this section we prove that
there exists an equivalence between the category of crystals on the m-prismatic site
and that on the .m � 1/-q-crystalline site.

Construction 4.1. Let .D; I / be a q-PD pair, let Jq D .�m�1/�1.I / and let
Jaa D .�m/�1.Œp�qD/. Note that I � ��1.Œp�qD/ by [5, Corollary 16.8]. In particular,
we have Jq � Jaa. Let X be a p-adic formal scheme smooth and separated over
D=Jq , and let zX be X y�Spf.D=Jq/ Spf.D=Jaa/, where the completion is the classical
p-completion. Then we have a diagram:

Spf.D/ Spf.D=Jq/ X

Spf.D/ Spf.D=Jaa/ zX:

�'

We can define a functor ˛ from the .m � 1/-q-crystalline site of X over .D; I / to the
m-prismatic site of zX over .D; Œp�qD/ in the following way: for an object

.Spf.E/ Spf.E=JE;q/! X/

of .X=.D; I //.m�1/-q-crys, we define the object ˛.Spf.E/ Spf.E=JE;q/! X/ of
. zX=.D; Œp�qD//m-aa by

.Spf.E/ Spf.E=JE;aa/
f
�! zX/;

where the right map f is defined as

Spf.E=JE;aa/
g
�! Spf.E=JE;q/ y�

Spf.D=Jq/
Spf.D=Jaa/! X y�

Spf.D=Jq/
Spf.D=Jaa/D zX:
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Here, the first map is induced by the natural surjection of the corresponding rings. This
defines the functor

˛W .X=.D; I //.m�1/-q-crys ! . zX=.D; Œp�qD//m-aa:

One can check that ˛ is continuous. So ˛ gives a morphism of topoi

Ǫ W . zX=.D; Œp�qD//
�
m-aa ! .X=.D; I //�.m�1/-q-crys:

Theorem 4.2. The map Ǫ induces an equivalence of categories of crystals

Ǫ�WCaa.. zX=.D; Œp�qD//m-aa/
'
�! Caa..X=.D; I //.m�1/-q-crys/:

The same holds true for Cfp and Ctors.

Proof. By Proposition 3.22, we see that

Caa..X=.D; I //.m�1/-q-crys/
'
�! Straa.Sm�1;D;X /;

where Sm�1;D;X is the category Sm�1;D for X constructed in Definition 3.21. It
remains to show that there is a natural equivalence of categories

Caa.. zX=.D; Œp�qD//m-aa/
'
�! Straa.Sm�1;D;X /:

First, we define the functor Caa.. zX=.D; Œp�qD//m-aa/! Straa.Sm�1;D;X /. For any
object .� W T ! R/ 2 Sm�1;D;X , we define zR0 D R y̋D=Jq D=J

aa. If we describe
the kernel of the surjection f� WDŒxt �^t2T ! R as the ideal .Jq; .yw/w2W / as in
Definition 3.21, then the kernel of the surjection DŒxt �^t2T ! R! zR0 is the ideal
.Jaa; .yw/w2W /. We can construct the q-PD envelope S� as in Definition 3.21. Then
S� can be regarded as an object of .X=.D; I //.m�1/-q-crys as in the proof of Proposi-
tion 3.10. As �m�1.yw/ belongs to IS� ;q , we see that yw 2 JS� ;q . By the containment
JS� ;q � JS� ;

aa, it follows that yw 2 JS� ;aa. This gives a map zR0 ! S�=JS� ;
aa. So we

may also regard S� as an object of . zX=.D; Œp�qD//m-aa. Thus, we can define the
functor

Caa.. zX=.D; Œp�qD//m-aa/! Straa.Sm�1;D;X /

by
F 7!

�
.F.S� //�2Sm�1;D;X ;

�
F.S� / y̋

S�

S� 0
'
�! F.S� 0/

�
�!� 0

�
:

Next we define the functor

Straa.Sm�1;D;X /! Caa.. zX=.D; Œp�qD//m-aa/
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as follows. Given ..M� /�2Sm�1;D;X ; .'�� 0/�!� 0/ 2 Straa.Sm�1;D;X / and

.Spf.E/ Spf.E=JE /! zX/ 2 . zX=.D; Œp�qD//m-aa;

we choose an affine open formal subscheme Spf. zR/ � zX such that Spf.E=JE /! zX

factors through Spf. zR/. Since the map zX ! X is a closed immersion defined by the
ideal Jaa which is a nil ideal inD=Jq , there is an open formal subscheme U �X which
lifts Spf. zR/. Then the map U ! Spf.D=Jq/ is a smooth morphism which lifts the
morphism Spf. zR/! Spf.D=Jaa/. By Lemma 2.9, we see that U is affine. We denote
the formal scheme U by Spf.R/. Then we have a diagram:

Spf.R/ X Spf.D=Jq/

Spf.E=JE / Spf. zR/ zX Spf.D=Jaa/:

There exists an open cover Spf.R/ D
S
j Spf.bRgi / such that each bRgi =p is stan-

dard smooth over D=.p; Jq/ as in the proof of Proposition 3.22. Then the fiber
product Spf.bRgi y̋R zR/ is an affine open of Spf. zR/. We denote the formal scheme
Spf.bRgi y̋R zR/ by Spf. zRi /. We also have the fiber product Spf. zRi y̋ zR E=JE /
which is an affine open of Spf.E=JE /. We denote the formal scheme Spf. zRi y̋ zR
E=JE / by Spf.Ei /. By Lemma 2.10, there is a unique bounded prism .Ei ; Œp�qEi / 2
. zX=.D; Œp�qD//m-aa for which the corresponding formal scheme Spf.Ei / is an affine
open formal subscheme of Spf.E/, and lifts Spf.Ei /.
First, we define F.Ei / for such Ei . By construction, there exists an object in

Sm�1;D;X of the form � W T !bRgi . Let S� be the q-PD envelope constructed from
� in Definition 3.21 (2). Explicitly, the ring S� is given by D¹xt ; �

m.yw/
Œp�q

º^t2T;w2W ,
where .yw/w2W is a sequence of elements inDŒxt �^t2T in Definition 3.21 (1). Then,
noting that .�m.yw//w2W is .p; Œp�q/-completely regular relative toD by an argument
similar to that in Corollary 2.13, we see that S� is the prismatic envelope of

.D¹xtº
^
t2T ; .Œp�q; .�

m.yw//w2W //:

In particular, we can regard S� as an object of . zX=.D; Œp�qD//m-aa, and then we can
construct a morphism S� ! Ei in . zX=.D; Œp�qD//m-aa as in the proof of Proposi-
tion 2.11. We define

F.Ei / WDM� y̋
S�

Ei 2Maa.Ei /:

We can also define F.E/ for general .E; Œp�qE/ 2 . zX=.D; Œp�qD//m-aa as in the proof
of Proposition 3.22.
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We can prove that the presheaf F is well defined and that it defines an object of
Caa.. zX=.D; Œp�qD//m-aa/ as in the proof of Proposition 3.22. So the functor

Straa.Sm�1;D;X /! Caa.. zX=.D; Œp�qD//m-aa/

is defined by
..M� /�2Sm�1;D;X ; .'�� 0/�!� 0/ 7! F:

The two functors we constructed are quasi-inverse to each other. Hence, the category
Caa.. zX=.D; Œp�qD//m-aa/ is equivalent to the category Straa.Sm�1;D;X /, as desired.

5. Relation to the Frobenius descent

The equivalences of categories of crystals proved in the previous sections are
modeled on the Frobenius descent, which is due to Berthelot: there exists an equiva-
lence between the category of crystals on the m-crystalline site and that on the usual
crystalline site. However, the Frobenius descent was proved by identifying the crystals
with the stratifications. It did not follow from a certain equivalence of topoi because
the m-crystalline site was not suitable enough to apply the site-theoretic argument.
In this section, we first give an alternative, site-theoretic proof of the Frobenius

descent in a certain setting. Our strategy is to suitably modify the definition of the
m-crystalline site without changing the category of crystals. Then we apply the site-
theoretic argument in the previous sections to this modified site. Next, assuming that
.D; I / is a q-PD pair with q D 1 inD and p 2 I , we use the modified version of the
m-crystalline site to prove that the equivalence between the category of crystals on the
m-q-crystalline site and that on the usual q-crystalline site in Section 3 is compatible
with the Frobenius descent.
First, we recall the definition of the m-PD ring.

Definition 5.1. For a Z.p/-ringD and an ideal J ofD, an m-PD structure on J
is a PD ideal .I; 
/ ofD satisfying the following conditions:

(1) J .pm/C pJ � I � J , where J .pm/ is the ideal generated by xpm for all elements
x of J .

(2) The PD structure 
 is compatible with the unique one on pZ.p/.
We call the triple .J; I; 
/ an m-PD ideal of D and the quadruple .D; J; I; 
/ an
m-PD ring.

Remark 5.2. Let us make some remarks on Definition 5.1:
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(1) We warn the reader that the use of the letters I , J in Definition 5.1 is reversed,
compared to the one in [2]. We prefer to use the notation in Definition 5.1 because
it is compatible with the one in Section 3.

(2) When m D 0, the notion of an m-PD structure on an ideal J is nothing but a PD
structure on J compatible with the unique one on pZ.p/.

Next we recall the definition of the m-crystalline site. Note that in this paper, we
consider the site which is “affine”, “big”, with respect to the “flat topology”, and
possibly over the “p-adic base”. So it is not exactly the same as the original definition.

Definition 5.3. Let .D; J; I; 
/ be a p-torsion-free p-complete m-PD ring or an
m-PD ring in which p is nilpotent, and suppose that the ideal I contains p. Let X be a
scheme smooth and separated overD=J . We define them-crystalline site .X=D/m-crys
of X over D as follows. Objects are maps .D; J; I; 
/! .E; JE ; IE ; 
E / of m-PD
rings together with a map Spec.E=JE / ! X over D=J satisfying the following
conditions:

(1) There exists some n � 0 such that pnE D 0.

(2) Spec.E=JE /! X factors through some affine open Spec.R/ � X .

We will often denote such an object by

.Spec.E/ Spec.E=JE /! X/ 2 .X=D/m-crys

or .E; JE ; IE ; 
E / if no confusion arises. A morphism

.Spec.E 0/ Spec.E 0=JE 0/! X/! .Spec.E/ Spec.E=JE /! X/

is a map of m-PD rings .E; JE ; IE ; 
E /! .E 0; JE 0 ; IE 0 ; 
E 0/ over .D; J; I; 
/ such
that the induced morphism Spec.E 0=JE 0/! Spec.E=JE / is compatible with the
maps Spec.E 0=JE 0/! X , Spec.E=JE /! X . When we denote such an object by
.E; JE ; IE ; 
E /, we will write

.E; JE ; IE ; 
E /! .E 0; JE 0 ; IE 0 ; 
E 0/

(not .E 0; JE 0 ; IE 0 ; 
E 0/! .E; JE ; IE ; 
E /) for a morphism from .E 0; JE 0 ; IE 0 ; 
E 0/
to .E; JE ; IE ; 
E /.
A map .E; JE ; IE ; 
E /! .E 0; JE 0 ; IE 0 ; 
E 0/ in .X=D/m-crys is a cover if it is a

faithfully flat map and satisfies JE 0 D JEE 0, IE 0 D IEE 0.

We define the categories of crystals on .X=D/m-crys as follows.
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Definition 5.4. We keep the notation above:

(1) Let Cqcoh..X=D/m-crys/ be the category of abelian sheaves F on the m-crystalline
site .X=D/m-crys such that, for any object .E; JE ; IE ; 
E / in .X=D/m-crys,
F.E; JE ; IE ; 
E / is an E-module, and for any morphism

.E; JE ; IE ; 
E /! .E1; JE1 ; IE1 ; 
E1/

in .X=D/m-crys, F.E; JE ; IE ; 
E /! F.E1; JE1 ; IE1 ; 
E1/ is compatible with
the module structures in the usual sense and the canonical map

F.E; JE ; IE ; 
E /˝
E
E1 ! F.E1; JE1 ; IE1 ; 
E1/

is an isomorphism of E1-modules.

(2) Let Ctors..X=D/m-crys/ be the category of abelian sheaves defined by

Ctors..X=D/m-crys/ D
[
n

Cp
n-tors..X=D/m-crys/;

where Cpn-tors..X=D/m-crys/ is the full subcategory of Cqcoh..X=D/m-crys/ consist-
ing of pn-torsion objects. We see that Ctors..X=D/m-crys/ is also a full subcategory
of Cqcoh..X=D/m-crys/.

(3) Let Cfp..X=D/m-crys/ be the full subcategory of Cqcoh..X=D/m-crys/ consisting of
objects F such that F.E/ is a finite projective E-module for any .E; JE ; IE ; 
E /
in .X=D/m-crys.

Remark 5.5. Our definition of an m-crystalline site differs from the one in [2] or
in [14] the following sense:

(1) The objects in our definition are “affine” in the sense that the left two schemes
appearing in the diagram

.Spec.E/ Spec.E=JE /! X/

are always affine, while in the usual definition, one considers objects of the form

.T  U ! X/

(with the conditions in our definition), where the schemes T , U are not necessarily
affine. We also assume that the morphism Spec.E=JE /!X in the diagram above
factors through some affine open Spec.R/ � X , but this condition is not imposed
in the usual definition.
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(2) Our site is “big” in the sense that, in the definition of an object

.Spec.E/ Spec.E=JE /
f
�! X/;

the map f may be any map of schemes, while in the usual definition, the morphism
U ! X in the diagram in (1) is assumed to be an open immersion.

(3) The topology in our definition is defined by flat covers, while the topology in the
usual definition is defined by Zariski covers.

(4) The base ringD can be a p-torsion-free p-complete m-PD ring in our definition,
while the base ringD is only allowed to be an m-PD ring in which p is nilpotent
in [14].

By a standard argument, we see that the difference in (1) does not change the associated
topos and the category of crystals Cqcoh..X=D/m-crys/, and that the differences in (2)
and (3) do not change the category of crystals Cqcoh..X=D/m-crys/ (hence the categories
Cp

n-tors..X=D/m-crys/, Ctors..X=D/m-crys/ and Cfp..X=D/m-crys/ are also unchanged).
For the difference in (4), we note that ifD is a p-torsion-free p-complete m-PD ring,
then there are equivalences of categories

Cqcoh..X=.D=pnD//m-crys/ ' Cp
n-tors..X=D/m-crys/;

Cqcoh..X=D/m-crys/ ' lim
 �
n

Cp
n-tors..X=D/m-crys/

' lim
 �
n

Cqcoh..X=.D=pnD//m-crys/:

So one can recover the categories of crystals on .X=.D=pnD//m-crys’s from that on
.X=D/m-crys.

Next we review the Frobenius descent functor from the m-crystalline site to the
usual crystalline site.

Construction 5.6. Let .D; I; 
/ be a p-torsion-free p-complete PD ring or a PD
ring in which p is nilpotent. Suppose that the ideal I contains p. Assume that there
exists a Cartesian diagram

zX Spec.D=I /

X 0 Spec.D=I /;

f

� .�m/�

where f is a smooth and separated map, and � is the Frobenius on D=I . Note that
in this situation, .D; I; I; 
/ is an m-PD ring. So we can define the m-crystalline site
. zX=.D; I; I; 
//m-crys.
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We define a functor Q� from . zX=.D; I; I; 
//m-crys to .X 0=.D; I; 
//crys in the fol-
lowing way: for an object .Spec.E/ Spec.E=JE /! zX/ of . zX=.D; I; I; 
//m-crys,
we define the object Q�.Spec.E/ Spec.E=JE /! zX/ of .X 0=.D; I; 
//crys by

.Spec.E/ Spec.E=IE /
f
�! X 0/;

where the right map f is defined as

Spec.E=IE /
g
�! Spec.E=JE / �

Spec.D=I/;.�m/�
Spec.D=I /

! zX �
Spec.D=I/;.�m/�

Spec.D=I /:

Here, the first map g is induced by the map of rings

E=JE ˝
D=I;�m

D=I ! E=IE ; e ˝ d 7! �m.e/d:

This defines the functor Q� W . zX=.D; I; I; 
//m-crys ! .X 0=.D; I; 
//crys.

Proposition 5.7. The functor Q� is cocontinuous.

Proof. We can prove the result in the same way as Proposition 2.8.

By Proposition 5.7, we obtain a morphism of topoi

. zX=.D; I; I; 
//�m-crys ! .X 0=.D; I; 
//�crys:

By abuse of notation, we will denote it by Q� . The morphism of topoi Q� induces a
pullback functor of categories of crystals

Q��WCqcoh..X 0=.D; I; 
//crys/! Cqcoh.. zX=.D; I; I; 
//m-crys/;

which we call the Frobenius descent functor. The Frobenius descent of Berthelot
implies that Q�� is an equivalence: in fact, in the case where p is nilpotent in D, it
follows by gluing its local version in [3, Corollaire 2.3.7]. In the case where D is a
p-torsion-free p-complete ring, it follows from the last equivalence of Remark 5.5
(see also [3, Théorème 4.1.3]).
In this section we first give an alternative, site-theoretic proof of the equivalence

Q�� in a certain setting, which uses techniques similar to those in the previous sections.
We will be particularly interested in the case whereD is a p-torsion-free p-complete
ring.
We need to suitably modify the m-crystalline site for our purposes. First, we recall

the infinitesimal invariance of the category of crystals on the m-crystalline site.
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Construction 5.8. Let .D; J; I; 
/ be a p-torsion-free p-complete m-PD ring
or an m-PD ring in which p is nilpotent. Suppose that the ideal I contains p. Let
.J1; I1; 
1/ be an m-PD subideal of .J; I; 
/. Assume that there exists a Cartesian
diagram

X1 Spec.D=J1/

X Spec.D=J /;

f

�

where f is a smooth and separated map. Then we have a cocontinuous functor of sites
� W .X1=.D; J1; I1; 
1//m-crys ! .X=.D; J; I; 
//m-crys defined by

.Spec.E/ Spec.E=JE /! X1/ 7!
�
Spec.E/ X �

X1
Spec.E=JE /! X

�
:

This is well defined by the proof of [14, Proposition 2.11]. So we obtain a morphism
of topoi .X1=.D; J1; I1; 
1//�m-crys ! .X=.D; J; I; 
//�m-crys. By abuse of notation,
we will denote it by � . Note that the inverse image functor �� is equal to the functor
i
.m/
cris� in [14, Proposition 2.11], except that we work with the big site with respect to
the flat topology while Miyatani worked with the small site with respect to the Zariski
topology.

Then the following holds true, which is sometimes called the infinitesimal invari-
ance of the category of crystals on the m-crystalline site:

Proposition 5.9. The map �� induces an equivalence of categories of crystals

Cqcoh..X=.D; J; I; 
//m-crys/
'
�! Cqcoh..X1=.D; J1; I1; 
1//m-crys/:

Proof. In the case where p is nilpotent in D, the proposition follows from [14,
Corollary 2.14] (the difference between our site and Miyatani’s does not cause any
problem because Remark 5.5 ensures that the categories of crystals are the same). In
the case where D is a p-torsion-free p-complete ring, the proposition follows from
the previous case and the last equivalence of Remark 5.5.

Next we relate the functor Q� to a functor which is more similar to the functors
studied in the previous sections, by using the infinitesimal invariance of the category
of crystals on the m-crystalline site.

Construction 5.10. Let .D; I; 
/ be a p-torsion-free p-complete PD ring with
p 2 I . Set

J D Ker.D� D=I
�m

��! D=I/:
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Then .D; J; I; 
/ is an m-PD ring. Assume that there exists a diagram with Cartesian
squares

zX Spec.D=I /

X Spec.D=J /

X 0 Spec.D=I /;

f

�

� .�m/�

where f is a smooth and separated map. Then we have functors of sites as above:

� W . zX=.D; I; I; 
//m-crys ! .X=.D; J; I; 
//m-crys;

Q� W . zX=.D; I; I; 
//m-crys ! .X 0=.D; I; 
//crys:

We can also define the functor � from .X=.D; J; I; 
//m-crys to .X 0=.D; I; 
//crys in
the following way: for an object .Spec.E/ Spec.E=JE /! X/ of .X=D/m-crys, we
define the object �.Spec.E/ Spec.E=JE /! X/ of .X 0=D/crys by

.Spec.E/ Spec.E=IE /
f
�! X 0/;

where the right map f is defined as

Spec.E=IE /
g
�! Spec.E=JE / �

Spec.D=J /;.�m/�
Spec.D=I /

! X �
Spec.D=J /;.�m/�

Spec.D=I /:

Here, the first map g is induced by the map of rings

E=JE ˝
D=J;�m

D=I ! E=IE ; e ˝ d 7! �m.e/d:

This defines the functor � W .X=.D; J; I; 
//m-crys! .X 0=.D; I; 
//crys:We can check
that � ı � D Q� . Hence we have a commutative diagram:

Cqcoh..X 0=.D; I; 
//crys/ Cqcoh..X=.D; J; I; 
//m-crys/

Cqcoh.. zX=.D; I; I; 
//m-crys/:

��

Q��

' ��

So it is enough to consider the functor � to study the Frobenius descent. The functor �
is much closer to the functors between the sites of level m and level 0 in the previous
sections.
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However, the m-crystalline site is not suitable to apply the site-theoretic argument
in the previous sections; for any object .E; JE ; IE ; 
E / of .X=D/m-crys, p is nilpotent
in E, and the data .JE ; 
E / is not uniquely determined by the pair .E; IE /. But
we can overcome this difficulty by defining a variant of the m-crystalline site. Fix a
non-negative integer m.

Definition 5.11. Let .D; I; 
/ be a PD ring with p 2 I . We define

Jmax WD Ker.D� D=I
�m

��! D=I/:

Then .Jmax; I; 
/ is an m-PD ideal and for any m-PD ideal of the form .J; I; 
/,
we have J � Jmax. A maximal m-PD ring is an m-PD ring .D; J; I; 
/ satisfying
J D Jmax.

Note that, for a p-torsion-free p-complete maximal m-PD ring .D; J; I; 
/, the
data .J; 
/ is uniquely determined by the pair .D; I /: indeed, the ideal J is uniquely
determined by I and the PD structure is uniquely determined by 
n.x/ D xn

nŠ
.

Next we define a variant of the m-crystalline site.

Definition 5.12. Let .D; J; I; 
/ be a p-torsion-free p-complete maximal m-PD
ring with p 2 I . Let X be a scheme smooth and separated over D=J . We define
the new m-crystalline site .X=D/m-crys;new of X overD as follows. Objects are maps
.D; J; I; 
/! .E; JE ; IE ; 
E / of p-torsion-free p-complete maximal m-PD rings
together with a map Spec.E=JE /! X overD=J satisfying the following condition:

.�/ Spec.E=JE /! X factors through some affine open Spec.R/ � X .

We will often denote such an object by

.Spf.E/ Spec.E=JE /! X/ 2 .X=D/m-crys;new

or .E; JE ; IE ; 
E / if no confusion arises. A morphism

.Spf.E 0/ Spec.E 0=JE 0/! X/! .Spf.E/ Spec.E=JE /! X/

is a map of maximal m-PD rings

.E; JE ; IE ; 
E /! .E 0; JE 0 ; IE 0 ; 
E 0/

over .D; J; I; 
/ such that the induced morphism Spec.E 0=JE 0/ ! Spec.E=JE /
is compatible with the maps Spec.E 0=JE 0/ ! X , Spec.E=JE / ! X . When we
denote such an object by .E; JE ; IE ; 
E /, we will write .E; JE ; IE ; 
E /! .E 0; JE 0 ;

IE 0 ; 
E 0/ (not .E 0; JE 0 ; IE 0 ; 
E 0/! .E; JE ; IE ; 
E /) for a morphism from .E 0; JE 0 ;
IE 0 ; 
E 0/ to .E; JE ; IE ; 
E /. A map .E; JE ; IE ; 
E / ! .E 0; JE 0 ; IE 0 ; 
E 0/ in
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.X=D/m-crys;new is a cover if it is a p-completely faithfully flat map and satisfies
IE 0 D IEE

0 (but we do not require that JE 0 D JEE 0). (Note that IEE 0 is always
closed in p-adic topology because p 2 IEE 0.)
When m D 0, we denote the site .X=D/m-crys;new simply by .X=D/crys;new and call

it the new crystalline site.

The new m-crystalline site is much closer to our notion of sites of higher level in
the previous sections. We will prove equivalence between the category of crystals on
the new m-crystalline site and that on the new crystalline site by the site-theoretic
argument as in the previous sections. We first construct a functor between these sites.

Construction 5.13. Let X 0 be X �Spec.D=J /;.�m/� Spec.D=I /. Then we have
the functor of sites

�newW .X=D/m-crys;new ! .X 0=D/crys;new

that sends an object .Spf.E/ Spec.E=JE /! X/ of .X=D/m-crys;new to an object
.Spf.E/ Spec.E=IE / f�! X 0/ of .X 0=D/crys;new, where the right map f is defined
as

Spec.E=IE /
g
�! Spec.E=JE / �

Spec.D=J /;.�m/�
Spec.D=I /

! X �
Spec.D=J /;.�m/�

Spec.D=I /:

Here, the first map g is induced by the map of rings

E=JE ˝
D=J;�m

D=I ! E=IE ; e ˝ d 7! �m.e/d:

Proposition 5.14. The functor �new is cocontinuous.

Proof. We can prove the result in the same way as Proposition 2.8.

By Proposition 5.14, we obtain a morphism of the associated topoi. By abuse of
notation, we will denote it by �new. We have the following result.

Proposition 5.15. The morphism �newWB.X=D/m-crys;new ! B.X 0=D/crys;new is an
equivalence of topoi.

Proof. We can prove that the functor of the sites �newW .X=D/m-crys;new !
.X 0=D/crys;new is fully faithful, continuous and cocontinuous in the same way as
the propositions in Section 2, so the result follows from Proposition 5.18 below and
[17, Proposition 4.2.1] (see also [20, Proposition 9.10]).
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We will need the following analogs of Lemma 2.10.

Lemma 5.16. Let .E; JE ; IE ; 
E / be an m-PD ring which is an object of
.X=D/m-crys. Let Nf W Spec.Ei /! Spec.E=JE / be an open immersion. Then there
is a unique open immersion f WSpec.Ei /! Spec.E/ which lifts Nf . Moreover, there
exists a PD structure 
Ei on IEEi such that the corresponding map of rings induces
a map .E; JE ; IE ; 
E /! .Ei ; JEEi ; IEEi ; 
Ei / in .X=D/m-crys.

Proof. As JE is a nil ideal, the existence, the uniqueness and the affinity of the
lifting follow from Lemma 2.9. We denote the lifting by

f WSpec.Ei /! Spec.E/:

As Ei is flat over E, by [4, Corollary 3.22], there exists (uniquely) a PD structure 
Ei
on IEEi such that the corresponding map of rings induces a map

.E; IE ; 
E /! .Ei ; IEEi ; 
Ei /

of PD rings. This induces a map .E; JE ; IE ; 
E / ! .Ei ; JEEi ; IEEi ; 
Ei /, as
required.

Lemma 5.17. Let .E; JE ; IE ; 
E / be a p-torsion-free p-complete maximal m-PD
ring which is an object of .X=D/m-crys;new. Let Nf be an open immersion

Nf WSpec.Ei /! Spec.E=IE /

or an open immersion
Nf WSpec.Ei /! Spec.E=JE /:

Then there is a unique open immersion f WSpf.Ei /! Spf.E/ which lifts Nf . Moreover,
there exists a PD structure 
Ei on IEEi such that the corresponding map of rings
induces a map .E; JE ; IE ; 
E /! .Ei ; JEi ; IEEi ; 
Ei / in .X=D/m-crys;new.

Proof. As the images of JE and IE in E=pE are nil ideals, the existence, the
uniqueness and the affinity of the lifting follow from Lemma 2.9. We denote the lifting
by

f WSpf.Ei /! Spf.E/:

Note that IE=pnE has naturally the PD structure induced by 
E . Then, as

E=pnE ! Ei=p
nEi

is flat, by [4, Corollary 3.22], there exists (uniquely) a PD structure on IEEi=pnEi
such that the map .E=pnE; IE=pnE/! .Ei=p

nEi ; IEEi=p
nEi / is the map of PD
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rings. Taking the inverse limit with respect to n, we see that there exists a PD structure

Ei on IEEi such that the map

.E; IE ; 
E /! .Ei ; IEEi ; 
Ei /

is a map of PD rings. Also, the flatness of E=pnE ! Ei=p
nEi for all n and the

p-torsion-freeness of E imply the p-torsion-freeness of Ei . Hence the map

.E; JE ; IE ; 
E /! .Ei ; JEi ; IEEi ; 
Ei /

(where JEi WD Ker.Ei� Ei=IEEi
�m
��! Ei=IEEi /) is a map in .X=D/m-crys;new.

Proposition 5.18. Let .E 0; JE 0 ; IE 0 ; 
E 0/ be an object in .X 0=D/crys;new. Then
there exists an object .E; JE ; IE ; 
E / in .X=D/m-crys;new and a cover of the form

.E 0; JE 0 ; IE 0 ; 
E 0/! �new.E; JE ; IE ; 
E /:

Proof. By Lemma 5.17 and an argument as in the proof of Proposition 2.11, we
may assume that the structure morphism Spec.E 0=IE 0/!X 0 factors through an affine
open Spec.R0/ � X 0 such that R0 is of the form R˝D=J;�m D=I for some affine open
Spec.R/ � X , and that the corresponding map of ringsD=J ! R is standard smooth
in the sense of [19, Tag 00T6].
By [19, Tag 00T7], there exists a surjection DŒx1; : : : ; xn�^ ! R whose kernel

is the ideal .J; y1; : : : ; yr/ such that y1; : : : ; yr 2 D=J Œx1; : : : ; xn� form a regular
sequence. Since the image of J in D=pD is a nil ideal, the Jacobian criterion for
smoothness implies that y1; : : : ; yr 2 D=pDŒx1; : : : ; xn� form a regular sequence
and that the quotient zR WD DŒx1; : : : ; xn�=.p; y1; : : : ; yr/ is smooth overD=pD. By
a similar argument to that in the proof of Corollary 2.13, we see that the sequence
y
pm

1 ; : : : ; y
pm

r 2 DŒx1; : : : ; xn�
^ is p-completely regular relative toD. Then we can

construct a mapDŒx1; : : : ; xn�^ ! S to the p-completed PD envelope with respect
to the ideal .I; yp

m

1 ; : : : ; y
pm

r /. We denote the PD ideal of S by IS and let JS D
Ker.S� S=IS

�m
��! S=IS /. Then we have a map R! S=JS . Thus, .S; JS ; IS ; 
S /

can be regarded as an object of .X=D/m-crys;new. By definition,

S D DŒx1; : : : ; xn�
^

�
y
kpm

1

kŠ
; : : : ;

y
kpm

r

kŠ

�^
k2N

and S is p-torsion-free.
Let zR0 be zR˝D=pD;�m D=pD. Let

D=pDŒx1; : : : ; xn�! zR
0; zR0 ! R0
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be the base changes of the surjectionsD=pDŒx1; : : : ; xn�! zR, zR! R along the map
D=pD

�m
��! D=pD respectively. Then we have a surjection DŒx1; : : : ; xn�^ ! R0

determined as the composition of the mapDŒx1; : : : ; xn�^ ! D=pDŒx1; : : : ; xn� and
the surjectionD=pDŒx1; : : : ; xn�! zR0 ! R0 constructed above. On the other hand,
the kernel of the map DŒx1; : : : ; xn�^ ! zR0 is .p; y01; : : : ; y

0
r/, where the y0i are the

images of the yi under the map D=pDŒx1; : : : ; xn�! D=pDŒx1; : : : ; xn� sendingP
j ˛jx

j to
P
j ˛

pm

j xj (here we write j WD .j1; : : : ; jn/ for the multi-index). So the
kernel of the mapDŒx1; : : : ; xn�^ ! R0 is .I; y01; : : : ; y

0
r/. As

y1; : : : ; yr 2 D=pDŒx1; : : : ; xn�

form a regular sequence, the sequence y01; : : : ; y0r 2D=pDŒx1; : : : ; xn� is also a regular
sequence. By a similar argument to that in the proof of Corollary 2.13, the sequence
y01; : : : ; y

0
r 2 DŒx1; : : : ; xn�

^ is p-completely regular relative to D. Then we can
construct a mapDŒx1; : : : ; xn�^ ! S 0 to the p-completed PD envelope with respect
to the ideal .I; y01; : : : ; y

0
r/. By definition,

S 0 D DŒx1; : : : ; xn�
^

�
y01
k

kŠ
; : : : ;

y0r
k

kŠ

�^
k2N

and S 0 is p-torsion-free.
By the relation between yi and y0i , we have a map ofD-PD rings .�

m/0WS 0 ! S

sending xi to xp
m

i . The map .�
m/0 is p-completely faithfully flat: indeed, since S , S 0

are p-torsion-free, it suffices to check that S 0=pS 0 ! S=pS is faithfully flat. But this
map is the base change of the mapD=pDŒx1; : : : ; xn�! D=pDŒx1; : : : ; xn� sending
xi to xp

m

i , which is clearly faithfully flat.
Let .E 0; JE 0 ; IE 0 ; 
E 0/ 2 .X 0=D/crys;new be as above. We have a map

f1WDŒx1; : : : ; xn�
^
! R0 ! E 0=IE 0 :

As DŒx1; : : : ; xn�^ is the completion of a polynomial ring, one can choose a map
f2WDŒx1; : : : ; xn�

^ ! E 0 lifting f1. By the universal property of the PD envelope,
f2 extends uniquely to aD-PD ring map gWS 0 ! E 0. If we set hWE 0 ! E 0 y̋ S 0 S to
be the base change of .�m/0WS 0 ! S along g, then by p-complete faithful flatness of
.�m/0, we see that the same holds true for h.
Then we can prove that the map h defines a morphism

.E 0; JE 0 ; IE 0 ; 
E 0/! �new

�
E 0 y̋

S 0
S; JE 0 y̋

S0
S ; IE 0 y̋

S0
S ; 
E 0 y̋

S0
S

�
in .X 0=D/crys;new as in the proof of Proposition 2.11, so the proposition follows.
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The map �new also induces equivalences between the categories of crystals:

Definition 5.19. Let

C..X=D/m-crys;new/

(resp. Ctors..X=D/m-crys;new/, Cp
n-tors..X=D/m-crys;new/, Cfp..X=D/m-crys;new/)

be the category of abelian sheaves F on .X=D/m-crys;new such that, for any object
.E; JE ; IE ; 
E / in .X=D/m-crys;new,

F.E/ 2M.E/ (resp.Mtors.E/,Mpn-tors.E/,Mfp.E/);

and for any morphism

.E; JE ; IE ; 
E /! .E1; JE1 ; IE1 ; 
E1/

in .X=D/m-crys;new, F.E;JE ; IE ; 
E /! F.E1; JE1 ; IE1 ; 
E1/ is compatible with the
module structures in the usual sense and the canonical map

F.E; JE ; IE ; 
E / y̋
E
E1 ! F.E1; JE1 ; IE1 ; 
E1/

is an isomorphism of E1-modules.

Theorem 5.20. The map ��new induces an equivalence of categories of crystals

C..X 0=D/crys;new/! C..X=D/m-crys;new/:

The same holds true for Ctors;Cpn-tors and Cfp.

Proof. We can prove the result in the same way as Theorem 2.25.

The following corollary recovers the Frobenius descent, namely, we obtain a site-
theoretic proof of the Frobenius descent in our setting.

Corollary 5.21. The map �� induces an equivalence of categories of crystals

Cqcoh..X 0=D/crys/! Cqcoh..X=D/m-crys/:

Proof. For n 2 N, let �nW .X=D/m-crys;new ! .X=D/m-crys be the functor of sites
that sends an object .Spf.E/ Spec.E=JE /! X/ to

.Spec.E=pnE/ Spec..E=pnE/=.JE=pnE//! X/:



K. Li 188

The functor .X 0=D/crys;new ! .X 0=D/crys can be defined in the same way. By abuse
of notation, we will denote it also by �n. Then one can check that they are continuous.
So we obtain morphisms of topoi

B.X=D/m-crys !B.X=D/m-crys;new;
B.X 0=D/crys ! B.X 0=D/crys;new;

which we denote by O�n. Then the O�n;� induce functors of categories of crystals

Cp
n-tors..X=D/m-crys/! Cp

n-tors..X=D/m-crys;new/;

Cp
n-tors..X 0=D/crys/! Cp

n-tors..X 0=D/crys;new/:

Also, we have an equality � ı �n D �n ı �new as morphisms of sites. So we have a
commutative diagram

Cp
n-tors..X 0=D/crys/ Cp

n-tors..X=D/m-crys/

Cp
n-tors..X 0=D/crys;new/ Cp

n-tors..X=D/m-crys;new/;

��

O�n;� O�n;�

��new

where the functors ��, ��new are the pullback functors induced by the morphism of
topoi �; �new, which are defined by the cocontinuity of the corresponding functors of
sites. As ��new is an equivalence by Theorem 5.20 and the O�n;� are equivalences by
Lemma 5.22 below, we conclude that the functor

��WCp
n-tors..X 0=D/crys/! Cp

n-tors..X=D/m-crys/

is an equivalence. By taking the projective limit over n and using the last equivalence
in Remark 5.5, we obtain the required equivalence

��WCqcoh..X 0=D/crys/! Cqcoh..X=D/m-crys/:

Lemma 5.22. The functors

O�n;�WC
pn-tors..X=D/m-crys/! Cp

n-tors..X=D/m-crys;new/ .n 2 N/;

O�n;�WC
pn-tors..X 0=D/crys/! Cp

n-tors..X 0=D/crys;new/ .n 2 N/

in the proof of Corollary 5.21 are equivalences which are compatible with the natural
inclusion functors

�nWC
pn-tors..X=D/m-crys/! Cp

nC1-tors..X=D/m-crys/;

�nWC
pn-tors..X=D/m-crys;new/! Cp

nC1-tors..X=D/m-crys;new/:
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For the proof of Lemma 5.22, we will need the notion of stratifications for the new
m-crystalline site .X=D/m-crys;new, as in Section 3.

Definition 5.23. Let .D; I /, J , X be as above.

(1) We define the category Snew
m;.D;I/

in the same way as in Definition 3.21. Namely,
objects of Snew

m;.D;I/
are maps � WT !R, where T is a finite set and Spec.R/�X is

an affine open subscheme such that the induced mapD=J !R is standard smooth
in the sense of [19, Tag 00T6]; moreover, � is a map satisfying the following
conditions:

(a)
f� WD� WD DŒxt �

^
t2T ! R;

xt 7! �.t/
is surjective.

(b) There exists a sequence y1; : : : ; yr 2 DŒxt �^t2T such that the kernel of f�
can be described as the ideal .J; .yw/w2W / (where W D ¹1; : : : ; rº), and
that y1; : : : ; yr 2 .D=J /Œxt �t2T form a regular sequence.

The morphism and the sum � t � 0 for �; � 0 2 Snew
m;.D;I/

are defined in the same
way as in Definition 3.21. We will simply write Snewm;D instead of S

new
m;.D;I/

if no
confusion arises.

(2) For � WT !R 2 Snewm;D , we define S� in the same way as in the proof of Proposition
5.18: namely, we define

S� D DŒxt �
^

�
y
kpm

w

kŠ

�^
t2T;w2W;k2N

to be the p-completed PD envelope of DŒxt �^t2T with respect to the ideal .I;
.y
pm

w /w2W /. Note that it is independent of the choice of the elements yw (w 2W ).
Indeed, the ideal .I; .yp

m

w /w2W / D .I; .J; .yw/w2W /
.pm// is independent of the

choice. In particular, we see that the construction of S� is functorial in � 2 Snewm;D .

(3) A stratification with respect to Snewm;D andM (resp.Mpn-tors) is a pair

..M� /�2Snew
m;D

; .'�� 0/�!� 0/;

where M� 2M.S� / (resp. Mpn-tors.S� /) and '�� 0 WM� y̋ S� S� 0
'
�! M� 0 is an

isomorphism of S� 0-modules satisfying the cocycle condition. We denote the cate-
gory of stratifications with respect to Snewm;D andM (resp.Mpn-tors) by Str.Snewm;D/
(resp. Strp

n-tors.Snewm;D/).

We can prove the following proposition in the same way as Proposition 3.22.
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Proposition 5.24. There exist equivalences of categories

C..X=D/m-crys;new/
'
�! Str.Snewm;D/;

Cp
n-tors..X=D/m-crys;new/

'
�! Strp

n-tors.Snewm;D/:

Using this, we prove Lemma 5.22.

Proof of Lemma 5.22. Let Snewm;D , Str
pn-tors.Snewm;D/ be as above. Then the category

Cp
n-tors..X=D/m-crys;new/ is equivalent to the category Strp

n-tors.Snewm;D/. It remains to
show that there is a natural equivalence of categories

Cp
n-tors..X=D/m-crys/

'
�! Strp

n-tors.Snewm;D/:

We first define a functor Cpn-tors..X=D/m-crys/! Strp
n-tors.Snewm;D/. For an object

.� WT ! R/ 2 Snewm;D , we can construct the p-completed PD envelope S� as in Defini-
tion 5.23. Then S�=pnS� can be regarded as an object of .X=D/m-crys. Thus, we can
define the functor by

F 7!
�
.F.S�=p

nS� //�2Snew
m;D

;
�
F.S�=p

nS� / ˝
S�

S� 0
'
�! F.S� 0=p

nS� 0/
�
�!� 0

�
:

Also, we can define the functor Strp
n-tors.Snewm;D/! Cp

n-tors..X=D/m-crys/ as fol-
lows. Given

..M� /�2Snew
m;D

; .'�� 0/�!� 0/ 2 Strp
n-tors.Snewm;D/

and .E;JE ; IE ; 
E / 2 .X=D/m-crys, we choose an affine open Spec.R/� X such that
Spec.E=JE /! X factors through Spec.R/. As in the proof of Proposition 3.22, there
exists an open cover of Spec.R/ by standard opens Spec.Rgi / such that each Rgi is
standard smooth overD=J . Then the fiber product Spec.Rgi ˝R E=JE / is an affine
open of Spec.E=JE /. We denote the scheme Spec.Rgi ˝R E=JE / by Spec.Ei /. By
Lemma 5.16 there is a unique m-PD ring .Ei ; JEEi ; IEEi ; 
Ei / 2 .X=D/m-crys for
which the corresponding scheme Spec.Ei / is an affine open subscheme of Spec.E/
and lifts Spec.Ei /, namely, Ei=JEEi D Ei .
First, we define F.Ei / for such Ei . By construction, there exists an object in Snewm;D

of the form � WT ! Rgi . Then we can construct a morphism S� ! Ei as in the proof
of Proposition 3.22. We define

F.Ei / WDM� ˝S� Ei :

We can also define F.E/ for general .E; JE ; IE ; 
E / 2 .X=D/m-crys as in the proof
of Proposition 3.22.
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We can prove that the presheaf F is well defined and that it defines an object of
Cp

n-tors..X=D/m-crys/ as in the proof of Proposition 3.22. So the functor

Strp
n-tors.Snewm;D/! Cp

n-tors..X=D/m-crys/

can be defined by
..M� /�2Snew

m;D
; .'�� 0/�!� 0/ 7! F:

The two functors we constructed are quasi-inverse to each other. Hence, the category
Cp

n-tors..X=D/m-crys/ is equivalent to the category Strp
n-tors.Snewm;D/, as desired.

Finally, we compare the m-q-crystalline site with our variant of the m-crystalline
site. Assume that .D; I / is a q-PD pair with q D 1 in D, i.e., a derived p-complete
ı-pair over Zp satisfying the following conditions:
(1) For any f 2 I , f p 2 pI .

(2) The pair .D; .p// is a bounded prism, i.e.,D is p-torsion-free. In particular,D is
classically p-complete.

(3) D=I is classically p-complete.

By [5, Remark 16.3], there exists a canonical PD structure 
 on I . Now suppose
further that p 2 I . Let J D .�m/�1.I /. Then we have the following result.

Lemma 5.25. With the notation above,

J .p
m/
C pJ � I � J:

Here, J .pm/ denotes the ideal of D generated by xpm for all elements x of J . In
particular, .J; I; 
/ is an m-PD ideal.

Proof. Set Ji D .�i /�1.I /. Then for all i , we have p 2 Ji . For any x 2 Ji , we see
that xp D �.x/� pı.x/ 2 Ji�1. So for any x 2 J , one has xp

m
2 I . This implies that

J .p
m/CpJ � I . On the other hand, for any x 2 I , we have �m.x/D p�m�1.�.x/

p
/ 2

I . The result follows.

In this situation, there is a functor of sites from the m-q-crystalline site to the new
m-crystalline site by forgetting the ı-structure on the q-PD pair.

Construction 5.26. Assume that .D;I / is a q-PD pair with q D 1 inD. Suppose
that the ideal I contains p. Let X be a scheme smooth and separated overD=J . Then
we have the functor of sites

� W .X=D/m-q-crys ! .X=D/m-crys;new
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that sends an object .E; IE / of the m-q-crystalline site .X=D/m-q-crys to an
object .E; JE ; IE ; 
E / of the new m-crystalline site .X=D/m-crys;new, where JE D
.�m/�1.IE /, and 
E is the canonical PD structure on IE defined by [5, Remark 16.3].

Proposition 5.27. Assume that .D; I / is a q-PD pair with q D 1 in D. Suppose
that the ideal I contains p. Then the functor � is continuous.

Proof. Note that if q D 1 inD, then the .p; Œp�q/-completion is the same as the
p-completion. So we can prove the result in the same way as Proposition 2.7.

So we obtain a morphism of topoi

B.X=D/m-crys;new !B.X=D/m-q-crys:

We denote it by O� . Then the following holds true.

Proposition 5.28. Assume that .D; I / is a q-PD pair with q D 1 in D. Suppose
that the ideal I contains p. Then O�� induces an equivalence of categories of crystals

C..X=D/m-crys;new/
'
�! C..X=D/m-q-crys/:

Proof. Let Sm;D , Str.Sm;D/ be the categories in Definition 3.21. Then the cat-
egory C..X=D/m-q-crys/ is equivalent to the category Str.Sm;D/. It remains to show
that there is a natural equivalence of categories

C..X=D/m-crys;new/
'
�! Str.Sm;D/:

We first define a functor

C..X=D/m-crys;new/! Str.Sm;D/:

For an object .� W T ! R/ 2 Sm;D , we can construct the q-PD envelope S� as in
Definition 3.21. We may also regard S� as an object of .X=D/m-crys;new. Thus, we can
define the functor by

F 7!
�
.F.S� //�2Sm;D ;

�
F.S� / y̋

S�

S� 0
'
�! F.S� 0/

�
�!� 0

�
:

Also, we can define the functor Str.Sm;D/! C..X=D/m-crys;new/ as follows. Given
..M� /�2Sm;D ; .'�� 0/�!� 0/ 2 Str.Sm;D/ and .E; JE ; IE ; 
E / 2 .X=D/m-crys;new, we
choose an affine open Spec.R/ � X such that Spec.E=JE /! X factors through
Spec.R/. As in the proof of Proposition 3.22, there exists an open cover of Spec.R/ by
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standard opens Spec.Rgi / such that each Rgi is standard smooth overD=J . Then the
fiber product Spec.Rgi ˝R E=JE / is an affine open of Spec.E=JE /. We denote the
scheme Spec.Rgi ˝R E=JE / by Spec.Ei /. By Lemma 5.17 there is a unique maximal
m-PD ring .Ei ;JEi ; IEEi ;
Ei /2 .X=D/m-crys;new for which the corresponding formal
scheme Spf.Ei / is an affine open formal subscheme of Spf.E/ and lifts Spec.Ei /,
namely, Ei=JEEi D Ei .
First we define F.Ei / for such Ei . By construction, there exists an object in Sm;D

of the form � W T ! Rgi . As D¹xtº
^
t2T is the completion of a polynomial ring by

[5, Lemma 2.11], one can choose a map f1WD¹xtº^t2T ! Rgi ! Ei=JEi and a map
f2WD¹xtº

^
t2T ! Ei lifting f1. On the other hand, we have

S� D D

²
xt ;

�mC1.yw/

p

³^
t2T;w2W

by [5, Lemma 16.10]. By assumption, this is the p-completed PD envelope of
D¹xtº

^
t2T with respect to the ideal

.I; .�m.yw//w2W / D .I; .y
pm

w /w2W /:

So f2 extends uniquely to aD-PD ring map f3WS� ! Ei . We define

F.Ei / WDM� y̋
S�

Ei 2M.Ei /:

We can also define F.E/ for general .E;JE ; IE ; 
E / 2 .X=D/m-crys;new as in the proof
of Proposition 3.22.
We can prove that the presheaf F is well defined and that it defines an object of

C..X=D/m-crys;new/ as in the proof of Proposition 3.22. So the functor

Str.Sm;D/! C..X=D/m-crys;new/

can be defined by
..M� /�2Sm;D ; .'�� 0/�!� 0/ 7! F:

The two functors we constructed are quasi-inverse to each other. Hence, the category
C..X=D/m-crys;new/ is equivalent to the category Str.Sm;D/, as desired.

We have a commutative diagram:

.X=D/m-q-crys .X=D/m-crys;new

.X 0=D/q-crys .X 0=D/crys;new:

�

�

�new

�
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On the other hand, we have an inclusion C..X=D/m-q-crys/ � Caa..X=D/m-q-crys/. So
the above square induces the following diagram:

Caa..X=D/m-q-crys/ C..X=D/m-q-crys/ C..X=D/m-crys;new/

Caa..X 0=D/q-crys/ C..X 0=D/q-crys/ C..X 0=D/crys;new/:

O��

'

' C� '

O��

'

' ��new

In this way, equivalence between the category of crystals on the m-q-crystalline site
and that on the usual q-crystalline site in Section 3 is compatible with Frobenius
descent.

6. Relation to the results of Xu, Gros–Le Stum–Quirós and Morrow–Tsuji

In this section we discuss relations between our equivalences in Sections 2 and 3
and the results of Xu [20], Gros–Le Stum–Quirós [6–8] and Morrow–Tsuji [15].
First, we establish a relation between our results and the results of Xu. Let k be

a perfect field of characteristic p, and let W be the Witt ring of k. We consider the
following diagram:

Spf.W / Spec.W=pW / D Spec.k/ X

Spf.W / Spec.k/ X 0;

�

f

�� ��

where the right square is the Cartesian diagram, �� is the morphism induced by the
lift �WW ! W of Frobenius and f is a smooth and separated map.
Let us now briefly recall some notation and results in [20]. In [20], Xu defined the

category E0 (resp. E) as follows: Objects are diagrams

.T  T ! U/ (resp. .T  T ! U/);

where T is a flat p-adic formalW -scheme, T ! T (resp. T ! T ) is the closed immer-
sion defined by the ideal pOT (resp. the ideal Ker.OT ! OT =pOT

�
�! OT =pOT /

with � the Frobenius) and T ! U is an affine morphism over k to an open subscheme
U of X 0 (resp. X). The notion of a morphism is the obvious one. We endow E0, E
with the topology induced by the fppf covers of T (see [20, 7.13]) and denote these
sites by E0fppf , Efppf respectively (Xu also considers the topology induced by the Zariski
topology on T in [20, 7.9], which we will not consider here).
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We define the categories of crystals by

Ctors.E0fppf/ D
[
n

Cp
n-tors.E0fppf/; Ctors.Efppf/ D

[
n

Cp
n-tors.Efppf/;

where Cpn-tors.E0fppf/, C
pn-tors.Efppf/ are the categories of pn-torsion quasi-coherent

crystals on E0fppf , Efppf respectively. (The categories C
pn-tors.E0fppf/, C

pn-tors.Efppf/ are
denoted by Cqcohfppf .OE0;n/;C

qcoh
fppf .OE;n/ respectively in [20].)

In [20, 9.1], Xu defined a functor �WE! E0 that sends .T  T
f
�! U/ to .T  

T ! U 0/, where the right map f WT ! U 0 is defined as

T
g
�! T �

Spec.k/;��
Spec.k/! U �

Spec.k/;��
Spec.k/ DW U 0:

Here the first map g is induced by the map of sheaves of rings

OT ˝
k;�
k ! OT ; t ˝ a 7! �.t/a:

Then, in [20, Theorem 9.2], he proved that the functor � induces an equivalence of
topoi

�W QEfppf
'
�! QE0fppf;

and in [20, Theorem 9.12], he proved that � induces an equivalence between the
categories of crystals

��WCp
n-tors.E0fppf/

'
�! Cp

n-tors.Efppf/:

We relate our result in Section 2 to his result. For a pair .E; pE/ over .W; pW /,
we define

E=pE D E=Ker.E ! E=pE
�
�! E=pE/

(this is the ring-theoretic version of T above). Note that if .E; IE / D .E; pE/ is a
ı-pair over .W; pW /, then

E=Ker.E ! E=pE
�
�! E=pE/ D E=Ker.E

�
�! E ! E=pE/ D E=JE ;

where JE is the ideal considered in the level 1-prismatic site, i.e., JE D ��1.IE /.
Then we have a commutative diagram:

.X=W /1-aa Efppf

.X 0=W /aa E0fppf;

ˇ1

�0 �

ˇ0
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where � is the functor defined by Xu, �0 is the functor � defined in Section 2 and ˇ0,
ˇ1 are the functors defined as

ˇ0W .Spf.E/ - Spec.E=pE/! X 0/ 7! .Spf.E/ - Spec.E=pE/! X 0/;

ˇ1W .Spf.E/ - Spec.E=JE /! X/ 7! .Spf.E/ - Spec.E=JE D E=pE/! X/:

It is easy to see that the functors ˇ0, ˇ1 are continuous. So the functors above induce a
commutative diagram:

Cp
n-tors..X=W /1-aa/ Cp

n-tors.Efppf/

Cp
n-tors..X 0=W /aa/ Cp

n-tors.E0fppf/:

Ǒ
1;�

' �0�

Ǒ
0;�

' ��

So our equivalence �0� is compatible with Xu’s equivalence ��.
If X=k lifts to zX=W and the relative Frobenius of X lifts to zX , then we have the

following commutative diagram:

MIC. zX=W /qn Ctors..X=W /crys/ Ctors..X=W /1-aa/ Ctors.Efppf/

p-MIC. zX 0=W /qn Ctors..X 0=W /aa/ Ctors.E0fppf/:

'

 

'

�

Ǒ
1;�

' '

'

$

' �0�

Ǒ
0;�

' ��

Here, MIC. zX=W / (resp. p- MIC. zX 0=W /) denotes the category of p-power tor-
sion quasi-coherent OX -modules with quasi-nilpotent integrable connection (resp.
p-connection) relative to W . The functor � is the composition

Ctors..X=W /1-aa/! Ctors..X=W /q-crys/! Ctors..X=W /crys;new/! Ctors..X=W /crys/;

where the first functor is the equivalence

˛�WCtors..X=W /1-aa/
'
�! Ctors..X=W /q-crys/

in Theorem 4.2, the second functor is the inverse of the functor (note that .W; pW / is
a q-PD pair with q D 1 in W )

O��WC
tors..X=W /crys;new/

'
�! Ctors..X=W /q-crys/

in Proposition 5.28 and the third functor is the inverse of the functor

O��WC
tors..X=W /crys/

'
�! Ctors..X=W /crys;new/
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in Lemma 5.22. The functor ' is the equivalence constructed in [18, Proposition 2.5].
The functor  is a natural equivalence in the theory of crystalline sites. By composing
the equivalences in the above commutative diagram, we obtain an equivalence$ from
the category of crystals on the prismatic site to the category of modules with integrable
p-connection. We note that the equivalence$ has been established in a more general
situation by Ogus.
Next we establish a relation between the functors we constructed and the twisted

Simpson correspondence by Gros–Le Stum–Quirós. Let .D; I / be a q-PD pair with
I D ��1.Œp�qD/. Assume that there exists a pushout diagram

D DŒx�^ A

D A0;

�

f

y

where the map f is .p; I /-completely étale. We give a ı-structure on DŒx�^ by
ı.x/D 0. By [5, Lemma 2.18], the ring A admits a unique ı-structure compatible with
the one onDŒx�^. Set

NA D A˝
D
D=I;

NA0 D A0 ˝
D
D=Œp�qD:

Then by [7, Theorem 4.8 and Proposition 6.9], we have the following commutative
diagram:

Caa.. NA=D/1-aa/ Caa.. NA=D/q-crys/ bStrat.0/q .A=D/

Caa.. NA0=D/aa/ bStrat.�1/q .A0=D/;

'

Ǫ� G

' ��

H

' F�

where bStrat.0/q .A=D/ (resp. bStrat.�1/q .A0=D/) is the category of twisted hyper-stratified
A-modules of level 0 (resp. A0-modules of level .�1/) defined in [7, Definition 3.9],
Ǫ� and �� are the functors we constructed, G and H are the functors that appeared in
[7, Proposition 6.9] and F� is an equivalence in [7, Theorem 4.8]. (More precisely, it is
not clear to us which category of modules they used in their definition of bStrat.0/q .A=D/

and bStrat.�1/q .A0=D/. We guess that it would be reasonable to use the categories
Maa.A/ andMaa.A0/ respectively. So the categories of twisted hyper-stratified modules
would be related to our equivalences of categories of crystals with notation Caa.)
Thus, we see that our equivalences of categories fit into the diagram in [7, Proposi-

tion 6.9]. In particular, our argument gives a direct proof of the equivalence Ǫ� ı ��,
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which they plan to prove indirectly in forthcoming work by showing that G and H are
equivalences (see [7, Remark 2 after Proposition 6.9]). Moreover, our proof of the
equivalence Ǫ� ı ��, which is in the style of [17,20], answers “the hope” in [7, Remark
3 after Proposition 6.9] to some extent.
Finally, we establish a relation between our results and the results of Morrow–Tsuji

in [15]. Let us briefly recall some notation and results in [15]. Let O be a ring of
integers of a characteristic 0 perfectoid field containing all p-power roots of unity, and
let

Ainf WDW.O
[/; " WD .1; �p; �p2 ; : : : / 2O[; � WD Œ"�� 1; � WD

�

��1.�/
; Q� WD �.�/;

where � is the Frobenius on Ainf (� is denoted by ' in [15]). Then the pair (Ainf; . Q�/)
is a bounded prism.
Let R be a smooth O-algebra with a formally étale map OŒT˙11 ; : : : ; T˙1

d
�^ ! R

called a framing. We can use the framing to define the ring R1 with the action

Gal.R1=R/ DW � Š Zdp ;

and the rings A� WD A�
inf.R/, A

�
1 WD Ainf.R1/. For an Ainf-algebra B , we set

B.1/ WD Ainf ˝�;Ainf B:

We denote the relative Frobenius B.1/ ! B by F . We use the same notation for the
base change of an O-algebra along the Frobenius because we can regard any O-algebra
as an Ainf-algebra.
Let Rep��.A

�/ (resp. Rep��.A
�.1//) be the category of generalized representa-

tions of � over A� (resp. A�.1/) which is trivial modulo �, and let qMIC.A�/ (resp.
qHIG.A�.1//) be the category of finite projective A�-modules (resp. A�.1/-modules)
with flat q-connection (resp. flat q-Higgs field). We will write qMIC.A�/qnilp (resp.
qHIG.A�.1//qnilp) for the full subcategory of qMIC.A�/ (resp. qHIG.A�.1//) con-
sisting of .p; �/-adically quasi-nilpotent objects (this notation is not used in [15]).
Then, in [15, Section 3], they considered the following commutative diagram:

Cfp..Spf.R.1//=Ainf/aa/ Rep��.A
�.1// qHIG.A�.1//

Rep��.A
�/ qMIC.A�/;

ev
A�.1/

ev�
A�.1/

'

�˝
A�.1/;FA

�

'

where evA�.1/ is the functor defined by evaluation on

.Spf.A�.1// Spf.R.1//
D
�! Spf.R.1///;
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and ev�
A�.1/ is the composition of the functor evA�.1/ with �˝A�.1/;F A

�. Moreover,
the arrows with' are equivalences.
By our result in Section 2, we see that the above diagram extends to the following

diagram:

Cfp..Spf.R.1//=Ainf/aa/ Rep��.A
�.1// qHIG.A�.1//

Cfp..Spf.R/=Ainf/1-aa/ Rep��.A
�/ qMIC.A�/;

ev
A�.1/

'

'

�˝
A�.1/;FA

�

ev
A� '

where evA� is the functor defined by evaluation on .Spf.A�/ Spf.R/
D
�! Spf.R//.

In [15, Theorem 3.2], they proved that the functors evA�.1/ , ev�
A�.1/ are fully faithful

and induce equivalences

Cfp..Spf.R.1//=Ainf/aa/
'
�! qHIG.A�.1//qnilp;

Cfp..Spf.R.1//=Ainf/aa/
'
�! qMIC.A�/qnilp:

Thus, we see that the functor evA� is also fully faithful and induces an equivalence

Cfp..Spf.R/=Ainf/1-aa/
'
�! qMIC.A�/qnilp:
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