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1. Introduction

1.1 – Motivation

Let M be a presentably symmetric monoidal1-category, with monoidal product ^
and unit 1, and letE be an object ofM. One can construct a homology localization ofM
by inverting all the maps � in M such that � ^E is an equivalence. This construction
was first introduced for the topological stable category SH in [8]. The associated
localization functorX 7! XE is calledE-homology localization, and has a particularly
simple universal property:XE is the initialE-local object with a map �.X/ WX !XE .
Unfortunately very little can be said about XE for a general E, even in the case X D 1.

Assume now that E is a commutative algebra object in M. In this situation, given
any object X 2M, we can perform a second construction X^E , by setting

X^E WD lim
�
X ^E^

�C1:

By construction, there is a natural map ˛.X/ W X ! X^E that factors through �. The
object X^E is called nilpotent completion of X at E.

Instances of this construction have appeared in a wide range of contexts. When
M is (the nerve of) the category of modules over a ring A, and E is a commutative
A-algebra, the map ˛.X/ can be interpreted as the obstruction to recover X from its
associated descent datum along A! E. In algebraic topology, nilpotent completions
where used by Adams and many others in relation to computing homotopy groups of
spectra. Indeed, starting with the cosimplicial object

X ^E^
�C1;

one can construct the tower of its partial totalizations and the inverse limit of such
a tower recovers X^E . In addition, the tower of partial totalizations gives rise to a
Bousfield–Kan spectral sequence conditionally converging to X^E . In some particularly
favorable situation, the page of this spectral sequence is amenable to computations,
and sometimes a good deal of information on X^E can be understood via this spectral
sequence.

Here is a crucial fact that follows from combining several parts of [8].

Theorem 1.1.1 (Bousfield). When E is a .�1/-connected commutative algebra
in SH, with �0.E/ ' Z=nZ, then for every bounded-below spectrum X the natural
map XE ! X^E is an equivalence. Furthermore, under the above assumptions, XE is
naturally identified with the derived completion X^n D limk X=n

k .
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1.2 – Actual content

In this paper, we axiomatize some of the techniques used by Bousfield and adapt
them to work in a presentably symmetric monoidal stable1-category M. Our aim is to
reach a formal analogue for M of the above theorem of Bousfield. The main assumption
we need on M is that it comes endowed with a t-structure which has the following
properties:

(1) the t -structure is left-complete, i.e., X ' limn P
n.X/ for all X 2M;

(2) the t -structure is multiplicative, i.e., 1 2M�0 and M�p ^M�q �M�pCq;

The main application we have in mind being motivic homotopy theory, we have decided
to dedicate Section 2 to recollecting some well-known facts about the motivic stable
category SH.S/ and about the categories of modules ModA.S/ over a commutative
algebra A 2 SH.S/�0. In particular, we review how the t-structure that ModA.S/
inherits from SH.S/ has the above two properties when S is a Noetherian scheme of
finite Krull dimension.

In order to work with an abstract symmetric monoidal1-category M, we have
chosen to axiomatize the elements of �0.S/ ' Z in terms of maps L! 1 where L
is a ^-invertible object of M such that L ^ � respects both M�0 and M�0; objects
satisfying this property are called tif objects (tif stands for “tensor invertible and flat”).

Another choice we have made is to work with localizations at homotopy commutative
algebras of M, i.e., with a commutative algebra of the homotopy category hM. We
refer to Section 2.1.4 for a clearer definition.

In this framework, the main assumptions on E is essentially the following. E is
a homotopy commutative algebra of M�0. Furthermore, there exist a finite set of tif
objects ¹LiºriD1 and maps fi WLi! 1 such that the unit 1!E induces an isomorphism
�0.1/=.f1; : : : ; fr/' �0.E/. For a more precise statement of this technical assumption
we direct the reader to Assumption 4.2.1.

The main results we obtain in this general framework are then condensed in the
following.

Theorem 1.2.1 (Theorem 4.3.7 and Proposition 3.2.15). Let E be a homotopy
commutative algebra inM satisfying Assumption 4.2.1 in the special case ofJ D;. Then
for every bounded-below objectX inM there is a canonical equivalenceXE 'X^f1 � � �

^
fr

compatible with the localization map �E .X/ W X ! XE and the formal completion
map �f .X/ W X ! X^

f1
� � �^
fr

.

The proof combines two main steps, where one compares formal completions and
homology localization with some other intermediate object. This involves a sort of
axiomatization of Moore spectra which is performed in Section 3. In the context of
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Theorem 1.2.1, the relevant Moore object is M D C.f1/ ^ � � � ^ C.fr/, where C.fi /
denotes the cofiber of fi . The construction of M is what dictates the rather strong
assumptions we have on �0.E/. With this notation the first main step consists in proving
the well-known statement that XM ' X^f1 � � �

^
fr

for every X 2 M. The second step,
performed in Section 4, consists in showing that when X is bounded below, we have
XM ' XE . This is done with a careful use of Bousfield classes, and uses crucially the
left-completeness of the t -structure.

Section 5 contains a list of relevant examples and applications in the motivic
setting. We mention here that, as an application, we partially recover a conservativity
result for motives of Bachmann (cf. [3]). For this we work with M D SH.K/Œ 1

p
�

where K is a field and p is the exponential characteristic of K. We have thus functors
M W SH.K/Œ 1

p
�! DM.K/Œ 1

p
� and zM W SH.K/Œ 1

p
�! eDM.K/Œ 1

p
� associating with

every spectrum its motive M.X/ and its Chow–Witt motive zM.X/.

Corollary 1.2.2 (Corollary 5.4.1). Let K be a perfect field of exponential char-
acteristic p 6D 2, and let X be a bounded-below spectrum.

(1) Assume that �1 is a sum of squares in K. If M.XŒ1
2
�/ D 0, then XŒ1

2
� D 0.

(2) Assume that K has finite étale 2-cohomological dimension and that X is strongly
dualizable. If M.X/ D 0, then X D 0.

(3) Assume that k is infinite. If zM.X/ D 0, then X D 0.

Actually analogous results hold for categories of motives that arise as categories of
modules over a homotopy commutative algebraE in SH.K/whose �0.E/ is Milnor (or
Milnor–Witt) K-theory. We direct the reader to Remark 5.4.2 for a precise description
of the relation with the work of Bachmann.

Section 6 contains a construction of E-nilpotent completions using an axiomatized
version of the Adams tower, and a construction of the associated spectral sequence.
The Adams tower is an alternative to the tower of partial totalizations mentioned above,
and allows to avoid the assumption that E be a commutative algebra of M.

Section 7 contains the axiomatization of nilpotent resolutions and a general proof
of some of their properties. Using these, we can provide a universal property for the
Adams tower as a pro-object. Comparing the pro-objects associated with the Adams
tower and with the formal completion, we obtain the following result.

Theorem 1.2.3 (Theorems 7.3.5 and 7.3.9). Let E be a homotopy commutative
algebra in M satisfying Assumption 4.2.1 in the special case where either J D ; or
I D ;. Then for every bounded-below object X in M the natural map XE ! X^E is
an equivalence in M.
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This result has already appeared in [16], although in a very special case, and with a
different proof. It was the reading of this specific work that stimulated our interest in
the topic. Our approach to the problem is in fact very different in spirit from that of
[16].

In their recent work [5], Bachmann and Østvær have generalized and streamlined
the arguments of a previous version of our results which appeared in [24]. Although
our results of [24] are phrased for the motivic stable homotopy category hSH.K/ of
a perfect field K, the structure and the arguments of the present paper are essentially
the same as those of [24]. As a consequence the present paper and the second section
of [5] present similar results with similar techniques, although [5] has a more direct
and a simpler approach. The present paper was written, independently of [5], during
the spring of 2020. I am grateful to T. Bachmann and P. A. Østvær for allowing me to
publish the present work despite the overlap with theirs.

2. Preliminaries

We begin this section by introducing the categorical framework that we will be
working with in order to fix some ideas and notation. This will happen in Section 2.1. In
Section 2.2, we review some well-known facts about motivic stable categories, and in
Section 2.3 we review Morel’s homotopy t -structure, which is by far the most important
tool we need. In Section 2.4, we introduce E-homology localizations associated to
an object E, and recall some formal properties of these constructions. We conclude
with a review of the formalism of Bousfield classes in Section 2.5, which turns out to
be very useful for keeping track of the mutual relations between various localization
functors appearing at the same time.

2.1 – Categorical framework

2.1.1. Along this paper we will be working with a presentably symmetric monoidal
stable1-category M. We will denote the monoidal product by � ^ � and by 1 the
unit. We also introduce the symbol Map.�;�/ to denote the mapping space between
two objects. Finally, we denote by hM the homotopy category of M, and by Œ�;�� the
Hom groups of the homotopy category, so that for every non-negative integer k and
every pair of objects M and N in M we have

�kMap.M;N / ' �0�kMap.M;N / ' �0Map.†kM;N/ ' Œ†kM;N �:

We will assume that M is endowed with a t-structure: the objects of M�n will be
referred to as .n� 1/-connected. We will denote by P n.�/ (resp. Pn.�/, resp. P nn .�/)
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the � n (resp. � n, resp. D n) truncation functors. For every n 2 Z we then have a
fiber sequence

Pn.X/
ın
�! X

�n�1
���! P n�1.X/:

The heart
M~ WDM�0 \M�0

is the nerve of an abelian category (see [22, Remark 1.2.1.12]), and for every object
X of M, �k.X/ D †�kP kk .X/ will be referred to as the k-th homotopy object of X .
Most of this paper works under the following list of assumptions on the t-structure
on M:

(1) the t -structure is left-complete, i.e., X ' limn P
n.X/ for all X 2M;

(2) the t -structure is multiplicative, i.e., 1 2M�0 and M�p ^M�q �M�pCq;

Some sections actually work with less assumptions: for this we direct the reader to
the introduction of each section and to the specific statements. The only additional
assumption that appears on the t -structure of M is the following:

(3) the t -structure is compatible with filtered colimits, i.e., the truncation functors P k

commute with filtered colimits.

This last assumption is needed, in our opinion, to ensure that inverting homotopy
elements is a t-exact functor (cf. Corollary 3.4.6). This assumption is used only in
Corollary 4.3.6 when J 6D ;. In any case, this assumption is not needed for the main
theorems of the paper.

Lemma 2.1.2. If the t-structure on M is multiplicative, the monoidal product
�˝~ � induced on M~ is right exact.

Proof. Let
F

f
�! G

g
�! H ! 0

be an exact sequence of objects of M~. LetC WD cofib.f /, so thatH ' P 0.cofib.f //.
Thus given any D 2M~, we have an induced fiber sequence

D ^ F ! D ^G ! D ^ C;

and we only need to check that the natural map

P 0.D ^ C/! P 0.D ^ P 0.C //

is an equivalence. This follows from the fact that D ^ P1.C / 2M�1.
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2.1.3. In this situation, M�0 has a natural structure of presentably symmetric monoidal
1-category induced via restriction along M�0 �M. The inclusion M�0 �M is a
symmetric monoidal functor, while its left adjoint P0 WM!M�0 is lax symmetric
monoidal, and hence preserves algebra and module categories. All the claims follow at
once from [22, Proposition 2.2.1.1].

The category .M�0/�n inherits a symmetric monoidal structure via the inclusion
functor in M�0 which, on its turn, inherits the structure of a lax symmetric monoidal
functor. The left adjoint P n WM�0 ! .M�0/�n of the inclusion inherits the structure
of a symmetric monoidal functor, while the projection maps �n inherit the structure of
monoidal natural transformation. All the claims follow at once from [22, Proposition
2.2.1.8, Proposition 2.2.1.9, Example 2.2.1.10].

In particular, the inclusion
M~ �M�0

induces on the heart of the t -structure the structure of a symmetric monoidal1-category
with monoidal product

�˝
~
� ' �0.� ^ �/

and monoidal unit
1~ ' P 0.1/ ' �0.1/:

2.1.4. We will also use the notion of homotopy commutative algebra in M. With this
expression we mean an objectE ofM together with maps e W 1!E and� WE ^E!E

and suitable homotopies, making .E; e; �/ a commutative monoid in the homotopy
category hM. We will similarly use the notion of homotopy E-module, defined in an
analogous way.

2.1.5. If E is a homotopy commutative algebra in M and X is a homotopy E-module,
then �0.E/ has the structure of a commutative monoid in M~ and each object �k.X/
inherits the structure of a �0.E/-module.

2.2 – Motivic stable categories

2.2.1. A base scheme is a Noetherian scheme of finite Krull dimension. Given a base
scheme S , we denote by SH.S/ the Morel–Voevodsky P1-stable1-category. We
recall that SH.S/ is a presentably symmetric monoidal stable1-category; its monoidal
product is denoted by ^ and the unit, the motivic sphere spectrum, is denoted by S. We
redirect the reader to Appendix A.2 for a reference to the previous claim and a quick
review of the higher categorical terminology.

The1-category SH.S/ is actually compactly generated by the set®
†pCq˛†1XC W X 2 SmS ; p; q 2 Z

¯
;
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where †pCq˛ is defined as †p
S1
†
q
Gm

. Here SmS denotes the category of smooth
schemes of finite type over S with S -morphisms as arrows.

2.2.2. To any commutative algebra A of SH.S/ (cf. Definition A.2.7) we associate a
category ModA.S/ whose objects are called A-module spectra, or simply A-modules.
ModA.S/ inherits from SH.S/ the property of being a presentably symmetric monoidal
stable1-category. Once again references and definitions are postponed to Section A.2.8.
The monoidal product is denoted by � ^A �, or simply by � ^ � when no confusion
arises; the monoidal unit is denoted by 1A. Similarly MapA.�;�/ will denote the
mapping space of the1-category ModA.S/.

In addition, we have a free-forget adjunction

FA W SH.S/ � ModA.S/ W UA:

The forgetful functor UA is right adjoint of FA: it commutes with all small limits and
colimits, and it is conservative. The functor FA is symmetric monoidal and commutes
with all small colimits. Since UA is conservative and commutes with colimits, the
category ModA.S/ is compactly generated by the set®

FA.†
pCq˛†1XC/ W X 2 SmS ; p; q 2 Z

¯
:

We conclude by observing that the composition UA ı FA ' A ^ �, and thus the
monoidal unit 1A 2ModA.S/ is mapped to A in SH.S/. We will abuse the language
and confuse 1A and A. We give a reference for all these facts in Section A.2.8.

2.3 – Homotopy t-structure

2.3.1. We define ModA.S/�n as the smallest full sub-1-category of ModA.S/ closed
under small colimits and extensions that contains the collection®

FA.†
pCq˛†1XC/ W X 2 SmS ; p � n; q 2 Z

¯
:

Furthermore, we denote by ModA.S/�n the full sub-1-category spanned by those
A-modules Z such that MapA.X;Z/ ' � for every X 2ModA.S/�nC1.

By [22, Proposition 1.4.4.11], the pair of subcategories

.ModA.S/�0;ModA.S/��1/

defines an accessible t-structure on ModA.S/ (cf. [22, Definition 1.4.4.12]), called
homotopy t-structure. It follows that for every n 2 Z we have a cofiber sequence in
ModA.S/,

(2.1) Pn.X/
ın
�! X

�n�1
���! P n�1.X/;
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which is functorial in the A-module X , with Pn.X/ 2ModA.S/�n and P n�1.X/ 2
ModA.S/�n�1. It is clear from the choice of the generators that the homotopy t -structure
on ModA.S/ is multiplicative.

Theorem 2.3.2. Let S be a Noetherian scheme of finite Krull dimension and A
be a commutative algebra in SH.S/�0. The homotopy t-structure on ModA.S/ is
left-complete, right-complete and compatible with filtered colimits.

Proof. For the left-completeness we need to show that limn Pn.X/ ' 0, and for
the right-completeness that colimn P

n.X/ ' 0. The forgetful functor UA commutes
with small limits and colimits (cf. Appendix A.2.9). Moreover, since A 2 SH.S/�0,
it is easy to see that an A-module Y is in ModA.S/�0 (resp. ModA.S/�0) if and
only if UA.Y / is in SH.S/�0 (resp. SH.S/�0). As a consequence UA commutes with
the Postnikov truncations of ModA.S/ and of SH.S/. We are thus reduced to the
case of A ' S. Left-completeness then follows from [35, Corollary 3.8], while right
completeness follows from [35, Remark 1.29]. The subcategories ModA.S/�n are
closed under filtered colimits, since the generators of ModA.S/�nC1 are compact. In
particular, the truncation functors P n commute with filtered colimits.

Corollary 2.3.3. LetS be a Noetherian scheme of finite Krull dimension, andA be
a commutative algebra in SH.S/�0. Then the1-category ModA.S/ is a presentably
symmetric monoidal stable1-category and it is compactly generated. The homotopy
t -structure is accessible, left-complete, right-complete, multiplicative and compatible
with filtered colimits.

2.3.4. When K is a perfect field of characteristic not 2, Morel [25, Section 6.1] con-
structs a map

� W KMW
� .K/! ŒS;G^�m �S

by defining it on the generators and checking that it passes to the quotient through the
defining relations of KMW

� .K/ (cf. [26, p. 49, Definition 3.1] for precise formulas).
In [25, Theorem 6.2.1], Morel shows that � is actually an isomorphism, and in

[25, Corollary 6.4.1] he shows that � extends uniquely to an isomorphism of homotopy
modules � WKMW

�

'
�! �0S.

2.4 – Homology localizations

Definition 2.4.1. Let M be a presentably symmetric monoidal stable1-category
and let E be an object of M. We say that an arrow f W X ! Y in M is an E-homology
equivalence (or, shortly, anE-equivalence) if the induced mapf ^ id WX ^E! Y ^E
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is an equivalence inM. We say that an objectC isE-acyclic ifE ^C ' 0 inM. Finally,
we say that an object Z 2M is E-local if for every E-homology equivalence X ! Y ,
the induced map on mapping spaces Map.Y;Z/! Map.X;Z/ is an equivalence of
spaces.

Remark 2.4.2. One sees immediately that the full sub-1-category Ac.E/ spanned
by E-acyclic objects is closed under arbitrary (small) colimits and retracts, and that
E-acyclic objects have the 2-out-of-3 property in fiber sequences in M. More precisely
if K is any simplicial set and p W K ! Ac.E/ is a diagram whose composition with
the inclusion Ac.E/ �M extends to a colimit diagram Np W KF!M, then there exists
a unique lift Np W KF ! Ac.E/ and such lift is again a colimit diagram. Furthermore,
since the inclusion functor Ac.E/ �M has a right adjoint (cf. Proposition 2.4.5), then
whenever Np W KF ! Ac.E/ is a colimit diagram, its composition KF !M is again
a colimit diagram; the converse to this statement is instead implied by the previous
observation. Note that Ac.E/ is also closed under smashing with an arbitrary object.

Remark 2.4.3. Similarly, it is immediate to see that the full sub-1-category
Loc.E/ spanned byE-local objects is closed under arbitrary (small) limits and retracts,
and thatE-local objects have the 2-out-of-3 property in fiber sequences. More precisely
if K is any simplicial set and p W K ! Loc.E/ is a diagram whose composition with
the inclusion Loc.E/ �M extends to a limit diagram Np W KG !M, then there exists
a unique lift of Np W KG ! Loc.E/ and such lift is again a limit diagram. We finally
note that an object Z is E-local if and only if for every E-acyclic object C the space
Map.C;Z/ is contractible, and this happens if and only if for everyE-acyclic object C ,
the group ŒC;Z� is zero.

Remark 2.4.4. Note that we could define, a priori, a more general notion of
equivalence: we call a mapM ! N anE-local equivalence if for everyE-local object
X the natural map Map.N;X/! Map.M;X/ is an equivalence of spaces. Clearly all
E-equivalences are E-local equivalences. The reverse holds if and only if the class
Ac.E/ of E-acyclic objects coincides with its double orthogonal

?.Ac.E/?/ WD
®
X 2M W 8C 2 Loc.E/;Map.X; C / ' �

¯
:

This follows immediately from the existence of a left adjoint to the inclusion Loc.E/ �
M.

Proposition 2.4.5. LetM be a presentably symmetric monoidal stable1-category
and let E be an object of M. Then:

(`1) The inclusion iLoc W Loc.E/ �M has a left adjoint LE WM! Loc.E/.

(`2) For every X in M there is an E-equivalence X ! X 0 with target X 0 2 Loc.E/.
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(`3) The1-category Loc.E/ is presentable.

(`4) A map f WX ! Y inM is anE-equivalence if and only ifLE .f / is an equivalence.

Moreover:

(a1) The inclusion iAc W Ac.E/ �M has a right adjoint AE WM! Ac.E/.

(a2) For everyX inM there is a co-local equivalenceX 00!X with sourceX 00 2Ac.E/.

(a3) The1-category Ac.E/ is presentable.

Proof. Let us concentrate on E-local objects first. The class of E-equivalences
in M is a strongly saturated class of morphisms according to [21, Definition 5.5.4.5].
Moreover, the collection of E-equivalences is a strongly saturated class of small
generation: this can be seen combining [21, Proposition 5.5.4.16 and Remark 5.5.4.6],
given that the functor � ^E is presentable. Properties (`1)–(`4) follow immediately
from [21, Proposition 5.5.4.15].

Let us now turn toE-acyclic objects. Applying [21, Proposition 5.2.7.8] to Mop, we
get that (a2) is equivalent to (a1). In order to prove (a1), we take for every X 2M an
E-equivalence to an E-local object � W X ! X 0 and define X 00 ! X as the fiber
of �. Then clearly X 00 is E-acyclic and for every E-acyclic object C composing
with � induces an equivalence Map.C;X 00/! Map.C;X/, given that Map.C;X 0/ is
contractible by assumption. In order to prove (a3), we use [22, Proposition 1.4.4.13].

Definition 2.4.6. A choice of composition .�/E WD LE ı iLoc is called E-local-
ization functor, while a unit transformation �E W id! .�/E is called E-localization
map. Similarly, a choice of composition E .�/ W iAc ı AE is called E-acyclicization
functor and a co-unit transformation E .�/! id is called E-acyclicization map.

Proposition 2.4.7 (cf. [22, Proposition 2.2.1.9]). The functor LE is symmetric
monoidal and the natural transformation id! �E ı LE is monoidal.

2.5 – Bousfield classes

2.5.1. Let M be a presentably symmetric monoidal stable1-category. We introduce
an equivalence relation on the class of equivalence classes of objects ofM following [7].
We setE �B F if, for everyX 2M, we have thatE ^X D 0 if and only if F ^X D 0.
By Proposition 2.4.5, localization functors at E and F exist and they are equivalent
exactly when E �B F . We denote by A.M/ the class of Bousfield classes in M and
by hEi the element in A.M/ represented by an object E. On A.M/ we introduce a
partial ordering by setting hEi � hF i if every F -acyclic object is E-acyclic.
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2.5.2. Given a possibly infinite collection of Bousfield classes hEi ii2I we have a join
operation which is defined as

L
i2I hEi i WD h

L
i2I Ei i. We note that the join is always

the minimal upper bound of its summands.
Similarly, given a finite collection of Bousfield classes hEi ii2I we have a meet

operation which is defined as ^i2I hEi i WD h^i2IEi i. We note that the meet operation
is a lower bound for its factors, but in general does not need to be the maximal lower
bound.

2.5.3. Following [7], we denote by DL.M/ the subclass of A.M/ of those Bousfield
classes hEi such that hEi ^ hEi D hEi. The operations of meet and join restrict to
DL.M/ and it is elementary to check that DL.M/ satisfies the axioms of a distributive
lattice. The partial ordering � on A.M/ restricts to a partial ordering on DL.M/. We
wish to observe that for given hEi; hF i 2DL.M/ their meet hE ^ F i is actually their
maximal lower bound. Most of the objects we will consider later actually belong to
this subclass: for instance, every homotopy algebra E belongs to DL.M/, since E is
a retract of E ^E.

2.5.4. We say that a Bousfield class hEi 2 A.M/ has a complement if there is another
Bousfield class hF i such that hEi ^ hF i D h0i and hEi ˚ hF i D h1i. If hEi has a
complement, then such complement is unique, and we denote it by hEic . Moreover,
when hEi has a complement, hEi 2DL.M/. We denote by BA.M/ the sub-lattice of
DL.M/ of those Bousfield classes admitting a complement. Lemma 2.7 of [7] shows
that the inclusion BA.M/ � DL.M/ is in general strict. Assume that both hEi; hF i
have complements, then the following equalities are satisfied:

(2.2)

8̂<̂
:

hEicc D hEi;

hE ˚ F ic D hEic ^ hF ic ;

hE ^ F ic D hEic ˚ hF ic :

3. Moore objects

In the topological stable category SH, one can associate to every abelian group A a
Moore spectrum SA. Up to equivalence SA is characterized by the following properties:
SA 2 SH�0, �0.SA/ ' A, and HZ ^ SA ' HA. Moore spectra are fundamental in
the study of Bousfield classes for two reasons. One is that hSAi depends only on torsion
and divisibility properties of A (cf. [8, Proposition 2.3]). The other reason is that for a
spectrumX 2 SH�k , and a homotopy commutative ring spectrumE 2 SH�0 we have
XE ' XS�0E . Given a set J , a finite set I , and collections of maps ¹fi W Li ! 1ºi2I ,
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J WD ¹gj W Lj ! 1ºj2J , we introduce a weak version of Moore object

C.f1/ ^ � � � ^ C.fr/ ^ 1ŒJ�1�;

that in general depends on the choice of the fi and gj . We start the section with
reviewing some technical tools for dealing with towers in Section 3.1. We then treat
the fi and gj separately in Sections 3.2 and 3.4; in Section 3.3 we make an example
on �-completions in SH.S/.

In this section, M is a presentably symmetric monoidal stable1-category, endowed
with a left-complete multiplicative t -structure.

3.1 – Towers

Let Kn be the sub-simplicial set

�¹0;1º
a
�0

�¹1;2º � � ��¹n�2;n�1º
a
�0

�¹n�1;nº � �n;

where the pushouts are taken with respect to the maps

�¹k�1;kº
k
 � �0

k
�! �¹k;kC1º:

In other words, Kn is the sub-simplicial set of �n generated by its non-degenerate
1-simplices. We also define K D

S
nK

n. A diagram in M indexed by Knop (resp.
Kop) is thus a collection of n composable arrows of M:

Xn ! Xn�1 ! � � � ! X0

(resp. a countable collection of composable arrows � � � ! Xn ! Xn�1 ! � � � ! X0).
A composition of n composable arrows p W Knop

!M is an extension of p to �nop,
and is essentially unique in the following sense.

Lemma 3.1.1. (1) The inclusion in W Kn � �n is an inner anodyne map.

(2) If C is an1-category, the natural restriction map

i�n W Fun.�nop
;C/! Fun.Knop

;C/

is a trivial Kan fibration between1-categories, and in particular a categorical
equivalence.

Proof. For (1) observe that whennD 0;1, there is nothing to do, while fornD 2we
have just rewritten [21, Corollary 2.3.2.2]. Assume now that the inclusion in WKn ��n
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is inner anodyne. The inclusion inC1 is the composition

KnC1 D Kn
a
�¹nº

�¹n;nC1º � �n
a
�¹nº

�¹n;nC1º � �nC1;

and we claim that both of the above inclusions are inner anodyne. Indeed, the central
inclusion is in

`
�¹nº �

¹n;nC1º, and this is inner anodyne because the collection of
inner anodyne maps is closed under push-outs (being a weakly saturated collection of
maps). The rightmost inclusion is identified with the natural inclusion

�n�1 ��0
a
;��0

; ��1 � �n�1 ��1;

which is inner anodyne after [21, Lemma 2.1.2.3].
For (2) one combines [21, Propositions 2.3.2.1 and 1.2.7.3] with (1) and with the

fact that a map is inner anodyne if and only if the opposite is.

Lemma 3.1.2. Let N be the poset of natural numbers. Then the natural inclusion

i D
[
n

in W K D
[
n

Kn
in
,!

[
n

�n D N.N/

is inner anodyne. In particular, for every1-category C we have a trivial Kan fibration
of1-categories

Map.N.N/op;C/
i�

�! Map.Kop;C/:

Proof. The map i can be realized as well as the transfinite composition of the
natural inclusions

jn W �
n
a
Kn

K � �nC1
a
KnC1

K;

which on their turn are push-outs along KnC1 � K of the inclusions

�n
a
�¹nº

�¹n;nC1º ' �n
a
Kn

KnC1 � �nC1

appearing in the proof of Lemma 3.1.1. Each jn is thus inner anodyne, and so is their
transfinite composition. The last part of the statement follows directly by [21, Proposition
2.3.2.5].

3.1.3. As a consequence, if we have a countable family of composable arrowsfn WXn!
Xn�1, we can essentially uniquely extend this collection to a diagramX� WN.Nop/!M.
If cX0 is the constant diagram onX0, we can thus upgrade the datum of the fn to a map
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of towers f � W X�! cX0 which is a 1-simplex of Fun.N.Nop/;M/. Finally, taking the
cofiber of f � yields a commutative ladder of fiber sequences:

Xn
f n

//

fn
��

X0 // C.f n/

pn
��

Xn�1
f n�1

// X0 // C.f n�1/;

where f n denotes a composition of the fi for i � n.

3.2 – Quotients

Definition 3.2.1. Let r � 1 be an integer and for i 2 ¹1; : : : ; rº let fi W Li ! 1
be a map in M. We denote by C.fi / the cofiber of fi and byM.f / the iterated cofiber
C.f1/ ^ � � � ^ C.fr/. We call M.f / the Moore object associated with the collection
f1; : : : ; fr .

Remark 3.2.2. If M D SH, r D 1, and n W S! S represents the multiplication
by n 2 Z, then C.n/ is the usual modulo nMoore spectrum. Note that when r � 2, the
spectrumM.n1; n2/D C.n1/˝C.n2/ is not always a Moore spectrum in the classical
sense: take n1 D n2 D 2 for instance. However, for every pair of integers n1; n2,

hM.n1; n2/i D hC.g:c:d:.n1; n2//i;

which follows from [7, Proposition 2.13]. This observation points out that our definition
of Moore object M really depends on choices, and not only on its �0.M/.

3.2.3. We introduce some further notation. If f W L! 1 is a map in M, we will denote
by lf .X/ the left multiplication by f on X 2M, i.e., the composition

L ^X
f ^X
���! 1 ^X '

�! X:

Similarly, rf .X/ will denote the right multiplication by f , given by the composition

X ^ L
X^f
���! X ^ 1 '�! X:

Note that left multiplication commutes with any map in � W X ! Y in M, in the sense
that the square

L ^X
lf .X/

//

L^�
��

X

�
��

L ^ Y
lf .Y /

// Y

commutes; right multiplication behaves similarly.
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Definition 3.2.4. An object L of M is called flat if the functor L ^ � respects
M�0 and M�0. L is called sdf (resp. tif ) if it is strongly dualizable (resp. ^-invertible)
and flat.

3.2.5. In the motivic setting, the main example of a tif object in SH.S/ is of course
†�rk.V /Th.V / 2 SH.S/ where V is a virtual vector bundle on the base scheme S , and
where rk.V / is interpreted as a locally constant function on S . For instance Gm is a tif
object in SH.S/.

Remark 3.2.6. Let f W L! 1 be a morphism of M with tensor-invertible source.
The map f ^3 W L^3 ! 1 gives an object of M=1 and the cyclic permutation � of
the factors of L^3 gives a loop in the space MapM.L^3; 1/ based at the point f ^3.
As noted in [10], this loop is trivial. Indeed the permutation action of the factors of
L^3 induces a map B†3 ! MapM.L^3; 1/ sending the base point of B†3 to f ^3.
The induced map on �1 has thus � in its image, but at the same time factors through
the abelianization of †3, since M is stable. As a consequence the object f 2M=1 is
3-symmetric in the sense of the discussion carried over in [14, Section 3].

Lemma 3.2.7. Let f W L! 1 be a map with flat source and let X be any object
of M. A canonical zig-zag of natural maps induces an equivalence �n.L ^ X/ '
L ^ �n.X/. Under this equivalence the maps �n.lf .X// W �n.L ^ X/! �n.X/ and
lf .�n.X// W L ^ �n.X/! �n.X/ are naturally identified. Similar statements fold for
right multiplication.

Proof. The lemma follows from an easy diagram chase using the fiber sequences

Pn.�/! .�/! P n�1.�/ and PnC1.�/! Pn.�/! †n�n.�/

for X and L ^X .

Lemma 3.2.8. For every i 2 ¹1; : : : ; rº let fi W Li ! 1 be a map in M, where Li
is a flat object, and let .f1; : : : ; fr/ be the sub-�0.1/-module of �0.1/ obtained as the
image of the map

†i lfi .�0.1// W
M
i

Li ^ �0.1/! �0.1/

in M~. Then M.f / 2M�0,

�0M.f / ' ˝
~

i �0.C.fi // ' �0.1/=.f1; : : : ; fr/;

and the canonical map 1!M.f / induces on �0 the quotient map

�0.1/! �0.1/=.f1; : : : ; fr/:
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Proof. An easy diagram chase allows to reduce to the following claim: If A is an
abelian category,M;N;P are objects of A, and we have a diagramf WN !M  P W g,
then .M=N/=Im.g/ ' M=Im.f C g/, where f C g W N ˚ P ! M is the natural
map induced by f and g. On its turn this claim is easily proved using that colimits
commute with each other.

3.2.9. Let f W L! 1 be a map in M and consider the collection of composable maps
rf .L

^n�1/ W L^n ! L^n�1. By applying the argument of Section 3.1.3, we obtain a
commutative ladder of fiber sequences

(3.1) L^n
f n�

//

rf .L
^.n�1//

��

1 // C.f n/

pn

��

L^.n�1/
f n�1�

// 1 // C.f n�1/:

Note that we have equivalences

fib
�
C.f n/

pn
�! C.f n�1/

�
' cofib

�
L^n

rf .L
^.n�1//

��������! L^.n�1/
�

' L^.n�1/ ^ C.f /

yielding a fiber sequence

(3.2) L^.n�1/ ^ C.f /! C.f n/
pn
�! C.f n�1/:

Definition 3.2.10. Let f W L! 1 be a map in M. In view of Section 3.2.9, we
define the f -adic completion of X 2M as the object

X^f WD lim
N.Nop/

.X ^ C.f
�
//:

The (essentially unique) map �f .X/ W X ! X^
f

induced by X ' lim.X ^ 1/ !
lim.X ^ C.f �// is called f -adic completion map. An object X is f -complete if
�f .X/ is an equivalence.

Remark 3.2.11. Since the operations of taking inverse limits and of smashing with
an object X commute with finite limits, the fiber sequences of towers introduced in
Section 3.2.9 yields the fiber sequence

lim.X ^ L^�/! X
�f .X/
����! X^f :

In particular, when X is k-connected and L 2MA.S/�1, X is f -complete.
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Definition 3.2.12. If r � 1, then for every X 2M the object

X^f WD X
^
f1

^
f2
� � �
^
fr
2M

is called f -adic completion of X . The f -adic completion map �f .X/ is defined as a
composition of the natural maps

�fr .X
^
f1;:::;fr�1

/ ı � � � ı �f2.X
^
f1
/ ı �f1.X/:

Lemma 3.2.13. LetL be a ^-invertible object of M and f W L! 1 be a map in M.
Then the cofiber C.f / is strongly dualizable in M and

D.C.f // ' fib.D.f // ' †�1D.L/ ^ C.f /;

where D.�/ D Hom.�; 1/ and Hom.�;�/ denotes the right adjoint of � ^ �.

Proof. We have that

D.C.f // ' fib.D.f // ' fib.D.L/ ^ f / ' D.L/ ^ fib.f / ' D.L/ ^†�1C.f /:

The fact that fib.D.f // ' fib.D.L/ ^ f / follows directly from the definition of dual
map via the duality adjunction.

Proposition 3.2.14. Let L be a ^-invertible object of M and f W L! 1 be a map
inM. Then for every objectX the natural map�f .X/ WX!X^

f
is aC.f /-localization

of X in M.

Proof. We need to check that �f .X/ is a C.f /-equivalence and that X^
f

is C.f /-
local. Let � WM ! N be a map in M. For every F 2M we get an induced map

Map
�
C.f / ^N;F

�
! Map

�
C.f / ^M;F

�
;

and since C.f / has a strong dual D.C.f //, we get a natural map

(3.3) Map
�
N;D.C.f // ^ F

�
! Map

�
M;D.C.f // ^ F

�
:

� is a C.f /-equivalence if and only if the map (3.3) is an equivalence for every F . In
particular, for everyF inM,D.C.f //^F isC.f /-local. Furthermore, Lemma 3.2.13
implies that D.C.f // ' †�1D.L/ ^ C.f /. Since local objects are stable under
smashing with invertible objects, we conclude that for everyF 2M the objectC.f /^F
is C.f /-local.

Now we show that X^
f

is C.f /-local: since local objects are closed under inverse
limits, we reduce to showing that X ^ C.f n/ is C.f /-local. This easily follows by
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induction. The base case is that X ^ C.f / is C.f /-local, which was observed above.
Assume we know that X ^ C.f n�1/ is C.f /-local. We conclude using the fiber
sequence

(3.4) L^n�1 ^ C.f / ^X ! C.f n/ ^X ! C.f n�1/ ^X

deduced from (3.2) and the 2-out-of-3 property ofC.f /-local objects in fiber sequences.
In order to show that the canonical map X ! X^

f
is a C.f /-local equivalence, it

suffices to show that C.f / ^ Y ' 0 in M, where Y WD fib.X ! X^
f
/. For this note

that

Y ' lim.X ^ L^�/ D lim
�
� � � ! X ^ L^n

rf .L
^n�1/

�������! X ^ L^.n�1/ ! � � �
�

and that C.f / ^ Y ' cofib.rf .Y / W Y ^ L! Y /. However it is easily checked that
the multiplication by f on Y is induced by the multiplication by f on each component
of the tower X ^ L^�. The inverse limit of this tower only depends on its associated
pro-object (see Appendix A.1), so we only need to show that the multiplication by
f induces an equivalence of the pro-object associated to X ^ L^�. On its turn this
follows easily from [17, Lemma 3.6].

Proposition 3.2.15. Let r � 2 be an integer, for every i D 1; : : : ; r let fi W Li ! 1
be a map in M, and assume that for all i , Li is ^-invertible. Then for every X 2M

the natural map �f .X/ W X ! X^
f1
� � �^
fr

is an M.f /-localization of X in M.

Proof. By Lemma 3.2.13, M.f / D C.f1/ ^ � � � ^ C.fr/ has a strong dual

D.M.f // ' †�r
�
^
r
iD1D.Li /

�
^M.f /:

Hence by running the same argument as in the proof of Proposition 3.2.14, we deduce
that F ^M.f / is M.f /-local for every F 2 M. In order to show that X^

f1
� � �^
fn

is
M.f /-local, thanks to the identification

X^f1 � � �
^
fr
' lim

N.Nop/
.X ^ C.f

�

1 / ^ � � � ^ C.f
�

r //;

we only need to prove that each of the objects X ^ C.f n1 / ^ � � � ^ C.f
n
r / is M.f /-

local. This can be done by induction using iteratively the fiber sequence (3.4) and the
fact that M.f /-local objects satisfy the 2-out-of-3 property in fiber sequences.

The natural map

X
�f1
��! X^f1

�f2
��! X^f1

^
f2

�f3
��! � � �

�fr
��! X^f1 � � �

^
fr

is a composition of M.f /-equivalences since hM.f /i � hC.fi /i and since �fi is a
C.fi /-equivalence for every i D 1; : : : ; r by Proposition 3.2.14.
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3.3 – A remark on �-completions

Let K be a perfect field of characteristic 6D 2, and consider the case where M D

SH.K/. In this setting, let � 2 �0.S/�1.K/ be the algebraic Hopf map. We have
proved above in Proposition 3.2.14 that for every spectrum X the �-completion map
��.X/ W X ! X^� is the M.�/-localization map in SH.K/. We want to bring the
discussion on �-completions a bit further.

Lemma 3.3.1. Assume that the base field K is not formally real. Then for every
spectrum X 2 SH.K/ the spectrum XŒ1

2
� is �-complete.

Proof. It follows from [34, Chapter 2, Theorem 7.9] that there exists an integer
n such that 2n acts as 0 on the Witt ring of K. In particular, we deduce that in the
Grothendieck–Witt ring GW.K/ the relation 2n D h! holds, where h is the rank 2
hyperbolic space and ! is some element of GW.K/. It follows that 2n� D h!� D 0 in
KMW
� .K/. It follows that on XŒ1

2
� the multiplication by � is the zero map, which in

view of Section 3.2.9 is enough to conclude.

Lemma 3.3.2. Assume that the base field has finite étale 2-cohomological dimension.
Then every strongly dualizable object of SH.K/ is �-complete.

Proof. If C is a dualizable object of SH.K/, then the operation of smashing with
C commutes with inverse limits. In particular, C^� ' C ^ S^� and thus we reduce
to showing that S is �-complete. In view of Proposition 4.1.1, we just need to show
that the spectra SŒ1

2
�, .S^2 /Œ

1
2
� and S^2 are �-complete. For the two former spectra the

previous claim follows from Lemma 3.3.1, while for S^2 the claim follows from the
combination of [16, Lemma 21] and [13, Lemma A.7].

3.4 – Inversions

3.4.1. Let J be a set and B D ¹Bj ºj2J be a collection of objects of M. Since M

is presentable, we can choose a set G of �-compact objects that generate M under
�-filtered colimits. Note that we can assume that � has been chosen so that 1 is a
�-compact object of M. Without loss of generality we can and will assume that the set
G is stable under desuspension and that 1 2 G. We define now B as the smallest full
sub-1-category of M which contains the objects of the form

V1 ^ � � � ^ Vk ^ Bj where k 2 N; V1; : : : ; Vk 2 G; j 2 J;

and which is closed under small colimits and extensions. Using [22, Proposition
1.4.1.11], we deduce that B is a stable presentable1-category. We set B0 to be the
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full sub-1-category of M spanned by those objects X such that Map.C; X/ ' �
for every C 2 B. The pair ¹B;B0º forms then an accessible t-structure on M (see
[22, Proposition 1.4.4.11]). We denote by �B WB.�/! id the associated co-localization
map and by �B W id! .�/B the associated localization map. The notation we use here
is inspired by [7]. In particular, we have a natural fiber sequence of functors

B.�/
�B

��! id
�B

��! .�/B :

Lemma 3.4.2. The1-category B0 is stable and presentably symmetric monoidal.
The functor .�/B is exact and symmetric monoidal, and the natural transformation
�B is monoidal; finally the functor B.�/ is exact.

Proof. The part of the statement about multiplicative structures follows essentially
from [22, Proposition 2.2.1.9]. Indeed, according to [22, Example 2.2.1.7] we only
need to check that B is closed under smashing with arbitrary objects. This follows
immediately from the fact that � ^ � commutes with colimits in both variables (since
M is presentably symmetric monoidal) and the definition of B. The 1-categories
B and B0 are stable by [22, Corollary 1.4.2.27], so the functors B.�/ and .�/B are
exact.

Proposition 3.4.3. Let B WD ¹Bj ºj2J be a set of strongly dualizable objects of M.
Then:

(t1) For every pair of objects X and Y of M we have BX ^ Y B ' 0.

(t2) For every X 2M we have XB ' 1B ^X and BX ' B1 ^X .

(t3) The following are equivalent for X 2M:

(a) X is B-local;

(b) X ' 1B ^X ;

(c) B1 ^X ' 0;
(d) Bj ^ V ^X ' 0 for all j 2 J and all V 2 G.

(t4) h
L
j2J Bj i D h

L
V 2G;j2J V ^ Bj i D h

B1i.
(t5) h

L
j2J Bj i

c D h
L
V 2G;j2J V ^ Bj i

c D h1Bi.

(t6) The multiplication map 1B ^ 1B ! 1B is an equivalence.

(t7) An object X is
L
j2J Bj -acyclic if and only if X is a 1B-module if and only if X

is 1B-local.

Proof. We start with (t1). Note that if X is in B0, so is X ^ Y for every Y 2M.
Indeed, an object Z is in B0 if and only if Map.V1 ^ � � � ^ Vk ^ Bj ; Z/ ' � for every
j 2 J , every k 2 N and every choice of V1; : : : ; Vk 2 G. On its turn this is equivalent
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to the condition that D.Bj / ^Z ' 0 for every j 2 J . The latter condition is clearly
stable under smashing over with an arbitrary object of M. As a consequence BX ^ Y B

is both local and co-local (for every X; Y 2M), and thus equivalent to 0.
Now the rest easily follows. Property (t6) follows from (t1) and the fact that �B W

1! 1B is a unit for the algebra 1B . Property (t2) follows from the facts that by design
the localization and co-localization functors are exact, and the fact that both B and B0

are tensor-ideals. Property (t3) is a direct consequence of (t1), (t2) and the fact that
� ^ � commutes with colimits. Property (t4) follows from (t3). Property (t5) follows
from (t1) and (t4).

The first implication of (t7) follows from (t3) and (t4). For the second implication
note that 1B-modules are obviously 1B-local; on the other hand, 1B ^ X is a 1B-
localization, since the multiplication map of 1B is an equivalence.

Definition 3.4.4. Let J D ¹gj ºj2J be a collection of maps in M of the form
gj W Lj ! 1. Let Bj WD C.gj / and consider the set of objects B D ¹Bj ºj2J . In this
case, the functor .�/B (resp. the map �B) is called J-inversion functor (resp. map). In
this special case, we use the following notational convention: .�/B D .�/ŒJ�1� and
�B D �J . The object 1ŒJ�1� is called J-inverted Moore object.

3.4.5. The topic of inverting homotopy elements has been treated already in the
language of1-categories, for instance in [14] and [10, Appendix C]. In [14], Hoyois
carries over a precise discussion about the possibility of describing XŒJ�1� in terms of
a telescope construction. This is relevant to our discussion, since his discussion directly
implies the following.

Corollary 3.4.6. Assume that M is a presentably symmetric monoidal stable1-
category equipped with a multiplicative t -structure. Let J be a set and let J D ¹gj ºj2J

be a collection of maps in M of the form gj W Lj ! 1, where for every j 2 J , Lj is a
tif object of M. The functor .�/ŒJ�1� is right t -exact. If, in addition, the t -structure on
M is compatible with filtered colimits, then .�/ŒJ�1� is t -exact.

Proof. The objects Li are ^-invertible, and by Remark 3.2.6 also 3-symmetric.
We can thus combine [14, Theorem 3.8] and the discussion therein before Lemma 3.3
to ensure that XŒJ�1� can be expressed via a filtered colimit, whose terms are of the
form �

ĵ2HD.Lj /
^aj

�
^X;

where H varies among the collection of finite subsets of J . In addition, the flatness of
the objects Lj , and thus of D.Lj /, implies that each term of the diagram is at least
as connected as X ; in particular .�/ŒJ�1� respects M�0. On the other hand .�/ŒJ�1�
respects M�0 when the t -structure is compatible with filtered colimits.
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Corollary 3.4.7. Let I be a finite set and J be any set. Assume that we have a
pair of collections

¹Liºi2I and ¹Lj ºj2J

of strongly dualizable objects of M and a pair of collections of maps

¹fi W Li ! 1ºi2I and J D ¹gj W Lj ! 1ºj2J :

Denote byM the objectM.f /^ 1ŒJ�1�. Then hM i has a complement, given explicitly
by

hM ic D
DM
i2I

1Œf �1i �
E
˚

DM
j2J

C.gj /
E
:

Proof. It is an immediate consequence of equalities (2.2) together with Proposi-
tion 3.4.3 (t5).

Remark 3.4.8. In the discussion carried out around [7, Proposition 2.13], Bousfield
observes that Moore spectra span a subset of BA.SH/ isomorphic to the power set of
Spec.Z/. We believe it would be interesting to investigate a better (than our ad hoc)
notion of Moore objects in the motivic category SH.K/ which involved Thornton’s
computation of the homogeneous spectrum of KMW

� .K/ (see [37]).

4. Localization at some homotopy commutative algebras

In this section, we prove our main results about homology localizations. We dedicate
Section 4.1 to some preliminary results and Section 4.2 to the statement of our main
technical assumption. These are later used along Section 4.3 and in the proof of
Theorem 4.3.7, which is the main result of this section. Throughout this section M is
a presentably symmetric monoidal stable1-category, endowed with a left-complete
multiplicative t -structure.

4.1 – Fracture squares

Proposition 4.1.1. Let E;F;G be objects of M such that hEi D hF i ˚ hGi and
such that every G-local object is F -acyclic. Consider the square

XE
�E
F //

�E
G

��

XF

i

��

XG
c // .XF /G
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where the maps �EF and �EG are induced by hF i � hEi � hGi, c D �G.�F .X// is
the G-localization of the map �F .X/ W X ! XF , and finally i D �G.XF /. In this
situation, the above square is cartesian.

In particular, let E 2M and f W L! 1 be a map in M with strongly dualizable
source L. Set E=f WD E ^ C.f /. Then for every object X 2M the square

(4.1) XE
�E
E=f

//

�E
EŒf�1�

��

XE=f

i

��

XEŒf �1�
c // .XE=f /EŒf �1�

is cartesian.

Proof. Let us denote by P.X/ the pull-back of the diagram

(4.2) XF

i

��

XG
c // .XF /G :

Since hF i � hEi � hGi all the objects appearing in diagram (4.2) areE-local, and thus
P.X/ is E-local as well. We are thus left to prove that the natural map u W X ! P.X/,
which is induced by the localization maps �F .X/ W X ! XF and �G.X/ W X ! XG ,
is an E-equivalence. Since hEi D hF i ˚ hGi, it suffices to show that u is both an
F -equivalence and a G-equivalence. In particular, by the 2-out-of-3 property of local
equivalences, we reduce to showing that

• the natural map P.X/
˛
�! XG is a G-equivalence, which is obvious;

• the natural map P.X/
ˇ
�! XF is an F -equivalence, which follows from the assump-

tion that G-local objects are F -acyclic.

The second part of the statement follows easily: set F D E=f , G D EŒf �1�, and
notice that we have h1i D hC.f /i ˚ h1Œf �1�i by Proposition 3.4.3 (t5), so that hEi D
hE=f i ˚ hEŒf �1�i by Proposition 3.4.3 (t2). Finally, use the chain of inclusions

LocEŒf �1� � Loc1Œf �1� D AcC.f / � .Ac/EŒf �1�I

the only non-obvious part is the central equality: it follows from Proposition 3.4.3 (t7).
This concludes the proof.

Corollary 4.1.2. Let E, X and f be as in the statement of Proposition 4.1.1.
Then XE^C.f / is equivalent to .XE /C.f /.
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Proof. We start by considering the following commutative diagram in M:

XE
�1 //

�3

��

.XE /C.f /

�4

��

XE=f
�2 // .XE=f /C.f /

where �1 D �C.f /.XE /, �3 D �EE=f is the map introduced above, �4 D �C.f /.�3/,
and finally �2 D �C.f /.XE=f /.

Since hE=f i � hC.f /i, �2 is actually an equivalence in M and we are left to prove
that �4 is too. For this we apply the C.f /-localization functor to the square (4.1) and
we use Proposition 4.1.1 to reduce the proof to checking that

XEŒf �1�
c
�! .XE=f /EŒf �1�

is a C.f /-equivalence. Now both the source and target of c are 1Œf �1�-local, being in
fact EŒf �1�-local. Thus, after C.f /-localization both source and target of c become
zero.

Corollary 4.1.3. Let r be a positive integer. For every i D 1; : : : ; r consider
strongly dualizable objects Li 2M and maps fi W Li ! 1 in M. Let M WD C.f1/ ^
� � � ^ C.fr/ be the Moore object associated to the maps f1; : : : ; fr . Then for every
pair of objects E and X of M we have

XE^M ' .� � � ..XE /C.f1//C.f2/ � � � /C.fr / ' .XE /M :

Proof. Apply inductively Corollary 4.1.2.

4.2 – Technical assumption

We now formulate a technical assumption, which we need for the proofs of Theorems
4.3.7, 7.3.5 and 7.3.9.

Assumption 4.2.1. E is an object of M satisfying the following properties:

(1) E is a homotopy commutative algebra.

(2) E 2M�0.

(3) There are a finite set of tif objects ¹Liºi2I in M and maps fi W Li ! 1, a set of tif
objects ¹Lj ºj2J and maps gj W Lj ! 1, and a morphism of �0.1/-algebras

� W �0
�
.�0.1/=	/ŒJ�1�

�
! �0E;
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where 	 is the image of
P
i2I �0fi W

L
i2I �0.Li /! �01 and J is the collection

of elements ¹gj ºj2J .

(4) The map � given in (3) is an isomorphism.

In this situation, we will denote byM�0E the objectC.f1/^ � � � ^C.fr/^ 1ŒJ�1�,
and sloppily refer to it as the Moore object associated with �0.E/, rather than with the
maps fi and gj .

Note that the natural map of commutative algebras

.�0.1/=	/ŒJ�1�! �0
�
.�0.1/=	/ŒJ�1�

�
is an equivalence as soon as J D ; or when the t-structure on M is compatible with
filtered colimits.

4.3 – Comparison of E- and �0E-localization

Lemma 4.3.1. Let E 2M�k be a homotopy commutative algebra in M and let
f W L! 1 be a map in M whose source L is an sdf object. Then left multiplication
by f on E, lf .E/, is an equivalence if and only if left multiplication by f on �0.E/,
lf .�0.E//, is an equivalence.

Proof. If lf .E/ is an equivalence, then the induced map �0.lf .E// is too, and by
Lemma 3.2.7 �0.lf .E// D lf .�0.E//, as morphisms of M~. For the other implication
we argue as follows. By left-completeness and the fact that L is a strongly dualizable
object, the map lf .E/ WL^E!E is naturally identified with the limit of lf .P n.E// W
L^P n.E/!P n.E/, and for checking that it is an equivalence one only needs to check
that, for every integer n, multiplication by f on �n.E/ is an equivalence. Now �n.E/ is
a �0.E/-module and thus is endowed with an action map a W �0.E/˝~ �n.E/! �n.E/.
Multiplication by f commutes with such action map by Section 3.2.3, in the sense that
we have a commutative square

L ^ �n.E/
lf .�k.X//

// �n.E/

L ^ �0.E/˝
~ �n.E/ //

a

OO

�0.E/˝
~ �n.E/;

a

OO

where the lower horizontal map is lf .�0.E/˝~ �n.E//. However, such map is homo-
topic to lf .�0.E//˝~ �n.E/, and thus is an equivalence by assumption. We conclude
noticing that the upper horizontal map of the above square is a retraction of the lower
horizontal map via the unit morphism for the �0.E/-module �n.E/.



Localizations and completions of stable1-categories 27

Proposition 4.3.2. Let E be an object of M satisfying points (1)–(3) of Assump-
tion 4.2.1. Then

h�0Ei � hEi � hM�0Ei:

Proof. SinceE 2M�0 by Assumption 4.2.1, the projection to the Postnikov trunca-
tion induces a mapp WE! �0E. As it follows from the discussion in Section 2.1.5, �0E
has a natural homotopy algebra structure for which p is a ring map. As a consequence
�0.E/ is a retract of E ^ �0.E/, and it follows that h�0.E/i D hE ^ �0.E/i � hEi.

It remains to show that hEi D hE ^M�0Ei, which directly implies our claim that
hEi � hM�0Ei. For this, recall that

hM�0Ei D hC.f1/ ^ � � � ^ C.fn/ ^ 1ŒJ�1�i:

From Corollary 3.4.7, the Bousfield class hM�0Ei has a complement hM�0Ei
c D hM i,

where
M WD

�M
i2I

1Œf �1i �
�
˚

�M
j2J

C.gj /
�
:

In particular,

hEi D hEi ^ h.M�0E ˚M/i D hE ^M�0Ei ˚ hE ^M iI

since smashing commutes with small sums, it suffices to see that E ^ 1Œf �1i � D 0 D

E ^ C.gj / for every i 2 I and every j 2 J .
Let f WL! 1 be any of the fi and letE 0 WDE ^ 1Œf �1�. We claim that �0.E 0/' 0.

For proving it, we show that multiplying by f on �0.E 0/ is an isomorphism that factors
through 0. In detail, the left multiplication lf .E 0/ by f on E 0 is an equivalence and so
is �0.lf .E 0//. Lemma 3.2.7 implies that �0.lf .E 0// D lf .�0.E 0// and that lf .�0.E 0//
coincides with the map induced on �0 by

lf .�0.E// ^ �0.1Œf �1�/ W L ^ �0.E/ ^ �0.1Œf �1�/! �0.E/ ^ �0.1Œf �1�/;

since E 0 2M�0 by Corollary 3.4.6. By assumption we have lf .�0.E// D 0. Indeed
�0.E/ is a �0.1/=	-module, thus lf .�0.E// is a retraction of lf .�0.1/=	/ ^ �0.E/,
and lf .�0.1/=	/ D 0 directly by its definition. It follows that �0.E 0/ ' 0, and in
particular E 0 2M�1. Since E 0 has a homotopy unital multiplication, the equivalence
1 ^ E 0 ' E 0 factors through E 0 ^ E 0 2 M�2, so that �1.E 0/ ' 0. Inductively this
shows that �i .E 0/' 0 for all i . SinceE 0 2M�0 and the t -structure is left complete, we
conclude thatE 0' 0. Similarly, let g WL! 1 be any of the gj . Multiplication by g onE
is an equivalence by Lemma 4.3.1, since it is so on �0.E/, and thus E ^ C.g/' 0.

Lemma 4.3.3. Let X be any k-connected object of M for some integer k. Then X
is �0.1/-local.
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Proof. By the multiplicative properties of the Postnikov tower (see Section 2.1.3),
the homotopy objects �p.X/ are �0.1/-modules and hence �0.1/-local. By connectivity
of X , every stage of the Postnikov tower P n.X/ is a finite extension of suspensions of
the �p.X/, and hence it is �0.1/-local. Finally, X ' limn P

n.X/ by left completeness
of the t -structure.

Lemma 4.3.4. Let ¹A;˝; 1º be a symmetric monoidal category where A is also
abelian and such that ˝ is right exact. Let R be a commutative monoid in A and
denote by eR and �R its unit and multiplication. Let L 2 A and assume we have a
map f W L! R. Then:

(1) There exists a unique R-linear map �f W R˝ L! R that, composed with

L ' 1˝ L
eR˝idL
�����! R˝ L;

gives back f .

(2) The R-module C WD coker.�f / has a unique structure of commutative R-algebra
having the natural projection p W R! C as unit.

(3) If the multiplication of R is an isomorphism, so is that of C .

(4) If L is a ˝-invertible object of A, then K WD ker.�f / has a unique structure of
C -module, making the inclusion i W k ,! R˝ L into a map of R-modules.

(5) If M is an R-module in A with action map ˛ W R˝M !M and

�fM D ˛ ı .f ˝ id/ W L˝M ! R˝M !M

is the induced multiplication by f on M , then coker .�fM / and ker .�fM / have a
unique structure of C -module induced by ˛.

Proof. Point (1) follows from the usual free-forget adjunction. Point (2) and (3)
follow from elementary diagram chases. Regarding (4) one needs to show that the
natural action of R on K factors through C . Let us denote by i the monomorphism
K � R˝ L. Consider the map

� W R˝ L˝R˝ L! R˝ L defined by � D �˝ idL ı �f ˝ idR ˝ idL;

so that, with an abuse of notation, �.r1 ˝ l1 ˝ r2 ˝ l2/ D r1f .l1/r2 ˝ l2. An easy
diagram chase shows that the required factorization exists if and only if the map �
composed with j WD id˝ id˝ i W R˝L˝K ! R˝L˝R˝L is zero. What we
know, however, is that � ı t.12/;.34/ ı j D 0, where t.12/;.34/ is the switching of the first
and second pair of terms on R˝ L˝ R˝ L. We claim that � is a multiple of � ˝
t.12/;.34/ by a unit " 2 EndA.1/. For this note that the permutation t.12/;.34/ D t1;3 ı t2;4
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of theR terms gives no trouble, since� is commutative, so � D � ı t1;3. Here t1;3 (resp.
t2;4) denotes the switching of the first and third (resp. second and fourth) tensor factors of
R˝L˝R˝L. SinceL is˝-invertible, t2;4 can be identified with left multiplication
by a suitable unit " 2 EndA.1/. In conclusion, � ı t.12/;.34/ D � ı l".R˝L˝R˝L/,
and thus

� ı j D � ı t.12/;.34/ ı l".R˝ L˝R˝ L/
�1
ı j

D � ı t.12/;.34/ ı j ı l".R˝ L˝R˝ L/
�1
D 0;

since multiplication by a unit commutes with every map in A by Section 3.2.3.
The proof of point (5) works similarly, and we omit it.

Lemma 4.3.5. Let R be a commutative algebra in M~ and let f W �0.L/! R be
a map in M~ where L is a tif object of M. Let C denote the cofiber of the induced
map rf .R/ D �f W R ^ L ' R˝~ �0.L/! R given by Lemma 4.3.4 in M~. Then
�0.C / ' coker.�f / and hC i � h�0.C /i.

Proof. From the exact sequence of homotopy objects

0!K ! L ^R
�f
�! R! coker.�f /! 0

we deduce

�k.C / D

8̂̂<̂
:̂

coker.�f / if k D 0,
ker.�f / if k D 1,
0 otherwise.

In particular, it follows that we have a fiber sequence

†1�1C ! C ! �0C

relating C with its truncations. Observe that, thanks to Lemma 4.3.4, �0.C / is a
commutative algebra in M~ and †1�1.C / is a module in M~ over �0.C /. More
generally, for every X 2M, the object �1.C / ^ X is also a �0.C /-module in M. In
particular, if X is �0.C /-acyclic, then it is also †1�1.C /-acyclic, and by the above
fiber sequence X is C -acyclic too.

Corollary 4.3.6. Assume that M is a presentably symmetric monoidal stable
1-category endowed with a left-complete multiplicative t -structure. Assume that E is
a homotopy commutative algebra in M satisfying Assumption 4.2.1, and in case J 6D ;
we assume in addition that the t-structure of M is compatible with filtered colimits.
Then h�01 ^M�0.E/i � h�0Ei.
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Proof. Readily Lemma 4.3.5 implies that h�0.1/^C.f1/i � h�0.1/=.f1/i. Recall
that, by definition,

M�0E D C.f1/ ^ � � � ^ C.fr/ ^ 1ŒJ�1�;

so we can proceed in order by smashing with one C.fi / at the time. Indeed, by the
previous case

h�0.1/ ^ C.f1/ ^ C.f2/i � h�0.1/=.f1/ ^ C.f2/i

and finally, using Lemma 4.3.5 with R D �0.1/=.f1/ and f D f2, we get that

h�0.1/=.f1/ ^ C.f2/i � h.�0.1/=.f1//=.f2/i D h�0.1/=.f1; f2/i;

so we conclude that

h�0.1/ ^ C.f1/ ^ C.f2/i � h�0.1/=.f1; f2/i:

Inductively we arrive at

h�0.1/ ^M.f /i � h�0.1/=.f1; : : : ; fr/i;

where M.f / D C.f1/ ^ � � � ^ C.fr/. Finally, we observe that

h�0.1/ ^M�0Ei D h�0.1/ ^M.f / ^ 1ŒJ�1�i � h�0.1=.f1; : : : ; fr// ^ 1ŒJ�1�i;

and that
h�0.1=.f1; : : : ; fr// ^ 1ŒJ�1�i D h�0Ei;

since � ^ 1ŒJ�1� is t -exact according to Corollary 3.4.6.

Theorem 4.3.7. LetE be a homotopy commutative algebra inM satisfying Assump-
tion 4.2.1 in the special case that J D ;. Then for every integer k, and everyX 2M�k
we have that

XM�0E ' XE :

Proof. Thanks to Proposition 4.3.2 we know that for anyX 2M�k the localization
mapX!XM�0E is anE-equivalence, so we only have to check thatXM�0E isE-local.
Now consider that X ! X�0.1/ is an equivalence by Proposition 4.3.3 so that

XM�0E ! .X�0.1//M�0E

is an equivalence too. In particular, by combining this with the result of Corollary 4.1.2
we deduce that

XM�0E
'
�! .X�0.1//M�0E ' X�0.1/^M�0E :

Finally, we apply Proposition 4.3.2 and Corollary 4.3.6 to deduce that X�0.1/^M�0E is
E-local. This concludes the proof.
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5. Examples and applications

We provide some samples of usage in the motivic setting of the results seen so far.
In this section, S denotes a Noetherian scheme of finite Krull dimension.

5.1 – Algebraic cobordisms

Let MGL (resp. MSL) be the spectrum representing Voevodsky’s algebraic cobor-
dism (resp. special linear cobordism) over S . In [27] (resp. [30]), Panin et al. construct
MGL (resp. MSL) as a commutative monoid in a monoidal model category present-
ing SH.S/. By [13, Theorem 3.8], MGL satisfies Assumption 4.2.1; we conclude
that the MGL-localization map is canonically identified with the �-completion map
��.X/ WX !X^� on bounded-below spectra. Similarly in [38], when S is the spectrum
of a perfect field of characteristic not 2, Yakerson verifies that MSL satisfies Assump-
tion 4.2.1 with I D J D ;, and as a consequence .�/MSL ' id on bounded-below
spectra.

5.2 – Motivic cohomologies

Let S be a finite-dimensional Noetherian scheme, which is essentially smooth over
a fieldK. Let HZ be the spectrum representing Voevodsky’s motivic cohomology with
integral coefficients. Recall that we have a category of motives DM.S;Z/ which is
related to SH.S/ by an adjunction

(5.1) Ztr W SH.S/ � DM.S;Z/ W utr:

Since utr respects algebras, as it follows from [13, Section 4], HZ D utr1 is a commu-
tative algebra in SH.S/. Moreover, [13, Theorem 7.4] implies that Assumption 4.2.1
is verified, and that �0.HZ/ ' �0.S=�/.

We can thus apply Theorem 4.3.7, to deduce that the HZ-localization of a bounded-
below spectrum X is identified with the �-completion map X ! X^� . In a similar
fashion, letE D HZ=` be the spectrum representing motivic cohomology with modulo
` coefficients. The same considerations allow us to conclude that the HZ=`-localization
map �HZ=`.X/ W X ! XHZ=` of a bounded-below spectrum X is identified with the
formal completion map �`;�.X/ W X ! X^

`;�
.

The formalism of motives we have just recalled has a quadratic analogue. Let now S
be the spectrum of an infinite perfect fieldK of characteristic not 2. We have a category
of Chow–Witt motives eDM.K;Z/ with a pair of adjoint functors

(5.2) zZtr W SH.K/ � eDM.K/ W Qutr
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which are the stabilizations of the functors which respectively add and forget gen-
eralized transfers. The discussion in [4, Chapter 6, Section 4.1] shows that zHZ is a
commutative algebra in SH.K/. By combining [4, Chapter 3, Proposition 4.1.2] and
[4, Chapter 3, Theorem 4.2.3], we see that Assumption 4.2.1 is satisfied. It thus follows
by Theorem 4.3.7 that for every bounded-below spectrum X , the zHZ-localization is an
equivalence.

5.3 – Slice completion

We recall the following result.

Theorem 5.3.1 ([33, Theorem 3.50]). Let K be a field of exponential characteris-
ticp. Suppose thatX is a spectrum having a cell presentation of finite type inModA.K/
where A D SŒ 1

p
�. Then we have a canonical commutative square in ModA.K/:

X
��.X/

//

�.X/

��

X^�

�.X/^�

��

Xsc
��.Xsc/

// .Xsc/
^
� ;

where the maps ��.Xsc/ and �.X/^� are equivalences. In particular, there is a natural
isomorphismXsc ' X

^
� in ModA.K/ under which the slice completion map �.X/ and

the �-completion map ��.X/ are identified.

By combining Section 5.2 with the previous result, we deduce that for a cell spectrum
X of finite type, HZ ^X D 0 if and only if Xsc D 0. In other words, if f W X ! Y 2

ModA.K/ is a map between objects that have a cell presentation of finite type, f is an
equivalence on slice completions if and only if f induces an equivalence on motivic
homology.

5.4 – Motives of spectra

LetK be a field of exponential characteristic p andAD SŒ 1
p
� andRDZŒ 1

p
�. Recall

that the adjunction (5.1) factors as

SH.K/Œ 1
p
� 'ModA.K/

Rtr //

HR^A�

**

DM.K;R/
utr

oo

‰
uu

ModHR.K/;
UHR

jj
ˆ

55

where Rtr.�/ ' ˆ.HR ^A �/ and utr ' UHR.‰.�//.
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Similarly, at least when p 6D 2, the adjunction (5.2) factors as

SH.K/Œ 1
p
� 'ModA.K/

zRtr //

zHR^A�

**

eDM.K;R/
Qutr

oo

z‰vv
ModzHR.K/:

zUHR

jj
ẑ

66

The previous observations prove the following statement.

Corollary 5.4.1. Let K be a perfect field of exponential characteristic p 6D 2.
Then:

(1) If K is not formally real the functor Rtr is conservative on bounded-below SŒ1
2
�-

modules.

(2) If cd2.K/ < 1, then Rtr is conservative on strongly dualizable objects, and in
particular on compact objects.

(3) If K is infinite, then zRtr is conservative on bounded-below objects.

Proof. By [32, Theorem 1] (for p D 0) or [15, Theorem 5.8] (in general), we have
that .ˆ;‰/ is a pair of adjoint equivalences. Now X ' XŒ1

2
�, so let us assume that

HR ^A X D 0. Then by the assumption on X , Theorem 4.3.7, and Proposition 3.2.14,
we have that

0 D XHR D X
^
� :

IfK is not formally real, Lemma 3.3.1 implies that ��.X/ W X ! X^� is an equivalence
in ModA.K/ and hence X ' 0. Let us now assume that K has finite 2-cohomological
dimension. We achieve the second point by running the same argument, but using
Lemma 3.3.2 instead of Lemma 3.3.1. We deduce that, if X is a dualizable object
with HR ^A X D 0, then X ' 0 in ModA.K/. Since p is inverted in the coefficients,
strongly dualizable objects and compact objects of SH.K/Œ 1

p
� are the same, cf. [12,

Lemma 2.3]. The third point works similarly to the first, but using only Theorem 4.3.7,
combined with the fact that . ẑ ; z‰/ are mutually inverse equivalences, which follows
from [12, Theorem 5.2].

Remark 5.4.2. In [3, Theorem 1], Bachmann proves that over a perfect field K of
exponential characteristic p 6D 2 and with cd2.K/ <1, the functorRtr is conservative
on effective and bounded-below spectra where p acts invertibly. In the case where 2 is
inverted in the coefficients, Corollary 5.4.1 is only apparently more general. A direct
inspection of Bachmann’s argument shows that, upon inverting two, he does not need
to assume that cd2.K/ <1.
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However, if we do not wish to invert the prime 2 in the coefficients, Bachmann’s
argument needs an extra non-trivial input, namely a description of the slice filtration on
homotopy groups of spectra, coming from [20]. In this case, our approach is genuinely
different and not as powerful, but in any case it recovers a very non-trivial portion of
the stated result of Bachmann.

Nevertheless, we have not been able to use Bachmann’s results to recover our
results on HZ-localizations. It would probably be interesting to employ his techniques,
particularly those using the real étale topology, for the study of homology localizations.

5.5 –K-theories

Let S be a finite-dimensional Noetherian scheme, which is essentially smooth over
a field K of exponential characteristic p (resp. let S be the spectrum of a field K
of characteristic p 6D 2). Recall that we have spectra KGL (resp. KQ) in SH.S/Œ 1

p
�

representing algebraic K-theory (resp. algebraic Hermitian K-theory). The tensor
product on bundles induces natural homotopy commutative algebra structures on
KGL and on KQ. This can be found respectively in [28, Theorem 2.2.1] and in [29,
Theorem 1.5]: in both cases, the multiplicative structure is constructed over Spec.Z/
and Spec.ZŒ1

2
�/ respectively, and then pulled back over more general bases. Thanks

to the multiplicative properties of the slice tower (resp. the very effective slice tower),
the effective cover f0.KGL/ (resp. the very effective cover Qf0.KQ/) has a structure of
homotopy commutative algebra as well.

We first deal with KGL. Consider the fiber sequence

f1 KGL! f0 KGL! s0 KGL :

On the one hand we have an isomorphism of commutative algebras s0 KGL
'
�! HZŒ 1

p
�

in SH.S/Œ 1
p
�, see [19, Section 11] and [13, Theorem 8.5]. On the other hand we have

fi KGL 2 SH.S/Œ 1
p
��i thanks to [13, Lemma 8.11]: this can be applied since KGL

is the spectrum representing the cohomology theory associated with the Landweber
exact formal group law X C Y � ˇXY on ZŒˇ; ˇ�1� by [36]. In conclusion, f0 KGL
satisfies Assumption 4.2.1 with �0f0 KGL ' �0.S=�/.

Now we deal with KQ. Consider the fiber sequence

Qf1 KQ! Qf0 KQ! Qs0 KQ :

This time we have an isomorphism of commutative algebras �0 Qs0 KQ ' zHZŒ 1
p
�

by [2, Theorem 16], while Qf1 KQ 2 SH.K/Œ 1
p
��1 by construction. As a consequence

Qf0 KQ satisfies Assumption 4.2.1 with �0 Qf0 KQ ' �0.S/.
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6. The E -based Adams–Novikov spectral sequence

In this section, we briefly recall the construction of the Adams–Novikov spectral
sequence based on a homotopy commutative algebra in M. This section works in any
symmetric monoidal stable1-category M.

6.1 – Construction of the spectral sequence

LetE be a homotopy commutative algebra inMwith multiplication� WE ^E!E

and unit e W 1! E. We start by considering the fiber sequence

(6.1) xE
Ne
�! 1 e
�! E

where xE WD fib.e W 1! E/. We set the notation xE1 D xE and xE0 D 1. By induction,
assuming we have already defined xEn, we obtain a new fiber sequence by applying
� ^ xEn to the fiber sequence (6.1): we get the fiber sequence

(6.2) xE ^ xEn
Ne^id
���! 1 ^ xEn e^id

���! E ^ xEn:

We set xEnC1 WD xE ^ xEn and as wellWn WD E ^ xEn. Furthermore, we name the maps
NenC1 WD Ne ^ id xEn and enC1 WD e ^ id xEn . This way we have produced a tower ¹ xEnºn2N

over 1 fitting in the diagram

(6.3) 1 D xE0

e

��

xE1

e2

��

Ne1oo xE2

e3

��

Ne2oo � � �
Ne3oo

E D W0

77

E ^ xE1 D W1

66

E ^ xE2 D W2

99

� � �

where each dashed arrow is pictured to remind that the triangle it bounds is a fiber
sequence. Given any object X we can smash every part of the previous construction
with X and get a tower ¹X ^ xEn; X ^ Nenºn2N over X and actually a whole diagram
similar to (6.3).

6.1.1. We could use an exact couple coming from (6.3) to construct an Adams spectral
sequence, but for our purposes it is more helpful to consider the tower under 1 of cofibers
induced by (6.3). With this aim in mind we proceed. The techniques of Section 3.1
allow us to upgrade (6.3) to a diagram N.Nop/!M, and thus to a fiber sequence of
towers:

(6.4) xE
� "

�

�! 1! xE��1:
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We visualize it as a commutative ladder of fiber sequences in M:

xEnC1
"nC1 //

NenC1

��

1 // xEn

fn
��

xEn
"n // 1 // xEn�1;

where "n denotes an n-fold composition Ne1 ı � � � ı Nen. Note that implicitly we have
xE�1 ' 0 and xE0 ' E. Moreover, we have equivalencesWn D cofib. NenC1/ ' fib.fn/
in M, and in particular fiber sequences

(6.5) Wn
ln
�! xEn

fn
�! xEn�1

@n
�! †1Wn:

We thus get a new diagram

(6.6) � � � W3

l3
��

W2

l2
��

W1

l1
��

W0

' l0
��

� � � // xE3
f3

//

``

xE2
f2

//

``

xE1
f1

//

``

xE0
f0

//

``

0

__

where again the dashed arrows are pictured to remind us that the triangles they bound
are fiber sequences. Note that now the maps fn form a tower under 1.

As we did above, given any object X we can build similar diagrams by applying
X ^ � to (6.6). We obtain the following:

(6.7) � � � X ^W3

l3
��

X ^W2

l2
��

X ^W1

l1
��

X ^W0

' l0
��

� � � // X ^ xE3
f3

//

cc

X ^ xE2
f2

//

@3

ee

X ^ xE1
f1

//

@2

ee

X ^ xE0
f0

//

@1

ee

0

bb

Here we abuse the notation and keep denoting the maps involved in (6.7) with the same
names used above in (6.6).

Definition 6.1.2. The tower under X

� � �
fnC1
���! X ^ xEn

fn
�! � � �

f2
�! X ^ xE1

f1
�! X ^ xE0 ! 0

is called the standard E-Adams tower. The E-nilpotent completion of X is the object

X^E WD lim
N.Nop/

.X ^ xEn/ 2M:

The natural map ˛E .X/ W X ! X^E is called the E-nilpotent completion map of X .
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6.1.3. For every object Y we can apply the functor ŒY;�� to (6.7) and get an exact
couple

(6.8) Œ†�Y;X ^ xE��
j

// Œ†�Y;X ^ xE��

k
vv

Œ†�Y;X ^W��:

i

hh

Here the map
j W Œ†pY;X ^ xEn�! Œ†pY;X ^ xEn�1�

is the natural map induced by fn and has bi-degree .0;�1/; the map

k W Œ†pY;X ^ xEn�! Œ†p�1Y;X ^WnC1�

is the natural map induced by the dashed arrow @nC1 and has bi-degree .�1; 1/. Finally,
the map

i W Œ†pY;X ^Wn�! Œ†p�1Y;X ^ xEn�

is the map induced by ln and has bi-degree .0; 0/.

6.1.4. The spectral sequence obtained from the exact couple (6.8) is the E-based
Adams–Novikov spectral sequence. Note that this is an example of the general procedure
described in [9, Chapter IX.4] for associating the so-called homotopy spectral sequence
to a tower of fibrations under a given space. In our specific example, the tower we used
is ¹X ^ xEn; fnº.

7. Nilpotent resolutions

In this section, we introduce E-nilpotent (resp. strongly R-nilpotent) resolutions
associated with a homotopy commutative algebraE in M (resp. a commutative algebra
R in M~). This takes place in Section 7.1 (resp. 7.2). We use these constructions to
describe a universal property for the Adams tower after passing to pro-objects, obtaining
thus a more ductile construction of E-nilpotent completions. As an application we
obtain an explicit description (see Theorem 7.3.5) for the E-nilpotent completion of a
k-connected object. Throughout this section M is a presentably symmetric monoidal
stable1-category, endowed with a left-complete multiplicative t -structure.

7.1 –E-nilpotent resolutions

Definition 7.1.1. Let E be a homotopy commutative algebra in M. We define the
1-category of E-nilpotent objects as the smallest full sub-1-category Nilp.E/ �M

satisfying the following properties:
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(1) E 2 Nilp.E/.

(2) Given any X 2M and any F 2 Nilp.E/, we have X ^ F 2 Nilp.E/.

(3) Nilp.E/ has the 2-out-of-3 property on fiber sequences, i.e., given a fiber sequence
X ! Y ! Z in M where any two of the three objects X;Y;Z are in Nilp.E/, the
third is in Nilp.E/ as well.

(4) Nilp.E/ is closed under retracts.

Remark 7.1.2. If R is a homotopy algebra and M is a homotopy R-module, then
the action map R ^M ! M is split by the unit. So if R is in Nilp.E/, then M is
E-nilpotent too.

Lemma 7.1.3. If E is a homotopy commutative algebra and X is any E-nilpotent
object, then X is E-local.

Proof. The proof goes exactly as in [8, Lemma 3.8]. We filter Nilp.E/ by induc-
tively constructed subcategories Ci . C0 is defined as the full sub-1-category of M
whose objects are equivalent to E ^X for some X 2M. If i � 1, we set Ci to be the
full subcategory of M of those objects that are equivalent to a retract of an object in
Ci�1 or an extension of objects in Ci�1. It is formal to check that the union of the Ci
coincides with Nilp.E/. Indeed, thanks to Remark 7.1.2 we have that C0 � Nilp.E/,
and since E-nilpotent objects are closed under retractions and extensions, we get by
induction that each of the Ci is contained in Nilp.E/. Now the Ci form an increasing
sequence of subcategories of Nilp.E/ and we need to check that their union, which we
denote byC , is the whole Nilp.E/. However this is clear: by constructionC satisfies all
the four axioms of Definition 7.1.1 so we must haveC �Nilp.E/, and so Nilp.E/D C .
For proving the E-locality: E-modules are E-local, so C0 � Loc.E/; since E-local
objects are closed under extensions and retractions, we have Ci � Loc.E/, and hence
Nilp.E/ D

S
i Ci � Loc.E/.

Definition 7.1.4. Let E be a homotopy commutative algebra of M. An object X
is called E-pre-nilpotent if XE is E-nilpotent.

Proposition 7.1.5. Let E be a homotopy commutative algebra of M. Then the
following are equivalent:

(P1) 1 is E-pre-nilpotent, i.e., 1E is E-nilpotent.

(P2) For every object X , 1E ^X is E-nilpotent.

(P3) Every object X is E-pre-nilpotent, i.e., XE is E-nilpotent for every X .

(P4) Nilp.E/ D Loc.E/.

Moreover, the following are equivalent:
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(S1) For every X 2M, the map �E .1/ ^ idX W X ! 1E ^X is an E-localization of X .

(S2) The multiplication map of the E-local sphere 1E ^ 1E ! 1E is an equivalence
and the natural inequality hEi � h1E i is an equality.

In addition, statement (P2) implies (S1). Furthermore, if E has a multiplication map
E ^E ! E which is an equivalence, then the unit e W 1! E is a localization map
�E .1/, and condition (P1) holds for E.

Proof. We start by observing that a localization map �E .X/ factors as

(7.1) X
�E.X/ //

�E.1/^idX
��

XE :

1E ^X
Q�.X/

::

Since all the maps in the diagram are E-equivalences, Q�.X/ is an equivalence if and
only if 1E ^X is E-local.
E-nilpotent objects are closed under smashing with arbitrary objects, so that 1E is

E-nilpotent if and only if for every X 2M, 1E ^ X is E-nilpotent too (i.e., (P1) is
equivalent to (P2)). By Lemma 7.1.3, if 1E ^X is E-nilpotent, then it is E-local and
hence Q�.X/ is an equivalence in view of (7.1) (i.e., (P2) implies (P3)). Clearly (P3)
implies (P1) and (P3) is equivalent to (P4).

Using Lemma 7.1.3, we immediately deduce that (P2) implies (S1).
We now prove that (S1) is equivalent to (S2). By applying (S1) to X D 1E , in view

of (7.1), we deduce that the multiplication map Q�.1E / of 1E is an equivalence. On the
other hand, by smashing the fiber sequence

E1! 1! 1E

with an object X , we deduce that if X is 1E -acyclic, then it is also E-acyclic. This
means that hEi � h1E i. The reverse inequality is immediate from (S1), so (S1) implies
(S2). Assume now (S2). Since the multiplication of 1E is an equivalence, for every
X 2 M the map �E .1/ ^ idX W X ! 1E ^ X is an 1E -localization of X ; however
h1E i D hEi so that (S2) implies (S1).

If E is a homotopy commutative algebra with the property that the multiplication
E ^E ! E is an equivalence, then the unit e W 1! E is an E-equivalence. Since E
is E-nilpotent, and thus E-local, we conclude.

Definition 7.1.6. We say that an object E induces a smashing localization if the
map Q�.X/ W 1E ^X ! XE of (7.1) is an equivalence in M.
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Example 7.1.7. The objects 1B appearing in Proposition 3.4.3 induce smashing
localizations of M.

Let S be the spectrum of a field (although this argument works over more gen-
eral bases), M D SH.S/, and E D HQ be the spectrum representing Voevodsky’s
motivic cohomology with rational coefficients. Combining [11, Proposition 14.1.6
with Corollary 16.1.7], we deduce that the multiplication map of HQ is an equivalence.
In particular, the localization at HQ is smashing.

Lemma 7.1.8. LetE be an object inducing a smashing localization, and let �E .1/ W
1! 1E be an E-localization of 1. Then the forgetful functor U1E WMod1E .M/!M

factors through an equivalence U1E WMod1E .M/! LocE .

Proof. Since 1E -modules are 1E -local and Loc1E D LocE by (S2), we have the
desired factorization of U1E through the inclusion LocE �M. Note that everyE-local
object is in the underlying object of a 1E -module, since by definition �E .X/ W X !
XE ' 1E ^X is an equivalence. In order to show that U is fully-faithful, we just need
to see that for every 1E -module X , the natural “action map” ˛ W F1EU1E .X/! X is
an equivalence. Indeed, we have a commutative diagram of spaces

Map1E .X; Y /
//

˛�

))

Map.U1E .X/; U1E .Y //

Map1E .F1EU1E .X/; Y /

'

44

where Map1E .�;�/ denotes the mapping space in 1E -modules. Checking that ˛ is
an equivalence can be done after forgetting to M, where ˛ has a right inverse induced
by the unit �E .1/ ^ id W 1 ^ U1E .X/! 1E ^ U1E .X/. However �E .1/ ^ id is an
equivalence, since E is smashing and U1E .X/ is E-local, so ˛ is an equivalence
too.

7.1.9. Let E be a homotopy commutative algebra. We wish to point out how Defini-
tion 6.1.2 and Lemma 7.1.3 imply that, for every X 2M, the E-nilpotent completion
X^E is E-local. Indeed,

X^E D lim
�
� � �

fnC1
���! X ^ xEn

fn
�! � � � ! X ^ xE0 ! 0

�
;

and each of the maps in the tower sits in a fiber sequence

E ^ xEn ^X ! xEn ^X
fn
�! xEn�1 ^X

that we have deduced from (6.5). As a consequence, by induction, each of the terms in
the tower is E-nilpotent, hence E-local, and thus X^E is E-local too. In particular, the
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map ˛E .X/ W X ! X^E factors as

(7.2) X
˛E.X/ //

�E.X/   

X^E :

XE

ˇE.X/

==

It follows that ˛E .X/ is an E-equivalence if and only if the induced map ˇE .X/ is an
equivalence.

7.1.10. We wish to point out another fact. On the one hand, if X ! Y is an E-
equivalence, then it induces an equivalence of the standard E-Adams towers (Defini-
tion 6.1.2) associated toX and Y , so that the natural map induced on homotopy inverse
limits X^E ! Y ^E is an equivalence. On the other hand, the composition of ˛E .X/
with the projection to the 0-th term of the tower

X ! X^E ! X ^ xE0 D X ^E

is identified with idX ^ e, where e W 1! E is the unit of the algebra E. Thus, the
map ˛E .X/ ^E W X ^E ! X^E ^E has a retraction which is functorial in X . So if
f W X ! Y is a map inducing an equivalence on E-nilpotent completions X^E ! Y ^E ,
then f is an E-equivalence. We conclude that ˛E .X/ is an E-equivalence if and only
if the induced map

˛E .X/
^
E W X

^
E ! .X^E /

^
E

is an equivalence.

Definition 7.1.11. For an objectX 2M, anE-nilpotent resolution ofX is a tower
of objects under X ,

X ! � � � ! Xn ! Xn�1 ! � � � ! X0;

satisfying the following two properties:

(1) Xn 2 Nilp.E/ for every n 2 N.

(2) For any Y 2 Nilp.E/ the map of pro-objects ¹Xº ! ¹X�º defined by the tower
induces an equivalence

MapPro.M/.¹X�º; ¹Y º/! MapPro.M/.¹Xº; ¹Y º/;

where X and Y are considered as constant pro-objects.



L. Mantovani 42

7.1.12. Recall that for pro-objects X�; Y� in an1-category C,

MapPro.M/.X�; Y�/ ' lim
m

colim
n

MapM.Xn; Ym/

(cf. Lemma A.1.2). In our situation, by applying homotopy groups (of the geometric
realization) to the previous formula, we get that a towerX ! X� ofE-nilpotent objects
under a given X 2M is an E-nilpotent resolution if and only if for every E-nilpotent
object Y 2M the induced map

�i colim
n

MapM.Xn; Y /! �iMapM.X; Y /

is an isomorphism for all i 2 N. Since taking homotopy groups commutes with filtered
colimits, and since E-nilpotent objects are closed under shifts, this is equivalent to
asking that for every E-nilpotent object Y 2M the natural map

colim
n
ŒXn; Y �! ŒX; Y �

is an isomorphism. The definition we have given is thus compatible with the classical
definition for the stable homotopy category.

Proposition 7.1.13. Let X be any object of M. Then:

(1) The standard Adams tower xE� ^X is an E-nilpotent resolution of X .

(2) The pro-object under X associated with an E-nilpotent resolution of X is unique
up to a contractible space of choices.

(3) If X ! X� is an E-nilpotent resolution of X , then there is an equivalence
limN.Nop/X� ' X

^
E in MX=.

Proof. We start with (1). As we already observed in Section 7.1.9, the terms
xEn ^X of the tower are E-nilpotent. Let Y be any object of M. By smashing the fiber
sequence of towers (6.4) with X , we get a commutative ladder of long exact sequences

� � � // Œ xEn ^X; Y � // ŒX; Y � // Œ xEnC1 ^X; Y � // � � �

� � � // Œ xEn�1 ^X; Y � //

.fn^idX /�

OO

ŒX; Y � // Œ xEn ^X; Y � //

. NenC1^idX /�

OO

� � � :

We deduce that we only need to show that lim
�!n

Œ xEn ^X;Y � D 0 for every E-nilpotent
object Y . We will proceed by induction on the family of subcategories Ci that we used
in the proof of Lemma 7.1.3. Assume thus that Y 2 C0, i.e., that Y ' E ^Z for some
Z 2M. We will show that the transition maps in the colimit vanish, hence the colimit
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vanishes too. For this we look at the fiber sequence (6.2): it gives a long exact sequence

� � � ŒE ^ xEn ^X;E ^Z�
.e^id/�
�����! Œ xEn ^X;E ^Z�

. NenC1^idX /�
���������! Œ xEnC1 ^X;E ^Z� � � � ;

where the maps .e ^ id/� are surjective since E ^Z is a homotopy E-module. The
transition maps in the direct limit are thus 0. Now observe that the property lim

�!n
Œ xEn ^

X; Y � D 0 is stable in the Y variable under retracts and extensions. This implies that
if every Y 2 Ci�1 satisfies this property, then every Y 2 Ci does as well. Since the
union of the Ci exhausts Nilp.E/, the first point is done.

For (2): existence is (1), and for uniqueness we argue as follows. LetX�
p
 � X

q
�! Y�

be E-nilpotent resolutions. Then we have a natural commutative square

MapPro.M/.¹X�º; ¹Y�º/
' //

p�

��

limn MapPro.M/.¹X�º; ¹Ynº/

p�

��

MapPro.M/.¹Xº; ¹Y�º/
' // limn MapPro.M/.¹Xº; ¹Ynº/;

where the right vertical map is an equivalence, since each Yn is E-nilpotent. This is
enough to conclude that the diagram of pro-objects ¹X�º

p
 � ¹Xº

q
�! ¹Y�º can be filled

essentially in a unique way to a 2-simplex

¹Xº

p

||

q

""

¹X�º
f

// ¹Y�º

as the next lemma shows. The same argument with X� and Y� interchanged implies that
any choice for f must be an equivalence.

Point (3) follows by combining (1) and (2) with the observation that the operation
of taking inverse limits factors through pro-objects.

Lemma 7.1.14. Let X
p
 � Z

q
�! Y be a diagram in an1-category C, and assume

that composition with p induces an equivalence Map.X;Y /!Map.Z;Y /. Then there
exists a unique 2-simplex of C extending the horn .p; q/ up to a contractible space of
choices.

Proof. Consider the over-category Cp=. The restriction along the source and target
of p respectively induces functors

CZ=
�
 � Cp=

�
�!
'

CX=;
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where � is a left fibration [21, Proposition 2.1.2.1], and � is a trivial Kan fibration
[21, Proposition 2.1.2.5]. Moreover, the three categories are themselves total spaces of
left fibrations over C, and both � and � commute with the projection to C. When we
take fibers over Y 2 C, we get

MapL.Z; Y /
�Y
 �� .Cp=/Y

�Y
�!
'

MapL.X; Y /;

where MapL.�;�/ denotes the left mapping space. Here �Y is a left fibration over
a Kan complex, and thus it is a Kan fibration by [21, Lemma 2.1.3.3]. Similarly, �Y
is again a trivial Kan fibration. Our assumption then implies that �Y is a trivial Kan
fibration. By definition of the left mapping space, the zero simplices of MapL.Z; Y /
are exactly the arrowsZ! Y of C, while the zero simplices of .Cp=/Y are commutative
triangles

Z

  
p

~~

X // Y:

In particular, the fiber of �Y over q is contractible, which is what we wanted to prove.

7.2 – Strongly R-nilpotent resolutions

Lemma 7.2.1. Let R be a commutative algebra in M~ with the property that the
multiplication map of �R W R˝

~ R! R of R is an isomorphism. Then:

(1) For every R-module M in M~, the action map R˝~M!M is an isomorphism.
In particular, an object M of M~ has at most one R-module structure.

(2) Every map � WM ! N in M~ where M and N are R-modules is R-linear. In
particular, the category of R-modules is a full subcategory of M~.

Proof. For (1) observe that, given an R-module M in M~, we have a co-equalizer
diagram defining the monoidal product on the category of R-modules:

R˝~ R˝~M
1˝a

//

�R˝1
// R˝~M

q
// R˝~

R
M:

Moreover, the action map a WR˝~M!M induces an isomorphism Na WR˝~
R

M!

M. The map R ˝~ M ! R ˝~ R ˝~ M defined by r ˝ m 7! r ˝ 1˝ m is an
inverse of both �R and a, so that 1 ˝ a D �R ˝ 1, thus q is an isomorphism. In
particular, every R-module M is isomorphic to the free R-module on the object M.

Point (2) follows by combining the free-forget adjunction and point (1).
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Lemma 7.2.2. Assume E is a homotopy commutative algebra satisfying Assump-
tion 4.2.1. Then R D �0.E/ 2M~ and its multiplication map R˝~ R! R is an
isomorphism.

Proof. Surely �0.E/ is a commutative algebra in M~ by the multiplicative proper-
ties of the Postnikov tower (see Section 2.1.5). Let us start from the special case J D ;,
so that R D �0E ' �0.1/=.f1; : : : ; fr/ for some fi W Li ! 1. In this case, the mapX

iD1

fi W
M
i

Li ! 1

induces
� WD

X
iD1

f̀i .�01/ W
M
i

Li ^ �0.1/! �0.1/

in M~. Since �0E ' coker.�/, Lemma 4.3.4 implies that the multiplication of R is
an isomorphism.

Let us now consider the case J 6D ;. Denote by C the object �0.1/=Im.�/ so that
we already know that m W C ˝~ C ! C is an isomorphism by the above argument,
and that �0.E/' �0.C ŒJ�1�/where J D ¹gj ºj2J . Now by Corollary 3.4.6 the functor
ŒJ�1� is right t -exact, so we have a natural equivalence

�0.C ŒJ
�1�/˝~ �0.C ŒJ

�1�/ ' �0..C ˝
~ C/ŒJ�1�/

under which the multiplication of �0.C ŒJ�1�/ is identified with the map �0.mŒJ�1�/,
which is an equivalence by the previous part.

7.2.3. In the rest of the section we fix a commutative algebra R inM~ with the property
that its multiplication is an isomorphism.

Definition 7.2.4. We say that an object M of M~ is strongly R-nilpotent if it
has a finite filtration M DM0 �M1 � � � � �Mr in M~ such that Mi=MiC1 has an
R-module structure for every i . An object X of M is called strongly R-nilpotent if for
each k 2 Z the homotopy object �k.X/ is strongly R-nilpotent and there exist integers
s and t such that X ' Ps.X/ ' P t .X/. We denote the full subcategory of strongly
R-nilpotent objects of M by SNilp.R/.

7.2.5. Observe that if M 2M~ is strongly R-nilpotent, then it is strongly R-nilpotent as
an object of M; conversely any strongly R-nilpotent object of M which is concentrated
in degree 0 for the t-structure is a strongly R-nilpotent object of M~. If an object X
in M is strongly R-nilpotent, then it is R-nilpotent in the sense of Definition 7.1.1.
Indeed, sinceX is bounded in the t -structure of M,X is an iterated extension of finitely
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many of its homotopy objects †i�i .X/ which are, on their turn, iterated extensions
of R-modules. In particular, if E is a homotopy commutative algebra in M�0 and
�0.E/ ' R, then any strongly R-nilpotent object X is also E-nilpotent.

Definition 7.2.6. Let X be an object in M. A strongly R-nilpotent resolution of
X is a tower of objects under X ,

X ! � � � ! Xn ! Xn�1 ! � � � ! X0;

satisfying the following two properties:

(1) Xn 2 SNilp.R/ for every n 2 N.

(2) For any Y 2 SNilp.R/ the induced map of pro-objects ¹Xº ! ¹X�º defined by the
tower induces an equivalence

MapPro.M/.¹X�º; ¹Y º/! MapPro.M/.¹Xº; ¹Y º/;

where X and Y are considered as constant pro-objects.

We now prepare for an analogue of Proposition 7.1.13 for strongly R-nilpotent
resolutions.

Lemma 7.2.7. If M ! N ! O ! P ! Q is an exact sequence in M~ where
M;N ;P ;Q are strongly R-nilpotent, then O is strongly R-nilpotent too.

Proof. By breaking up the exact sequence in shorter pieces, the statement follows
by combining Lemmas 7.2.8 and 7.2.9.

Lemma 7.2.8. If 0!M! N ! O ! 0 is a short exact sequence in M~ and
both M and O are strongly R-nilpotent, then N is strongly R-nilpotent too.

Proof. A suitable filtration on N can be obtained by combining the filtration on
M and the pre-image in N of the filtration on O.

Lemma 7.2.9. If � W C0 ! C1 is a map in M~ and both C0 and C1 are strongly
R-nilpotent, then both H0 D Ker� and H1 D Coker� are strongly R-nilpotent too.

Proof. Up to increasing the length of the filtrations C0i and C1i we can assume
that � respects the filtrations. As a consequence .C �; �/ is a filtered complex in M~.
With respect to this filtration we use the spectral sequence for filtered complexes. By
assumption, the terms in the E2-page are R-modules and the differentials are R-linear
by Lemma 7.2.1. Hence we gain a finite filtration on the cohomology of C � with
associated graded R-module quotients.
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Lemma 7.2.10. Let f W L! �0.1/ be a morphism in M, where L is a tif object.
Denote by �f the induced map R ^ L! R in M~ given by Lemma 4.3.4, and let
� WD coker.�f /. Then � is a commutative R-algebra in M~ and its multiplication map
�� W � ˝

~ � ! � is an isomorphism. Furthermore, for every strongly R-nilpotent
object M of M~ both kernel and cokernel of the multiplication by f on M are strongly
�-nilpotent.

Proof. First of all, since L 2M�0, f induces a map �0.L/! �0.1/! R, and
�0.L/ is a strongly dualizable object of M~, so Lemma 4.3.4 fully applies. We deduce
that f extends uniquely to the map �f WR^L!R, the commutative algebra structure
of R in M~ descends uniquely to a commutative algebra structure on � , such that the
projection R! � is an algebra map. Furthermore, the multiplication induced on � is
an isomorphism.

Let 0 DMn �Mn�1 � � � � �M0 DM be a filtration of M by objects Mi of M~

whose associated graded pieces are R-modules, and denote by rf .M/ WM ^ L!M

the induced right multiplication by f on M. If n D 1, then M is an R-module, rf .M/

is automatically R-linear by Lemma 7.2.1, and thus kernel and co-kernel of rf .M/

are �-modules by Lemma 4.3.4. If n > 1, one can proceed by induction. Indeed,
since the multiplication map rf .M/ WM ^ L!M commutes with any map in M

by Section 3.2.3, it respects the filtration. As a consequence, for every integer k � 1,
rf .M/ induces a map of short exact sequences

0 //Mk�1
//

rf .M/

��

Mk
//

rf .M/

��

Mk=Mk�1
//

rf .M/

��

0

0 //Mk�1
//Mk

//Mk=Mk�1
// 0:

Thus, by combining the snake lemma together with Lemma 7.2.7 and the inductive
assumption, we conclude.

7.3 – Relation between localizations and nilpotent completions

Notation 7.3.1. For the rest of the section we fix a homotopy commutative algebra
E in M�0, and we assume that the induced multiplication on �0.E/ is an isomorphism.
We also denote by R the homotopy object �0E.

Proposition 7.3.2. Let X be an object of M�k for some integer k. Then the tower
X ! P �. xE� ^X/ is a strongly R-nilpotent resolution of X .

Proof. We first need to check that P n. xEn ^X/ 2 SNilp.R/ for every n 2 Z. By
the connectivity of X , each of the P n. xEn ^X/ is bounded in the t-structure, so we
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only need to check that �k. xEn ^X/ is strongly R-nilpotent for every pair of integers
k; n. Recall that for every n in N we have a fiber sequence of the form

(7.3) X ^E ^ xEn ! X ^ xEn
fn
�! X ^ xEn�1

obtained from (6.5) by smashing with X . By construction, for n D 0, such a fiber
sequence is the cone sequence of the identity of X ^E. In particular, for every k 2 Z,
�k.X ^ xE0/ is a �0E-module and thus it is strongly R-nilpotent (R D �0E). We
can now proceed by induction on n. Note that �k.X ^ xEn ^E/ is an R-module too
and thus is strongly R-nilpotent. This observation, once combined with the inductive
assumption, allows to apply Lemma 7.2.7 to the long exact sequence of homotopy
objects associated to the fiber sequence (7.3).

As a second step we need to prove that for any Y 2 SNilp.R/ the projection
p W X ! P��. xE� ^X/ induces an equivalence

MapPro.M/.¹P
��. xE� ^X/º; ¹Y º/! MapPro.M/.¹Xº; ¹Y º/:

However the factorization through the Adams tower X ! xE� ^X induces a commuta-
tive diagram

colimn Map.P n. xEn ^X/; Y /

�n

��

MapPro.M/.¹P
��. xE� ^X/º; ¹Y º/

�

�� ))

'oo

colimn Map. xEn ^X; Y / MapPro.M/.¹
xE� ^Xº; ¹Y º/ //'oo Map.X; Y /;

where the map � and the maps �n are induced by the projection maps to the Postnikov
truncations. The facts that Y isE-nilpotent (Section 7.2.5) and that the standard Adams
tower X ! xE� ^X is an E-nilpotent resolution (Proposition 7.1.13) imply that the
rightmost horizontal map is an equivalence. We are left to show that � is an equivalence
too. This follows from the fact that Y is bounded in the homotopy t -structure on M, so
�n is an equivalence for large n.

Proposition 7.3.3. For every object X 2M�k , where k 2 Z, the following holds.

(1) The Postnikov truncation of the standard Adams tower X ! P �. xE� ^ X/ is a
strongly R-nilpotent resolution of X in M.

(2) The pro-object under X associated to a strongly R-nilpotent resolution of X is
unique up to a contractible space of choices.

(3) If X ! X� is a strongly R-nilpotent resolution of X , there is an equivalence
limN.Nop/X� ' X

^
E in MX=.
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Proof. Part (1) is Proposition 7.3.2. Part (2) works similarly to (2) in Proposi-
tion 7.1.13. For property (3) we combine the equivalence ¹X�º ' ¹P �. xE� ^ X/º of
pro-objects underX coming from the previous points with the � -equivalence (cf. Defini-
tion A.1.3) ¹P �. xE� ^X/º ¹ xE� ^Xº of pro-objects underX induced by the projection
to the tower of truncations. The inverse limit of a composition of these two maps induces
an equivalence under X as required in the statement (cf. Section A.1.4).

Lemma 7.3.4. Consider a collection of tif objects L1; : : : ; Lr of M. For every
i D 1; : : : ; r let fi WLi ! �0.1/ be a map inM, and let R be the commutative algebra in
M~ defined by R D �0.1/=.f1; : : : ; fr/. Then for every bounded-below objectX 2M,
the tower X ! P �.C.f �1 / ^ � � � ^ C.f

�

r / ^ X/ is a strongly R-nilpotent resolution
of X .

Proof. We need to check that for every pair of integers k; n the homotopy objects
�k.C.f

n
1 /^ � � � ^C.f

n
r /^X/ are strongly R-nilpotent. We accomplish this by induc-

tion on n, the base case being that of n D 1. Assume thus that n D 1. We proceed by
induction on r . For r D 0 we have R D �0.1/, and thus the homotopy objects �k.X/
are strongly �0.1/-nilpotent. When r � 1, we set Ra WD �0.1/=.f1; : : : ; fa/. We can
apply Lemma 7.2.10 to the homotopy objects M WD �k.C.f1/^ � � � ^C.fa/^X/ and
M0 WD �k�1.C.f1/^ � � � ^C.fa/^X/, which are strongly Ra-nilpotent by the induc-
tive assumption. It follows that the external homotopy objects of the exact sequences
(for varying k)

0! coker.rfaC1.M//! �k.C.f1/ ^ � � � ^ C.faC1/ ^X//

! ker.rfaC1.M
0//! 0

are strongly Ra=.faC1/-nilpotent. In particular, they are strongly RaC1-nilpotent, since
Ra=.faC1/ ' RaC1, and by Lemma 7.2.8 we conclude that the central homotopy
objects are strongly RaC1-nilpotent too. Given now any r-tuple of positive integers
.n1; : : : ;nr/, we can show that �k.C.f

n1
1 /^ � � � ^C.f

nr
r /^X/ is strongly R-nilpotent

by induction, using the fiber sequences

L
^ni�1
i ^ C.fi /! C.f

ni
i /! C.f

ni�1
i /

for i D 1; : : : ; r and Lemma 7.2.7 to reduce to the above base case.
Let us assume now that Y is a strongly R-nilpotent object of M. Let us denote by

Cn the object C.f n1 / ^ � � � ^ C.f
n
r / 2M. We thus need to check that the map

colim
n

Map
�
P n.Cn ^X/; Y

�
! Map.X; Y /;

induced by the projection to the tower, is an equivalence. Since �k.Y / is strongly
R-nilpotent, each fi acts on such a homotopy object nilpotently. It follows that there
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is an integer N for which each f Ni acts by 0 on each homotopy object of Y . Moreover,
since Y is bounded in the t -structure, up to enlarging N we may actually assume that
each f ki acts by 0 on Y whenever k � N . Since Y is bounded in the t-structure, we
only need to check that the map

(7.4) colim
n

Map.Cn ^X; Y /! Map.X; Y /

induced by the projection to the tower X ! C� ^X is an equivalence. If r D 1, then
the fiber of the map of towers X ! C� ^X is the tower L^� ^X with maps induced
by rf .L^n�1/ W L^n ! L^n�1. From the above argument we readily deduce that

colim
n

�kMap.L^n ^X; Y / ' 0;

guaranteeing that the map (7.4) is an equivalence. In the case r � 2, one reduces to
the case just proved using that by cofinality

colim
n1;:::;nr

Map
�
C.f

n1
1 / ^ � � � ^ C.f nrr / ^X; Y

�
' colim

n
Map.Cn ^X; Y /:

Theorem 7.3.5. LetE be a homotopy commutative algebra ofM satisfying Assump-
tion 4.2.1 in the special case that J D ;. Then for every k-connected object of M
the natural map ˛E .X/ W X ! X^E is an E-equivalence. In particular, the map
ˇE .X/ W XE ! X^E of (7.2) is an equivalence in M.

Proof. Let Cn WD C.f n1 / ^ � � � ^ C.f
n
r /. Proposition 7.3.2 and Lemma 7.3.4

imply that both the tower P �. xE� ^ X/ and the tower P �.C� ^ X/ are strongly R-
nilpotent resolutions of X . Thanks to Proposition 7.3.3 there is an equivalence � of
their associated pro-objects underX . As a consequence we have an induced equivalence
under X between their limits:

 W lim
N.Nop/

P
�
. xE� ^X/

'
�! lim

N.Nop/
P
�
.C� ^X/:

Since these limits are naturally identified with X^E and X^
f1;:::;fr

respectively, we get a
commutative square of pro-objects under X :

(7.5) ¹X^E º  

' //

��

¹X^
f1;:::;fr

º

��

¹P��. xE� ^X/º
�
// ¹P �.C� ^X/º;

where the vertical maps are the natural projections.
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After smashing the towers in (7.5) with E, we obtain a new commutative square of
pro-objects:

(7.6) ¹E ^X^E º
//

��

¹E ^X^
f1;:::;fr

º

��

¹E ^ P �. xE� ^X/º // ¹E ^ P �.C� ^X/º:

Here the lower horizontal map remains an equivalence of pro-objects. We claim that
the right vertical map of (7.6) is a � -equivalence of pro-objects.

For showing this claim, consider that the vertical map X^
f1;:::;fr

! ¹P �.C� ^X/º

on the right-hand side of (7.5) factors as the composition of two maps: the projection

(7.7) ¹X^f1;:::;fr º ! ¹C� ^Xº

and the projection to the Postnikov tower

(7.8) ¹C� ^Xº ! ¹P
�
.C� ^X/º:

The map (7.8) is a �-equivalence by Section A.1.4 and stays a �-equivalence after
smashing with E by Lemma A.1.7. Concerning (7.7), we observe that by construction
we have a commutative diagram of pro-objects:

(7.9) X^
f1;:::;fr

// ¹Cn ^Xº

X:

�
ff OO

Since � is an E-equivalence by Propositions 4.3.2 and 3.2.14, in order to finish the
proof of the above claim we are left to show that the vertical map of (7.9) induces, after
smashing with E, a � -equivalence of pro-objects in M.

To accomplish this task we consider the tower F .r/� D fib.X ! C� ^X/, and show
that the pro-object ¹E ^ F .r/� º is � -equivalent to 0. For this, remember that in the tower
C� the transition maps

 n W Cn D C.f
n
1 / ^ � � � ^ C.f

n
r /! C.f n�11 / ^ � � � ^ C.f n�1r / D Cn�1

are defined as  n D pn.fr/ ı � � � ı pn.f1/: here for every integer n the maps pn.fi /
are induced by the maps pn defined in Section 3.2.9 and displayed in (3.1). If r D 1, we
have F .1/� D L^� ^X and its transition maps are rf1.L

^n�1/ ^X , as in (3.1). Since
rf1 acts trivially on the towers of homotopy objects �k.E ^ F

.1/
� /, we deduce that

¹E ^ F
.1/
� º is �-equivalent to 0. If r > 1, one can argue by induction. Indeed, using
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the fiber sequence fib.˛/! fib.ˇ ı ˛/! fib.ˇ/ associated to the composable arrows
a
˛
�! b

ˇ
�! c of a stable1-category, we can find a fiber sequence of towers

F .s�1/� ! F .s/� ! G.s/�

having the following properties: the pro-object ¹E ^ F .s�1/� º is �-equivalent to 0
by the inductive assumption, and ¹E ^ G.s/� º is �-equivalent to 0 by the case r D 1
treated above. Hence, thanks to Corollary A.1.6, we conclude that (7.7) becomes a
� -equivalence after smashing with E.

Let us consider now the commutative square of towers

(7.10) X //

��

X^E

��

xE� ^X // P �. xE� ^X/

and note that, in order to conclude, we only need to show that the map E ^ ˛E .X/ W
E ^X ! E ^X^E is an equivalence. This map is the upper horizontal arrow of the
diagram

(7.11) E ^X //

��

E ^X^E

��

E ^ . xE� ^X/ // E ^ P �. xE� ^X/

which is obtained from (7.10) by smashing with E. In (7.11), the right vertical map
induces a �-equivalence on pro-objects as it follows from the previous part of the
argument. The lower horizontal map also induces a � -equivalence of the associated pro-
objects by Lemma A.1.7. Finally, the left vertical map of (7.11) induces a � -equivalence
too, as we now explain. We have a fiber sequence of towers

(7.12) xE
�
^X ! X ! xE��1 ^X

which we obtain from diagram (6.4) upon smashing with X . The left vertical map in
the square (7.10) is the map induced by the right-hand side maps of (7.12). We claim
that, after smashing (7.12) with E, the tower xE� ^X on the left-hand side of (7.12)
becomes � -equivalent to zero. Indeed, by the very inductive definition of xEn we have
fiber sequences deduced from (6.2):

xEnC1 ^X
Ne^id
���! xEn ^X

eE^id
����! E ^ xEn ^X:

Here eE W 1! E is the unit of the algebra E, while Ne ^ id (see (6.2)) appears as the
transition map in the tower E ^ xE� ^ X . After smashing with E we thus have an
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induced long exact sequences of homotopy objects

� � � ! �k.E ^ xE
nC1
^X/! �k.E ^ xE

n
^X/! �k.E ^E ^ xE

n
^X/! � � �

and the maps �k.E ^ xEn ^X/! �k.E ^E ^ xE
n ^X/ are split by the multiplication

of E. In this case, the previous map in the long exact sequence, which is the same
as the transition map in the tower �k.E ^ xE� ^X/ is zero, and hence the associated
pro-object is equivalent to 0 for every k. Using Corollary A.1.6, we deduce that the
upper horizontal map of (7.11) is a � -equivalence. Both source and target of this map
are constant towers, so the map is actually an equivalence in M, and this concludes the
proof.

7.3.6. The combination of Theorem 7.3.5, Theorem 4.3.7 and Proposition 3.2.15
recovers and generalizes the results of [16] using different techniques. Similar results
have been published by Bachmann and Østvær in [5] using techniques similar to ours.
They have actually found a more efficient strategy for reaching the conclusions of
Theorem 7.3.5.

7.3.7. The content of Theorem 7.3.5 is sometimes summed up by saying the E-based
Adams–Novikov spectral sequence conditionally converges for k-connected objects.
Of course one could ask for stronger notions of convergence. In the topological setting,
work of Bousfield [8, Theorem 6.12] shows how better convergence properties may
be related to structural properties of E. In the motivic setting, little is known in this
direction. In a different direction, however, work of Kylling and Wilson [18] investigates
strong convergence properties for the Adams spectral sequence for the sphere spectrum
over fields.

Lemma 7.3.8. Let E be a homotopy commutative algebra in M satisfying Assump-
tion 4.2.1 in the special case that I D ;. Then for every k-connected object X , the
tower ¹P n.1ŒJ�1� ^X/ºn is a strongly �0E-nilpotent resolution of X .

Proof. Since the unit 1! E induces an equivalence �0.1ŒJ�1�/
'
�!R, we imme-

diately conclude that the homotopy objects �k.X ^ 1ŒJ�1�/ are all R-modules and
hence they are strongly R-nilpotent. The mapping property of strongly R-nilpotent
resolutions is an immediate consequence of the universal property of the Postnikov
truncations.

Theorem 7.3.9. Let E be a homotopy commutative algebra in M satisfying
Assumption 4.2.1 in the special case that I D ;. Then for every k-connected object
X , the natural map �E .X/ W X ! X^E is an E-equivalence. In particular, the map
ˇE .X/ W XE ! X^E of (7.2) is an equivalence in M.
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Proof. The proof proceeds along the same lines as the proof of Theorem 7.3.5.
More precisely we start by observing that the towers P �. xE� ^X/ and P �.X ^ 1ŒJ�1�/
are both strongly R-nilpotent resolutions of X by Proposition 7.3.2 and Lemma 7.3.8
respectively. We deduce, as in the proof of Theorem 7.3.5, that there is an equivalence
 W X^E ! X ^ 1ŒJ�1� under X making the following square of pro-objects under X
commutative:

(7.13) ¹X^E º
u //

��

¹X ^ 1ŒJ�1�º

��

¹P �. xE� ^X/º
'

�
// ¹P �.X ^ 1ŒJ�1�/º:

After smashing (7.13) with E, the lower horizontal map remains an equivalence of
pro-objects. The vertical map on the right-hand side of (7.13) is a �-equivalence by
Section A.1.4, and stays a � -equivalence after smashing withE by Lemma A.1.7. These
two observations show that, after smashing with E, also the left vertical map of (7.13)
is a �-equivalence. The remaining part of the proof follows step by step the proof of
Theorem 7.3.5.

A. Appendices

A.1 – Pro-objects

We gather here some well-known statements on pro-objects in an1-category C that
we have freely used in the previous sections. We will also recall some properties of pro-
objects in a symmetric monoidal stable1-category M endowed with a left-complete
multiplicative t -structure.

A.1.1. Recall that the1-category of pro-objects of C, denoted by Pro.C/, is defined
as Ind.Cop/op (cf. [21, Section 5.3.5]). Recall that every diagram p W I ! C indexed on
a cofiltered simplicial set I gives a pro-object of C: in Cop we have a filtered diagram
I op ! Cop, and the colimit of its composition with the Yoneda embedding

I op p
�! Cop j

�! P.Cop/

is the desired pro-object. Starting with Section 3 we have considered towers in C,
i.e., diagrams indexed on N.Nop/; these are clearly cofiltered simplicial sets, and thus
every diagram in C indexed on them gives rise to a pro-object of C. Along the text
we have used the symbol ¹X�º to denote the pro-object associated with a diagram
X�. We denote by Tow.C/ the full sub-1-category of Pro.C/ spanned by pro-objects
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associated with diagrams indexed on N.Nop/. We have used the term ‘tower’ to denote
diagrams indexed on N.Nop/ as well as their associated pro-object.

Lemma A.1.2. Let X�; Y� W I ! C be cofiltered diagrams in C. Then for the associ-
ated pro-objects, we have

MapPro.C/.¹X�º; ¹Y�º/ ' lim
n

colim
k

MapC.Xk; Yn/:

Proof. The lemma follows from the facts that P.Cop/ admits small colimits [21,
Corollary 5.1.2.3] and constant ind-objects are compact [21, Proposition 5.3.5.5].

Definition A.1.3. Assume that M is a stable 1-category endowed with a t-
structure. A map of pro-objects f W ¹X�º ! ¹Y�º is a � -equivalence if, for every integer
p, the induced map ¹�p.X�/º ! ¹�p.Y�/º is an equivalence in Pro.C~/. A pro-object
¹X�º is �-equivalent to 0 if, for every integer p, the homotopy objects ¹�p.X�/º are
equivalent to 0 as objects of Pro.C~/.

A.1.4. Of course every equivalence of pro-objects is a � -equivalence. Moreover, given
any object ¹X�º of Tow.M/, the projection to the Postnikov tower

�k W Xk ! P k.Xk/

induces a �-equivalence ¹��º W ¹X�º ! ¹P �.X�/º. Note that in general the projection
map ¹��º does not need to be a pro-equivalence. By cofinality, the map ¹X�º !
¹P �.X�/º induces an equivalence between the respective inverse limits.

A.1.5. Since M~ is an abelian category, Pro.M~/ is an abelian category by [1,
Appendix, Proposition 4.5]. Moreover, the full subcategory Tow.M~/ � Pro.M~/ is
closed under finite limits and colimits: this can be proved following the strategy of the
proof of [6, Proposition 2.7]. In particular, Tow.M~/ is an abelian category. It follows
that a map ¹f�º W ¹M�º ! ¹N�º of Tow.M~/ is an equivalence if and only if both
ker.¹f�º/ and coker.¹f�º/ are pro-objects equivalent to 0. In particular, we conclude
the following.

Corollary A.1.6. LetX�; Y�;Z� be towers in M. Assume we have a fiber sequence
of towers

X�
f�
�! Y�

g�
�! Z�:

Then the induced map of pro-objects ¹g�º W ¹Y�º ! ¹Z�º is a � -equivalence if and only
if the pro-object ¹X�º is � -equivalent to 0.
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Lemma A.1.7. Assume that ¹X�º is an object of Tow.M/ and that the t-structure
on M is multiplicative. Then for every object E 2M�k , the projection to the Postnikov
tower induces a � -equivalence

¹E ^X�º ! ¹E ^ P
�
.X�/º:

Proof. Consider the fundamental fiber sequence

E ^ PnC1.Xn/! E ^Xn ! E ^ P n.Xn/

induced from (2.1). If E 2M�k , then E ^ PnC1.Xn/ 2M�kCnC1, and in particular
¹�p.E ^ P�C1.X�//º is equivalent to zero. The statement then readily follows from
Corollary A.1.6.

A.2 – Categorical recollection

We quickly gather some known general properties of the1-category SH.S/, where
S is a Noetherian scheme of finite Krull dimension. Using the formalism of [22], we
deduce analogous properties for categories of modules over commutative algebras in
SH.S/. Our arguments are by no mean original; they are rather a reader’s guide to the
navigation of the relevant statements of [22].

A.2.1. In [17], Jardine introduces the motivic model structure on symmetric T -spectra
Spt†T .S/, which is the base for our constructions. We can combine [17, Section 4, in
particular Theorems 4.15 and 4.31] together with [13, Lemma 4.2] to get the following
result.

Theorem A.2.2. The stable motivic model structure on Spt†T .S/ is simplicial,
stable, proper, cofibrantly generated and combinatorial. The smash product of motivic
symmetric T -spectra can be completed to the datum of a closed symmetric monoidal
structure on Spt†T .S/, making it a simplicial symmetric monoidal model category.

Definition A.2.3. A symmetric monoidal1-category is an infinity category C˝

with a coCartesian fibration p W C˝! N.Fin�/ such that the functors �i
Š
W C˝
hni
! C˝

h1i

induce an equivalence of1-categoriesY
i

�iŠ W C
˝

hni
' .C˝

h1i
/n

(see [22, Definition 2.0.0.7]). The1-category C˝
h1i

is called the underlying1-category
associated with C˝, and is usually abusively called a symmetric monoidal1-category,
hiding the reference to the map p.
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A.2.4. As in ordinary category theory, colored operads generalize the notion of sym-
metric monoidal category, similarly in higher category theory1-operads generalize
the notion of symmetric monoidal1-categories. We do not recall the definition of an
1-operad which can be found in [22, Definition 2.1.1.10]. We however record that, as
a consequence of [22, Proposition 2.1.2.12], a coCartesian fibration p W C˝! N.Fin�/
between1-categories is a1-operad if and only if it is a symmetric monoidal1-
category.

A.2.5. SH.S/ is symmetric monoidal, presentable and stable. In the case of interest
for us, the work of Lurie on1-categories gives us a streamlined way of producing
a symmetric monoidal 1-category SH.S/ associated with a base scheme S . One
possible construction is to set

SH.S/ WD N�.Spt†T .S/o/;

where N� denotes the simplicial nerve construction, and Spt†T .S/o � Spt†T .S/ denotes
the full subcategory spanned by cofibrant-fibrant objects.

With this definition, using [23] allows to conclude that we have equivalences of
homotopy categories

hN�.Spt†T .S/o/ ' Ho.Spt†T .S/o/ ' Ho.Spt†T .S//:

By design, SH.S/ is the fiber over h1i of the operadic nerve construction

p W N˝.Spt†T .S/o/! N.Fin�/;

see [22, Notation 2.1.1.22, Definition 2.1.1.23]. Combining Theorem A.2.2 with [22,
Proposition 4.1.7.10], we conclude that SH.S/ is the underlying 1-category of a
symmetric monoidal 1-category. The monoidal product, which is induced by the
smash product of spectra is denoted by � ^ � and the unit is denoted by S.

Recall that Spt†T .S/ is a combinatorial simplicial model category. In this situa-
tion, Proposition A.3.7.6 of [21] implies that SH.S/ is a presentable1-category. In
particular, SH.S/ admits all small limits and colimits [21, Proposition 4.2.4.8].

In addition, SH.S/ is a stable1-category in the sense of [22, Definition 1.1.1.9].
Indeed, in view of [22, Corollary 1.4.2.27], we only need to check that SH.S/ has finite
colimits and the suspension functor † W SH.S/! SH.S/ is an equivalence. Now the
first condition is satisfied since SH.S/ is presentable. The second condition is implied
by the fact that the suspension functor † is induced from the Quillen equivalence
†S1 W Spt†T .S/ � Spt†T .S/ W �S1 . Indeed, from [21, Theorem 4.2.4.1] it follows that
N� carries homotopy (co)limit diagrams in Spt†T .S/o to (co)limit diagrams in SH.S/.
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A more informative construction of SH.S/was given by Robalo [31, Theorem 2.26]
who proves that SH.S/ is the stable presentable symmetric monoidal 1-category
initial with respect to the property that P1 ^ � is an invertible endofunctor.

A.2.6. SH.S/ is presentably symmetric monoidal. The properties of the monoidal
structure on SH.S/ are actually a bit stronger than what already stated, making it a
presentably symmetric monoidal1-category according to [22, Definition 3.4.4.1].
The essential point is that SH.S/ is the underlying1-category of a combinatorial
simplicial symmetric monoidal model category. Indeed:

(1) p is a coCartesian fibration of1-operads, as recorded in Section A.2.5.

(2) p is compatible with small colimits according to [22, Definition 3.1.1.18]. Indeed,
Spt†T .S/ is co-complete and the smash product of spectra commutes with all colimits,
being a left adjoint.

(3) For each object hni 2 N.Fin�/, the fiber SH.S/˝
hni

is presentable. Indeed,

SH.S/˝
hni
'

nY
iD1

SH.S/˝
h1i
'

nY
iD1

SH.S/;

whose presentability was addressed in Section A.2.5.

Definition A.2.7 ([22, Definition 2.1.3.1]). A commutative algebra of SH.S/ is a
map of1-operads s W N.Fin�/! SH.S/˝ which is a section of the natural projection
p W SH.S/˝ ! N.Fin�/. The object s.h1i/ W �! SH.S/ is called the commutative
algebra underlying s. Along this section we will often refer to s.h1i/ as commutative
algebra in SH.S/, leaving the section s implicit.

A.2.8. Modules over a commutative algebra. Let us denote SH.S/ simply by C in
order to make references to [22] more directly traceable. Let A be a commutative
algebra in C. Lurie constructs in [22, Section 3.3.3] a fibration of 1-operads pA W
ModA.C/˝ ! N.Fin�/. What we denoted in Section 2.2.2 by ModA.S/ is the 1-
category ModA.C/ WD ModA.C/˝h1i. We omit the relevant1-operad from the notation,
since we are only dealing with N.Fin�/. The construction of ModA.C/˝ also produces
a forgetful functor � W ModA.C/˝ ! C˝. In Section 2.2.2, we denoted by UA D �h1i
the functor induced by � on the underlying1-categories.

A.2.9. UA commutes with small limits and colimits. We can use [22, Theorem 3.4.4.2]
and [22, Corollary 3.4.4.6] to deduce that pA W ModA.C/˝ ! N.Fin�/ is actually a
presentably symmetric monoidal1-category and that the forgetful functor

� W ModA.C/˝ ! C˝
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detects and commutes with all small colimits. Similarly, using [22, Corollary 3.4.3.6],
we deduce that� detects and commutes with all small limits. In particular, the underlying
functor UA D �h1i W ModA.C/! C detects and commutes with all small limits and
colimits.

A.2.10. UA is conservative. This is not spelled out explicitly in [22], but it can be
easily deduced from the combination of some of the main statements. In first place, we
use that forgetting the commutativity of A induces a canonical equivalence between
A-modules and left modules over the associative algebra A

ModA.C/
'
�! LModA.C/;

as proven in [22, Corollary 4.5.1.6]. In second place, we use that ModA.C/ is naturally
identified as the fiber over A of a cartesian fibration # W Mod.C/! Alg.C/. More
precisely we have a diagram of1-categories:

LMod.C/ U //

#

��

C

Alg.C/:

The behavior of# on objects is mapping .R;M/ 7!R, whereR is an associative algebra
and M a left R-module. The functor U instead operates on objects as .R;M/ 7!M .
The functor # is a cartesian fibration of1-categories and an arrow of LMod.C/ is
#-cartesian if and only if its image in C is an equivalence (see [22, Corollary 4.2.3.2]).
However, an A-module map a W �1 ! LModA.C/ is a map of LMod.C/ covering
idA W �1 ! Alg.C/, and thus a is #-cartesian if and only if a is an equivalence in
LMod.C/ (see for instance [21, Proposition 2.4.4.3]) if and only if a is an equivalence
in LModA.C/. Hence � is conservative.

A.2.11. The left adjoint of UA. We keep using the identification mentioned above:
ModA.C/

'
�! LModA.C/. The functor UA W LModA.C/! C has a left adjoint FA, that

on objects acts by mapping a spectrum X to the free A-module generated by X . The
composition UA ı FA is equivalent to A ^ �. Moreover, if � W FA.X/

'
�!M is a free

A-module, then � induces an equivalence of spaces

MapA.M;N /! MapS.X;UA.N //:

All these claims can be found in [22, Corollaries 4.2.4.6 and 4.2.4.8].
The functor � W ModA.C/˝ ! C˝ has a symmetric monoidal left adjoint  W

C˝ ! ModA.C/˝. This follows from [22, Theorem 4.5.3.1, Remark 4.5.3.2], whose
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assumptions are automatically satisfied, since pA is a presentably symmetric monoidal
1-category. In particular, FA is equivalent to  h1i.
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