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Monge–Kantorovich interpolation with constraints
and application to a parking problem

Giuseppe Buttazzo, Guillaume Carlier, and Katharina Eichinger

Abstract. We consider optimal transport problems where the cost for transporting a given proba-
bility measure �0 to another one (�1) consists of two parts: the first one measures the transportation
from �0 to an intermediate (pivot) measure � to be determined (and subject to various constraints),
and the second one measures the transportation from � to �1. This leads to Monge–Kantorovich
interpolation problems under constraints for which we establish various properties of the optimal
pivot measures �. Considering the more general situation where only some part of the mass uses the
intermediate stop leads to a mathematical model for the optimal location of a parking region around
a city. Numerical simulations, based on entropic regularization, are presented both for the optimal
parking regions and for Monge–Kantorovich constrained interpolation problems.

1. Introduction

We consider optimal transport problems where a given probability measure �0 in Rd

has to be transported to a given probability measure �1 with minimal transportation cost.
This cost consists of two parts: the first one measures the transportation from �0 to an
intermediate measure �, to be determined, and the second one measures the transportation
from � to �1. This situation occurs in some applications where the transport of �0 to �1 is
not directly made but the possibility of an intermediate stop is taken into account. The two
parts are described by the Monge–Kantorovich functionals Wc0.�0; �/ and Wc1.�; �1/
respectively, where for every pair of probabilities �0, �1 we set

Wc.�0; �1/ D inf
° Z

Rd�Rd

c.x; y/ d
.x; y/ W 
 2 ….�0; �1/
±
: (1.1)

Here
….�0; �1/ WD

®

 2 P .Rd �Rd / W �i #
 D �i ; i D 0; 1

¯
is the set of transport plans between �0 and �1. Denoting by �i WRd �Rd !Rd (i D 0;1)
the projections on the first and second factor respectively, �i #
 are the marginals of 
 , so
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that a probability measure 
 on Rd �Rd belongs to ….�0; �1/ when´
�0#
.A/ D 
.A �Rd / D �0.A/;

�1#
.A/ D 
.R
d � A/ D �1.A/

for all Borel set A � Rd :

Some extra constraints on the pivot measure � can be added, for instance:

• location constraints, where the support of �, spt�, is required to be contained in a
given region K � Rd ;

• density constraints, where the measure � is required to be absolutely continuous and
with a density not exceeding a prescribed function �.

Without additional constraints on the measure �, the minimization of Wc0.�0; �/
CWc1.�; �1/, or its generalizations to more than two prescribed measures, arise in differ-
ent applied settings such as multi-population matching [5] or Wasserstein barycenters [1].
In particular, in the quadratic case where c0.x; y/ D c1.x; y/ D jx � yj2, minimizers of
Wc0.�0; �/CWc1.�; �1/ are the midpoints of McCann’s displacement interpolation [14]
between �0 and �1, that is, geodesics for the quadratic Wasserstein metric1. Density con-
straints are important to model congestion effects as in the seminal crowd motion model
of Maury, Roudneff-Chupin, and Santambrogio [13]. A first goal of the present paper is
to investigate the effect of location and density constraints on such Monge–Kantorovich
interpolation problems. Let us also mention that the minimization of Wc0.�0; �/ with
respect to � in a class of measures which are singular with respect to �0 was addressed
in [3], whereas the parallel case where the density constraint appears in the definition of
congestion penalization for singular measures was studied in [11, 22].

A second goal of the paper is to investigate a more general class of problems as a
mathematical model for the optimal location of a parking region around a city. In this
context, one is given two probability measures �0 and �1, which may be interpreted as a
distribution of residents and a distribution of services, respectively. A resident living at x0
reaching a service located at x1 may either walk directly to x1 for the cost c1.x0; x1/ or
drive to an intermediate parking location x and then walk from x to x1 paying the sum
c0.x0; x/C c1.x; x1/. In this model, detailed in Section 6, the pivot/parking measure �
may have total mass less than 1, and one may decompose �0 and �1 as �i D �i � �i C �i
with 0 � �i � �i denoting the driving part of �i ; the unknowns �0, � and �1 (with
same total mass) should minimize the overall cost Wc1.�0 � �0; �1 � �1/CWc0.�0; �/
CWc1.�; �1/ subject to possible additional location and density constraints on �. Let us
remark that if .�0; �1; �/ solves this parking problem, then � solves the corresponding
Monge–Kantorovich interpolation problem, that is, minimizesWc0.�0; �/CWc1.�; �1/ so
that the qualitative properties established in Sections 4 and 5 will be directly applicable

1As kindly pointed out to us by a referee, naming optimal transport distances after Wasserstein is
controversial and historically incorrect, even though the use of the name is widely spread in the literature;
we preferred to mostly use Monge–Kantorovich instead in the present paper.
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to optimal parking measures. We have chosen, as an application of our results, a model
for determining the optimal location of parking areas around a city, but other models in
different fields use similar frameworks and can be found in the literature: we quote for
instance [12, 18], where the transport between singular measures is used to model the
behavior of biological membranes.

In Section 2, we consider the general optimization problem in (2.1) and after solving
an explicit example, we prove existence and discuss uniqueness of solutions. Dual for-
mulations are introduced in Section 3. In Section 4, the particular case of distance-like
costs is studied, while Section 5 deals with the case of strictly convex cost functions; in
these sections we study various qualitative properties of the solutions, in particular their
integrability. In Section 6, we study a problem related to the optimization of a parking
area. Finally, in Section 7, we present some numerical simulations thanks to an entropic
approximation scheme and compare the solutions of interpolation and parking problems.

2. Monge–Kantorovich interpolation with constraints

Let �0; �1 2 P .Rd / be two probabilities with compact support, and let c0; c1 W Rd �
Rd ! RC be two continuous cost functions. For a class A � P .Rd /, we are interested
in solving the optimization problem

inf
®
Wc0.�0; �/CWc1.�; �1/ W � 2 A

¯
: (2.1)

Here Wci .�0; �1/ denotes the value of the optimal transport problem between two mea-
sures �0; �1 2 P .Rd /, obtained by means of the Monge–Kantorovich functionals defined
in (1.1). In order to simplify the presentation, by an abuse of notation, if � is a mea-
sure and � is a non-negative Lebesgue integrable function, by � � � we mean that � is
absolutely continuous and its density, again denoted �, satisfies � � � Lebesgue almost
everywhere; also, all the integrals with no explicitly defined domain of integration are
intended on the whole of Rd .

Typical cases for the class A of admissible choices are:

(i) no constraint, that is, A D P .Rd /;

(ii) location constraints, that is, ADP .K/ for a non-empty compact subsetK of Rd ;

(iii) density constraints, that is, A D ¹� 2 Pac.Rd / W � � �º for an L1-function � W
Rd ! RC with compact support and

R
� dx > 1.

2.1. Explicit one-dimensional examples

Before going to the general case, let us illustrate our problem in a simple one-dimensional
case, where optimal solutions can be easily recovered by explicit computations.

Example 2.1. Consider the one-dimensional case and the measures

�0.x/ D 1Œ0;1�.x/; �1.x/ D 1Œ5;6�.x/:
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We first look at the case where the cost functions are given by distances:

c0.x; y/ D .1 � t /jx � yj; c1.x; y/ D t jx � yj with t 2�0; 1Œ:

The following results can be easily seen by rephrasing the problem in terms of the dis-
tribution functions f; f0; f1 of the probabilities �; �0; �1 (see, for instance, [21, Chap-
ter 2]):

min
°Z 6

0

.1 � t /jf0 � f j C t jf � f1j dx W f non-decreasing, f .0/ D 0; f .6/ D 1
±

with the constraints

(i) no additional constraint;

(ii) sptf 0 � Œ2; 4�;

(iii) f 0 � �1Œ2;4�.

Since f1 � f0, it is easy to see that in the minimization above, one can always assume
that f1 � f � f0 and then remove the absolute values and minimize under the constraint
that f is non-decreasing and f1 � f � f0. We then have the following situations:

(i) In the absence of constraints, this becomes the problem of finding the Wasser-
stein median between �0 and �1 (see [4] for more on Wasserstein medians). In
particular, the optimal solutions � are characterized as follows:

• if t > 1=2 (respectively t < 1=2), the unique solution is given by � D �1
(respectively � D �0);

• if t D 1=2, any probability � whose distribution function f is between the
two distribution functions f0 and f1 of �0 and �1, in the sense that

f1.x/ � f .x/ � f0.x/ for all x 2 R;

is a minimizer.

(ii) In the case of the location constraint K D Œ2; 4�, we observe a similar threshold
effect:

• if t > 1=2 (respectively t < 1=2), the unique solution is given by � D ı4
(respectively � D ı2);

• if t D 1=2, then any probability measure supported on K is a solution.

(iii) In the case of density constraint �.x/ WD �1Œ2;4�.x/ with � > 1=2 we have:

• if t > 1=2 (respectively t < 1=2), the unique solution is given by � D

�1Œ4�1=�;4� (respectively � D �1Œ2;2C1=��);

• if t D 1=2, any probability measure satisfying the constraint is a solution.

The example above relies on the fact that for distance-like costs, optimality somehow
forces the triangular inequality to be saturated in dimension 1. We will investigate this
phenomenon further in Section 4.
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We now consider strictly convex cost functions: as a prototype we take, with the same
measures �0 and �1 above,

c0.x; y/ D .1 � t /jx � yj
2; c1.x; y/ D t jx � yj

2 with t 2 .0; 1/:

Also, this case can be rephrased in terms of the so-called pseudo-inverse g; g0; g1 (see,
for instance, [21, Definition 2.1]) of the distribution functions f; f0; f1 as:

min
°Z 1

0

.1 � t /.g � g0/
2
C t .g1 � g/

2ds W g non-decreasing
±

with the constraints

(i) no additional constraint;

(ii) g.Œ0; 1�/ � Œ2; 4�;

(iii) g0 � 1=� and g.Œ0; 1�/ � Œ2; 4�.

This implies

(i) In the unconstrained case the solution simply corresponds to the Wasserstein-
geodesic from �0 to �1 at time t 2 .0; 1/ or, equivalently, the weighted barycen-
ter. It is given by

�t .x/ WD 1Œ5t;1C5t�.x/:

(ii) Take the constraintKD Œ2;4�, as above. Here the solution depends on the location
of the unconstrained geodesic�t . We present a few cases (the other ones are clear
by symmetry):

• if t � 1
5

, the support of �t is contained in Œ0; 2�, hence the optimal solution
is ı2;

• if 1
5
< t < 2

5
, the optimal solution is � D .2 � 5t/ı2 C 1Œ2;1C5t�;

• if 2
5
� t � 3

5
, the support of �t is contained in Œ2; 4�, hence the solution is

simply �t .

(iii) Take the function �.x/ WD �1Œ2;4�.x/with 1 > � > 1
2

. The solution depends again
on the location of the unconstrained geodesic �t . We have the following cases
(remaining cases are again obtained by symmetry):

• if t � 1
5

, the support of �t is contained in Œ0; 2�, hence the optimal solution is
�1Œ2;2C1=��;

• if 1
5
< t < 2

5
, the optimal solution is still � D �1Œ2;2C1=��;

• if 2
5
� t � 3

5
, the support of �t is contained in Œ2; 4�, but by the density con-

straint �t is not even feasible this time. So, the solution is of the form �1Œa;b�
with 2 � a < b � 4 and b � a D 1=� .
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2.2. Reformulation, existence, uniqueness

Let us now come back to the constrained Monge–Kantorovich interpolation problem
in (2.1). Assuming that the measures �0 and �1 are compactly supported and the costs c0
and c1 are continuous and non-negative, then by the direct method one has

Lemma 2.2. Assume either case (ii) A D P .K/ with K non-empty and compact, or
case (iii) A WD ¹� 2 P .Rd / W � � �º with � 2 L1 compactly supported and

R
� dx � 1.

Then, problem (2.1) admits a solution.

Proof. In both cases, problem 2.1 consists in minimizing the sum of two Monge–
Kantorovich functionals, which is weakly* lower semi-continuous over a fixed weakly*
compact set. The conclusion then follows by the direct methods of the calculus of varia-
tions.

In the unconstrained case where A WD P .Rd /, one of course needs some coercivity in
the problem. We shall therefore assume that there exists a compact subset of Rd , denoted
(again) by K, such that for every .x0; x1/ 2 spt.�0/ � spt.�1/, one has

argmin
x2Rd

®
c0.x0; x/C c1.x; x1/

¯
is non-empty and included in K: (2.2)

We then define, for .x0; x1/ 2 spt.�0/ � spt.�1/,

c.x0; x1/ WD inf
x2Rd

®
c0.x0; x/C c1.x; x1/

¯
D min
x2K

®
c0.x0; x/C c1.x; x1/

¯
:

In the next proposition, we show that the optimization problem in (2.1), with ADP .Rd /,
is equivalent to the standard transport problem with cost c:

inf

2….�0;�1/

Z
Rd�Rd

c.x0; x1/ d
.x0; x1/; (2.3)

which clearly admits a solution, since c 2 C.spt.�0/ � spt.�1//. We easily deduce the
existence of a solution to (2.1) when A D P .Rd /, as well as the fact that all solutions are
supported by K.

We will denote by ….�0; �; �1/ the set of transport plans in the variables .x0; x; x1/
with marginals �0; �; �1, and we denote by �0;piv, �piv;1, �0;1 the projections on the first
and second, second and third, and first and third factors, respectively.

Proposition 2.3. Assume (2.2). Then, the following statements hold true:

• Let 
 2 ….�0; �1/ solve (2.3) and let T W spt.�0/ � spt.�1/! Rd be measurable
and such that

T .x0; x1/ 2 argmin
x2K

¹c0.x0; x/C c1.x; x1/º; 8.x0; x1/ 2 spt.�0/ � spt.�1/:

Then, T#
 is a solution of (2.1) with A D P .Rd / and the optimal values of (2.1)
and (2.3) coincide;
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• Conversely, for any optimal solution � of (2.1), consider optimal transport plans

0 2….�0;�/with respect to the cost c0 and 
1 2….�;�1/with respect to the cost c1.
Then, there exists a plan z
 2….�0; �;�1/ with �0;piv#z
 D 
0 and �piv;1#z
 D 
1 such
that �0;1#z
 is optimal for (2.3) and c0.x0; x/C c1.x; x1/ D c.x0; x1/ on spt.z
/ so
that � is supported by K.

The previous equivalence also holds between (2.1) with AD P .K/ (withK a given com-
pact subset of Rd ) and (2.3) with c given by c.x0; x1/D minx2K¹c0.x0; x/C c1.x; x1/º.

Proof. Let � 2 P .Rd /, 
0 2 ….�0; �/, and 
1 2 ….�; �1/; by the gluing lemma (see
[23, Lemma 7.6]), there is a plan z
 2….�0; �;�1/ with �0;piv#z
 D 
0 and �piv;1#z
 D 
1.
Hence, since 
 solves (2.3) and �0;1#z
 2 ….�0; �1/, we haveZ

Rd�Rd

c0 d
0 C
Z

Rd�Rd

c1 d
1 D
Z

Rd�Rd�Rd

®
c0.x0; x/C c1.x; x1/

¯
dz
.x0; x; x1/

�

Z
Rd�Rd�

c d�0;1#z
 �

Z
Rd�Rd

c d


D

Z
Rd�Rd

®
c0.x0; T .x0; x1//

C c1.T .x0; x1/; x1/
¯

d
.x0; x1/

� Wc0.�0; T#
/CWc1.T#
; �1/

which, taking the infimum with respect to 
0 2 ….�0; �/ and 
1 2 ….�; �1/, enables
us to deduce that T#
 solves (2.1) as well as the equality of the optimal values of (2.1)
and (2.3).

Assume now that � solves (2.1) and consider optimal transport plans 
0 2 ….�0; �/
with respect to the cost c0 and 
1 2 ….�;�1/ with respect to the cost c1. Using again the
gluing lemma, we find z
 2 ….�0; �; �1/ with �0;piv#z
 D 
0 and �piv;1#z
 D 
1, and we
then have

inf (2.3) D inf (2.1) D
Z

Rd�Rd�Rd

®
c0.x0; x/C c1.x; x1/

¯
dz
.x0; x; x1/

�

Z
Rd�Rd�Rd

c.x0; x1/ dz
.x0; x; x1/ D
Z

Rd�Rd�

c d�0;1#z
:

Therefore, �0;1#z
 is optimal for (2.3) and c0.x0; x/C c1.x;x1/D c.x0; x1/ on spt.z
/.

In other words, coercivity condition (2.2) ensures that we can replace A D P .Rd /
by AD P .K/ in (2.1) and therefore always optimize over probabilities over a fixed com-
pact subset of Rd .

Remark 2.4. We now discuss uniqueness. Letting K be a non-empty compact subset
of Rd and A be a convex subset of P .K/, note first that � 2 A 7! Wc0.�0; �/ and
� 2 A 7! Wc1.�; �1/ are convex (regardless of specific assumptions on the costs and
the measures �0 and �1). If we further assume that �0 is absolutely continuous and c0
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is locally Lipschitz and satisfies the twist condition, that is, it is differentiable in the first
coordinate and for every x0 2 spt.�0/,

y 7! rx0c0.x0; y/ is injective,

then we claim that
� 7! Wc0.�0; �/ is strictly convex. (2.4)

This implies, in particular, the strict convexity of functional to be minimized in (2.1),
and thus the uniqueness of a minimizer. The proof of strict convexity of (2.4) follows the
same lines as [21, Proposition 7.19]; we recall the argument for the sake of complete-
ness. Indeed, thanks to the twist condition and the regularity assumptions on c0 and �0,
the optimal transport problem between �0 and any � 2 A has a unique transport plan
induced by a map; see [21, Proposition 1.15] and the discussion following it. Assume that
.�; z�; t/ 2 A �A � .0; 1/ is such that

Wc0.�0; .1 � t /�C t z�/ D .1 � t /Wc0.�0; �/C tWc0.�0; z�/:

Denoting by T and zT the optimal transport maps between �0 and � and �0 and z� respec-
tively, we have

Wc0.�0; .1 � t /�C t z�/ D

Z
Rd�Rd

c0 d
t with 
t WD .id; .1 � t /T C t zT /#�0

and since 
t 2….�0; .1� t /�C t z�/, we deduce that 
t is an optimal plan between�0 and
.1 � t /�C t z�, which, by the twist condition and the absolute continuity of �0, implies
that 
t is induced by a map so that T D zT �0-almost everywhere; hence, � D T#�0 D
zT#�0 D z�. This shows the announced strict convexity claim. In particular, this argument
gives uniqueness for smooth and strictly convex costs. Note that this also gives uniqueness
for cases (ii) and (iii) in the case of concave costs, that is, when c0.x; y/ D l.jx � yj/ for
l WRC!RC strictly concave, increasing, and differentiable on .0;C1/, if we assume�0
absolutely continuous and for case (ii)K \ spt�0D;, or for case (iii) spt.�/\ spt�0D;
(see [10, 17] for refinements and weaker conditions). All these arguments for uniqueness
of course remain true if we replace the assumptions on �0 and c0 by similar assumptions
on �1 and c1.

3. Dual formulations

3.1. Location constraints

Thanks to coercivity condition (2.2), any solution � to (2.1) with A D P .Rd / is neces-
sarily concentrated on the compact set K, hence both cases (i) and (ii) can be formulated
over P .K/. In this case, it can be convenient to characterize solutions of convex mini-
mization problem (2.1) by duality as follows: given ' 2 C.K/, define the c0-transform
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of ', 'c0 2 C.spt.�0// by

'
c0
0 .x0/ WD min

x2K

®
c0.x0; x/ � '.x/

¯
; 8x0 2 spt.�0/; (3.1)

and similarly define the c1-transform of ', 'c1 2 C.spt.�1// by

'
c1
1 .x1/ WD min

x2K

®
c1.x; x1/ � '.x/

¯
; 8x1 2 spt.�1/: (3.2)

It follows from [5, Theorem 3] (where the more general multi-marginal case is considered)
that the minimum in (2.1) coincides with the value of the dual:

sup
°Z

'
c0
0 d�0 C

Z
'
c1
1 d�1 W '0; '1 2 C.K/; '0 C '1 D 0

±
; (3.3)

and the supremum in (3.3) is attained. Moreover, if '0 and '1 solve (3.3), then � 2 P .K/

solves (2.1) if and only if '0 is a Kantorovich potential between �0 and � and '1 is a
Kantorovich potential (see [21, 23] for more on Kantorovich duality) between � and �1,
that is, there exists .
0; 
1/ 2 ….�0; �/ �….�;�1/ such that

'0.x/C '
c0
0 .x0/ D c0.x0; x/; 8.x0; x/ 2 spt.
0/;

'1.x/C '
c1
1 .x1/ D c1.x; x1/; 8.x; x1/ 2 spt.
1/:

Defining the c0-concave envelope of '0 and the c1-concave envelope of '1 by

z'0.x/ WD min
x02spt.�0/

®
c0.x0; x/ � '

c0
0 .x0/

¯
;

z'1.x/ WD min
x12spt.�1/

®
c1.x; x1/ � '

c1
1 .x1/

¯
;

one has z'0 � '0 and z'1 � '1 with an equality on spt.�/ so that z'0 C z'1 � 0 with an
equality on spt.�/.

3.2. Density constraint

We now consider case (iii) where there is a constraint on the density � � �. One can
characterize minimizers by duality as follows:

Proposition 3.1. Consider (2.1) in the case (iii) where there is a constraint on the density
� � � with � 2 L1.Rd /, � � 0,

R
� dx > 1, and spt.�/ compact (as well as spt.�0/ and

spt.�1/). Then, the value of (2.1) coincides with the value of its (pre-)dual formulation

sup
'0;'12C.spt.�//2

Z
'
c0
0 d�0 C

Z
'
c1
1 d�1 C

Z
min.'0 C '1; 0/� dx (3.4)

(where 'cii are as in formulae (3.1)–(3.2) withK replaced by spt.�/). Moreover, the supre-
mum in (3.4) is attained. If .'0; '1/ solves (3.4), then � solves (2.1) under the constraint
� � � if and only if there exist 
0 2 ….�;�0/ and 
1 2 ….�;�1/ such that

'0.x/C '
c0
0 .x0/ D c0.x0; x/; 8.x0; x/ 2 spt.
0/; (3.5)

'1.x/C '
c1
1 .x1/ D c1.x; x1/; 8.x; x1/ 2 spt.
1/ (3.6)
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(so that 
0 and 
1 are optimal plans and '0 and '1 are Kantorovich potentials) and

'0 C '1 � 0 on spt.� � �/; '0 C '1 � 0 on spt.�/: (3.7)

Proof. The fact that the concave maximization problem given by (3.4) is the dual of (2.1)
under the constraint � � � follows from the Fenchel–Rockafellar duality theorem and the
Kantorovich duality formula. Indeed, we first have

sup (3.4) D � inf
'0;'12C.spt.�//2

F.'0; '1/CG.�'0 � '1/

where

F.'0; '1/ WD �

Z
'
c0
0 d�0 �

Z
'
c1
1 d�1; G.'/ WD

Z
max.'; 0/� dx; ' 2 C.spt.�//:

Note that F and G are convex and continuous for the uniform convergence topology and
it is easy to see that sup (3.4) is finite (see the proof of existence of a solution to (3.4)
below) so that by the Fenchel–Rockafellar duality theorem, we have

sup (3.4) D � sup
�2C.spt.�//�

®
�F �.�; �/ �G�.�/

¯
D inf
�2C.spt.�//�

®
F �.�; �/CG�.�/

¯
:

By the Kantorovich duality formula ([21, Proposition 1.11]), we have (also see [5] for
details)

F �.�; �/ D

´
Wc0.�0; �/CWc1.�; �1/ if � 2 P .spt.�//,

C1 otherwise

and
G�.�/ D sup

'2C.spt.�//

Z
' d� �

Z
max.'; 0/� dx;

and when � 2 P .spt.�// (which is the case when F �.�; �/ < C1), the above maxi-
mization can be restricted to non-negative functions ', yielding

G�.�/ D

´
0 if � � �

C1 otherwise.

We thus have

sup (3.4) D inf
�2P .spt.�//; ���

Wc0.�0; �/CWc1.�; �1/

and (up to extending � by 0 outside spt.�/) the right-hand side of the previous equality is
equivalent to (2.1) in case (iii) where there is a constraint on the density �� �. Let us now
prove that (3.4) admits a solution. To see this, we remark that the objective is unchanged
when one replaces .'0; '1/ by .'0 C �; '1 � �/, where � is a constant. Moreover, replac-
ing '0 and '1 by their c0=c1-concave envelopes defined for every x 2 spt.�/ by

z'0.x/ WD min
x02spt.�0/

®
c0.x0; x/ � '

c0
0 .x0/

¯
;

z'1.x/ WD min
x12spt.�1/

®
c1.x; x1/ � '

c1
1 .x1/

¯
;

(3.8)
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it is well known that z'i � 'i and z'cii D '
ci
i for i D 0; 1, so that replacing 'i by z'i

is an improvement in the objective of (3.4); moreover, the functions z'i have a uniform
modulus of continuity inherited from the uniform continuity of ci . From these observa-
tions, we can find a uniformly equicontinuous maximizing sequence .'n0 ; '

n
1 /n for which

minspt.�/ '
n
0 D 0 so that 'n0 is also uniformly bounded. Since min.'n1 C '

n
0 ;0/� 0, the fact

that .'n0 ; '
n
1 /n is a maximizing sequence together with the uniform bounds on 'n0 gives a

uniform lower bound on
R
.'n1 /

c1d�1 from which we easily derive a uniform upper bound
on 'n1 , thanks to (3.8). To show that 'n1 is also uniformly bounded from below, we observe
that the quantity Z

.'n1 /
c1d�1 C

Z
min.'n1 C '

n
0 ; 0/� dx

is bounded from below and bounded from above by C C .
R
� dx � 1/minspt.�/ '

n
1 for

some constant C . Since
R
� dx > 1, this gives the desired lower bound. Having thus found

a uniformly bounded and equicontinuous maximizing sequence, we deduce the existence
of a solution to (3.4) from the Arzelà–Ascoli theorem.

Let us now look at the optimality conditions which follow from the above duality.
If .'0; '1/ solves (3.4), then � solves (2.1) under the constraint � � � if and only if

Wc0.�0; �/CWc1.�; �1/ D

Z
'
c0
0 d�0 C

Z
'
c1
1 d�1 C

Z
min.'0 C '1; 0/�:

If 
0 (resp. 
1) is an optimal plan for c0 (resp. c1) between �0 and � (resp. � and �1), we
thus haveZ

'
c0
0 d�0 C

Z
'
c1
1 d�1 C

Z
min.'0 C '1; 0/� D

Z
c0 d
0 C

Z
c1 d
1

�

Z
.'
c0
0 .x0/C '0.x// d
0.x0; x/C

Z
.'
c1
1 .x1/C '1.x// d
1.x; x1/

D

Z
'
c0
0 d�0 C

Z
'
c1
1 d�0 C

Z
.'0 C '1/ d�

�

Z
'
c0
0 d�0 C

Z
'
c1
1 d�0 C

Z
min.'0 C '1; 0/ d�

�

Z
'
c0
0 d�0 C

Z
'
c1
1 d�0 C

Z
min.'0 C '1; 0/� dx;

where we have used that � � � in the last line. All the inequalities above should there-
fore be equalities which, together with the continuity of '0 and '1, is easily seen to
imply (3.6)–(3.5)–(3.7). This shows the necessity of these conditions; the proof of suf-
ficiency by duality is direct and therefore left to the reader.

Corollary 3.2. Under the same assumptions as in Proposition 3.1, assume that � is
optimal for (2.1) under the constraint � � � and let 
0 and 
1 be optimal transport
plans. Then, whenever x0; x; x1 are such that .x0; x/ 2 spt.
0/, .x; x1/ 2 spt.
1/, and
x 2 spt.� � �/, we have

c0.x0; x/C c1.x; x1/ D min
y2spt.���/

®
c0.x0; y/C c1.y; x1/

¯
:
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Proof. Let .'0; '1/ solve (3.4). By construction, for every .x0; x1; y/ 2 spt.�0/� spt.�1/
� spt.�/, one has

c0.x0; y/C c1.y; x1/ � '
c0
0 .x0/C '

c1
1 .x1/C .'0 C '1/.y/:

Together with (3.7), this implies that for every .x0; x1/ 2 spt.�0/ � spt.�1/,

min
y2spt.���/

®
c0.x0; y/C c1.y; x1/

¯
� '

c0
0 .x0/C '

c1
1 .x1/:

But now if x 2 spt.�/ \ spt.� � �/, by (3.7) again we have '0.x/C '1.x/ D 0. Hence,
by (3.6)–(3.5) whenever .x0; x/ 2 spt.
0/, .x; x1/ 2 spt.
1/, and x 2 spt.� ��/, we have

'
c0
0 .x0/C '

c1
1 .x1/ D c0.x0; x/C c1.x; x1/ � min

y2spt.���/

®
c0.x0; y/C c1.y; x1/

¯
;

which yields the desired result.

In the discrete case, we can easily deduce a bang-bang result stating that the constraint
� � � is always binding when � > 0 under mild conditions on the cost. We will give
similar bang-bang results for distance-like costs in Section 4.

Corollary 3.3. Assume that�0 and�1 are discrete and that for every .x0;x1/2 spt.�0/�
spt.�1/, c0.x0; �/, and c1.�; x1/ are C 1 andM -Lipschitz on spt.�/ (for someM that does
not depend on x0 and x1); also assume that the set®

x 2 spt.�/ W rxc0.x0; x/Crxc1.x; x1/ D 0
¯

(3.9)

is Lebesgue negligible. Then, if � is optimal for (2.1) under the constraint � � �, there
exists a measurable subset E of spt.�/ such that � D �1E .

Proof. Let .'0; '1/ solve (3.4). As seen in the proof of Proposition 3.1, we may assume
that for every x 2 spt.�/,

'0.x/ WD min
x02spt.�0/

®
c0.x0; x/ � '

c0
0 .x0/

¯
;

'1.x/ WD min
x12spt.�1/

®
c1.x; x1/ � '

c1
1 .x1/

¯
;

so that '0 and '1 are Lipschitz and, hence, differentiable almost everywhere on spt.�/.
Since '0 C '1 D 0 on spt.�/ \ spt.� � �/, we then have

r'0 Cr'1 D 0 a.e. on
®
0 < � < �

¯
;

but if '0 (resp. '1) is differentiable at x and .x0; x/ 2 spt.
0/ (resp. .x; x1/ 2 spt.
1//,
where 
0 and 
1 are optimal plans, then

r'0.x/ D rxc0.x0; x/; r'1.x/ D rxc1.x; x1/:
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Hence, denoting by Ai the countable concentration set of �i (i D 0; 1), almost every x
such that 0 < �.x/ < �.x/ belongs to[

.x0;x1/2A0�A1

®
x 2 spt.�/ W rxc0.x0; x/Crxc1.x; x1/ D 0

¯
;

which is negligible by assumption. The desired bang-bang conclusion then readily fol-
lows.

Remark 3.4. In some cases, for instance, when the costs c0 and c1 depend quadratically
on or more generally on the p-th power of the distance (with p > 1), the set in (3.9)
reduces to a single point which depends in a Lipschitz way on x0 and x1. The conclu-
sion of Corollary 3.3 then still holds under the weaker assumption that one between �0
and �1 is discrete and the other one is singular with respect to the Lebesgue measure.
More precisely, this still holds if the Hausdorff dimension of the support of �0 is h0, and
the Hausdorff dimension of the support of �1 is h1, with h0 C h1 < d .

4. Distance-like costs

In this section, we pay special attention to the case of distance-like costs

c0.x0; x/ WD jx0 � xj
˛; c1.x; x1/ WD �jx � x1j

˛; (4.1)

with 0 < ˛ � 1 and � > 0.

4.1. Location constraint, concentration, and integrability on the boundary

Let us start with the case of a location constraint of type (ii): � 2 P .K/ for some non-
empty compact subset K of Rd .

Lemma 4.1. Assume K is a compact subset of Rd and that one of the following assump-
tions holds:

• ˛ D 1, � > 1, and the interior of K is disjoint from spt.�1/,

• ˛ 2 .0; 1/ and the interior of K is disjoint from spt.�0/ [ spt.�1/.

Then, any solution � of (2.1) under the constraint � 2 P .K/ is supported by @K.

Proof. For .x0; x1/ 2 spt.�0/ � spt.�1/, set

c.x0; x1/ WD min
x2K

®
jx0 � xj

˛
C �jx � x1j

˛
¯
;

T .x0; x1/ WD argmin
x2K

®
jx0 � xj

˛
C �jx � x1j

˛
¯
:

We know from Proposition 2.3 that � is supported by T .spt.�0/� spt.�1//. In particular,
if x 2 spt.�/ is an interior point of K, then it is a local minimizer of c0.x0; �/C c1.�; x1/
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for some .x0; x1/ 2 spt.�0/ � spt.�1/. In the case ˛ D 1, � > 1, since x ¤ x1, this is
clearly impossible. In the case ˛ < 1, our assumption implies that x … ¹x0; x1º, so that x
has to be a critical point of c0.x0; �/C c1.�; x1/. One should have

˛jx � x0j
˛�2.x � x0/C �˛jx � x1j

˛�2.x � x1/ D 0;

so that x0 ¤ x1 and x 2 Œx0; x1�. But c0.x0; �/C c1.�; x1/ is strictly concave on Œx0; x1�,
which contradicts x being a local minimizer.

Remark 4.2. If ˛ D � D 1, the previous result is false: if d D 1, �0 D ı0, �1 D ı1, and
K D Œ1=4; 3=4�, then it follows from the triangle inequality that any probability supported
by K is actually optimal.

Now that we know that minimizers are supported by @K, one may wonder, ifK and�1
are regular enough, whether these minimizers are absolutely continuous with respect to
the .d � 1/-Hausdorff measure on @K; the answer is positive if �0 is discrete, that is,
concentrated on a countable set, �0.K/D 0, and �1 is absolutely continuous with support
disjoint from int.K/ (see Proposition 4.4 below). A first step consists in the following
result:

Lemma 4.3. Assume that c0 and c1 are as in (4.1) (with ˛ 2 .0; 1� and � > 1 if ˛ D 1),
and thatK is compact. Then, for every x0 and (Lebesgue-)almost every x1 2 Rd nK, the
set

Tx0.x1/ WD argmin
x2K

®
jx0 � xj

˛
C �jx � x1j

˛
¯

is a singleton.

Proof. Fix x0, set

cx0.x1/ WD min
x2K

®
jx0 � xj

˛
C �jx � x1j

˛
¯
;

and observe that cx0 is locally Lipschitz on Rd n K. It thus follows from Rademacher’s
theorem that almost every x1 2 Rd nK is a point of differentiability of cx0 , and for such
a point, if x 2 Tx0.x1/, we have

rcx0.x1/ D �˛jx1 � xj
˛�2.x1 � x/ ¤ 0:

If ˛ 2 .0; 1/, this immediately gives the claim with

Tx0.x1/ D
®
x1 C .�˛/

1
1�˛ jrcx0.x1/j

2�˛
˛�1rcx0.x1/

¯
:

When ˛ D 1 and � > 1, if both x and x0 belong to Tx0.x1/, then x1; x, and x0 are aligned
so that the triangle inequality between their differences is saturated. But if x 2 Œx1; x0/, by
the definition of Tx0.x1/ and � > 1, we should also have

cx0.x1/ D jx � x0j C �jx � x1j D jx
0
� x0j C �jx

0
� x1j
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D jx0 � x0j C �.jx � x1j C jx
0
� xj/

> jx0 � x0j C jx
0
� xj C �jx � x1j;

which is impossible by the triangle inequality, thus yielding the almost everywhere single-
valuedness of Tx0 in this case as well.

Proposition 4.4. Assume that either ˛ D 1, � > 1 or ˛ 2 .0; 1/ and

• K is the closure of an open, bounded set in Rd with a boundary of class C 1;1;

• �0 is discrete and �0.K/ D 0,

• �1 is absolutely continuous and int.K/ \ spt�1 D ;.

Then, any solution � of (2.1) under the constraint � 2 P .K/ is absolutely continuous
with respect to the .d � 1/-Hausdorff measure on @K.

Proof. Since �0 is discrete, we can write �0 D
P
x02A0

px0ıx0 ; with A0 at most count-
able, disjoint from K and px0 > 0 for every x0 2 A0. It follows from Proposition 2.3 and
Lemma 4.3 that there exists a transport plan 
 between �0 and �1 which can be written
as


 D
X
x02A0

px0ıx0 ˝ �
x0
1 ;

such that, defining Tx0 as in Lemma 4.3 and T .x0; x1/ D Tx0.x1/, one has

� D T#
 D
X
x02A0

px0Tx0#�
x0
1 :

Since the second marginal of 
 is �1, we also have

�1 D
X
x02A0

px0�
x0
1 ;

so that all the measures �x01 are dominated by 1=px0�1 and, hence, absolutely continuous.
We are thus left to show that for each fixed x0 in the countable setA0, the measure Tx0#�

x0
1

(which is supported by @K by Lemma 4.1) is absolutely continuous with respect to the
.d � 1/-Hausdorff measure on @K which from now on we denote by �.d�1/;@K . We now
fix x0 2 A0 and a Borel subset A of @K. Our aim is to bound

.Tx0#�
x0
1 /.A/ D �

x0
1 .T

�1
x0
.A//:

To this end, let us distinguish the two cases ˛ D 1, � > 1 and ˛ 2 .0; 1/.
Assume ˛ D 1 and � > 1. Since �1.K/D 0 (because �1 is absolutely continuous, @K

is a smooth hypersurface and thus Lebesgue negligible and �1.int.K// D 0), we have

�
x0
1 .T

�1
x0
.A/ nK/ D �

x0
1 .T

�1
x0
.A//:
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Now take x D Tx0.x1/ 2 @K with x1 … K which is �1-almost everywhere the case (so
that x … ¹x0; x1º). By optimality, there exists ˇ � 0 such that

2x � x0 C �2x � x1 C ˇn.x/ D 0;

where for � 2 Rd n ¹0º, we have set y� D �=j�j, and where n.x/ is the outward normal
to @K at x. Using the fact that �2x � x1 has norm � yields

�2 D ˇ2 C 1C 2ˇn.x/ �2x � x0;

whose only non-negative root is

ˇ D ˇx0.x/ WD �n.x/ �2x � x0 C
q
�2 � 1C .n.x/ �2x � x0/2;

so that
�2x1 � x D ˇx0.x/n.x/C2x � x0

and the right-hand side is a Lipschitz function of x, thanks to our assumptions (@K
being C 1;1 and x0 being at a positive distance from K, and hence from x). Using again
that �2x � x1 has norm �, this shows that if x D Tx0.x1/, then for some r 2 Œ0; R� with
R D ��1 diam.spt�1 �K/, we have

x1 D Fx0.r; x/ WD x C rŒˇx0.x/n.x/C2x � x0�:

Hence,
�
x0
1 .T

�1
x0
.A// � �

x0
1 .Fx0.Œ0; R� � A//:

If �.d�1/;@K.A/D 0, the smoothness ofK and the fact that Fx0 is Lipschitz on Œ0;R�� @K
readily imply that Fx0.Œ0; R� � A/ is Lebesgue negligible. Hence, �x01 .T

�1
x0
.A// D 0 and

since this holds for any x0 2 A0, we also have �.A/ D 0, which implies the absolute
continuity of � with respect to �.d�1/;@K .

Let us now assume that ˛ 2 .0; 1/. To cope with the fact that c1.x; x1/ is not differen-
tiable if x D x1, it will be convenient to fix " > 0 and consider x1 2 A"1, where

A"1 WD
®
x1 2 spt.�1/ W d.K; x1/ � "

¯
and

d.K; x/ WD min
y2K
jx � yj

is the Euclidean distance to K. If x1 2 A"1 \ T
�1
x0
.x/ with x 2 A, it follows from the

first-order optimality condition that there is some r � 0 such that

x1 D Gx0.r; x/ WD x C jHx0.r; x/j
2�˛
˛�1Hx0.r; x/;

where
Hx0.r; x/ D rn.x/C �

�1
jx � x0j

˛�2.x � x0/:
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Now, note that
jHx0.r; x/j D jx1 � xj

˛�1:

This shows that

jr j � jx1 � xj
˛�1
C ��1jx � x0j

˛�1

� "˛�1 C ��1 max
x2K
jx � x0j

˛�1
DW R".x0/:

Hence, A"1 \ T
�1
x0
.x/ is included in the image by Gx0 of the set ¹.r; x/; x 2 A; r 2

Œ0; R".x0/�º. Since Gx0 is Lipschitz (with a Lipschitz constant depending on "), on this
set we obtain as soon as �.d�1/;@K.A/ D 0 that

�
x0
1 .T

�1
x0
.A// D �

x0
1 .T

�1
x0
.A/ nK/ D lim

"&0
�
x0
1 .T

�1
x0
.A/ \ A"1/

� lim
"&0

�
x0
1 .Gx0.Œ0; R".x0/� � A// D 0:

Thus, we can conclude as before that � is absolutely continuous.

Proposition 4.5. Suppose in addition to the assumptions of Proposition 4.4 that �0 has
finite support and �1 has a bounded density with respect to the d -dimensional Lebesgue
measure. If ˛ 2 .0; 1/, further assume thatK \ spt�1 D ;. Then � has a bounded density
with respect to the .d � 1/-Hausdorff measure on @K.

Proof. In the case ˛ D 1, � > 1 we can continue using the same notation and Lipschitz
mapping Fx0 and R as in the proof of Proposition 4.4 to conclude, for any Borel subset A
of @K,

�.A/ D
X

x02spt.�0/

px0�
x0
1 .T

�1
x0
.A//

�

X
x02spt.�0/

px0�
x0
1 .Fx0.Œ0; R� � A//

�

X
x02spt.�0/

k�1kL1Ld .Fx0.Œ0; R� � A//

� C card.spt�0/k�1kL1R�.d�1/;@K.A/;

where C is a constant that only depends on the C 1;1 smoothness of @K and the maximal
(with respect to x0 2 spt.�0/) Lipschitz constant of Fx0 over Œ0; R� � @K. This way we
deduce that � 2 L1.@K; �.d�1/;@K/.

For the case ˛ 2 .0; 1/, we need in additionK \ spt�1 D ; to ensure that, again using
the same arguments and notation as in the proof of Proposition 4.4, there is an "0 > 0 such
that A"01 D spt.�1/. In this way, all the analysis from the previous proof can be carried
through on A"01 and we obtain

�.A/ D
X

x02spt.�0/

px0�
x0
1 .T

�1
x0
.A/ \ A

"0
1 /
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�

X
x02spt.�0/

px0�
x0
1 .Gx0.Œ0; R"0.x0/� � A//

�

X
x02spt.�0/

k�1kL1Ld .Gx0.Œ0; R"0.x0/� � A//

� C card.spt�0/k�1kL1R"0.x0/�.d�1/;@K.A/;

where C is a constant that only depends on the C 1;1 smoothness of @K and the maximal
(with respect to x0 2 spt.�0/) Lipschitz constant of Gx0 over Œ0; R"0.x0/� � @K.

One might also be interested in the case that the distribution of residents represented
by �0 and �1 is absolutely continuous and discrete, respectively. The case ˛ 2 .0; 1/ is
completely symmetric, as we have not assumed � > 1 in the previous proofs. However,
for the case ˛ D 1; � > 1, the proof slightly differs, as we shall see below. Arguing as in
the proof of Lemma 4.3, we have:

Lemma 4.6. Assume that c0 and c1 are as in (4.1) (with ˛ 2 .0; 1� and � > 1 if ˛ D 1),
and that K is compact. Then, for (Lebesgue-)almost every x0 2 Rd n K and every x1,
the set

Tx1.x0/ WD argmin
x2K

®
jx0 � xj

˛
C �jx � x1j

˛
¯

is a singleton.

The analogue of Proposition 4.4 then reads

Proposition 4.7. Assume that either ˛ D 1, � > 1 or ˛ 2 .0; 1/ and

• K is the closure of an open, bounded set in Rd with a boundary of class C 1;1;

• �0 is absolutely continuous and int.K/ \ spt�0 D ;;

• �1 is discrete and �1.K/ D 0.

Then, any solution � of (2.1) under the constraint � 2 P .K/ is absolutely continuous
with respect to the .d � 1/-Hausdorff measure on @K.

Proof. As already explained, the case ˛ > 1 can be handled exactly as for Proposition 4.4.
We shall therefore assume that ˛ D 1 and � > 1. We write �1 D

P
x12A1

px1ıx1 , with A1
countable and px1 > 0. It follows from Proposition 2.3 and Lemma 4.6 that there exists a
transport plan 
 between �0 and �1 which can be written as


 D
X
x12A1

�
x1
0 ˝ px1ıx1

and is such that, defining Tx1 as in Lemma 4.3 and T .x0; x1/ D Tx1.x0/, one has

� D T#
 D
X
x12A1

px1Tx1#�
x1
0 :
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Since the first marginal of 
 is �0, �x10 is absolutely continuous for every x1 2 A1. We
are thus left to show that for each fixed x1 in the countable set A1, the measure Tx1#�

x1
0 is

absolutely continuous with respect to the .d � 1/-Hausdorff measure on @K, which from
now on we denote by �.d�1/;@K . We now fix x1 2 spt.�1/ and a Borel subset A of @K.
Our aim is to bound

.Tx1#�
x1
0 /.A/ D �

x1
0 .T

�1
x1
.A//:

Since �0.K/ D 0, we have �x10 .T
�1
x1
.A/ n K/ D �

x1
0 .T

�1
x1
.A//. Now take x D Tx1.x0/

2 @K with x0 … K. By optimality, there exists ˇ � 0 such that

2x � x0 C �2x � x1 C ˇn.x/ D 0 where for � 2 Rd n ¹0º, we have set y� D �=j�j;

where n.x/ is the outward normal to @K at x. This time our aim is to write, for fixed x1, x0
as a Lipschitz function of x and a length factor, so we proceed as follows: Using the fact
that �2x � x1 has norm � yields

1 D ˇ2 C �2 C 2ˇ�n.x/ �2x � x1:

This time, it is possible that there are two positive solutions for ˇ. We denote them by

ˇCx1.x/ WD ��n.x/ �2x � x1 C
q
.�n.x/ �2x � x1/2 C 1 � �2;

ˇ�x1.x/ WD ��n.x/ �2x � x1 �
q
.�n.x/ �2x � x1/2 C 1 � �2:

Hence, one of the following equalities is satisfied by .x0; x; x1/:

x0 D x C r.�2x � x1 C ˇCx1.x/n.x// DW FCx1.r; x/;
x0 D x C r.�2x � x1 C ˇ�x1.x/n.x// DW F �x1.r; x/;

where r 2 Œ0; R� and R D diam.spt�0 �K/.
Now consider a Borel set A � @K with �.d�1/;@K.A/ D 0. We distinguish the cases

where the discriminant .�n.x/ �2x � x1/2 C 1 � �2 is zero or positive:

A0 WD
®
x 2 A W .�n.x/ �2x � x1/2 C 1 � �2 D 0

¯
;

A> WD
®
x 2 A W .�n.x/ �2x � x1/2 C 1 � �2 > 0

¯
D

\
ı>0

®
x 2 A W .�n.x/ �2x � x1/2 C 1 � �2 � ı

¯„ ƒ‚ …
DWAı

:

Since FCx1 and F �x1 agree with Lipschitz functions on Œ0;R� �A0 and Œ0;R� �Aı , respec-
tively, we obtain for fixed ı > 0

�
x1
0 .T

�1
x1
.A// � �

x1
0 .T

�1
x1
.A0//C lim

ı&0
�
x1
0 .T

�1
x1
.Aı//
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� �
x1
0 .F

C
x1
.Œ0; R� � A0//

C lim
ı&0

�
�
x1
0 .F

C
x1
.Œ0; R� � Aı//C �

x1
0 .F

�
x1
.Œ0; R� � Aı//

�
D 0;

as required.

It is unclear whether an L1 bound can be obtained with the same proof strategy, since
the Lipschitz constant of the maps FCx1 and F �x1 may blow up as ı ! 0C. In addition, in
Proposition 4.4 the smoothness of K is crucial, as the example below shows.

Example 4.8. In the two-dimensional case, take as K the square ¹jxj C jyj � 1º and
consider the distance-like cost of Proposition 4.4 with ˛ D 1 and � > 1. Take as �0
the Lebesgue measure on the disk B.x0; r/ and as �1 the Lebesgue measure on the
disk B.x1; r/, with x0 D .�a; 0/ and x1 D .a; 0/, as in Figure 1. The optimal pivot mea-
sure � has in this case a part proportional to the Dirac mass ı.1;0/ and in some cases,
when � is large, a is large, and r is small, actually reduces to the Dirac mass ı.1;0/.

4.2. Density constrained solutions are bang-bang

We end this section by observing that in the case of a density constraint � � �, for
distance-like costs, minimizers are of bang-bang-type.

Proposition 4.9. Assume that c0 and c1 are as in (4.1) with � > 1 if ˛D 1, � 2L1.Rd / is
non-negative with compact support,

R
� dx > 1, and both spt.�/ \ spt.�0/ and spt.�/ \

spt.�1/ are Lebesgue negligible. Then, any solution � of (2.1) under the constraint � � �
is of the form � D �1E for some measurable subset E of spt.�/.

Proof. Let us start with the case ˛ D 1, � > 1 and define A WD ¹0 < � < �º. We then
consider (Lipschitz) potentials '0 and '1 as in the proof of Corollary 3.3. Almost every
point of A is a differentiability point of '0 and '1, satisfies r'0 C r'1 D 0, and lies

�0 K �1

Figure 1. A non-smooth constraint set K may provide a singular optimal pivot measure.
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in Rd n .spt.�0/ [ spt.�1//. Hence, arguing as in the proof of Corollary 3.3, for almost
every x in A, one can find x0 2 spt.�0/ n ¹xº and x1 2 spt.�1/ n ¹xº such that

0 D r'0.x/Cr'1.x/ D
x � x0

jx � x0j
C �

x � x1

jx � x1j
;

which is impossible, since � > 1. This shows that A is negligible and ends the proof for
this case.

Consider now the slightly more complicated case where ˛ 2 .0; 1/. Since the map
x 7! jx � x0j

˛ is Lipschitz only away from x0, it is convenient to introduce for ı > 0

the set
Bı WD

®
x 2 spt.�/ W d.x; spt.�0/ [ spt.�1// � ı

¯
:

On Bı , the potentials '0 and '1 are Lipschitz and we can find a subset zBı of Bı
with Bı n zBı negligible such that '0 and '1 are differentiable on zBı . Consider now
for " > 0

A" WD
®
" < � < � � "

¯
and let zA" be the subset (of full Lebesgue measure in A" by Lebesgue’s density theorem)
consisting of its points of density 1, that is,

zA" WD
°
y 2 A" W lim

r!0C

Ld .B.y; r/ \ A"/

Ld .B.y; r//
D 1

±
:

Note that zA" � spt.� � �/ and, arguing as before, for almost every x 2 zA" \ zBı , we can
find .x0; x1/ 2 spt.�0/ � spt.�1/ such that

r'0.x/Cr'1.x/ D rfx0;x1.x/ D 0;

where fx0;x1.x/ WD jx � x0j
˛ C �jx � x1j

˛ . Moreover, we know from Corollary 3.2
that spt.� � �/ is included in the level set fx0;x1 � fx0;x1.x/ and so is A", up to a
Lebesgue negligible set, by continuity of fx0;x1 . Since x … ¹x0; x1º is a critical point
of fx0;x1 , we have x1 ¤ x0, x belongs to Œx0; x1�,

e WD2x � x0 D2x1 � x D 2x1 � x0;

and the Hessian D2fx0;x1 of fx0;x1 at x takes the form

D2fx0;x1.x/ D .˛jx � x0j
˛�2
C �˛jx � x0j

˛�2/.idC.˛ � 2/e ˝ e/;

which shows that x is a saddle-point of fx0;x1 , its hessian having a negative eigenvalue
with eigenvector e and being positive definite on e?. Since for y 2 A", we have

fx0;x1.y/ D fx0;x1.x/C
1

2
D2fx0;x1.x/.y � x; y � x/C o.jy � xj

2/ � fx0;x1.x/;

we deduce that for r > 0 small enough and some positive constant �, whenever
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y 2 A" \ B.x; r/, one has y 2 Cx;e;� where

Cx;e;� WD
®
y 2 Rd W je � .y � x/j � �j.id�e ˝ e/.y � x/j

¯
:

Hence, for small r > 0, A" \ B.x; r/ should lie inside the strict cone Cx;e;� so that

lim sup
r!0C

Ld .B.x; r/ \ A"/

Ld .B.x; r//
� lim sup

r!0C

Ld .B.x; r/ \ Cx;e;�/

Ld .B.x; r//
< 1;

contradicting the fact that x is a point of density 1 of A". This shows that A" \ Bı is neg-
ligible, and letting ı! 0C, we find that A" is negligible; since this is true for every " > 0,
the desired conclusion follows.

5. The case of strictly convex costs with a convex location constraint

We now consider (2.1) in the case of the location constraint A D P .K/, where K is a
compact convex subset of Rd with non-empty interior and c0 and c1 satisfy the strong
convexity and smoothness assumptions

ci .x; y/ WD Fi .y � x/; Fi 2 C
2.Rd /; � id � D2Fi � ƒ id; i D 0; 1 (5.1)

for some constants 0 < � � ƒ. Since these costs are twisted, (2.1) in the case of the
location constraint ADP .K/ admits a unique solution as soon as�0 (or�1) is absolutely
continuous; see Remark 2.4.

Example 5.1. Consider the two-dimensional case with a location constraint given by the
square K of Example 4.8; take �0 D ı.�2;0/, �1 uniform on the ball of radius 1 centered
at .3; 0/, c0.x; y/ D jx � yj2, and c1.x; y/ D 2jx � yj2. Then, by a direct application
of Proposition 2.3, the (unique) solution of (2.1) is explicit: it is the image of the uni-
form measure on the ball B of radius 2=3 centered at .4=3; 0/ by the projection onto K.
It is uniform on B \ K and has an atom at .1; 0/, an absolutely continuous part, and
a one-dimensional part corresponding to the points of B which project onto the seg-
ments Œ.0; 1/; .1; 0/� and Œ.0;�1/; .1; 0/�.

This shows that, contrary to the case of distance-like costs, one should expect that �
in general decomposes into a (non-zero) interior part and a boundary part:

� D �int
C �bd where �int.A/ WD �.A \ int.K//; �bd.A/ WD �.A \ @K/ (5.2)

for every Borel subset A of Rd . Regarding �bd, arguing as in Proposition 4.4, one can
show that if �0 is absolutely continuous, �1 is discrete and K is of class C 1;1, and �bd

is absolutely continuous with respect to the .d � 1/-Hausdorff measure on @K (and has a
bounded density if in addition �0 2 L1 and �1 is finitely supported; see Proposition 4.5).
As for the regularity of �int, we have
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Proposition 5.2. Assume c0 and c1 are of the form in (5.1);�0 and�1 are compactly sup-
ported, with �0 2 L1; and K is a compact convex subset of Rd with non-empty interior.
Decomposing the solution � of (2.1) in the case of the location constraint A WD P .K/ as
in (5.2), we have �int 2 L1 and, more precisely (identifying �int with its density), we have

k�int
kL1 � k�0kL12

d��dƒd ; (5.3)

where � and ƒ are the positive constants appearing in (5.1).

To establish the L1 bound in (5.3), we shall use a penalization strategy, which is
detailed in the next paragraph. The proof by a standard �-convergence argument is post-
poned to the end of this section.

5.1. Penalization

Given g 2 C 2.Rd /, with g convex and non-negative, let us consider

inf
�2P .Rd /

T .�/C

Z
Rd

g� with T .�/ WD Wc0.�0; �/CWc1.�1; �/: (5.4)

Then, we have:

Proposition 5.3. Assuming (5.1) and �0 2 L1, (5.4) admits a unique solution �g . More-
over, �g is absolutely continuous with respect to the Lebesgue measure and its density
(still denoted �g ) satisfies for almost every x 2 Rd , the bound

�g.x/ � k�0kL1�
�d det.D2g.x/C 2ƒ id/; (5.5)

where � and ƒ are the positive constants appearing in (5.1).

Proof. The coercivity of c0, c1, and g � 0 easily give the existence of a minimizer as in
Proposition 2.3 (incorporating g into one of the costs considered there), whereas unique-
ness is guaranteed by twistedness of the costs and the absolute continuity of �0; see
Remark 2.4. Also, Proposition 2.3 ensures there is some ball B which contains a neigh-
borhood of spt.�g/. Then, the result [16, Theorem 3.3] from Pass guarantees that the
minimizer �g is absolutely continuous. The optimality condition derived from the dual
formulation of (5.4) (see (3.3)) gives the existence of potentials '0 and '1 such that

'0 C '1 C g D 0 on B (5.6)

and

Wc0.�0; �g/ D

Z
Rd

'
c0
0 �0 C

Z
Rd

'0�g ; Wc1.�g ; �1/ D

Z
Rd

'
c1
1 �1 C

Z
Rd

'1�g ;

so that defining the ci -concave potentials

z'0.x/ WD inf
x02spt.�0/

®
c0.x0; x/ � '

c0
0 .x0/

¯
;

z'1.x/ WD inf
x12spt.�1/

®
c1.x; x1/ � '

c1
1 .x/

¯
;
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one should have

'i � z'i on B and 'i D z'i on spt.�g/: (5.7)

Now observe that thanks to (5.1), z'0 and z'1 are semi-concave and, more precisely,

D2
z'i � ƒ id; i D 0; 1: (5.8)

In particular, z'0 and z'1 are everywhere superdifferentiable, but on spt.�g/, thanks to (5.6)
and (5.7), z'0 C z'1 C g is minimal and since g is differentiable, this implies that z'0 C z'1
is also subdifferentiable on spt.�g/. This readily implies that z'0 and z'1 are differentiable
on spt.�g/ and that

r z'0 Crz'1 Crg D 0 on spt.�g/:

The functions z'0 and z'1 are semi-concave and, by Alexandrov’s theorem (see [8, The-
orem 6.9]), they are twice differentiable �g -almost everywhere; the minimality of z'0 C
z'1 C g on spt.�g/ then gives

D2
z'0 CD

2
z'1 CD

2g � 0 �g -a.e: (5.9)

The optimal transport S0 for the cost c0 between �g and �0 (see [10, Theorem 3.7]) is
then given by

S0.x/ D x � rF
�
0 .r z'0.x//; x 2 spt.�g/;

where F �0 is the Legendre transform of F0. The absolute continuity of �g enables us to
use Cordero-Erausquin’s theorem (see [6, Theorem 4.8]) to get the existence of a set of
full measure for �g , for which one has the Jacobian equation

�g D �0 ı S0 det.id�D2F �0 .r z'0/D
2
z'0/; (5.10)

where D2 z'0.x/ is to be understood in the sense of Alexandrov and the matrix id �
D2F �0 .r z'0/D

2 z'0, which is diagonalizable with real and non-negative eigenvalues can
be rewritten as

id�D2F �0 .r z'0/D
2
z'0 D D

2F �0 .r z'0/.D
2F0.x � S0.x// �D

2
z'0.x//:

Together with (5.10), since D2F �0 � �
�1 id and D2F0.x � S0.x// �D

2 z'0.x/ is semi-
definite positive, this gives for �g -almost every x that

�g.x/ � k�0kL1�
�d det.D2F0.x � S0.x// �D

2
z'0.x//:

By (5.9) and (5.8), we then have

�D2
z'0.x/ � D

2g.x/CD2
z'1.x/ � D

2g.x/Cƒ id;

but since D2F0 � ƒ id, bound (5.5) follows.
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5.2. Proof of the bound by � -convergence

Recall that we have assumed that K is a convex compact subset with non-empty interior.
For " > 0, set K" WD K C "B (where B is the unit Euclidean ball of Rd ). Consider the
mollifiers �" D "�d�. �" / with � a smooth probability density supported on B and consider
the smooth and convex function

g" WD �" ? "
�1d2K" ;

where dK" is the distance to K". Define T as in (5.4). For every � 2 P .Rd /,

J".�/ WD T .�/C

Z
Rd

g"�; J.�/ WD

´
T .�/ if � 2 P .K/,

C1 otherwise.

It is easy to see that J" �-converges to J as "! 0C for the narrow topology. Hence, the
tight sequence of minimizers of J", �" WD �g" converges narrowly to � the minimizer
of J , that is, the solution of (2.1) with AD P .K/. SinceD2g" D 0 on int.K/, we deduce
from (5.5) that for every open � such that � b int.K/,

k�"kL1.�/ � k�0kL12
d��dƒd ;

from which one deduces (5.3) by letting "! 0C.

6. A parking location model

In this section, we introduce a mathematical model for the optimal location of a parking
area in a city. We fix

• a compactly supported probability measure on Rd , �0, which represents the distribu-
tion of residents in a given area;

• a compactly supported probability measure on Rd , �1, which represents the distribu-
tion of services.

The goal is to determine a measure � which represents the density of parking places in
order to minimize a suitable total transportation cost. All the residents travel to reach the
services, but some of them may simply walk (which will cost c1.x; y/ to go from x to y),
while some others may use their car to reach a parking place (which will cost c0.x; y/ to
go from x to the parking place y) and then walk from the parking place to the services
(which will cost c1.y; z/ to go from y to z). We consider two cost functions c0 and c1
and the corresponding Monge–Kantorovich functionals Wc0 and Wc1 , defined as in (1.1),
respectively, representing the cost of moving by car and the cost of walking. It may be
natural to assume that walking is more costly than driving, that is, c1 � c0; for instance,
we may take p > 0 and

c0.x; y/ D jx � yj
p; c1.x; y/ D �jx � yj

p with � � 1: (6.1)
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Assuming that �0 � �0 denotes the distribution of driving residents and �1 � �1 the
corresponding services they reach for, the total cost we consider is

F.�0; �1; �/ D Wc1.�0 � �0; �1 � �1/CWc0.�0; �/CWc1.�; �1/: (6.2)

The optimization problems we consider are then the minimization ofF.�0;�1;�/, subject
to the constraints

0 � �0 � �0; 0 � �1 � �1;

Z
d�0 D

Z
d�1 D

Z
d�;

and additional constraints such as

• no other constraints on the parking density �;

• location constraints, that is, spt� � K, with an a priori given compact set K � Rd ;

• density constraints, that is, � � �, for a given non-negative and integrable function �.

This optimization problem in the case of a location constraint can also be reformulated as
a linear program in the following way:

inf
Z

Rd�Rd

c1.x0; x1/ d
.x0; x1/C
Z

Rd�Rd�K

.c0.x0; x/C c1.x; x1// dz
.x0; x; x1/;

(6.3)
subject to the constraints


; z
 � 0; 
 C �0;1#z
 2 ….�0; �1/:

It is indeed easy to see that the optimal solution to minimizing the functional in (6.2)
is given by �piv#z
 . Hence, to incorporate a density constraint in formulation (6.3) one
needs to add the constraint �piv#z
 � �. The problem with location constraint is actually
equivalent to a standard optimal transport problem with cost function

C.x0; x1/ WD min
®
c1.x0; x1/; inf

x2K

®
c0.x0; x/C c1.x; x1/

¯¯
:

More precisely, consider

inf
ˇ2….�0;�1/

Z
Rd�Rd

C.x0; x1/ dˇ.x0; x1/: (6.4)

Then, both (6.3) and (6.4) admit solutions and they are equivalent in the following sense:

• min (6.3) D min (6.4);

• if 
; z
 are optimal for (6.3), then ˇ WD 
 C �0;1#z
 is optimal for (6.4),

• if ˇ is optimal for (6.4), then defining

V1 WD
®
.x0; x1/ 2 Rd �Rd W c1.x0; x1/ D C.x0; x1/

¯
;


 WD ˇjV1 , P W Rd �Rd ! Rd (measurable) by

P.x0; x1/ 2 argmin
x2K

®
c0.x0; x/C c1.x; x1/

¯
;
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and
dz
.x0; x1; x/ WD ıP.x0;x1/.x/˝ dˇjRd nV1

.x0; x1/;

then 
 and z
 are optimal for (6.3).

Remark 6.1. Note that the solutions .�0; �; �1/ to minimizing (6.2) (resp. the solu-
tions 
 and z
 to (6.3)) are not necessarily probability measures. The optimal common
total mass of z
 , �0, and �1 represents the fraction of �0 which uses the parking. Thus, the
parking problem is a generalization of the interpolation problem from Section 2, which
corresponds to imposing that the parking measure is of full mass.

However, under quite general and natural assumptions, it can be shown that the optimal
parking measure is non-trivial.

Lemma 6.2. Assume that c0; c1 � 0 are continuous with c0.x; x/ D c1.x; x/ D 0 and
c1.x; y/ > c0.x; y/ for x ¤ y 2 Rd . Consider the density constraint case � � � with
� 2 L1.Rd /, 0 < � < C1 almost everywhere. Then, if �0 ¤ �1, the optimal � for the
parking problem is non-trivial, that is, � ¤ 0.

Proof. Assume by contradiction that � D 0 is an optimal solution. The optimal cost for
the parking problem is then given by

Wc1.�0; �1/:

Let 
1 be an associated optimal transport plan. Since �0 ¤ �1, there is .x0; x1/ 2 spt 
1
with x0 ¤ x1. Clearly, there exists x 2 Rd (take, for instance, x D x1) such that

c0.x0; x/C c1.x; x1/ < c1.x0; x1/:

Then, by continuity of the cost functions, there exists an open neighborhood of the form
A0 � A � A1 of .x0; x; x1/ such that the inequality remains valid, that is,

c0.y0; y/C c1.y; y1/ < c1.y0; y1/;

for all .y0;y;y1/2A0 �A�A1. By possibly choosing a smaller (open)A, we can assume
that Z

A

�.x/ dx � 
1.A0 � A1/;

so that there is t 2 .0; 1� such thatZ
A

�.x/ dx D t
1.A0 � A1/:

But then,

Wc1.�0; �1/ D

Z
c1.y0; y1/ d
1.y0; y1/
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>

Z
.A0�A1/c

c1.y0; y1/ d
1.y0; y1/C .1 � t /
Z
A0�A1

c1.y0; y1/ d
1.y0; y1/

C .
1.A0 � A1//
�1

Z
A0�A1

Z
A

.c0.y0; y/C c1.y; y1//�.y/ dy d
1.y0; y1/

� Wc1.�0 � �0; �1 � �1/CWc0.�0; �
0/CWc1.�

0; �1/;

where �0 D �jA, and �0, �1 are the marginals of t
1jA0�A1 . This gives a contradiction
and thus achieves the proof.

6.1. Examples

We first solve a simple particular example in R2 before giving some numerical simula-
tions. This example shows that in some cases, the optimal choices for �0; �1; � are not of
unitary mass; these correspond to the cases where it is more efficient for some residents
to walk from their residence to the services without using their car.

Example 6.3. Let �0 D ıx0 and �1 D ı0 be two Dirac masses in R2 with x0 ¤ 0. We
consider the costs c0 and c1 as in (6.1) with p > 0 and � > 1. Then, �0 D ˛ıx0 and
�1 D ˛ı0, for some ˛ 2 Œ0; 1� and the optimization problems for the functional F in (6.2)
become the minimization of the quantity

�.1 � ˛/jx0j
p
C

Z
.jx � x0j

p
C �jxjp/ d�

D �jx0j
p
C

Z
.jx � x0j

p
C �jxjp � �jx0j

p/ d�:

Since �jx0jp is fixed, we are reduced to minimizing the quantityZ
.jx � x0j

p
C �jxjp � �jx0j

p/ d�

with the constraint
R
d� � 1 and possibly other location and density constraints on �, as

illustrated above. Setting

f .x/ D jx � x0j
p
C �jxjp � �jx0j

p; (6.5)

it is clear that � has to be concentrated on the set where f � 0. The optimization problem
with no other constraints on � has then the trivial solution ˛ D 1 and � D ıargminf (for
instance, � D ı0 if p D 1 and � D ı.1C�/�1x0 if p D 2). The situation becomes more
interesting when other constraints on � are present. If we impose spt� � K, let xx 2 K be
a minimum point of the function f in (6.5) over K. If f .xx/ < 0, then ˛ D 1 and � D ıxx
is a solution; if f .xx/ � 0, then ˛ D 0 and � D 0 is a solution.

We now consider the more realistic case when a density constraint on � is imposed.
We take � � 1. The optimal measure � for the cost in (6.2) is then the characteristic
function 1Ac of a suitable level setAc D ¹f � cºwith c � 0. Thus, the following situations
may occur:
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Figure 2. The case p D �D 2. On the left, jx0j D 1 gives jAoptj D 1; on the right, jx0j D 1=2 gives
jAoptj ' 0:35.

• If j¹f � 0ºj � 1, then ˛ D 1 and �D 1Ac , where the level c � 0 is such that jAc j D 1.
Note that, since the function f is convex, the set Ac is convex too. This happens
when x0 is far enough from the origin and all people then drive to the parking area Ac .

• If j¹f � 0ºj < 1, then ˛ D j¹f � 0ºj and � D 1A0 .

For instance, when p D 2, it is easy to see that the set A0 is the ball centered at
x0=.1C �/ with radius �jx0j=.1C �/. Therefore,

• if jx0j � ��1=2.�C 1/=�, we have ˛ D 1 and �opt D 1A, where A is the disk centered
at x0=.1C �/ of unitary area;

• if jx0j < ��1=2.�C 1/=�, we have ˛ D �jx0j2�2=.�C 1/2 and �opt D 1A0 . In this
case, only the fraction ˛ of people drive to reach the parking area, while the rest of
residents walk up to the services.

In Figure 2 the two situations are graphically represented in the cases p D � D 2, while
in Figure 3 we plot the two optimal parking areas when p D 1 and � D 2.

7. Numerical simulations

For the numerical simulation of examples in the case of interpolation between measures,
given by (2.1), and parking problem (6.2), we replace the optimal transportation costs
by their entropically regularized versions. This will enable us to apply some variants of
the celebrated Sinkhorn’s algorithm, popularized in the context of optimal transport and
matching by [7] and [9], respectively. For an introduction to this rapidly developing subject
and convergence results, we refer the reader to [15, 20].
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Figure 3. The case p D 1 and � D 2. On the left, jx0j D 1 gives jAoptj ' 0:97; on the right,
jx0j D 1=2 gives jAoptj ' 0:24.

7.1. Description of the Sinkhorn-like algorithm

The entropically regularized optimal transport cost for a cost function c, a regularizing
parameter " > 0, and a fixed reference measure Q 2 P .Rd �Rd / is given by

inf
°Z

Rd�Rd

c.x; y/ d
.x; y/C "H.
 jQ/ W 
 2 ….�0; �1/
±
; (7.1)

where the relative entropy H.P jQ/ between two non-negative finite measures P; Q
on Rd is defined by

H.P jQ/ WD

8<:
R

Rd

�
log
�

dP
dQ

�
� 1

�
dP if P � Q,

C1 otherwise.

Note that, by setting R D e�c="Q, we have

"H.
 jR/ D

Z
Rd�Rd

c.x; y/ d
.x; y/ C "H.
 jQ/;

so that (7.1) amounts to minimizingH.�jR/ among transport plans between�0 and�1. As
already observed in [2, Section 3.2], the entropically regularized version of (2.1) becomes,
for two suitably chosen reference measures R0, R1,

inf
®
H.
0jR0/CH.
1jR1/ W � 2 A; 
0 2 ….�0; �/; 
1 2 ….�;�1/

¯
: (7.2)

Cases (i) with no additional constraint and (ii) with location constraint K can be treated
by choosing the reference measures to enforce the support of � being included in K—
namely, we choose

R0 D e
�c0="�0 ˝ 1K ; R1 D e

�c1="1K ˝ �1; (7.3)
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where for case (i) we choose K large enough (yet still compact) as before. The resulting
Sinkhorn iterations are standard; see, for instance, [2, Propositions 1 and 2]. case (iii) of a
density constraint � requires performing a suitable projection of the estimated interpola-
tion, as specified in [19, Proposition 4.1] in the case of � � �. We write the corresponding
Sinkhorn iterations, including the projection for the density constraint for sake of com-
pleteness, in its dual form where the algorithm essentially becomes alternate gradient
ascent. For this, note that the dual of (7.2) with Ri as in (7.3) in the case of a density
constraint � � � (spt� � K) is given by

sup
'0;'1;
 0; 1

°
�

1X
iD0

Z
R2d

exp.'i C  i / dRi C
1X
iD0

Z
Rd

'i d�i

C

Z
Rd

. 0 C  1/� dx W  0 C  1 � 0
±
:

Sinkhorn iterations are given by the explicit coordinate ascent updates for this dual for-
mulation:

exp.'lC1i .xi // D
�Z
K

exp
�
�
ci

"
C  li .x/

�
dx
��1

;

exp. lC1i .x// D min
®
�l ; �

¯�Z
Rd

exp
�
�
ci

"
C 'lC1i .xi /

�
d�i .xi /

��1
;

where �l is the current approximate interpolation which is given by the geometric mean
formula (see [2, Proposition 2]):

�l D

1Y
jD0

�Z
exp

�
�
cj

"
C 'lC1j C  lj

�
d�j .xj /

� 1
2
:

Regularizing parking problem (6.2) in a similar way leads to

inf

; z
0; z
1;z
2M

®
H.
 jR/CH. z
0jR0/CH. z
1jR1/

¯
; (7.4)

where

M D
®

; z
0; z
1; z
 2MC.R

2d /3 �MC.R
3d / W


 C �0;1#z
 2 ….�0; �1/; �0;piv#z
 D z
0; �piv;1#z
 D z
1
¯
:

As before, a location constraint on a given set K can be encoded in the choice of the
reference measures:

R D e�c1="�0 ˝ �1; R0 D e
�c0="�0 ˝ 1K ; R1 D e

�c1="1K ˝ �1:
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For the density constraint, we have to add the condition �1# z
0 � �. The dual of (7.4) in
the case of a density constraint is then given by

sup
'0;'1;
 0; 1

°
�

Z
R2d

exp.'0 C '1/ dR �
1X
iD0

Z
R2d

exp.'i C  i / dRi

C

1X
iD0

Z
Rd

'i d�i C
Z

Rd

. 0 C  1/� dx W  0 C  1 � 0
±
:

The Sinkhorn iterations (density constraint included) in the dual variables then become

exp.'lC1i .xi // D
�Z

exp
�
�
c1

"
C 'liC1 mod 2.x/

�
dx C

Z
exp

�
�
ci

"
C  li .x/

�
dx
��1

;

exp. lC1i .x// D min
®
�l ; �

¯�Z
exp

�
�
ci

"
C 'lC1i .xi /

�
d�i .xi /

��1
;

and �l , the current approximate parking measure, is again given by an explicit geometric
mean expression.

7.2. Numerical results: Comparison of the optimal interpolation and the optimal
parking

We now present some numerical results based on the iterative schemes described in the
previous paragraph. In all our examples (presented in Figures 4 to 7), we compare the
solutions of the interpolation and parking problems with a constant density constraint on
the unit squareK D Œ0;1�2. We always take as distribution of services�1D �1D ı.0:5;0:5/,
the Dirac at the center of the square; and as distribution of residents, we take a symmetric
sum of four Dirac masses:

�0 D �0 D
1

4
.ı.0:5;0:1/ C ı.0:5;0:9/ C ı.0:1;0:5/ C ı.0:9;0:5//:

We consider power-like costs

c0.x; y/ D jx � yj
p; c1.x; y/ D 2 c0.x; y/

for several values of p corresponding to concave, linear, or convex costs and various con-
stant threshold values for the density constraints �. In this setting, we know (Corollary 3.3
for p > 1 and Proposition 4.9 for p � 1) that the optimal interpolation and the optimal
parking are of bang-bang-type. Even with the entropic regularization (which has the effect
of blurring the true solution), this is clearly what we observe in these figures with a small
regularization " D 5:10�4. Since the optimal parking may have total mass less than 1, we
have indicated its total mass on each figure; of course, if the total mass of the parking
is 1 it coincides with the interpolation, a case which is more likely to occur when the
threshold level is high. Finally, one can see the influence of the exponent p on the shape
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Figure 4. Concave cost p D 0:25.
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Figure 5. Concave cost p D 0:75.
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Figure 6. Linear cost p D 1.
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Figure 7. Convex cost p D 2.
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of the support of the optimal measure and, in particular, recognize for p D 1 (Figure 6)
the drop-like shape which was explicitly computed and plotted in Figure 3 and balls for
p D 2 (Figure 7).
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