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On the rational approximation to Thue–Morse rational numbers
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Abstract – Let b � 2 and `� 1 be integers. We establish that there is an absolute real numberK
such that all the partial quotients of the rational number

Q`
hD0.1 � b

�2h
/, of denominator

b2`C1�1, do not exceed exp.K.log b/2
p
`2`=2/.
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1. Introduction

An easy covering argument, which goes back to Cantelli, shows that, for almost all
real numbers � (with respect to the Lebesgue measure) and for every positive ", the
inequality ˇ̌̌

� �
p

q

ˇ̌̌
>

1

q2C"

holds for every sufficiently large q. However, it is often a very difficult problem to show
that a given real number shares this property, unless its continued fraction expansion
is explicitly determined. This is known to be the case for any irrational real algebraic
number, by Roth’s theorem, and for only a few other real numbers defined by their
expansion in some integer base. Let t D t0t1t2 : : : denote the Thue–Morse word over
¹�1; 1º defined by t0 D 1, t2k D tk , and t2kC1 D�tk for k � 0. Then the Thue–Morse
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generating series �t.z/ is given by

�t.z/ D
X
k�0

tkz
�k
D 1 � z�1 � z�2 C z�3 � z�4 C z�5 C z�6 � � � �

D

Y
h�0

.1 � z�2
h

/:

By means of a nonvanishing result obtained in [1] for the Hankel determinants asso-
ciated with the Thue–Morse sequence, Bugeaud [6] established that, for any given
positive " and any integer b � 2, the Thue–Morse–Mahler number

�t.b/ D
X
k�0

tk

bk
D 1 �

1

b
�
1

b2
C

1

b3
�
1

b4
C

1

b5
C

1

b6
�
1

b7
�
1

b8
C � � �

satisfies the inequality ˇ̌̌
�t.b/ �

p

q

ˇ̌̌
>

1

q2C"
;

for every rational number p=q with q sufficiently large. Subsequently, his result was
considerably improved by Badziahin and Zorin [4, Thm. 11], who showed that there
exists a positive real number C such that the stronger inequality

(1.1)
ˇ̌̌
�t.b/ �

p

q

ˇ̌̌
>

1

q2 exp.C log b
p
log q log log.3q//

holds as soon as q is large enough. Thus, all the partial quotients of �t.b/ are rather
small. Note also that, in view of [4, Thm. 11], the number K occurring in [4, Thm. 2]
must depend on b.
Observe that the Thue–Morse power series �t.z/ is the limit of the sequence of

rational functions

f`.z/ D
Ỳ
hD0

.1 � z�2
h

/:

More precisely, we have

�t.z/ D f`.z/CO.z
�2`C1

/; ` � 1;

and

(1.2) j�t.x/ � f`.x/j �
1

.jxj � 1/jxj2
`C1�1

; ` � 1; x 2 C; jxj > 1:

Let b � 2 and ` � 1 be integers. For a rational number p=q, we derive from (1.2) that

(1.3)
ˇ̌̌̌ ˇ̌̌
�t.b/ �

p

q

ˇ̌̌
�

ˇ̌̌
f`.b/ �

p

q

ˇ̌̌ ˇ̌̌̌
�

1

.b � 1/b2
`C1�1

:
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Consequently, �t.b/ and f`.b/ have the same first partial quotients. To see this, let
pn=qn be the convergent to �t.b/ with qn � b2

` and n maximal for this property. We
assume that ` is sufficiently large to ensure that n � 8; then a short calculation shows
that

(1.4) qn � qn�1 C qn�2 � � � � � 8qn�5:

By a result of Borel [11, Ch. I, Thm. 5B], there exists " in ¹0; 1; 2º such thatˇ̌̌
�t.b/ �

pn�5�"

qn�5�"

ˇ̌̌
�

1
p
5q2n�5�"

:

It then follows from (1.3) and (1.4) thatˇ̌̌
f`.b/ �

pn�5�"

qn�5�"

ˇ̌̌
�

1
p
5q2n�5�"

C
2

q2n
�

� 1
p
5
C

1

32

� 1

q2n�5�"

<
1

2q2n�5�"
;

which, by a classical theorem of Legendre [11, Ch. I, Thm. 5C], implies that
pn�5�"=qn�5�" is a convergent of f`.b/. Consequently, �t.b/ and f`.b/ have the
same n � 7 first partial quotients. By (1.1), these partial quotients are rather small.
However, (1.1) gives no information on the remaining partial quotients of f`.b/, thus,
in particular, on the rate with which the rational number f`.b/ of denominator b2

`C1�1

is approximated by rational numbers p=q of denominator q greater than b2` . In the
present note, we address this question and show that an inequality like (1.1) remains
true for every convergent of f`.b/.

Theorem 1.1. There exists a positive real number K such that, for every integer
b � 2 and every integer ` � 2, the inequalityˇ̌̌̌ Ỳ

hD0

.1 � b�2
h

/ �
p

q

ˇ̌̌̌
>

1

q2 exp.K log b
p
log q log log.3q//

holds for every rational number p=q different from f`.b/. Write

f`.b/ D
Ỳ
hD0

.1 � b�2
h

/ D
�
0I a

.`/
1 ; a

.`/
2 ; : : : ; a

.`/

L.`/

�
;

with a
.`/

L.`/
� 2. The partial quotients a.`/j of f`.b/ are all at most equal to

b2K
p
`
p
logb log log3b2`=2 . There exists a positive real number C , depending only on b,

such that the length L.`/ of the continued fraction of f`.b/ exceeds C2`=2=
p
`.
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The second assertion of Theorem 1.1 immediately follows from the first one and
from the classical theory of continued fractions. The last assertion already follows
from (1.1).
Theorem 1.1 is mainly motivated by the very few known results on continued

fraction expansions of sequences of rational numbers. Pourchet [10] (see also [5, 12])
proved that, for all coprime integers a and b with 1 < b < a and for every positive ",
there exists a positive C , depending only on " and on the prime divisors of a and b,
such that all the partial quotients of .a=b/n are less than Cb"n. This was subsequently
extended to quotients of power sums by Corvaja and Zannier [7], with a similar
conclusion. Consequently, the length of the continued fraction expansion of .a=b/n

(resp., of .an � 1/=.bn � 1/) tends to infinity with n. We stress that the conclusion of
Theorem 1.1 is much stronger.
The function q 7! exp.

p
log q log log.3q// occurring in (1.1) is a consequence of

the bound of order .c1k/c2k obtained in [4] for the absolute values of the coefficients
of the numerator and denominator of the kth convergent to �t.z/. However, numerical
experiments suggest that a better bound of the shape c

p
k

3 should hold (here, c1, c2,
and c3 are absolute, positive real numbers); such a result seems difficult to establish,
see Figure 1.

30

25

20

15

10

5

200 400 600 800 1000 k

log

sqrt.k/ 100

80

60

40

20

2000 4000 6000 8000 10,000 k

log

sqrt.k/

Figure 1. Logarithm of the absolute values of the coefficients of the kth convergent

To prove (1.1), Badziahin and Zorin [4] used that all the partial quotients of the
continued fraction expansion of �t.z/ are linear, a result established by Badziahin [2].
Here, we first show that all the partial quotients of the rational functions f`.z/, ` � 1
are linear. This is the main novelty of the present note and the object of Section 2.
Then, in Section 3, we prove Theorem 1.1 by adapting to our purpose the argument
of [4]. Finally, in the last section, we discuss another example.
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2. The partial quotients of the rational functions f`.z/

For a nonzero rational number x, we let �2.x/ denote its 2-adic valuation, that
is, the exponent of 2 in its decomposition into a product of prime factors. We put
�2.0/ D C1.

Proposition 2.1. For all nonnegative integers ` and j � 2`C1 � 1, let v.`/j be the
family of rational constants defined by

v
.0/
0 D 1; v

.0/
1 D 1;

and, for ` � 1,

v
.`/
0 D 1; v

.`/
1 D 2;

v
.`/
2j D �

v
.`�1/
j

v
.`/
2j�1

; 1 � j � 2` � 1;

v
.`/
2jC1 D 1C .�1/

j
� v

.`/
2j ; 1 � j � 2` � 1:

Then, for all ` � 0 and 0 � j � 2`C1 � 1, we have

�2.v
.`/
j / D

8̂̂<̂
:̂
1 for ` � 1 and j D 1;
�1 for ` � 1 and j D 2` or j D 2` C 1;
0 otherwise.

As a consequence, we have v.`/j 6D 0 for all ` � 0 and 0 � j � 2`C1 � 1.

The first values of v.`/j are given in the following table:

` n j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1

1 1 2 �1
2

1
2

2 1 2 �1 1 1
2

3
2
�
1
3

1
3

3 1 2 �1 1 1 1 �1 1 �
1
2

5
2
�
3
5

3
5

5
9

13
9
�
3
13

3
13

Consequently, the first values of �2.v.`/j / are given in the following table:

` n j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0
1 0 1 �1 �1
2 0 1 0 0 �1 �1 0 0
3 0 1 0 0 0 0 0 0 �1 �1 0 0 0 0 0 0
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Proof of Proposition 2.1. We proceed by induction on `. Recall that, for any
nonzero rational numbers x; y, we have �2.x=y/ D �2.x/ � �2.y/ and �2.x C y/ �
min¹�2.x/; �2.y/º, with equality if �2.x/ 6D �2.y/. The tables above show that the
proposition holds for 0 � ` � 3. Let ` � 4 be an integer such that the proposition holds
for ` � 1. By definition, we have

�2.v
.`/
0 / D 0; �2.v

.`/
1 / D 1; �2.v

.`/
2 / D �2.�1/ D 0:

Since �2.v.`/2jC1/ D �2.v
.`/
2j / for every j D 1; : : : ; 2

` � 1 such that �2.v.`/2j / 6D 1, we
derive that �2.v.`/3 / D 0, thus, v.`/3 is nonzero and �2.v

.`/
4 / D 0. Reiterating the argu-

ment, we get that v.`/5 ; : : : ; v
.`/

2`�1
are all nonzero and

�2.v
.`/
5 / D � � � D �2.v

.`/

2`�1
/ D 0; �2.v

.`/

2` / D �2.v
.`�1/

2`�1 / D �1:

Then �2.v.`/2`C1
/ D �1. Thus, v.`/

2`C1
is nonzero and �2.v.`/2`C2

/ D �1� .�1/ D 0. We
derive that �2.v.`/2`C3

/ D 0, thus, v.`/
2`C3

is nonzero and �2.v.`/2`C4
/ D 0. Inductively, we

get that v.`/
2`C5

; : : : ; v
.`/

2`C1�1
are all nonzero and

�2.v
.`/

2`C5
/ D � � � D �2.v

.`/

2`C1�1
/ D 0:

This completes the induction step.

Set

g`.z/ D
1

z
f`.z/ D

1

z

Ỳ
hD0

.1 � z�2
h

/

and

g`.z/ D
�
0I a1.z/; a2.z/; : : : ; am.z/

�
D

1

a1.z/
C

1

a2.z/
C � � � C

1

am.z/
;

where ai .z/ is a polynomial with rational coefficients for 1 � i � m. The following
theorem, which can be seen as a finite version of [3, Prop. 3.3], shows that all the ai .z/
are polynomials of degree one.

Theorem 2.2. Let v.`/j (`� 0;0� j � 2`C1 � 1) be the family of rational numbers
defined in Proposition 2.1. Then

(2.1) g`.z/ D
v
.`/
0

z C 1
C

v
.`/
1

z � 1
C

v
.`/
2

z C 1
C � � � C

v
.`/

2`C1�1

z � 1
; ` � 0:

Moreover, for every ` � 0, all the partial quotients in the continued fraction expansion
of g`.z/ are polynomials of degree one.
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Proof. The last assertion of Theorem 2.2 immediately follows from Proposi-
tion 2.1. We prove identity (2.1) by induction on `. Since

1

z
.1 � z�1/ D

1

z C 1
C

1

z � 1

and
1

z
.1 � z�1/.1 � z�2/ D

1

z C 1
C

2

z � 1
�

1=2

z C 1
C

1=2

z � 1
;

identity (2.1) is true for ` D 0; 1. Let k � 1 be an integer and suppose that (2.1) is true
for ` � k. We set

hkC1.z/ D
v
.kC1/
0

z C 1
C

v
.kC1/
1

z � 1
C

v
.kC1/
2

z C 1
C � � � C

v
.kC1/

2kC2�1

z � 1
:

It suffices to prove that gkC1.z/D hkC1.z/. By applying the even contraction theorem
(see, for example, [9, Thm. 2.1(1)]) to hkC1.z/, we have

hkC1.z/ D b0 C
a1

b1
C

a2

b2
C

a3

b3
C � � �;

where

a1 D v
.kC1/
0 .z � 1/;

a2 D �v
.kC1/
1 v

.kC1/
2 .z � 1/;

aj D �v
.kC1/
2j�3 v

.kC1/
2j�2 .z � 1/

2; 3 � j � 2kC1;

aj D 0; j > 2kC1;

b0 D 0;

b1 D .z C 1/.z � 1/C v
.kC1/
1 ;

bj D .z � 1/
�
.z � 1/.z C 1/C v

.kC1/
2j�1 C v

.kC1/
2j�2

�
; 2 � j � 2kC1;

bj D 0; j > 2kC1:

By removing the common factors in numerators and denominators, we obtain

hkC1.z/ D b0 C
a01
b01
C

a02
b02
C

a03
b03
C � � �;

where

a01 D v
.kC1/
0 .z � 1/;

a02 D �v
.kC1/
1 v

.kC1/
2 ;
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a0j D �v
.kC1/
2j�3 v

.kC1/
2j�2 ; 3 � j � 2kC1;

a0j D 0; j > 2kC1;

b00 D 0;

b01 D .z C 1/.z � 1/C v
.kC1/
1 ;

b0j D .z � 1/.z C 1/C v
.kC1/
2j�1 C v

.kC1/
2j�2 ; 2 � j � 2kC1;

b0j D 0; j > 2kC1:

Using the recurrence relations defined in the statement of Theorem 2.2, a quick
calculation shows that we have

hkC1.z/ D
z � 1

z2 C 1
C

v
.k/
1

z2 � 1
C

v
.k/
2

z2 C 1
C � � � C

v
.k/

2kC1�1

z2 � 1
:

This implies that hkC1.z/ D .z � 1/gk.z2/ D gkC1.z/.

Theorem 2.2 shows that the sequence of partial denominators of the continued
fraction (2.1) is given by z C 1; z � 1; z C 1; z � 1; : : : , that is, by the alternating
sequence over ¹z C 1; z � 1º. For a more general .z C b; z � b/ phenomenon, see
[8, Lem. 3.1].

3. Proof of Theorem 1.1

The key new ingredient for the proof of Theorem 1.1 is the fact that all the partial
quotients of the rational functions f`.z/ are linear. This allows us to follow the
argument of [4], with some minor changes. For the sake of readability, we keep most
of the notation of [4] and we sketch how to adapt the proof of [4, Thm. 11]. Instead of
working with the (infinite) power series gu.z/ used in [4], we fix a positive integer `
and work with the (finite) power series

g`.z/ D z
�1f`.z/ D z

�1
� z�2 � z�3 C z�4 C � � � C .�1/`z�2

`

:

Since, by Theorem 2.2, all the partial quotients of g`.z/ are linear, the auxiliary results
in [4] hold. Furthermore, for m � 1, we have

g`Cm.z/ D z
�1

`CmY
hD0

.1 � z�2
h

/

D g`.z
2m

/z2
m�1

m�1Y
hD0

.1 � z�2
h

/ D g`.z
2m

/

m�1Y
hD0

.z2
h

� 1/:
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Denoting by pk;`.z/=qk;`.z/ the convergents to q`.z/, where k D 1; : : : ; 2`C1, and
defining pk;`;m.z/ and qk;`;m.z/ by

qk;`;m.z/ D qk;`.z
2m

/;

pk;`;m.z/ D

m�1Y
hD0

.z2
h

� 1/pk;`.z
2m

/;

the analogue of [4, inequality (2.25)] holds, namely, we have

(3.1)
ˇ̌̌
g`Cm.b/ �

pk;`;m.b/

qk;`;m.b/

ˇ̌̌
�

2.k C 1/kk=22m

qk;`;m.b/ � bk2
mC1

;

for k D 1; : : : ; 2`C1. By [4, Lem. 9], for m large enough, the integer qk;`;m.b/ is
controlled and is comparable to bk2m .
We now take a large integer L (which corresponds to the integer ` in the statement

of the theorem) and study the rate of approximation to the rational number gL.b/ of
denominator b2LC1 by rational numbers p=q of denominator less than b2LC1 . We
follow the argument of [4] and look for a power of b close to q. We use the fact that
every integer n less than 2LC1 is rather close to a product k2m, where L D mC ` and
k � 2`C1. The latter constraint comes from the construction of our finite sequence of
good rational approximations to gL.b/. It is not required to hold in [4].
Let p=q be a rational number with q < b2LC1 and q sufficiently large (it is sufficient

to assume that q exceeds b�1 , for some absolute constant �1) to guarantee that the real
number x defined in [4, equation (3.2)] satisfies x > b2.
As in [4, Definition (3.8)], we set t D .log x/=.log b/; note that t > 2. Let � � 2

be a real number and denote by log2 the logarithm in base 2. Assume that

(3.2) t C 2�
p
t log2 t < 2

LC1:

This inequality holds if, for a suitable positive �2, depending only on � , we have

(3.3) q < exp.��2 log b
p
log2 q log2 log2 q/b

2LC1

:

There exist integers n and m and a real number ˛ such that 2m divides n and

t � n � t C 2�
p
t log2 t ; 2m D ˛�

p
t log2 t ; 1 � ˛ � 2:

It follows from (3.2) that the integer

k D
n

2m
�

t

˛�
p
t log2 t

C
2

˛

is less than 2L�mC1, as required.
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To make use of [4, Lems. 8 and 9], we also have to check [4, inequalities (2.26)
and (2.34)], that is, that the inequalities

22
m

� 4.k C 1/kk=2; 22
m

> 3kk=2

hold. Since we have

˛�
p
t log2 t �

� p
t

˛�
p
log2 t

C
2

˛

�
log
� p

t

˛�
p
log2 t

C
2

˛

�
for � large enough, both inequalities are satisfied if � is large enough.
We conclude that we have an inequality similar to [4, inequality (3.1)] provided

that q exceeds b�1 and satisfies (3.3). Namely, there exists an absolute positive real
number C such that, for every rational number p=q with

b�1 < q < b2
LC1��2

p
log2 q log2 log2 q;

we have ˇ̌̌
gL.b/ �

p

q

ˇ̌̌
�

1

q2 exp.C log b
p
log q log log.3q//

:

Since gL.b/ is a rational number of denominator b2
LC1 , the last inequality, with

possibly a different value of C , holds if q satisfies

b2
LC1��2

p
log2 q log2 log2 q � q < b2

LC1

:

It also holds (again with possibly a different value of C ) when q � b�1 , by using
rational approximations coming from (3.1) combined with triangle inequalities. This
proves the theorem.

4. A further example

The method developed in Section 2 is not specific to the Thue–Morse sequence
and may be used to derive a similar conclusion for other sequences. In this section, we
give a further example, whose corresponding infinite product was considered in [2, 4].
For nonzero integers u; v with u2 6D v, let us consider, for ` � 0,

Qgu;v;`.z/ D
1

z

Ỳ
hD0

.1C uz�3
h

C vz�2�3
h

/:

Inspired by [2, Thm. 1.2] where similar infinite products are studied, we define

˛
.0/
1 D �u; ˛

.0/
2 D

u3 � 2uv

u2 � v
; ˛

.0/
3 D

uv

u2 � v
;
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ˇ
.0/
1 D 1; ˇ

.0/
2 D u

2
� v; ˇ

.0/
3 D

v3

u4 � 2u2v C v2
;

˛
.`/
1 D �u; ˛

.`/
2 D

u3 � 2uv C u

u2 � v
; ˛

.`/
3 D

uv � u

u2 � v
;

ˇ
.`/
1 D 1; ˇ

.`/
2 D u

2
� v; ˇ

.`/
3 D

u4 � 3u2v C v3 C u2

u4 � 2u2v C v2
;

˛
.`/

3kC4
D �u; ˇ

.`/

3kC4
D

ˇ
.`�1/

kC2

ˇ
.`/

3kC3
ˇ
.`/

3kC2

; ˇ
.`/

3kC5
D u2 � v � ˇ

.`/

3kC4
;

˛
.`/

3kC5
D u �

˛
.`�1/

kC2
C uv � ˛

.`/

3kC2
ˇ
.`/

3kC4

ˇ
.`/

3kC5

; ˛
.`/

3kC6
D u � ˛

.`/

3kC5
;

ˇ
.`/

3kC6
D v � ˛

.`/

3kC5
˛
.`/

3kC6
:

We claim that

Qgu;v;`.z/D
ˇ
.`/
1

z C ˛
.`/
1

C
ˇ
.`/
2

z C ˛
.`/
2

C
ˇ
.`/
3

z C ˛
.`/
3

C � � � C
ˇ
.`/

3`C1

z C ˛
.`/

3`C1

; at `� 0;

where some of the rational numbers ˇ.`/j may vanish.
In the sequel, we consider only the case u D v D �1, that is,

Qg`.z/ D
1

z

Ỳ
hD0

.1 � z�3
h

� z�2�3
h

/;

and establish the nonvanishing result, also by using the 2-adic valuation. Set

˛
.0/
1 D 1; ˛

.0/
2 D �

3

2
; ˛

.0/
3 D

1

2
;

ˇ
.0/
1 D 1; ˇ

.0/
2 D 2; ˇ

.0/
3 D �

1

4
;

˛
.`/
1 D 1; ˛

.`/
2 D �2; ˛

.`/
3 D 1;

ˇ
.`/
1 D 1; ˇ

.`/
2 D 2; ˇ

.`/
3 D 1;

˛
.`/

3kC4
D 1; ˇ

.`/

3kC4
D

ˇ
.`�1/

kC2

ˇ
.`/

3kC3
ˇ
.`/

3kC2

; ˇ
.`/

3kC5
D 2 � ˇ

.`/

3kC4
;

˛
.`/

3kC5
D �1 �

˛
.`�1/

kC2
C 1 � ˛

.`/

3kC2
ˇ
.`/

3kC4

ˇ
.`/

3kC5

; ˛
.`/

3kC6
D �1 � ˛

.`/

3kC5
;

ˇ
.`/

3kC6
D �1 � ˛

.`/

3kC5
˛
.`/

3kC6
:
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Proposition 4.1. For ` � 0 and j D 1; : : : ; 3`C1, we have

• �2.˛
.`/
j / D �1 if and only if j D .3`C1 C 1/=2 or j D .3`C1 C 3/=2;

˛
.`/
j 6D 0 and �2.˛.`/j / � 0 otherwise;

• �2.ˇ
.`/
2 / D 1;

�2.ˇ
.`/
j / D �2 if and only if j D .3`C1 C 3/=2;

�2.ˇ
.`/
j / D 0 otherwise.

As a consequence, ˇ.`/j is nonzero for all ` � 0 and j D 1; 2; : : : ; 3`C1.

It follows from Proposition 4.1 that the analogue of Theorem 1.1 holds for the
products z Qg`.z/, namely, there exists a positive real number K such that, for every
integer b � 2 and every integer ` � 2, the inequalityˇ̌̌̌ Ỳ

hD0

.1 � b�3
h

� b�2�3
h

/ �
p

q

ˇ̌̌̌
>

1

q2 exp.K log b
p
log q log log.3q//

;

holds for every rational number p=q different from Qg`.b/. We omit the details.

Proof of Proposition 4.1. We proceed by induction on `, j . The basis of the
induction is clear from the definition of the ˛.`/j . We only display the more complicated
steps. We start with the ˛.`/j . Since .3

`C1 C 1/=2 is equal to 3k C 5 with k D .3` �
3/=2,

�2.˛
.`/

.3`C1C1/=2
/ D �2

�
�1 �

˛
.`�1/

kC2
C 1 � ˛

.`/

3kC2
ˇ
.`/

3kC4

ˇ
.`/

3kC5

�
D �1;

because

�2.˛
.`�1/

kC2
/ D �1; �2.˛

.`/

3kC2
/ � 0; �2.ˇ

.`/

3kC4
/ D 0; �2.ˇ

.`/

3kC5
/ D 0:

Then,
�2.˛

.`/

.3`C1C3/=2
/ D �2.�1 � ˛

.`/

.3`C1C1/=2
/ D �1:

Since .3`C1 C 7/=2 is equal to 3k C 5 with k D .3` � 1/=2,

�2.˛
.`/

.3`C1C7/=2
/ D �2

�
�1 �

˛
.`�1/

kC2
C 1 � ˛

.`/

3kC2
ˇ
.`/

3kC4

ˇ
.`/

3kC5

�
� 0;

because

�2.˛
.`�1/

kC2
/ D �1; �2.˛

.`/

3kC2
/ D �1; �2.ˇ

.`/

3kC4
/ D 0; �2.ˇ

.`/

3kC5
/ D 0:
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Then,
�2.˛

.`/

.3`C1C9/=2
/ D �2.�1 � ˛

.`/

.3`C1C7/=2
/ � 0:

Suppose that j 6D .3`C1 C 1/=2, .3`C1 C 3/=2, .3`C1 C 7/=2, .3`C1 C 9/=2. If
j D 3k C 4, then �2.˛.`/j /D 0. If j D 3k C 5 with k 6D .3` � 3/=2, .3` � 1/=2, then

�2.˛
.`/

3kC5
/ D �2

�
�1 �

˛
.`�1/

kC2
C 1 � ˛

.`/

3kC2
ˇ
.`/

3kC4

ˇ
.`/

3kC5

�
� 0;

because

�2.˛
.`�1/

kC2
/ � 0; �2.˛

.`/

3kC2
/ � 0; �2.ˇ

.`/

3kC4
/ D 0; �2.ˇ

.`/

3kC5
/ D 0:

Then,
�2.˛

.`/

3kC6
/ D �2.�1 � ˛

.`/

3kC5
/ � 0:

We now deal with the ˇ.`/j . Since .3
`C1 C 3/=2 D 3k C 6 with k D .3` � 3/=2,

ˇ
.`/

.3`C1C3/=2
D �2.�1 � ˛

.`/

3kC5
˛
.`/

3kC6
/ D �2;

because
�2.˛

.`/

3kC5
/ D �2.˛

.`/

3kC6
/ D �1:

Suppose that j 6D .3`C1 C 3/=2. If j D 3k C 4 with k 6D .3`C1 � 1/=2, then

�2.ˇ
.`/

3kC4
/ D �2

�
ˇ
.`�1/

kC2

ˇ
.`/

3kC3
ˇ
.`/

3kC2

�
D 0;

because
�2.ˇ

.`�1/

kC2
/ D 0; �2.ˇ

.`/

3kC3
/ D 0; �2.ˇ

.`/

3kC2
/ D 0:

If j D 3k C 4 with k D .3`C1 � 1/=2, then

�2.ˇ
.`/

3kC4
/ D �2

�
ˇ
.`�1/

kC2

ˇ
.`/

3kC3
ˇ
.`/

3kC2

�
D 0;

because
�2.ˇ

.`�1/

kC2
/ D �2; �2.ˇ

.`/

3kC3
/ D �2; �2.ˇ

.`/

3kC2
/ D 0:

In both cases,
�2.ˇ

.`/

3kC5
/ D �2.2 � ˇ

.`/

3kC4
/ D 0:

If j D 3k C 6 with k 6D .3` � 3/=2,

ˇ
.`/

3kC6
D �2.�1 � ˛

.`/

3kC5
˛
.`/

3kC6
/ D 0;
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because
�2.˛

.`/

3kC5
/ � 0; �2.˛

.`/

3kC6
/ � 0;

and if �2.˛.`/3kC5/ D 0, then �.˛
.`/

3kC6
/ � 1.
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