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linear stochastic approximation
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Abstract. We study stochastic approximation procedures for approximately solving a d -dimen-
sional linear fixed-point equation based on observing a trajectory of length n from an ergodic
Markov chain. We first exhibit a non-asymptotic bound of the order tmix

d
n

on the squared
error of the last iterate of a standard scheme, where tmix is a mixing time. We then prove a
non-asymptotic instance-dependent bound on a suitably averaged sequence of iterates, with a
leading term that matches the local asymptotic minimax limit, including sharp dependence on
the parameters .d; tmix/ in the higher-order terms. We complement these upper bounds with a
non-asymptotic minimax lower bound that establishes the instance-optimality of the averaged
SA estimator. We derive corollaries of these results for policy evaluation with Markov noise—
covering the TD.�/ family of algorithms for all � 2 Œ0; 1/—and linear autoregressive models.
Our instance-dependent characterizations open the door to the design of fine-grained model
selection procedures for hyperparameter tuning (e.g., choosing the value of � when running the
TD.�/ algorithm).

1. Introduction

Linear Z-estimation problems—in which we are interested in computing the fixed
point of a linear system of equations—arise in many application domains, includ-
ing reinforcement learning and approximate dynamic programming [4,73], stochastic
control and filtering [2,7,44], and time-series analysis [32]. In many of these applica-
tions, the data-generating mechanism is modeled using an underlying Markov chain.
The resulting dependency among the observations presents challenges for algorithm
design as well as statistical analysis. In this paper, our goal is to provide an instance-
dependent statistical analysis—one that captures the difficulty of the particular Z-
estimation problem at hand—and to develop computationally efficient algorithms that
match these fundamental limits.

Mathematics Subject Classification 2020: 62L20 (primary); 60J22, 62C20, 62M05,
93E35 (secondary).
Keywords: Markov chains, stochastic approximation, reinforcement learning, temporal
difference methods, instance-dependent optimality.
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A linear Z-estimation problem in Rd is specified by a fixed-point equation of the
form

� D xL� C Nb; (1.1)

where the matrix xL 2 Rd�d and the vector Nb 2 Rd are parameters of the problem. In
settings of interest in this paper, the problem parameters .xL; Nb/ are unknown, and
we observe only a sequence .Lt ; bt /t�1 of noisy observations, generated accord-
ing to a Markov process in the following manner. The Markov process generates
a sequence .st /t�0 of states taking values in some underlying state space X. This
chain is assumed to be ergodic, with a unique stationary distribution � . The observed
pair .LtC1; btC1/ at each time t depends on the current state st , and moreover, their
expectations under the stationary distribution � are equal to their population-level
counterparts .xL; Nb/.

This general formulation includes a number of special cases of interest. In the
simplest setting, at each time t , we observe a matrix-vector pair of the form LtC1 D

L.st / and btC1 D b.st /, where L W X! Rd�d and b W X! Rd are deterministic
mappings such that

E�
�
L.s/

�
D xL and E�

�
b.s/

�
D Nb: (1.2a)

Many applications involve additional sources of randomness beyond that naturally
associated with the Markov chain itself. In order to accommodate this possibility, we
can consider observations of the form

LtC1 D LtC1.st / and btC1 D btC1.st /: (1.2b)

Here, the mappings LtC1 and btC1 are now allowed to be i:i:d: random, independent
of st but are required to be related to the deterministic mappings L and b via the
relation

E
�
LtC1.s/

�
D L.s/; E

�
btC1.s/

�
D b.s/ for all s 2 X. (1.2c)

By the tower property of conditional expectation, for a stationary Markov chain, equa-
tions (1.2a) and (1.2c) imply that LtC1.st / and btC1.st / are unbiased estimates of
xL and Nb, respectively.1 The random operator observed at each iteration is therefore
given by � 7! LtC1.st /� C btC1.st /. This is a natural generalization of “random
field noise” [21,87] to the Markovian setting: instead of observing i:i:d: random fields
at iteration, we observe random functional of a Markov chain’s states.

Stochastic approximation (SA) methods, dating back to the seminal work of Rob-
bins and Monro [66], are standard iterative procedures for using data to approximately

1However, equation (1.2c) does not require the observations to be conditionally unbiased.
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compute � . These algorithms proceed in a streaming fashion: upon receiving each data
point, an incremental update is made and the (averaged or) final iterate is returned in
a single pass. In this way, each iteration of stochastic approximation incurs only mild
computational and storage costs. Given these attractive computational properties, it is
natural to ask if there are SA methods that also enjoy optimal statistical performance.
To motivate the SA updates, we could start by considering a stochastic version of the
fixed-point iteration to solve equation (1.1):

�tC1 D LtC1�t C btC1:

With the randomness of the observations .LtC1; btC1/, the iterates will fluctuate at a
constant order and may not converge. In order to stabilize the stochastic fixed-point
iteration, a stepsize � 2 .0; 1/may be introduced, leading to the canonical SA updates.

In this paper, we analyze the SA procedure based on the updates

�tC1 WD .1 � �/�t C �.LtC1�t C btC1/ for t D 0; 1; : : : ; (1.3a)

y�n WD
1

n � n0

n�1X
tDn0

�t for n D n0 C 1; n0 C 2; : : : : (1.3b)

Equation (1.3a) describes a standard stochastic approximation update with constant
stepsize � > 0, whereas equation (1.3b) corresponds to an application of the Polyak–
Ruppert averaging procedure [64, 68] to the iterates, with burn-in period n0. When
each matrix observation LtC1 has a constant rank independent of the dimension d—
as is the case for temporal difference learning methods in reinforcement learning (see
Section 2.2)—the SA method (1.3) can be implemented with O.d/ computational and
storage cost per iteration.

There is an extensive body of past work on stochastic approximation methods
with Markov data. Here, we provide an overview of the literature most germane to
our contributions and defer a more detailed review to Appendix A. Asymptotic con-
vergence of SA procedures with Markovian data can be established using either the
ODE method [7] or the Poisson equation method [2]. Tsitsiklis and Van Roy [75] ana-
lyze the asymptotic convergence of SA in the specific context of temporal difference
methods in reinforcement learning. Although asymptotic guarantees provide helpful
guidance, it is often most useful to have non-asymptotic guarantees that account for
both limited sample size and scale of modern problems, and for these reasons, non-
asymptotic analysis of Markovian SA procedures has attracted much recent attention.

Assuming a mixing time bound on the Markov chain, a projected variant of linear
SA was analyzed in the paper [5], leading to non-asymptotic rates that are near-
optimal in their dependence on the sample size n. Srikant and Ying [70] analyzed the
standard SA scheme without the projection step used in the paper [5] and obtained
the same convergence rate in both mean-squared error and higher moments. Under an
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appropriate Lyapunov function assumption on the Markov chain, Durmus et al. [24]
proved finite-time bounds for linear SA using stability properties of random matrix
products. Variants and special cases of SA procedures with Markov data have also
been studied, including two-time-scale algorithms [36], gradient-based optimization
under Markov data [22], and estimation in autoregressive models [13, 34].

Despite this encouraging progress to date, two important questions still remain
open and are the focus of this paper.

• Sample complexity with optimal dimension dependence: The primary goal of non-
asymptotic analysis is to provide guarantees on the estimation error that have an
explicit dependence on the problem at hand, and that hold true for a reasonable
range of values of the sample size n. For instance, suppose that the linear Z-
estimation problem in Rd is driven by an underlying Markov chain of mixing
time tmix. Then, under natural noise assumptions, one should expect an effective
sample size of the order n=tmix so that the mean-squared error should scale as
O.tmixd=n/, with this being the dominant term whenever n& tmixd . Such an error
bound is particularly important for sieve estimators, where the problem dimension
d is adaptively chosen based on the sample size n. However, existing analyses of
linear SA do not provide such tight dimension dependence. Using the notation
of equation (1.3a), the estimation error bounds in the papers [5, 70] rely on a
uniform upper bound on the operator norm of the stochastic matrix LtC1.st /; this
quantity scales linearly with dimension d in many applications. Consequently, the
resulting bounds on the MSE have a sub-optimal dependence on dimension, which
is unsatisfactory for problems with growing dimensions. Similarly, the bounds
in the papers [17, 24, 42] also exhibit a sub-optimal dependence on dimension.
To the best of our knowledge, the question of whether linear SA succeeds under
the minimal conditions on sample size—in particular, with n mildly larger than
tmix � d—remains open.

• Instance-dependent optimality: While many estimators may exhibit near-optimal
statistical performance in the globally minimax (i.e., worst-case) sense, some of
them perform significantly better than others when applied to practical problem
instances. This phenomenon motivates the study of local (i.e., instance-dependent)
performance in the non-asymptotic regime. Such results have recently been estab-
lished for linear Z-estimation in the i.i.d. setting [39, 50, 58, 62]. The latter two
papers listed provide non-asymptotic analogs of classical theory on local asymp-
totic minimaxity (cf. [78]), which establishes lower bounds by looking at the
worst-case family of instances in a local neighborhood of a given problem. In
the Markov setting, two questions naturally arise: (1) What does it mean for an
estimator to be locally optimal in a non-asymptotic sense? (2) Does the linear SA
estimator (1.3) match the local lower bound for every problem instance?
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1.1. Contributions and organization

The primary goal of this paper is to resolve these challenges and provide a sharp
analysis of (averaged) linear SA algorithms. Arguably, our results are not merely
of theoretical interest; they also provide important guidance for practice, such as in
choosing algorithm parameters including the burn-in period and stepsize. In more
detail, we consider the following.

• We perform a fine-grained analysis of linear SA and produce an upper bound
on its statistical error that explicitly tracks the dependence on problem-specific
complexity as well as stepsize. Furthermore, our bound holds true provided n &
tmix � d , establishing the fact that the algorithm does indeed attain a sharp sample
complexity guarantee with optimal dimension dependence.

• In a complementary direction to our upper bounds, we show a local minimax lower
bound with an appropriately defined notion of local neighborhood of Markov
chains. This lower bound certifies the statistical optimality of the linear SA esti-
mator, again in an instance-dependent sense.

• We derive consequences of our general analysis for temporal difference methods
in reinforcement learning, demonstrating a key problem-dependent quantity in
matching upper and lower bounds.

One technical aspect of our analysis is noteworthy. En route to establishing bounds
with sharp dimension dependence, we introduce a careful “bootstrapping” argument:
starting with a loose bound, we progressively refine it via the repeated application of
certain self-bounding inequalities. We suspect that this method may be of independent
interest in providing sharp analyses of other stochastic approximation methods.

The remainder of this paper is organized as follows. We complete this section
by introducing notation to be used throughout the paper and then providing a more
detailed discussion of related work. In Section 2, we provide the basic problem setup,
discuss the underlying assumptions, and give some illustrative examples. Section 3 is
devoted to the presentation of our main results, which include upper bounds on the
estimation error of stochastic approximation procedures, along with local minimax
lower bounds that apply to any estimator. In Section 4, we develop some consequences
of these results for specific models, including policy evaluation in reinforcement
learning and estimation in autoregressive models. Sections 5 and 6 are devoted to
the proofs of Proposition 1 and Theorem 1, respectively. We conclude with a discus-
sion in Section 7. The proof of Theorem 2 and some auxiliary results, as well as some
corollaries, are postponed to the appendix.

Notation. We let .X; �/ denote a metric space. For any x 2 X, we use ıx to denote
the distribution that places all its mass on ¹xº. Given a random variable X , we use the
notation L.X/ to denote its probability distribution. For a pair .�; �/ of probability
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distributions on X, let �.�;�/ denote the space of all possible couplings of � and � .
For any p � 1, the Wasserstein-p distance between � and � is given by

Wp;�.�; �/ WD

²
inf

2�.�;�/

Z
X�X

�.x; y/pd.x; y/

³1=p
;

and the total variation distance between � and � is given by

dTV.�; �/ WD sup
A�X

ˇ̌
�.A/ � �.A/

ˇ̌
:

Our analysis also involves various other divergences between probability mea-
sures. For any pair of probability distributions P and Q on the same space, we use
P � Q to denote the fact that P is absolute continuous with respect to Q and use
dP
dQ

to indicate the Radon–Nikodym derivative. Given P � Q, we define

KL divergence: DKL.P k Q/ WD EP

�
log

dP

dQ
.X/

�
;

�2 divergence: �2.P jjQ/ WD EP

�
dP

dQ
.X/ � 1

�
;

Max divergence: D1.P jjQ/ WD sup
x2supp.Q/

ˇ̌̌̌
log

dP

dQ
.x/

ˇ̌̌̌
:

Given any matrix A D .aij / 2 Rn�m, its vectorization is obtained by concatenat-
ing its columns—viz.

vec.A/ WD
�
a11 a21 � � � an1 a12 � � � an2 � � � a1m � � � anm

�>
2 Rnm:

We use ¹ej ºdjD1 to denote the standard basis vectors in the Euclidean space Rd ; i.e.,
ej is a vector with a 1 in the j -th coordinate and zeros elsewhere. For two matrices
A 2 Rd1�d2 and B 2 Rd3�d4 , we use A ˝ B to denote their Kronecker product, a
d1d3 � d2d4 real matrix. For symmetric matrices A;B 2 Rd�d , the notation A � B
means that B � A is a positive semi-definite matrix, whereas A � B indicates that
B � A is positive definite. We use �max.A/ and �min.A/ to denote the largest and
smallest eigenvalues of the matrix A, respectively. We use the following notation for
matrix norms: for any matrix A 2 Rd1�d2 , we use the notation jjjAjjjop, jjjAjjjF , and
jjjAjjjnuc to denote its operator norm, Frobenius norm, and nuclear norm, respectively.

Finally, throughout the paper, we use

Ft WD �..bi ; Li ; si /i�t /

to denote the natural filtration induced by the Markovian observations.
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2. Problem setup

Recall from our earlier setup (cf. equation (1.1)) that we are interested in solving a
fixed-point equation of the form � D xL� C Nb, based on noisy observations of the
pair .xL; Nb/, as defined by the Markov observation model (1.2). We require that the
matrix xL satisfies the conditions

� WD
1

2
�max

�
xLC xL>

�
< 1 and jjj xLjjjop � max: (2.1)

This condition is used throughout the paper.

2.1. Assumptions

We now introduce and discuss the remaining four assumptions that underlie our anal-
ysis.

2.1.1. Conditions on Markov chain. We first describe the conditions imposed on
the underlying Markov chain in our observation model. Let ¹stºt�0 denote a trajec-
tory drawn from a Markov chain with transition kernel P . We assume that this chain
has a unique stationary distribution � and impose the following mixing condition in
Wasserstein-1 distance.

Assumption 1. There exist a natural number tmix and a universal constant c0 > 0

such that, for any x; y 2 X, we have

W1;�.ıxP
tmix ; ıyP

tmix/
.a/
�
1

2
�.x; y/ and W1;�.ıxP

t ; ıyP
t /
.b/
� c0�.x; y/ (2.2)

for all t D 1; 2; : : : :

It is known that such a condition implies rapid mixing (see [48, Section 4.5]). For
most parts of the paper, we assume that the chain is initialized with a sample s0 � �
from the stationary distribution. Given that our mixing time bound guarantees expo-
nential decay of the Wasserstein distance, this condition is mild: it can be removed by
waiting for O.tmix/ iterations for the process to mix. By making this intuition rigorous,
we will also present a slightly weaker error bound under arbitrary initial distribution
(see Corollary 1).

2.1.2. Tail conditions on noise. In our observation model, the “noise” terms cor-
respond to the differences LtC1.st / � L.st / and L.st / � xL, along with analogous
quantities for the vector b. Our second assumption imposes conditions on these noise
variables. We consider separate conditions on these martingale (i.e.,LtC1.st /�L.st /
and btC1.st / � b.st /) and Markov (i.e., L.st / � xL and b.st / � Nb) parts of the noise.
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Assumption 2. There exist an even integer Np 2 Œ2;C1� and non-negative constants
�L and �b such that, for any positive even integer p � Np, scalar t � 0, vector u 2
Sd�1, and index j 2 ¹1; : : : ; dº, we have

E
�˝
ej ;

�
LtC1.st / �L.st /

�
u
˛p
j Ft

�
� pŠ�

p
L ;

Es��
�
E
�
hej ; btC1.s/ � b.s/i

p
j s
��
� pŠ�

p

b
;

as well as

Es��
�˝
ej ;

�
L.s/ � xL

�
u
˛p�
� pŠ�

p
L and Es��

�
hej ; b.st / � Nbi

p
�
� pŠ�

p

b
:

Note that this assumption is mildest for NpD 2, and strongest for NpD1. In the lat-
ter case, when Np D1, the assumption requires LtC1 and btC1 to be sub-exponential
random variables in the standard coordinate directions (since log.pŠ/ � p log.p=2/
by concavity of the log function). This condition covers, for instance, the case where
LtC1 is the outer product of sub-Gaussian random vectors, as in temporal difference
learning methods. In addition to accommodating this case, Assumption 2 also covers
the heavier-tailed setting in which only finitely many moments exist. In particular,
when Np D 2, the second moment assumption coincides with the assumption made in
the paper [58].

An important quantity in our analysis is the effective noise level given by

x� WD sup
p2Œ2; Np�

sup
j2Œd�

sup
t�0

p�1
�
E
�
hej ; .LtC1.st /� xL/x� C .btC1.st /� Nb/i

p
��1=p

: (2.3)

Note that, under Assumption 2, we have the upper bound x� � �Lkx�k2 C �b .

2.1.3. Metric space conditions. For most of our analysis, we impose the following
condition.

Assumption 3. The metric space .X; �/ has diameter at most one.

Note that our assumption of unit diameter is arbitrary; boundedness suffices. In
order to accommodate the general case, it suffices to rescale the parameters �L and �b .

When applying our theory to unbounded spaces (e.g., X D Rd ), we use a trunca-
tion argument to show that there is an event over a reduced state space on which this
condition holds with probability tending exponentially to 1. (See Appendix B for the
details of this argument.) To unify the notation, we always assume the distance to be
of constant order with high probability, which results in constant diameter of the trun-
cated space. In high-dimensional Euclidean spaces, the distance between two generic
random vectors can easily become dimension dependent. In such cases, we rescale
the space to make it a constant. The rescaling could lead to dimension-dependent
Lipschitz constants, which is captured in Assumption 4 to follow.
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2.1.4. Lipschitz condition. Finally, we place a Lipschitz assumption—under the
metric �—on the mapping from the metric space X to the stochastic operators. Given
the Markov chain setup in the metric space .X; �/, it is tempting to assume a dimen-
sion-free Lipschitz bound on the mappings .Lt ; bt /. However, such Lipschitz con-
stants typically depend on dimension for practical problems. Concretely, view the
xL-scale parameters .�; max/ as constants and assume that the observations LtC1.st /
each have rank at most r . We then have

E
�
jjjLtC1.st /jjjop

�
�

E
�
jjjLtC1.st /jjjnuc

�
r

�
trace

�
E
�
LtC1.st /

��
r

D
trace.xL/

r
: (2.4)

Note that the term trace.xL/ typically scales as ‚.d/, even in the “easy case” when xL
is a constant multiple of identity matrix.

Consequently, the Lipschitz constant for the mapping

Lt W X! Rd�d

grows at least linearly in dimension d . On the other hand, as a d -dimensional standard
Gaussian random variable has norm

p
d � zO.1/ with high probability, it is natural to

assume the Lipschitz constant for the vector-valued mapping bt W X! Rd to be of
order at least �.

p
d/. We therefore make the following assumption.

Assumption 4. There exist constants �L; �b > 0 such that, almost surely for any
x; y 2 X, we have

jjjLt .x/ �Lt .y/jjjop � �Ld � �.x; y/ and kbt .x/ � bt .y/k2 � �b
p
d � �.x; y/

for all t D 1; 2; : : : :

Note that, in Assumption 4, we have explicitly scaled the right-hand side of the
inequalities with factors that depend on the problem dimension d so that the pair
.�L; �b/ should indeed be viewed as dimension-free. It is also worth noting that the
notation .�L; �b/ is overloaded, since we can take the maximum of the bounds in
Assumptions 2 and 4. As shown in Appendix B, for certain natural problem classes,
Assumption 2 indeed implies Assumption 4 with discrete metric, up to logarithmic
factors.

2.2. Some illustrative examples

Our assumptions cover a broad range of ergodic Markov chains, and the fixed-point
equation (1.1) associated with their stationary distribution naturally arises from sev-
eral problems. In this section, we describe a few concrete examples of our general
setup. We first discuss the class of Markov chains satisfying our assumptions and
then describe the linear Z-estimators associated with such problems.
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2.2.1. Examples of Markov chains. By varying our choice of the metric �, we
recover several important classes of Markov chains that satisfy Assumptions 1 and 3.

• Consider a Markov chain defined on a countable state space X, and consider the
discrete metric �.x; y/ WD 1x¤y . In this context, Assumption 1 corresponds to
mixing time bound in total variation—viz.

dTV.ıxP
tmix ; ıyP

tmix/ �
1

2
for all pairs x; y 2 X.

This mixing condition is satisfied for some finite tmix when the Markov chain is
irreducible, aperiodic, and positive recurrent. Moreover, this metric space has unit
diameter so that Assumption 3 holds as well.

• As another example, consider the state space X D B.0; 1/ � Rd equipped with
the Euclidean metric �.x; y/ D kx � yk2. We can define a Markov chain on this
space via the random evolution XkC1 D TkC1.Xk/, where the random non-linear
operators ¹Tkºk�1 � XX are drawn i:i:d: from some distribution. We assume that
the expected operator xT WD EŒT1� satisfies the contraction condition k xT .x/ �
xT .y/k2 � kx � yk2 with some  < 1. Assuming the stochastic operator T to be
Lipschitz and to satisfy a second moment bound, this dynamical system satisfies
the Wasserstein contraction condition under the Euclidean metric.

2.2.2. Examples of linear Z -estimators. We now describe some interesting exam-
ples of linear Z-estimators, to which we will return in later sections.

Example 1 (Approximate policy evaluation). We begin by considering the temporal
difference (TD) algorithm for approximate estimation of value functions. This prob-
lem arises in the context of Markov reward processes (MRPs), which are Markov
chains that are augmented with a reward function r W X ! R. A trajectory from a
Markov reward process is a sequence ¹.st ; Rt /ºt�0, where ¹stºt�0 is the Markov
trajectory of states and Rt is a random reward, corresponding to a conditionally unbi-
ased estimate (given st ) of the reward function value r.st /. Given a discount factor
 2 Œ0; 1/, the expected discount reward defines the value function

V �.s/ D E

"
1X
tD0

 tRt j s0 D s

#
:

This value function is connected to linear Z-estimators via the Bellman principle.
Let P denote the transition operator of the Markov chain, and let � denote the station-
ary distribution. Note that the P maps the space L2.X; �/ to itself. With this notation,
the value function V � is known to be the unique fixed point of the Bellman evaluation
equation

V D PV C r: (2.5)
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In general, this equation is non-trivial to solve, especially given a limited trajectory
length. In practice, it is standard to compute approximate solutions using linear basis
expansions [12, 75], and this approach underlies the family of TD algorithms with
linear function approximation.

Let ¹�j ºdjD1 be a collection of linearly independent real-valued functions defined
on the state space, and consider the linear subspace S of all functions of the form
V� .s/ D

Pd
jD1 �j�j .s/. This subspace defines the projected Bellman equation

xV D …S

�
P xV C r

�
; (2.6)

where …S is the orthogonal projection operator under L2.X; �/.
By definition, the projected fixed point xV can be written in the form

xV .s/ D

dX
jD1

x�j�j .s/

for some vector x� 2 Rd . In defining the vector-valued mapping � D Œ�j �djD1, some
simple calculations show that this parameter vector must satisfy the linear system

†0x� D †1x� C Es��
�
R0.s/�.s/

�
; (2.7)

where †0 D Es�� Œ�.s/�.s/
>� is the second-moment matrix of �.s/ under the sta-

tionary distribution, and †1 D EŒ�.s/�.sC/>� is the cross-moment operator of the
Markov chain. In defining this cross-moment, the expectation is taken over s � � and
sC � P.s; �/.

This problem can be viewed within our framework by considering a Markov chain
on the augmented state space !t D .st ; stC1/. Equation (2.7) defines a fixed-point
equation under the stationary distribution of this Markov chain. Define the minimum
and maximum eigenvalues � WD �min.†0/ and ˇ WD �max.†0/, along with the obser-
vation functions

btC1.!t / D
1

ˇ
Rt .st /�.st /;

LtC1.!t / D Id �
1

ˇ

�
�.st /�.st /

>
� �.st /�.stC1/

>
�
:

(2.8)

With these choices, the stochastic approximation procedure (1.3) is the widely used
TD.0/ algorithm. On the other hand, for a stationary Markov chain .st /t2Z, the fixed-
point equation x� D EŒLtC1.!t /� � x� C EŒbtC1.!t /� is equivalent to equation (2.7).
Note that though the expression for the mappings btC1 and LtC1 depends on un-
known parameter ˇ, they can be absorbed into the stepsize choice, and the algorithm
works well without such knowledge.
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Typically, the Euclidean norm k�.s/k2 of the feature vectors scales as
p
d , and

under the stationary distribution � , the variance of any coordinate of �.s/ is of con-
stant order. Under these conditions, the cross-moment matrix †1 has operator norm
of constant order. On the other hand, as for the random observations, we have the
scalings jjjLtC1jjjop D O.d/ and kbtC1k2 D O.

p
d/ so that Assumptions 2 and 4 are

satisfied.

In the context of TD, it is natural to consider a sieve estimator. Given a collection
of basis functions ¹�j º1jD1, we can define the nested family S1 � S2 � � � � ; where Sd
denotes the span of the sub-collection ¹�j ºdjD1. Here, the choice of the sieve parameter
d is key: larger values reduce the approximation error at the expense of increasing the
estimation error. We discuss how this can be done in Section 4.

Another extension of the TD.0/ algorithm—one that becomes feasible under the
Markovian observation model—is the TD.�/ family of procedures. A fundamental
question is how well the solution of the projected fixed-point equation (2.6) approxi-
mates the true value function V �. Prior work by a subset of the current authors [58]
analyzes this quantity and provides matching upper and lower bounds in the i:i:d: set-
ting. However, the Markovian observation model actually allows this approximation
error to be reduced, albeit at the cost of increased estimation error, as discussed in our
next example.

Example 2 (Policy evaluation with TD.�/). The family of TD.�/ algorithms is moti-
vated by the following observation: since the value function V � is the fixed point of
equation (2.5), it is also the fixed point of the composition of itself. Concretely, for
any k � 1, we have

V � D .P /kV � C

k�1X
jD0

.P /j r:

For any � 2 Œ0; 1/, we take the weighted average of the above (infinite) collection of
equations using exponentially decaying weight .1;�;�2; : : :/ and obtain the following
equation:

V D .1 � �/

1X
kD0

�k.P /kC1V C

1X
kD0

�k.P /kr: (2.9a)

The solution V � to equation (2.5) also solves equation (2.9a).
Following the same route as TD.0/, for a given subspace S of functions, we seek

a solution xV .�/ to the projected fixed equation

xV .�/ D .1 � �/

1X
kD0

�k…S.P /
kC1 xV .�/ C

1X
kD0

�k…S.P /
kr; (2.9b)
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in which the operator P has been replaced by the projection …SP . Although the
fixed points of equation (2.9a) and the Bellman equation (2.5) coincide, the projected
version (2.9b) has a different set of fixed points.

Since the value function xV .�/ lies in the linear space S, it has a representation
of the form xV .�/.s/ D

Pd
jD1
x�
.�/
j �j .s/ for some coefficient vector x� .�/ 2 Rd . From

equation (2.9b), this vector must satisfy a linear system of the form"
1X
kD0

.�/k†k

#
x� .�/ D

"
1X
kD0

.�/k†kC1

#
x� .�/ C

1X
kD0

.�/kE
�
R0.s0/�.s�k/

�
;

(2.10)
where ¹skº1kD�1 is a stationary Markov chain following the transition kernel P , and
we define†k DEŒ�.s�k/�.s0/

>� for each integer k. As it should, when we set �D 0,
equation (2.10) reduces to the TD.0/ update from equation (2.7).

In order to use stochastic approximation methods to solve this equation, we con-
sider an augmented Markov process .stC1; st ; gt /t2Z in the space X2 � Rd , which
evolves as

stC1 � P.st ; �/ and gt D �.st /C �gt�1: (2.11a)

If feature vectors �.st / lie in a compact set almost surely, we have

gt D

C1X
kD0

.�/k�.st�k/:

Let z� be the stationary distribution of this augmented Markov chain.2 In terms of an
element ! D .s; sC; g/ drawn according this stationary distribution, the fixed-point
equation (2.9b) admits the succinct representation

Ez�
�
g�.s/>

�
x� .�/ D Ez�

�
g�.sC/>

�
x� .�/ C Ez�

�
R0.s/g

�
: (2.11b)

By choosing the observation functions

LtC1.!t / D Id � � �
�
gt�.st /

>
� gt�.stC1/

>
�
; btC1.!t / D � �Rt .st /�.st /;

(2.11c)
for a scalar � > 0, this algorithm is a special case of our general setup. In particular,
by substituting the infinite-sum expression for the random variable gt into equa-
tion (2.11b), we obtain the projected linear equation (2.10) under the low-dimensional
representation. See Section 4 for a more detailed verification of the assumptions
needed to apply our main results for this problem.

2Such a stationary distribution exists and is unique under suitable assumptions. See Sec-
tion 4.2 for details.
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For our last example, we turn to a different class of problems involving vector
autoregressive (VAR) models for time series [55].

Example 3 (Parameter estimation in autoregressive models). Anm-dimensional VAR
model of order k describes the evolution of a random vectorXt as a kth-order Markov
process. The model is specified by a collection of m �m matrices ¹A�j º

k
jD1, and the

random vector evolves according to the recursion

XtC1 D

kX
jD1

A�jXt�jC1 C "tC1; (2.12)

where the noise sequence ."t /t�0 is i:i:d: and zero-mean and supported on a bounded
set.

Considering the .k C 1/-fold tuple !t D .XtC1; Xt ; : : : ; Xt�kC1/, the process
.!t /t�0 is Markovian. Under appropriate stability assumptions on the model param-
eter, the process mixes rapidly under the .k C 1/m-dimensional Euclidean metric.
Let z� denote its stationary distribution, and suppose for convenience that the chain is
observed at stationarity.

In order to estimate the model parameters, we consider the following set of Yule–
Walker estimation equations:

E
�
XtC1X

>
t�`

�
D A�1E

�
XtX

>
t�`

�
C A�2E

�
Xt�1X

>
t�`

�
C � � � C A�kE

�
Xt�kC1X

>
t�`

�
(2.13)

for ` D 0; 1; : : : ; k � 1.
These equations form a km2-dimensional linear system of equations for estimat-

ing km2-dimensional parameters. Note that the parameters live in the space of matrix
sequences, and so, we slightly abuse our notation for simplicity: L denotes a linear
operator from Rk�m�m to itself, and b is an element in Rk�m�m. At the sample level,
for any collection A WD ¹Aj ºkjD1 2 Rk�m�m of system matrices, the stochastic obser-
vations are given by�

btC1.!t /
�
`
D � XtC1X

>
t�` for ` D 0; 1; : : : ; k � 1

and

�
LtC1.!t /

�
ŒA�` D A` � �

k�1X
jD0

AjXt�jX
>
t�` for ` D 0; 1; : : : ; k � 1.

Once again, the parameter � is a scaling constant needed to fit into the fixed-point
equation framework and is absorbed into the stepsize choice of the algorithm.
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3. Main results

We now turn to the statement of our main results, beginning with our upper bounds in
Section 3.1, followed by lower bounds in Section 3.2.

3.1. Instance-dependent upper bounds

In this section, we begin by stating some upper bounds (Theorem 1) on the behav-
ior of the Polyak–Ruppert averaged SA scheme (1.3b). These bounds are instance-
dependent, in the sense that they are specified in terms of an explicit function of the
operator xL and the fixed point x� . We then state a second result (Proposition 1) on the
non-averaged iterates, which plays a key role in proving Theorem 1.

3.1.1. Instance-dependent bounds on the averaged iterates. For any state s 2 X,
define the functions

"MG.s/ WD .b1.s/� b.s//C .L1.s/�L.s//x� and "Mkv.s/ WD b.s/CL.s/x� � x�:

Note that, for a fixed state s, the quantity "MG.s/ depends on the random variables
b1.s/ and L1.s/, and so, it is a random vector, whereas by contrast, the quantity
"Mkv.s/ is deterministic. Letting .Qst /1tD�1 be a stationary Markov chain under the
transition kernel P , we then define the matrices

†�MG WD E�
�

cov
�
"MG.s/ j s

��
and †�Mkv WD

1X
tD�1

E
�
"Mkv.Qst /"Mkv.Qs0/

>
�
: (3.1)

Overall, the performance of our algorithm depends on the matrix sum

†� WD †�MG C†
�
Mkv;

as well as the effective noise variance x�2 defined in equation (2.3). In terms of these
quantities, we have the following guarantee.

Theorem 1. Under Assumptions 1–3, suppose that we set the stepsize � and burn-in
parameter n0 as � D .c.�2Ld C 

2
max/.1 � �/n

2tmix/
�1=3 and n0 D 1

2
n, where c is

a suitably chosen universal constant. There exist universal constants c1; c2 > 0 such

that, for any sample size n satisfying n

log2 n
�

2tmix.�
2
L
dC2max/

.1��/2
log.c0d/, the Polyak–

Ruppert estimate (1.3b) has MSE bounded as

E
�
ky�n � x�k

2
2

�
�
c1

n
Tr
�
.I � xL/�1.†�MG C†

�
Mkv/.I �

xL/�>
�

C c2

�
�2Ldtmix

.1 � �/2n

�4=3
x�2 log2 n: (3.2)
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See Section 6 for the proof of this theorem.
A few remarks are in order. First, and as shown in the next section, the first term

n�1 Tr..I � xL/�1†�.I � xL/�1/ is optimal for the Markovian stochastic approxi-
mation problem in an instance-dependent sense. This term appears in existing central
limit results for Markovian stochastic approximation [26], and our bound captures this
dependence in a non-asymptotic manner up to a universal constant. It is worth not-
ing that, when the Markov chain is uniformly geometrically ergodic, a central limit
theorem for the averaged iterate y�n directly follows from classical Markovian CLT
(see [57, Chapter 17]).

The first term in the bound (3.2) can always be further upper bounded3 by

c1
x�2

.1 � �/2n
tmixd � log2.c0d/:

On the other hand, disregarding dependence on .�L; �b/ and logarithmic factors in the
sample size, the second term in the bound scales as O.. tmixd

.1��/2n
/4=3/. Consequently,

up to polylogarithmic factors, we have

E
�
ky�n � x�k

2
2

�
.
x�2tmixd

.1 � �/2n
: (3.3)

Thus, at least in a worst-case sense, the second term is always dominated by the
first term, and our instance-dependent analysis also recovers a worst-case optimal
statistical rate for linear Z-estimation with Markovian data. It is also worth noting
that the second term in equation (3.2) decays with sample size at n�4=3 rate, faster
than the O.n�1/ leading-order term. For sufficiently large sample size n, this term
is dominated by the first term, and the behavior of the estimator y�n is governed by
the instance-optimal quantity. It should be noted that the n�4=3-rate of the second-
order term—indicating how fast the exact instance-optimal behavior kicks in—may
not be optimal. Indeed, it decays more slowly than the n�2 second-order asymp-
totic efficiency in regular parametric models [29, 65], and we conjecture that such
a second-order term is unavoidable for stochastic approximation. That being said, the
sub-optimality is only a second-order phenomenon, and the main message of Theo-
rem 1 is unaffected: with a reasonable sample size, the Polyak–Ruppert estimator is
instance-optimal, up to constant factors.

Note that Theorem 1 involves inexplicit universal constants .c; c1; c2/. Since our
theory focuses on optimal instance-dependent quantities and sample complexities up
to universal constant factors, we do not try to optimize these constants. Our proof

3This can be easily seen from exponential decay of the correlation; in particular, see equa-
tion (6.8) in the proof of the theorem.
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gives an upper bound with c1 D 16.4 That being said, for the tail-averaging procedure
described above, we can make the constant c1 arbitrarily close to 2, as we are using
the latter half of the data in Polyak–Ruppert averaging. With a more careful choice
of the burn-in period, e.g., n0 �

logn
�.1��/

, the constant c1 in equation (3.2) can be
made arbitrarily close to 1. The proof is straightforward—the leading-order term in
equation (3.2) comes from the variance of sum of a functional on the Markov chain
state space, which can be computed directly.

We note that Theorem 1 makes two types of tail assumptions on the random obser-
vations: Assumption 2 with Np D 2 requires dimension-free second moment bounds
in any coordinate direction, whereas the Lipschitz condition (Assumption 4) together
with Assumption 3 (boundedness of the domain) implies a (dimension-dependent)
uniform upper bound on the noise. The two assumptions play very different roles
when the dimension dependence is taken into account. As we will see in Corollary 4,
such assumptions are naturally satisfied in the context of sieve estimators, for which
dimension d of the problem is selected adaptively based on sample size n.

Finally, we also note that the requirement on the sample size n is nearly optimal,
since we require

n D z�
� tmixd

.1 � �/2

�
to make the estimation error (3.3) less than a constant (by seeing �L and max as con-
stants). Up to an additional O.tmix/ factor, the sample size requirement in Theorem 1
also matches that of linear stochastic approximation in the i:i:d: setting [46, 58, 79].
This additional O.tmix/ factor is unavoidable, which can be seen from the following
reduction from the Markov to the i:i:d: setting. Consider a problem instance in the
i:i:d: setup, given by a probability distribution P over Rd�d �Rd . Defining the state
.Lt ; bt /, consider a lazy Markov chain that remains at the same state with probabil-
ity 1 � 1

tmix
and jumps to an independent state drawn from P with probability 1

tmix
. A

Markov trajectory of size n in this lazy Markov chain is approximately equivalent to
O.n=tmix/ samples in the i:i:d:model and results in a multiplicative blowup of O.tmix/

in the sample complexity requirement for the Markov case.

Starting from non-stationary s0. Note that Theorem 1 is shown under an initial
state satisfying s0 � �. Such an assumption may not be always available in practice.
However, in Corollary 1 to follow, we will show that, under minor modification, our
conclusion easily extends to non-stationary initial distributions.

For non-stationary initial distributions, we wait for a cold-start period

nc WD n=4

4The universal constants c2 in the high-order term depend on the constant pre-factor in
Proposition 1 to follow. We will not track their explicit values for simplicity.
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to start running the stochastic approximation iterate (1.3a); i.e., we take the stepsize
sequence as

�t WD

´
0; t 2 ¹0; 1; : : : ; nc � 1º;

�; t � nc :

The rest of the SA procedure, including the average step (1.3b), remains the same as
before. For notational simplicity, we let �0 D 0.

Corollary 1. Under the same setup and parameter choice as in Theorem 1, assume
furthermore that Assumption 1 is satisfied with c0 D 1 and set nc D n=4. There exists
an event E such that P .E/ � 1 � e�n=.16tmix/ and

E
�
ky�n � x�k

2
21E

�
�
c0

n
Tr
�
.I � xL/�1.†�MG C†

�
Mkv/.I �

xL/�>
�

C c0
�
�2Ldtmix

.1 � �/2n

�4=3
x�2 log2 n

C .�2b C �
2
Lk
x�k22/ � exp

�
�

n

32tmix

�
:

See Section B.3 for the proof of this corollary. A few remarks are in order. Com-
pared to the MSE bound in Theorem 1, the bound in Corollary 1 exhibits two differ-
ences: we need to exclude an extreme event Ec that occurs with exponentially small
probability, and the right-hand side of the bound involves an additional, exponentially
decaying term. Roughly speaking, the high-probability event E corresponds to the
Markov chain states being close to a coupled chain. In the regime n� tmix (which
is implied by the sample size requirement in Theorem 1), both the probability of the
extreme event and the additional term are very small, and the guarantees under a non-
stationary initial distribution behave qualitatively similar to the stationary case. For
technical reasons, Corollary 1 requires a slightly stronger condition on the Markov
chain—the transition kernel needs to be non-expansive under the metric �; that is,
we require that c0 D 1 in Assumption 1. However, we note that such a non-expansive
property holds for a wide range of applications: it is automatically satisfied in the case
of �.x;y/D 1x¤y and W1;� D dTV. For general metric spaces, the mixing time bound
in Assumption 1 (a) is usually established by showing that the transition kernel P is
a contraction, i.e., c0 < 1, which implies non-expansiveness (see, e.g., [10]). Finally,
we note that the higher moment bounds for the last iterate established in Proposition 1
can also be extended to the case of non-stationary initial distributions, yielding similar
results.

3.1.2. Bounds on the non-averaged iterates. The proof of Theorem 1 involves first
analyzing the non-averaged iterates. Since the upper bound established in this step is
of independent interest, we state and discuss it here.
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Proposition 1. Under Assumptions 1–3, there are universal positive constants .c0; c1/
such that, for any integer p 2 ¹1º [ Œlog n; Np=2�, scalar � � 2ptmix log.c0d=�/, and
positive stepsize � 2 .0; 1��

2cp3.�2
L
dC2max/�

�, we have

�
Ek�t � x�k

2p
2

�1=p
� e�

1
2�.1��/t

�
Ek�0 � x�k

2p
2

�1=p
C
cp3�

1 � �
x�2�d

for all t D 1; : : : ; n.

See Section 5 for the proof of this proposition.
Note that the guarantees on the unaveraged iterates in Proposition 1—unlike those

of Theorem 1 for the averaged iterates—do not match the optimal instance-dependent
behavior. This is to be expected, since, at least asymptotically, the unaveraged se-
quence converges to a Gaussian random vector with covariance specified by the solu-
tion of a Riccati equation. (For details, see Section 4.5.3 of the book [2].) This covari-
ance term need not match the optimal statistical error.

On the other hand, by choosing � � logn
.1��/n

, the bound in Proposition 1 matches
the worst-case bound in equation (3.3), up to log factors. We also note that, in Propo-
sition 1, the exponent p can take values in two ranges: regardless of the value of
Np 2 Œ2;1�, one can always take p D 1 and obtain an upper bound on the mean-

squared error EŒk�t � x�k22�. This bound only requires Assumption 2 to hold true with
Np � 2, which covers many important examples (see Section 4). On the other hand,

when Assumption 2 is satisfied with Np � 2 log n and a stronger moment assumption
is imposed, one can obtain a p-th moment bound for any p � Œ2 logn; Np�. This bound
can be readily converted into a high-probability bound for the last iterate of stochas-
tic approximation. It is worth noting that we study these two cases separately, using
slightly different proof techniques.

Let us now make some comparisons between Proposition 1 and existing results on
the unaveraged forms of Markovian stochastic approximation. As we have noted in
our examples, in many cases, the quantities .�L; �b; x�/ do not depend on the dimen-
sion, in which case the error bound in Proposition 1 grows linearly with dimension
d . In comparison, in terms of our notation, the error bounds in the papers [5,70] both
exhibit quadratic dependency on the quantity maxs2X jjjLt .s/jjjop

1��
. As we noted previously

in equation (2.4), this quantity scales linearly in dimension when the observations
have a constant rank (independent of dimension) so that (even after optimal param-
eter tuning) the bounds from these parameters scale at least proportionally to d2

n
.

This scaling should be contrasted with the O.d=n/ guarantees from our bounds. On
a complementary note, the analysis in [24] involves a different mixing assumption,
and so, it is not directly comparable to our results. However, it is worth noting that
their bound k�t � x�k2 also has an explicit O.d=

p
n/ term (cf. equation (32) in their

paper), showing that the MSE bound grows quadratically with dimension.
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3.2. Local minimax lower bounds

Thus far, we established instance-dependent upper bounds for the averaged stochas-
tic approximation scheme with Markov noise. It is natural to wonder whether these
bounds can be improved. Answering this question requires the development of local
minimax lower bounds, which we describe in this section.

3.2.1. Setup and local neighborhoods. We begin with the setup and the definition of
local neighborhoods for our lower bounds. Let P be an irreducible Markov transition
kernel on a finite state space X with associated stationary measure �P . Consider the
solution x�.P / to the fixed-point equation

x�.P / D E�P
�
L.s/

�
� x�.P /C E�P

�
b.s/

�
; (3.4)

where the maps b and L are known to the estimator, whereas the Markov transition
kernel is unknown. For some fixed P0 with stationary measure �0, we would like to
lower-bound the number of observations required to estimate x�.P0/ to a given accu-
racy. In order to obtain such a lower bound, we consider the fixed-point problem (3.4)
over a local neighborhood5 of the pair .P0; �0/. We assume that the estimator is based
on a Markov trajectory ¹stºntD0, with initial state s0 drawn according to the original6

stationary distribution �0 and successive states evolving according to the transition
kernel P .

In order to quantify the complexity of estimation localized around the Markov
transition kernel P0, we define the following two notions of local neighborhood:

NProb.P0; "/ WD
°
P W

X
x2X

�0.x/ � �
2.P.x; �/ jj P0.x; �// � "

2
±
;

NEst.P0; "/ WD
®
P W kx�.P / � x�.P0/k2 � "

¯
:

The two notions of neighborhood focus on different types of locality restrictions on
the model class: the local problem class NProb contains all the Markov transition
kernels that are “globally close” to a given kernel P0, measured by a weighted �2

divergence. It is worth noting that this weighted �2 divergence has an operational
interpretation. Suppose that we draw x � �0 and then draw the next state y � P0.x; �/
according to the original Markov kernel P0, as well as y0 � P.x; �/ under the kernel
P . Then, the weighted �2 divergence is the �2 divergence between the joint laws of
.x; y/ and .x; y0/.

5Doing so is necessary to rule out trivial estimators and the possibility of super-efficiency.
6In our construction, both kernels P0 and P are rapidly mixing and their stationary mea-

sures are sufficiently close in TV distance that the choice of initial distribution does not affect
the result. Drawing s0 � �0 is made for theoretical convenience.
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On the other hand, the local class NEst contains Markov transition kernels P such
that the solution x�.P / to the fixed-point equation (3.4) lies in a local neighborhood
of the given solution x�.P0/, measured by the Euclidean distance. This problem class
captures the complexity specifically for solving the fixed-point equation, without the
need to estimate the entire transition kernel. In particular, it is easy to construct a
Markov kernel P such that the solution x�.P / is very close to x�.P0/, but the distance
between the transition kernels P and P0 (e.g., measured in weighted �2 divergence)
is arbitrarily large.

3.2.2. Instance-dependent lower bound. Our lower bound is proved on the smallest
worst-case risk attainable over the intersection of NProb and NEst. We use the short-
hand notation xL.0/ WD E�0 ŒL.s/�. Also, recall the covariance matrix †�Mkv defined in
equation (3.1) for a stationary trajectory .Qst /t2Z under the transition kernel P0. Our
bound depends on the local radius

"n D n
�1=2

q
trace

�
.I � xL.0//�1†�Mkv.I �

xL.0//�>
�
;

which is the contribution of Markovian noise to the upper bound stated in Theorem 1.
We are now ready to state our lower bound. Recall that we have assumed that

the kernel P0 is irreducible and aperiodic. We also assume that the mixing condition
(Assumption 1) holds with the discrete metric �.x; y/D 1¹x¤yº and mixing time tmix,
and that supp.P0.s; �// � 2 for all s 2 X.

Theorem 2. Under the assumptions stated above, there exist universal positive con-
stants .c; c1; c2/ such that, for any sample size n lower bounded as

n �
ct2mix�

2
Ld

2 log2 d
.1 � �/2

and n2"2n �
2c.1C �2L/x�

2t4mixd
2

.1 � �/4
log6

�
d

mins �0.s/

�
;

we have the minimax lower bound

inf
y�n

sup
P2N0

E
�
ky�n � x�.P /k

2
2

�
� c2"

2
n;

where N0 WD NProb.P0; c1

q
d
n
/ \NEst.P0; c1"n/.

See Appendix E for the proof of this theorem.
A few remarks are in order. First, note that the minimax lower bound is with

respect to the problem class NProb.P0; c1

q
d
n
/ \NEst.P0; c1"n/, which requires both

the transition kernel P and the solution x�.P / to be close to the given problem instance
.P0; x�.P0//. The size of the weighted �2 neighborhood scales with the standard para-
metric rate

p
d=n, as desired in such problems. On the other hand, the size of the

neighborhood around x�.P0/ is proportional to the local radius "n that appears in the
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lower bound. Operationally, this result indicates that even if the estimator knows in
advance that x�.P / lies in the ball B.x�.P0/;c1"n/, one cannot do much better than sim-
ply outputting an arbitrary point in this ball without looking at the data. Let Nglobal be
the set of Markov chain fixed-point equation problem instances satisfying Assump-
tions 1–4. Following the discussion in Section 3.1.1, a worst-case lazy Markov chain
trajectory of length n yields an effective i:i:d: sample size of order n=tmix. Note that,
in the i:i:d: settings, the fixed-point equation problem considered in this paper covers
linear regression (see [58]). Following the well-known minimax lower bound for lin-
ear regression (see [80, Section 15.3]), we can obtain a global minimax lower bound
using this reduction

inf
y�n

sup
P2Nglobal

E
�
ky�n � x�.P /k

2
2

�
&

tmixd

.1 � �/2n
;

which is also achieved by Theorem 1. Compared to this global minimax lower bound,
the local minimax formulation in Theorem 2 provides a more fine-grained character-
ization of the minimax risk landscape across different problem instances: there could
be many different estimators that achieve the global minimax lower bound (for exam-
ple, Proposition 1 shows that the last iterate is near-optimal up to logarithmic factors),
but the Polyak–Rupert averaged estimator is optimally adaptive to the complexity
associated to any problem instance, characterized by the quantity "2n.

Second, it should be noted that quantity "2n matches (up to a constant factor) the
optimal mean-squared error given by the local asymptotic minimax theorem [31, 78].
In contrast to such asymptotic theory, however, Theorem 2 applies when n is finite
and does not impose any regularity assumptions on the estimator. Furthermore, the
radius "n that is used to define the local neighborhood NEst.P0; "n/ is optimal in
the following sense. On the one hand, since the plug-in estimator is asymptotically
normal [31], for any decreasing sequence "0n such that "0n > "n and "0n ! 0C, the
minimax risk within the neighborhood NEst.P0; "

0
n/ behaves asymptotically as "2n up

to constant factors. On the other hand, for any decreasing sequence "0n such that "0n <
"n, the minimax risk in the neighborhood NEst.P0; "

0
n/ is at most "0n. In the latter case,

the neighborhood is so small that it provides more information than the data provides.
Third, note that Theorem 2 involves inexplicit universal constants .c1; c2/. We do

not optimize these constants in our proof, and our proof gives a bound with c1 D
1 and c2 D 1

4.5C�/
. Note that the local asymptotic minimax lower bound for this

problem [31] implies that

lim sup
c1!C1

lim
n!C1

inf
y�n

sup
P2NProb.P0;c1=

p
n/

E
�
ky�n � x�.P /k

2
2

�
� "2n;

which suggests that the constants can be sharpened. Indeed, using more careful argu-
ments, the non-asymptotic lower bound exhibits a similar nature: in Theorem 2, if we
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take the constant c1 in the size of the neighborhood sufficiently large, the pre-factor c2
in the minimax lower bound can be made close to 1, exactly matching the asymptotic
lower bound and the refined upper bound (see discussion following Theorem 1 for
details). In doing so, we can re-scale the prior distribution in the proof of Theorem 2
with c1, and the leading-order term in the Bayesian Cramér–Rao lower bound will
come with a pre-factor 1. For brevity, we do not dive into details of this argument.

Fourth, Theorem 2 matches the Markov noise term in Theorem 1, establishing
its optimality when the martingale part of the noise vanishes, i.e., Lt .s/ D L.s/ and
bt .s/ D b.s/. The lower bound does not capture the martingale part of the noise
because we assume that the functions L W X! Rd�d and b W X! Rd are known to
the estimator. In the setting where these functions are also observed only through
noisy i:i:d: data .Lt ; bt /, Theorem 3 in the paper [58] implies a lower bound of
the form c2n

�1 trace..I � xL.0//�1†�MG.I �
xL.0//�>/. Combining it with Theorem 2

implies a minimax lower bound involving the term c02n
�1 trace..I � xL.0//�1.†�MkvC

†�MG/.I �
xL.0//�>/ in a properly defined local neighborhood, thus establishing the

optimality of Theorem 1. At the same time, we note that Theorem 2 requires the sam-
ple size to be at least t2mixd

2, which is more stringent than the O.tmixd/ requirement
in the upper bound. While Theorem 1 holds true with a linear sample-size n D O.d/,
it is only shown to be instance-optimal for larger n D �.d2/. This mismatch is
due to the fact that small perturbations of the Markov transition kernel in certain
directions can destroy its fast mixing property. That being said, Theorem 2 is still a
finite-sample result, with polynomial dependency on the quantities .tmix; d;

1
1��

/ and
poly-logarithmic dependency on the quantity mins �0.s/.

4. Some consequences for specific problems

In this section, we specialize our analysis to the examples described in Section 2.2,
namely, approximate policy evaluation using TD algorithms, and estimation in autore-
gressive time series models. By verifying the conditions needed to apply Theorem 1
and Proposition 1, we obtain some more concrete corollaries of our general theory.

4.1. TD.0/ method

Recall the TD.0/ algorithm for policy evaluation, as previously described in Exam-
ple 1. We are interested in estimating the solution V � of the Bellman equation (2.5)
when an approximation scheme is employed using the basis functions .�j /djD1. Using

the shorthand h�; �.s/i D
Pd
jD1 �j�j .s/ for the Euclidean inner product in Rd , with

observation model .LtC1.!t /; btC1.!t // defined in equation (2.8), the averaged SA
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procedure (1.3) is given by

�tC1
.a/
D �t � �

®
h�.st / � �.stC1/; �t i �RtC1.st /

¯
�.st /;

y�n
.b/
D

1

n � n0

n�1X
tDn0

�t :
(4.1)

To be clear, the update (4.1)(a) is the standard TD.0/ algorithm with stepsize �,
whereas the addition of the averaging step (4.1)(b) yields the Polyak–Ruppert aver-
aged version of the scheme. Note that we re-scale the stepsize � by a factor of ˇ
for notational convenience. In the following subsections, we derive corollaries of
our general theory for the averaged scheme under different mixing conditions on the
underlying Markov chain.

4.1.1. Markov chains with mixing in total variation distance. We first assume that
the Markov chain satisfies a mixing condition (cf. Assumption 1) in the discrete met-
ric: i.e., after tmix steps, we have dTV.ısP

tmix ; ıs0P
tmix/ � 1

2
for any pair s; s0 2 X. Let

� denote the stationary distribution of the Markov chain that generates the trajectory
¹stºt�0, and let P denote its transition kernel. Note that the augmented state vector
!t D .st ; stC1/ evolves according to a Markov process with mixing time tmix C 1.
Moreover, the stationary distribution of the pair ! D .s; sC/ has the form s � � ,
sC � P.� j s/. We denote the stationary covariance of the feature vectors as

B WD Es�� Œ�.s/�.s/
>�

and also define the minimum and maximum eigenvalues � WD �min.B/ and ˇ WD
�max.B/. We assume that

kB�1=2�.s/k2
.a/
� &
p
d and jRt .s/j

.b/
� & for all s 2 X, (4.2a)

E�
�
hB�1=2�.s/; ui4

�
� &4 for all u 2 Sd�1. (4.2b)

In order to state our result, we define the following quantities:

M WD B�1=2 � Es��;sC�P.s;�/
�
�.s/�.sC/>

�
� B�1=2;

"Mkv.s; s
C/ WD B�1=2

�
�.s/>x� � �.sC/>x� � r.s/

�
�.s/;

"MG.s/ WD B
�1=2.R.s/ � r.s//�.s/:

We also define the following covariance matrices according to equation (3.1):

†�Mkv WD

1X
tD�1

E
�
"Mkv.st ; stC1/"Mkv.s0; s1/

>
�
;

†�MG WD Es��
�
E
�
"MG.s/"MG.s/

>
j s
��
:
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Finally, we define the quantity

x�2 WD &2 �

q
E
��
�.st />x� � �.stC1/x� �Rt .st /

�4�
; (4.3)

and let � WD 1
2
�max.M CM

>/. It is easy to see that � �  < 1. Assuming that � > 0,
we are then ready to state our main result for the TD.0/ method.

Corollary 2. Under the setup above, take the stepsize � and burn-in period n0 as

� D
1

cˇ..&4 C 1/d.1 � �/n2tmix/1=3
and n0 D

1

2
n; (4.4)

and suppose that n

log3 n
�

2tmix.&
4C1/dˇ2

.1��/2�2
. The estimator

yVn WD y�n�

obtained from the Polyak–Ruppert procedure (4.1) satisfies the bound

E
�
k yVn � xV k

2
L2.X;�/

�
�
c

n
Tr
®
.Id �M/�1.†�Mkv C†

�
MG/.Id �M/�>

¯
C c

�
ˇ2&4dtmix

�2.1 � �/2n

�4=3
x�2 log2 n; (4.5)

where xV is the solution to the projected fixed-point equation (2.6) and c > 0 is a
universal constant.

See Appendix F.1.1 for the proof of this corollary.
A few remarks are in order. First, we measure the estimation error in the canonical

k � kL2.X;�/ norm instead of the Euclidean distance in Rd . Consequently, the proof of
this corollary actually uses a generalized version of Theorem 1 proved for weighted
`2 norms. On the other hand, we note that the error bound (4.5) is with respect to
the solution xV to the projected fixed-point equation. In the well-specified case where
V � 2 S, this solution coincides with the value function V �. In general, the approxima-
tion error needs to be taken into account, and this was the focus of our prior paper [58].
In conjunction with this result, Corollary 2 implies the error bound

E
�
k yVn � V

�
k
2
L2.X;�/

�
� c

�
1C �max

�
.Id �M/�1.2Id �MM

>/.Id �M/�>
��

inf
V 2S
kV � V �k2L2.X;�/

C
c

n
Tr
®
.Id�M/�1.†�MkvC†

�
MG/.Id�M/�>

¯
Cc

�
ˇ2&4dtmix

�2.1��/2n

�4=3
x�2 log2 n:

In Section 4.2 to follow, we provide a general recipe to trade off approximation and
estimation errors to choose the value of � in the class of TD.�/ algorithms. Before
that, we discuss two extensions of Corollary 2.
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4.1.2. Markov chains with mixing in Wasserstein metric. Note that, for Corol-
lary 2, the mixing time condition is imposed with total variation distance. When the
state space X is continuous, e.g., the set X is a subset of Rm, mixing in Wasserstein
distance could capture the geometry of the underlying metric better. In this section,
we extend our analysis to such settings, highlighting the dimension dependency in the
sample complexity.

Concretely, we consider a Markov chain .st /t�0 on a compact domain X � Rm

and a feature mapping � WX!Rd . We assume that the Markov chain admits a unique
stationary measure � , and the mixing time assumption holds in Wasserstein-1 distance
so that W1.ıxP

tmix ; ıyP
tmix/ � 1

2
kx � yk2 for all x; y 2 X. For the sake of normal-

ization, we assume that X � B.0; 1/ and �.0/ D 0. On the feature mapping �, we
assume the following:

9�; ˇ > 0; �Id � B WD Es��
�
�.s/�.s/>

�
� ˇId ; (4.6a)

8x; y 2 X; kB�1=2
�
�.x/ � �.y/

�
k2 � &

p
dkx � yk2; (4.6b)

8u 2 Sd�1; Es��
�
hu; B�1=2�.s/i4

�
� &4; (4.6c)

8s; s0 2 X; t � 1; jRt .s/ �Rt .s
0/j � &ks � s0k2; jRt .s/j � & a.s. (4.6d)

Here, we regard the parameters .&;�;ˇ/ as dimension-independent positive constants.
Since the state space X has diameter bounded by 2, the feature mapping � satisfy-
ing equation (4.6a) necessarily has Lipschitz constant of order O.

p
d/. For a simple

example, take the state x itself as the feature vector (after appropriate re-scaling),
which corresponds to the case of m D d and �.x/ D

p
d � x.

With this setup, we have the following guarantee.

Corollary 3. Assuming the conditions in equation (4.6), taking stepsize and burn-in
period as equation (4.4), for the Polyak–Ruppert averaged stochastic approximation
procedure (4.1), the bound (4.5) holds.

See Appendix F.1.2 for the proof.
Corollary 3 shows that the same instance-dependent bound holds true for a con-

tinuous state space setting. Such a bound is useful for many applications; for example,
in the case of quadratic value functions on a subset of Rm, the feature mapping takes
the form

x 7! �.x/ WD mxxT

so that the dimension d Dm2. Assuming that the process .st /t�0 is supported in a unit
ball B.0; 1/ and has well-conditioned stationary covariance, it is easy to verify that
Assumptions (4.6) are satisfied with dimension-free constants .&;�;ˇ/. This example
is particularly useful for policy evaluation in Linear Quadratic Regulators (LQR) and
more generally for other stochastic dynamical systems.
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4.1.3. Analysis of a sieve estimator. The optimal dimension dependency in Theo-
rem 1 allows us to obtain optimal estimators for various classes of non-parametric
problems, in which the dimension is a parameter to be chosen. In particular, sieve
methods are a class of non-parametric estimators based on nested sequences of finite-
dimensional approximations. In this section, we analyze the behavior of a stochas-
tic approximation sieve estimator in the Markovian setting. The optimal dimension
dependence in our theorem recovers the minimax optimal rates for estimation, while
our instance-dependent bounds help in capturing more refined structure in the prob-
lem instance.

Concretely, assuming that the Hilbert space L2.X; �/ is separable, let .�j /1jD1 be
a set of (not necessarily orthogonal) basis functions. We consider the case where the
mixing condition holds true with total variation distance7. The following assumptions
are imposed on the basis functions:

8j 2 NC; sup
x2X
j�j .x/j � &; (4.7a)

8d 2 NC; �Id �
�
Es��

�
�j .s/�`.s/

��
j;`2Œd�

� ˇId ; (4.7b)

8t � 1; sup
x2X
jRt .x/j � &: (4.7c)

The first assumption is standard in non-parametric regression and satisfied by many
useful basis functions, such as the Fourier basis and Walsh–Hadamard basis. The sec-
ond assumption relaxes the orthogonality requirement on the bases by only requiring
the Gram matrix to be well conditioned.

We define the noise level x� using the second moment:

x�2 WD &2 �

q
E
��
xV .st / �  xV .stC1/ �Rt .st /

�2�
: (4.8)

Once again, we run the averaged stochastic approximation procedure (4.1) on this
problem. A crucial point of departure from the parametric models discussed above
is that the number of basis functions dn in sieve estimators is chosen based on the
problem structure and sample size. Let S.dn/ WD span.�1; �2; : : : ; �dn/ denote the
subspace spanned by the first dn basis functions. The following result is a direct corol-
lary of our theorem and covers the case of fixed dn; we discuss the trade-off between
approximation and estimation error in the choice of dn presently.

Corollary 4. Assuming the conditions in equation (4.7), take the stepsize and burn-in
period as in equation (4.4). Assuming that �;ˇ; & � 1, the Polyak–Ruppert averaged
stochastic approximation procedure (4.1) satisfies the bound (4.5) with d D dn.

7By following the approach in the previous subsection, the analysis can also be extended to
the case of mixing in Wasserstein distance.
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See Appendix F.1.3 for the proof.
Recall that, by taking into account the approximation error, the error for estimating

the true value function V � takes the following form:

E
�
k yVn � V

�
k
2
L2.X;�/

�
� c

�
1C �max

�
.I �M/�1.2Id �MM

>/.I �M/�>
��

inf
V 2S
kV � V �k2L2.X;�/

C
c

n
Tr
�
.I �M/�1.†�Mkv C†

�
MG/.I �M/�>

�
C c

�
x�2tmixdn

.1 � �/2n

�4=3
log2 n:

Let ¹ j ºC1jD1 be an orthonormal basis of L2.X; �/ such that span. 1; : : : ;  d / D
span.�1; : : : ; �d / for any d � 1. (For instance, one can let ¹ j ºC1jD1 be the Gram–
Schmidt orthonormalization of the original basis functions.) Given a non-increasing
sequence ¹ j̨ º1jD1 of positive reals such that limj!C1 j̨ D 0, we first let H0 be a
linear subspace of L2.X; �/, consisting of all the finite linear combination of basis
vectors ¹ j ºC1jD1, equipped with the following inner product:

8u; v 2 H0; hu; viH0 WD

1X
jD1

˛�1j � hu;  j i � hv;  j i:

Note that the summation in the equation above is actually finite, since both sequences
.hu;  j i/

C1

jD1; .hv;  j i/
C1

jD1 only have a finite number of non-zero entries. We then
define the inner product space .H ; h�; �iH / as the completion of .H0; h�; �iH0/. It is
easy to see that H is a Hilbert space and a linear subspace of L2.X; �/.

For any V � 2 H , the estimation error is at most (in the worst case)

E
�
k yVn � V

�
k
2
L2.X;�/

�
�

c

1 � 
� ˛dnkV

�
k
2
H C

cx�2dntmix

.1 � /2n
: (4.9)

For example, when the eigenvalues of Hilbert space H decay as j̨ � j
�2s for some

s > 0, the estimator achieves a rate of O..tmix=n/
2s
2sC1 /, which matches the minimax

optimal rate proved by [23] in the i.i.d. setting, but with a multiplicative correction
to the effective sample size by a factor tmix to accommodate Markovian observations.
Furthermore, since one can estimate the quantities .M;†�Mkv;†

�
MG/ in the bound (4.5)

using O.d/ samples, instance-dependent model selection can in principle be con-
ducted. Bounds of the form (4.9) thus open the door to asking important questions of
this type.

4.2. TD.�/ methods

Now, we turn to stochastic approximation methods for the TD.�/ projected fixed-
point equation (2.9b), with some given discount factor � 2 Œ0; 1/. With observation
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model .LtC1.!t /; btC1.!t // given by equation (2.11c), the averaged SA procedure
(1.3) can be written as

�tC1 D �t � �
®
h�.st / � �.stC1/

>; �t i �Rt .st /
¯
gt ; (4.10a)

where
gt D �gt�1 C �.st / (4.10b)

and

y�n D
1

n � n0

n�1X
tDn0

�t : (4.10c)

The update on gt is the so-called “eligibility trace” in the TD.�/ algorithm. As before,
we assume the two bounds in equation (4.2a), and assume that the mixing time condi-
tion in Assumption 1 holds true for the chain .st /t�1, with discrete metric and mixing
time tmix. We consider the augmented Markov chain

!t WD

�
st ; stC1;

1 � �

&
p
ˇd

gt

�
2 X2 � B.0; 1/

and begin by establishing mixing conditions on this augmented chain.

Proposition 2. Under the setup above, consider the metric

�
�
.s1; s2; h/; .s

0
1; s
0
2; h
0/
�
WD

1

4

�
1s1¤s01

C 1s2¤s02
C kh � h0k2

�
:

Taking � D 4.tmix C
1

1��
/, the augmented chain ¹!t D .st ; stC1;

1��

&
p
ˇd
gt /ºt�0 sat-

isfies the mixing bound

W1;�

�
L.!� /;L.!

0
� /
�
�
1

2
�
�
!0; !

0
0

�
for two chains .!t /t�0 and .!0t /t�0 starting from !0 and !00, respectively. In partic-
ular, the stationary distribution z� of the chain .!t /t�0 exists and is unique.

See Appendix F.2.1 for the proof of this proposition.
Taking this proposition as given, we are now ready to present our main corol-

lary for TD.�/ procedures. We consider the following instantiation of quantities in
Theorem 1.

The projected linear operator .1� �/
PC1
kD0 �

k.…SP /
kC1 in the equation (2.9b)

can be represented in the orthonormal basis of the subspace S as

M� WD Id � B
�1=2E

.s;sC; 1��
&
p
ˇd
g/�z�

�
g�.s/> � g�.sC/>

�
B�1=2

D .1 � �/B�1=2
1X
tD0

�t tC1E
�
�.s0/�.stC1/

�
B�1=2:
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The Markovian and martingale part of the noise (in the low-dimensional subspace S)
takes the form

"Mkv;�

�
s; sC;

1 � �

&
p
ˇd

g

�
D B�1=2

�
�.s/>x� � �.sC/x� � r.s/

�
g;

"MG;�

�
s; sC;

1 � �

&
p
ˇd

g

�
D B�1=2.R0.s/ � r.s//g:

Finally, we define the covariance matrices †�Mkv;� and †�MG;� according to equa-
tion (3.1):

†�Mkv;� WD

1X
tD�1

E

�
"Mkv;�

�
st ; stC1;

1 � �

&
p
ˇd

gt

�
"Mkv;�

�
s0; s1;

1 � �

&
p
ˇd

g0

�>�
;

†�MG;� WD Es��
�
E
�
"MG;�.s/"MG;�.s/

>
j s
��
:

As before, we let ˇ WD �max.B/, � WD �min.B/, and �� WD 1
2
�max.M� CM

>
�
/ and

define the quantity x� according to equation (4.3). Note that a straightforward calcu-
lation reveals that �� �

.1��/
1��

< 1. Assuming that � > 0, we are then ready to state
our main result for TD.�/ methods.

Corollary 5. Under the setup above, take the stepsize and burn-in period as

� D
.1 � �/2=3

cˇ
�
.&4 C 1/d.1 � ��/n2

�
tmix C

1
1��

��1=3 and n0 D
1

2
n; (4.12a)

and suppose that n

log3 n
�

2.tmixC
1

1��
/ .&4dC1/ˇ2

.1���/
2.1��/2�2

. Then, the value function estimate

yVn.s/ WD hy�n; �.s/i obtained from the Polyak–Ruppert procedure (4.10) has MSE
bounded as

E
�
k yVn � xV

.�/
k
2
L2.X;�/

�
� cn�1 Tr

�
.Id �M�/

�1.†�Mkv C†
�
MG/.Id �M�/

�>
�

C c

�
ˇ2&4d

�
tmix C

1
1��

�
�2.1 � ��/2.1 � �/2n

�4=3
x�2 log2 n; (4.12b)

where xV .�/ is the solution to the projected fixed-point equation (2.6).

See Appendix F.2.2 for the proof of this corollary.
A few remarks are in order. First, using the same argument as in Corollaries 3

and 4, one can extend the results for TD.�/ to the cases of continuous state spaces
with Wasserstein mixing, as well as to non-parametric sieve estimators. As is well
known, different choices of the tuning parameter � interpolate the “temporal differ-
ence” method, in which we aim at solving the Bellman equation, and the “Monte
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Carlo” method, in which the value function is estimated directly by averaging the roll-
out of a Markovian trajectory. For example, on the one hand, letting �D 0 recovers the
instance-dependent upper bound for TD.0/method in Corollary 2. On the other hand,
by taking � D  , we have �� �


1C
�

1
2

, and the dependence on the discount factor
 appears only through the variance of the noise, instead of through the conditioning
of the matrix M�. In the next section, we sketch a recipe for the instance-dependent
selection of � that also takes the approximation error into account.

4.2.1. Using instance-dependent results to select �. Recall that the TD.�/ algo-
rithm aims at estimating the solution xV .�/ to the projected fixed-point equation (2.9b).
The linear operator in the unprojected fixed-point equation (2.9a) satisfies the norm
boundˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ.1 � �/ 1X

kD0

�kkC1P kC1

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
L2.X;�/!L2.X;�/

� .1 � �/

1X
kD0

�kkC1 D
.1 � �/

1 � �
:

Consequently, invoking Theorem 1 in the paper [58], the approximation error satisfies
the bound

k xV .�/ � V �k2L2.X;�/ � ˛

�
M�;

.1 � �/

1 � �

�
� inf
V 2S
kV � V �k2L2.X;�/;

where ˛.M;z/ WD 1C �max..Id �M/�1.z2Id �MM
>/.Id �M/�>/ is the approx-

imation factor. Combining with Corollary 5, we obtain the following bound on the
distance to the true value function:

E
�
k yVn � V

�
k
2
L2.X;�/

�
� c˛

�
M�;

.1 � �/

1 � �

�
� inf
V 2S
kV � V �k2L2.X;�/

C
c

n
Tr
�
.Id �M�/

�1.†�Mkv C†
�
MG/.Id �M�/

�>
�

C c

�
ˇ2&4d

�
tmix C

1
1��

�
�2.1 � ��/2.1 � �/2n

�4=3
x�2 log2 n (4.13)

for a universal constant c > 0.
It can be seen that ˛.M�;

.1��/
1��

/� c0 1��
1�

for a universal constant. We also recall

that �� �
.1��/
1��

. If we take the parameters .�; ˇ; &/ to be of constant order, in the
worst case, the upper bound (4.13) takes the simplified form

E
�
k yVn � V

�
k
2
L2.X;�/

�
� c

1 � �

1 � 
inf
V 2S
kV � V �k2L2.X;�/ C c

�
tmix C

1
1��

�
d

.1 � /3n
:

From such an upper bound, it may appear that the optimal choice of � is always
� D  ^ .1 � 1=tmix/ so that the approximation factor is minimized and the vari-
ance remains controlled. However, this choice could be overly conservative, since
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the actual variance with small � can be significantly smaller, with the feature vectors
still having bounded one-step cross-correlation. Choosing the parameter � close to 1
cannot take advantage of small one-step correlation. On the other hand, a fine-grained
bound of the form (4.13) can be used to perform instance-dependent model selection
as follows.

• Construct a uniform finite grid

0 D �1 < �2 < � � � < �m D 

for possible values of �.

• For each ` 2 Œm�, compute the TD.�`/ estimator, and construct empirical plug-in
estimates . yM�;n;c†�Mkv;�;n;c†�MG;�;n/ for the matrices .M�; †

�
Mkv;�; †

�
MG;�/ by

replacing the expectations by empirical averages. Similarly, replace x� .�/ by y�n.

• Estimate the approximation factor ˛.M�;
.1��/
1��

/ and the covariance

.Id �M�/
�1.†�Mkv C†

�
MG/.Id �M�/

�>

by plugging in the estimated matrices described above for each � D �` with ` 2
Œm�. Based on prior knowledge about the scale of the optimal approximation error
infV 2S kV � V

�k2
L2.X;�/

, select �` in the grid that minimizes our estimate of the
total error according to equation (4.13).

Note that the procedure above is simply a sketch; a formal proof of correctness
would show bounds that are uniform over allm estimators. It is an important direction
of future work to provide sharp non-asymptotic analysis of such a model selection
procedure.

4.3. Autoregressive models

Next, we turn to Example 3, the multivariate autoregressive model. We study the
stochastic approximation procedure in which, for any i 2 Œk�, we have

A
.i/
tC1 D A

.i/
t � �

 
k�1X
jD0

A
.j /
t Xt�jX

>
tC1�i �XtC1X

>
tC1�i

!
and

yA.i/n D
1

n � n0

n�1X
tDn0

A
.i/
t :

The first step in our analysis is to establish necessary and sufficient conditions for
the existence and uniqueness of the stationary distribution of the process (2.12). The
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following km � km matrix plays a crucial role in this context:

R� D

26666664
A�1 A�2 � � � A�

k

Im 0 � � � 0

0 Im 0 � � � 0

0
: : : 0

0 � � � 0 Im 0

37777775 :

In the noiseless case, the stability of the linear dynamical system is equivalent to the
following Lyapunov stability condition (see, e.g., [1, Section 3.3]):

9P� � 0;Q� � 0 such that R>� P�R� D P� �Q�: (4.14)

Clearly, we have P� � Q�. We let ˇ WD �max.P�/ and � WD �min.Q�/. Based on the
stability theory for discrete-time linear systems [14], condition (4.14) is necessary for
the stationary distribution to exist. In the following proposition, we show that this
condition is also sufficient, with a concrete mixing time bound.

Proposition 3. Under the Lyapunov stability condition (4.14) and assuming that the
noise has bounded first moment EŒk"tk2� <1, the stationary distribution z� for the
sliding window !t D .XtC1; Xt ; : : : ; Xt�kC1/ of the autoregressive process (2.12)
exists and is unique. Furthermore, the mixing assumption 1 is satisfied with Wasser-
stein distance in R.kC1/m and a mixing time bound tmix D ck C c

ˇ
�
.1C log ˇ

�
/.

See Appendix F.3.1 for the proof of this claim.
In addition to this mixing guarantee, we also make the following assumptions on

the noise:

E
�
"t
�
D 0; sup

u2Sd�1
E
�
hu; "t i

4
�
� &4; and k"tk2 � &

p
m; a:s:

We are now in a position to consider the problem of parameter estimation using
stochastic approximation. Consider the vectorized version of the parameter

� D vec
� �
A.1/IA.2/I : : : IA.k/

� �
2 Rkm

2

:

The population-level Yule–Walker estimation equation (2.13) can be written as� �
�j�i

�
i;j2Œk�„ ƒ‚ …

H�

˝Im
�
� D vec

��
�1I�2I : : : I�k

��
;

where �i WD EŒXiX>0 � 2 Rm�m for i 2 Z. We assume that

1

2

�
H� C .H�/>

�
� h�Ikm for some h� > 0:
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In order to state the main corollary of Theorem 1 for autoregressive models, the
following quantities are relevant:

"Mkv.!t / WD vec

  
k�1X
jD0

A.j /� Xt�j �XtC1

!
�
�
X>t�1 X>t�2 � � � X>

t�k

� !
;

†�Mkv WD

1X
tD�1

E
�
"Mkv.!t /"Mkv.!0/

>
�
:

Let x� be defined according to equation (2.3). We have the following corollary for
autoregressive models.

Corollary 6. Under the setup above, take the stepsize and burn-in period as

� D
1

c
�
n2
�
ˇ
�

log ˇ
�

�
.h�/2&4k3m2ˇ8=�8

�1=3 and n0 D
1

2
n; (4.15a)

and suppose that

n

log3 n
�

�
k C

ˇ

�
log

ˇ

�

�
&4k3m2

ˇ8

�8.h�/2
:

Then, the Polyak–Ruppert estimator . yA.j /n /j2Œk� satisfies

kX
jD1

E
�
jjj yA.j /n � A

�
j jjj
2
F

�
�
c

n
Tr
��
H� ˝ Im

��1
†Mkv

�
H� ˝ Im

��1�
C

²
km2&2 � �max

�
E
�
"Mkv.s0/"Mkv.s0/

>
��

.h�/2n

�
k C

ˇ

�
log

ˇ

�

�³4=3
x�2 log2 n: (4.15b)

A few remarks are in order. First, the leading-order term in the bound (4.15b)
matches the variance of asymptotic efficient estimators for AR.m/ models up to a
constant factor (see [14, Section 8]). This simply follows from the fact that the plug-
in Yule–Walker estimator is asymptotically efficient for autoregressive models. On
the other hand, Corollary 6 is completely non-asymptotic, holding true for any rea-
sonably large sample size. Note that the sample complexity lower bound exhibits an
O.ˇ9=�9/ dependency on the conditioning ˇ=� of the Lyapunov stability certificate
.P�; Q�/. The contributions arise from a term linear in ˇ=� arises from the mixing
time ˇ

�
log ˇ

�
, and all other factors are from the almost sure bounds on kXtk2 and

moment bound supu2Sm�1hu; Xt i
4. If we had made other assumptions on these uni-

form or moment bounds as in some past work [34], these would have reflected in our
result instead of the factor ˇ8&4k2=�8.
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5. Proof of Proposition 1

This section is devoted to proving the bound on the last iterate claimed in Proposi-
tion 1. We begin in Section 5.1 by deriving a key recursion that underlies the analysis.
In Section 5.2, we provide a high-level overview of the proof structure, and the
remaining subsections deal with the technical arguments.

5.1. An initial recursion

Define the error term �t WD �t � x� , as well as the noise terms

ZtC1 WD LtC1 �L.st /; �tC1 WD .LtC1 �L.st //x� C .btC1 � b.st //; (5.1a)

Nt WD L.st / � xL; �t WD .L.st / � xL/x� C .b.st / � Nb/: (5.1b)

Using this notation, we have the recursion

�tC1 D .I � �.I � xL//�t C �.Nt CZtC1/�t C �.�t C �tC1/: (5.2)

Taking squared norms on both sides yields the bound k�tC1k22 �
P4
iD1 Ti , where

T1 WD k.I � �.I � xL//�tk
2
2;

T2 WD 2�h.I � �.I � xL//�t ; Nt�t C �t i;

T3 WD 2�h.I � �.I � xL//�t ; .ZtC1�t C �tC1/i;

T4 WD 4�
2
�
kNt�tk

2
2 C kZtC1�tk

2
2 C k�tC1k

2
2 C k�tk

2
2

�
:

Beginning with the term T1, expanding the square and then invoking the condi-
tion (2.1) yields

T1 D k�tk
2
� 2�h�t ; .I � xL/�t i C �

2
k.I � xL/�tk

2

�
�
1 � 2�.1 � �/C 2�2.1C 2max/

�
k�tk

2:

As for the cross terms involved in T2 and T3, we note that

2h.I � xL/�t ; Nt�t i � k.I � xL/�tk
2
2 C kNt�tk

2
2

� 2.1C 2max/k�tk
2
2 C kNt�tk

2
2;

2h.I � xL/�t ; �t i � k.I � xL/�tk
2
2 C k�tk

2
2 � 2.1C 

2
max/k�tk

2
2 C k�tk

2
2;

2h.I � xL/�t ; ZtC1�t i � k.I � xL/�tk
2
2 C kZtC1�tk

2
2

� 2.1C 2max/k�tk
2
2 C kZtC1�tk

2
2;

2h.I � xL/�t ; �tC1i � k.I � xL/�tk
2
2 C k�tC1k

2
2

� 2.1C 2max/k�tk
2
2 C k�tC1k

2
2:
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We collect the above bounds on the sum
P4
iD1 Ti and use the stepsize bound

� � 1��
12.1C2max/

, which results in the recursive inequality

k�tC1k
2
2 �

�
1 � �.1 � �/

�
k�tk

2
2 C 2�

�
h�t ; Nt�t i C h�t ; �t i

�„ ƒ‚ …
WDH1.t/

C 2�
�
h�t ; ZtC1�t i C h�t ; �tC1i

�„ ƒ‚ …
WDH2.t/

C 8�2
�
kNt�tk

2
2 C kZtC1�tk

2
2 C k�tC1k

2
2 C k�tk

2
2

�„ ƒ‚ …
WDH3.t/

: (5.3)

Multiplying both sides by e�.1��/.tC1/ and using the fact that

.1 � �.1 � �// � e��.1��/;

we have

e�.1��/.tC1/k�tC1k
2
2 � e

�.1��/t
k�tk

2
2 C 2�e

�.1��/.tC1/
�
H1.t/CH2.t/

�
C 8�2e�.1��/.tC1/H3.t/:

Unrolling this expression yields

e�.1��/nk�nk
2
2 � k�0k

2
2 C 2�

n�1X
tD0

e�.1��/.tC1/
�
H1.t/CH2.t/

�
C 8�2

n�1X
tD0

e�.1��/.tC1/H3.t/; (5.4)

which is the key recursion underlying our analysis.

5.2. High-level overview of the proof strategy

Before diving into the remainder of the proof, let us provide a brief overview of our
strategy, highlighting the key technical challenges and our solutions to them.

For simplicity, let us give intuition for the analysis under mean-squared error.
In order to analyze the recursive error expansion (5.3), we need to bound the terms
EŒH1.t/�, EŒH2.t/�, and EŒH3.t/�, respectively. For the martingale noise part, we
have EŒH2.t/� D 0. As for the term H3.t/, following Assumption 2, we have that

EŒk�tk
2
2 C k�tC1k

2
2� . d and EŒkZtC1�tk

2
2� . d � EŒk�tk

2
2�:

These bounds are similar to the analysis under i:i:d: setup (see the paper [58]). If other
terms were not present, we could unroll this recursion and obtain a last-iterate error
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bound of O.�d/, as long as �� d�1. The technical challenges arise, however, with
the interaction between Markovian noises and the error �t . In particular, we observe
the following facts:

• Since �t and .�t ; Nt / are inter-dependent, the term H1.t/ does not have zero
expectation. If we simply bound it using Assumption 4, for any stepsize � > 0,
the error recursion will diverge as t grows.

• Assumption 4 implies that

EŒkNt�tk
2
2� . d2 � EŒk�tk

2
2�:

In order to unroll recursion using this bound and obtain convergent result, we need
the stepsize � . d�2. This will lead to a sub-optimal sample complexity, since we
need at least n & ��1 steps.

In tackling the aforementioned difficulties, our first proof technique makes use of the
rapid mixing nature of the underlying Markov chain—the Markov chain state after
O.tmix/ steps is nearly independent of the current iterate. We elaborate on the key
ideas as follows.

Multi-step looking-back for the cross terms. Let � � tmix log.d=�/. The depen-
dence between �t�� and st is weak, and consequently, we can show thatˇ̌

E
�
hNt�t�� ; �t�� i

�ˇ̌
. �d � EŒk�t��k

2
2�;ˇ̌

E
�
h�t ; �t�� i

�ˇ̌
. �d C �d � EŒk�t��k

2
2�;

and
E
�
kNt�t��k

2
2

�
. d � EŒk�t��k

2
2�:

In showing these bounds, we construct an auxiliary process .Qst��C`/`�0, which starts
from Qst�� � � independent of the data and moves according to the optimal coupling
that achieves the Wasserstein mixing. With the value � given above, we can ensure
that W1;�.st ; Qst / . �=d . We can then apply bounds under independent Qst and �t��
and bound the residual using Wasserstein distance and the Lipschitz assumption 4.
See the proof of Lemma 1 for details.

However, this does not complete the analysis, as we originally need to bound
the cross terms between .�t ; Nt / and �t instead of the � -step looking-back version
�t�� . In order to convert the above estimates to a useful bound for analyzing the
recursion (5.11), we need a stability estimate, i.e., an upper bound on EŒk�t � �t��k22�.
This is the major technical challenge we face in order to obtain the sharp dimension
dependence. In tackling this challenge, we introduce a novel bootstrapping argument,
which may be of independent interest.
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Bootstrapping arguments for stability bounds. Expanding the recursion (1.3) for
� steps yields

�tC� � �t D � �

�X
`D1

®
.LtC` � Id /�tC`�1 C btC`

¯
:

If we use triangle inequality and Assumptions 2, 4 to bound the difference, some
calculations will lead to a coarse bound (see Lemma 5):q

E
�
k�tC� � �tk

2
2

�
. ��d

q
EŒk�tk22�C ��

p
d: (5.5)

However, if we directly substitute this bound into the arguments above, we will need
the stepsize � to satisfy � . d�2 in order to make the iterates stable. As we have
discussed above, this will cost us a sub-optimal sample complexity of n& d2. In order
to make the arguments work with a larger stepsize, we need the pre-factor in the first
term of the right-hand side of equation (5.5) to be scaling as O.��

p
d/. To achieve

this goal, we start with the bound (5.5) and gradually improve it using a bootstrapping
lemma. In Lemma 6 to follow, we show a bootstrapping result: as long as we have the
bound q

E
�
k�tC� � �tk

2
2

�
. ��!

q
EŒk�tk22�C ��ˇ;

we can establish the improved boundq
E
�
k�tC� � �tk

2
2

�
. ��

�!
2
C
p
d
�q

EŒk�tk22�C ��

�
ˇ

2
C �
p
d � ! C

p
d

�
:

Once again, the proof of this lemma relies on the multi-step looking-back arguments
explained above: when analyzing the iterate (1.3), we can gain the near-independent
by replacing �t with �t�� , at an additional cost depending on the stability bound
EŒk�t � �t��k22�. By repeatedly applying this lemma, we obtain a sequence of pairs
.!; ˇ/, which converges to the fixed point

! �
p
d and ˇ �

p
d;

which yield the desirable stability bound.

Completing the proof by solving the recursion. The improved stability bound al-
lows us to establish sharp bounds on the terms EŒH1.t/� and EŒH3.t/�. These bounds
involve not only the current iterate error �t , but also the looking-back iterate error
�t�� . In order to analyze this type of recursion, we multiply the inequality with
an exponentially growing factor e�.1��/t and telescope the summation. Solving it
directly yields the MSE bound. As for higher-order moments, we apply martingale
concentration inequalities to the martingale noise H2.t/ and the martingales created
from the auxiliary processes in analyzing H1.t/. The recursive inequalities in this
case can be solved using techniques similar to our prior work [79].
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5.3. Analyzing the recursion (5.4)

Note that the running sum M2.n/ WD
Pn�1
tD0 e

�.1��/tH2.t/ is, by construction, a mar-
tingale adapted to the filtration .Ft /t�0. In contrast, the analogous quantity defined
in terms of the process H1 is not an adapted martingale. In order to circumvent this
obstacle, our proof is based on introducing a surrogate version zH1 of the process H1
such that the running sum

zM1.n/ WD

n�1X
tD0

e�.1��/.tC�/ zH1.t C �/

can be decomposed as a sum of � martingales. See the proof of Lemma 1 for the
details of the construction of zH1. This decomposition allows us to apply standard
maximal inequalities for martingales. Of course, we also need the bound the moments
of the differences zH1.t/�H1.t/; see Lemma 1 for the bound that we provide on this
difference.

We prove the MSE bounds and higher-moment bounds using slightly different
analysis tools. In order to study the mean-squared error (the case p D 1), we note that
both zM1.t/ and H2.t/ have zero expectation for any t � 0. Taking expectations on
both sides of equation (5.4), we obtain the bound

e�.1��/nE
�
k�nk

2
2

�
� k�0k

2
2 C 2�

n�1X
tD0

e�.1��/.tC1/E
�ˇ̌
H1.t/ � zH1.t/

ˇ̌�
C 8�2

n�1X
tD0

e�.1��/.tC1/E
�
H3.t/

�
: (5.6)

For higher moments, our analysis of the recursion (5.4) is based on a Lyapunov
function ˆn and auxiliary function ƒn given by

ˆn WD
�
E
�

sup
0�t�n

e�.1��/tpk�tk
2p
2

��1=p and ƒn D max
t2¹0;1;:::;nº

e�
�.1��/t

2 ˆt :

By applying Minkowski’s inequality to the recursion (5.4), we obtain the upper bound

ˆn � ˆ0C4�
�
E sup
0�t�n

j zM1.t/j
p
�1=p
C4�

 
E

 
n�1X
tD0

e�.1��/t jH1.t/� zH1.t/j

!p!1=p

C 4�
�
E sup
0�t�n

jM2.t/j
p
�1=p
C 16�2

 
E

 
n�1X
tD0

e�.1��/tH3.t/

!p!1=p
: (5.7)

In order to complete the proof, we need to control each of the terms on the right-
hand side. The following auxiliary results provide the needed control; in all cases,
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the quantities .c; c0/, etc. denote universal constants; the number n in the following
lemmas is seen as a general iteration index, instead of the total sample size in the final
statement of the theorem.

Our first auxiliary result guarantees the existence of the surrogate variables zH1.t/
with desirable properties.

Lemma 1. There is a surrogate version ¹ zH1.t/ºt�0 of the process ¹H1.t/ºt�0 such
that EŒ zH.t/� D 0 for any t � 0, and for any integer p 2 Œ1; Np=2�, scalar

� � cptmix log.c0tmixd=�/

and stepsize � � 1
ctmix.maxCp�Ld/

, we have the following bounds for any n > 0:�
E
�ˇ̌
H1.n/ � zH1.n/

ˇ̌p��1=p
� c�p2�

�
.d�2L C 

2
max/ �

�
Ek�n��_0k

2p
2

� 1
p C x�2d

�
;

(5.8a)
and for any p � 2, we have that�

E sup
0�t�n

j zM1.t/j
p
�1=p
�

cp3=2p
�.1 � �/

�
�L
p
dˆn C x�

p
e�.1��/nˆnd

�
: (5.8b)

See Section 5.4 for the proof of this claim. We note that it is especially challenging
to prove the bound (5.8a).

Our second auxiliary result is a more straightforward bound on a martingale supre-
mum.

Lemma 2. The process M2 is a martingale adapted to the filtration .Ft /t�0. Fur-
thermore, for each p 2 Œ1; Np=2�, � � 2ptmix log.c0d/ and � � 1

c.maxC�Ld/�
, for any

n > 0, we have that�
E sup
0�t�n

jM2.t/j
p
�1=p
�
cp3=2�1=2p
�.1 � �/

�
�L
p
dˆn C x�

p
e�.1��/nˆnd

�
: (5.9)

See Section 5.5 for the proof of this claim.
Finally, our third auxiliary result provides control on the process H3.t/.

Lemma 3. There is a universal constant c such that given � � cptmix log.c0tmixd=�/

and stepsize � � 1
ctmix.maxC�Ld/

, for any p 2 Œ1; Np=2�, we have�
E
�
H3.t/

p
��1=p

� c
�
p2�2Ld C 

2
max

��
E
�
k�t��_0k

2p
2

��1=p
C cp2x�2d: (5.10)

See Section 5.6 for the proof of this claim.
We now use these three lemmas to complete the proof of Proposition 1. We prove

the case of Np D 2 and Np � logn separately.
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Proof in the case of NpD 2. By Lemma 1 with � D ctmix log.c0tmixd=�/ and Cauchy–
Schwarz inequality, we have that

E

"
n�1X
tD0

e�.1��/t j zH1.t/ �H1.t/j

#
� c��

n�1X
tD0

e�.1��/t
�
.�2Ld C 

2
max/E

�
k�t��_0k

2
2

�
C x�2d

�
�
c�x�2d

1 � �
e�.1��/n C ce��.�2Ld C 

2
max/

n�1X
tD0

e�.1��/tE
�
k�tk

2
2

�
:

Similarly, by applying Lemma 3 to the last term of equation (5.6), we obtain the
bound

n�1X
tD0

e�.1��/.tC1/E
�
H3.t/

�
�

cx�2d

.1 � �/�
e�.1��/n C ce.�2Ld C 

2
max/

n�1X
tD0

e�.1��/tE
�
k�tk

2
2

�
:

Combining them with the decomposition (5.6), for any n D 1; 2; : : :, we find that
e�.1��/nEŒk�nk22� is upper bounded by

k�0k
2
2 C c

��x�2d

1 � �
e�.1��/n C c�2�.�2Ld C 

2
max/

n�1X
tD0

e�.1��/tE
�
k�tk

2
2

�
: (5.11)

In order to exploit this recursive upper bound, we define the partial sum sequence
Sn WD

Pn
tD0 e

�.1��/tEŒk�tk22�. Equation (5.6) implies that

Sn � S0 C c
��x�2d

1 � �
e�.1��/n C

�
1C c�2�.�2Ld C 

2
max/

�
Sn�1

� S0 �

nX
tD0

ec�
2�.�2

L
dC2max/t C c

��x�2d

1 � �
�

nX
tD0

ec�
2�.�2

L
dC2max/tC�.1��/.n�t/

�
3

.1 � �/�
e�.1��/n=3S0 C

3c�x�2d

.1 � �/2
e�.1��/n:

Substituting back into the recursion (5.11) yields

E
�
k�nk

2
2

�
�

6

.1 � �/�
e��.1��/n=3k�0k

2
2 C c

��x�2d

1 � �

C c�2�.�2Ld C 
2
max/ �

2c�x�2d

.1 � �/2

� e��.1��/n=2k�0k
2
2 C c

0 ��x�
2d

1 � �
;

which completes the proof of the MSE bound.
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Proof in the case of Np � logn. Now, we turn to prove the p-th moment bound under
Assumption 2 with

Np � logn:

Recall that we analyze the growth of the Lyapunov functionˆn, and we start from the
decomposition (5.7).

The first term in equation (5.7) is simply k�0k22, and the second term is controlled
using equation (5.8b) in Lemma 1. In order to bound the third term, we apply Hölder’s
inequality and obtain the bound

E

 
n�1X
tD0

e�.1��/t
ˇ̌
H1.t/ � zH1.t/

ˇ̌!p

�

 
n�1X
tD0

e
�.1��/pt
2.p�1/

!p�1
�

n�1X
tD0

e
�p.1��/t

2 E
ˇ̌
H1.t/ � zH1.t/

ˇ̌p
:

By equation (5.8a) in Lemma 1, this quantity is at most

e
�.1��/pn

2

.�.1��//1�p

n�1X
tD0

e
�p.1��/t

2

�
c�
�
p2�2LdC

2
max

��
E
�
k�t��_0k

2p
2

��1=p
Cc�p2x�2d

�p
:

We then obtain the inequality 
E

 
n�1X
tD0

e�.1��/t
ˇ̌
H1.t/ � zH1.t/

ˇ̌!p!1=p
� cp2

e�.1��/n

�.1 � �/
x�2�d

C c
�
p2�2Ld C 

2
max

�
�
e
1
2�.1��/n

�.1 � �/

 
n�1X
tD0

e
1
2�p.1��/tE

�
k�tk

2p
2

�!1=p

� cp2
e�.1��/n

�.1 � �/
x�2�d C c

�
p2�2Ld C 

2
max

�
�
e
1
2�.1��/n

�.1 � �/

 
n�1X
tD0

e�
1
2�p.1��/tˆ

p
t

!1=p
� cp2

e�.1��/n

�.1 � �/
x�2�d C c

�
p2�2Ld C 

2
max

�
�
e
1
2�.1��/n

�.1 � �/
n1=pƒn:

Similarly, the fourth term on the right-hand side is controlled using Lemma 2, and
the bounds for the last term are based on Lemma 3 and the same strategy as above.
Concretely, combining Hölder’s inequality with the bound (5.10) yields

E

 
n�1X
tD0

e�.1��/tH3.t/

!p
�

 
n�1X
tD0

e
�.1��/pt
2.p�1/

!p�1
�

n�1X
tD0

e
�p.1��/t

2 EŒH3.t/
p�:
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This quantity is at most

.�.1 � �//1�p

� e
�.1��/pn

2

n�1X
tD0

e
�p.1��/t

2

�
c
�
p2�2Ld C 

2
max

��
E
�
k�t��_0k

2p
2

��1=p
C cp2x�2d

�p
:

Noting that each term satisfies the inequality

e
�p.1��/t

2 .EŒk�t��_0k
2p
2 �/

1=p
� ƒn

for t 2 Œ0; n�. We conclude that the moment .E.
Pn�1
tD0 e

�.1��/tH3.t//
p/1=p is upper

bounded by

cp2
e�.1��/n

�.1 � �/
x�2d C c

�
p2�2Ld C 

2
max

�e 12�.1��/n
�.1 � �/

n1=pƒn:

Collecting the above bounds and substituting into the decomposition (5.7), we
note that

ˆn � ˆ0 C c

r
p3�

1 � �

�
�L
p
dˆn C x�

p
e�.1��/nˆnd

�
C cp2

e�.1��/n

�.1 � �/
x�2�d C

�
p2�2Ld C 

2
max

�e 12�.1��/n
�.1 � �/

� n1=pƒn

� ˆ0 C 4c�L

r
p3��d

1 � �
ˆn C

1

4
ˆn C c�

x�2p3d�

1 � �
� e�.1��/n

C cp2�
e�.1��/n

1 � �
x�2�d C c�

�
p2�2Ld C 

2
max

�e 12�.1��/n
1 � �

�ƒn:

In the last step, we apply Young’s inequality to the term
p
e�.1��/nˆnd and use the

condition p � logn to the last term so that n1=p � e.
Taking the stepsize � � 1��

64c2�2
L
�dp3

, we arrive at the following bound valid for

any n 2 Œ1; ep�:

e�
�.1��/n

2 ˆn � 2ˆ0 C cp
3�
e
1
2�.1��/n

1 � �
x�2�d C c�

p2�2Ld C 
2
max

1 � �
�ƒn:

Note that the right-hand side of the above expression is monotonic increasing in the
index n. For any integer pair .t; n/ such that 0 < t � n � ep , we have the inequality

e�
�.1��/t

2 ˆt � 2ˆ0 C cp
3�
e
1
2�.1��/t

1 � �
x�2�d C c�

p2�2Ld C 
2
max

1 � �
�ƒt

� 2ˆ0 C cp
3�
e
1
2�.1��/n

1 � �
x�2�d C c�

p2�2Ld C 
2
max

1 � �
�ƒn:
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Given the value of n fixed and taking supremum over t 2 ¹0; 1; 2; : : : ; nº in the left-
hand side, we arrive at the conclusion

ƒn D sup
t2¹0;1;:::;nº

e�
�.1��/t

2 ˆt

� 2ˆ0 C cp
3�
e
1
2�.1��/n

1 � �
x�2�d C c�

p2�2Ld C 
2
max

1 � �
�ƒn:

Given the stepsize � � 1��

2c.p3�2
L
dC2max/�

, we arrive at the bound

�
Ek�tk

p
2

�1=p
� e�

1
2�.1��/nƒn � e

� 12�.1��/n
�
Ek�0k

p
2

�1=p
C
cp3�

1 � �
x�2�d;

which completes the proof of the theorem.
It remains to prove our three auxiliary lemmas.

5.4. Proof of Lemma 1

We break the proof into three steps. In the first step, given in Section 5.4.1, we
construct the surrogate process, whereas the remaining two steps are devoted to the
proving the bounds (5.8b) and (5.8a), as detailed in Sections 5.4.2 and 5.4.3, respec-
tively.

5.4.1. Construction of the surrogate process. We first claim that for any tD1;2; : : :
and any � 2 ¹0; : : : ; tº, there is a random variable Qst 2 X such that Qst j Ft�� � � , and�

E
�
�.st ; Qst /

p
j Ft��

��1=p
� c0 exp

�
�

�

2tmixp

�
for each p � 2. (5.12)

Here, c0 is a universal constant.
Our construction is based on the following bound on the Wasserstein distance.

Lemma 4. Under Assumptions 1 and 3, the Wasserstein distance is upper bounded
as

W1;�

�
ıxP

� ; �
�
� c02

�b �tmix
c
;

valid for any x 2 X and � � 0.

See Appendix C.1 for the proof of this claim.
We now use Lemma 4 to construct the desired process. We begin by constructing

a coupling conditionally on the � -field Ft�� : let Qst be a state whose conditional law
is � , satisfying the identity

E
�
�.st ; Qst / j Ft��

�
D W1;�

�
L.st j Ft�� /; �

�
: (5.13)
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The existence of such Qst is guaranteed by the definition of Wasserstein distance. We
now bound the relevant quantities based on this construction.

Combining the identity (5.13) with Lemma 4 yields EŒ�.st ; Qst / j Ft�� � � c0 �

2
�b �tmix

c. Applying Cauchy–Schwarz inequality and invoking Assumption 3, we find
that�

E
�
�.st ; Qst /

p
j Ft��

��1=p
�
�
E
�
�.st ; Qst / j Ft��

�� 1
2p �

�
E
�
�.st ; Qst /

2p�1
j Ft��

�� 1
2p

�
�
E
�
�.st ; Qst / j Ft��

�� 1
2p

� c0 � 2
1� �

2tmixp ;

which establishes the claim.
We now use the sequence of random variables Qst just constructed to define the

extended filtration zFt WD �..sk/0�k�t ; .Qsk/0�k�t ; ..Lk; bk//0�k�t /, as well as the
surrogate quantities

z�t WD
�
L.Qst / � xL

�
x� C

�
b.Qst / � Nb

�
and

zH1.t/ WD h�.t��/_0; z�t i C
˝
�.t��/_0;

�
L.Qst / � xL

�
�.t��/_0

˛
:

Note that, by definition, we have EŒ zH1.t/ j zF.t��/_0� D 0 for each t D 0; 1; 2; : : : :

5.4.2. Proof of the bound (5.8b). We first perform a decomposition on the process
zM1. In particular, for ` 2 ¹0; 1; : : : ; � � 1º, we define the stochastic process

zM
.`/
1 .n/ WD

n�1X
tD0

e�.1��/.tC�/ zH1.t C �/1¹t mod �D`º:

Clearly, we have zM1.n/ D
P��1
`D0
zM
.`/
1 .n/ for any n � 0. Furthermore, we note that,

for any t � 0, we have the relations

E
�
zH1.t C �/ j zFt

�
D 0 and zH1.t/ 2 zFt :

So, for each ` 2 Œ0; � � 1�, the process zM .`/
1 is a martingale adapted to the filtration

. zFt /t�0.
By the Burkholder–Davis–Gundy inequality, we have the maximal inequality

.E sup0�t�n j zM
.`/
1 .t/jp/1=p � cp.E.Œ zM .`/

1 �n/
p=2/1=p , valid for all `D 0;1; : : : ; � � 1.

Similarly, for the quadratic variation term Œ zM
.`/
1 �n, we have that

E
��
Œ zM

.`/
1 �n

�p=2�
D E

" bn�1� cX
kD0

e�.1��/.k�C�C`/k zH1.k� C `/k
2
2

!p=2#

�

 bn�1� cX
kD0

e�.1��/p.k�C�C`/E
�
k zH1.k� C `/k

p
2

�!
�

 
n�1X
tD0

e�
p2

2p�4 ��.1��/t

!p�2
2

;
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which is at most

n�1X
tD�

e�.1��/tp

.��.1 � �//p=2�1

�
E
�ˇ̌
2h�t�� ; .xL.Qst / � xL/�t�� i

ˇ̌p�
C E

�ˇ̌
2hz�t ; �t�� i

ˇ̌p��
1¹t mod �D`º:

Invoking the tail condition in Assumption 2 under the stationary distribution, we have
that

E
�ˇ̌
2h�t�� ; .xL.Qst / � xL/�t�� i

ˇ̌p
j Ft��

�
�
�
p�L
p
d � k�t��k

2
2

�p
and

E
�ˇ̌
hz�t ; �t�� i

ˇ̌p
j Ft��

�
�
�
px�
p
d � k�t��k2

�p
:

Substituting into the moment bounds for Œ zM .`/
1 �n and combining the results for ` D

0; 1; : : : ; � � 1 using Minkowski’s inequality, we arrive at the bound�
E sup
0�t�n

j zM1.t/j
p
�1=p

�

��1X
`D0

�
E sup
0�t�n

j zM
.`/
1 .t/jp

�1=p
�

� � n
1
p
p
p�

��.1 � �/
� 1
2C

1
p

®
p�L
p
d � max

0�t�n

�
e�.1��/t

�
Ek�tk

2p
2

�1=p�
C e

�.1��/n
2 px�

p
d max
0�t�n

�
e�.1��/t=2

�
Ek�tk

p
2

�1=p�¯
�

r
�p

�.1 � �/

�
p�L
p
dˆn C px�

p
e�.1��/nˆnd

�
;

which completes the proof of this lemma.

5.4.3. Proof of the bound (5.8a). By Minkowski’s inequality, we can upper bound
the error as .EŒ.H1.t/ � zH1.t//p�/1=p �

P6
kD1 Jk , where

J1 WD
�
E
�
h�t�� ; �t � z�t i

p
��1=p

;

J2 WD
�
E
�
h�t ��t�� ; �t i

p
��1=p

;

J3 WD
�
E
�
h�t�� ; .L.Qst / �L.st //�t�� i

p
��1=p

;

J4 WD
�
E
�
h�t ��t�� ; Nt�t�� i

p
��1=p

;

J5 WD
�
E
�
h�t ; Nt .�t ��t�� /i

p
��1=p

;

J6 WD
�
E
�
h�t ��t�� ; Nt .�t ��t�� /i

p
��1=p

:
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The terms J1 and J3 can be controlled using the bound on �.st ; Qst / and the Lipschitz
condition 4; doing so yields the bound

J1 � x�d
�
E
�
k�t��k

p
2 � E

�
�.st ; Qst /

p
j Ft��

���1=p
� 2

1� �
2ptmix c0x�d

�
Ek�t��k

p
2

�1=p
;

J3 � �Ld
�
E
�
k�t��k

2p
2 � E

�
�.st ; Qst /

p
j Ft��

���1=p
� 2

1� �
2ptmix c0�Ld

�
Ek�t��k

2p
2

�1=p
:

Given the time lag parameter � � cptmix log.c0tmixd/ � 2ptmix log.d
�
/, we have the

bound

J1 � �x�
p
d
�
Ek�t��k

p
2

�1=p and J3 � ��L
p
d
�
Ek�t��k

2p
2

�1=p
: (5.14)

Turning to the J2 term, applying the Cauchy–Schwarz inequality yields

J2 �
�
Ek�t ��t��k

2p
2

� 1
2p �

�
Ek�tk

2p
2

� 1
2p

.i/
�
�
Ek�t ��t��k

2p
2

� 1
2p � px�

p
d; (5.15)

where step .i/ follows from Assumption 2.
The terms J4 and J5 can be controlled via once again replacing st with its surro-

gate Qst . First, by Cauchy–Schwarz inequality, we note that

J4 �
�
Ek�t ��t��k

2p
2

� 1
2p �

�
EkNt�t��k

2p
2

� 1
2p ;

J5 �
�
Ek�t ��t��k

2p
2

� 1
2p �

�
EkN>t �t��k

2p
2

� 1
2p :

Using the decomposition Nt D .L.Qst / � xL/C .L.st / �L.Qst //, we note that�
EkNt�t��k

2p
2

� 1
2p �

�
Ek.L.Qst / � xL/�t��k

2p
2

� 1
2p

C
�
Ek.L.st / �L.Qst //�t��k

2p
2

� 1
2p :

We bound the conditional expectations of the quantities above. The first term can be
controlled via Assumption 2:

E
�
k.L.Qst / � xL/�t��k

2p
2 j Ft��

�
� .�Lp

p
d/2pk�t��k

2p
2 ;

and the second term is controlled using the Lipschitz condition 4:

E
�
k.L.st /�L.Qst //�t��k

2p
2 j Ft��

�
� .�Ld/

2p
� E
�
�.st ; Qst /

2p
j Ft��

�
� k�t��k

2p
2

� .�Ld/
2p
� c0 � 2

1� �
tmix � k�t��k

2p
2 :
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Consequently, taking � � 2tmixp log.c0d/, we have the bounds�
EkNt�t��k

2p
2

� 1
2p � �Lp

p
d �
�
Ek�t��k

2p
2

� 1
2p

and �
EkN>t �t��k

2p
2

� 1
2p � �Lp

p
d �
�
Ek�t��k

2p
2

� 1
2p :

Putting together the pieces, we arrive at the bound

J4 C J5 � 2
�
Ek�t ��t��k

2p
2

� 1
2p � �Lp

p
d �
�
Ek�t��k

2p
2

� 1
2p : (5.16)

By the Lipschitz condition 4 and the assumed boundedness (3) of the metric space,
the term J6 admits the simple upper bound

J6 �
�
E
�
jjjNt jjj

p
opk�t ��t��k

2p
2

�� 1
p � �Ld

�
Ek�t ��t��k

2p
2

� 1
p : (5.17)

From all of these bounds, we see that the remaining crucial piece is to bound Ek�t �

�t��k
2p
2 . In order to do so, we require the following two helper lemmas.

Lemma 5. Given p � 2 and ` > 0, the iterates (1.3a) with stepsize � � .6.max C

�Ld/`/
�1 satisfy the bound�

E
�
k�tC` ��tk

p
2

��1=p
� e�`.max C �Ld/

�
E
�
k�tk

p
2

��1=p
C 3�p`

p
dx�;

and consequently,

1

2

�
E
�
k�tk

p
2

��1=p
� 6�p`

p
dx� �

�
E
�
k�tC`k

p
2

��1=p
� e

�
E
�
k�tk

p
2

��1=p
C 6�p`

p
dx�:

See Appendix C.2 for the proof of this claim.

Our second auxiliary result is of a bootstrap nature: it is based on assuming that,
for some given an integer p � 2, fixing any integer � � 2tmixp log.c0d/, there exist
positive scalars !p; p̌ > 0 such that�

E
�
k�tC` ��tk

p
2

��1=p
� �!p �

�
E
�
k�tk

p
2

��1=p
C � p̌x� (5.19)

for any t � 0, �� 1
48.maxC�Ld/�

and ` 2 Œ0; ��. We then have the following guarantee.

Lemma 6. When the condition (5.19) holds, then, for any t � 0, � � 1
48.maxC�Ld/�

,
and ` 2 Œ0; ��, we have�

E
�
k�tC` ��tk

p
2

��1=p
� �

�
12
�
p
p
d�L C max

�
`C

!p

2

���
Ek�tk

p
2

�1=p
C �p.� C `/

p
dx�
�

C �

�
2p`
p
d C

1

2
p̌

�
x�:
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See Appendix C.3 for the proof of this claim.
We now complete the proof of the bound (5.8a) by using a bootstrapping argument

in order to obtain a sharp bound on Ek�t ��t��k
p
2 . Let

!.0/p WD e�.max C �Ld/ and ˇ.0/p WD p�
p
d;

and define the following recursion:8<:!
.iC1/
p D

1
2
!
.i/
p C 12

�
p
p
d�L C max

�
�;

ˇ
.iC1/
p D

1
2
ˇ
.i/
p C 2p�

p
d C 2�

�
12
�
p
p
d�L C max

�
� C 1

2
!
.i/
p

�
p�
p
d:

It can be seen that as i !1, the sequence .!.i/p ; ˇ
.i/
p / converges to a unique limit

.!�p ; ˇ
�
p /; this limit is the unique fixed point of the iterates defined above.

By Lemma 6, if the iterates satisfy the bound (5.19) with constants .!.i/p ; ˇ
.i/
p /,

then they also satisfy the bound with constants .!.iC1/p ; ˇ
.iC1/
p /. By Lemma 5, the

iterates satisfy bound with constants .!.0/p ; ˇ
.0/
p /. An induction argument then yields

the bound for any .!.i/p ; ˇ
.i/
p /. In particular, the bound is satisfied by the fixed point

.!�p ; ˇ
�
p /.

Solving directly for the fixed-point equation, we find that

!�p D 24
�
p
p
d�L C max

�
� and ˇ�p D 4p�

p
d C 96�

�
p
p
d�L C max

�
p�2
p
d:

Taking the stepsize � � 1
48.maxCp�Ld/�

, we arrive at the bound�
E
�
k�tC` ��tk

p
2

��1=p
� 24��

�
p
p
d�L C max

��
Ek�tk

p
2

�1=p
C 6�p�

p
dx�

(5.20)
for any t � 0 and ` 2 Œ0; ��.

Collecting the bounds (5.14), (5.15), (5.16), (5.17), and (5.20) and taking the step-
size � � 1

c.maxCp�Ld/�
, we arrive at the bound�

E
�
.H1.t/ � zH1.t//

p
��1=p

� c�p2�
�
.d�2L C 

2
max/ �

�
Ek�t��k

2p
2

� 1
p C x�2d

�
;

thereby completing the proof of the bound (5.8a).

5.5. Proof of Lemma 2

By the BDG inequality, we have the bound

.E sup
0�t�n

jM2.t/j
p/1=p � cp.E.ŒM2�n/

p=2/1=p;

valid for all ` D 0; 1; : : : ; � � 1.
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As for the quadratic variation ŒM2�n, applying Hölder’s inequality yields

E
��
ŒM2�n

�p=2�
D E

" 
n�1X
tD0

e�.1��/tkH2.t/k
2
2

!p=2#

�

 
n�1X
tD0

e�.1��/tpE
�
kH2.t/k

p
2

�!
�

 
n�1X
tD0

e�
p2

2p�4�.1��/t

!p�2
2

�
�
�.1 � �/

��p2C1 n�1X
tD0

e�.1��/tp
�
E
�ˇ̌
2h�t ; ZtC1�t i

ˇ̌p�
C E

�ˇ̌
2h�tC1; �t i

ˇ̌p��
:

For the moment terms above, we invoke Assumption 2 and obtain the following
bounds:

E
�ˇ̌
h�t ; ZtC1�t i

ˇ̌p
j Ft

�
� k�tk

p
2 � E

" 
dX
jD1

hej ; ZtC1�t i
2

!p=2
j Ft

#
�
�
p�L
p
d � k�tk

2
2

�p
;

E
�ˇ̌
h�tC1; �t i

ˇ̌p
j Ft

�
� k�tk

p
2 � E

" 
dX
jD1

hej ; �tC1i
2

!p=2
j Ft

#
�
�
px�
p
d � k�tk2

�p
:

Substituting into the bound above, we find that�
E
��
ŒM2�n

�p=2��1=p
�
.�.1 � �//�

1
p � n

1
pp

�.1 � �/

®
p�L
p
d � max

0�t�n

�
e�.1��/t

�
Ek�tk

2p
2

�1=p�
C e

�.1��/n
2 px�

p
d max
0�t�n

�
e�.1��/t=2

�
Ek�tk

p
2

�1=p�¯
�

1p
�.1 � �/

�
p�L
p
dˆn C px�

p
e�.1��/nˆnd

�
:

5.6. Proof of Lemma 3

Recall the definitions (5.1a) and (5.1b). By Minkowski’s inequality, we have the upper
bound �

E
�
H3.t/

p
��1=p

�
�
EkNt�tk

2p
2

�1=p
C
�
EkZtC1�tk

2p
2

�1=p
C
�
Ek�tC1k

2p
2

�1=p
C
�
Ek�tk

2p
2

�1=p
: (5.21)
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For the martingale part of the noise, we note that Assumption 2 implies that�
EkZtC1�tk

2p
2 j Ft

�1=p
� p2�2Ld � k�tk

2
2 and

�
Ek�tC1k

2p
2

�1=p
� p2x�2d:

For the additive Markov noise, applying Assumption 2 yields the bound

.Ek�tk
2p
2 /

1=p
� p2x�2d:

For the Markov part of the multiplicative noise, we make use of the construction
given in Section 5.4.1, where we showed that, for a given � > 0, there exists a random
variable Qst such that Qst j Ft�� � � , and EŒ�p.st ; Qst / j Ft�� � � c0 � 2

1� �
tmix . Observe

the decomposition

Nt�t D
�
L.st / � L.Qst /

�
�t�� C

�
L.Qst / � xL

�
�t�� CNt

�
�t ��t��

�
:

Using the Lipschitz condition 4, we have that

E
�
k
�
L.st / �L.Qst /

�
�t��k

2p
2 j Ft��

�
� c0 � 2

1� �
tmix
�
�Ldk�t��k2

�2p
:

For any � � 2ptmix log d , we have the bound�
E
�
k
�
L.st / �L.Qst /

�
�t��k

2p
2

��1=p
� p2�2Ld �

�
Ek�tk

2p
2

�1=p
:

By the moment bounds (2) on the stationary distribution, we have

E
�
k
�
L.Qst / � xL

�
�t��k

2p
2 j Ft��

�
�
�
2p�L

p
dk�t��k2

�2p
:

For the last term, we use the Lipschitz condition 4 as well as the boundedness condi-
tion 3 of metric space. In conjunction with the inequality (5.20), for

� � 2ptmix log.c0d/

and stepsize � � 1
48�.�LdCmax/

, we arrive at the bound�
E
�
kNt .�t ��t�� /k

2p
2

��1=p
� �2Ld

2
�
�
E
�
k�t ��t��k

2p
2

��1=p
� c�2�2Ld

2�2
�
p2�2Ld C 

2
max

��
E
�
k�t��k

2p
2

��1=p
C c�2p2�2Lx�

2d3�2

� c
�
p2�2Ld C 

2
max

��
E
�
k�t��k

2p
2

��1=p
C cp2x�2d

for a universal constant c > 0.
Collecting the bounds above and substituting into our initial bound (5.21), we find

that �
E
�
H3.t/

p
��1=p

� c
�
p2�2Ld C 

2
max

��
E
�
k�t��k

2p
2

��1=p
C cp2x�2d;

as claimed.
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6. Proof of Theorem 1

From the defining equations (1.3a) and (1.3b), we have the telescoping relation

�n � �n0
�.n � n0/

D
1

n � n0

n�1X
tDn0

�
�t � LtC1�t � btC1

�
D .I � xL/.y�n � x�/C

1

n � n0
‰n0;n C

1

n � n0
‡n0;n;

where ‰n0;n D
Pn�1
tDn0

.LtC1�t C btC1 � EŒLtC1�t C btC1jFt �/ and

‡n0;n WD

n�1X
tDn0

.L.st /�t C b.st / � xL�t � Nb/:

Some algebra yields

y�n � x� D
.I � xL/�1

�
�n � �n0

�
�.n � n0/

�
.I � xL/�1‰n0;n

n � n0
�
.I � xL/�1‡n0;n

n � n0

DW I1 C I2 C I3: (6.1)

From the triangle inequality, it suffices to bound the norms of I1, I2, and I3.
In the following, we prove a slightly stronger claim, which gives bounds on an

arbitrary quadratic loss functional. In particular, given a matrixQ� 0, we seek bounds
on the Q-norm

ky�n � x�kQ WD

q
.y�n � x�/>Q.y�n � x�/:

6.1. Bounding the three terms

We now bound each term in the decomposition (6.1) in turn.

6.1.1. Bounding the term I1. The bound for term I1 follows directly from Proposi-
tion 1. In particular, given a sample size

n �
8

�.1 � �/
log.k�0 � x�k2d=�/

and burn-in period n0 D n=2, we have

E
�
k�n � x�k

2
2

�
�

c�

1 � �
x�2�d and E

�
k�n0 �

x�k22
�
�

c�

1 � �
x�2�d:

Noting that jjj.I � xL/�1jjjop � .1 � �/
�1, we conclude that

E
�
kI1k

2
Q

�
� �max.Q/E

�
kI1k

2
2

�
� �max.Q/ �

cx�2�d

�.1 � �/3n2
: (6.2)
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6.1.2. Bounding the term I2. For the term I2, note that the process .‰t /t�n0 is a
martingale adapted to the natural filtration. Its second moment equals the quadratic
variation:

E
�
kI2k

2
Q

�
D

4

n2
E
�
ŒQ1=2.I � xL/�1‰�n0;n

�
D

4

n2

n�1X
tDn0

E
�
k.I � xL/�1

�
.LtC1 �L.st //�t C btC1 � b.st /

�
k
2
Q

�
:

By the Cauchy–Schwarz inequality, we have the bound

E
�
kI2k

2
Q

�
�
8

n2

n�1X
tDn0

E
�
k.I � xL/�1�tC1k

2
Q

�
C

8

n2

n�1X
tDn0

E
�
k.I � xL/�1ZtC1�tk

2
Q

�
�
16

n
Tr
�
Q.I � xL/�1†�MG.I �

xL/�>
�
C
16�2L�max.Q/d

.1 � �/2n2

n�1X
tDn0

E
�
k�tk

2
2

�
�
16

n
Tr
�
.I � xL/�1†�MG.I �

xL/�>
�
C �max.Q/ �

16�2Ld

.1 � �/2n
�
c�d�

1 � �
x�2: (6.3)

6.1.3. Bounding the term I3. Applying the Cauchy–Schwarz inequality yields

E
�
k.I � xL/�1‡n0;nk

2
2

�
� 2E

" n�1X
tDn0

.I � xL/�1�t


2

2

#

C 2E

" n�1X
tDn0

.I � xL/�1Nt�t


2

2

#
: (6.4)

We make use of the two auxiliary lemmas in order to control the terms in the decom-
position (6.4).

Lemma 7. Under the setup above, for a sample size n satisfying the bound

n

logn
� 2tmix log.c0d/;

there exists a universal constant c > 0 such that

E

" n�1X
tDn0

.I � xL/�1�t


2

Q

#
� .n � n0/ � Tr

�
Q.I � xL/�1†�Mkv.I �

xL/�>
�

C �max.Q/ �
ct2mixx�

2d

.1 � �/2
log2.c0d/:

See Section 6.2.1 for the proof of this claim.
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Lemma 8. Under the above conditions, there exists a universal constant c > 0 such
that for any scalar � � 3tmix log2.c0dn/, stepsize � 2 .0; 1��

c�.�2
L
dC2max/

�, and burn-in

time n0 � � C 2
.1��/�

log.nd/, we have EŒk
Pn�1
tDn0

Nt�tk
2
2� � c�

2n2�2d2�2Lx�
2.

See Section 6.2.2 for the proof of this claim.
We now exploit the preceding two lemmas to upper bound the term I3. We have

E
�
kI3k

2
Q

�
�

2

.n � n0/2
E

" n�1X
tDn0

.I � xL/�1�t


2

Q

#

C
2

.n � n0/2
E

" n�1X
tDn0

.I � xL/�1Nt�t


2

Q

#

�
8Tr

�
Q.I � xL/�1†�Mkv.I �

xL/�>
�

n

C �max.Q/

²
ct2mixx�

2d

.1 � �/2n2
log2.c0d/C

c�2�2d2�2Lx�
2

.1 � �/2

³
: (6.5)

Collecting the bounds (6.2), (6.3), and (6.5), we find that

E
�
ky�n � x�k

2
Q

�
�
c

n
Tr
�
Q.I � xL/�1.†�MG C†

�
Mkv/.I �

xL/�>
�

C �max.Q/ �

�
cx�2tmixd

�.1 � �/3n2
C

16�2Ld

.1 � �/2n
�
c�dtmix

1 � �
x�2
�

C �max.Q/ �

�
ct2mixx�

2d

.1 � �/2n2
log2.c0dn/C

c�2t2mixd
2�2Lx�

2

.1 � �/2

�
:

For a sample size n lower bounded as n

log2 n
�

2tmix.�
2
L
dC2max/

.1��/2
log.c0d/, we can take

the optimal stepsize � D Œc..1 � �/n2tmix.�
2
Ld C 

2
max//�

�1=3. With this choice, we
have

E
�
ky�n � x�k

2
Q

�
�
c

n
Tr
�
Q.I � xL/�1.†�MG C†

�
Mkv/.I �

xL/�>
�

C c�max.Q/ �

�
�2Ldtmix

.1 � �/2n

�4=3
x�2 log2 n: (6.6)

Setting Q WD Id completes the proof.

6.2. Proof of auxiliary results

In this section, we prove the two auxiliary results used in the proof of Theorem 1:
namely, Lemma 7 and Lemma 8.
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6.2.1. Proof of Lemma 7. Given an integer k � 0, we define the k-step correlation
under the stationary Markov chain as

�k WD Es��;s0�Pkıs
�
hQ1=2.I � xL/�1�.s/; Q1=2.I � xL/�1�.s0/i

�
:

Clearly, we have �0 � 0, and by Cauchy–Schwarz inequality, for any k � 0, there isˇ̌
�k
ˇ̌
�

q
Es��k.I � xL/�1�.s/k

2
Q �

q
Es0��k.I � xL/�1�.s0/k

2
Q D �0:

The desired quantity can be written as

Tr.Q1=2.I � xL/�1†�Mkv.I �
xL/�>Q1=2/ D �0 C 2

C1X
kD1

�k :

Expanding the squared norm yields

E

" n�1X
tDn0

Q1=2.I � xL/�1�t


2

2

#
D

X
n0�t1;t2�n�1

E
�
hQ1=2.I � xL/�1�.st1/; Q

1=2.I � xL/�1�.st2/i
�

D .n � n0/�0 C 2

n�n0�1X
kD1

.n � n0 � k/�k :

We claim that the cross-correlations �k satisfy the bound

j�kj � c0
x�2jjjQjjjopd

2

.1 � �/2
� 2
1� k

2tmix : (6.7)

We return to prove this fact momentarily. Taking it as given, this inequality, in con-
junction with the bound j�kj � �0, can be employed to bound the tail sums needed
for the proof. We haveˇ̌̌̌

ˇn�n0�1X
kD1

k�k

ˇ̌̌̌
ˇ � �X

kD1

� j�kj C

1X
kD�C1

kj�kj

� �2�0 C 2c0
x�2jjjQjjjopd

2

.1 � �/2

1X
kD�C1

k � 2
� k
2tmix :

With the choice � WD 2tmix log.c0d/, simplifying yieldsˇ̌̌̌
ˇn�n0�1X
kD1

k�k

ˇ̌̌̌
ˇ � �2x�2d jjjQjjjop

.1 � �/2
C 2c0

x�2d2jjjQjjjop

.1 � �/2
� 2tmix

�
� C 1C 2tmix

�
� 2
�
�C1
tmix

�
2�2x�2d

.1 � �/2
jjjQjjjop;
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and for n satisfying n
logn � 2 log.c0dtmix/, we have

1X
kDn�n0

j�kj � 2c0
x�2d2jjjQjjjop

.1 � �/2

1X
kD 12n

�2
� k
2tmix

� 2c0
x�2d2jjjQjjjop

.1 � �/2
� 2
� n
2tmix � 2c0

x�2d

.1 � �/2n2
jjjQjjjop:

Putting together these bounds yields

E

" n�1X
tDn0

.I � xL/�1�t


2

Q

#

D .n � n0/

 
�0 C 2

1X
kD1

�k

!
� 2.n � n0/

1X
kDn�n0

�k � 2

n�n0�1X
kD1

k�k

� .n � n0/ � Tr
�
.I � xL/�1†�Mkv.I �

xL/�1
�
C
3�2x�2d

.1 � �/2
jjjQjjjop;

which completes the proof of the lemma.

Proof of equation (6.7). Let s0 � � and .st /t�0 be a stationary Markov chain starting
from s0. By the construction given in Section 5.4.1, there exists a random variable Qsk
such that Qsk is independent of s0, Qsk � � , and such that

EŒ�.sk; Qsk/ j s0� � c0 � 2
1� k

tmix :

We then obtain the bound

j�kj D
ˇ̌
E
�
hQ1=2.I � xL/�1�.s0/; Q

1=2.I � xL/�1�.sk/i
�ˇ̌

�
ˇ̌
E
�˝
Q1=2.I � xL/�1�.s0/; E

�
Q1=2.I � xL/�1�.Qsk/ j s0

�˛�ˇ̌
C
ˇ̌
E
�
Q1=2

˝
.I � xL/�1�.s0/; E

�
Q1=2.I � xL/�1.�.sk/ � �.Qsk// j s0

�˛�ˇ̌
� 0C

q
E
�
kQ1=2.I�xL/�1�.s0/k

2
2

�
�

q
E
�
kQ1=2.I�xL/�1.�.sk/��.Qsk//k

2
2

�
�

q
�0jjjQjjjop �

p
jjjQjjjop

1 � �

q
E
�
�.sk; Qsk/2 � x�2d2

�
� c0

x�d

1 � �

p
�0 � 2

1� k
2tmix : (6.8)

On the other hand, applying the moment condition (2) yields

�0 �
1

.1 � �/2
� EŒk�.s0/k

2
Q� �

x�2d

.1 � �/2
jjjQjjjop:

Substituting this bound into our previous inequality (6.8) completes the proof.
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6.2.2. Proof of Lemma 8. The proof of this claim relies on a bootstrap argument:
we bound the summation of interest by a more complicated summation that involves
products of noise matrices. Recursively applying the result formD logd times yields
the desired bound.

Lemma 9. Given any integer m � 0, deterministic sequence 0 D k0 < k1 < � � � <

km < n0, and scalar � � 3mtmixp log.c0dn/, we have the second moment bound

E

" n�1X
tDn0

 
mY
jD0

Nt�kj

!
�t�km


2

2

#
� 2n2d2m�2mC2L �

c�

1 � �
dtmixx�

2

C 4�2�

kmC�X
kmC1DkmC1

E

" nX
tDn0

´
mC1Y
jD0

Nt�kj�t�kmC1

µ
2

2

#

C 4�2�

kmC�X
kmC1DkmC1

E

" nX
tDn0

´
mY
jD0

Nt�kj
�
�t�kmC1C�t�kmC1C1

�µ
2

2

#
; (6.9a)

and in the special case m D 0, we have

E

" n�1X
tDn0

Nt�t


2

2

#
� c�2Ld �

�
n� C n2�2�2Ld�

2
� c�

1 � �
dtmixx�

2

C 4�2�

�X
k1D1

E

" nX
tDn0

NtNt�k1�t�k1


2

2

#

C 4�2�

�X
k1D1

E

" nX
tDn0

Nt
�
�t�k1 C �t�k1C1

�
2

2

#
: (6.9b)

See Appendix D.1 for the proof of this lemma.
The following lemma controls the last term of the bound (6.9a).

Lemma 10. Under the setup above, there exists a universal constant c > 0 such that
for any integer m > 0 and deterministic sequence 0 D k0 < k1 < � � � < km < n0, we
have

E

" n�1X
tDn0

 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�
2

2

#
� c

�
n2 C nd.km C tmix log.c0d//

�
�2mL d2mx�2:

See Appendix D.2 for the proof of this lemma.
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Taking these lemmas as given, we now proceed with the proof of Lemma 8. Given
the scalar � WD 3tmix log2.c0dn/, we define

Hm WD sup
0Dk0<k1<���<km��

E

" n�1X
tDn0

 
mY
jD0

Nt�kj

!
�t�km


2

2

#
for m D 0; 1; 2; : : : ; log d . By equation (6.9b) and Lemma 10, we have the bound

H0 � c�
2
Ld �

�
n� C n2�2�2Ld�

2
� c�

1 � �
dtmixx�

2

C 4�2�2H1 C 4c�
2�2

�
n2 C nd.� C tmix log.c0d//

�
�2Ld

2
x�2

� 4�2�2H1 C c
0�2n2�2d2�2Lx�

2:

In deriving the last inequality, we used the inequalities � � 1��

�2
L
d�

and n � 1
.1��/�

.

By equation (6.9a) and Lemma 10, we have the recursive relation

Hm � 4�
2�2HmC1 C cn

2d2mC1��2mC2L �
� log3 n
1 � �

x�2 C c�2�2n2�2mC2L d2mC2x�2

� 4�2�2HmC1 C cn
2�2mL d2mx�2 � log3 n:

Recursively applying these bounds yields

H0 � .4�
2�2/mHm C c�

2n2�2d2�2Lx�
2
C c �

m�1X
qD1

.4�2�2/qn2�
2q
L d2qx�2

� .4�2�2/mHm C 3c�
2n2�2d2�2Lx�

2:

In order to control the term Hm, we employ the coarse bound

E

" n�1X
tDn0

 
mY
jD0

Nt�kj

!
�t�km


2

2

#
� n

n�1X
tDn0

E

"
 

mY
jD0

Nt�kj

!
�t�km


2

2

#

� n2.�Ld/
2mC2

�
c�tmixdx�

2

1 � �
:

Taking the supremum and noting that � � 1��

�2
L
d�

leads to Hm � cn
2�2mL d2mC2x�2.

Consequently, we have established that

H0 � 3c�
2n2�2d2�2Lx�

2Œ1C .2���Ld/
2mC2
2m �:

Taking m D dlog de and � � 1
6��Ld

, we have .2���Ld
2mC2
2m /2m < 1, and thus,

H0 � 6c�
2n2�2d2�2Lx�

2 log3 n;

which completes the proof of this lemma.
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7. Discussion

In this paper, we established sharp instance-optimal guarantees for linear stochastic
approximation (SA) procedures based on Markovian data. Under ergodicity along
with natural tail conditions, we proved non-asymptotic upper bounds on the squared
error of both the last iterate of a standard SA scheme and the Polyak–Ruppert aver-
aged sequence. The results highlight two important aspects: an optimal sample com-
plexity ofO.tmixd/ for problems in dimension dwith mixing time tmix and an instance-
dependent error upper bound for the averaged estimator with carefully chosen step-
size. Complementary to the upper bound, we also showed a non-asymptotic local
minimax lower bound over a small neighborhood of a given Markov chain instance,
certifying the statistical optimality of the proposed estimators. Our proof of the upper
bounds uses a bootstrapping argument of possibly independent interest.

Throughout the paper, we have introduced novel techniques of analysis and moti-
vated several open questions. In the following, we collect a few interesting future
directions.

• Non-linear stochastic approximation and controlled dynamics: Our paper focuses
on linearZ-equations where the underlying Markov chain does not involve a con-
trol. Though this setting already covers many important examples (as described
in Section 2.2), its applicability to practical problems is still relatively restricted.
To set up a general framework, one could consider a controlled Markov chain
.st /t�0 where the transition is given by stC1 � P.�jst ; �t /. For any � 2 Rd , let
�� be the stationary distribution of the Markov chain P.�j�; �/ induced by the con-
trol � . Given a non-linear operator H W X � Rd ! Rd , suppose that we wish to
solve the equation Es��.�/ŒH.� I s/� D 0; see the book [2] for a summary of clas-
sical asymptotic theory for such problems. The analysis tools introduced in this
paper provide an avenue by which one could obtain optimal sample complexity
bounds (especially in terms of dimension dependency) and instance-dependent
guarantees for such problems. In particular, the multi-step looking-back tech-
nique and bootstrapping stability bounds introduced in Proposition 1 could be
extended to non-linear operators, and it would be very interesting to see how
Markovian SA achieves optimal dependence on .tmix; d / in general. On the other
hand, the proof of Theorem 1 is specialized to linear operators, as it explicitly
involves bounding product of random matrices (see Lemma 9). Obtaining sharp
and instance-dependent results for the non-linear SA may require novel proof
techniques and is an important direction of future work.

• Online statistical inference: By carefully choosing the burn-in period, one can
show that the Polyak–Ruppert estimator y�n is asymptotically normal and locally
minimax optimal. In particular, under suitable conditions, we have the following
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limiting result (see the paper [26] for details):

p
n.y�n � x�/

d
�! N

�
.Id � xL/

�1.†�MG C†
�
Mkv/.Id �

xL/�>
�
: (7.1)

In order to construct confidence intervals for the solution x� with streaming data,
it suffices to estimate the asymptotic covariance in equation (7.1). In the i:i:d: set-
ting, online procedures have been developed to estimate such covariances, with
non-asymptotic error guarantees [16]. The problem becomes more subtle in the
Markovian setting, as the matrix†�Mkv involves auto-correlations of the noise pro-
cess. It is an important open direction to construct online estimators of this matrix
to enable inference in a streaming fashion.

• Model selection and optimal methods for policy evaluation The policy evaluation
problem involves manual choice of two important parameters: the feature vector
dimension d and the resolvent parameter � in TD.�/. In Sections 4.1.3 and 4.2,
we provide optimal instance-dependent guarantees on both the approximation fac-
tor and the estimation error for a fixed choice of d and �. An important direction
of future research is to select such parameters adaptively based on data, possibly
under a streaming computational model. Ideally, we want the risk of such estima-
tor to attain the infimum of the right-hand side of equation (4.12b) over � 2 .0; 1/
and d 2NC. A possible candidate approach towards such a model selection prob-
lem is the celebrated Lepskii method for adaptive bandwidth selection [47].

A. Additional related work

This paper analyzes stochastic approximation algorithms based on Markov data and
has consequences for reinforcement learning. So, as to put our results into context, we
now provide more background on past work in these areas.

A.1. Statistical estimation based on Markov data

There is a large body of past work on statistical estimation based on observing a single
trajectory of a Markov chain; for example, see [6] for an overview of some classical
results. For the problem of functional estimation under the stationary distribution, the
asymptotic efficiency of plug-in estimators8 has been established for discrete-state
Markov chains [31,63] and Itô diffusion processes [45]. In this paper, we provide non-
asymptotic bounds, both upper and lower, that depend on a certain instance-dependent
functional that also appears in an asymptotic analysis. More recent work has seen

8These papers refer to such methods as “empirical” estimators.
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non-asymptotic results for statistical estimation with Markovian data, including the
estimation of transition kernels [52, 84], mixing times [33], and the parameters of
Gaussian hidden Markov models [85], as well for certain testing problems [18]. These
papers can be roughly divided into two categories. Papers in the first category focus on
estimating parameters for each individual state of the Markov chain (e.g., transition
kernels) and thus require sample sizes that scale with the complexity of the state space
(e.g., its cardinality in the discrete case). By contrast, papers in the second category
are concerned with estimating properties of the Markov chain (e.g., the expectation
of a functional under the stationary distribution), and the sample complexity of such
problems need not depend on the size of the state space. Our paper falls within the
second category.

A.2. Stochastic approximation methods

The use of recursive stochastic procedures for solving fixed-point equations dates
back to the seminal work of Robbins and Monro [66]; see the reference books [2,7,44]
for more background. By averaging the iterates of the SA procedure, it is known that
one can obtain both an improved convergence rate and central limit behavior [64,68].
A variety of stochastic approximation procedures now serve as the workhorse for
modern large-scale machine learning and statistical inference [9, 61], and many algo-
rithmic techniques are known to accelerate their convergence [28,35,49]. In particular,
non-asymptotic bounds matching the optimal Gaussian limit have been established in
a variety of settings [21, 27, 58, 59, 79].

While the instance-dependent nature of this line of investigation aligns with the
objective of our work, prior work either assumes an i:i:d: observation model or impos-
es a martingale difference assumption on the noise.9 The first study of SA procedures
without a martingale difference assumption was initiated by [43], who give a general
criteria for convergence, as well as [53, 54], who analyzed linear problems motivated
by control and filtering. The paper [56] analyzed general SA problems for controlled
Markov processes by applying the Kushner–Clark lemma. In addition to this classi-
cal work, stochastic approximation in the Markov setting has attracted much recent
attention. The paper [15] provides finite-sample error bounds on the averaged iterate
of Markovian linear stochastic approximation, with an optimal leading-order term.
Central limit theorems [26] and non-asymptotic convergence rates [37] have been
established for controlled Markov processes. In addition to the papers discussed in
Section 1, several recent works have considered particular aspects of SA with Markov
data, including two-time-scale variants [22, 38], observation skipping schemes for

9In the linear equation setup, the martingale difference noise assumes that EŒLtC1 j Ft � D
xL and EŒbtC1 j Ft � D Nb, which does not cover the Markov case.
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bias reduction [42], Lyapunov function-based analysis under general norms [17], and
proving guarantees under weaker ergodicity conditions [20].

A.3. Application to RL problems

Markovian observations arise naturally in the context of stochastic control and rein-
forcement learning (RL). See [2] for a historical survey of algorithms for stochastic
control and filtering with Markovian stochastic approximation and the books [4, 73]
for more background on the RL setting. In RL problems, SA algorithms are typ-
ically used to solve Bellman equations, a class of linear or non-linear fixed-point
equations. In policy evaluation problems, temporal difference (TD) methods [71] use
linear stochastic approximation to estimate the value function of a given policy, with
asymptotic convergence guarantees [11, 19, 75] and non-asymptotic bounds [5, 39,
58]. In the non-linear case, the Q-learning algorithm [83] is a stochastic approxima-
tion method that estimates the Q-function of a Markov decision process from data.
There is a long line of past work on this algorithm, including convergence guar-
antees [25, 72, 74], results on linear function approximation for optimal stopping
problems [5, 76], and non-asymptotic rates under general norms in both the i:i:d: set-
ting [8, 81] and the Markovian setting [17]. A class of variants of TD and Q-learning
are also studied in the literature, including actor-critic methods [41], SARSA [67], and
methods that employ variance reduction [39, 40, 69, 82]. A concurrent preprint to this
manuscript [51] proves lower bounds on the oracle complexity of policy evaluation
with access to temporal difference operators and develops an acceleration scheme
with variance reduction to achieve these lower bounds while retaining the optimal
sample complexity.

It should be noted that an important feature of reinforcement learning is function
approximation, i.e., using a given function class (e.g., a linear subspace) to approxi-
mate the solution to the Bellman equation of interest. This method enables estimation
with a sample size depending on the intrinsic complexity of the function class, instead
of the cardinality of state-action space. On the other hand, an approximation error is
induced by projecting the Bellman equation onto this function class. This trade-off is
central to the class of TD algorithms, as studied in a line of past work [3,58,60,75,86].
Prior work by a subset of the current authors [58] focuses on the i:i:d: setting and
shows that projected linear equations have a non-standard tradeoff between approxi-
mation and estimation errors. The current paper is complementary in nature, building
on this work by analyzing the more challenging setting of Markov observations.
Among the concrete consequences of this paper are an instance-optimal analysis of
TD algorithms in the Markov setting with linear function approximation. This analy-
sis provides the basis for a principled choice of the parameter � in the broader class
of TD.�/ algorithms.
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B. Auxiliary truncation results related to the assumptions

In this section, we present two auxiliary results on the relations between Assump-
tions 2, 3, and 4. These results are based on truncation arguments.

B.1. Assumption 2 (almost) implies assumption 4 under discrete metric

For the discrete metric �.x; y/ WD 1x¤y , the Lipschitz assumption 4 is equivalent to
the following uniform upper bounds:

jjjLtC1.st / � xLjjjop � �Ld and kbtC1.st / � Nbk2 � �b
p
d:

The following proposition provides uniform high-probability upper bounds on such
quantities based on the moment assumption.

Proposition 4. Under Assumption 2 with Np D C1, there exists a universal constant
c > 0 such that, for any ı > 0, the following bounds hold true uniformly over t D
1; 2; : : : ; n, with probability 1 � ı:

jjjLtC1.st / � xLjjjop � cd � �L log
nd

ı
and kbtC1.st / � Nbk2 � c

p
d � �b log

nd

ı
:

(B.1)

We prove this proposition at the end of this section.
When the random observations .LtC1; btC1/ are not almost surely bounded but

satisfy the moment assumption 2 with Np D C1, we can apply our theorems on the
event that equation (B.1) holds true, and the main theorems hold true conditionally on
such an event, with constants .�L; �b/ inflated with a factor log.nd=ı/.

Proof of Proposition 4. For a given t 2 Œn�, we note that

jjjLtC1 � xLjjj
2
op � jjjLtC1 �

xLjjj2F D

dX
j;`D1

�
e>j
�
LtC1 � xL

�
e`
�2
:

For each pair j; ` 2 Œd �, Assumption 2 implies that

P
�ˇ̌
e>j
�
LtC1.st / � xL

�
e`
ˇ̌
� c�L log.nd=ı/

�
�

ı

2d2n
:

Taking union bound over all the coordinate pairs .j; `/ and substituting into above
expansion, we have that

P
�
jjjLtC1 � xLjjjop � cd � �L log.nd=ı/

�
� ı=.2n/:
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Similarly, for the vector-valued observations btC1, we have the following bounds with
probability 1 � ı=n:

kbtC1 � Nbk
2
2 �

dX
jD1

�
e>j .btC1 �

Nb/
�2
� c�2bd � log2.nd=ı/:

Taking union bound over
t D 1; 2; : : : ; n;

we complete the proof of this proposition.

B.2. On the stationary tail and boundedness assumption 3

Note that, in many applications, the Markov chain .st /t�0 lives in an unbounded state
space. However, as long as the stationary distribution � of P is sufficiently light-
tailed, a simple truncation argument applies, which we illustrate for completeness.
Concretely, suppose that there exists a constant �� > 0, such that the following bound
holds true for any p � 2:

Es��
�
�.s; s0/

p
�
� pŠ � �p� : (B.2)

Given a stationary Markovian trajectory ¹stºntD1, consider the event

En;ı D
°
8t 2 Œ1; n�; �.s0; st / � 2�� log

n

ı

±
:

By the tail assumption (B.2) and a union bound, it directly follows that

P .En;ı/ � 1 � ı:

Consider a truncated Markov transition kernel P 0 defined as

P 0.x;Z/ WD P
�
x;Z \ B

�
0; 2�� log.n=ı/

��
C P

�
x;B

�
0; 2�� log.n=ı/

�c�
1s02Z

for any x 2 X and Z � X.
In words, the Markov chain P 0 attempts to make the transition from st to stC1

according to the original Markov transition kernel P 0. If the state stC1 lies in the ball
B.0; 2�� log.n=ı//c , we keep it as is; otherwise, we let the next-step transition be
deterministically s0.

Given a trajectory ¹s0tº
n
tD1 of the Markov chain P 0, there exists a coupling such

that
P
�
¹stº

n
tD1 ¤ ¹s

0
tº
n
tD1

�
� P

�
Ecn;ı

�
� ı:

One can then proceed by working on the high-probability event En;ı , where the
Markov chain has an effective diameter of O.�� log n

ı
/.
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B.3. Proof of Corollary 1

Suppose that s0 � �0, by Lemma 4 and convexity of the Wasserstein distance, we
have

W1;�

�
�0P

nc ; �
�
� 2�bnc=tmixc � 2 exp

�
�

n

8tmix

�
:

Let .Qst /t�0 be a stationary chain with Qs0 � � independent of s0. There exists a cou-
pling between the paths such that

E
�
�.snc ; Qsnc /

�
� 2 exp

�
�

n

8tmix

�
:

Applying Assumption 1 (b) conditionally on .snc ; Qsnc /, since

c0 D 1;

there exists a coupling between the next-step transitions such that

E
�
�.sncC1; QsncC1/ j .snc ; Qsnc /

�
� �.snc ; Qsnc /:

Similarly, we can inductively construct the coupling between sncCiC1 and QsncCiC1
conditionally on the pair .sncCi ; QsncCi / for i D 1; 2; : : : : Putting them together, we
obtain a coupling between the two paths such that .�.sncCiC1; QsncCiC1//i�0 is a
super-martingale. By Markov inequality, for each t � nc , we have

P
�
�.st ; Qst / � e

� n
16tmix

�
� 2 exp

�
�

n

8tmix

�
:

Define the event

E WD
®
�.st ; Qst / � e

� n
16tmix W t D nc ; nc C 1; : : : ; n

¯
:

By union bound, we have

P
�
E
�
� 1 � 2n exp

�
�

n

8tmix

�
� 1 � exp

�
�

n

16tmix

�
:

Define the error scalar
ın WD e

� n
16tmix ;

and let .�t /t�nc , .z�t /t�nc be the iterate sequences generated by the Markov chains
.st /t�nc and .Qst /t�nc , respectively. For any t � nc , we note that

�tC1 D
�
.1 � �/Id C �LtC1.st /

�
�t C �btC1.st /;

z�tC1 D
�
.1 � �/Id C �LtC1.Qst /

�
z�t C �btC1.Qst /:
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Taking their difference and applying triangle inequality, on the event E, we have the
almost sure upper bound on the one-step error

kz�tC1 � �tC1k2

� jjj.1 � �/IdC�LtC1.st /jjjop � kz�t � �tk2 C �jjjLtC1.Qst / �LtC1.st /jjjop � kz�tk2

C �kbtC1.Qst / � btC1.st /k2

� .1C �.max C d�L//kz�t � �tk2 C �ın �
®
�Ldkz�tk2 C �b

p
d
¯
;

where, in the last step, we use the Lipschitz assumption 4.
Solving this recursion yields the uniform upper bound for t 2 ¹nc ; nc C 1; : : : ; nº:

kz�t � �tk2 � �ın exp
�
�.max C d�L/n

�
�

nX
tDnc

®
�Ldkz�tk2 C �b

p
d
¯
;

holding with probability 1 on the event E.
Given a stepsize satisfying � � 1

32tmix.maxCd�L/
, we have

ın exp
�
�.max C d�L/n

�
� exp

�
�

n

32tmix

�
:

For the summation term, we apply Cauchy–Schwarz inequality and obtain the MSE
bound

E

´
nX

tDnc

�Ldk�tk2C�b
p
d

µ2
�2n2d2

�
�2bC�

2
Lk
x�k22

�
C4n�2Ld

2

nX
tDnc

E
�
kz�t�x�k

2
2

�
.i/
� n2d2

�
2�2b C 6�

2
Lk
x�k22 C

4c�tmix�

1 � �
x�2 logn

�
�12n3d2

�
�2b C �

2
Lk
x�k22

�
;

where, in step .i/, we apply Proposition 1 to the iterate sequence .z�t /t�nc .
Putting them together, we conclude that

E
�
kz�t � �tk

2
21E

�
� 12n3d2

�
�2b C �

2
Lk
x�k22

�
exp

�
�

n

16tmix

�
:

Let y� 0n WD
1

n�n0

Pn�1
tDn0

z�t ; applying Cauchy–Schwarz inequality, we have

E
�
ky� 0n �

y�nk
2
21E

�
�
4

n

nX
tDn0

E
�
kz�t � �tk

2
21E

�
� 12n3d2

�
�2b C �

2
Lk
x�k22

�
exp

�
�

n

16tmix

�
� e
� n
32tmix

�
�2b C �

2
Lk
x�k22

�
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for a sample size satisfying n
logn � 2400tmix log d . Invoking Theorem 1 on the esti-

mator y� 0n completes the proof of this corollary.

C. Auxiliary results underlying Proposition 1

This appendix is devoted to the proofs of auxiliary lemmas that are used in the proof
of Proposition 1.

C.1. Proof of Lemma 4

Throughout the proof, we let x 2 X be an arbitrary but fixed state. Note that any
positive integer � can be represented as � D ktmix C q with k 2 NC and 0 � q �
tmix � 1. We show the desired claim by induction over k � 0.

Base case. When k D 0, Assumption 3 implies that

W1;�.ıxP
� ; �/ � sup

s;s0
�.s; s0/ � 1 � c0

so that the base case (k D 0) holds for our induction proof.

Induction step. At step k of the argument, the induction hypothesis ensures that

W1;�

�
ıxP

ktmixCq; �
�
� c0 � 2

�k for q D 0; 1; : : : ; tmix � 1: (C.1)

We now need to show that the result holds for any � D .k C 1/tmix C q, where q 2
¹0; 1; : : : ; tmix � 1º is arbitrary. We do so via a coupling argument. Take a random
initial state y � � , and consider two processes ¹stºt�0 and ¹s0tºt�0 starting from x

and y, respectively. Their joint distribution is defined as follows: choose the coupling
between the law of sktmixCq and s0

ktmixCq
to satisfy the identity

EŒ�.sktmixCq; s
0
ktmixCq

/� D W1;�.ıxP
ktmixCq; �/:

Conditionally on .sktmixCq; s
0
ktmixCq

/, Assumption 1 guarantees the existence of a cou-
pling between ısktmixCq

P tmix and s0
ktmixCq

P tmix such that

E
�
�.s.kC1/tmixCq; s

0
.kC1/tmixCq

/ j .sktmixCq; s
0
ktmixCq

/
�
�
1

2
�.sktmixCq; s

0
ktmixCq

/:

Taking expectation on both sides and substituting with equation (C.1), we find that

W1;�

�
ıxP

.kC1/tmixCq; �
�
� E

�
�
�
s.kC1/tmixCq; s

0
.kC1/tmixCq

��
� c0 � 2

�.kC1/;

which completes the proof of the induction step.
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C.2. Proof of Lemma 5

Our proof is based on the following intermediate claim:�
E
�
k�tC`k

p
2

��1=p
� e

�
E
�
k�tk

p
2

��1=p
C 6�p`x�

p
d: (C.2)

This bound, which we return to prove at the end of this section, is a weaker form of
the claim in the lemma.

We now use the bound (C.2) to prove the lemma. Applying Minkowski’s inequal-
ity to the recursive relation (5.2), we find that, for any p � 2, the p-th moment is
upper bounded as�

E
�
k�tC`C1��tk

p
2

��1=p
�
�
E
�
k�tC`��tk

p
2

��1=p
C�

�
E
�
kLtC`C1�tC`k

p
2

��1=p
C �

�
E
�
k�tC` C �tC`C1k

p
2

��1=p
:

For the martingale part of the noise, we take the decomposition

LtC`C1 D L.stC`/CZtC`C1:

By Assumption 2 and Hölder’s inequality, we have the bounds

E
�
kZtC`C1�tC`k

p
2 j Ft

�
� d

p
2

dX
jD1

E
�
hej ; ZtC`C1�tC`i

p
j Ft

�
�
�
p�L
p
d
�p

E
�
k�tC`k

p
2 j Ft

�
and

E
�
k�tC`C1k

p
2

�
� d

p
2

dX
jD1

E
�
hej ; �tC`C1i

p
�
� .p
p
d/p � x�p:

Similarly, for the Markov part of the noise, we have

E
�
k�tC`C1k

p
2

�
� .p
p
d/p � x�p:

On the other hand, the Lipschitz condition 4 and the boundedness condition (3) of
the metric space imply that

jjjLtC`C1.s/ � xLjjjop � �Ld for all s 2 X.

Substituting into the decomposition above, we arrive at the bounds�
E
�
kLtC`C1�tC`k

p
2

��1=p
� .max C �Lp

p
d C �Ld/

�
E
�
k�tC`k

p
2

��1=p
and �

E
�
k�tC` C �tC`C1k

p
2

��1=p
� 2px�

p
d:
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Applying equation (C.2) yields�
E
�
k�tC`C1 ��tk

p
2

��1=p
�
�
E
�
k�tC` ��tk

p
2

��1=p
C e�.max C �Ld/

�
E
�
k�tk

p
2

��1=p
C 2.1C 6�`/�px�

p
d;

where the second inequality comes from the definition of x� .
Solving this recursion leads to the bound�

E
�
k�tC` ��tk

p
2

��1=p
� e�`.max C �Ld/

�
E
�
k�tk

p
2

��1=p
C 3�p`x�

p
d;

which establishes the first claim.
Since the stepsize is upper bounded as � � .2e�`.max C �Ld//

�1, we have the
lower bound�

E
�
k�tC`k

p
2

��1=p
�
�
E
�
k�tk

p
2

��1=p
�
�
E
�
k�tC` ��tk

p
2

��1=p
�
1

2

�
E
�
k�tk

p
2

��1=p
� 3�p`x�

p
d;

which, in conjunction with the bound (C.2), establishes the second claim.

Proof of equation (C.2). Applying Minkowski’s inequality to the recursive rela-
tion (5.2) yields (for any p � 2) a bound on the p-th conditional moment:�

E
�
k�tC`C1k

p
2

��1=p
�
�
E
�
k.I � �LtC`C1/�tC`k

p
2

��1=p
C �

�
E
�
k�tC` C �tC`C1k

p
2

��1=p
: (C.3)

Our next step is to bound the two terms above.
Substituting into the recursive relation (C.3), and applying Minkowski’s inequal-

ity, we find that the moment .EŒk�tC`C1k
p
2 �/

1=p is upper bounded by

.1C �max/
�
E
�
k�tC`k

p
2

��1=p
C ��Ld

�
E
�
k�tC`k

p
2

��1=p
C 2�p

p
dx�:

Solving this recursive inequality leads to�
E
�
k�tC`k

p
2

��1=p
� exp

�
�`.max C �Ld/

��
E
�
k�tk

p
2

��1=p
C 2�p`

p
dx�:

For any stepsize � 2 .0; 1
.maxC�Ld/`

�, we have�
E
�
k�tC`k

p
2

��1=p
� e

�
E
�
k�tk

p
2

��1=p
C 6�p`

p
dx�;

which establishes the claim.
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C.3. Proof of Lemma 6

For notational simplicity, we extend the process .�t /t�0 to the entire set Z of inte-
gers, in particular by defining �t WD �0 for negative integer t . Note that, under our
assumption, Lemma 5 and the assumed bound (5.19) both hold true for the extended
process, with index set t 2 Z. Moreover, as in the proof of Lemma 5, for each p � 2,
we have the moment bound�

E
�
k�tC`C1��tk

p
2

��1=p
�
�
E
�
k�tC` ��tk

p
2

��1=p
C�

�
E
�
kLtC`C1�tC`k

p
2

��1=p
C �

�
E
�
k�tC` C �tC`C1k

p
2

��1=p
:

Our next step is to exploit the coarse bound (5.19) so as to obtain upper bounds
on the second term .EŒkLtC`C1�tC`k

p
2 �/

1=p . Given the time lag � > 0, we take the
decomposition�tC` D�tC`�� C .�tC` ��tC`�� /, and by Minkowski’s inequality,
we have that�

E
�
kLtC`C1�tC`k

p
2

��1=p
�
�
E
�
kLtC`C1�tC`��k

p
2

��1=p
C
�
E
�
kLtC`C1.�tC` ��tC`�� /k

p
2

��1=p
: (C.4)

The latter term of the bound (C.4) can be controlled through Assumption 4:

kLtC`C1.stC`/.�tC` ��tC`�� /k2 � .max C �Ld/k�tC` ��tC`��k2; a.s.

The distance k�tC` � �tC`��k2 is controlled via the coarse bound (5.19). Putting
together the pieces, we find that�

E
�
kLtC`C1.�tC` ��tC`�� /k

p
2

��1=p
� �

�
max C �Ld

�
�
�
!p
�
E
�
k�tC`��k

p
2

��1=p
C p̌x�

�
: (C.5)

In order to bound the former term .EŒkLtC`C1�tC`��k
p
2 �/

1=p in the bound (C.4), we
invoke Lemma 4 and obtain a random variable QstC` such that

QstC` j FtC`�� � � and
�
E
�
�.stC`; QstC`�� /

p
j FtC`��

��1=p
� c0 � 2

1� �
2tmixp :

(C.6)
By Assumption 2, we have the bounds

E
�
kZtC`C1�tC`��k

p
2 j FtC`��

�
� .p
p
d�L/

p
k�tC`��k

p
2 (C.7a)

and

E
�
k.L.QstC`�� / � xL/ ��tC`��k

p
2 j FtC`��

�
� .p
p
d�L/

p
k�tC`��k

p
2 : (C.7b)
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Invoking the moment bound (C.6) and using the Lipschitz condition 4, we find that

E
�
k.L.QstC`�� / �L.stC`�� // ��tC`��k

p
2 j FtC`��

�
� E

�
jjjL.QstC`�� / �L.stC`�� /jjj

p
op j FtC`��

�
� k�tC`��k

p
2

�
�
�Lc0d � 2

1� �
2tmixp k�tC`��k2

�p
: (C.7c)

Finally, we have the operator norm bound

kxL�tC`��k2 � maxk�tC`��k2: (C.7d)

Collecting the results from equations (C.7) (a)–(d), we arrive at the bound�
E
�
kLtC`C1�tC`��k

p
2 j FtC`��

��1=p
�
�
2p
p
d�L C max C �Lc0d � 2

1� �
2tmixp

�
k�tC`��k2: (C.8)

According to Lemma 5, given a stepsize bounded as

� � .6.max C �Ld/�/
�1;

we have �
Ek�tC`��k

p
2

�1=p
� 2

�
Ek�tC`k

p
2

�1=p
C 12�p�x�

p
d:

Collecting the bounds (C.5) and (C.8), and substituting into the decomposition
(C.4), for � � 2tmixp log.c0d/, we arrive at the inequality�

E
�
kLtC`C1�tC`k

p
2

��1=p
� 2

��
p
p
d�L C max

�
C �!p

�
max C �Ld

��
�
��

Ek�tC`k
p
2

�1=p
C �p�

p
dx�
�

C �
�
max C �Ld

�
p̌x�:

By following the derivation in the proof of Lemma 5, we can show that the third
term is upper bounded as�

E
�
k�tC` C �tC`C1k

p
2

��1=p
� 2px�

p
d:

Substituting back into the original decomposition, we find that the difference in mo-
ments

D WD .EŒk�tC`C1 ��tk
p
2 �/

1=p
� .EŒk�tC` ��tk

p
2 �/

1=p

is bounded as

D � 2�
®�
p
p
d�L C max

�
C �!p

�
max C �Ld

�¯
�
��

Ek�tC`k
p
2

�1=p
C �p�

p
dx�
�

C
�
2�p
p
d C �2

�
max C �Ld

�
p̌

�
:
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Lemma 5 implies that

.EŒk�tC`k
p
2 �/

1=p
� e.EŒk�tk

p
2 �/

1=p
C 6�p`

p
dx�;

and solving the recursion, we arrive at the bound�
E
�
k�tC` ��tk

p
2

��1=p
� 12�`

��
p
p
d�LCmax

�
C�!p

�
maxC�Ld

��
�
��

Ek�tk
p
2

�1=p
C�p.�C`/

p
dx�
�

C
�
2�p
p
d C �2

�
max C �Ld

�
p̌

�
`x�

� �
�
12
�
p
p
d�L C max

�
`C

!p

2

���
Ek�tk

p
2

�1=p
C �p.� C `/

p
dx�
�

C �

�
2p`
p
d C

1

2
p̌

�
x�

for any � � 2tmixp log.c0d/ and stepsize choice

� �
c

48.max C �Ld/
:

D. Auxiliary results underlying Theorem 1

In this appendix, we prove two auxiliary lemmas that were used in the proof of The-
orem 1.

D.1. Proof of Lemma 9

According to Lemma 4, given � > 0 fixed, for any t � � C km, there exists a random
variable Qst�km such that Qst�km j Ft�km�� � � , and

EŒ�.st�km ; Qst�km/ j Ft���km � � c0 � 2
1� �

tmix :

By Assumption 1, conditionally on the pair of states .st�km ; Qst�km/, we have the
following bound for j 2 Œm�:

W�;1

�
P kj�kj�1ıst�kj

; P kj�kj�1ıQst�kj

�
� c0 � �

�
st�kj ; Qst�kj

�
; a:s:

Consequently, there exists a sequence of random variables .Qst�kj /0�j�m�1 such that
the following relations hold true for j D 1; 2; : : : ; m:

Qst�kj�1 j Ft�km � P
kj�kj�1ıQst�kj

and
E
�
�
�
Qst�kj�1 ; st�kj�1

�
j FtCk�`

�
� c

mC1�j
0 � �

�
st�km ; Qst�km

�
:
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Based on above construction, we consider the following decomposition: 
mY
jD0

Nt�kj

!
�t�km D

 
mY
jD0

N.st�kj / �

mY
jD0

N.Qst�kj /

!
�t�km��

C

 
mY
jD0

N.Qst�kj /

!
��t�km��

C

 
mY
jD0

N.st�kj /

!
�
�
�t�km ��t���km

�
WD Q1.t/CQ2.t/CQ3.t/: (D.1)

In the following, we bound the moments for the summation of the three terms above,
respectively. For the first term, we note the telescoping equation

mY
jD0

N.st�kj / �

mY
jD0

N.Qst�kj /

D

mX
qD0

 
q�1Y
jD0

N.st�kj /

!
�
�
L.st�kq / �L.Qst�kq /

�
�

 
mY

jDqC1

N.Qst�kj /

!
:

Note that each matrix in the product has operator norm uniformly bounded by �Ld .
We can then use the Lipschitz condition 4 as well as the bound on the distance
�.st�kq ; Qst�kq / and obtain the bound

E

"ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ mY
jD0

N.st�kj / �

mY
jD0

N.Qst�kj /

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

op

j Ft�km��

#

� .mC 1/ � .�Ld/
m

mX
qD0

E
�
jjjL.st�kq / �L.Qst�kq /jjj

2
op j Ft�km��

�
� .mC 1/2.c0�Ld/

mC1
� 2
� �
tmix :

Applying the bound on k�t��k2 in Proposition 1 and taking � � 3mtmixp log.c0dn/,
we find that

E
�
kQ1.t/k

2
2

�
� E

"
E

"ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ mY
jD0

N.st�kj / �

mY
jD0

N.Qst�kj /

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

op

j Ft�km��

#
� k�t���kmk

2
2

#

� .mC 1/2.c0�Ld/
mC1
� 2
� �
tmix cx�2

��d log2 n
1 � �

�
�mC1L

n2
x�2: (D.2)
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Now, we turn to bounding the term Q2.t/. First, we note that

E
�
kQ2.t/k

2
2

�
� E

"ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇm�1Y
jD0

N.Qst�kj /

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
2

op

� kN.Qst�km/�t�km��k
2
2

#
� .�Ld/

2mE
�
kN.Qst�km/�t�km��k

2
2

�
� .�Ld/

2m
� �2Ld � E

�
k�t�km��k

2
2

�
:

By Proposition 1, for t � n0 and n0 � 2.� C km/, we have

EŒk�t�km��k
2
2� �

c�

1 � �
tmixdx�

2:

IfmD 0, we have that EŒN.QstC� / j Ft �D 0 almost surely for each t � n0. Form� 1,
the conditional unbiasedness does not hold true, but we still have the following upper
bound on the bias:ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇE
"

mY
jD0

N.QstCkmC��kj / j Ft

#ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
op

D sup
u;v2Sd�1

E

"*
u;

mY
jD0

N.QstCkmC��kj /v

+#

� sup
u;v2Sd�1

E

"
kN.QstCkmC� /

>uk2 �

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇm�1Y
jD1

N.QstCkmC��kj /

ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
ˇ̌̌̌
ˇ
op

� kN.QstC� /vk2

#
� .�Ld/

m�1 sup
u;v2Sd�1

q
EkN.QstCkmC� /

>uk22 � EkN.QstC� /vk
2
2

� .�Ld/
m�1
� �2Ld:

Denote Yt WD
Qm
jD0 N.st�kj / and zYt WD

Qm
jD0 N.Qst�kj / for any t � km. We have

the expansion

E

" n�1X
tDn0

Q2.t/


2

2

#

� 2E

" n�1X
tDn0

EŒ zYt � ��t�km��


2

2

#
C 2E

" n�1X
tDn0

. zYt � EŒ zYt �/ ��t�km��


2

2

#

� 2n.dm�mC1L

�2 nX
tDn0

Ek�t�km��k
2
2

C 2
X

n0�s;t�n�1

E
�
h. zYt � EŒ zYt �/ ��t�km�� ; . zYs � EŒ zYs�/ ��s�km�� i

�
:
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Note that, in the special case of m D 0, we have EŒ zYt � D 0 so that the bound holds
without the first term on the right-hand side.

For t > s C � C km, we have the relations

E
�
. zYt �EŒ zYt �/ ��t�km�� j zFt�km��

�
D 0 and . zYs �EŒ zYs�/ ��s�km�� 2 zFt�km�� ;

meaning that the product term vanishes when js � t j > � C km. Therefore, we arrive
at the bound

E

" n�1X
tDn0

Q2.t/


2

2

#

�

´ �
2n2

�
dm�mC1L

�2
C 4n.km C �/ � .�Ld/

2m � �2Ld
�
�
c�
1��

dtmixx�
2; m � 1;

4n��2Ld �
c�
1��

dtmixx�
2; m D 0:

(D.3)

Now, we turn to the last term in the decomposition (D.1). We start with the decompo-
sition

�t ��t�� D �

�X
`D1

�
Lt�`C1.st�`/�t�` C �t�` C �t�`C1

�
:

We therefore have the following decomposition:

E

" n�1X
tDn0

Q3.t/


2

2

#
� 4�2E

" nX
tDn0

´
Yt �

 
�X
`D1

Zt�km�`C1�t�km�`

!µ
2

2

#

C 4�2E

" nX
tDn0

´
Yt �

 
xL

�X
`D1

�t�km�`

!µ
2

2

#

C 4�2E

" nX
tDn0

´
Yt �

 
�X
`D1

Nt�km�`�t�km�`

!µ
2

2

#

C 4�2E

" nX
tDn0

´
Yt �

 
�X
`D1

.�t�km�` C �t�km�`C1/

!µ
2

2

#
:

For the martingale component of the noise, note that each term
Qm
jD0 N.st�kj / �

Zt�`C1.st�`/ has zero conditional mean conditioned on Ft�`. We have that

E

" nX
tDn0

YtZt�km�`C1.st�km�`/�t�km�`


2

2

#

D

n�1X
tDn0

E
�
kYtZt�km�`C1.st�km�`/�t�km�`k

2
2

�
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� .�Ld/
2.mC1/

n�1X
tDn0

E
�
kZt�km�`C1.st�km�`/�t�km�`k

2
2

�
� �2mC4L d2mC3n �

c�

1 � �
dtmixx�

2:

From the Lipschitz condition 4 and the boundedness condition (3) on the metric space,
it follows that jjjYt jjjop � .�Ld/

mC1 almost surely. Using this fact, the second term can
be bounded as

E

" nX
tDn0

Ýt �

 
xL

�X
`D1

�t�km�`

!µ
2

2

#
�n�.�Ld/

2mC22max

n�1X
tDn0

�X
`D1

Ek�t�km�`k
2
2

�n2�2.�Ld/
2mC22max �

c�

1 � �
dtmixx�

2:

Collecting equations (D.2) and (D.3) as well as the above bounds forQ3, we arrive at
the upper bound

E

" n�1X
tDn0

 
mY
jD0

Nt�kj

!
�t�km


2

2

#
�

3X
jD1

Tj ;

where

T1 WD n
2d2m�2mC2L

�
1C �2�22maxd

2�2L C �
2�2d3�2L=n

�
�
c�

1 � �
dtmixx�

2;

T2 WD 4�
2E

" nX
tDn0

´
Yt

 
�X
`D1

Nt�km�`�t�km�`

!µ
2

2

#
;

T3 WD 4�
2E

" nX
tDn0

´
Yt

 
�X
`D1

.�t�km�` C �t�km�`C1/

!µ
2

2

#
:

In the special case of m D 0, we have

E

" n�1X
tDn0

Nt�t


2

2

#
� c�2Ld �

�
n� C n2�2�2Ld�

2
� c�

1 � �
dtmixx�

2

C 4�2�

�X
k1D1

E

" nX
tDn0

NtNt�k1�t�k1


2

2

#

C 4�2�

�X
k1D1

E

" nX
tDn0

Nt
�
�t�k1 C �t�k1C1

�
2

2

#
;

which completes the proof of this lemma.
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D.2. Proof of Lemma 10

We study the bias and variance of the summation separately. For the bias term, we
have E

" 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�#
2

D sup
z2Sd�1

E

"* 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�
; z

+#
.i/
� sup
z2Sd�1

q
EkN>t zk

2
2 �

"
E


 
m�1Y
jD1

Nt�kj

!�
�t�k C �t�kC1

�
2

2

#1=2
.i i/
� �L

p
d � .�Ld/

m�1
� 2x�
p
d D 2.�Ld/

m
x�; (D.4)

where step .i/ uses the Cauchy–Schwarz inequality, and step .i i/ follows by invoking
the moment assumption 2 as well as the Lipschitz assumption 4.

For t 2 Œkm; n�, we define

�t WD

 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�
� E

" 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�#
:

We have

E
�
k�tk

2
2

�
� E

" 
m�1Y
jD0

jjjNt�kj jjj
2
op

!
� k�t�km C �t�kmC1k

2
2

#
� .�Ld/

2m
� E
�
k�t�k C �t�kC1k

2
2

�
� d2mC1�2mL x�

2:

For integers t � 0 and ` � km, by Lemma 4, there exists a random variable QstC`�km
such that QstC`�km j Ft � � , and that EŒ�.stC`�km ; QstC`�km/ j Ft � � c0 � 2

1� `�kmtmix .
By Assumption 1, conditionally on the pair of states .stC`�km ; QstC`�km/, we have the
following bound for j 2 Œm�:

W�;1

�
P kj�kj�1ıstC`�kj

; P kj�kj�1ıQstC`�kj

�
� c0 � �

�
stC`�kj ; QstC`�kj

�
; a:s:

Consequently, there exists a sequence of random variables .QstC`�kj /0�j�m�1 such
that the following relations hold true for j D 1; 2; : : : ; m:

QstC`�kj�1 j FtC`�km � P
kj�kj�1ıQstC`�kj

and

E
�
�
�
QstC`�kj�1 ; stC`�kj�1

�
j FtC`�km

�
� c

mC1�j
0 � �

�
stC`�km ; QstC`�km

�
:
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Given the random variables constructed above, we can then construct the proxy ran-
dom variable for �tC`:

z�tC` WD

 
m�1Y
jD0

N.QstC`�kj /

!�
�.QstC`�km/C �tC`�kmC1.QstC`�km/

�
� E

" 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�#
:

By stationarity, we have EŒz�tC` j Ft � D 0 almost surely. In order to bound the differ-
ence, we note the telescope relation z�tC` � �tC` D

Pm�1
qD0 E

.mix/
q C xE.mix/, where

E.mix/
q WD

 
q�1Y
jD0

N.stC`�kj /

!�
xL.QstC`�kq / �L.stC`�kq /

�
�

 
m�1Y
jDqC1

N.QstC`�kj /

!�
�.QstC`�km/C �tC`�kmC1.QstC`�km/

�
and

xE.mix/
WD

m�1Y
jD0

N.stC`�kj / � .�.QstC`�km/C �tC`�kmC1.QstC`�km/

� �.stC`�km/C �tC`�kmC1.stC`�km//:

Using the Wasserstein distance bounds and Lipschitz condition 4, we find that the
conditional expectation A D EŒkE.mix/

q k2 j Ft � is bounded as

A � .�Ld/
m�1E

�
jjjL.stC`�kq / �L.QstC`�kq /jjjop

� k�.QstC`�k/C �tC`�kC1.QstC`�k/k2 j zFt
�

� .�Ld/
m

q
EŒ�.stC`�kq ; QstC`�kq /

2 j zFt �

�

q
EŒk�.QstC`�k/C �tC`�kC1.QstC`�k/k

2
2 j
zFt �

� .�Ld/
mc0 � 2

1�
`�kq
2tmix � 2dx�;

and the conditional expectation B D EŒk xE.mix/k2 j Ft � is bounded as

B � .�Ld/
m
�q

E
�
k�tC`�kC1.stC`�k/ � �tC`�kC1.QstC`�k/k

2
2 j Ft

�
C

q
E
�
k�.stC`�k/ � �.QstC`�k/k

2
2 j Ft

� �
� .�Ld/

mdx�c0 � 2
1� `�km2tmix :
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Consequently, we can bound the cross term as

E
�
h�t ; �tC`i

�
D E

�˝
�t ; E

�
z�tC` j Ft

�˛�
C E

�˝
�t ; E

�
�tC` � z�tC` j Ft

�˛�
� 0C E

�
k�tk2 � E

�
k�tC` � z�tC`k2 j Ft

��
� 12c0d

mC1�mL x� � 2
� `�k2tmix �

q
Ek�tk22

� 12c0d
2mC2�2mL x�

2
� 2
� `�k2tmix :

Taking � D 16tmix log.c0d/, we can control the cross terms in two different ways

E
�
h�t ; �tC`i

�
�

8<:
q

Ek�tk22 �
q

Ek�tC`k
2
2 � d

2mC1�2mL x�
2; 0 � ` � km C �;

12c0d
2mC2�2mL x�

2 � 2
� `�k2tmix � d2m�2mL x�

2; ` � km C �:

Summing up these terms yields

E

" n�1X
tDn0

�t


2

2

#
D

n�1X
tDn0

Ek�tk
2
2 C 2

X
n0�t1<t2�n�1

E
�
h�t1 ; �t2i

�
� .k C � C 1/nd2mC1�2mL x�

2
C n2d2m�2mL x�

2:

Combining with the bound (D.4), we find that

E

" n�1X
tDn0

 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�
2

2

#

D

 n�1X
tDn0

E

" 
m�1Y
jD0

Nt�kj

!�
�t�km C �t�kmC1

�#
2

2

C E

" n�1X
tDn0

�t


2

2

#
� c

�
n2 C .km C �/nd

�
�2mL d2mx�2

for a universal constant c > 0.

E. Proof of Theorem 2

Our strategy is to prove a Bayes risk lower bound. We construct a prior distribution
over transition kernels by perturbing the base matrix P0 appropriately. We then apply
the Bayesian Cramér–Rao lower bound to obtain our result.

Let us describe the construction in more detail. For each s 2 X, suppose that we
have a perturbation vector hs 2RX. Use these to define the perturbed transition kernel

Ph.x; y/ WD
P0.x; y/ e

hx.y/P
z2X P0.x; z/e

hx.z/
for each x; y 2 X:
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Note that by construction, for any x 2 X and any hx 2 RX, we have supp.Ph.x; �//D
supp.P0.x; �//. Since P0 is irreducible and aperiodic, so is Ph. Therefore, the station-
ary distribution �h of Ph exists and is unique. When the perturbation is small enough,
a quantitative perturbation principle can be obtained, which we collect in Lemma 11
below.

It remains to specify how the perturbation vectors are generated. We parameterize
h with a linear transformation, writing hDQw for a linear operatorQ to be specified
shortly, and a random vector w 2 Rd drawn from a distribution �. In particular, given
a collection of vectors ¹qx.y/ºx;y2X � Rd , we consider the linear transformation
Q W Rd ! RX�X given by w 7! Œhw; qx.y/i�x;y2X.

Next, we specify the prior �, along with some associated notation. Define the
subspace

Hh WD
®
f 2 RX

W E�h Œf .s/� D 0
¯
;

and note thatPh maps Hh to itself. Furthermore, sincePh is irreducible and aperiodic,
the mapping .I �Ph/ is invertible on Hh. Consequently, for any function f WX!R,
the following Green function operator is well defined:

Ahf WD .I � Ph/
�1
ˇ̌
Hh
�
�
f � E�h Œf �

�
2 RX:

We also define an operator Ph on the space of real-valued functions on X as
follows:

Phf .x/ WD EY�Ph.x;�/Œf .Y /�:

Importantly, Ph is an operator mapping functions to functions and distinct from the
matrixPh. It is straightforward to see that the operator Ph commutes with the operator
Ah for any perturbation matrix h. Indeed, if we denote Lh WDPh � I as the generator.
The green function Ahf solves the Poisson equation �Lhu D f � E�h Œf .s/�.

Finally, for any h 2 RX�X and for all x 2 X, we define

gh.x/ D
�
Id � E�h ŒL.s/�

��1�
AhL.x/ � x�.Ph/CAhb.x/

�
: (E.1)

Since the proof works under the perturbed probability transition kernel Ph, it
is useful to study the effect of small perturbation on its stationary distribution. The
following lemma provides non-asymptotic bounds on the mixing time of perturbed
Markov chain and its stationary distribution �h, which will be useful throughout the
proof.

Lemma 11. Under the setup above, suppose that hmax WD maxx2X khxk1 < 1
128tmix

.
Then, the perturbed transition kernel satisfies the following.

• The Markov transition kernel Ph satisfies the mixing condition (Assumption 1)
with the discrete metric and mixing time 4tmix.
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• The stationary distribution �h satisfies the bound

max
s2X

²
log

�0.s/

�h.s/
; log

�h.s/

�0.s/

³
� tmix

�
2C log h�1max C log

1

minx �0.x/

�
hmax:

See Section E.1 for the proof of this lemma.
With this notation in hand, we are ready to construct the prior distribution on w.

We begin with the following one-dimensional density function, taken from [77]:

�.t/ WD cos2
��t
2

�
� 1t2Œ�1;1�: (E.2a)

Also, define the positive-definite matrix

ƒ WD EX��0 ŒcovY�P0.X;�/.g0.Y / j X/�;

and letƒDUDU> denote its eigen-decomposition. For a random variable ��˝d ,
define the perturbation parameter

w D
1
p
n
UD�1=2 ; (E.2b)

and let its density denote the prior distribution �. Note that, for any w 2 supp.�/, we
have

kƒwk2 D kUD
1=2 k2 D kD

1=2 k2 �
p

trace.D/=n D
p

trace.ƒ/=n: (E.2c)

The final ingredient in our construction is to specify the linear transformation Q. For
each x; y 2 X, we set

qx.y/ WD g0.y/ � Es0�P0.x;�/
�
g0.s

0/
�
;

where the Green function g is defined in equation (E.1). Recall that h D Qw for
w � �. This specifies our prior over transition kernels and concludes the construction.

Next, we state the version of the Bayesian Cramér–Rao bound that we use. Before
stating the result, it is useful to introduce the general setup and basic notation for
parametric models. Given a family P‚ D .P� W � 2 ‚/ of probability distributions of
sample X 2 X, parameterized by � 2 ‚, where ‚ is an open subset of Rd . Assume
that each element in this family is absolutely continuous with respect to a base mea-
sure � over X, and denote the Radon–Nikodym derivative by p� WD

dP�
d�

. Assuming
differentiability and integrability of relevant quantities, for any � 2 ‚, we define the
Fisher information matrix I.�/ as

I.�/ WD EX�P�

�
r� logp�.X/r� logp�.X/>

�
2 Rd�d :

Now, we are ready to state the Bayesian Cramér–Rao lower bound.
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Proposition 5 ([30, Theorem 1], special case). Under the setup above, given a prior
distribution � with continuously differentiable density and bounded support contained
within ‚, let T W supp.�/ 7! Rd denote a locally continuously differentiable func-
tional. Then, for any estimator yT based on observing X , we have

E
���

E
X�p�

k yT .X/ � T .�/k22 �

� R
trace

�
@T
@�
.�/
�
�.�/d�

�2R
trace

�
I.�/

�
�.�/d�C

R
kr log �.�/k22�.�/d�

:

In order to complete the proof, we provide non-asymptotic estimates on the three
quantities involved in the right-hand side of Proposition 5. These require a few tech-
nical lemmas, whose proofs can be found at the end of the section.

Bounds on the term trace.rw
x�/. We state two technical lemmas that are helpful in

bounding this quantity. The first computes the Jacobian matrix of the desired func-
tional x�.h/ with respect to the parameter w.

Lemma 12. Under the given setup, for any w 2 Rd , we have

rw
x�.Ph/

D EX��h
�
covY�Ph.X;�/

®
gh.Y / �Phgh.X/;g0.Y / �P0g0.X/ j X

¯�
: (E.3)

See Section E.2 for the proof of this lemma. Next, we control the right-hand side
of equation (E.3) by replacing gh with g0.

Lemma 13. Under the given setup and for a sample size lower bounded as n �
ct2mix�

2
L
d2 log2 d

.1��/2
and maxx2X khxk1 �

1
128tmix

, we have

EZ��h
�
kgh.Z/ � g0.Z/k

2
2

�
�
c.1C �2L/x�

2t4mixd
2

.1 � �/4n
log6

d

minx �0.x/
:

Furthermore, for any w in the support of �, we have

kx�.Ph/ � x�.P0/k2 �
3

2

p
trace.ƒ/=nC

s
c.1C �2L/x�

2t4mixd
3

.1 � �/4n2
log6

d

minx �0.x/
:

See Section E.3 for the proof of this lemma.
Combining these two lemmas yields

trace
�
rw
x�
�

� EX��h
�

varY�Ph.X;�/
�
g0.Y / �P0g0.X/ j X

��
� EX��h

�q
varY�Ph.X;�/

�
g0.Y / �P0g0.X/ j X

��
�

q
EZ��h

�
kgh.Z/ � g0.Z/k

2
2

�
� trace

�
ƒ
�
�

q
trace

�
ƒ
�
�
c.1C �L/x�t

2
mixd

.1 � �/2
p
n

log3
d

minx �0.x/
:
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Now, given a sample size lower bounded as

n �
ct2mix�

2
Ld

2 log2 d
.1 � �/2

C
2c.1C �2L/x�

2t4mixd
2

.1 � �/4 trace.ƒ/
log6

d

minx �0.x/
;

we can conclude that

trace
�
rw
x�
�
�
1

2
trace.ƒ/ for any w in the support of �. (E.4)

Bounds on the Fisher information I.n/.w/. We now state an upper bound on the
Fisher information of the observed trajectory.

Lemma 14. Under the given setup, for any w 2 Rd , if hmax WD maxx khk1 satisfies
the inequality h�1max � ctmix.log h�1max C log.min �0/�1/, we have

I .n/.w/ WD Eh
�
rw log Ph

�
sn0
�
rw log Ph

�
sn0
�>�

�
3n

2
EX��h

�
covY�Ph.X;�/

�
qX .Y / j X

��
:

See Section E.4 for the proof of this lemma.
In order to apply the preceding lemma, we must verify the condition on hmax for

our setting. Under our construction, we have

max
x2X
khxk1 D max

x;y2X
hg0.y/ �P0g0.x/; wi:

Note that Assumption 2 and Lemma 17 in Section E.7 together imply the following
bound for any ı > 0:

�0

�
s W
ˇ̌
hg0.s/; wi

ˇ̌
�
cx�tmixkwk2

1 � �
� log3

d

ı

�
> 1 � ı:

Taking ı WD 1
2

mins2X �0.s/ > 0, we have the uniform bound

max
s2X

ˇ̌
hg0.s/; wi

ˇ̌
�
cx�tmixkwk2

1 � �
log3

�
d=min

s
�0.s/

�
:

Note that P0 is a probability transition kernel, for any s 2 X, the vector P0g0.s/ lies
in the convex hull of .g0.s0//s02X. So, we have the bound maxs2X

ˇ̌
hP0g0.s/; wi

ˇ̌
�

maxs2X

ˇ̌
hg0.s/; wi

ˇ̌
�
cx�tmixkwk2

1��
log3.d=mins �0.s//. Putting them together leads to

the bound
max
x2X
khxk1 � 2cx�tmixkwk2 log3

�
d=min

s
�0.s/

�
:

Now, given a sample size

n � ct3mixx�
2
� trace.ƒ/ � log3

d

mins �0.s/
; (E.5)
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we have that maxx khxk1 < 1
128tmix

. This satisfies the condition in Lemma 11 in the
appendix. Applying this lemma, we see that the condition

h�1max � ctmix
�
log h�1max C log.min �0/�1

�
is satisfied so that Lemma 14 guarantees that

trace
�
I .n/.w/

�
�
3n

2
EX��h

�
varY�Ph.X;�/

�
g0.Y / �P0g0.X/ j X

��
�

�
3

2

�3
n � EX��0

�
varY�P0.X;�/

�
g0.Y / j X

��
D
27n

8
trace

�
ƒ
�
: (E.6)

The last inequality follows because �h � 3
2
�0 Ph.x; �/ �

3
2
P0.x; �/ for all x 2 X.

Bounds on the prior Fisher information. From [58, Lemma 10], the density � of w
has Fisher information

I.�/ D UD1=2I
�
�˝d

�
D1=2U> D n�ƒ: (E.7)

Consequently, we have
R
kr log �.w/k22�.w/ dw trace.I.�// D n� � trace.ƒ/.

Putting together the pieces. Combining the bounds (E.4), (E.6), and (E.7) and apply-
ing Proposition 5, we obtain the lower bound

inf
y�n

Z
Rd

EXn
1
�PQw

�
ky�n � x�.PQw/k

2
2

�
�.dw/ �

1

4.5C �/n
trace.ƒ/: (E.8)

It remains to relate the matrixƒ to the local complexity "n in the theorem. In order to
do so, we require the following lemma.

Lemma 15. Under the setup above, for any function f WX!R such that E�0 Œf .s/�D

0, we have EX��0;Y�P0.X;�/Œ.A0f .Y / � P0A0f .X//
2� D

P1
kD�1 EŒf .s0/f .sk/�,

where .sk/k2Z is a stationary Markov chain following P0.

See Section E.5 for the proof of this lemma.
Applying Lemma 15 with fj .s/ D h.Id � xL.0//�1.L.s/x�.P0/ C b.s//; ej i for

j D 1; 2; : : : ; d , respectively, we arrive at the chain of equalities

trace.ƒ/ D
dX
jD1

EX��0;Y�P0.X;�/
��

A0fj .Y / �P0A0fj .X/
�2�

D

dX
jD1

1X
kD�1

E
�
fj .s0/fj .sk/

�
D trace

�
.I � xL.0//�1†�Mkv.I �

xL.0//�>
�
D n"2n:

Thus, the right-hand side of equation (E.8) is exactly "2n
4.5C�/

.
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It remains to bound the size of the neighborhood. Given a sample size n satisfying
the bound (E.5), Lemma 13 implies that

kx�.Ph/ � x�.P0/k2 �

r
trace.ƒ/

n
:

Consequently, for any w on the support of �, we have PQw 2 NEst.P0; 2"n/.
On the other hand, for any w 2 supp.�/ and any x 2 X and perturbation

h D Qw;

we have

�2.Ph.x; �/ jj P0.x; �// D EY�P0.x;�/

" 
Ph.x; Y /

P0.x; Y /
� 1

!2#
D varY�P0.x;�/

�
ehx.Y /P

z2X P0.x; z/e
hx.z/

�
.i/
� varY�P0.x;�/

�
ehx.Y /

�
� EY�P0.x;�/

��
ehx.Y / � 1

�2�
.i i/
� e � EY�P0.x;�/

�
hx.Y /

2
�
;

where step .i/ follows by using Jensen’s inequality to assert thatX
z2X

P0.x; z/e
hx.z/ � e

P
z2X P0.x;z/hx.z/ D 1;

and step .i i/ follows from the inequalityˇ̌
ex � 1

ˇ̌
� e � jxj;

valid for x 2 Œ�1; 1�.
Accordingly, the average �2-divergence admits the boundX

x2X

�0.x/�
2.Ph.x; �/ jj P0.x; �// � e � EX��0;Y�P0.X;�/

�
hw; g0.Y / �P0g0.X/i

2
�

� e � w>ƒw �
ed

n
:

For any w on the support of �, we thus have

PQw 2 NProb

�
P0; e

r
d

n

�
;

as claimed. The Bayes risk lower bound (E.8) then implies the desired minimax lower
bound.
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E.1. Proof of Lemma 11

The proof relies on a total variation distance bound on the transition kernel. In partic-
ular, for each s 2 X, we have

dTV
�
P0.x; �/; Ph.x; �/

�
�

r
1

2
�2.P0.x; �/ jj Ph.x; �//

D

vuut1

2

X
y2X

P0.x; y/ �

�
Ph.x; y/

P0.x; y/
� 1

�2
.i/
�

r
1

2

�
ekhxk1 � 1

�2 .i i/
� e �max

x2X
khxk1: (E.9)

In step .i/, we use the fact that

Ph.x; y/

P0.x; y/
D

ehx.y/P
z2X P0.x; y/e

hx.z/
2 Œe�khxk1 ; ekhxk1 �;

and in step .i i/, we use the fact that khxk1 < 1.
Next, we turn to the proofs of the two claims. We first prove the mixing time

bound. Note that the non-expansive condition (2.2) (b) is automatically satisfied with
c0 D 1 for total variation distance (by a naïve coupling). Given a fixed pair x; y 2 X,
invoking Lemma 4 with � D 4tmix yields the existence of a joint distribution over
the random sequence ¹xkº0�k�� and ¹ykº0�k�� such that ¹xkº and ¹ykº follow the
Markov chain P0, starting from x0 D x and y0 D y, respectively. Furthermore, we
have the bound P .x� ¤ y� / �

1
4

.
Now, we construct a coupling between the original chain and perturbed chain.

Taking the initial point Qx0 D x, we iteratively construct the sequence ¹ Qxkº0�k�� as
follows: given Qxk and xk , we construct the conditional distribution of QxkC1 as follows.

• If xk D Qxk , we let P . QxkC1 ¤ xkC1 j xk; Qxk/ D dTV.P0.xk; �/; Ph.xk; �//.

• If xk ¤ Qxk , we simply take QxkC1 and xkC1 to be conditionally independent, fol-
lowing their respective transition kernels.

We construct the sequence ¹ Qykº0�k�� in a similar fashion.
By the union bound, it follows that

P
�
x� ¤ Qx�

�
�

��1X
kD0

E
�
P
�
xkC1 ¤ QxkC1 j xk D Qxk

��
D

��1X
kD0

E
�
dTV

�
P0.xk; �/; Ph.xk; �/

��
� 4etmix �max

x2X
khxk1 <

1

8
:

In the last step, we have used the total variation distance bound (E.9).
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Similarly, the process ¹ Qykº satisfies the bound P .y� ¤ Qy� / <
1
8

. Putting together
the pieces, we conclude that

dTV
�
ıxP

�
h ; ıyP

�
h

�
� P

�
Qx� ¤ Qy�

�
� P

�
Qx� ¤ x�

�
C P

�
x� ¤ y�

�
C P

�
y� ¤ Qy�

�
<
1

8
C
1

4
C
1

8
D
1

2
;

which shows that the perturbed chain Ph satisfies the condition (2.2) (a) with mixing
time � D 4tmix.

Next, we prove the perturbation result for the stationary distribution. Given any
fixed initial distribution �0, note that for any deterministic sequence .x0; x2; : : : ; xn/,
we have the following expression for the Radon–Nikodym derivative:

dPh
�
x0; x1; : : : ; xn

�
dP0

�
x0; x1; : : : ; xn

� D n�1Y
kD0

Ph.xk; xkC1/

P0.xk; xkC1/
D

n�1Y
kD0

ehxk .xkC1/P
y2X e

hxk .y/P.xk; y/
:

We then have the max-divergence bound

D1
�
Ph
�
xn0
�
jj P0

�
xn0
��
WD sup

xn
0
2Xn

ˇ̌̌̌
log

dPh
�
x0; x1; : : : ; xn

�
dP0

�
x0; x1; : : : ; xn

� ˇ̌̌̌ � n �max
x
khxk1:

Taking the marginal distribution, we see that the bound D1
�
�0P

n
h
jj �0P

n
0

�
� n �

hmax holds for any initial distribution �0 and any n > 0.
To obtain the desired claim, we take the initial distribution to be the stationary

distribution �h of the chain Ph, and let nD tmix log. 2
hmax�minx �0.x/

/. Note that �hP nh D
�h in such case. On the other hand, by Lemma 4, the total variation distance can be
upper bounded as dTV.�hP

n
0 ; �0/ � 2

1� n
tmix � hmax �minx2X �0.x/. Therefore, for any

x 2 X, we have ˇ̌̌̌
�hP

n
0 .x/

�0.x/
� 1

ˇ̌̌̌
�
dTV

�
�hP

n
0 ; �0

�
minx2X �0.x/

� hmax <
1

2
:

Invoking the inequality j log zj � 2jz � 1j for jzj � 1=2, we can translate the bound
into a max-divergence bound

D1
�
�hP

n
0 jj �0

�
D max

x2X

ˇ̌̌̌
log

�hP
n
0 .x/

�0.x/

ˇ̌̌̌
� 2hmax:

Finally, applying the triangle inequality yields

D1
�
�h jj �0

�
� D1

�
�hP

n
h jj �hP

n
0

�
CD1

�
�hP

n
0 jj �0

�
� .nC 2/hmax � tmix

�
2C log h�1max C log

1

minx �0.x/

�
hmax;

which proves the second claim.



W. Mou, A. Pananjady, M. J. Wainwright, and P. L. Bartlett 88

E.2. Proof of Lemma 12

We first consider the functional h 7! x�.Ph/ WD .I � E�h ŒL.s/�/
�1E�h Œb.s/�. Note

that the stationary distribution �h satisfies the identity �hPh D �h. Taking derivatives,
we obtain the following equality for all x; y 2 X:

@�h

@hx.y/
� .I � Ph/ D �h �

@Ph

@hx.y/
D �h.x/Ph.x; y/ �

�
1zDy � Ph.x; z/

�
z2X

:

Note that the linear operator .I � Ph/ is invertible on the subspace Hh. For any
f 2 Hh, we have

@

@hx.y/
E�h

�
f .s/

�
D

X
z2X

@�h.z/

@hx.y/
� f .s/

D �h.x/Ph.x; y/ �
�
1zDy � Ph.x; z/

�
z2X
�
�
I � Ph

��1ˇ̌
Hh
� f:

In the above expression, the notation .I � Ph/�1jHh denotes the inverse of the oper-
ator I � Ph within the subspace Hh, a bounded linear operator on this space. Note
that the derivative is invariant under translation. For any f 2 RX, define the auxiliary
function Qf WD f � E�h Œf �, and write

@

@hx.y/
E�h

�
f .s/

�
D

@

@hx.y/
E�h

�
Qf .s/

�
D�h.x/Ph.x; y/ �

�
1zDy � Ph.x; z/

�
z2X
�
�
I � Ph

��1ˇ̌
Hh
� Qf

D �h.x/Ph.x; y/ �
�
1zDy � Ph.x; z/

�
z2X
�
�
I � Ph

��1ˇ̌
Hh
�
�
f � E�h Œf �

�
D �h.x/Ph.x; y/ �

�
Ahf .y/ �

X
z2X

Ph.x; z/Ahf .z/
�
: (E.10)

On the other hand, we can express the desired functional x�.Ph/ in the form above.
In particular, setting xL.h/ WD E�h ŒL.s/� and Nb.h/ WD E�h Œb.s/�, we see that, for any
x; y 2 X, we have

@x�.Ph/

@hx.y/
D
�
I � xL.h/

��1 @xL.h/
@hx.y/

�
I � xL.h/

��1 Nb.h/ C �I � xL.h/��1 @ Nb.h/
@hx.y/

D
�
I � xL.h/

��1�� @

@hx.y/
E�h

�
L.s/

��
� x�.Ph/C

@

@hx.y/
E�h

�
b.s/

��
:

Following the formula (E.10), we conclude that

@x�.Ph/

@hx.y/
D �h.x/Ph.x; y/

�
I � xL.h/

��1�
Ah

�
L.y/x�.Ph/C b.y/

��
� �h.x/Ph.x; y/

X
z2X

Ph.x; z/
�
I � xL.h/

��1�
Ah

�
L.z/x�.Ph/C b.z/

��
:
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Recall the shorthand notation from before, where, for each s 2 X, we defined

gh.s/ D
�
I � xL.h/

��1�
Ah

�
L.s/x�.Ph/C b.s/

��
:

Given w 2 Rd , if we parameterize the perturbation as h D Qw, the chain rule yields

rw
x�.Ph/ D Q

>
� rh
x�.Ph/

D

X
x2X

�h.x/
�X
y2X

Ph.x; y/g.y/qx.y/
>

�

�X
y2X

Ph.x; y/g.y/
��X

y2X

Ph.x; y/gh.y/qx.y/
�>�

D EX��h
�

covY�Ph.X;�/
�
gh.Y / �Phgh.X/; qX .Y / j X

��
;

as claimed.

E.3. Proof of Lemma 13

The following technical lemma is used throughout the proof and proved in Sec-
tion E.6.

Lemma 16. Given a perturbation vector w satisfying

kwk2 �
1 � �

2ctmix�L
p
d � jjjƒjjjop log d

;

for h D Qw, the matrix I � xL.h/ is invertible, with

jjj.I � xL.h//�1jjjop �
2

1 � �
:

Before proceeding with the proof, we note two direct consequences of Lemma 17
from Section E.7. First, by taking f .x/ WD hej ;L.x/ui and f .x/ WD hej ; b.x/i, apply-
ing the tail assumption 2 and the boundedness assumption 4, we have the following
second moment estimate for any u 2 Sd�1 and j 2 Œd �:

EX��h
�
hej ; AhL.X/ui

2
�
� ct2mix�

2
L log2 d (E.11a)

and
EX��h

�
hej ; Ahb.X/i

2
�
� ct2mix�

2
b log2 d: (E.11b)

Second, by taking fj .x/ WD hej ; L.x/x�.Ph/C b.x/i, for any integer p � 1 andK >

0, Markov’s inequality yields the bound

PX��h
�
Ahfj .X/ � K

�
� K�2pEX��h

�
Ahfj .X/

2p
�
�

�
cp2tmixx� log d

K

�2p
:
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By taking K D 2cp2tmixx� log d and p D �2 log minx2X �0.x/, we find that

PX��h

�
Ahfj .X/ � 8ctmixx� log3

�
d

minx2X �0.x/

��
<
1

2
min
x2X

�0.x/ � min
x2X

�h.x/:

Since �h is a discrete measure, this high-probability bound implies a deterministic
bound

Ahfj .x/ � 8ctmixx� log3
�

d

minx02X �0.x0/

�
for all x 2 X.

Combining the estimates for all j coordinates yields the bound

max
x2X
kgh.x/k2 �

1

1 � �
max
x2X
kAh

�
fj .x/

�
j2Œd�
k2

�
ctmixx�

p
d

1 � �
log3

�
d

minx2X �0.x/

�
: (E.12)

Given the two lemmas and facts derived above, we now proceed to the proof of
Lemma 13. Taking derivatives on both sides of equation (E.1), we obtain

rwgh.z/ D
�
Id � xL

.h/
��1
�AhL.z/ � rw x�.Ph/

C
�
Id � xL

.h/
��1
�
�
rwAh

��
L.z/x�.Ph/C b.z/

�
�
�
Id � xL

.h/
��1
rw

�
xL.h/

��
Id � xL

.h/
��1

.AhL.z/ � x�.Ph/CAhb.z//

DW J1.h; z/C J2.h; z/C J3.h; z/:

We then have the integral relation

gh.z/ � g0.z/ D

Z 1

0

rwgsh.z/ � w ds

D

Z 1

0

�
J1.sh; z/C J2.sh; z/C J3.sh; z/

�
� w ds:

It thus suffices to prove individual upper bounds on the terms J1.sh; z/ �w;J2.sh; z/ �
w and J3.sh; z/ � w.

Bounds on the term J1.sh; z/ �w. Invoking Lemma 12, we have

rw
x�.Ph/ D EX��h;Y�Ph.X;�/

��
gh.Y / �Phgh.X/

��
g0.Y / �P0g0.X/

�>�
:

Consequently, for X � �h and Y � Ph.X; �/, we have the error decomposition

krw
x�.Ph/wk2 D

E
�
cov

�
gh.Y /;g0.Y / j X

��
w

2

�
E
�
cov

�
g0.Y / j X

��
w

2

C
E
�
cov

�
gh.Y / � g0.Y /;g0.Y / j X

��
w

2
:
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For perturbation matrix h satisfying the condition maxx2X khxk1 �
1

128tmix
, Lemma

11 implies the sandwich relations

1

2
�0 � �h �

3

2
�0 and

1

2
P0.x/ � Ph.x; �/ �

3

2
P0.x/ for all x 2 X.

For the first term in above decomposition, we haveE
�
cov

�
g0.Y / j X

��
w

2
�
E
�
.g0.Y / �P0g0.X//.g0.Y / �P0g0.X//

>
�
w

2

�
9

4

covX��0;Y�P0.X;�/
�
g0.Y / �P0g0.X/

�
� w

2

D
9

4

ƒw
2
�
9

4

p
trace.ƒ/=n;

where the last inequality is due to the bound (E.2c).
For the second term in the decomposition, for X � �h and Y � Ph.X; �/, we haveE

�
cov

�
gh.Y / � g0.Y /;g0.Y / j X

��
w

2

D sup
v2Sd�1

v>E
�
cov

�
gh.Y / � g0.Y /;g0.Y / j X

��
w

� sup
v2Sd�1

q
E
�˝�
gh.Y / � g0.Y /

�
; v
˛2�

�

q
EX��h;Y�Ph.X;�/

���
g0.Y / �P0g0.X/

�>
w
�2�

�
3

2

p

w>ƒw

q
EX��hkgh.X/ � g0.X/k

2
2:

By equation (E.2b), on the support of the prior density, we have the bound w>ƒw D
n�1 >D�1=2U>ƒUD�1=2 � d

n
. Consequently, we have the upper bound

krw
x�.Ph/wk2 �

9

4

r
trace.ƒ/

n
C
3

2
�

r
d

n
� EX��hkgh.X/ � g0.X/k

2
2: (E.13)

Collecting the bounds above and invoking equation (E.11) and Lemma 16, we
obtain the following bound on the desired term:

EY��h
�
kJ1.`h; Y /wk

2
2

�
�
ˇ̌̌̌ˇ̌�
Id�xL

.`h/
��1 ˇ̌̌̌ˇ̌2

op � EY��h
�
kA`hL.Y /�rw x�.P`h/wk

2
2

�
�

4

.1 � �/2
�
3

2
EY��`h

�
kA`hL.Y / � rw x�.P`h/wk

2
2

�
�

6

.1 � �/2
� ct2mix�

2
Ld log2 d � krw x�.P`h/wk22

�
ct2mix�

2
Ld log2 d

.1 � �/2
�

trace.ƒ/
n

C
ct2mix�

2
Ld

2 log2 d
.1 � �/2n

sup
0�`�1

EX��`hkg`h.X/ � g0.X/k
2
2:
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Bounds on the term J2.sh; z/ �w. For any function X!Rd and x;y 2X, we note
that

@

@hx.y/
Ahf D �.I �Ph/

�1
jHh �

@Ph

@hx.y/
� .I �Ph/

�1
jHhf

D �Ah �
�
1sDxPh.x; y/ �

�
1s0Dy � Ph.x; s

0/
��
s;s02X

�Af

D �Ah �

h
1sDxPh.x; y/ �

�
Ahf .y/ �

X
s0

Ph.x; s
0/Ahf .s

0/
�i
s2X

:

We can then derive the formula for derivative with respect to the parameter w, as�
rwAh

�
f .z/ D

X
x;y2X

� @

@hx.y/
Ahf .z/

�
� qx.y/

>

D �

X
x;y2X

Ph.x; y/Ah1x.z/ �
�
Ahf .y/ �PhAhf .x/

�
�
�
g0.y/ �P0g0.x/

�>
D �

X
x;y2X

1X
tD0

�
P th.z; x/ � �h.x/

�
Ph.x; y/

�
Ahf .y/ �PhAhf .x/

�
�
�
g0.y/ �P0g0.x/

�>
:

Substituting f .z/ D L.z/x�.Ph/C b.z/, we note that

Ahf D gh;

and consequently,�
rwAh

��
L.z/x�.Ph/C b.z/

�
D

1X
tD0

�
EX�P t

h
.z;�/;Y�Ph.X;�/

��
gh.Y / �Phgh.X/

��
g0.Y / �P0g0.X/

�>�
� EX��h;Y�Ph.X;�/

��
gh.Y / �Phgh.X/

��
g0.Y / �P0g0.X/

�>��
DW

1X
tD0

Dt .z/:

Next, we estimate the difference term above in two different ways, depending on the
value of t . On the one hand, note that

EZ��h
EX�P t

h
.Z;�/;Y�Ph.X;�/

��
gh.Y / �Phgh.X/

��
g0.Y / �P0g0.X/

�>�
w
2
2

� sup
x;y2X

kgh.y/ �Phgh.x/k
2
2 � EX��h;Y�Ph.X;�/

�
hw; g0.Y / �P0g0.X/i

2
�

� 4 sup
x2X
kgh.x/k

2
2 � EX��h;Y�Ph.X;�/

�
hw; g0.Y / �P0g0.X/i

2
�
;
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where the bound for the factor supx2X kgh.x/k
2
2 follows from equation (E.12). For

the latter term in the display above, we note that

EX��h;Y�Ph.X;�/
�
hw; g0.Y / �P0g0.X/i

2
�

� 2EX��0;Y�P0.X;�/
�
hw; g0.Y / �P0g0.X/i

2
�
� 2w>ƒw D

2d

n
:

Putting together the pieces yields the first estimate

EZ��h
�
kDt .Z/wk

2
2

�
�
ct2mixx�

2d2

.1 � �/2n
log6

�
d

minx2X �0.x/

�
:

On the other hand, given z 2X and the Markov chain .st /t�0 starting from s0D z,
for any t > 0, there exists a random state Qst such that Qst � �h, and we have P .Qst ¤

st /� 2
b t
tmix
c. Define a random variable QstC1 by setting QstC1 D stC1 whenever st D Qst ,

and drawing QstC1 � P.Qst ; �/ otherwise. From this construction, we have

kDt .z/wk2

� sup
u2Sd�1

®
E
�
u>
�
gh.stC1/ �Phgh.st /

�
� w>

�
g0.stC1/ �P0g0.st /

�
j z
�

� E
�
u>
�
gh.QstC1/ �Phgh.Qst /

�
� w>

�
g0.QstC1/ �P0g0.est /� j z�¯

� sup
u2Sd�1

E
�
u>
�
gh.stC1/ �Phgh.st /

�
� w>

�
g0.stC1/ �P0g0.st /

�
1st¤Qst j z

�
C sup
u2Sd�1

E
�
u>
�
gh.QstC1/ �Phgh.Qst /

�
� w>

�
g0.QstC1/ �P0g0.est /�1st¤Qst j z�:

Applying the Cauchy–Schwarz inequality twice yields

EZ��h
�
kDt .Z/wk

2
2

�
� E

�
kgh.stC1/ �Phgh.st /k

4
2

�1=2
� E
�
w>

�
g0.stC1/ �P0g0.st /

�8�1=4
� E
�
1st¤Qst

�1=4
C E

�
kgh.QstC1/ �Phgh.st /k

4
2

�1=2
� E
�
w>

�
g0.QstC1/ �P0g0.Qst /

�8�1=4
� E
�
1st¤Qst

�1=4
�

ct4mix

.1 � �/4
x�4dkwk22 � log6 d � 21�

t
4tmix ;

corresponding to the second estimate.
Finally, setting � D ctmix log tmixd

1��
yields

EZ��h

" 1X
tD0

Dt .Z/w


2

2

#
�

 
1X
tD0

e�
t
�

!
�

 
1X
tD0

e
t
� EZ��h

�
kDt .Z/wk

2
2

�!
�
ct4mixx�

2d2

.1 � �/2n
log6

�
d

minx2X �0.x/

�
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so that

EZ��h
�
kJ2.`h;Z/wk

2
2

�
�
ct4mixx�

2d2

.1 � �/4n
log6

�
d

minx2X �0.x/

�
:

Bounds on the term J3.sh; z/ �w. By equation (E.10), for any vector u 2 Sd�1, we
have

rw

�
xL.h/u

�
D

X
x;y2X

�h.x/Ph.x;y/
�
Ah
xL.h/.y/�

X
z2X

Ph.x;z/Ah
xL.h/.z/

�
u � qx.y/

>:

For any z 2 X, we obtain

krw

�
xL.h/

�
gh.z/wk2

D sup
u2Sd�1

EX��h;Y�Ph.X;�/
�
u>
�
Ah
xL.h/.Y / �PhAh

xL.h/.X/
�
gh.z/qX .Y /

>w
�

� sup
u2Sd�1

q
E
�
u>
�
Ah
xL.h/.Y / �PhAh

xL.h/.X/
�
gh.z/

�2
�

q
E
��
qX .Y />w

�2�
� ctmix�Lkgh.z/k2 log d �

r
d

n
;

where the final inequality is due to equation (E.11). Combining with Lemma 16, we
have the bound

EZ��h
�
kJ3.`h;Z/wk

2
2

�
�

cd2

.1 � �/2n
� t2mix�

2
L log2 d � EZ��h

�
kgh.Z/k

2
2

�
�
c�2Lx�

2t4mixd
2

.1 � �/4n
log2 d:

Finishing the proof. Collecting the bounds for J1, J2, and J3 and for

n �
ct2mix�

2
Ld

2 log2 d
.1 � �/2

;

we have

sup
0�`�1

EZ��h
�
kg`h.Z/ � g0.Z/k

2
2

�
�
c.1C �2L/x�

2t4mixd
2

.1 � �/4n
log6

�
d

minx �0.x/

�
C
1

2
sup
0�`�1

EZ��h
�
kg`h.Z/�g0.Z/k

2
2

�
;

which completes the proof of the first claim of the lemma.
For the second claim, we combine the first claim with equation (E.13) and obtain

krw
x�.Ph/wk2 �

3

2

r
trace.ƒ/

n
C

s
c.1C �2L/x�

2t4mixd
3

.1 � �/4n2
log6

�
d

minx �0.x/

�
:
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Taking the integral yields

kx�.Ph/ � x�.P0/k2 �

Z 1

0

krw
x�.P`h/wk2d`

�
3

2

r
trace.ƒ/

n
C

s
c.1C �2L/x�

2t4mixd
3

.1 � �/4n2
log6

�
d

minx �0.x/

�
;

which proves the second claim.

E.4. Proof of Lemma 14

We first compute the Fisher information with respect to the perturbation vector h
and then transform this via chain rule into a formula that holds with respect to the
parameter w. We are interested in the matrix

I .n/.h/ WD EhŒrh log Ph.s
n
0 /rh log Ph.s

n
0 /
>�:

When the Markov chainPh is run under the initial distribution �0, the joint distribution
of the observed trajectory .st /ntD0 can be factorized as

Ph.s0; s1; : : : ; sn/ D �0.s0/ �
nY
tD1

Ph.st�1; st /:

Let us now study the Fisher information matrix. For any pair x; y 2 X with
P.x; y/ > 0, performing some algebra yields the expression

@

@hx.y/
log Ph

�
s0; s1; : : : ; sn

�
D

nX
tD1

1st�1Dx
�
1stDy � Ph.x; y/

�
:

Consider the natural filtration Ft WD �.s0; s1; : : : ; st /. Note that under the transition
kernel Ph, we have the identity

Eh
�
1st�1Dx

�
1stDy � Ph.x; y/

�
j Ft�1

�
D 1st�1Dx �

�
Eh
�
1stDy j st�1 D x

�
� Ph.x; y/

�
D 0:

Therefore, the process ¹rh log Ph.s0; s1; : : : ; sn/ºn�0 is a martingale adapted to the
filtration ¹Ftºt�0. Its second moment is given by

S D E
�
rh log Ph.s

n
0 / � r

>
h log Ph.s

n
0 /
�

D

nX
tD1

E
�
rh logPh.st�1; st / � r>h logPh.st�1; st /

�
:
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We find that

S D

�
1x1Dx2 �

nX
tD1

E
�
1x1Dst�1 �

�
1stDy1 � Ph.x1; y1/

��
�
�
1stDy2 � Ph.x2; y2/

��
.x1;y1/;.x2;y2/

D

nX
tD1

diag
�®

Ph
�
st�1 D x

�
� Ph.x; y/

¯
.x;y/

�
�

nX
tD1

�
Ph.st�1 D x/ � Ph.x; y1/ � Ph.x; y2/

�
.x;y1/;.x;y2/

:

Consequently, the Fisher information matrix is a block diagonal matrix I .n/.h/ D
diag.¹I .n/x .h/ºx2X/, where each block matrix I .n/x .h/ 2 RX�X takes the form

I .n/x .h/D

nX
tD1

Ph
�
st�1Dx

�
�
�
diag

�®
Ph.x; y/

¯
y2X

�
�
�
Ph.x; y/

�
y2X

�
Ph.x; y/

�>
y2X

�
:

By Lemma 11, for hmax satisfying the inequality

h�1max � ctmix
�
log h�1max C log.min �0/�1

�
for some constant c > 0, we have the bound 1

2
�h � �0 �

3
2
�h, and hence, 1

2
P k
h
�h �

P k
h
�0 �

3
2
P k
h
�h for each k D 0; 1; 2; : : : : From this sandwiching, we find that

I .n/x .h/ �
3

2

nX
tD1

P t�1h �h.x/ �
�
diag

�®
Ph.x; y/

¯
y2X

�
�
�
Ph.x; y/

�
y2X

�
Ph.x; y/

�>
y2X

�
D
3n

2
�h.x/

�
diag

�®
Ph.x; y/

¯
y2X

�
�
�
Ph.x; y/

�
y2X

�
Ph.x; y/

�>
y2X

�
:

Turning to the Fisher information, we compute

I .n/.w/ D Q>I .n/.h/Q

�
3n

2

X
x2X

�h.x/
�X
y2X

Ph.x; y/qx.y/qx.y/
>

�

�X
y2X

Ph.x; y/qx.y/
��X

y2X

Ph.x; y/qx.y/
�>�

D
3n

2
EX��h

�
EY�Ph.X;�/

�
qX .Y /qX .Y /

>
�

� EY�Ph.X;�/
�
qX .Y /

�
� EY�Ph.X;�/

�
qX .Y /

�>�
D
3n

2
EX��h

�
covPh.X;�/

�
qX .Y / j X

��
:
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E.5. Proof of Lemma 15

For each k 2 Z, by the definition of the Green function, we note that

f .sk/ D A0f .sk/ � E
�
A0f .skC1/ j sk

�
D A0f .sk/ �P0A0f .sk/: (E.14)

By stationarity, we have

1X
kD�1

E
�
f .sk/f .s0/

�
D EŒf 2.s0/�C 2

1X
kD1

E
�
f .sk/f .s0/

�
.i/
D �EŒf .s0/

2�C 2E

"
f .s0/ �

1X
kD0

E
�
f .sk/ j s0

�#
;

where step .i/ makes use of the dominated convergence theorem, in particular by
noting that

ˇ̌
EŒf .sk/ j s0�

ˇ̌
� kf k1 � 2

1�k=tmix from Lemma 4. Consequently, we can
write
1X

kD�1

E
�
f .sk/f .s0/

�
D �EŒf 2.s0/�C 2E

�
f .s0/ �A0f .s0/

�
.i i/
D �E

��
A0f .s0/ �P0A0f .s0/

�2�
C 2E

��
A0f .s0/ �P0A0f .s0/

�
�A0f .s0/

�
D E

��
A0f .s0/

�2�
� E

��
P0A0f .s0/

�2�
;

where step .i i/ follows from equation (E.14).
With E denoting expectation over X � �0; Y � P0.X; �/, we have

E
��

A0f .Y / �P0A0f .X/
�2�

D E
��

A0f .s1/ �P0A0f .s0/
�2�

D E
��

A0f .s1/
�2�
C E

��
P0A0f .s0/

�2�
� 2E

��
A0f .s1/

�
�
�
P0A0f .s0/

��
D E

��
A0f .s0/

�2�
C E

��
P0A0f .s0/

�2�
� 2E

�
E
�
A0f .s1/ j s0

�
�
�
P0A0f .s0/

��
D E

��
A0f .s0/

�2�
� E

��
P0A0f .s0/

�2�
;

and combining the pieces completes the proof of this lemma.

E.6. Proof of Lemma 16

By following the derivation of equation (E.10), we find that

@

@hx.y/
xL.h/ D �h.x/Ph.x; y/

°
AhL.y/ �

X
z2X

Ph.x; z/AL.z/
±
:
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Consequently, for any u 2 Sd�1, we have the boundˇ̌̌̌ˇ̌
rw

�
xL.h/u

�ˇ̌̌̌ˇ̌
op

� sup
z;v2Sd�1

q
EY��h

��
z>AhL.Y /u

�2�
�

q
EX��h;Y�Ph.X;�/

��
.g0.Y / �P0g0.X//>v

�2�
� sup
v2Sd�1

q
EY��h

�
kAhL.Y /uk

2
2

�
�
3

2

q
EX��0;Y�P0.X;�/

��
.g0.Y / �P0g0.X//>v

�2�
� ctmix�L

q
d � jjjƒjjjop log d:

We thus obtain

jjj xL.h/ � xL.0/jjjop � sup
u2Sd�1

�xL.h/ � xL.0/�u
2

�

Z 1

0

sup
u2Sd�1

rw�xL.sQw/u� � w2ds
� ctmix�L

p
d � trace.ƒ/ log d � kwk2:

Now, given a perturbation vector satisfying the bound kwk2 � 1��

2ctmix�L
p
d �jjjƒjjjop logd

,

we have the following bound for any u 2 Sd�1:

k.I � xL.h//uk2 � k.I � xL
.0//uk2 � k.xL

.h/
� xL.0//uk2

� .1 � �/ � jjjxL.h/ � xL.0/jjjop �
1 � �

2
;

which implies that jjj.I � xL.h//�1jjjop �
2
1��

, as claimed.

E.7. A useful moment bound

Finally, we state and prove a moment bound that is useful in multiple proofs. Recall
that the operator Ph is a perturbed probability transition kernel under perturbation
matrix h, and the operator Ah is the Green function operator associated with this
transition kernel.

Lemma 17. Consider a bounded function f W X! R and a perturbation vector h
satisfying the condition in Lemma 11. There exists a universal constant c > 0 such
that for any integer p � 1�
EX��h

��
Ahf .X/

�2p�� 12p � c p tmix
�
EX��h

�
f .X/2p

�� 1
2p log

²
kf k

2p
1

EX��h
�
f .X/2p

�³:
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The proof is similar to that of Lemma 7. For any function f W X! R such that

E�h Œf .X/� D 0;

we first observe that Ahf .s/ D
P1
kD0 P k

h
f .s/ for all s 2 X. Note that Lemma 11

guarantees that the perturbed chain satisfies Assumption 1 with mixing time 4tmix. By
Lemma 4 and the coupling definition of total variation distance, for each t � 0, there
exists a random variable Qst such that Qst j s0 � �h, and P .Qst ¤ st j s/ � 2

�b t
4tmix

c.
By construction, the state Qst is independent of s. Consequently, we have the equiv-

alence Ahf .s/ D
P1
kD0 EŒf .sk/ � f .Qsk/ j s�, and for any ˛ > 0,

Es��h
��

Ahf .s/
�2p�
�

 
1X
kD0

e2p˛tE
�
E
�
f .sk/ � f .Qsk/ j s

��2p!

�

 
1X
kD0

e�
2p
2p�1˛k

!2p�1
� ˛1�2p

1X
kD0

e2p˛kE
�ˇ̌
f .sk/ � f .Qsk/

ˇ̌2p�
:

We bound the moment of f .sk/� f .Qsk/ for different values of k in two ways. On the
one hand, Young’s inequality directly leads to the following naive bound:

E
�ˇ̌
f .sk/ � f .Qsk/

ˇ̌2p�
� 22p�1

�
E
�
f .sk/

2p
�
C E

�
f .Qsk/

2p
��
D 22pEs��h

�
f .s/2p

�
:

On the other hand, for any bounded function f , we have

E
�ˇ̌
f .sk/ � f .Qsk/

ˇ̌2p�
� kf k2p1 � P

�
sk ¤ Qsk

�
� kf k2p1 � 2

1� k
4tmix :

Combining the two estimates yields the bound

E
�
.Ahf .X//

2p
�

� ˛1�2p

´
22p � e2p˛��Es��h

�
f .s/2p

�
C kf k2p1

1X
kD�C1

e2p˛k � 2
1� k

4tmix

µ
;

valid for any ˛ > 0 and � > 0. Setting � D c tmix log kf k
2p
1

EŒf .X/2p�
and ˛ D 1

16�p
yields

the claim.

F. Proofs for the examples

We collect the proofs of the consequences to specific examples in this section.



W. Mou, A. Pananjady, M. J. Wainwright, and P. L. Bartlett 100

F.1. Proofs for TD.0/

We stated three corollaries applicable to this method, and in this section, we prove
each of them in turn.

F.1.1. Proof of Corollary 2. The bulk of the proof involves verifying the conditions
needed to apply Proposition 1 and Theorem 1, but some additional care is needed in
order to deal with non-orthonormal basis functions .�j /j2Œd�. First, we note that the
SA procedure (4.1) can be equivalently written as

�tC1 D .1 � �ˇ/�t C �ˇLtC1.!t /�t � �ˇbtC1.!t /;

where
LtC1.!t / WD

�
Id � ˇ

�1�.st /�.st /
>
C ˇ�1�.st /�.stC1/

>
�

and
btC1.!t / WD ˇ

�1Rt .st /�.st /:

This is an SA scheme with stepsize �ˇ.
For any matrix A 2 Rd�d , define �.A/ WD 1

2
�max.AC A

>/. We verify the eigen-
value condition (2.1) by noting that

1

2
�max

�
xLC xL>

�
D 1 �

1

ˇ
�
�
Es��;sC�P.s;�/

�
�.s/�.sC/>

�
� E�

�
�.s/�.s/>

��
D 1 �

1

ˇ
�max

�
B1=2

�
Id �

M CM>

2

�
B1=2

�
D 1 �

�

ˇ
.1 � �/ < 1;

and

jjj xLjjjop � 1C
1

ˇ

�ˇ̌̌̌ˇ̌
Es��;sC�P.s;�/

�
�.s/�.sC/>

�ˇ̌̌̌ˇ̌
op C

ˇ̌̌̌ˇ̌
E�
�
�.s/�.s/>

�ˇ̌̌̌ˇ̌
op

�
� 3:

For the two-step sliding-window Markov chain !t D .st ; stC1/, Assumption 1 holds
with mixing time .tmix C 1/ in the discrete metric, and the metric space has diameter
at most 1. It remains to verify the boundedness and moment assumptions.

In order to verify Assumption 4, we note that the bounds (4.2a) imply that

jjjLtC1.st /jjjop � 1C
1

ˇ

�
jjj�.st /�.stC1/jjjop C jjj�.st /�.st /

>
jjjop
�
� .1C &2/d

and
kbtC1.st /k2 �

1

ˇ
jRt .st /j � k�.st /k2 � &

2
p
d=ˇ:
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Turning to the moment assumption, given any vector u 2 Sd�1 and coordinate vector
ej , we have the bounds

Es��;sC�P.s;�/
��
e>j �.s/�.s

C/>u
�2�
�

q
Es��

��
e>j �.s/

�4�
�

q
Es��

��
u>�.s/

�4�
� ˇ2&4;

Es��
��
e>j �.s/�.s/

>u
�2�
�

q
Es��

��
e>j �.s/

�4�
�

q
Es��

��
u>�.s/

�4�
� ˇ2&4;

Es��
��
e>j Rt .s/�.s/

�2�
� &2Es��

��
e>j �.s/

�2�
� ˇ&4:

Finally, the quantity x� from equation (4.3) is bounded as

max
j2Œd�

E
�
hej ; .LtC1.!t / � xL/x� C .btC1.!t / � b/i

2
�

� max
j2Œd�

q
E
�
hej ; �.st /i4

�
�

q
E
��
�.st />x� � �.stC1/>x� �Rt .st /

�4�
� x�2:

Invoking equation (6.6) with the test matrix Q WD B and substituting with the repre-
sentation V.s/ D h�; �.s/i yield the claim.

F.1.2. Proof of Corollary 3. We prove this corollary by verifying the assumptions
used in our main theorem. Assumption 2 directly follows from (4.6c) and the bound-
edness of reward; Assumption 1 is exactly the W1 mixing time bound imposed on the
Markov chain. In order to verify that

L.s; sC/ D Id � ˇ
�1.�.s/�.s/> � �.s/�.sC/>/

satisfies Assumption 4, we first note that

jjjL.s1; s
C
1 / �L.s2; s

C
2 /jjjop

�
1

ˇ
jjj�.s1/�.s1/

>
� �.s2/�.s2/

>
jjjop C



ˇ
jjj�.s1/�.s

C
1 /
>
� �.s2/�.s

C
2 /
>
jjjop:

By adding and subtracting terms, we have the bound

jjj�.s1/�.s1/
>
� �.s2/�.s2/

>
jjjop �

®
k�.s1/k2 C k�.s2/k2

¯
k�.s1/ � �.s2/k2

.i/
� 2&2ˇdks1 � s2k2:

The step .i/ follows from the Lipschitz condition (4.6b) and boundedness of the
metric space X. More precisely, we have k�.s1/ � �.s2/k2 � &

p
ˇdks1 � s2k2 and

k�.s1/k2 D k�.s1/ � �.0/k2 � &
p
ˇd . A similar argument yields that

jjj�.s1/�.s
C
1 /
>
� �.s2/�.s

C
2 /
>
jjjop � &

2d
�
ksC1 � s

C
2 k2 C ks1 � s2k2

�
:
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Putting together the pieces, we have shown that the mappingL WX!Rd�d is 3&2d -
Lipschitz with respect to the metric

�..s1; s
C
1 /; .s2; s

C
2 // D ks1 � s2k2 C ks

C
1 � s

C
2 k2:

Similarly, for the vector observation bt .s/ D Rt .s/�.s/, we note that, for any
s1; s2 2 X,

kbt .s1/ � bt .s2/k2 �
ˇ̌
Rt .s1/ �Rt .s2/

ˇ̌
� k�.s1/k2 C

ˇ̌
Rt .s2/

ˇ̌
� k�.s1/ � �.s2/k2

� 2&
p
d=ˇk�.s1/ � �.s2/k2;

which shows that b W X! Rd=ˇ is 2&2
p
d -Lipschitz. Having verified the assump-

tions, we complete the proof by following the same steps as in the proof as Corol-
lary 2.

F.1.3. Proof of Corollary 4. In order to verify that Assumption 4 holds with respect
to the discrete metric, note that, for any dn � 1, we have

kbt .s/k2 �
&

ˇ

vuut dnX
jD1

�2j .s/ �
&2

ˇ

p
dn

and

jjjL.s1; s2/jjjop � 1C
1

ˇ

dnX
jD1

�2j .s1/C
1

ˇ

vuut dnX
jD1

�2j .s1/ �

vuut dnX
jD1

�2j .s2/ �
1C &2

ˇ
dn:

Turning to the moment condition, let E denote expectation over a pair s � � and
sC � P.s; �/. Then, for any vector u 2 Sdn�1 and index j 2 Œdn�, we have

E
�
hej ; L.s; s

C/ui2
�

� 3C
3

ˇ2
E
��
hej ; �.s/ih�.s

C/; ui
�2�
C

3

ˇ2
E
��
hej ; �.s/ih�.s/; ui

�2�
� 3C

6

ˇ2
k�j k

2
1 � E

�
h�.s/; ui2

�
� 3C

6

ˇ
&2:

For each t D 1; 2; : : :, we also have EŒhej ; btC1.st /i2� �
1
ˇ2
kRtk

2
1 �Es�� Œ�j .s/

2� �

&2

ˇ
, which is an order-one quantity. Following the same steps as in the proof as Corol-

lary 2 then yields the claim.

F.2. Proofs for TD.�/

We first prove Proposition 2—the mixing time result—and then use it to establish
Corollary 5.
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F.2.1. Proof of Proposition 2. We prove the claim via a coupling argument. Con-
sider two initial states !0 D .s0; s1; h0/ and !00 D .s00; s

0
1; h
0
1/. By Assumption 1

(mixing time) for the original chain in total variation distance, there exists a cou-
pling between a chains .st /t�1 and .s0t /t�1 starting from s1 and s01, respectively, such
that

P .s.kC1/tmixC1 ¤ s
0
.kC1/tmixC1

j ¹st ; s
0
tº
ktmixC1
tD1 / �

1

2
:

Furthermore, whenever st D s0t for some t � 1, the two processes are always identical
from then on. Let .gt /t�0 and .g0t /t�0 be the eligibility trace process (4.10b) associ-
ated to .st /t�0 and .s0t /t�0, respectively, and let ht D

1��

&
p
ˇd
gt and h0t D

1��

&
p
ˇd
g0t .

Under this coupling, we note that

P .s3tmixC1 ¤ s
0
3tmixC1

/ �
1

8
:

Conditioning on the event E WD ¹s3tmixC1 D s
0
3tmixC1

º, for any t � 3tmix C 1, we have

khtC1� h
0
tC1k2D �kht � h

0
tk2D � � �D .�/

t�3tmix�1kh3tmixC1� h
0
3tmixC1

k2: (F.1)

We split the remainder of the proof into two cases.

Case I: s1 ¤ s
0
1
. The coupling bound implies that P .E/ � 7

8
. On the event E, for

� � 3tmix C 1C
4

1��
, we have the bound

khtC1 � h
0
tC1k2 �

1

16
kh3tmixC1 � h

0
3tmixC1

k2 �
1

8

almost surely. Under this coupling, we may write

E
�
�
�
.s� ; s�C1; h� /; .s

0
� ; s
0
�C1; h� /

��
D
1

4

�
P
�
s� ¤ s

0
�

�
C P

�
s�C1 ¤ s

0
�C1

�
C E

�
kh� � h

0
�k2

��
�
3

4
P .Ec/C

1

4
E
�
kh� � h

0
�k2 j E

�
�
1

8
D
1

2
�
1

4
1s1¤s01

�
1

2
�
�
.s0; s1; h0/; .s

0
0; s
0
1; h0/

�
;

which proves the Wasserstein contraction in this case.

Case II: s1 D s
0
1
. In this case, the coupling construction ensures that st D s0t for any

t � 1. Invoking the bound (F.1) then yields

E
�
�
�
.s� ; s�C1; h� /; .s

0
� ; s
0
�C1; h� /

��
D
1

4
E
�
kh� � h

0
�k2

�
�
1

8
kh0 � h

0
0k2 �

1

2
�.!0; !

0
0/;

which establishes contraction in this case. Combining the two cases proves the propo-
sition.
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F.2.2. Proof of Corollary 5. We note that the SA procedure (4.10a) can be written
as

�tC1 D .1 � �ˇ/�t C �ˇLtC1.!t /�t � �ˇbtC1.!t /;

whereLtC1.!t /D .Id � 1
ˇ
gt�.st /

>C  1
ˇ
gt�.stC1/

>/ and btC1.!t /D 1
ˇ
Rt .st /gt .

Recalling that

M� D .1 � �/

1X
tD0

�t tC1B�1=2EŒ�.s0/�.stC1/
>�B�1=2;

we first study the eigenvalues of the symmetrized version ofM� and relate these back
to those of xL D Ez� ŒLtC1.!t /�. Note that by the Cauchy–Schwarz inequality, for any
vector u 2 Sd�1, we have

u>B�1=2E
�
�.s0/�.st /

>
�
B�1=2u

�

q
E
��
u>B�1=2�.s0/

�2�
� E
��
u>B�1=2�.st /

�2�
D 1:

We therefore have the bound 1
2
�min.M� CM

>
�
/ � .1 � �/

P1
tD0.�/

t D
.1��/
1��

.
As in the proof of Corollary 2, we can deduce that

1

2
�max

�
xLC xL>

�
D
1

ˇ
�max

�
B1=2

�
M� CM

>
�

2

�
B1=2

�
�
.1 � �/

1 � �
:

Next, we verify Assumption 2 on the noise moments. By the update rule (4.10b),
under a stationary trajectory, we have the expression gt D

P1
kD0.�/

k�.st�k/. For
any u 2 Sd�1, invoking Hölder’s inequality yields

E
�
hgt ; ui

4
�
�

 
1X
kD0

.�/k

!3
�

1X
kD0

.�/kE
�
hu; �.st�k/i

4
�
� ˇ2

� &

1 � �

�4
:

In other words, for all standard basis vectors ej , we have

E
�
hej ; LtC1.!t /ui

2
�
� 1C

2

ˇ2

q
E
�
hej ; �.st /i4

�
�

q
E
�
hgt ; ui4

�
� 1C 2

&4

.1 � �/2
;

E
�
hej ; btC1.!t /ui

2
�
�
&2

ˇ2
E
�
hgt ; ej i

2
�
�

&4

ˇ.1 � �/2
:

It remains to verify Assumption 4. Note that for any pair ! D .s; sC; h/ and !0 D
.s0; s0C; h

0/, the operator norm T WD jjjLtC1.!/�LtC1.!
0/jjjop is almost surely upper
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bounded as

T �
&
p
d=ˇ

1 � �
�
�
jjjh>�.s/ � .h0/>�.s0/jjjop C jjjh

>�.sC/ � .h
0/>�.s0C/jjjop

�
�
&
p
d=ˇ

1 � �
�
�
jjj.h � h0/>�.s0/jjjop C jjjh

>.�.s0/ � �.s//jjjop
�

C
&
p
d=ˇ

1 � �
�
�
jjj.h � h0/>�.s0C/jjjop C jjjh

>.�.s0C/ � �.sC//jjjop
�

�
2&2d

1 � �

�
1s¤s0 C 1sC¤s0C

C kh � h0k2
�
D

8&2d

1 � �
�.!; !0/:

Finally, we note that the quantity x� defined in equation (4.3) satisfies the bound

sup
j2Œd�

E
�
hej ; .LtC1.!t / � xL/x� C .btC1.!t / � b/i

2
�

� sup
j2Œd�

q
E
�
hej ; gt i4

�
�

q
E
��
�.st />x� � �.stC1/>x� �Rt .st /

�4�
�

x�2

.1 � �/2
:

Invoking equation (6.6), with the test matrix Q WD B , and substituting the expression

V.s/ D h�; �.s/i

yield the claim.

F.3. Proofs for vector autoregressive estimation

In this section, we present proofs of results on vector autoregressive models, as intro-
duced in Example 3.

F.3.1. Proof of Proposition 3. We prove the claim by a direct construction of the
coupling. Given two initial points

!0 D
h
X>1 ; X

>
0 ; : : : ; X

>
�kC1

i>
and !00 D

h
X 0>1 ; X

0>
0 ; : : : ; X

0>
�kC1

i>
;

we consider a pair of stochastic processes .Xt /t�1 and .X 0t /t�1 starting from !0 and
!0, respectively, driven by the same noise process ."t /t�0. Introduce the shorthand

YtC1 D
�
XtC1 � � � Xt�kC2

�>
:

(Note that YtC1 is a sliding window with length one unit shorter than !t .) We have

kYtC1 � Y
0
tC1k

2
P�
D kR� .Yt � Y

0
t /k

2
P�
D kYt � Y

0
t k
2
P�
� kYt � Y

0
t k
2
Q�

�

�
1 �

�

ˇ

�
kYt � Y

0
t k
2
P�
:
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Consequently, the augmented processes !t D .XtC1; Xt ; : : : ; Xt�kC1/ and !0t D
.X 0tC1; X

0
t ; : : : ; X

0
t�kC1

/ satisfy the bound

k!t � !
0
tk2 � kYtC1 � Y

0
tC1k2 C kYt � Y

0
t k2

�
1p

�min.P�/

�
kYtC1 � Y

0
tC1kP� C kYt � Y

0
t kP�

�
� 2

s
�max.P�/

�min.P�/

�
1 �

�

2ˇ

�t
k!0 � !

0
0k2:

Note that since P� � Q�, we have �min.P�/ � �min.Q�/ D �. Taking

tmix D c
ˇ

�

�
1C log

ˇ

�

�
yields the contraction bound k!tmix �!

0
tmix
k2 �

1
2
k!0 �!

0
0k2. Taking expectations on

both sides completes the proof.

F.3.2. Proof of Corollary 6. We begin by showing norm bounds and moment bounds
on the process .Xt /t�0. By definition (2.12) of the process and stability, the block vec-
tor Yt WD ŒXt Xt�1 ��� Xt�kC1 �> satisfies the recursion Yt D

P1
iD0 R

i
�"t�ie1, where

e1 is the standard block basis vector equal to identify on the first block. We therefore
have the bound

kXtk2�
1

�
kYtkP��

1X
iD0

kRi�"t�ie1kP��
1

�

1X
iD0

�
1 �

�

ˇ

�i
k"t�ie1kP��

ˇ2

�2
&
p
m:

Moreover, for each u 2 Sm�1, we have

E
�
hXt ; ui

4
�
�

 
1X
iD0

e�
i�
6ˇ

!3
�

1X
iD0

e
i�
2ˇE

�
hRi�"t�ie1; ue1i

4
�

� c
�
ˇ=�

�3
�

1X
iD0

e
i�
2ˇ �

ˇ4

�4
� e�

i�
ˇ &4 � c0

�
ˇ2&

�2

�4
:

Next, we proceed with verifying the assumptions used in Theorem 1. Letting � WD
1=jjjH�jjjop, the stochastic approximation procedure can be rewritten as

�tC1 D
�
1 �

�

�

�
�t C

�

�

�
�t � �

��
Xt�jX

>
tC1�i

�
i;j2Œm�

˝ Im
�
�t

C � � vec
� h
XtC1X

>
t � � � XtC1X

>
t�kC1

i ��
:

Observe that the matrix xL WD Ikm2 � �H� ˝ Im satisfies the eigenvalue bound

1

2
�max.xLC xL

>/ � 1 �
�

2
�min.H

�
C .H�/>/ � 1 � �h�:
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On the other hand, the empirical observations satisfy the almost sure bounds

jjjLtC1.!t / � xLjjjop � � �
ˇ̌̌̌ˇ̌�
Xt�jX

>
tC1�i

�
i;j2Œm�

ˇ̌̌̌ˇ̌
op � � �

ˇ4

�4
&2mk

and

jjjbtC1.!t / � Nbjjjop � � �
ˇ̌̌̌̌̌ˇ̌̌ h
XtC1X

>
t � � � XtC1X

>
t�kC1

i ˇ̌̌̌̌̌ˇ̌̌
F
� � �

ˇ4

�4
&2m
p
k:

For two collections of matrices UD .U .j //kjD1 and V D .V .j //kjD1�Rm�m such thatPk
jD1 jjjU

.j /jjj2F D
Pk
jD1 jjjV

.j /jjjF D 1, the corresponding moment can be bounded
as

E
�˝

vec.U/;
�
LtC1.!t / � xL

�
vec.V/

˛2�
� �2E

" 
k�1X
`D0

*
U .`/;

k�1X
jD0

V .j /Xt�jX
>
t�`

+
F

!2#
;

which is in turn at most

�2k2
k�1X
`D0

k�1X
jD0

q
E
�
X˝4
t�`

��
.U .`//>U .`/; .U .`//>U .`/

�
�

q
E
�
X˝4t�j

��
.V .j //>V .j /; .V .j //>V .j /

�
:

In order to bound this last quantity, we let .U .`//>U .`/ D
Pm
iD1 �

2
i uiu

>
i be its sin-

gular value decomposition, and note that

E
�
X˝4
t�`

��
.U .`//>U .`/; .U .`//>U .`/

�
D E

�
X˝4
t�`

�" mX
iD1

�2i uiu
>
i ;

mX
iD1

�2i uiu
>
i

#
D

X
i;i 0

E
�
X˝4
t�`

�
Œui ; ui ; ui 0 ; ui 0 � � �

2
i �
2
i 0

� c0
�
ˇ2&

�2

�4�X
i

�2i

�2
D c0

�
ˇ2&

�2

�4
jjjU .`/jjj2F :

Putting together the pieces, we have

E
�˝

vec.U/;
�
LtC1.!t / � xL

�
vec.V/

˛2�
� �2k2c0

�
ˇ2&

�2

�4
�

k�1X
`D0

k�1X
jD0

jjjU .`/jjj2F jjjV
.j /
jjj
2
F � c

�
� �
ˇ4k&2

�4

�2
:
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Similarly, we can prove analogous moment bounds on btC1.!t /. In particular, for
indices ` 2 Œk� and i; j 2 Œm�, we consider the coordinate direction of the .i; j / entry
in the `-th matrix to deduce that

E
�
he`;i;j ; .btC1.!t / � Nb/i

2
�
� �2E

�
heie

>
j ; XtC1Xt�`C1i

2
�

� �2
q

E
�
he>j ; XtC1i

4
�
�

q
E
�
he>i ; Xt�`C1i

4
�

� c0
�
� �
ˇ2&

�2

�4
:

Applying Theorem 1 completes the proof of this corollary.
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