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Abstract – The hexachordal theorem is an intriguing combinatorial property of the sets in
Z=12Z, discovered and popularized by the musicologist Milton Babbitt (1916–2011). It
has been given several explanations and partial generalizations. Here we enhance how this
phenomenon can be understood by giving both a geometrical and a probabilistic perspective.
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1. Introduction

We first state the original hexachordal theorem. This theorem finds its origin in
an observation [4] made by the American composer and musicologist Milton Babbitt
about the musical intervals appearing in a set of six different notes – called a hexachord
– and those in the complementary set with respect to the twelve-tone scale.
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Theorem 1.1 (Babbitt’s hexachordal theorem). Let A be a subset of Z=12Z of
cardinal 6 and let Ac D .Z=12Z/ n A denote its complementary set. Then, for every
k 2 Z=12Z, the sets®

.x; y/ 2 A � A W y � x D k
¯

and
®
.x; y/ 2 Ac � Ac W y � x D k

¯
have the same cardinal.

In the present paper we introduce a natural probabilistic setting in which we
generalize this result to metric spaces. We dare to believe that, as the referee wrote,
we have found the correct setting for a “clear and neat final result” that “permits us to
derive most (if not all) the previous results”. Hereafter, .X; d / is a separable metric
space and � a Borel �-finite measure on it. We will refer to such triples .X; d; �/ as
metric measure spaces and metric probability spaces if � is a probability measure.
Metric measure spaces are a popular setting in geometric analysis, at least since
Gromov’s famous Chapter 31

2
[8]. For recent contributions see [13] and references

therein.
We introduce the constant volume condition on .X; d; �/, which provides a suffi-

cient condition for the main result of this paper.

Definition 1.2 (Constant volume condition). A metric measure space .X; d;�/ is
said to satisfy the constant volume condition if there exists a function � on Œ0;1/ such
that for any center x 2X and radius r 2 Œ0;1/ the ballB.x;r/D¹y 2X W d.x;y/� rº

has measure �.r/. This can also be written as

(CVC) 8x; y 2 X; 8r � 0; �.B.x; r// D �.B.y; r//:

For future development we introduce �x W r 7! �.B.x; r// the volume function of
center x, and N� WD �.X/�1

R
�x d�.x/ the mean volume function.

We can now state our hexachordal theorem for metric probability spaces.

Theorem 1.3 (Hexachordal theorem for metric probability spaces). Let .X; d; �/
be a metric probability space. Assume that it satisfies the constant volume condition.
Then, for every Borel set A of �-measure 1=2, with notation Ac D X n A, one has

(Hex) �2
®
.x; y/ 2 A2 W d.x; y/ 2 E

¯
D �2

®
.x; y/ 2 .Ac/2 W d.x; y/ 2 E

¯
for every open subset E � Œ0;1/, where �2 is the product measure � � �.

Let us show how this theorem specializes to Babbitt’s theorem. On the cyclic group
Z=12Z we consider the distance defined by

d.x; y/ D min
k2Z
jx � y C 12kj:
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Since this formula corresponds to the minimum number of steps˙1 in Z=12Z neces-
sary to move from x to y, the distance d is the classical graph distance, the edges being
distributed here exactly between the consecutive numbers of Z=12Z. By choosing
for � the normalized counting measure on Z=12Z, i.e. �.A/ D #A=12 we obtain the
following expression for (Hex) in Theorem 1.3:

1

122
#
®
.x; y/ 2 A2 W d.x; y/ 2 E

¯
D

1

122
#
®
.x; y/ 2 .Ac/2 W d.x; y/ 2 E

¯
:

Let  A be the function defined for k 2 N by

 A.k/ D #
®
.x; y/ 2 A2 W d.x; y/ D k

¯
and IA the so-called interval content of A defined for k 2 Z=12Z by

IA.k/ D #
®
.x; y/ 2 A2 W y � x D k

¯
:

These two functions count the number of oriented pairs at distance k 2 N and of
oriented intervals k 2 Z=12Z, respectively. Consequently, (Hex) can be written as
 A D  Ac . Next, for every A (and Ac), IA.k/ D  A.k/ for k D 0 and k D 6 and,
since .x; y/ 2 A2, .y; x/ 2 A2, we also have IA.k/ D IA.12 � k/ D  A.k/=2 for
k D 1; : : : ; 5. Thus IA D IAc holds on the whole Z=12Z. In the latter we recognize
Babbitt’s hexachordal theorem.
Since Babbitt’s original formulation [4], his hexachordal theorem has been dis-

cussed, re-proved and sometimes generalized, many times. Hereafter we distinguish
between two types of hexachordal theorems: the metric ones similar to Theorem 1.3,
and the general ones in the continuation of the interval content formulation IA D IAc

by Babbitt. By “general” we mean that the distance d can be replaced by a non-real-
valued function, such as the antisymmetric f W .x; y/ 7! x�1 � y when .X; �/ is a group
or some symmetric function. Our main theorem (the already-stated Theorem 1.3) falls
into the first category since it deals with metric probability spaces satisfying the con-
stant volume condition (CVC). In Theorem 4.2 we prove that the metric hexachordal
phenomenon is in fact equivalent to the (CVC) when the latter is properly modified.
Finally, Theorem 4.5 is a general hexachordal theorem where we adapt our theorems
for general functions.

Previous literature. Before we proceed with the proofs, let us give a few more com-
ments on the mathematical content, also with respect to the existing literature (more
historical comments and relations to music and other domains such as spectroscopy
are given in a companion paper [3]). While scanning the literature, we noticed that
one simple idea appears more or less clearly behind the proof of most instances of the
hexachordal theorems. It is the idea of not only counting the intervals – or sometimes
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measuring the size of objects that generalize them – between A and A, on the one
side, and Ac and Ac on the other side, but also the intervals between A and Ac . This
principle is already well explained in Ralph Hartzler Fox’s contribution [7] that is
possibly the first complete written proof of Babbitt’s hexachordal theorem – notice
however that completely different, short, interesting proofs of Babbitt’s case are possi-
ble [2, 6]. While Fox’s explanation is for abstract discrete sets, one stream of research
has been to explore continuous spaces. This is the case [5] for the circle S1 – extending
the discrete circle Z=12Z – and [10,11] for the spheres S3, S7, among other locally
compact groups. A still geometric but discrete result is the full characterization of
simple graphs exhibiting the hexachordal property by Althuis and Göbel [1]. It seems
to be the only metric theorem in the hexachordal literature. With our probabilistic
approach we implement the principle described in [7] to the whole geometric setting,
discrete or continuous (or even mixed). Our probabilistic presentation also adapts to
the general hexachordal theorem as we show in Section 4, for which some additional
examples appear in the companion paper [3].

2. Probabilistic interpretation and proof of Theorem 1.3

Our proof uses a probabilistic writing of (Hex). Let .X; Y / be a pair of X-valued
independent random variables of law � andD D d.X; Y /. Property (Hex) is written

(1) P .X 2 A and Y 2 A andD 2 E/ D P .X 2 Ac and Y 2 Ac andD 2 E/:

Adding P .X 2 A and Y 2 Ac andD 2 E/ to both sides we see that (Hex) holds if
(and only if) one has

(2) P .X 2 A andD 2 E/ D P .Y 2 Ac andD 2 E/

for every Borel set E � R. Hence, for Theorem 1.3 it suffices to prove (2).

Proof of Theorem 1.3. Let S be a Borel set of X and r � 0. We have

P .X 2 S andD 2 Œ0; r�/ D
“

X�X

1.x 2 S/ � 1.d.x; y/ � r/ d�.x/ d�.y/

D

Z
S

�Z
X

1.d.x; y/ � r/ d�.y/
�
d�.x/

D

Z
S

�.B.x; r// d�.x/

D �.S/ � �.r/:(3)
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This proves that X and D are independent random variables, X has law � (this is
not new) andD has cumulative distribution function � (see Remark 2.3). Therefore,
on the left-hand side of (2), P .X 2 A andD 2 E/ D P .X 2 A/ � P .D 2 E/ D

.1=2/P .D 2 E/. In exactly the same way (or noticing that .X;D/ and .Y;D/ have the
same joint law), we see that Y andD are independent and P .Y 2 Ac andD 2 E/ D
.1=2/P .D 2 E/. This proves (2) and hence completes the proof.

Remark 2.1. We can express (Hex) in a different way in terms of conditional laws.
Dividing equation (1) by 1

4
D P ..X; Y / 2 A2/ D P ..X; Y / 2 .Ac/2/ we obtain

P .D 2 � j X 2 A and Y 2 A/ D P .D 2 � j X 2 Ac and Y 2 Ac/:

This may be read as follows: provided points X and Y are in A, their distance D is
distributed in the same way as it would be if they were in the complementary set.

Remark 2.2. Similarly, P .D 2 � j X 2 A/ D P .D 2 � j Y 2 Ac/ is a version of
(2) formulated with conditional laws. The one-line computation

P .D � r j X 2 A/ D �.A/�1
Z
A

P .d.x; Y / � r/„ ƒ‚ …
D�x.r/D�.x/

d�.x/ D �.r/;

with its counterpart P .D � r j Y 2 Ac/ D �.r/ (for every r � 0), constitute an
alternative, shorter and more probabilistic proof of Theorem 1.3.

Remark 2.3. Taking S D X in (3), for a general X without (CVC) we obtain
P .D� r/D N�.r/ so that N� is the cumulative distribution function ofD. The cumulative
distribution functions of d.x; Y / and d.X; y/ are simply �x and �y . Moreover, under
the (CVC) all these functions equal �.

Remark 2.4. The random variables X , Y and D are pairwise independent but
they are not independent. In particular, for very localized sets S and T , say balls of
(small) radius ", the law P .D 2 � j X 2 S and Y 2 T / is a measure concentrated on
an interval of length shorter than 4", hence different from P .D 2 �/.

3. Metric probability spaces satisfying the constant volume condition

In this section we give examples of spaces where Theorem 1.3 applies. Since
there are nontransitive simple graphs that satisfy (CVC), the hexachordal phenomenon
surprisingly happens for them; see Section 3.1. Thus, a fascinating open question
remains: Can there be radically different examples, such as Riemannian manifolds of
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unitary volume in particular? In Section 3.2 we treat of the case of the 2-dimensional
manifolds for which the answer is no. More insight should be given in our paper in
preparation.

3.1 – Nontransitive graphs satisfying (CVC)

The following metric measure spaces are particularly interesting since these are
graphs that satisfy (CVC) – and hence (Hex) – but are not transitive. Briefly, in our
context transitive would mean that for x, x0 there exists an isometry f with f#� D �
and f .x/ D x0. Example 3.2 is with 7 vertices the smallest possible nontransitive
simple graph that satisfies (CVC). During the writing of the present paper we realized
that a collection of similar graphs (notably three graphs with 12 vertices) have already
been exhibited by Althuis and Göbel [1].

Example 3.1. Consider the finite 3-regular graph depicted on the left-hand side of
Figure 1. One can easily confirm that it satisfies the constant volume condition: the
balls of radius 0 have cardinal 1, the balls of radius 1 have cardinal 4 and all the larger
balls are the whole space, with cardinal 8. However, it is clear that a and h are points
of different types: the neighbors of h are disconnected whereas the neighbors b and c
of a satisfy b � c. Consequently, the group of isomorphisms does not act transitively.

a

b

c

d

e

f

g

h
a

b

c

de

f

g

Figure 1. Left: Two points randomly picked in the dark region of the graph have distance
distributed equally to that between points picked in the bright region. Conditional upon one or
the other region, the random distanceD takes values 0, 1 and 2 with probability 4/16, 8/16 and
4/16 respectively – Right: Two points randomly picked in the dark region of the graph have
distance distributed equally to that between points picked in the bright region. Vertex a is half
bright and half dark.
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Example 3.2. The graph on the right-hand side of Figure 1 also satisfies the
constant volume condition (�.0/ D 1, �.1/ D 5, �.2/ D 7). With cardinal 7 it has the
minimal cardinal for a graph satisfying (CVC) without transitive action of a group
of isomorphisms. However, since 7 is an odd number, the hexachordal property is –
contrary to Example 3.1 – a trivial statement: subsets A and Ac of cardinal 7=2 do not
exist. Hence Theorem 1.3 is a correct but empty statement. Theorem 4.2 in the next
section will give a new turn to this poor conclusion. See the figure caption for some
preliminary intuition.

3.2 – Riemannian surfaces satisfying (CVC)

In the following we consider connected, complete and separable Riemannian
surfaces with their geodesic distance and Riemannian volume.

Proposition 3.3. Let .X; d; �/ be a connected, complete and separable Rieman-
nian surfaces with its geodesic distance and Riemannian volume such that �.X/ D 1.
Then it satisfies (CVC) if and only if it isomorphic to one of the following metric
probability spaces:

• a flat torus R2=.ZuC Zv/ with jdet.u; v/j D 1,

• a Klein bottle (quotient of R2 through the group generated by a translation and a
glide reflection) of volume 1,

• the sphere of dimension 2 and radius 1=
p
4� ,

• the projective two plane RP2 obtained from the sphere of radius 1=
p
2� when the

opposite points are identified.

Proof. Let .X; d; �/ be, as in the statement, a Riemannian surface that satisfies
the constant volume condition. At any point x 2 X one has

�.B.x; r// Dr!0C �r
2.1 � �.x/r=24/C o.r3/;

where �.x/ is the curvature at x. It follows that �.x/ D limr!0 24.�r2 � �.r//=r ,
where �.r/ D �.B.x; r// is independent of x. Therefore X has constant curvature.
Hence, up to multiplying d by

p
j�j (if � ¤ 0), the universal cover of X is one of the

three simply connected “space forms”: Euclidean space (of curvature 0), the hyperbolic
plane (curvature �1) and the sphere (curvature 1). For zero and negative curvature we
find tori, Klein bottles, spheres and the projective plane. Moreover, the right scaling
is enforced by �.X/ D 1. Conversely, since the isometry group acts transitively on
these spaces and the isometries preserve the Riemannian volume, we see that (CVC)
is satisfied.
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For negative curvature let us prove that (CVC) is not satisfied. It is well known that
the small balls have the same volume as the balls of radius r of its universal cover
(the hyperbolic plane up to a metric scaling) that we denote by Q�.r/. However, in
the compact case, if x is on the systole (the shortest closed geodesic curve of length
`) and x0 is not, there will be " > 0 such that �.B.x; " C `=2// < Q�." C `=2/ D
�.B.x0; "C `=2//. The strict inequality is due to the cut-locus phenomenon on the
systole: balls of center x and radius > `=2 overlap. In the noncompact case there is
not necessarily a systole but another argument is possible. For some x0 2 X let r0 be
such that �.B.x0; r0// D Q�.r0/. Then, since X is not bounded, there exist infinitely
many disjoint balls of radius r0 and centers .xn/n2N . Since

P
n �.B.xn; r0// � 1 we

obtain a contradiction with the (CVC).

4. Full characterization of the spaces satisfying the hexachordal property

In this last section we show that (CVC) is not far from being a necessary and
sufficient condition for the hexagonal property (Hex). To obtain this equivalence we (i)
observe that sets of measure zero have no incidence in the hexachordal property and
introduce for this (CVC0), (ii) carefully avoid the logical trap explained in Example
3.2 by introducing (Hex0). This being done we obtain Theorem 4.2. In Theorem 4.5
we give a second generalization that connects our work with previous group-theoretic
[10, 12] or abstract [7] interpretations of the hexachordal theorem.

4.1 – Full characterization for metric probability spaces

For our full characterizations of Theorems 4.2 and 4.5 we introduce the concept
of balanced decomposition. It is an appropriate answer to the problem described in
Example 3.2. Similar concepts are to be found in the literature in the weights of [5]
and the bounded functions of [10].

Definition 4.1. Let .X;F ; �/ be a probability space. We call balanced decompo-
sition of � any pair .�0; �1/ of probability measures such that 2� D �0 C �1. Note
that �0 and �1 can be identified with functions of density smaller than or equal to 2.

We can now state our full characterization of spaces that satisfy (Hex0), i.e. (Hex)
generalized as suggested in Example 3.2.

Theorem 4.2 (Characterization for metric probability spaces). Let .X; d; �/ be a
metric probability space. The following properties are equivalent:

(CVC0) There exists a set X0 � X of full measure for � such that the constant volume
condition is satisfied on .X0; d; �/.
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(Ind) For any independent random variables X and Y of law � and D D d.X; Y /,
the random variables X , Y and D are pairwise independent.

(Hex0) For every balanced decomposition .�0; �1/ of � and two random triples
.Xi ; Yi ;Di /iD0;1, where for every i , .Xi ; Yi / is a pair of independent random
variables of law �i andDi D d.Xi ; Yi /, we have the equality on distributions

P .D0 2 �/ D P .D1 2 �/:

Remark 4.3. We recover Theorem 1.3 as follows: The constant volume condition
implies (CVC0) (take X0 D X for example). Hence (Hex0) is satisfied for any balanced
decomposition, in particular for .�A; �Ac /, where A has measure 1=2 and �A is
defined by �A D �.A/�1�.A\ �/. This directly corresponds to (Hex) in Theorem 1.3,
up to a factor 4.

Remark 4.4. If X and Y are independent of law �, since d is symmetric we
have equality of laws .X;D/ D .X; d.X; Y // � .Y; d.Y; X// D .Y;D/. Therefore,
to satisfy (Ind) it suffices that X and D are independent. The symmetry condition
is also sufficient in the setting of the upcoming Theorem 4.5. If X and Y have the
same law and both .X; Y /, .X; F / are independent pairs (where F D f .X; Y / with
f symmetric), the last pair .Y; F / is independent. As can be easily checked, the
same happens when f is antisymmetric, in the sense there exists an involution i with
f .y; x/ D i.f .x; y//.

Proof of Theorem 4.2. The beginning of the proof of Theorem 1.3 is the impli-
cation (CVC)) (Ind). The reader can check that it also readily constitutes a proof
of (CVC0)) (Ind) too. We use that x 7! �.B.x; r// is equal to N�.r/ in all points x
apart from a set of empty measure. Let us now prove (Ind)) (CVC0). For every r � 0
we set S�r D ¹x 2 X j �x.r/ < N�.r/º and SCr D ¹x 2 X j �x.r/ > N�.r/º. Recall from
Remark 2.3 that N� is the cumulative distribution function ofD and �x that of d.x; Y /.
Suppose by contradiction that �.S�r / > 0. Thus

P .X 2 S�r andD 2 Œ0; r�/ D
“

1.x 2 S�r / � 1.d.x; y/ � r/ d�.x/ d�.y/

D

Z
S�r

�Z
1.d.x; y/ � r/ d�.y/

�
d�.x/

D

Z
S�r

�.B.x; r// d�.x/ < �.S�r / � N�.r/;

which shows that X andD are not independent, a contradiction. Therefore �.S�r /D 0
and similarly �.SCr / D 0. We deduce that

S
r�0; r2Q.S

�
r [ S

C
r / has �-measure zero.
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If we denote the complementary set by X0, we obtain N�.r/ D �x.r/ for every x 2 X0

and r 2 Q. This extends to every r 2 RC because cumulative distribution functions
are right continuous. Hence (CVC0) is satisfied.
We have proved (CVC0), (Ind) and will be ready after we prove (Ind), (Hex0).

We postpone this proof to Theorem 4.5, because considering that d is symmetric and
measurable on X � X, this theorem states a result that includes (Ind), (Hex0). Its
proof is also independent from the rest of Theorem 4.2.

4.2 – Full characterization for general spaces and groups

Here we replace d by a general function f that neither needs to be real valued nor
symmetric. Typically, f is an “interval” antisymmetric function defined by f .x; y/ D
x�1 � y as in Corollary 4.6. This is the original music-theoretical point of view of
Babbitt and Lewin [9].

Theorem 4.5 (Characterization for abstract probability spaces). Let .X;F ; �/ be
a probability space and f a measurable symmetric function into a measured space
.M;M/. The following properties are equivalent:

(Ind) For any independent random variables X and Y of law � and F D f .X; Y /,
the random variables X , Y and F are pairwise independent

(Hex0) For every balanced decomposition .�0; �1/, considering the triples .X0; Y0;
F0/ and .X1; Y1; F1/, where for i D 0; 1 the pair .Xi ; Yi / is made of inde-
pendent random variables of law �i and Fi D f .Xi ; Yi /, we have equality of
both distributions, P .F0 2 �/ D P .F1 2 �/ as measures on M.

(Hex00) For any balanced decompositions .�0; �1/ and .�0; �1/, where for i D 0; 1,
Xi has law �i , Yi has law �i and Fi D f .Xi ; Yi /, we have equality of both
distributions P .F0 2 �/ D P .F1 2 �/.

Moreover, if f is no longer supposed to be symmetric, (Ind), (Hex00) still holds, as
does (Hex00)) (Hex0).

Proof. To complete the proof of Theorem 4.2 we first establish in parts (1) and
(2) of the present proof the two implications of (Ind), (Hex0) in the case where f is
symmetric. For the remainder, notice that (Hex00)) (Hex0) is obvious since (Hex00)
corresponds to a generalization of (Hex0), where the relation �i D �i is relaxed. In
part (3) we will finish with the equivalence (Ind), (Hex00) by briefly adapting the
scheme drawn up in (1) and (2).
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(1) (Ind), (Hex0). Let us fix some measurable E �M and .�0; �1/ a balanced
decomposition of �. We first prove

(4) P .f .x; Y / 2 E/ D P .F 2 E/

for �-a.e. x 2 X. This follows from the fact that these two functions have the same
integral on the measurable sets S in X. We have indeed8̂̂̂<̂

ˆ̂:
Z
S

P .f .x; Y / 2 E/ d�.x/ D P .X 2 S; f .X; Y /„ ƒ‚ …
F

2 E/;

Z
S

P .F 2 E/ d�.x/ D P .X 2 S/ � P .F 2 E/:

Equality follows from (Ind). Integrating (4) with respect to �0 (which is absolutely
continuous with respect to �) we obtain BE .�0; �/ D BE .�; �/, where BE is the
bilinear function defined by BE W .˛; ˇ/ 7!

’
1.f .x; y/ 2 E/ d˛.x/ dˇ.y/. Note now

that f .x; Y / D f .Y; x/ and that these random variables also have the same law as
f .X; x/. Therefore, P .f .X; y/ 2 E/ D P .F 2 E/ for �-a.e. y 2 X. Similarly to
before, we deduce BE .�; �/ D BE .�; �1/. Finally, subtracting BE .�0; �1/ on each
extreme side of BE .�0; 2�/ D 2BE .�; �/ D BE .2�; �1/ we get

(5) BE .�0; �0/ D BE .�1; �1/ for every measurable E �M:

Translated with random variables it is exactly (Hex0).

(2) (Hex0)) (Ind). For this implication, it is sufficient to prove

P .X 2 S and F 2 E/ D P .X 2 S/ � P .F 2 E/

for every measurable E �M and S � X with �.S/ � 1=2. For sets S of probability
less than 1=2, the independence relation is obtained through the complementary set
X n S . We fix S and E. Let �0 be �.S/�1�.� \ S/ such that .�0; 2� � �0/ is a
balanced decomposition of �. Starting back from (5), adding BE .�0; �1/ we obtain
backBE .�0;�/DBE .�;�1/DBE .�1;�/DBE .�;�/, where we use the symmetry
of f in the second equality and the bilinearity in the third one. In probabilistic terms
we have obtained

�.S/�1P .X 2 S and F 2 E/ D P .F 2 E/;

which is exactly the equation wanted, since �.S/ D P .X 2 S/.
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(3). We follow part (1) and obtain that x 7!P .f .x;Y /2E/ and y 7!P .f .X;y/2E/

are almost surely constant of value P .F 2 E/ on .X; �/. It follows that

BE .�0; �0 C �1/ D 2BE .�0; �/ D 2BE .�; �1/ D BE .�0 C �1; �1/

for every balanced decomposition .�0; �1/ and .�0; �1/. Subtracting B.�0; �1/ we
obtain BE .�0; �0/ D BE .�1; �1/ which proves the first implication. For the second
one, from BE .�0; �0/ D BE .�1; �1/ we obtain back BE .�0; �/ D BE .�; �1/ for
every �0 � 2� and �1 � 2� (these inequalities correspond to the conditions that
.�0; 2� � �0/ and .2� � �1; �1/ are balanced decompositions). Choosing �0 D
�.S/�1�.� \ S/ and �1 D � we can reconnect with the proof in (2).

In the next corollary we stress that Theorem 4.5 applies to “intervals” .x; y/ 7!
x�1 � y on locally compact Hausdorff topological groups. We present this corollary
in the slightly larger setting of separable topological groups with bi-invariant Haar
measure. Note that such a bi-invariant Haar measure exists when there exists a left-
invariant measure �: if X and Y are independent of laws � and �0, respectively
where �0 is right invariant (as for instance ��1WE 7! �.E�1/), one can check that
Y � X W�! X is measurable, is both left and right invariant and has laws � and �0.
Therefore, � D �0 so that there exists a unique Haar measure and it is bi-invariant.

Corollary 4.6 (Separable topological groups). Let .X; �/ be a separable topo-
logical group with a left- and right-invariant probability measure �. Then, for every
balanced decomposition .�0; �1/ of � and .Xi ; Yi / independent random variables
of law �i , i D 0; 1, the law of X0 � Y0 equals the law of X1 � Y1. Moreover, the same
equality holds for .Xi /�1 � Yi .

Proof. Property (Ind) is clearly satisfied as a consequence of the left- and right-
invariance of �. Therefore, Theorem 4.5 applies and we have (Hex0) for the function
f .x; y/ D x � y (which does not have to be symmetric). Since � is invariant for
x 7! x�1, the pairwise independence of .X; Y; X�1 � Y / follows from the pairwise
independence of .X 0; Y; X 0 � Y / with X 0 D X�1. Again, Theorem 4.5 applies and we
obtain (Hex0).

As it appears in the literature [7] and in Section 3, the hexachordal phenomenon
should not hastily be associated to regular structures like groups or transitive spaces.
For instance, the nonassociative set of octonions of modulus 1 was mentioned in [10]
(it is homeomorphic to S7). In [7, 12] the authors recognize that the sufficient property
of the Cayley table of a group that permits the hexachordal phenomenon to show up is
that it is a Latin square: every symbol occurs exactly once in each row and exactly once
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in each column. In particular, (Ind) is satisfied. We plan to provide further examples
and counterexamples related to our theorems in the paper in preparation.
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