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Abstract. The method of hypergraph containers, which was introduced several years ago by
Balogh, Morris, and Samotij, and independently by Saxton and Thomason, has proved to be an
extremely useful tool in the study of various monotone graph properties. In particular, a fairly
straightforward application of this technique allows one to locate, for each non-bipartite graph H ,
the threshold at which the distribution of edges in a typical H -free graph with a given number
of edges undergoes a transition from ‘random-like’ to ‘structured’. On the other hand, for non-
monotone hereditary graph properties, the standard version of this method does not allow one to
establish even the existence of such a threshold.

In this paper we introduce a refinement of the container method that takes into account the
asymmetry between edges and non-edges in a sparse member of a hereditary graph property. As an
application, we determine the approximate structure of a typical graph with n vertices,m edges, and
no induced copy of the 4-cycle, for each function m D m.n/ satisfying n4=3.log n/4 6 m� n2.
We show that almost all such graphs G have the following property: the vertex set of G can be
partitioned into an ‘almost independent’ set (a set with o.m/ edges) and an ‘almost-clique’ (a set
inducing a subgraph with density 1 � o.1/). The lower bound on m is optimal up to a polyloga-
rithmic factor, as standard arguments show that if n� m� n4=3, then almost all such graphs are
‘random-like’. As a further consequence, we deduce that the random graph G.n; p/ conditioned to
contain no induced 4-cycles undergoes phase transitions at p D n�2=3Co.1/ and p D n�1=3Co.1/.
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1. Introduction

Two of the central objects of study in combinatorics are the family of H -free graphs,
that is, the collection of graphs that do not contain H as a subgraph, and the family of
induced-H -free graphs, that is, graphs without an induced subgraph isomorphic toH . An
extremely well-studied problem (see, e.g., [26] and references therein) is to determine the
largest number of edges in an H -free graph with a given number of vertices. This line
of research dates back to the seminal works of Turán [50] and of Erdős and Stone [24],
which are considered to be the cornerstones of the field of extremal graph theory.

Another natural and well-studied problem, which also makes sense in the setting of
induced-H -free graphs, can be informally phrased as follows:

What does a typical H -free (or induced-H -free) graph look like?

The first to address this problem were Erdős, Kleitman, and Rothschild [23], who proved
that almost all triangle-free graphs are bipartite. That is, the proportion of triangle-free
graphs on a given set of n vertices that are bipartite (among all triangle-free graphs) tends
to 1 as n ! 1. This result was generalised by Kolaitis, Prömel, and Rothschild [36],
who showed that, for every r > 2, almost all KrC1-free graphs are r-partite, and later by
Prömel and Steger [43], who showed that the same remains true if one replacesKrC1 with
any .r C 1/-colourable edge-critical1 graph. Further results in this direction were obtained
by Hundack, Prömel, and Steger [30] and by Balogh, Bollobás, and Simonovits [5–7].
Since the problem of describing the typical structure of an H -free graph is essentially a
counting problem in disguise, we should also mention here the closely related work of
Erdős, Frankl, and Rödl [22], who estimated the number of H -free graphs for every non-
bipartiteH , observing a close connection between this counting problem and the extremal
question mentioned above.

The problem of understanding the typical structure of induced-H -free graphs seems
to be significantly harder and, as a result, much less is known. The pioneers of this line
of research were Prömel and Steger, who described the typical structure of induced-C4-
free graphs [41] and induced-C5-free graphs [42]. They also proved an analogue of the
Erdős–Frankl–Rödl theorem for induced-H -free graphs [44] after finding the correct
generalisation of the extremal question in this setting [45], which involves the notion
of a colouring number. (This notion was later extended to the more general context
of hereditary graph properties by Alekseev [2] and by Bollobás and Thomason [12].)
Much later, Alon, Balogh, Bollobás, and Morris [3] gave a rough structural description
of a typical induced-H -free graph for an arbitrary H (in fact, their result applies to all

1A graph H is edge-critical if it contains an edge e such that �.H n e/ < �.H/.
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hereditary properties of graphs). Soon afterwards, Balogh and Butterfield [8] gave a pre-
cise structural description of a typical induced-H -free graph for all H that are critical.2

Finally, let us mention two recent works of Kim, Kühn, Osthus, and Townsend [33] and of
Keevash and Lochet [32] on the typical structure of induced-C2`-free graphs and induced-
.KaCb nKa/-free graphs, respectively.

Even though many of the theorems above describe very precisely the structure of a
typical H -free (or induced-H -free) graph, they say nothing about sparse H -free graphs.
This is because the number of H -free graphs with n vertices is in each case much greater
than the number of all n-vertex graphs with o.n2/ edges; for example, there are more than
2n

2=4 bipartite (and hence H -free for any non-bipartite H ) graphs with n vertices. This
fact naturally leads one to consider the following refined question:

Question 1.1. Given a graph H and a function m D m.n/, what does a typical H -free
(or induced-H -free) graph with n vertices and m edges look like?

The first to address this question were Prömel and Steger [46], who proved that
almost every triangle-free graph with n vertices and m edges is bipartite whenever m >
Cn7=4 log n and it is not bipartite if n � m � n3=2. A few years later, Łuczak [37]
showed that the condition in this latter statement is (in some sense) optimal, by proving
that if m� n3=2, then almost every triangle-free graph with n vertices and m edges can
be made bipartite by removing from it only o.m/ edges. More generally, it is not very
hard to verify that if n� m� n2�1=m2.H/, where

m2.H/ D max
²
e.F / � 1

v.F / � 2
W F � H and e.F / > 2

³
is the so-called 2-density ofH , then almost allH -free graphs with n vertices andm edges
are quasirandom, in the sense that all sets of vertices of size �.n/ induce subgraphs of
(asymptotically) the same density. Łuczak [37] proved that, for every non-bipartite H ,
if a certain probabilistic version of the embedding lemma for regular partitions of sparse
graphs (conjectured a few years earlier by Kohayakawa, Łuczak, and Rödl [35]) holds,
then above the threshold, if m� n2�1=m2.H/, almost every H -free graph with n vertices
and m edges can be made .�.H/ � 1/-partite by removing only o.m/ edges.

The existence of this phase transition was confirmed several years ago by Balogh,
Morris, and Samotij [9] and by Saxton and Thomason [47], using (what is now known
as) the method of hypergraph containers. This method (see Section 1.2 or the recent sur-
vey [10]) allows one to prove the conjecture of Kohayakawa, Łuczak, and Rödl mentioned
above, but also provides a more direct way of determining the rough structural description
of a typicalH -free graph above the 2-density threshold n2�1=m2.H/. We should also men-
tion here the earlier works of Conlon and Gowers [14] and Schacht [48] on the closely

2The definition of criticality in the context of induced-H -free graphs is rather complicated, so
we will only note here that it is a natural analogue of the notion of edge-criticality and refer the
interested reader to [8] for the details.
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related problem of determining the size and structure of the largest H -free subgraph of a
random graph, since these breakthroughs had a significant impact on [9, 47].

The exact analogue of the Erdős–Kleitman–Rothschild theorem in the setting of sparse
graphs was obtained by Osthus, Prömel, and Taraz [40], who proved that in fact m D
p
3
4
n3=2.log n/1=2 is a sharp threshold at which a typical triangle-free graph with n ver-

tices and m edges becomes bipartite. A generalisation of this result from triangle-free to
KrC1-free graphs, the sparse analogue of the Kolaitis–Prömel–Rothschild theorem, was
obtained recently by Balogh, Morris, Samotij, and Warnke [11] (see also [20]). The exact
analogue of Turán’s theorem in G.n; p/, which sharpens the results of Conlon–Gowers
and Schacht in the case H D KrC1, was obtained by DeMarco and Kahn [17, 18] (see
also [29]).

Despite the significant developments described above on the problem of determining
the typical structure of a sparse H -free graph, there has been (as far as we are aware)
essentially no progress on the corresponding problem for induced-H -free graphs. One
reason for this is that, in contrast to the case of H -free graphs, the hypergraph container
method does not (in general) provide the correct threshold for the appearance of structure
in a typical induced-H -free graph. From the point of view of the container theorems, an
induced-H -free graph is a two-edge-coloured graph that does not contain a (two-edge-
coloured) clique with the same number of vertices. Since the container method does not
take into account the asymmetry between the two colours, it cannot distinguish between
an induced copy of H and a clique.

In this paper, we introduce a new ‘asymmetric’ version of the method of hypergraph
containers that can distinguish between these two settings and provides the correct thresh-
old for the emergence of structure in typical induced-H -free graphs (at least for non-
bipartite graphs H , see Theorem 6.2). As an illustrative example, we use it to determine
the structure of a typical induced-C4-free graph with n vertices and m edges whenever
n4=3.log n/4 6 m� n2. The lower bound on m is best possible up to a polylogarithmic
factor, as we shall also show that if n� m� n4=3.log n/1=3, then a typical such graph
does not exhibit a similar structure, and if n�m� n4=3, then it is actually quasirandom
(in the precise sense described above). We expect that the ideas contained in this work will
allow analogous thresholds to be determined for families of graphs containing no induced
copy of an arbitrary graph H ; see Section 6.

1.1. The structure of graphs with no induced 4-cycle

Given a graph H and n 2 N, let F ind
n .H/ denote the family of all graphs with vertex

set ¹1; : : : ; nº that contain no induced copy of H and let F ind
n;m.H/ denote the family of

graphs in F ind
n .H/ with precisely m edges. A split graph is a graph whose vertex set

can be partitioned into a clique and an independent set. It is easy to check that a split
graph cannot contain an induced copy of C4; indeed, the property of being a split graph is
hereditary and C4 itself is not a split graph. Conversely, as mentioned above, it was proved
by Prömel and Steger [41] over 30 years ago that almost all graphs in F ind

n .C4/ are split
graphs. However, since almost all n-vertex split graphs admit a partition into a clique and
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an independent set of roughly equal sizes and have approximately n2=4 edges, this result
says nothing about a typical member of F ind

n;m.C4/ when m is not approximately n2=4. It
is worth mentioning that Gishboliner and Shapira [27] recently described the structure of
all induced-C4-free graphs; their description is much coarser, however.

We will prove that if n4=3.log n/4 6 m� n2, then a typical member of F ind
n;m.C4/ is

‘almost’ a split graph. We will write a.a.s. (shorthand for asymptotically almost surely)
as an abbreviation of ‘with probability tending to 1 as n!1’ and say that a graph G
with n vertices and p

�
n
2

�
edges is "-quasirandom if every subset of more than "n vertices

of G induces a subgraph with density between .1 � "/p and .1C "/p. We will say that
a graph G is "-close to a split graph if there exists a partition V.G/ D A [ B such that
eG.A/> .1� "/

�
jAj
2

�
and eG.B/6 "e.G/. Our first main result is the following structural

description of a typical graph in F ind
n;m.C4/.

Theorem 1.2. For every " > 0, there exists ı > 0 such that the following holds. Let G be
a uniformly chosen random graph in F ind

n;m.C4/.

(a) If n� m 6 ın4=3, then a.a.s. G is "-quasirandom.

(b) If n� m 6 ın4=3.logn/1=3, then a.a.s. G is not 1=4-close to a split graph.

(c) If n4=3.logn/4 6 m 6 ın2, then a.a.s. G is "-close to a split graph.

The following result is a relatively straightforward consequence of Theorem 1.2. It
determines the number of edges in (and therefore, by Theorem 1.2, the typical structure)
of the random graph G.n; p/ conditioned on not containing an induced copy of C4. We
write G ind

n;p.C4/ to denote the random graph chosen according to this conditional distribu-
tion.

Corollary 1.3. The following bounds hold asymptotically almost surely as n!1:

e.G ind
n;p.C4// D

8̂̂<̂
:̂
.1C o.1//p

�
n
2

�
if n�1 � p � n�2=3;

n4=3.logn/O.1/ if n�2=3 6 p 6 n�1=3.logn/4;

‚.p2n2=log.1=p// if p > n�1=3.logn/4:

Note that it follows immediately from Theorem 1.2 that G ind
n;p.C4/ is a.a.s. "-quasi-

random if n�1 � p� n�2=3 and a.a.s. "-close to a split graph if p > n�1=3.logn/4. We
remark that we have not attempted to optimise the exponents of log n, since (we believe
that) our technique cannot give the correct power.

We would like to draw the reader’s attention to the (somewhat surprising) fact that in
the middle range n�2=3Co.1/ 6 p 6 n�1=3Co.1/, the typical value of e.G ind

n;p.C4// stays
essentially constant. This is because the proportion of n-vertex graphs with m edges
that are induced-C4-free drops very sharply from e�o.m/ to e��.m logn/ as m crosses a
very narrow interval around n4=3, as shown by Theorem 1.2. A similar phenomenon has
been observed in several random Turán problems for forbidden bipartite graphs (even
cycles [34, 39] and complete bipartite graphs [39]) as well as Turán-type problems in
additive combinatorics [15,16]. It would be very interesting to determine whether a simi-
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lar ‘long flat segment’ appears in the graphs of p 7! e.G ind
n;p.H// and p 7! ex.G.n;p/;H/

for every bipartite H .
Our proof of Theorem 1.2 relies on two new results: (i) an asymmetric container

lemma, which generalises the main results of [9, 47], and (ii) a new robust stability theo-
rem for induced copies of C4 in ‘pregraphs’ (see below). We discuss these two ingredients
in the remainder of this section.

1.2. The asymmetric container lemma

The hypergraph container theorems, proved independently by Balogh, Morris, and
Samotij [9] and by Saxton and Thomason [47], state (roughly speaking) that the fam-
ily of independent sets of a uniform hypergraph whose edges are distributed somewhat
evenly can be covered with a small number of sets, called containers, each of which is
‘almost independent’ in the sense that it contains only few edges of the hypergraph. This
fact has proved to be a very convenient and useful tool in the study of the families of H -
free graphs, as well as other monotone properties of graphs, hypergraphs, sets of integers,
etc. There are several reasons for this. First, there is a natural correspondence between
H -free graphs with a given number n of vertices and independent sets in the eH -uniform
hypergraph H whose vertex set is E.Kn/, the edge set of the complete graph with n ver-
tices, and whose edges are the edge sets of all copies ofH found inKn. Second, classical
results in extremal graph theory provide very precise and explicit descriptions of graphs
with few copies of H , which correspond to the containers for independent sets of H .
Third, the bounds for the number of containers given by [9, 47] are essentially optimal,
which allows one to deduce many best possible estimates on the number ofH -free graphs
with given numbers of vertices and edges and describe their typical structure.

The container theorems can also be used to enumerate graphs with no induced copy
ofH . In fact, this was already done by Saxton and Thomason in their original paper [47],
where they obtained (implicitly) upper bounds on jF ind

n .H/j for allH . One way to phrase
this problem in the language of independent sets is to consider the hypergraph H whose
vertex set is E.Kn/ � ¹0; 1º and whose edges are

(i) all the
�
vH

2

�
-element sets of the form E � ¹1º [ .

�
W
2

�
n E/ � ¹0º, where W ranges

over all vH -element sets of vertices of Kn and E is the subset of
�
W
2

�
covered by

E.H/ in one of the vH Š=jAut.H/j non-isomorphic embeddings of H into W ;

(ii) all the
�
n
2

�
pairs ¹.e; 0/; .e; 1/º, where e ranges over all edges of Kn.

One can see that n-vertex graphs with no induced copy of H are in a natural one-to-
one correspondence with the independent sets of H with

�
n
2

�
elements. Even though the

container theorems may be applied only to uniform hypergraphs, since one is usually
interested in upper bounds, one may disregard the 2-uniform edges of type (ii) and con-
struct containers for independent sets of the resulting smaller

�
vH

2

�
-uniform hypergraph,

which clearly include all independent sets of the original hypergraph.
One soon realises that the above approach is somewhat flawed when one is interested

in the family F ind
n;m.H/ whenever m is either very small or very close to

�
n
2

�
and H is
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neither complete nor empty. This is because the original container theorems completely
disregard the obvious asymmetry between the edges and the non-edges of H in each of
the

�
vH

2

�
-uniform edges of H . As a result, one cannot expect to deduce optimal bounds on

jF ind
n;m.H/j for all m using this approach. Our main motivation for this work is to address

this issue.
Departing somewhat from the language of independent sets, we shall regard a graph

G � Kn as the characteristic function hG W E.Kn/ ! ¹0; 1º of its edge set; that is,
hG.e/ D 1 if e 2 E.G/ and hG.e/ D 0 otherwise. The family F ind

n .H/, viewed as a
set of functions hWE.Kn/! ¹0; 1º, may be described by a set of constraints of the form

:
�
hjE � 1 ^ hj.W

2 /nE
� 0

�
:

In other words, a function h 2 F ind
n .H/ cannot simultaneously map all elements ofE to 1

and all elements of
�
W
2

�
n E to 0, for any W � V.Kn/ with jW j D vH and any E that is

the edge set of an embedding of H into W .
There is nothing special here about the family F ind

n .H/ or the set E.Kn/. Therefore,
for the remainder of this discussion, we shall replaceE.Kn/ with an arbitrary finite set V ,
let H be an arbitrary family of pairs of disjoint subsets of V , and let

F .H / WD
®
h 2 ¹0; 1ºV W :.hjA0

� 0 ^ hjA1
� 1/ for all .A0; A1/ 2 H

¯
:

In other words, one obtains the family F .H / from ¹0; 1ºV by discarding all hW V !
¹0; 1º that map each element of A0 to 0 and each element of A1 to 1 for some pair
.A0;A1/ 2H . We shall informally refer to these pairs of sets as constraints and say that h
violates (resp. satisfies) a constraint .A0;A1/ if hmaps (resp. does not map) each element
of A0 to 0 and each element of A1 to 1. Finally, let us note here for future reference that
according to the above definition, F .H / is empty whenever H contains the pair .;; ;/;
in other words, every function violates the ‘empty’ constraint .;;;/.

The container theorems imply that if such a family H contains only pairs .A0; A1/
with a given value of jA0j C jA1j and the sets A0 [ A1 are distributed somewhat uni-
formly, then there is a small family C of partitions V D V0 [ V1 [ V� such that

F .H / �
[

.V0;V1;V�/2C

¹0ºV0 � ¹1ºV1 � ¹0; 1ºV�

and, importantly, every function in each of the cylinders ¹0ºV0 � ¹1ºV1 � ¹0; 1ºV� violates
only few constraints in H . In particular, one does not allow a trivial covering of F .H /

with ¹0; 1ºV , which corresponds to V� D V . Roughly speaking, we might say that F .H /

may be ‘tightly’ covered by a small family of cylinders.
In this work, we take a refined approach to this covering problem. We shall build

families of containers that are tailored to the subfamily of all h 2 F .H / that attain the
values 0 and 1 given numbers of times, unlike in previous works. More precisely, for each
integer m with 0 6 m 6 jV j, we shall consider the subfamily Fm.H / � F .H / defined
by

Fm.H / WD ¹h 2 F .H / W jh�1.1/j D mº

and build a family of containers for the elements of Fm.H / only.
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We shall focus our attention on families F .H / determined by collections H of con-
straints that are uniform in the sense that each .A0; A1/ 2 H satisfies jA0j D k0 and
jA1j D k1 for some fixed integers k0 and k1. We shall refer to such collections H

as .k0; k1/-uniform hypergraphs. In standard applications of the container method this
should not be a huge restriction, provided that we are only interested in constraints of
bounded size, that is, pairs .A0; A1/ where jA0j C jA1j is bounded from above by a con-
stant. Indeed, given a non-uniform family of constraints of bounded size, we may restrict
our attention to the ‘densest’ .k0; k1/-uniform hypergraph that is contained in the family,
losing only some constant factors. In fact, this is precisely what we are going to do in our
proof of Theorem 1.2.

For a .k0; k1/-uniform hypergraph H and two disjoint sets T0 and T1, we define

degH .T0; T1/ WD j¹.A0; A1/ 2 H W T0 � A0 and T1 � A1ºj:

Furthermore, for each pair of integers .`0; `1/, we let

�.`0;`1/.H / WD max ¹degH .T0; T1/ W T0; T1 � V with jT0j D `0 and jT1j D `1º:

Abusing notation somewhat, we shall identify a partition V D V0 [ V1 [ V� with the
cylinder ¹0ºV0 � ¹1ºV1 � ¹0;1ºV� and the function aWV.H /!¹0;1;�º defined by a�1.x/
D Vx for each x 2 ¹0; 1; �º. In particular, a function hW V.H /! ¹0; 1º belongs to the
cylinder aW V.H /! ¹0; 1; �º if h.v/ D a.v/ for all v 2 V.H / such that a.v/ ¤ �. In
other words, h.v/ is forced to equal a.v/ unless a.v/ D �, in which case h.v/ can be
either 0 or 1.

We are now ready to state the main result of this paper, an asymmetric container
theorem. In the statement, F6m.H / is a shorthand for

Sm
m0D0 Fm0.H /.

Theorem 1.4. For all integers k0; k1 > 0, not both zero, and each K > 0, the following
holds. Suppose that H is a non-empty .k0; k1/-uniform hypergraph and b, m, and r are
integers satisfying

�.`0;`1/.H / 6 K �
b`0C`1�1

m`0 � v.H /`1
� e.H / �

�
m

r

�1Œ`0>0�

(1)

for every pair .`0; `1/ 2 ¹0; : : : ; k0º � ¹0; : : : ; k1º with .`0; `1/ ¤ .0; 0/. Then there exist
a family � �

�
V.H/
6k0b

�
�
�
V.H/
6k1b

�
and functions f W � ! ¹0; 1;�ºV.H/ and gWF6m.H /! �

such that, letting ı WD 2�.k0Ck1/.k0Ck1C1/K�1:

(a) Every h 2 F6m.H / belongs to the cylinder f .g.h//.

(b) Either jf .S/�1.0/j > ıv.H / or jf .S/�1.1/j > ır for every S 2 �; moreover, the
former can hold only if k1 > 0 and the latter can hold only if k0 > 0.

(c) If g.h/ D .S0; S1/ for some h 2 F6m.H /, then S0 � h�1.0/ and S1 � h�1.1/.

(d) For every S1 2
�
V.H/
6k1b

�
there are at most

�
mCb
6b

�k0 sets S0 2
�
V.H/
6k0b

�
with .S0; S1/ 2 � .
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Yet another rephrasing of condition (a) is that whenever g.h/ D S , then h is forced
to take the value 0 on f .S/�1.0/ and it is forced to take the value 1 on f .S/�1.1/.
Note the asymmetry between the guaranteed lower bounds on the cardinalities of the sets
f .S/�1.0/ and f .S/�1.1/ in (b). Roughly speaking, we are equally satisfied with (i) con-
tainers forcing our function h to take the value 0 on a positive proportion of V.H /

and (ii) containers forcing our function to take the value 1 only on some ır elements
of V.H /. Condition (c) states that for every h 2 F6m.H /, the value of g.h/ is ‘consis-
tent’ with h, so S1 � h�1.1/, whereas condition (d) further restricts the number of choices
for S0. These additional properties of the function g will not be used in our application
of the theorem to enumerating F ind

n;m.C4/. However, we state them here as the analogue
of property (c) in the original container theorems was crucial in avoiding superfluous log-
arithmic factors in many applications of the container method, and (d) is essential in the
proof of Theorem 6.2 (b). Finally, let us point out here that we shall be allowing all of
our hypergraphs to contain edges with multiplicities greater than 1. In particular, both e.�/
and degH .�; �/ count edges with their multiplicities.

A reader who is familiar with the container method might notice that by setting
r DmD v.H / in Theorem 1.4, one recovers the statement of the original container theo-
rem [9, Proposition 3.1] in the somewhat more general context of .k0; k1/-uniform hyper-
graphs. To illustrate the ‘asymmetry’ in Theorem 1.4, we need to assume thatm� v.H /.
For brevity, let N D v.H / and consider two cylinders, described by the following two
partitions of V.H /:

(i) V.H / D V0 [ V1 [ V�, where jV0j D ıN and V1 D ;,

(ii) V.H / D V 00 [ V
0
1 [ V

0
�, where V 00 D ; and jV 01j D ır .

Observe that the cylinder described in (i) contains at most
�
.1�ı/N
m

�
functions from

Fm.H /, whereas the one in (ii) contains at most
�
N�ır
m�ır

�
functions from Fm.H /. Assume

that r � m� N . Since�
.1 � ı/N

m

�
� .1 � ı/m �

�
N

m

�
and

�
N � ır

m � ır

�
�

�
m

N

�ır�
N

m

�
;

then both cylinders will have equal volume3 when r � m=log.N=m/� m. On the other
hand, when r�m�N , then the assumptions on the maximum degrees of H stated in (1)
are weaker by a factor of .N

m
/`0 � .m

r
/1Œ`0>0� when compared to the original container

theorems (see [9, Proposition 3.1]). This allows one to choose a smaller b, which results
in a smaller family of containers.

As we believe that having a trade-off between the upper bound on the size of contain-
ers for independent sets in a hypergraph H and the upper bounds on maximum degrees
�`.H / can be useful in other applications of the container method, we conclude this
section with a sharpening of the original container theorems, [9, Proposition 3.1] and

3By the volume of a cylinder ¹0ºV0 � ¹1ºV1 � ¹0; 1ºV� , we will mean the number of functions
hWV.H /! ¹0; 1º, with jh�1.1/j D m, that are contained in the cylinder, that is,

� jV�j
m�jV1j

�
.
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[47, Theorem 3.4], that follows easily from Theorem 1.4. We write I.H / for the family
of independent sets of H , and �`.H / for the largest number of edges of H that contain
a particular `-element subset of V.H /.

Theorem 1.5. Suppose that positive integers b, k, and r and a non-empty k-uniform
hypergraph H satisfy

�`.H / 6
�

b

v.H /

�`�1
e.H /

r
(2)

for every ` 2 ¹1; : : : ; kº. Then there exist a family � �
�
V.H/
6kb

�
and functions f W � !

P .V .H // and gW I.H /! � such that, for every I 2 I.H /,

g.I / � I � f .g.I // and jf .g.I //j 6 v.H / � ır;

where ı D 2�k.kC1/.

To obtain Theorem 1.5, we simply apply Theorem 1.4 to the .0; k/-uniform hyper-
graph with the same vertex set as H whose edges are all pairs .;; A/ such that A is an
edge of H . We shall spell out a few more details at the end of Section 2.

1.3. Robust balanced stability for induced C4s

In order to determine the structure of a typical graph in F ind
n;m.C4/ using the container

method, we ought to characterise all containers whose volume is (close to) the largest pos-
sible. Our containers for F ind

n;m.C4/ will be cylinders in ¹0; 1ºE.Kn/ that correspond to par-
titions E.Kn/D E0 [E1 [E� with the following property: There are only few 4-vertex
subsets ¹v1; v2; v3; v4º such that v1v2; v3v4 2 E0 [ E� and v1v3; v1v4; v2v3; v2v4 2
E1 [E�. Each such set ¹v1; v2; v3; v4º induces a copy of C4 in some graph described by
the partitionE.Kn/DE0 [E1 [E�.4 Since we are interested only in graphs with exactly
m edges, the volume of a container is simply the number of graphs with m edges that this
cylinder contains, that is,

�
jE�j

m�jE1j

�
. The precise statements of our results are rather tech-

nical, but roughly speaking we show that each container whose volume is close to largest
possible has the following structure: the graph E1 contains an ‘almost complete’ graph
with vertex set W , and most edges in E� have an endpoint in W .

To avoid excessive use of indices, we shall view partitions ofE.Kn/ of the above type
as partial two-colourings of the edges of Kn that we shall call pregraphs. More precisely,
by a pregraph P of E.Kn/ we will mean a pair .M;E/ of disjoint subsets of E.Kn/. We
shall refer to the elements of the set E as edges and the elements of the set M as mixed
edges.5 A good copy of C4 in P is a copy of C4 in M whose vertex set is independent
in E. Note that each good copy of C4 corresponds to a set ¹v1; v2; v3; v4º described in
the previous paragraph (but not vice versa). This means, in particular, that the pregraph

4These are all G such that E1 � E.G/ � E1 [E� and E0 � E.Kn/ nE.G/ � E0 [E�.
5The sets E and M correspond to the sets E1 and E� above, respectively.
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corresponding to each container contains only few good copies of C4. We shall therefore
restrict our attention to characterising pregraphs with few good copies of C4. As we will
later see, a sufficiently precise and useful characterisation of containers can be derived
from a robust stability theorem for pregraphs, which we state here in an abbreviated form;
for the full statement, we refer the reader to Section 3. We will say that a graph G is
"-close to K` if one can transform G into K` by adding or deleting at most "

�
`
2

�
edges.

Theorem 1.6. For every " > 0, there exist positive constants C , ı, and ˇ such that the
following holds for all integers ` and n with ` > C

p
n. Let P D .M;E/ be a pregraph

on n vertices with

jEj 6
�
`

2

�
and jM j > .1 � ı/`n:

Then either E is "-close to K` or P contains at least ˇ`4 good copies of C4.

Observe that Theorem 1.6 provides a structural characterisation of all those pregraphs
.M; E/ on n vertices with jEj 6

�
`
2

�
and jM j > .1 � o.1//`n for some ` �

p
n that

contain only o.`4/ good copies of C4. For each such pregraph .M; E/, there is a set U
of ` vertices on whichE is almost complete. Moreover, all but o.`n/mixed edges have an
endpoint in U . Indeed, if some �.`n/ mixed edges did not have an endpoint in U , then
Theorem 1.6 applied to the pregraph induced by the complement of U would produce
�.`4/ good copies of C4.

1.4. Organisation of the paper

The rest of the paper is organised as follows. First, in Section 2, we prove the asymmetric
container lemma; then, in Section 3, we prove Theorem 1.6. In Section 4 we prove the
lower bounds in Theorem 1.2, and in Section 5 we complete the proof of Theorem 1.2
and Corollary 1.3. Finally, in Section 6, we discuss some open questions and further
applications of the asymmetric container lemma.

2. The proof of the asymmetric container lemma

2.1. Proof outline

Our proof of Theorem 1.4 follows the general strategy of [9]. Namely, we construct a
function f �WF .H /! ¹0; 1;�ºV.H/ that satisfies the following two conditions for every
h 2 F .H /. Writing f �

h
as a shorthand for f �.h/, the two conditions are:

(a) h belongs to the cylinder f �
h

,

(b) j.f �
h
/�1.0/j > ıv.H / or j.f �

h
/�1.1/j > ır ;

cf. (a) and (b) in the statement of Theorem 1.4. Crucially, the function f � takes only
at most

�
mCb
6b

�
k0
�
v.H/
6k1b

�
different values. This last property is a consequence of the fact

that the algorithmic construction of f � can be encoded as a sequence of decisions that
naturally correspond to a pair .S0; S1/ of subsets of V.H / containing at most k0b and
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k1b elements, respectively, and of the fact that jh�1.1/j 6 m, which further restricts the
number of choices for the set S0. In particular, we shall obtain the implicit decomposition
f � D f ı g promised in Theorem 1.4.

The function f � is constructed by an algorithm that operates in a sequence of at most
k0 C k1 � 1 rounds. At the beginning of each round, we are given an .i0; i1/-uniform
hypergraph G with the same vertex set as H and such that h 2 F .G /; at the beginning
of the first round, .i0; i1/ D .k0; k1/ and G D H . We let .i 00; i

0
1/ D .i0; i1 � 1/ if i1 > 0

and let .i 00; i
0
1/ D .i0 � 1; i1/ D .i0 � 1; 0/ otherwise. By the end of the round, we will

have either (i) defined a function f �
h
WV.H /! ¹0; 1;�º satisfying both (a) and (b) above,

or (ii) constructed an .i 00; i
0
1/-uniform hypergraph G � with V.G �/ D V.H / and such that

h 2 F .G �/ whose maximum degrees satisfy conditions akin to the conditions on the
maximum degrees of H given by (1). This is achieved in the following way.

We start with G � empty and f �
h
� �. We set c D 1 if i1 > 0 and c D 0 otherwise, so

i 0c D ic � 1. Our algorithm considers a sequence of questions of the form ‘Is h.v/D c?’ for
some carefully chosen (sequence of) vertices v 2 V.H /. If the answer is YES, then we set
f �
h
.v/ D c and, more importantly, we add new .i 00; i

0
1/-uniform constraints to G � in the

following way. As h.v/ D c, if h satisfies a constraint6 .A0; A1/ with v 2 Ac , then it also
satisfies the constraint .A00; A

0
1/ defined by A0c WD Ac n ¹vº and A01�c WD A1�c . In view

of this, for each .A0; A1/ 2 G with v 2 Ac , we add to G � the corresponding .A00; A
0
1/.

If the answer is NO, then we only set f �
h
.v/ D 1 � c. (We thus choose to ignore all the

constraints .A0; A1/ 2 G such that v 2 A1�c .) The round ends when either the number
of YES answers reaches b or if no constraints remain involving only the vertices that we
have not yet asked about. Our assumptions on the maximum degrees of the hypergraph
G imply that in the latter case j.f �

h
/�1.1 � c/j, which is the number of NO answers, is

sufficiently large (that is, at least ıv.H / if c D 1 and at least ır if c D 0). If this does
not happen (and hence the number of YES answers reaches b), then we shall be able to
show that the hypergraph G �, which we have created based on the YES answers, contains
a subhypergraph with sufficiently many edges and whose maximum degrees satisfy the
required conditions. In this case, we update G  G � and .i0; i1/ .i 00; i

0
1/ and proceed

to the next round.
Since, as noted before, no function satisfies the empty constraint .;;;/, it follows that

in the round when i0 C i1 D 1, no YES answers can be given. (Otherwise, a non-empty
.0; 0/-uniform hypergraph G � with h 2 F .G �/ would be constructed.) In particular, the
function f �

h
will have to be defined in this round, provided that the algorithm reaches it.

Even though the sequence of values of c that we choose (i.e., we let c D 1 as long
as i1 is not yet zero) may seem somewhat arbitrary, it has a very important consequence.
Namely, if G is an .i0; 0/-uniform hypergraph with V.G /D V.H / and h 2 F6m.G /, then
the set h�1.1/, which has at most m elements, has to intersect A0 for each .A0; ;/ 2 G .

6Recall from Section 1.2 that h satisfies the constraint .A0; A1/ if and only if f does not
simultaneously take only the value 0 on A0 and only the value 1 on A1; equivalently, f either takes
the value 1 on some element of A0 or the value 0 on some element of A1.
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This implies that�.1;0/.G /> e.G /=m, which is much larger than the average degree of G

when m � v.H /. This simple observation is the reason why restricting to the family
F6m.H / allows us to create a smaller family of containers.

Finally, since each of the questions asked by the algorithm is a YES/NO question, we
may encode the execution of the algorithm, and thus also the function f �, as a set of at
most .k0 C k1 � 1/ � b vertices for which the answer was YES.

We conclude this outline with an important technical remark. Throughout this section
we allow all of our hypergraphs to contain edges with multiplicities greater than 1. More-
over, when computing various degrees deg.�; �/ or cardinalities e.�/ of the edge sets of
various hypergraphs, we shall always count edges with multiplicities. As first discovered
by Saxton and Thomason in [47] and later reiterated in [9], this seemingly insignificant
detail has far-reaching consequences in both the statement and the proof of the container
theorems.

2.2. Setup

Let k0 and k1 be non-negative integers and let K be a positive real. Let b, m, and r
be positive integers and suppose that H is a .k0; k1/-uniform hypergraph satisfying (1)
for every pair .`0; `1/ as in the statement of Theorem 1.4. We claim that without loss
of generality we may assume that b 6 m 6 v.H /. Indeed, if m > v.H /, then we may
replace m with v.H / as F6m � F .H / D F6v.H/.H / and the right-hand side of (1) is a
non-increasing function of m. If b > v.H / > m, then we may replace b with v.H /. This
is because

�
V.H/
6kib

�
D
�
V.H/

6kiv.H/

�
and

�
mCv.H/
v.H/

�
> 2v.H/, and the assumed upper bounds on

the maximum degrees of H remain true even after we replace b with v.H /. Indeed, if
`0 > 0, then for every `1 2 ¹0; : : : ; k1º,

�.`0;`1/.H / 6 �.1;0/.H / 6 K �
e.H /

r
6 K �

v.H /`0C`1�1

r �m`0�1 � v.H /`1
� e.H /;

as v.H / > m, and if `0 D 0, then for every `1 2 ¹1; : : : ; k1º,

�.0;`1/.H / 6 �.0;1/.H / 6 K �
e.H /

v.H /
D K �

v.H /`1�1

v.H /`1
� e.H /:

Finally, if v.H / > b > m, then we may replacem with b, since F6m.H / � F6b.H /, the
bound on �.0;`1/.H / in (1) does not depend on m, and if `0 > 0, then

�.`0;`1/.H / 6 �.1;`1/.H / 6 K �
b`1

r � v.H /`1
� e.H / D K �

b`0C`1�1

r � b`0�1 � v.H /`1
� e.H /

for every `1 2 ¹0; : : : ; k1º.
We shall be working only with hypergraphs whose uniformities come from the set

U WD ¹.1; 0/; .2; 0/; : : : ; .k0; 0/; .k0; 1/; : : : ; .k0; k1/º n ¹.0; 0/º:

We now define a collection of numbers that will be upper bounds on the maximum degrees
of the hypergraphs constructed by our algorithm. To be more precise, for each .i0; i1/ 2U
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and all .`0; `1/, we shall force the maximum .`0; `1/-degree of the .i0; i1/-uniform hyper-
graph not to exceed the quantity �.i0;i1/

.`0;`1/
, defined as follows.

Definition 2.1. For every .i0; i1/ 2U and every .`0; `1/ 2 ¹0; : : : ; i0º � ¹0; : : : ; i1º with
.`0; `1/ ¤ .0; 0/, we define the number �.i0;i1/

.`0;`1/
using the following recursion:

(1) Set �.k0;k1/

.`0;`1/
WD �.`0;`1/.H / for all .`0; `1/ 2 ¹0; : : : ; k0º � ¹0; : : : ; k1º n ¹.0; 0/º.

(2) If i0 D k0 and 0 6 i1 < k1, then

�
.i0;i1/

.`0;`1/
WD max

²
2 ��

.i0;i1C1/

.`0;`1C1/
;

b

v.H /
��

.i0;i1C1/

.`0;`1/

³
:

(3) If 0 < i0 < k0 and i1 D 0, then

�
.i0;i1/

.`0;`1/
WD max

²
2 ��

.i0C1;i1/

.`0C1;`1/
;
b

m
��

.i0C1;i1/

.`0;`1/

³
:

The above recursive definition will be convenient in some parts of our analysis. In
other parts, we shall require the following explicit formula for �.i0;i1/

.`0;`1/
, which one easily

derives from Definition 2.1 using a straightforward induction on k0 C k1 � i0 � i1.

Observation 2.2. For all i0, i1, `0, and `1 as in Definition 2.1,

�
.i0;i1/

.`0;`1/

Dmax
²
2d0Cd1

�
b

v.H /

�k1�i1�d1
�
b

m

�k0�i0�d0

�.`0Cd0;`1Cd1/.H / W 06 dj 6 kj � ij
³
:

For future reference, we note the following two simple corollaries of Observation 2.2
and our assumptions on the maximum degrees of H (see (1)). Suppose that .i0; i1/ 2 U.
If i1 > 0, then necessarily i0 D k0 and hence

�
.i0;i1/

.0;1/
6 max

²
2d1

�
b

v.H /

�k1�i1�d1

K �
bd1

v.H /d1C1
� e.H / W 0 6 d1 6 k1 � i1

³
6 2k1K

�
b

v.H /

�k1�i1 e.H /

v.H /
D 2k1K

�
b

v.H /

�k1�i1
�
b

m

�k0�i0 e.H /

v.H /
: (3)

Moreover, if i0 > 0 then

�
.i0;i1/

.1;0/
6 max

²
2d0Cd1

�
b

v.H /

�k1�i1�d1
�
b

m

�k0�i0�d0

K �
bd0Cd1

md0 � v.H /d1
�
e.H /

r

³
6 2k0Ck1K

�
b

v.H /

�k1�i1
�
b

m

�k0�i0 e.H /

r
; (4)

where the maximum is over all pairs .d0; d1/ of integers satisfying 0 6 dj 6 kj � ij .

Definition 2.3. Given .i0; i1/ 2 U, .`0; `1/ 2 ¹0; : : : ; i0º � ¹0; : : : ; i1º with .`0; `1/ ¤
.0; 0/, and an .i0; i1/-uniform hypergraph G , we define

M
.i0;i1/

.`0;`1/
.G / D

²
.T0; T1/ 2

�
V.G /

`0

�
�

�
V.G /

`1

�
W degG .T0; T1/ >

1

2
��

.i0;i1/

.`0;`1/

³
:
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Finally, let us say that c 2 ¹0; 1º is compatible with .i0; i1/ 2 U if the unique pair
.i 00; i

0
1/ 2U[ ¹.0; 0/º with i 00 C i

0
1 D i0 C i1 � 1 satisfies i 0c D ic � 1 (and i 01�c D i1�c).

By the definition of U, it follows that 1 is compatible with .i0; i1/ 2 U if and only if
i1 > 0.

2.3. The algorithm

We shall now define precisely a single round of the algorithm that we described informally
in Section 2.1. To this end, fix some .i0; i1/ 2 U and a compatible c 2 ¹0; 1º and (as in
the definition of a compatible c) set

i 0c D ic � 1 and i 01�c D i1�c : (5)

Suppose that G is an .i0; i1/-uniform hypergraph with V.G / D V.H /. A single round
of the algorithm takes as input an arbitrary h 2 F .G / and outputs an .i 00; i

0
1/-uniform

hypergraph G � satisfying V.G �/D V.G / and h 2 F .G �/ as well as a set of vertices of G

on which h takes the value c at most b times. We will show that the number of possible
outputs of a single round of the algorithm (over all possible input functions h 2 F .G /) is
at most

�
v.H/
6b

�
; we will moreover argue that the number of possible outputs when c D 0

is no more than
�
mCb
6b

�
.

Assume that there is an implicit linear order 4 on V.G /. The c-maximum vertex of a
hypergraph A with V.A/ D V.G / is the 4-smallest vertex among those v that maximise
j¹.A0; A1/ 2 A W v 2 Acºj.

The algorithm. Set A.0/ WD G , let S be the empty set, and let G
.0/
� be the empty .i 00; i

0
1/-

uniform hypergraph on V.G /. Do the following for each integer j > 0 in turn:

(S1) If jS j D b or A.j / is empty, then set J WD j and STOP.

(S2) Let vj be the c-maximum vertex of A.j /.

(S3) If h.vj / D c, then add j to the set S and let

G .jC1/� WD G .j /� [
®
.A0 n ¹vj º; A1 n ¹vj º/ W .A0; A1/ 2 A.j / and vj 2 Ac

¯
:

(S4) Let A.jC1/ be the hypergraph obtained from A.j / by removing from it all pairs
.A0; A1/ such that either of the following hold:

(a) vj 2 Ac ;

(b) there exist T0 � A0 and T1 � A1, not both empty, such that

.T0; T1/ 2M
.i 0

0
;i 0

1
/

.`0;`1/
.G .jC1/� /

for some `0 2 ¹0; : : : ; i 00º and `1 2 ¹0; : : : ; i 01º.

Finally, set A WD A.J / and G� WD G
.J /
� . Moreover, set

W WD ¹0; : : : ; J � 1º n S D
®
j 2 ¹0; : : : ; J � 1º W h.vj / ¤ c

¯
:
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Observe that the algorithm always stops after at most v.G / iterations of the main loop.
Indeed, since all constraints .A0; A1/ with vj 2 Ac are removed from A.jC1/ in part (a)
of step (S4), the vertex vj cannot be the c-maximum vertex of any A.j 0/ with j 0 > j and
hence the map ¹0; : : : ; J � 1º 3 j 7! vj 2 V.G / is injective.

2.4. The analysis

We shall now establish some basic properties of the algorithm described in the previous
subsection. To this end, let us fix some .i0; i1/ 2 U and a compatible c 2 ¹0; 1º and let
i 00 and i 01 be the numbers defined in (5). Moreover, suppose that G is an .i0; i1/-uniform
hypergraph and that we have run the algorithm with input h 2 F .G / and obtained the
.i 00; i

0
1/-uniform hypergraph G�, the integer J , the injective map ¹0; : : : ; J � 1º 3 j 7!

vj 2 V.G /, and the partition of ¹0; : : : ; J � 1º into S and W such that h.vj / D c if
and only if j 2 S . We first state three straightforward, but fundamental, properties of the
algorithm.

Observation 2.4. If h 2 F .G /, then h 2 F .G�/.

Proof. Observe that G� contains only constraints of the form:

(i) .A0 n ¹vº; A1/, where v 2 A0 and h.v/ D 0, or

(ii) .A0; A1 n ¹vº/, where v 2 A1 and h.v/ D 1,

where .A0;A1/ 2 G (see (S3)). Hence, if h violated a constraint of type (i) (resp. (ii)) then
h would also violate the constraint .A0; A1/, as h.v/ D 0 (resp. h.v/ D 1).

The next observation says that if the algorithm applied to two functions h and h0

outputs the same set ¹vj W j 2 Sº, then the rest of the output is also the same.

Observation 2.5. Suppose that the algorithm applied to h0 2 F .G / outputs a hyper-
graph G 0�, an integer J 0, a map j 7! v0j , and a partition of ¹0; : : : ; J 0 � 1º into S 0 andW 0.
If ¹vj W j 2 Sº D ¹v0j W j 2 S

0º, then G� D G 0�, J D J
0, vj D v0j for all j , and W D W 0.

Proof. The only step of the algorithm that depends on the input function h is (S3). There,
an index j is added to the set S if and only if h.vj / D c. Therefore, the execution of the
algorithm depends solely on the set ¹vj W j 2 Sº.

The third observation will imply part (d) of Theorem 1.4.

Observation 2.6. If c D 0, then jW j 6 jh�1.1/j.

Proof. This follows immediately from the definition of W , since the map j 7! vj is
injective and h.vj / D 1 for every j 2 W .

The next two lemmas will allow us to maintain suitable upper and lower bounds on the
degrees and densities of the hypergraphs obtained by applying the algorithm iteratively.
The first lemma, which is the easier of the two, states that if all the maximum degrees
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of G are appropriately bounded, then all the maximum degrees of G� are appropriately
bounded as well.

Lemma 2.7. Given .`0; `1/ 2 ¹0; : : : ; i0º � ¹0; : : : ; i1º with `0 C `1 > 2 and `c > 0, set

`0c WD `c � 1 and `01�c WD `1�c . If �.`0;`1/.G / 6 �
.i0;i1/

.`0;`1/
, then �.`0

0
;`0

1
/.G�/ 6 �

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/
.

Proof. Suppose (for a contradiction) that there exist sets T 00 and T 01, with jT 00j D `
0
0 and

jT 01j D `
0
1, such that degG�

.T 00; T
0
1/ > �

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/
. Let j be the smallest integer satisfying

deg
G

.jC1/
�

.T 00; T
0
1/ >

1

2
��

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/

and note that j > 0, since G
.0/
� is empty. We claim first that

degG�
.T 00; T

0
1/ D deg

G
.jC1/
�

.T 00; T
0
1/: (6)

Indeed, observe that .T 00; T
0
1/ 2 M

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/
.G
.jC1/
� /, and therefore the algorithm removes

from A.j / (when forming A.jC1/ in step (S4)) all pairs .A0; A1/ such that T 00 � A0 and
T 01 � A1. As a consequence, no further pairs .A00; A

0
1/ with T 00 � A

0
0 and T 01 � A

0
1 are

added to G� in step (S3).
We next claim that

deg
G

.jC1/
�

.T 00; T
0
1/ � deg

G
.j /
�
.T 00; T

0
1/ 6 �

.i0;i1/

.`0;`1/
: (7)

To see this, recall that when we extend G
.j /
� to G

.jC1/
� in step (S3), we only add pairs

.A0 n ¹vj º; A1 n ¹vj º/ such that .A0; A1/ 2 A.j / � G and vj 2 Ac . Therefore, setting
Tc D T

0
c [ ¹vj º and T1�c D T 01�c , we have

deg
G

.jC1/
�

.T 00; T
0
1/ � deg

G
.j /
�
.T 00; T

0
1/ 6 degG .T0; T1/ 6 �.`0;`1/.G / 6 �

.i0;i1/

.`0;`1/
;

where the last inequality is by our assumption, as claimed.
Combining (6) and (7), it follows immediately that

degG�
.T 00; T

0
1/ 6

1

2
��

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/
C�

.i0;i1/

.`0;`1/
6 �

.i 0
0
;i 0

1
/

.`0
0
;`0

1
/
;

where the final inequality holds by Definition 2.1. This contradicts our choice of .T 00; T
0
1/

and therefore the lemma follows.

We are now ready for our final lemma, which is really the heart of the matter. We
will show that if G has sufficiently many edges and all of the maximum degrees of G are
appropriately bounded, then either the output hypergraph G� has sufficiently many edges
or the value of h.v/ will be determined for sufficiently many vertices v. We remark that
here we shall use the assumption that h takes the value 1 at most m times.
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Lemma 2.8. Suppose that jh�1.1/j 6 m and let ˛ > 0. If

(A1) e.G / > ˛ � . b
v.H/

/k1�i1. b
m
/k0�i0e.H /,

(A2) �.`0;`1/.G / 6 �
.i0;i1/

.`0;`1/
for every .0; 0/ ¤ .`0; `1/ 2 ¹0; : : : ; i0º � ¹0; : : : ; i1º,

then at least one of the following statements is true:

(P1) e.G�/ > 2�i0�i1�1˛ � . b
v.H/

/k1�i
0
1. b
m
/k0�i

0
0e.H /.

(P2) c D 1 and jW j > 2�k1�1K�1˛ � v.H /.

(P3) c D 0 and jW j > 2�k0�k1�1K�1˛ � r .

Proof. Suppose first that c D 0 and observe that7

e.G�/ D
X
j2S

�
e.G .jC1/� / � e.G .j /� /

�
D

X
j2S

degA.j /.¹vj º;;/; (8)

since e.G .jC1/� /� e.G
.j /
� /D degA.j /.¹vj º;;/ for each j 2 S and G

.jC1/
� D G

.j /
� for each

j 62 S . To bound the right-hand side of (8), we count the edges removed from A.j / in (a)
and (b) of step (S4), which gives

e.A.j // � e.A.jC1// 6 degA.j /.¹vj º;;/

C

X
.`0;`1/

ˇ̌
M
.i 0

0
;i 0

1
/

.`0;`1/
.G .jC1/� / nM

.i 0
0
;i 0

1
/

.`0;`1/
.G .j /� /

ˇ̌
��.`0;`1/.G /:

Summing over j 2 ¹0; : : : ; J � 1º, it follows (using (8)) that

e.G / � e.A/ 6 e.G�/C jW j ��.1;0/.G /C
X
.`0;`1/

ˇ̌
M
.i 0

0
;i 0

1
/

.`0;`1/
.G�/

ˇ̌
��

.i0;i1/

.`0;`1/
;

since ADA.J / � � � � �A.0/ D G and�.`0;`1/.G / 6�
.i0;i1/

.`0;`1/
by (A2). Observe also that

if c D 1, then we obtain an identical bound, with �.1;0/.G / replaced by �.0;1/.G /.
In order to discuss both cases simultaneously, we set �.0/ D .1; 0/ and �.1/ D .0; 1/.

Observe that
��.c/.A/ 6 ��.c/.A

.j // 6 ��.c/.G / 6 �
.i0;i1/

�.c/
; (9)

since A � A.j / � G and G satisfies (A2). It follows that, for both c 2 ¹0; 1º,

e.G / � e.A/ 6 e.G�/C jW j ��
.i0;i1/

�.c/
C

X
.`0;`1/

ˇ̌
M
.i 0

0
;i 0

1
/

.`0;`1/
.G�/

ˇ̌
��

.i0;i1/

.`0;`1/
: (10)

Now, recall that vj is the c-maximum vertex of A.j / and observe that therefore, by (8)
and (9),

e.G�/ D
X
j2S

��.c/.A
.j // > jS j ���.c/.A/ D b ���.c/.A/; (11)

where the equality is due to the fact that jS j ¤ b only when A is empty (see step (S1)).

7Recall that G� (and G
.j /
� etc.) are multi-hypergraphs and that edges are counted with multi-

plicity.
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Next, to bound the sum in (10), observe that, by Definition 2.3, we haveˇ̌
M
.i 0

0
;i 0

1
/

.`0;`1/
.G�/

ˇ̌
�
1

2
��

.i 0
0
;i 0

1
/

.`0;`1/
6

X
.T0;T1/2.V.G /

`0
/�.V.G /

`1
/

degG�
.T0; T1/D

�
i 00
`0

��
i 01
`1

�
� e.G�/

for each .`0; `1/ and thereforeX
.`0;`1/

ˇ̌
M
.i 0

0
;i 0

1
/

.`0;`1/
.G�/

ˇ̌
��

.i0;i1/

.`0;`1/
6 2 �

X
.`0;`1/

�
i 00
`0

��
i 01
`1

�
� e.G�/ �

�
�
.i0;i1/

.`0;`1/
=�

.i 0
0
;i 0

1
/

.`0;`1/

�
6 2 � .2i

0
0
Ci 0

1 � 1/ � e.G�/ � max
.`0;`1/

®
�
.i0;i1/

.`0;`1/
=�

.i 0
0
;i 0

1
/

.`0;`1/

¯
: (12)

We claim that�.i0;i1/
.`0;`1/

=�
.i 0

0
;i 0

1
/

.`0;`1/
6m=b if c D 0 and�.i0;i1/

.`0;`1/
=�

.i 0
0
;i 0

1
/

.`0;`1/
6 v.H /=b if c D 1.

Indeed, both inequalities follow directly from Definition 2.1, since if cD 0, then .i 00; i
0
1/D

.i0 � 1; i1/, and if c D 1, then .i 00; i
0
1/ D .i0; i1 � 1/. We split the remainder of the proof

into two cases, depending on the value of c.
Suppose first that c D 1 and observe that substituting (12) into (10) yields, using the

bound �.i0;i1/
.`0;`1/

=�
.i 0

0
;i 0

1
/

.`0;`1/
6 v.H /=b,

e.G / � e.A/ 6 e.G�/C jW j ��
.i0;i1/

.0;1/
C 2 � .2i

0
0
Ci 0

1 � 1/ � e.G�/ �
v.H /

b
: (13)

Moreover, by (11), and since i1 > 1 when c D 1, we have

e.G�/

b
> �.0;1/.A/ >

i1 � e.A/

v.A/
>
e.A/

v.H /
; (14)

since the maximum degree of a hypergraph is at least as large as its average degree.
Combining (13) and (14), we obtain

e.G / 6 e.G�/ �
v.H /

b
�

�
b

v.H /
C 1C 2i

0
0
Ci 0

1
C1
� 2

�
C jW j ��

.i0;i1/

.0;1/

6 e.G�/ �
v.H /

b
� 2i0Ci1 C jW j ��

.i0;i1/

.0;1/
; (15)

since b 6 v.H /. Now, if the first summand on the right-hand side of (15) exceeds e.G /=2,
then (A1) implies (P1), since .i 00; i

0
1/ D .i0; i1 � 1/. Otherwise, the second summand is at

least e.G /=2 and by (A1) and (3),

jW j >
e.G /

2 ��
.i0;i1/

.0;1/

>
˛

2k1C1K
� v.H /;

which is (P2).
The case c D 0 is slightly more delicate; in particular, we will finally use our assump-

tion that jh�1.1/j 6 m. Observe first that if c D 0, then substituting (12) into (10) yields,

using the bound �.i0;i1/
.`0;`1/

=�
.i 0

0
;i 0

1
/

.`0;`1/
6 m=b,

e.G / � e.A/ 6 e.G�/C jW j ��
.i0;i1/

.1;0/
C .2i0Ci1 � 2/ � e.G�/ �

m

b
(16)
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(cf. (13)). We claim that
e.G�/

b
> �.1;0/.A/ >

e.A/

m
: (17)

The first inequality follows from (11), so we only need to prove the second inequality. To
do so, observe that G is an .i0; 0/-uniform hypergraph (since c D 0) and therefore each
function in F .G / must take the value 1 on at least one element of each set A0 such that
.A0;;/ 2 G . Now, recall that h 2 F .G /, that A � G , and that h takes the value 1 at most
m times. It follows that e.A/ 6 m ��.1;0/.A/, as claimed.

Combining (16) and (17), we obtain (cf. (15))

e.G / 6 e.G�/ �
m

b
�

�
b

m
C 1C 2i0Ci1 � 2

�
C jW j ��

.i0;i1/

.1;0/

6 e.G�/ �
m

b
� 2i0Ci1 C jW j ��

.i0;i1/

.1;0/
; (18)

since b 6 m. Now, if the first summand on the right-hand side of (15) exceeds e.G /=2,
then (A1) implies (P1), since .i 00; i

0
1/ D .i0 � 1; i1/. Otherwise, the second summand is at

least e.G /=2 and by (A1) and (4),

jW j >
e.G /

2 ��
.i0;i1/

.1;0/

>
˛

2k0Ck1C1K
� r;

which is (P3).

2.5. Construction of the container

In this section, we present the construction of containers for functions in F6m.H / and
analyse their properties, thus proving Theorem 1.4. For each s 2 ¹0; : : : ; k0 C k1º, define

˛s D 2
�s.k0Ck1C1/ and ˇs D ˛s �

�
b

v.H /

�min ¹k1;sº
�
b

m

�max ¹0;s�k1º

:

Given an h2F6m.H /, we construct the container f �
h

for h using the following procedure.

Construction of the container. Let H .k0;k1/ D H , let S0 D S1 D ;, and let .i0; i1/ D
.k0; k1/. Do the following for s D 0; : : : ; k0 C k1 � 1:

(C1) Let c 2 ¹0; 1º be the number that is compatible with .i0; i1/ and let .i 00; i
0
1/ be the

pair defined by i 0c D ic � 1 and i 01�c D i1�c .

(C2) Run the algorithm with G  H .i0;i1/ to obtain the .i 00; i
0
1/-uniform hypergraph G�,

the sequence v0; : : : ; vJ�1 2 V.H /, and the partition ¹0; 1; : : : ; J � 1º D S [W .

(C3) Let Sc  Sc [ ¹vj W j 2 Sº.

(C4) If e.G�/ < ˇsC1 � e.H /, then define f �
h
WV.H /! ¹0; 1;�º, the container for h, by

f �h .v/ D

´
1 � c if v D vj for some j 2 W ;

� otherwise;

and STOP.

(C5) Otherwise, let H .i 0
0
;i 0

1
/  G� and .i0; i1/ .i 00; i

0
1/ and CONTINUE.
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We will show that the above procedure indeed constructs containers for F6m.H /

that have the desired properties. To this end, we first claim that, for each pair .i0; i1/ 2
U [ ¹.0; 0/º, the hypergraph H .i0;i1/, if it was defined, satisfies:

(i) h 2 F .H .i0;i1// and

(ii) �.`0;`1/.H
.i0;i1// 6 �

.i0;i1/

.`0;`1/
for every .0; 0/ ¤ .`0; `1/ 2 ¹0; : : : ; i0º � ¹0; : : : ; i1º.

Indeed, one may easily prove (i) and (ii) by induction on .k0 C k1/� .i0 C i1/. The basis
of the induction is trivial as H .k0;k1/ DH (see Definition 2.1). The inductive step follows
immediately from Observation 2.4 and Lemma 2.7.

Second, we claim that for each input h 2 F6m.H /, step (C4) is called for some s and
hence the function f �

h
W V.H /! ¹0; 1; �º is defined. If this were not true, the condition

in step (C5) would be met k0 C k1 times, and consequently we would finish with a non-
empty .0; 0/-uniform hypergraph H .0;0/, i.e., we would have .;; ;/ 2 H .0;0/. But this
contradicts (i), since no function satisfies the empty constraint and thus h 62 F .H .0;0//.

Suppose, therefore, that step (C4) is executed when G DH .i0;i1/ for some .i0; i1/2U,
and note that s D .k0C k1/� .i0C i1/. We claim that e.H .i0;i1//> ˇse.H /. Indeed, this
is trivial if s D 0, whereas if s > 0 and this were not true, then we would have executed
step (C4) at the previous iteration of the main loop. We therefore have

e.G / D e.H .i0;i1// > ˇs � e.H / and e.G�/ < ˇsC1 � e.H /;

which, by Lemma 2.8 and (ii), implies that either (P2) or (P3) of Lemma 2.8 holds. Note
that if c D 1, then k1 > i1 > 0 and we have

j.f �h /
�1.0/j > 2�k1�1K�1˛s � v.H / > ˛k0Ck1

K�1v.H / D ıv.H /;

where ı D 2�.k0Ck1/.k0Ck1C1/K�1. On the other hand, if c D 0, then k0 > i0 > 0 and

j.f �h /
�1.1/j > 2�k0�k1�1K�1˛s � r > ˛k0Ck1

K�1r D ır:

This verifies that f �
h

satisfies property (b) from the statement of Theorem 1.4.
To complete the proof, we need to show that f � decomposes as f � D f ı g for some

gWF6m.H / !
�
V.H/
6k0b

�
�
�
V.H/
6k1b

�
and to verify that properties (a), (c), and (d) from the

statement of the theorem hold. We claim that one may take g.h/ D .S0; S1/, where S0
and S1 are the sets constructed by the above procedure (see (C3)). To this end, it suffices to
show that if for some h; h0 2 F .H / the above procedure produces the same pair .S0; S1/,
then f �

h
D f �

h0
. To see this, observe first that the set S defined in step (C2) is precisely

the set of all indices j 2 ¹0; : : : ; J � 1º that satisfy vj 2 Sc . Indeed, the former set is
contained in the latter by construction (see (C3)). The reverse inclusion holds because

S D
®
j 2 ¹0; : : : ; J � 1º W h.vj / D c

¯
and h.v/ D c for every v 2 Sc . By Observation 2.5, it follows that the output of the
algorithm depends only on the pair .S0; S1/ and hence f �

h
D f �

h0
, as claimed.

Observe that S0 � h�1.0/ and S1 � h�1.1/, by construction, and that h belongs to the
cylinder f .g.h//D f �

h
, since h.v/D 1� c for every vD vj with j 2W , by the definition
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of W D ¹j 2 ¹0; : : : ; J � 1º W h.vj / ¤ cº. This verifies properties (a) and (c). Finally,
note that by Observation 2.6, we have jW j 6 m in every round with c D 0, and therefore
there are at most

�
mCb
6b

�
choices for the partition S [W in every such round. Since there

are at most k0 rounds with c D 0, this verifies property (d), and hence completes the proof
of Theorem 1.4.

2.6. Derivation of Theorem 1.5

We conclude this part of the paper with the easy derivation of Theorem 1.5 from The-
orem 1.4. Given a k-uniform hypergraph H satisfying the assumptions of Theorem 1.5
for some b and r , one may invoke Theorem 1.4 with H1.4 being the .0; k/-uniform hyper-
graph with the same vertex set as H whose edges are all pairs .;;A/ such thatA is an edge
of H . Since k0 D 0 and �.0;`/.H1.4/ D �`.H / for every ` 2 ¹1; : : : ; kº, one can easily
check that H1.4 satisfies the assumptions of Theorem 1.4 with the same b, m1.4  v.H /,
and K1.4  v.H /=r .

Now, observe that the family F .H1.4/ comprises precisely the characteristic functions
of all independent sets of H and that F6m.H1.4/ D F6v.H/.H1.4/ D F .H1.4/. Given
an independent set I 2 I.H /, let h 2 F .H1.4/ be its characteristic function. Let S WD
.;; S1/D g1.4.h/ and X WD f1.4.S/

�1.0/ and set g.I / WD S1 and f .g.I // WD V.H / nX .
Recalling again that k0 D 0, it is straightforward to verify that properties (a)–(c) from the
statement of Theorem 1.4 imply the assertion of Theorem 1.5.

3. Robust balanced stability for induced C4s

Recall from Section 1.3 that a pregraph is a pair .M;E/ of disjoint subsets ofE.Kn/. The
elements ofE are called edges whereas the elements ofM are called mixed edges. A good
copy of C4 in a pregraph .M; E/ is a copy of C4 in M whose vertex set is independent
in E. In particular, the vertex set of each good copy of C4 induces four, five, or six edges
of M , four of which play the roles of edges of C4.8

Given a pregraph P D .M; E/, we define three hypergraphs with vertex set M ,
denoted H P

0 , H P
1 , and H P

2 . The .i; 4/-uniform hypergraph H P
i comprises all pairs

.A; B/ such that B is a good copy of C4 and A is the set of the remaining i mixed edges
induced by the vertex set of this copy (which induces exactly 4C i edges of M ). Recall
that we say that a graph G is "-close to K` if one can transform G into K` by adding or
deleting at most "

�
`
2

�
edges. The following theorem, a robust stability statement for good

copies of the 4-cycle in a pregraph, is the main result of this section.

Theorem 3.1. For every " > 0, there exist positive constants ˇ, ı, �, and C such that
the following holds for all ` and n satisfying ` > C

p
n. Suppose that P D .M; E/ is a

pregraph on n vertices with e.E/ 6
�
`
2

�
and either

8If the vertex set of a good copy of C4 induces six mixed edges, then there are three choices for
these four edges, each corresponding to a different embedding of C4 into K4.
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(M1) e.M/ > 4`n, or

(M2) e.M/ > .1 � ı/`n, E is not "-close to K`, and ` 6 �n, or

(M3) there exists U � V.Kn/ with jU j D `, eE .U /> .1� "/
�
`
2

�
, and eM .U c/> 7

p
"`n.

Then there exist i 2 ¹0; 1; 2º and Hi � H P
i such that

e.Hi / > ˇ`4; �.0;1/.Hi / 6
`3

n
; and �.0;2/.Hi / 6 `

and, if i > 0, then also �.1;0/.Hi / 6 `2.

Let us say that an .i; 4/-uniform hypergraph Hi is permissible if it satisfies both (all
three, if i > 0) maximum degree conditions stated in Theorem 3.1. We shall thus be look-
ing for a permissible subhypergraph Hi � H P

i , for some i 2 ¹0; 1; 2º, that has �.`4/
edges. We shall build the H0, H1, and H2 by adding to them one edge at a time, mak-
ing sure that we stay within the class of permissible hypergraphs, until one of them has
sufficiently many edges. (Trivially, an empty hypergraph is permissible.)

It will be convenient to use the following nomenclature. A pair .S; T / of disjoint
sets of edges of Kn is saturated in a hypergraph H if degH .S; T / attains or exceeds its
maximum permitted value, that is, if

(i) .jS j; jT j/ D .0; 1/ and degH .S; T / > b`3=nc, or

(ii) .jS j; jT j/ D .1; 0/ and degH .S; T / > `2, or

(iii) .jS j; jT j/ D .0; 2/ and degH .S; T / > `.

Thus, in the setting of Theorem 3.1, we shall be looking for an i 2 ¹0; 1; 2º and an edge
of H P

i nHi which does not contain any saturated pair. We first show how to deduce The-
orem 3.1 from the following, seemingly weaker, statement by performing an appropriate
preprocessing of the pregraph P . This preprocessing of P will ‘disable’ all saturated pairs
of types (i) and (ii), so that we will only have to worry about pairs of type (iii).

Theorem 3.2. For every 0 < " 6 1=2, there exist positive constants ˇ, ı, �, and C such
that the following holds for all ` and n satisfying ` > C

p
n. Suppose that P D .M;E/

is a pregraph on n vertices with e.E/ 6
�
`
2

�
and either

(M1*) e.M/ > 3`n, or

(M2*) e.M/ > .1 � ı/`n, E is not "-close to K`, and ` 6 �n.

Then for any collection C of at most 12ˇ`3 pairs of elements of M , there exist at least
3ˇ`4 good copies of C4 in P that contain no pair from C .

Derivation of Theorem 3.1 from Theorem 3.2. Given 0 < " 6 2,9 let ˇ3.2, ı3.2, �3.2, and
C3.2 be the constants whose existence is asserted by Theorem 3.2 with "3.2  "=4 and let

ı D min
²
ı3.2

3
;
"

10

³
; ˇ D min

²
"2ˇ3.2

4
;
ı

20

³
; � D

�3.2

2
; and C D

C3.2
p
"
:

9Note that the result for " > 2 is implied by the statement for " D 2, since condition (M3) is
then stronger than condition (M1), and every graph with at most

�`
2

�
edges is 2-close to K`.
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Suppose that a pregraph P D .M;E/ satisfies the assumptions of Theorem 3.1. We shall
build the (initially empty) hypergraphs H0, H1, and H2 edge by edge, making sure that
we stay within the class of permissible hypergraphs, until one of them has sufficiently
many edges. To this end, suppose that we have succeeded in constructing some permis-
sible H0, H1, and H2, but each of them has fewer than ˇ`4 edges. We shall modify the
pregraph P by removing from M all mixed edges f for which there exists i 2 ¹0; 1; 2º
such that either .;; ¹f º/ or .¹f º; ;/ (or both) is saturated in Hi . This will ensure that
every good copy of C4 that we will later find in this modified colouring will not con-
tain any saturated pair .S; T / of type (i) or (ii). To achieve this, we first move all mixed
edges f for which .¹f º;;/ is saturated in either H1 or H2 from M to E and then move
all f for which .;; ¹f º/ is saturated in any of the Hi fromM to an initially empty set N .
Denote the modified pregraph by P 0 D .M 0;E 0/. Observe, crucially, that each good copy
of C4 in P 0 is also good in P , as E 0 � E andM 0 �M . Moreover, each such copy yields
an edge of one of the H P

i with no saturated pair of type (i) or (ii), where 4 C i is the
number of edges of M 0 [N induced by the vertex set of this 4-cycle.10

Let `0 D b.1C ı/`c. As each of the Hi has fewer than ˇ`4 edges, then

e.E 0 nE/ 6
2X
iD1

ie.Hi /

`2
< 3ˇ`2 6

ı`2

2

and

e.M nM 0/ 6 e.E 0 nE/C

2X
iD0

4e.Hi /

b`3=nc
< 3ˇ`2 C 13ˇ`n < 20ˇ`n 6 ı`n:

In particular,

e.E 0/ 6
�
`

2

�
C
ı`2

2
6
�
`0

2

�
:

Moreover, if e.M/ > 4`n, then e.M 0/ > 3`0n, and if e.M/ > .1 � ı/`n, then e.M 0/ >
.1 � 3ı/`0n > .1 � ı3.2/`

0n. Finally, if E 0 is ."=4/-close to K`0 , then E is "-close to K`,
as e.K`0/ � e.K`/ 6 2ı`2, and ı 6 "=10. Therefore, if P satisfies the assumptions of
Theorem 3.1 with either (M1) or (M2), then P 0 satisfies the assumptions of Theorem 3.2
with "3.2  "=4 and `3.2  `0 (see (M1*) and (M2*)).

Now, let C be the collection of all T such that .;; T / is a saturated pair of type (iii) in
one of the Hi and observe that

jC j 6
2X
iD0

4e.Hi /

`
< 12ˇ`3 6 12ˇ3.2.`

0/3;

as each edge of Hi contains at most four such saturated pairs (if f1; f2 2 M do not
share a vertex, then deg

HP
i
.;; ¹f1; f2º/ 6 2). Therefore, if P satisfies the assumptions of

Theorem 3.1 with either (M1) or (M2), then we may invoke Theorem 3.2 to find at least
3ˇ3.2.`

0/4 > 3ˇ`4 good copies of C4 in P 0, none of which contains a pair from C .

10The four edges forming a good copy of C4 in P 0 belong to M 0, but the remaining two edges
induced by the vertex set of this cycle could belong to N �M nM 0.
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On the other hand, if P satisfies the assumptions of Theorem 3.1 with (M3), then P 0

restricted to the set U c satisfies the assumptions of Theorem 3.2 with `3.2  2
p
"`, as

eE 0.U
c/ 6 eE .U

c/C e.E 0 nE/ 6 "

�
`

2

�
C
ı`2

2
6 "`2 6

�
2
p
"`

2

�
and

eM 0.U
c/ > eM .U

c/ � e.M nM 0/ > 7
p
"`n � ı`n > 6

p
"`n > 3.2

p
"`/jU c j

(see (M1*)). Since

2
p
"` > 2

p
" � C
p
n > C3.2

p
jU c j and jC j < 12ˇ`3 6 12ˇ3.2 � .2

p
"`/3;

we may again invoke Theorem 3.2 to find at least 3ˇ3.2.2
p
"`/4 > 3ˇ`4 good copies ofC4

in P 0, none of which contains a pair from C .
Finally, it follows from our construction that each good copy of C4 in P 0 corresponds

to an edge of H P
i for some i 2 ¹0; 1; 2º that additionally does not contain any satu-

rated pairs of type (i) or (ii). Moreover, by our definition of C , none of the at least 3ˇ`4

copies we have found above contains a saturated pair of type (iii) either. Recalling that
e.H0/ C e.H1/ C e.H2/ < 3ˇ`4, it follows that one of these good C4s yields a pair
.A; B/ 2 H P

i n Hi such that Hi [ ¹.A; B/º is permissible. Iterating this process, we
must eventually arrive at a permissible hypergraph Hi (for some i 2 ¹0; 1; 2º) with at
least ˇ`4 edges, as required.

The remainder of this section is dedicated to the proof of Theorem 3.2. We begin
by proving the following proposition, which proves Theorem 3.2 when condition (M1*)
holds and will moreover serve as a helpful warm-up for the proof of the theorem. It will
also be a step in the proof of the theorem under assumption (M2*).

Proposition 3.3. Suppose that integers ` and n satisfy ` >
p
n and that P D .M;E/ is

a pregraph on n vertices with e.E/ 6
�
`
2

�
and e.M/ > 3`n. Then for any collection C of

at most `3=40 pairs of elements of M , there exist at least `4=40 good copies of C4 in P

that contain no pair from C .

Our proofs will use the following two auxiliary statements. The first is a well-known
result of Caro [13] and Wei [51]. We remark that, in this section, if G is a graph (such as
M or E), we will write dG.v/ and dG.v; S/ to denote the number of neighbours of v and
the number of neighbours of v in S , respectively.

Lemma 3.4. For every graph G,

˛.G/ >
X

v2V.G/

1

1C dG.v/
:

The second is an easy consequence of Jensen’s inequality applied to the convex func-
tion Œ0;1/ 3 x 7! 1=.1C x/. Given a non-negative integer d and a real number q 2 Œ0; 1�,
we shall denote by Bin.d; q/ the binomial random variable with parameters d and q.
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Fact 3.5. For every d 2 N and q 2 Œ0; 1�,

E

�
1

1C Bin.d; q/

�
>

1

1C qd
:

Proof of Proposition 3.3. Fix a pregraph P D .M; E/ on n vertices and a collection C

satisfying the assumptions of the proposition. We first remove all vertices whose degree
in M is less than 2`. As this way we lose at most 2`n edges of M , we arrive at an m-
vertex subset W � V.Kn/, for some 2` 6 m 6 n, such that ı.MŒW �/ > 2`. Clearly, it is
sufficient to find `4=40 good copies of C4 in P restricted to W , none of which contains a
pair from C . Therefore, we shall replace the original M , E, and P with their restrictions
to the set W .

Set qDm=`2 6 n=`2 6 1 and form a random subsetR�W by retaining each element
of W independently with probability q. We apply Lemma 3.4 to the graph EŒR� to find
an independent set I � R with

jI j >
X
v2R

1

1C dEŒR�.v/
D

X
v2W

1Œv 2 R�

1C dE .v; R/
:

By Fact 3.5, we have

EŒjI j� > E

�X
v2W

1Œv 2 R�

1C dE .v; R/

�
D

X
v2W

q �E

�
1

1C Bin.dE .v/; q/

�
>
X
v2W

q

1C qdE .v/
:

As the function Œ0;1/ 3 x 7! q=.1C qx/ is convex, the sum on the right-hand side above
is minimised when dE .v/ D 2e.E/=m for every v 2 W . As e.E/ 6 `2=2, then

EŒjI j� >
qm

1C 2qe.E/=m
>

qm

1C q � `2=m
D
m2

2`2
: (19)

Next, let us choose, for each vertex v 2 W , an arbitrary set Mv of 2` edges of M that
are incident to v. We shall say that a copy of K1;2 is good if its centre v lies in I , both of
its edges are in Mv , and the pair comprising its two non-centre vertices does not belong
to E. The number Xg of such good K1;2s satisfies

Xg >
X
v2I

��
2`

2

�
� e.E/

�
>
��

2`

2

�
�

�
`

2

��
� jI j >

4`2

3
� jI j: (20)

We shall say that a copy of K1;2 in M is saturated if (the set consisting of) its two edges
belong to C . Let Xs be the number of saturated K1;2s in M whose centre vertex belongs
to the (random) set I �R. WritingX for the number of goodK1;2s that are not saturated,
we have X > Xg �Xs and hence, recalling that jC j 6 `3=40,

EŒX� > EŒXg � � EŒXs� >
4`2

3
� EŒjI j� � q � jC j >

2m2

3
�
`m

40
>
3m2

5
; (21)

where we have used (19), (20), and the inequality m > 2`.
Since I is an independent set inE, it follows that any pair of goodK1;2s with the same

non-centre vertices form a good C4 and therefore we have at least X �
�
m
2

�
such C4s.
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However, we must disregard those C4s that contain a saturated K1;2 whose two non-
centre vertices lie in I , since the two edges of such a saturatedK1;2 could come from two
different good non-saturated K1;2s whose centre vertices lie in I . The expected number
of saturated K1;2s of this type is at most q2 � jC j and each of them lies in at most 2` of
our good C4s, since the edges of our good C4s came only from the sets Mv . We must
therefore discard (in expectation) at most 2`q2jC j of the (at least) X �

�
m
2

�
good C4s

found using pairs of good K1;2s.
To summarise, let Z be the number of good C4s that contain no saturated K1;2 and at

least two vertices of I . By (21) and the argument above, we have

EŒZ� > EŒX� �

�
m

2

�
� 2`q2jC j >

�
3

5
�
1

2
�
2jC j

`3

�
m2 >

m2

20
:

Finally, observe that each good copy of C4 containing no saturatedK1;2 has probability at
most 2q2 of being counted by Z. It therefore follows that the total number of such copies
of C4 must be at least m2=.40q2/ D `4=40, as required.

We next consider pregraphs P D .M; E/ for which one can find a small set A of
vertices of Kn that contains only a tiny proportion of the edges of E, but still a large pro-
portion of mixed edges have an endpoint in A. The following proposition will be invoked
in the proof of Theorem 3.2.

Proposition 3.6. Suppose that integers ` and n satisfy ` > 4
p
n and set ˛ WD 1=640. Let

P D .M;E/ be a pregraph on n vertices with e.E/ 6
�
`
2

�
and suppose that there exists a

set A � V.Kn/, with jAj 6 ˛n and eE .A/ 6 ˛`2, such thatX
w2A

dM .w/ >
`n

2
:

Then for any collection C of at most ˛`3 pairs of elements of M , there exist at least ˛`4

good copies of C4 in P that contain no pair from C .

Proof. The proof of Proposition 3.6 follows the general strategy of the proof of Propo-
sition 3.3, but there are some key differences. In particular, we will find the independent
set I inside the set A alone and we shall select vertices of R with different probabilities.
Rather than invoking Lemma 3.4 and Fact 3.5, we shall give a somewhat finer argument
to produce a large independent set I � R and use it to construct good copies of C4.

We start by iteratively removing from A all vertices v that do not satisfy

dM .v/ > max
²
2`;

n

16˛`
� dE .v; A/

³
: (22)

Observe that the set A0 of vertices remaining after this deletion satisfiesX
v2A0

dM .v/ >
X
v2A

dM .v/ � 2 �

�
jAj � 2`C eE .A/ �

n

16˛`

�
>
`n

2
� 4˛`n � ˛`2 �

n

8˛`
>
`n

3
: (23)
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Let aD jA0j and order the elements ofA0 as v1; : : : ;va so that dM .vi /6 dM .vj /whenever
1 6 i 6 j 6 a. For each i 2 Œa�, let

qi D
8n

` � dM .vi /
6
4n

`2
6
1

4

and form a random set R � A0 by keeping each vi independently with probability qi .
Define

I D ¹vi 2 R W vj 62 R for every j > i such that vivj 2 Eº

and observe that I is an independent set in the graph E.11

Similarly to before, we shall say that a copy ofK1;2 inM is good if its centre lies in I
and the pair comprising its two non-centre vertices does not belong toE. Observe that the
number Xg of good K1;2s satisfies

Xg >
X
v2I

��
dM .v/

2

�
� e.E/

�
>
X
v2I

��
dM .v/

2

�
�

�
`

2

��
>
X
v2I

dM .v/
2

3
;

as dM .v/ > 2` for each v 2 I . We shall now estimate the probability that a given vertex
v 2 A0 belongs to the random set I . To this end, suppose that v D vi for some i 2 Œa�
and note that, by (22), there are at most dM .vi / � 16˛`=n indices j such that vivj 2 E.
Moreover, by our choice of the ordering, qj 6 qi whenever j > i . Letting d D dM .v/ D
dM .vi /, and recalling that 8n=.`d/ 6 1=4, it follows that

P .v 2 I / > qi � .1 � qi /
16˛`d=n

D
8n

`d
�

�
1 �

8n

`d

�16˛`d=n
> e�160˛ �

8n

`d
>
6n

`d
;

where we have used the bounds 1 � x > e�5x=4 when 0 6 x 6 1=4 and e�1=4 > 3=4.
We will need to disregard the saturated K1;2s, that is, all those whose pair of edges

belongs to C . Let Xs be the number of those saturatedK1;2s whose centre vertex belongs
to the set I . Writing X for the number of good K1;2s that are not saturated, we have
X > Xg �Xs , and hence

EŒX� > EŒXg � � EŒXs� >
X
v2A0

P .v 2 I / �
dM .v/

2

3
�max

i
qi � jC j

>
X
v2A0

2ndM .v/

`
�
4n

`2
� jC j >

2n2

3
�
2jC jn2

`3
>
3n2

5
;

where we have used (23) and the inequality n > 2` (which holds since A0 is non-empty).
Since I is an independent set in E, it follows that any pair of good K1;2s with the

same non-centre vertices forms a good C4. Thus we have at least X �
�
n
2

�
such C4s.

However, we must still disregard those C4s that contain a saturated K1;2 with two non-
centre vertices in I . Fix someK1;2 from C and suppose that its non-centre vertices are vi

11The idea of forming a large independent set this way is taken from the proof of Lemma 3.4
given in [4].
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and vj . Observe that it can lie in at most dM .vi / of our good copies of C4. Therefore, the
expected number of good C4s that we are forced to disregard because of this single K1;2
is at most

qi � qj � dM .vi / D
64n2

`2dM .vj /
6
32n2

`3
:

Consequently, the expected number of good copies of C4 that we have to disregard
because of one of the saturated K1;2s from C is at most 32jC jn2=`3.

To summarise, let Z be the number of good C4s that contain no saturated K1;2 and at
least two vertices of I . We have shown that

EŒZ� > EŒX� �

�
n

2

�
�
32jC j � n2

`3
>
�
3

5
�
1

2
�
32jC j

`3

�
n2 >

n2

20
:

But as each good copy of C4 containing no saturated K1;2 has chance at most 2q21 to be
counted by Z, the number of them is at least n2=.40q21/ > `4=640. This completes the
proof of the proposition.

Proof of Theorem 3.2. We begin by defining the constants whose existence is claimed in
the statement of the theorem. Given 0 < " 6 1=2, set ˛ D 2�16 and define

C D
4

˛3
; ı D min

²
˛3

27
;
"

16

³
; ˇ D

ı4

2100
; and � D

ı7

210
:

Suppose that ` > C
p
n and let P D .M;E/ be a pregraph on n vertices with e.E/ 6

�
`
2

�
.

If P satisfies (M1*), then we may immediately invoke Proposition 3.3, noting that jC j 6
12ˇ`3 6 `3=40, to find `4=40 good copies of C4 that contain no pair from C .

We may therefore assume from now on that P satisfies (M2*), that is,

e.M/ > .1 � ı/`n; E is not "-close to K`; and ` 6 �n:

We begin by iteratively removing all vertices v whose degree in M is smaller than
.1 � 2ı/`. As this way we can remove at most .1 � 2ı/`n edges of M , we will even-
tually arrive at a set W � V.Kn/ with ı.MŒW �/ > .1 � 2ı/`. Set m D jW j, and note
that, since we removed at most .1 � 2ı/`.n � m/ edges of M , we have eM .W / >
max ¹.1 � ı/`m; ı`nº, and therefore

m >
p
ı`n >

r
ı

�
� ` >

32

ı3
� `: (24)

Observe that the subgraph of E induced by W is also not ."=2/-close to K`. Indeed,
otherwise there would be an `-element set U � W with eE .U / > .1 � "=2/

�
`
2

�
, which

would imply that E itself is "-close to K`, as e.E/ 6
�
`
2

�
. We may thus work with the

restrictions of M , E, and P to the set W . We shall suppress W from the notation and
write M , E, and P in place of MŒW �, EŒW �, and .MŒW �;EŒW �/. In particular,

e.M/ > .1 � ı/`m; e.E/ 6
�
`

2

�
; E is not ."=2/-close to K`,

and moreover ı.M/ > .1 � 2ı/`.
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We split the proof into two cases, depending on the shape of the degree sequence ofE.

Case 1: There is a set L � W of ˛m vertices v satisfying dE .v/ 6 .1 � ˛/`2=m. Set
q D Cm=`2 6 1=C and form a random subset R � W by keeping each element of W
independently with probability q. We apply Lemma 3.4 to the graph EŒR� (cf. the proof
of Proposition 3.3) to find an independent set I � R with

jI j >
X
v2R

1

1C dEŒR�.v/
D

X
v2W

1Œv 2 R�

1C dE .v; R/
:

By Fact 3.5, we have

EŒjI j� > E

�X
v2W

1Œv 2 R�

1C dE .v; R/

�
D

X
v2W

q �E

�
1

1C Bin.dE .v/; q/

�
>
X
v2W

q

1C qdE .v/
:

As the function Œ0;1/ 3 x 7! q=.1 C qx/ is convex, the sum on the right-hand side
above is minimised when dE .v/ D 2e.E/=m for every v 2 W . However, we assumed
that dE .v/ 6 .1 � ˛/`2=m for every v 2 L, so a slightly stronger bound holds. Indeed,
since

2e.E/ 6 `2 D ˛m � .1 � ˛/
`2

m
C .1 � ˛/m �

�
1

1 � ˛
� ˛

�
`2

m
;

it follows that

EŒjI j�>
˛m � q

1C q � .1 � ˛/`2=m
C

.1 � ˛/m � q

1C q � .1=.1 � ˛/ � ˛/`2=m
>
�
1C

˛3

2

�
m2

`2
: (25)

One may verify the last inequality in (25) by multiplying the numerators and the denomi-
nators on the left-hand side by m=.`2q/ D 1=C D ˛3=4 and observing that

˛

1 � ˛
C

1 � ˛

1=.1 � ˛/ � ˛
D 1C

˛3

.1 � ˛/.1 � ˛ C ˛2/
> 1C ˛3:

Set d D
�
.1 � 2ı/`

˘
and choose, for each vertex v 2 W , an arbitrary set Mv of d

edges of M that are incident to v. As before, we shall say that a copy of K1;2 is good if
its centre v lies in I , both of its edges are in Mv , and the pair of its non-centre vertices
is not in E. As E is not ."=2/-close to K`, for every v 2 W the set yMv of the d other
endpoints of the edges inMv contains at least

�
d
2

�
� .1� "=2/

�
`
2

�
pairs that do not belong

toE. In particular, as ı 6 "=16, each vertex of I is the centre of at least "`2=8 goodK1;2s.
Unfortunately, this lower bound is not sufficiently strong for the naive argument given in
the proof of Proposition 3.3 to work, as EŒjI j� is too small. Instead, we shall exploit the
rough structure of E.

To this end, we partition the set W into sets WL and WH of low and high degree
vertices, which are defined as follows:

WH WD ¹v 2 W W dE .v/ > ı`=2º and WL WD W nWH :

Given an independent set I , we split it into IL and IH , which are defined as follows:

IH WD ¹v 2 I W j yMv \WH j > ı`º and IL WD I n IH :
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Observe that if v 2 IL, then yMv contains at least
�
d�ı`
2

�
� ı`2=2> .1� 7ı/`2=2 pairs that

do not belong to E. We shall argue differently for different I , depending on the relative
sizes of the sets IL and IH .

In both cases, we will find a (random) collection of at least ı2m2=16 good C4s (in
expectation) each of which is the union of two K1;2s centred at some v; w 2 I and such
that neither of (the pairs of edges of) these K1;2s belongs to C . We first argue that this
is sufficient. Indeed, even though we will still have to disregard those copies of C4 that
contain a K1;2 with two non-centre vertices in I whose edges belong to C , the expected
number of such saturated K1;2s is at most q2 � jC j and each of them lies in at most d 6 `

of our good copies of C4, as the edges of these good C4s came only from the sets Mv .
Hence, letting Z be the (random) number of good C4s that contain at least two vertices
of I and no K1;2 whose edges belong to C , we will have

EŒZ� >
ı2m2

16
� q2 � jC j � ` >

ı2m2

16
� 12C 2ˇm2 >

ı2m2

32
:

But as each good copy of C4 containing no saturated K1;2 has chance at most 2q2 to be
counted by Z, the number of them is at least

ı2m2

64q2
D

ı2`4

64C 2
> 3ˇ`4:

Therefore, in order to complete the proof of the theorem in Case 1, it suffices to prove the
existence of (a random collection of) ı2m2=16 good copies of C4 (in expectation) of the
less restrictive type described above.

Subcase 1A: jIH j 6 ıjI j. Recall that if v 2 IL, then yMv contains at least .1 � 7ı/`2=2
pairs that do not belong to E. It follows that the number Xg of good K1;2s satisfies

Xg > .1 � 7ı/
`2

2
� jILj > .1 � 8ı/

`2

2
� jI j:

Writing again Xs for the number of saturated K1;2s (those whose edges belong to C )
whose centre vertex belongs to I , and X for the number of good K1;2s that are not satu-
rated, we have X > Xg �Xs , and consequently

EŒX� > EŒXg � � EŒXs� > .1 � 8ı/
`2

2
� EŒjI j� � q � jC j

> .1 � 8ı/

�
1C

˛3

2

�
m2

2
� 12Cˇ`m >

�
1C

˛3

4

�
m2

2
;

where we have used (25), the facts that ı < ˛3=27 and ˇ < ˛3=.8 � 24C /, and the trivial
inequality m > .1 � 2ı/` > `=2. Since I is an independent set in E, any pair of good
K1;2s with the same non-centre vertices forms a good C4. Thus we have at least X �

�
m
2

�
such C4 and

EŒX� �

�
m

2

�
>
˛3m2

8
>
ı2m2

16
;

as required.
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Subcase 1B: jIH j > ıjI j. Let us write Xg for the number of goodK1;2s with at least one
non-centre vertex in WH . We will show in this case that

Xg >
ı2`2

4
� jI j and jWH j 6

ı2m

16
;

from which it will be straightforward (as in Subcase 1A) to deduce the existence of the
required collection of good C4s.

To prove the lower bound on Xg , recall first that each vertex v 2 IH is the centre of at
least "`2=8 good K1;2s; we claim that at least ı`2=4 of these have at least one non-centre
vertex in WH . To prove this, set w D j yMv \WLj and suppose first that w 6 "`=2. Then
at most "2`2=8 good K1;2s centred at v have both non-centre vertices in WL and since
"=8� "2=8 > "=16 > ı=4, the claim follows in this case. On the other hand, if w > "`=2,
then there are at least

min
²
w

�
d � w �

ı`

2

�
W
"`

2
< w 6 d � ı`

³
>
ı`2

4

goodK1;2s centred at v with at least one non-centre vertex inWH . Indeed, since j yMvj D d

and each u 2 yMv \WL has degree at most ı`=2 in E, there are at least d � w � ı`=2
good K1;2s centred at v that contain u and a third vertex from WH . Thus

Xg >
ı`2

4
� jIH j >

ı2`2

4
� jI j;

as claimed. To prove the claimed upper bound on jWH j, observe that

`2 > 2e.E/ >
X
v2WH

dE .v/ > jWH j �
ı`

2
;

which implies, by (24), that

jWH j 6
2`

ı
6
ı2m

16
;

as required.
Now, writingX for the number of goodK1;2s with a non-centre vertex inWH that are

moreover not saturated and Xs for the number of saturated K1;2s (that is, K1;2s whose
pair of edges belongs to C ) whose centre vertex belongs to I , we haveX > Xg �Xs , and
hence

EŒX� > EŒXg � � EŒXs� >
ı2`2

4
� EŒjI j� � q � jC j >

ı2m2

4
� 12Cˇ`m >

ı2m2

8
;

where we have again used the bounds ˇ < ı2=.8 � 24C / and m > .1 � 2ı/` > `=2.
Finally, since I is an independent set inE, it follows that there are at leastX � jWH jm

good C4s formed by pairs ofK1;2s that are counted by X and hence the expected number
of good copies of C4 that are formed by two K1;2s centred at vertices in I , neither of
which belongs to C , is at least

EŒX� � jWH jm >
ı2m2

16
;

as required. This completes the proof in Case 1.
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Case 2: There are fewer than ˛m vertices v satisfying dE .v/6 .1�˛/`2=m. In this case,
we shall find our good C4s in various ways, depending on the distribution of degrees (in
both the graphs M and E) on the set A of vertices whose degree in E is somewhat larger
than average. To be precise, set  D 1=32 and define

A WD ¹v 2 W W dE .v/ > .1C /`2=mº and B WD W n A: (26)

We claim that eE .A/ 6 2`2. To prove this, observe first that

2e.E/ D
X
v2W

dE .v/ > jAj � .1C /
`2

m
C ..1 � ˛/m � jAj/.1 � ˛/

`2

m

D

�
.1 � ˛/2 C . C ˛/ �

jAj

m

�
`2:

Noting that ˛ D 3=2, and recalling that e.E/ 6
�
`
2

�
, it follows that

jAj

m
6
˛.2 � ˛/

 C ˛
6 2;

and thereforeX
v2A

dE .v/ D 2e.E/ �
X
v2B

dE .v/ 6 `2 � ..1 � ˛/m � jAj/.1 � ˛/
`2

m

6 .2˛ C 2/`2 6 22`2;

so in particular eE .A/ 6 2`2, as claimed.
We next use Propositions 3.3 and 3.6 to show that we may assume that eM .A/ <

93`m and eM .A; B/ < `m=2. Indeed, if eM .A/ > 93`m, then let us fix an arbitrary
superset A0 of A with exactly 2m elements and apply Proposition 3.3 to the pregraph P

restricted to the set A0, with `3.3 3` and n3.3 2m. To see that the conditions of the
proposition are satisfied, note that

eE .A
0/6 2`2C 2m � .1C /

`2

m
6
�
3`

2

�
and eM .A

0/> 93`mD 3.3`/.2m/

and that .3`/2 > 92n > 2m and jC j 6 12ˇ`3 6 .3`/3=40. The proposition provides
.3`/4=40 good copies of C4 that contain no pair from C , and so in this case we are done.
Similarly, if eM .A;B/ > `m=2, then, noting that

eE .A/ 6 2`2 <
`2

640
; jAj 6 2m <

m

640
and jC j 6 12ˇ`3 <

`3

640
;

we may invoke Proposition 3.6 to find `4=640 good copies of C4, none of which contains
a pair from C , and so in this case we are also done. We may therefore assume from now
on that eM .A/ < 93`m and eM .A;B/ < `m=2, and hence thatX
v2B

dM .v/ D 2e.M/ � 2eM .A/ � eM .A;B/ >
�
2.1 � ı/ � 183 �

1

2

�
`m >

4`m

3
:

(27)
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For the rest of the proof, we will search for good C4s formed by two K1;2s whose
centre vertices belong to B . Let us say that a copy of K1;2 in M is good if its centre lies
in B and the pair of its non-centre vertices does not belong to E. Observe that for each
v 2 B , letting NM .v/ denote the M -neighbourhood of v, we have

eE .NM .v// 6 eE .A/C
X

w2NM .v/\B

dE .w/

6 2`2 C dM .v/ � .1C /
`2

m
6


2
� dM .v/

2; (28)

since dM .v/ > ı.M/ > `=2 and `=m 6 =16 by (24). We therefore have at least
.1=2 � /dM .v/

2 good K1;2s centred at v, for each v 2 B .
It only remains to bound the number of good C4s composed of two good K1;2s, and

remove those that contain a pair from C . Our strategy will be similar to that used above,
but there are two additional problems to overcome in this case: the set B is not an inde-
pendent set and we do not have an upper bound on the degrees dM .v/. To deal with the
first problem, we will use our upper bound on dE .v/ for v 2 B , together with a slightly
more careful application of convexity than was needed earlier in the proof. To deal with
the second issue, we will partition B according to the approximate size of dM .v/ and
restrict our search to one of the parts.

We first partition B into two parts, depending (roughly speaking) on whether or not
dM .v/ D O.`/. Define

BL WD ¹v 2 B W dM .v/ 6 220`º and BH WD B n BL:

We first consider the case in which sufficiently many of the mixed edges incident to B
have an endpoint in BL.

Subcase 2A: X
v2BL

dM .v/ >
5`m

4
: (29)

Let X denote the number of good K1;2s whose centre vertex lies in BL and whose
pair of edges does not belong to the family C . By (28), we have

X >
X
v2BL

��
dM .v/

2

�
�


2
dM .v/

2

�
� jC j

>
�
1

2
� 

� X
v2BL

dM .v/
2
� 12ˇ`3 >

1

3

X
v2BL

dM .v/
2;

since by the Cauchy–Schwarz inequality and (29),X
v2BL

dM .v/
2 >

1

jBLj

� X
v2BL

dM .v/
�2

>
25

16
� `2m: (30)
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Let Y denote the number of (ordered) pairs of K1;2s that are counted by X and have the
same non-centre vertices. By the convexity of the function x 7! x.x � 1/ and by (30), we
have

Y > X

�
X�
m
2

� � 1� >
1

3

X
v2BL

dM .v/
2
�

�
25`2

8m
� 1

�
>
`2

m
�

X
v2BL

dM .v/
2;

since `2 > Cn > Cm. Now, let us denote by Yb the number of (ordered) pairs of K1;2s
counted by Y that do not correspond to good C4s (that is, pairs of good K1;2s with the
same non-centre vertices, whose centre vertices are adjacent in E). By the definition (26)
of B , this number satisfies

Yb 6
X
v2BL

dE .v/

�
dM .v/

2

�
6
�
1C 

2

�
`2

m
�

X
v2BL

dM .v/
2:

Thus, writing Zg for the number of good C4s consisting of pairs of K1;2s counted by Y
and combining the last three displayed equations, we obtain

Zg >
Y � Yb

4
>
1

12
�
`2

m
�

X
v2BL

dM .v/
2 >

`4

8
:

Finally, we must disregard those good C4s, counted in Zg , that contain a K1;2 of mixed
edges that belongs to the family C . The edges of such a K1;2 must come from differ-
ent good K1;2s counted by X and therefore (by the definition of BL) there are at most
220` � jC j such C4s. It follows that the number Z of good C4s that contain no K1;2s
whose edges belong to C satisfies

Z > Zg � 2
20` � jC j >

�
1

8
� 224ˇ

�
`4 > 3ˇ`4;

as required.

Note that if (29) fails to hold, then
P
v2BH

dM .v/ > .4=3 � 5=4/`m D `m=12,
by (27). In this case we will choose a subset of BH on which the M -degrees are roughly
constant and apply the same argument as in Subcase 2A.

Subcase 2B: X
v2BH

dM .v/ >
`m

12
: (31)

For each integer t > 0, set

bt D 2
�4t�28m and dt D 2

3tC20`

and define
Bt D ¹v 2 BH W dt < dM .v/ 6 dtC1º:
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We claim that there exists t such that jBt j > bt . Indeed, since BH D
S
t>0 Bt , if there

were no such t , then we would haveX
v2BH

dM .v/ <
X
t>0

btdtC1 D
X
t>0

`m

2tC5
<
`m

12
;

contradicting (31). Fix any such t and let X denote the number of K1;2s whose centre
vertex lies in Bt , whose pair of non-centre vertices is not in E, and whose pair of edges
does not belong to the family C . Observe that

X >
X
v2Bt

��
dM .v/

2

�
�


2
dM .v/

2

�
� jC j > bt �

�
1

2
� 

�
d2t � jC j

>
�
1

2
� 

�
22tC12`2m � 12ˇ`3 > 22tC10`2m:

As before, let Y denote the number of (ordered) pairs of K1;2s that are counted by X and
have the same non-centre vertices. By the convexity of the function x 7! x.x � 1/, we
have

Y > X

�
X�
m
2

� � 1� > 24tC20`4;

where we have again used the assumption that `2 > Cm. The number Yb of (ordered)
pairs counted by Y that do not correspond to good C4s (that is, pairs of goodK1;2s whose
centre vertices are adjacent in E) satisfies

Yb 6
X
v2Bt

dE .v/

�
dM .v/

2

�
6 bt �

�
1C 

2

�
`2

m
� d2tC1 6 22tC18`4:

Thus, the number Zg of good C4s counted by Y satisfies

Zg >
Y � Yb

4
> .24tC18 � 22tC16/`4 > 24tC17`4:

Finally, we disregard those good C4s, counted in Zg , that contain a K1;2 of mixed edges
that belongs to the family C . For each element of C , there are at most dtC1 such C4s
and therefore the number Z of good C4s that contain no K1;2s whose edges belong to C

satisfies
Z > Zg � dtC1 � jC j > .24tC17 � 12ˇ � 23tC23/`4 > `4;

as required. This completes the proof of the theorem.

4. The number of split graphs and the non-structured regime

In this section, we prove assertions (a) and (b) of Theorem 1.2. We first establish two
lower bounds on the cardinality of F ind

n;m.C4/: a stronger bound for all m � n4=3 and
a weaker bound for all m� n4=3.log n/1=3. Second, we carefully estimate the number
of split graphs with n vertices and m edges for all n and m with n� m� n2. Third,
we provide a simple upper bound on the number of graphs that are not "-quasirandom.
A straightforward comparison of these bounds yields the claimed results.



An asymmetric container lemma and the structure of graphs with no induced 4-cycle 37

4.1. Lower bounds for F ind
n;m.C4/

We first show that if m� n4=3, then the family F ind
n;m.C4/ forms an e�o.m/-proportion of

all graphs with n vertices and m edges. In particular, as we shall later verify, if m� n,
then for every fixed ", graphs with no induced copy of C4 outnumber the graphs that are
not "-quasirandom and thus a typical member of F ind

n;m.C4/ is "-quasirandom.

Proposition 4.1. For every  > 0, there exists ı > 0 such that for all sufficiently large n
and all m 6 ın4=3,

jF ind
n;m.C4/j > e�m �

��n
2

�
m

�
:

Proof. Fix a positive  and choose ı > 0 sufficiently small so that 17.1C ı/4ı3 < ı=2 and
.2e=ı/ı < e . Suppose thatm 6 ın4=3, letm0 D

�
.1C ı/m

˘
, and let G be the uniformly

chosen random graph with vertex set ¹1; : : : ; nº and precisely m0 edges. Let X be the
number of (not necessarily induced) copies of C4 in G. As

EŒX� 6 n4 � .m0/4 �

�
n

2

��4
6
17.m0/4

n4
6 17.1C ı/4ı3m 6

ım

2
;

Markov’s inequality gives

P .X 6 m0 �m/ D P .X 6 ım/ > 1=2:

In particular, at least half of all graphs with vertex set ¹1; : : : ; nº and m0 edges contain a
subgraph with m edges and no copy of C4. This implies that

jF ind
n;m.C4/j >

1

2
�

��n
2

�
m0

���n
2

�
�m

m0 �m

��1
D
1

2
�

��n
2

�
m

��
m0

m

��1
:

Finally, by our assumption on ı,�
m0

m

�
6
�
.1C ı/m

ım

�
6
�
e.1C ı/

ı

�ım
6
1

2
� em:

This completes the proof.

The derivation of our second lower bound on jF ind
n;m.C4/j follows a similar strategy,

but the simple deletion argument is replaced with the following result of Kohayakawa,
Kreuter, and Steger [34], stated here for the random graph Gn;m rather than the binomial
random graph G.n; p/. The heart of the proof of this theorem (which we shall not give
here, but rather refer the reader to [34, Theorem 8] or to [25, Appendix A]) is a classical
result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [1], or rather its corollary derived
by Duke, Lefmann, and Rödl [19], that gives a lower bound on the independence number
of a uniform hypergraph that contains few short cycles.

Theorem 4.2 ([34]). There exists a constant c such that if n4=3 6 m 6
�
n
2

�
, then a.a.s.

ex.Gn;m; C4/ > cn4=3.log.m=n4=3//1=3:
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Proposition 4.3. For every  > 0, there exists a ı > 0 such that for all sufficiently large
n and all m 6 ın4=3.logn/1=3,

jF ind
n;m.C4/j > n�m �

��n
2

�
m

�
:

Proof. Let c be the constant from the statement of Theorem 4.2. Given a positive  ,
choose ı > 0 sufficiently small so that ı 6 c.=2/1=3, let m0 D dn4=3C=2e, and observe
that

cn4=3.log.m0=n4=3//1=3 > c.=2/1=3n4=3.logn/1=3 > ın4=3.logn/1=3:

Suppose that m 6 ın4=3.log n/1=3. It follows from Theorem 4.2 that at least half of all
graphs with vertex set ¹1; : : : ; nº and m0 edges contain a subgraph with m edges and
no copy of C4, provided that n is sufficiently large. Therefore, similarly to the proof of
Proposition 4.1,

jF ind
n;m.C4/j >

1

2
�

��n
2

�
m

��
m0

m

��1
>
1

2
�

�
m

em0

�m��n
2

�
m

�
> n�m �

��n
2

�
m

�
:

This completes the proof.

4.2. The number of split graphs

As we shall need to compare the family of split graphs (and graphs that are close to a
split graph) to various other families of graphs, we will need to derive some estimates on
its cardinality. Let �n;m denote the family of split graphs with vertex set ¹1; : : : ; nº that
have precisely m edges. Moreover, let Nn;m.`/ denote the number of those graphs that
are complete on the set ¹1; : : : ; `º and empty on its complement. Observe that

Nn;m.`/ D

8<:
�`.n�`/
m�.`

2/

�
if
�
`
2

�
6 m 6 `.n � `/C

�
`
2

�
;

0 otherwise;

and

max
`
Nn;m.`/ 6 j�n;mj 6

X
`

�
n

`

�
Nn;m.`/: (32)

Since (32) is rather hard to work with due to its inexplicit form, we establish several
asymptotic properties of the function ` 7!Nn;m.`/, summarised in Proposition 4.4 below.
The rather dull and technical proof can be found in the Appendix of the arXiv version of
this paper [38].

Proposition 4.4. There is a positive constant � such that the following holds for all suffi-
ciently large n. If n� m 6 �n2, then the function ` 7! Nn;m.`/ attains its maximum for
some ` satisfying `n;m=2 < ` < 2`n;m, where `n;m is defined by

`n;m D

�
m

log.`n;mn=m/

�1=2
:
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Moreover, Nn;m.`n;m/ > 5m and if ` 6 `n;m=2 or ` > 2`n;m, then

Nn;m.`/ < exp.�m=15/ �max
`
Nn;m.`/:

4.3. The non-structured regime

Proof of parts (a) and (b) of Theorem 1.2. Fix an arbitrary positive ", suppose that
m� n, and let G be the uniformly chosen random graph with vertex set ¹1; : : : ; nº and
exactly m edges. A standard averaging argument shows that if G is not "-quasirandom,
then it contains a subset A with exactly "n vertices and density differing from m=

�
n
2

�
by

more than "m=
�
n
2

�
. Consequently, Hoeffding’s inequality for the hypergeometric distribu-

tion [28] asserts the existence of a positive � that depends only on " such that

P .G is not "-quasirandom/ 6
�
n

"n

�
� exp.�3�m/:

It now follows from Proposition 4.1 invoked with   � that if ı is sufficiently small,
then for all sufficiently large n and all m satisfying n� m 6 ın4=3,

P .G is not "-quasirandom j G 2 F ind
n;m.C4// 6

P .G is not "-quasirandom/
P .G 2 F ind

n;m.C4//

6
�
n

"n

�
� exp.�3�mC �m/ 6 exp.��m/:

In other words, graphs that are not "-quasirandom constitute only an exponentially small
fraction of F ind

n;m.C4/.
Now, denote by �n;m."/ the family of graphs with vertex set ¹1; : : : ; nº and m edges

that are "-close to a split graph. Each graph in �n;m."/ can be obtained from some graph
in �n;m by removing from it some "m edges and replacing them with arbitrarily chosen
"m edges of Kn. Hence, if m� n and n is sufficiently large, then

j�n;m."/j 6 j�n;mj �
�
m

"m

�
�

��n
2

�
"m

�
6 j�n;mj �

�
em

"m
�
en2

2"m

�"m
6 n"m � j�n;mj: (33)

Moreover, it follows from (32) and Proposition 4.4 that

j�n;mj 6 2n �max
`
Nn;m.`/ D 2

n
� max
`62`n;m

Nn;m.`/

6 2n �

�
2`n;mn

m

�
6 2n �

�
2`n;mn�

n
2

� �m��n
2

�
m

�
:

Suppose now that n� m 6 ın4=3.logn/1=3. As `n;m � n2=3, it follows that

j�n;m."/j 6 n."�1=3/m �

��n
2

�
m

�
for all sufficiently large n. Therefore, by Proposition 4.3 invoked with  D 1=24 implies
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that if ı is sufficiently small, then

P .G 2 �n;m.1=4/ j G 2 F ind
n;m.C4// 6 n.1=4�1=3/m � nm D n�m=24:

In other words, graphs that are 1=4-close to a split graph constitute only a super-exponen-
tially small proportion of F ind

n;m.C4/, as required.

5. An approximate structural theorem

In this section, we shall use Theorems 1.4 and 3.1 to construct a collection of containers
for the family F ind

n;m.C4/ whenever n4=3.logn/4 6m� n2. Our aim is to do this in such a
way that all but a tiny proportion of the family will be covered by containers that describe
predominantly graphs that are close to a split graph. To make this notion precise, let us
say that a pregraph P D .M;E/ on n vertices is an "-almost split pregraph if there exists
a partition V.Kn/ D U [W such that

e.E/ 6
�
jU j

2

�
; eE .U / > .1 � "/

�
jU j

2

�
; and eM .W / 6 7

p
"jU jn:

We will prove the following container theorem for sparse induced-C4-free graphs. Recall
from Section 1.2 that a graph G is contained in (described by) a pregraph P D .M;E/ if
E � E.G/ � E [M .

Theorem 5.1. For every " > 0, there exists � > 0 such that the following holds. For every
n2N and n4=3.logn/4 6m6 �n2, there exists a collection C of "-almost split pregraphs
on n vertices with jC j D eo.m/ such that all but at most e��m � jF ind

n;m.C4/j of the graphs
in F ind

n;m.C4/ are contained in some P 2 C .

To prove Theorem 5.1, we will apply Theorem 1.4 recursively, starting with the trivial
container, which is defined by the ‘complete’ pregraph withM DE.Kn/ (and thereforeE
empty). We continue until we obtain a family of containers, each of which admits only few
good copies of C4; we will be able to control this process with the use of Theorem 3.1,
which provides us with a precise structural description of such pregraphs. Finally, we
will show that the containers that are not "-almost split pregraphs contain at most e��m �
jF ind
n;m.C4/j members of F ind

n;m.C4/.
More formally, we shall build a rooted tree T whose vertices are pregraphs with n

vertices. The root of T is the pregraph with M D E.Kn/ corresponding to the trivial
container. The children (in T ) of a pregraph will correspond to refinements of it that we
obtain by applying Theorem 1.4 to one of the hypergraphs Hi supplied by Theorem 3.1.
This way, each graph in F ind

n;m.C4/ that is described by some pregraph P in T will be
described by one of the children of P in T . As a consequence, each graph in F ind

n;m.C4/

will be accounted for by one of the leaves of T .
In order to decide whether a pregraph P D .M;E/ should be a leaf of the tree or not

(in which case we will apply Theorem 1.4 to it), we use the following definition.



An asymmetric container lemma and the structure of graphs with no induced 4-cycle 41

Definition 5.2. A pregraph P D .M;E/ on n vertices is a leaf pregraph (with respect to
m, ", and ı) if either P is an "-almost split pregraph, or there exists ` 2 N such that

e.E/ >
�
`

2

�
and e.M/ 6 .1 � ı/`n; (34)

or either of the following holds:

e.E/ > m or e.M/ <

�
n2m

28 log.n2=m/

�1=2
: (35)

Recall that, given a pregraph P D .M;E/, the .i; 4/-uniform hypergraph H P
i com-

prises all pairs .A; B/ such that B is a good copy of C4 in P and A is the set of the
remaining i mixed edges induced by the vertex set of this copy (which induces exactly
4C i edges of M ). Also, with foresight, let us set

r D
m

213 logn
: (36)

We will use Theorem 3.1 to prove the following lemma.

Lemma 5.3. For every " > 0, there exist positive constants ˇ, ı, and � such that the
following holds for every n 2N and n.logn/2 6m6 �n2. Let P D .M;E/ be a pregraph
on n vertices that is not a leaf pregraph with respect to m, ", and ı. Then there exist an
integer ` with `2 > r and a hypergraph H � H P

i , for some i 2 ¹0; 1; 2º, such that

v.H / 6 5`n; e.H / > ˇ`4; �.0;1/.H / 6
`3

n
; and �.0;2/.H / 6 ` (37)

and, if i > 0, then also �.1;0/.H / 6 `2.

Proof. Let ˇ3.1, ı3.1, �3.1, and C3.1 be the constants given by Theorem 3.1 applied with
"3.1  ", set ˇ D ˇ3.1, C D C3.1, ı D ı3.1=2, and � D 2�8.�3.1=C /

2. We may assume
that C > 1, ı 6 1=4, � 6 ı2, and (by our bounds on m) that n > 1=�.

Suppose first that there exists ` > C
p
n such that

e.E/ 6
�
`

2

�
and e.M/ > 4`n (38)

and choose ` 2 N maximal such that e.M/ > 4`n. We claim that `2 > r . Indeed, P is
not a leaf pregraph and thus the maximality of ` and the second inequality in (35) give

2r 6
m

212 log.n2=m/
6
e.M/2

16n2
6 .`C 1/2:

In this case it follows immediately from Theorem 3.1 that there exists a hypergraph H

with the claimed properties.
Next, suppose that there exists ` > C

p
n and a set U of size ` such that

e.E/ 6
�
`

2

�
and eE .U / > .1 � "/

�
`

2

�
: (39)
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Note that e.M/ < 4`n, otherwise (38) holds and we are done as above. Since P is not
a leaf pregraph, it follows that `2 > r , as above, and eM .U c/ > 7

p
"`n, as P is not an

"-almost split pregraph. This means that P satisfies condition (M3) of Theorem 3.1 and
so we obtain a hypergraph H with the claimed properties, as before.

Finally, let `2N be minimal such that e.M/6 .1� ı/`n and observe that e.E/6
�
`
2

�
,

since P is not a leaf pregraph, and that

` >
e.M/

.1 � ı/n
>
�

m

28 log.n2=m/

�1=2
> max ¹C

p
n;
p
rº;

where the second inequality follows since P is not a leaf pregraph and the third by our
bounds on m, since n is sufficiently large. It follows that E is not "-close to K`, since if
it were, then there would exist a set U of size ` such that eE .U / > .1 � "/

�
`
2

�
, in which

case (39) would hold and we would be done as before. Note also that e.M/> .1� 2ı/`n,
by our choice of ` and since ı` > ı

p
n > ı=

p
� > 1.

Now, observe that if (38) fails to hold, then either e.M/ 6 4Cn3=2 or

e.M/ 6 8n
p
e.E/ 6 8n

p
m 6 8

p
�n2;

where in the second step we have used the fact that e.E/ 6 m (which holds if P is
not a leaf pregraph) and in the third we used our upper bound on m. In either case, it
follows that `6 2e.M/=n6 �3.1n, since �D 2�8.�3.1=C /

2 andC > 1. Hence P satisfies
condition (M2) of Theorem 3.1 and we again obtain the desired hypergraph H . This
completes the proof of the lemma.

We next combine Theorem 1.4 and Lemma 5.3 to construct a rooted tree whose leaves
correspond to a family of containers for the family F ind

n;m.C4/.

Lemma 5.4. For every " > 0, there exist positive constants ı and � such that the following
holds. For every n 2 N and n4=3.logn/4 6 m 6 �n2, there exists a collection C of eo.m/

pregraphs on n vertices such that

(a) every P 2 C is a leaf pregraph with respect to m, ", and ı;

(b) every graph G 2 F ind
n;m.C4/ is contained in some P 2 C .

Proof. We will construct a rooted tree T whose vertices are pregraphs on n vertices that
has the following properties:

(i) the root of T is the complete pregraph with M D E.Kn/;

(ii) if G 2 F ind
n;m.C4/ is contained in a pregraph P 2 V.T / that is not a leaf of T , then

G is contained in some child of P in T ;

(iii) the height of T is O.logn/;

(iv) the maximum degree of T is exp.o.m=logn//;

(v) every leaf of T is a leaf pregraph with respect to m, ", and ı.

It will then follow immediately that the leaves of T form a collection C as required.
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To define the children of a vertex P 2 V.T /, we will apply Theorem 1.4 to the hyper-
graph given by Lemma 5.3. To begin, let ˇ D ˇ5.3, ı D ı5.3, and �D �5.3 be the constants
given by Lemma 5.3 applied with "5.3  " and set �.n/ D .log log n/�1 (here we could
use any function that tends to zero sufficiently slowly as n!1). Note that, due to the
form of the statement, we may assume throughout that n is sufficiently large.

Let P 2 V.T / and suppose that P is not a leaf pregraph with respect to m, ", and ı.
By Lemma 5.3, there exist ` 2N with `2 > r and an .i; 4/-uniform hypergraph H �H P

i ,
for some i 2 ¹0; 1; 2º, satisfying the assertion of the lemma. We claim that we may apply
Theorem 1.4 to the hypergraph H with

K D
5

ˇ
and b D �.n/ �

m

.logn/2
;

and r as defined in (36). To do so, we need to verify that (1) is satisfied for every pair
.`0; `1/ 2 ¹0; : : : ; iº � ¹0; : : : ; 4º with .`0; `1/ ¤ .0; 0/.

Claim. For every .`0; `1/ 2 ¹0; : : : ; iº � ¹0; : : : ; 4º with .`0; `1/ ¤ .0; 0/, we have

�.`0;`1/.H / 6 K �
b`0C`1�1

m`0 � v.H /`1
� e.H / �

�
m

r

�1Œ`0>0�

: (40)

Proof of claim. Observe that the right-hand side of (40) decreases when `0 or `1 increase,
since b 6 r 6 m and v.H / D e.M/ > b, the latter holding (with room to spare) since
P is not a leaf pregraph and m 6 �n2. Assume first that `0 > 2 or `1 > 3 and note that
in this case �.`0;`1/.H / 6 1. It thus suffices to show that the right-hand side of (40) is at
least 1. Since v.H / 6 5`n and e.H / > ˇ`4 (see (37)), we have

K �
b5

m2.5`n/4
� ˇ`4 �

m

r
> �.n/6 �

m3

n4.logn/9
> 1;

since m > n4=3.logn/4 and n is sufficiently large.
Next, recall that�.0;1/.H /6 `3=n, by (37), and observe that if .`0; `1/D .0; 1/, then

the right-hand side of (40) is at least

K �
e.H /

v.H /
> K �

ˇ`4

5`n
>
`3

n
;

as required. Similarly, if i > 1 then�.1;0/.H / 6 `2, by (37), and if .`0; `1/D .1; 0/, then
the right-hand side of (40) is at least

K �
e.H /

r
> K �

ˇ`4

r
> `2;

since `2 > r . Finally, note that �.1;1/.H / D �.1;2/.H / 6 �.0;2/.H / 6 `, by (37). In
particular, if .`0; `1/ 2 ¹.1; 1/; .1; 2/; .0; 2/º, then the right-hand side of (40) is at least

K �
b2

m � .5`n/2
� ˇ`4 �

m

r
> �.n/2 �

m`2

n2.logn/3
> `;

since m` > m
p
r > m3=2=logn > n2.logn/4.
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Observe that F ind
n;m.C4/\P � F6m.H /, since each G 2 F ind

n;m.C4/\P hasm edges
and each constraint in H corresponds to an induced copy of C4. Therefore, by Theo-
rem 1.4, there exists a collection N.P / of at most��n

2

�
2b

���n
2

�
4b

�
6 exp.12b � logn/ D exp

�
o

�
m

logn

��
subpregraphs12 Q of P with the following properties:

(a0) if Q 2 N.P /, then either M.Q/ 6 .1 � c/M.P / or E.Q/ > E.P /C cr ;

(b0) each G 2 F ind
n;m.C4/ \P is contained in some Q 2 N.P /,

where c D 2�42K�1. We make N.P / the set of children of P in T , observing that the
degree of P in T is exp.o.m=logn//. By (a0) and Definition 5.2, the height of the tree T

obtained in this way is at most

1

c
log
�
n

2

�
C
m

cr
6 242K.2 lognC 213 logn/ D O.logn/:

It follows that the total number of leaves of T is eo.m/ and hence (by the definition of T

and property (b0)) the collection of leaves of T forms a family C as required.

To deduce Theorem 5.1, we will show that the containers P 2 C that are not "-almost
split pregraphs contain only an exponentially small proportion of the family F ind

n;m.C4/.

Proof of Theorem 5.1. Let ı5.4, �5.4, and C5.4 be (respectively) the constants and the fam-
ily of containers given by Lemma 5.4 applied with "5.4 ", let �4.4 be the constant given
by Proposition 4.4, and set ı D ı5.4, � D min ¹�4.4; �5.4; 2

�8ı2º, and C 0 D C5.4. Note that
we may assume (without loss of generality) that ı 6 1 and recall that jC 0j D eo.m/. We
claim that the collection

C WD ¹P 2 C 0 W P is an "-almost split pregraphº

has the property that all but at most e��m � jF ind
n;m.C4/j of the graphs in F ind

n;m.C4/ are
contained in some P 2 C and therefore C is the required family of ‘almost’ containers.

To prove this, we will give an upper bound on the number of graphs in F ind
n;m.C4/ that

belong to a single container P 2 C 0 n C . Recall that every P 2 C 0 is a leaf pregraph with
respect tom, ", and ı and therefore we may assume that P D .M;E/ satisfies either (34)
or (35).

Case 1: Either e.E/ > m or e.M/ < 2�4
p
n2m=log.n2=m/. We may assume that

e.E/ 6 m, as otherwise F ind
n;m.C4/ \P is empty. Therefore

jF ind
n;m.C4/\P j6

�
e.M/

m � e.E/

�
6
�
e.M/C e.E/

m

�
6
�
2�4

p
n2m=log.n2=m/Cm

m

�

12This means that M.Q/ �M.P / and E.P / � E.Q/ �M.P / [E.P /.
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and hence, since m 6 2�4
p
n2m=log.n2=m/ for every m 6 �n2, we obtain

jF ind
n;m.C4/ \P j 6

�
2�3

p
n2m=log.n2=m/

m

�
:

We claim that for some well-chosen ` 2 N,�
2�3

p
n2m=log.n2=m/

m

�
6 2�m �Nn;m.`/ 6 2�m � jF ind

n;m.C4/j; (41)

where Nn;m.`/ (cf. Section 4.2) denotes the number of graphs with vertex set ¹1; : : : ; nº
and precisely m edges that are complete on the set ¹1; : : : ; `º and empty on its comple-
ment. To prove (41), note first that�

a

c

�
>
�
a

b

�c�
b

c

�
and

�
a

b

�
6
�

a

b � c

�c�
a

b � c

�
(42)

for all a > b > c > 0 and choose ` 2 N so thats
3m

2 log.n2=m/
6 ` 6

s
2m

log.n2=m/
;

so, in particular, `.n � `/ >
p
n2m=log.n2=m/. It follows that�

2�3
p
n2m=log.n2=m/

m

�
6 2�3m

�
`.n � `/

m �
�
`
2

� �.`
2/
�
`.n � `/

m �
�
`
2

� � (43)

and, since
�
`
2

�
6 m=log.n2=m/ and m 6 �n2, the right-hand side of (43) is at most

2�3m
�
n2

m

�.`
2/
�
`.n � `/

m �
�
`
2

� � 6 2�3m � em �Nn;m.`/ 6 2�m �Nn;m.`/;

as claimed. It follows that there are at most 2�m � jF ind
n;m.C4/j graphs in F ind

n;m.C4/ \P .

Case 2: There exists ` 2 N such that e.E/ >
�
`
2

�
and e.M/ 6 .1 � ı/`n. We may again

assume that e.E/ 6 m, as otherwise F ind
n;m.C4/ \ P is empty. Since

�
`
2

�
6 m 6 �n2 6

2�8ı2n2, it follows (using (42)) that

jF ind
n;m.C4/ \P j 6

�
.1 � ı/`n

m � e.E/

�
6
�
.1 � ı=2/`.n � `/

m � e.E/

�
6 max

²
4m;

�
1 �

ı

2

�m�.`
2/
�
`.n � `/

m �
�
`
2

� �³;
where the bound 4m corresponds to the case .1 � ı=2/`.n � `/ 6 2m. However, since
� 6 �4.4, it follows from Proposition 4.4 that

4m < e�m=5 � 5m 6 e�m=5 �Nn;m.`n;m/ 6 e�m=5 � jF ind
n;m.C4/j;
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where `n;m is defined by `n;m D .m=log.`n;mn=m//1=2 (see Proposition 4.4). It will
therefore suffice to bound the second term in the maximum above.

To do so, we will consider the cases `6 2`n;m and ` > 2`n;m separately. If ` > 2`n;m,
then it follows from Proposition 4.4 that�

`.n � `/

m �
�
`
2

� � D Nn;m.`/ 6 e�m=15 �max
`
Nn;m.`/ 6 e�m=15 � jF ind

n;m.C4/j:

On the other hand, if ` 6 2`n;m, then we will show that
�
`
2

�
6 m=2. Indeed,�

`

2

�
6 2`2n;m D

2m

log.`n;mn=m/
D

4m

log.n2=m/ � log log.`n;mn=m/
6
m

2
;

since `n;m 6 n, m 6 �n2, and � 6 2�8. It follows that�
1 �

ı

2

�m�.`
2/
�
`.n � `/

m �
�
`
2

� � 6 e�ım=4 �Nn;m.`/ 6 e�ım=4 � jF ind
n;m.C4/j:

We have thus shown that there are at most e�ım=4 � jF ind
n;m.C4/j graphs in F ind

n;m.C4/ \P .
Summing over the eo.m/ pregraphs in C 0 nC , it follows that at most e��m � jF ind

n;m.C4/j

of the graphs in F ind
n;m.C4/ are contained in some P 2 C 0 that is not an "-almost split

pregraph. Since, by property (b) of Lemma 5.4, the remaining graphs in F ind
n;m.C4/ are

contained in some P 2 C , the theorem follows.

We are finally ready to prove part (c) of Theorem 1.2. To deduce from Theorem 5.1
that almost all graphs in F ind

n;m.C4/ have the claimed structure, it only remains to bound
the number of such graphs that are not "-close to a split graph but are contained in a
pregraph that is "0-close to a split pregraph (for some well-chosen "0).

Proof of part (c) of Theorem 1.2. Assume (without loss of generality) that " > 0 is suffi-
ciently small, and set ı D min ¹�5.1; "

4º, where �5.1 is the constant obtained by applying
Theorem 5.1 with "5.4  "3. Now, given n4=3.log n/4 6 m 6 ın2, it follows from The-
orem 5.1 that there exists a collection C of "3-almost split pregraphs on n vertices with
jC j D eo.m/ and such that at most e�ım � jF ind

n;m.C4/j graphs in F ind
n;m.C4/ are not contained

in any P 2 C .
We claim that, for each P 2 C ,

j¹G 2 F ind
n;m.C4/ \P W G is not "-close to a split graphºj 6 e�"m � jF ind

n;m.C4/j: (44)

Let V.Kn/ D U [W be a partition witnessing the fact that P D .M;E/ is an "3-almost
split pregraph and recall that

e.E/ 6
�
jU j

2

�
; eE .U / > .1 � "3/

�
jU j

2

�
; and eM .W / 6 7"3=2jU jn: (45)

Let ` be the largest integer such that eE .U />
�
`
2

�
and note that `6 jU j6 .1C "3/.`C 2/.

As usual, we may assume that e.E/ 6 m, since otherwise F ind
n;m.C4/ \ P is empty; note
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that therefore ` 6
p
3m 6

p
3ı � n. We may also assume that ` > 2�5

p
m=log.n2=m/,

since otherwise

e.M/ 6 "3
�
jU j

2

�
C jU j.n � jU j/C 7"3=2jU jn 6 2`n 6 2�4

s
n2m

log.n2=m/
;

and in Case 1 of the proof of Theorem 5.1 we showed that if this is the case then
jF ind
n;m.C4/ \P j 6 2�m � jF ind

n;m.C4/j, as required. It follows that

m 6 210`2 log
n2

m
6 210`n �

`

n
log

3n2

`2
6 210`n �

p
3ı log

1

ı
6 "3=2`n;

where the first inequality follows from ` > 2�5
p
m=log.n2=m/, the second since

�
`
2

�
6

e.E/ 6 m, the third since ` 6
p
3ı � n, and the fourth since ı 6 "4.

Now, observe that, by (45), if G 2 F ind
n;m.C4/ \ P is not "-close to a split graph, then

G has at least "m edges in the set W . It follows that the left-hand side of (44) is at mostX
s>"m

�
eM .U /C eM .U;W /

m � s � eE .U / � eE .U;W /

��
eM .W /

s � eE .W /

�
:

Noting that eM .U / 6 2"3
�
`
2

�
, eM .U;W / 6 .1C 2"3/`.n � `/, and eM .W / 6 8"3=2`n,

this is in turn at mostX
s>"m

�
`.n � `/C 2"3`n

m � s � eE .U / � eE .U;W /

��
8"3=2`n

s � eE .W /

�
: (46)

To bound this sum, note first that the inequalities m 6 "3=2`n and ` <
p
3ı � n < n=2

imply that `.n � `/ > 2m, and hence�
`.n � `/C 2"3`n

m � s � eE .U / � eE .U;W /

�
6
�
`.n � `/C 2"3`n

m � s �
�
`
2

� �
; (47)

since eE .U / >
�
`
2

�
. Now, using the inequalities

�
aCc
b

�
6 .aCc�b

a�b
/b
�
a
b

�
and

�
a
b�c

�
6

. b
a�b

/c
�
a
b

�
and the bounds `.n � `/ > 2m and ` <

p
3ı � n 6 n=3, we can bound the

right-hand side of (47) from above by�
1C

4"3`n

`.n � `/

�m�
2m

`.n � `/

�s�`.n � `/
m �

�
`
2

� � 6 .1C 6"3/m
�
3m

`n

�s
Nn;m.`/:

Observe also that �
8"3=2`n

s � eE .W /

�
6
�
8"3=2`n

s

�
6
�
8e"3=2`n

s

�s
;

since s D e.GŒW �/ 6 m 6 "3=2`n. It follows that (46) is at mostX
s>"m

.1C 6"3/m
�
8e"3=2`n

s

�s�
3m

`n

�s
Nn;m.`/;
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which is easily bounded from above by

e6"
3mNn;m.`/

X
s>"m

�
24e"3=2m

s

�s
6 m.24e"1=2/"me6"

3mNn;m.`/ 6 e�"mNn;m.`/;

proving (44). Since jC j D eo.m/ and at most e�ım � jF ind
n;m.C4/j graphs in F ind

n;m.C4/ are
not contained in any P 2 C , it follows that almost all graphs in F ind

n;m.C4/ are "-close to a
split graph, as required. This completes the proof of Theorem 1.2.

It only remains to prove Corollary 1.3. We will in fact use Theorem 5.1, together
with Theorem 1.2 and Proposition 4.1, to prove the following slightly stronger (and more
technical) statement.

Corollary 5.5. For every " > 0, there exists ı > 0 such that the following holds a.a.s. for
G � G ind

n;p.C4/:

(a) If n�1 � p 6 ın�2=3, then G is "-quasirandom, and

e.G/ 2 .1˙ "/p

�
n

2

�
: (48)

(b) If ın�2=3 6 p 6 n�1=3.logn/4, then

ın4=3

4
6 e.G/ 6 n4=3.logn/8:

(c) If n�1=3.logn/4 6 p � 1, then G is "-close to a split graph and

e.G/ D ‚

�
p2n2

log.1=p/

�
:

Proof. Let G � G ind
n;p.C4/ be the (random) graph obtained by conditioning G.n; p/ to

contain no induced 4-cycle and let Em denote the event that G has exactly m edges.
Observe that P .Em/ / '.m/, where

'.m/ D jF ind
n;m.C4/j �

�
p

1 � p

�m
;

and that the distribution of G conditioned on Em is uniform on F ind
n;m.C4/. Our main

task will be to find the values of m for which '.m/ is the largest. In order to show that
P .
S
m2R Em/ > 1 � ˛ for some R � ¹0; : : : ;

�
n
2

�
º and ˛ > 0, it is enough to prove that

for some m 2 R and all m0 62 R, we have ˛ � '.m/ > n2 � '.m0/. We first observe the
following straightforward lower and upper bounds on '.m/.

Claim 1. There exists an absolute constant c such that for every m,�
cnpp

m log.n2=m/

�m
6 '.m/ 6

�
en2p

2m.1 � p/

�m
:
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Proof. The upper bound follows by noting that

jF ind
n;m.C4/j 6

��n
2

�
m

�
6
�
e
�
n
2

�
m

�m
6
�
en2

2m

�m
:

The lower bound follows by observing that

jF ind
n;m.C4/j > j�n;mj > Nn;m

�p
m=log.n2=m/

�
>
�

n
p
m

2m
p

log.n2=m/

�.1�1=log.n2=m//�m

>
�

cnp
m log.n2=m/

�m
:

We next choose the constant ı D ı."/ > 0 as follows. First, note that the function
x 7! .e=x/x is strictly increasing for x 2 .0; 1� and strictly decreasing for x 2 Œ1;1/,
so there is a  > 0 such that .e=x/x 6 e � 2 whenever x 62 Œ1 � "=2; 1 C "=2�. Fix
such a  and let ı4.1 be the constant given by applying Proposition 4.1 with 4.1  =4.
Moreover, let ı1.2 be the constant given by Theorem 1.2 applied with "1.2  " and set
ı WDmin ¹ı1.2; ı4.1º. The following claim is an immediate consequence of Proposition 4.1.

Claim 2. If 1� m 6 ın4=3, then

'.m/ >
�
.e � /n2p

2m.1 � p/

�m
for all sufficiently large n 2 N.

Proof. By Proposition 4.1 and our choice of ı, we have

jF ind
n;m.C4/j > e�m=4 �

��n
2

�
m

�
> e�m=4 �

�
.e � =4/n2

2m

�m
for all sufficiently large n, where in the second inequality we used the fact that 1 �
m � n2. Since e�=4 � .e � =4/ > .1 � =4/.e � =4/ > e �  , the claimed bound
follows.

Finally, Theorem 5.1 gives the following upper bound on '.m/.

Claim 3. There exists an absolute constant C such that if n4=3.logn/4 6 m� n2, then

'.m/ 6
�

Cnpp
m log.n2=m/

�m
:

Proof. Suppose that n4=3.log n/4 6 m � n2. By Theorem 5.1, almost all graphs in
F ind
n;m.C4/ are contained in one of at most eo.m/ pregraphs that are .1=4/-almost split.

A given pregraph P D .M;E/ contains exactly
�
e.M/
m�e.E/

�
graphs with m edges and if P

is .1=4/-almost split, then

3

4

�
u

2

�
6 e.E/ 6

�
u

2

�
and e.M/ 6

9

2
un

for some integer u. Let ` be the smallest integer such that e.E/ 6
�
`
2

�
. It follows that
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�
`�1
2

�
6 e.E/ 6

�
`
2

�
and e.M/ 6 6`n. In particular,�

e.M/

m � e.E/

�
6 max

`

�
6`n

m �
�
`
2

�� � .6`n/` 6 7m �max
`

�
`.n � `/

m �
�
`
2

� �:
By Proposition 4.4, the maximum above is attained at some ` satisfying `n;m=2 6 ` 6
2`n;m, that is, ` D ‚.

p
m=log.n2=m//. It follows that for some absolute constants C

and C 0,

jF ind
n;m.C4/j 6 eC

0m
�Nn;m

�p
m=log.n2=m/

�
6
�

Cn

2
p
m log.n2=m/

�m
;

which implies the claimed bound on '.m/.

We will now use Claims 1–3 to bound the ratios '.m/='.m0/ for various m and m0.
Suppose first that n�1 � p 6 ın�2=3, set m D pn2=2, and let m0 62 .1 ˙ "/p

�
n
2

�
. By

Claim 2,

'.m/ >
�
.e � /n2p

2m.1 � p/

�m
D

�
e � 

1 � p

�m
;

and by Claim 1,

'.m0/ 6
�

en2p

2m0.1 � p/

�m0
D

�
em

m0.1 � p/

�m0

m �m

:

If m0 > 2em, then '.m0/ 6 1 6 2�m'.m/, so we may assume that m0 6 2em. Since
m0 62 .1˙ "=2/m, we have �

em

m0

�m0=m
6 e � 2

by our definition of  , implying that

'.m0/

'.m/
6
�
e � 2

e � 

�m
� .1 � p/m�m

0 6 exp.�m=e C 2"mp/ 6 exp.�m=3/:

It follows that if n�1 � p 6 ın�2=3, then P .e.G/ 2 .1 ˙ "/p
�
n
2

�
/ > 1 � e�m=4. In

particular, it follows from Theorem 1.2 that G is a.a.s. "-quasirandom. This establishes
part (a) of the corollary.

Suppose now that ın�2=3 6 p 6 n�1=3.logn/4 and let m D ın4=3=2. By Claim 2,

'.m/ >
�
.e � /n2p

2m.1 � p/

�m
> 2m;

where the second inequality holds asm6 pn2=2. Ifm0 6m=2, then by Claim 1 and since
x 7! .a=x/x is increasing for x 6 a=e,

'.m0/ 6
�

en2p

2m0.1 � p/

�m0
6
�

en2p

m.1 � p/

�m=2
6
�
4em.1 � p/

.e � /2n2p

�m=2
� '.m/:
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Since m 6 pn2=2, it follows that

'.m0/ 6
�
2e.1 � p/

.e � /2

�m=2
� '.m/ 6

�
3

4

�m=2
� '.m/:

On the other hand, if m0 > n4=3.logn/8, then by Claim 3,

'.m0/ 6
�

Cnpp
m0 log.n2=m0/

�m0
6 1 6 2�m � '.m/:

It follows that if ın�2=3 6 p 6 n�1=3.logn/4, then P .ın4=3=46 e.G/6 n4=3.logn/8/>
1 � e�m=10, establishing part (b) of the corollary.

Finally, suppose that n�1=3.logn/4 6p� 1, letmDˇp2n2=log.1=p/ for some small
positive constant ˇ, and observe that m > n4=3.logn/6. By Claim 1,

'.m/ >
�

cnpp
m log.n2=m/

�m
>
�

cnp
p

log.1=p/p
ˇ � pn �

p
3 log.1=p/

�m
> em;

since ˇ is small. If m0 6 n4=3.logn/4, then by Claim 1,

'.m0/ 6
�

en2p

2m0.1 � p/

�m0
6 n2m

0 6 exp.2n4=3.logn/5/ 6 em=2 6 e�m=2 � '.m/:

Let � be a small positive constant. If m0 > m=� , then by Claim 3,

'.m0/ 6
�

Cnpp
m0 log.n2=m0/

�m0
6 1 6 e�m � '.m/:

Finally, suppose that n4=3.logn/4 6 m0 6 �m. By Claim 3,

'.m0/ 6
�

Cnpp
m0 log.n2=m0/

�m0
6
�

Cnpp
m0 log.n2=m/

�m0
:

Since the function x 7! .a=
p
x/x is increasing for x 6 a2=e, the right-hand side above is

increasing in m0 6 �m and thus

'.m0/ 6
�

Cnpp
�m log.n2=m/

��m
6
�

Cp
ˇ�

��m
6 em=2 6 e�m=2 � '.m/:

It follows that there is an absolute constant K such that if n�1=3.logn/4 6 p � 1, then

P

�
p2n2

K log.1=p/
6 e.G/ 6

Kp2n2

log.1=p/

�
> 1 � e�m=3:

In particular, it follows from Theorem 1.2 that a.a.s. G is "-close to a split graph. This
completes the proof of the corollary.
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6. Concluding remarks and open problems

This paper makes a first step towards understanding the typical structure of a sparse mem-
ber of a hereditary graph property. In this final section, we discuss a few of the many
natural open problems suggested by our main results. We begin with the following con-
jecture on the typical structure of sparse induced-C4-free graphs.

Conjecture 6.1. Suppose that n4=3.log n/1=3 � m 6
�
n
2

�
� �.n2/ and let G be a uni-

formly chosen random graph in F ind
n;m.C4/. Then a.a.s. G is a split graph.

Note that Conjecture 6.1 would sharpen Theorem 1.2 in three different ways. First,
the power of log n in the lower bound on m in Theorem 1.2 (c) would be reduced from 4

to 1=3, which is best possible, as shown by Theorem 1.2 (b). Second, the description of
the typical members of F ind

n;m.C4/ would be more precise – the graphs are required to be
split rather than only close to split. Finally, the upper bound onm is increased from o.n2/

to
�
n
2

�
� �.n2/; in fact, we expect Conjecture 6.1 to remain true even when

�
n
2

�
� m is

much smaller than n2, but then it is (arguably) more natural to consider the complements
of graphs in F ind

n;m.C4/, which are sparse induced-2K2-free graphs.
We made the assumption that m D o.n2/ mainly for convenience (and to simplify

the proof of Theorem 1.6) and it seems plausible that our techniques could be extended
to all m 6

�
n
2

�
��.n2/, but we have not made any serious attempts to do so. A natural

alternative approach of resolving Conjecture 6.1 for m D ‚.n2/ would be to generalise
the method of Prömel and Steger [41], who characterised typical members of F ind

n .C4/.
A more substantial step towards resolving the conjecture would be either to determine

the precise structure of a typical member of F ind
n;m.C4/ when m > n4=3.log n/O.1/, or to

determine the approximate structure in the range n4=3.logn/1=3�m 6 n4=3.logn/4. We
remark that the methods of [11] may be helpful in achieving the former goal (determining
the precise structure), though it appears that new ideas will be needed.

6.1. Sparse induced-H -free graphs

Perhaps the most natural direction for further investigation would be to describe the typ-
ical structure of sparse induced-H -free graphs for an arbitrary graph H . The first step
in this direction was made recently by Kalvari [31], who used Theorem 1.4 to prove the
following rough characterisation of a typical member of F ind

n;m.H/ for all non-bipartite
graphs H and all m� n2.

Theorem 6.2. Suppose that H is a non-bipartite graph and let G be a uniformly chosen
random graph in F ind

n;m.H/. The following holds for every " > 0:

(a) If n� m� n2�1=m2.H/, then a.a.s. G is "-quasirandom.

(b) If n2�1=m2.H/ � m� n2, then a.a.s. G is "-close to .�.H/ � 1/-partite.

We remark that the structural characterisation of typical sparse induced-H -free graphs
provided by Theorem 6.2 (b) is not as precise as that given in Theorem 1.2 (c). We expect
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that for many H , the following stronger statement holds for all m � n2�1=m2.H/: the
vertex set of a typical member of F ind

n;m.H/ can be partitioned into �.H/� 1 sets that are
‘almost independent’ (i.e., they induce o.m/ edges) and some number of ‘almost-cliques’
(that is, sets inducing graphs of density 1� o.1/) of size‚.

p
m=logn/. However, it is not

true, in general, that the typical member of F ind
n;m.H/ remains o.1/-close to .�.H/ � 1/-

partite when m D �.n2/. For example, Prömel and Steger [42] proved that almost all
graphs in F ind

n .C5/ are so-called generalised split graphs; a graph G is a generalised
split graph if the vertex set either of G or of its complement can be partitioned into sets
V1 and V2 such that V1 induces a union of pairwise disjoint cliques and V2 induces a
clique.

6.2. General hereditary properties of graphs

A natural generalisation of the family of induced-H -free graphs that has been extensively
studied in the literature (see, for example, [2, 3, 12]) is given by so-called hereditary
properties of graphs, that is, properties of graphs that are closed under taking induced
subgraphs. As we mentioned in the Introduction, the rough structure of a typical mem-
ber of an arbitrary hereditary property of graphs was determined a few years ago by Alon,
Balogh, Bollobás, and Morris [3]. It would be very interesting (and, most likely, extremely
challenging) to obtain a corresponding statement for a typical sparse graph in a hereditary
property.

In order to give the reader an idea of what it might be possible to prove in this very
general setting, let us take this opportunity to state a theorem for monotone properties of
graphs (that is, properties of graphs that are closed under taking subgraphs) which follows
easily from the container theorems proved in [9, 47], but, as far as we are aware, has not
previously been stated explicitly in the literature.

Given a monotone property of graphs P , let F .P / denote the family of minimal
forbidden subgraphs, i.e., the family of all graphs that are not in P , but all of whose proper
subgraphs are in P . Theorem 6.4 below gives an approximate structural description of a
typical member of P with (essentially) any given order n and size m, as long as F .P / is
finite. In order to state the theorem, we will need the following definition.

Definition 6.3. Given a non-trivial monotone property of graphs P such that F .P / is
finite, we define the sequence

m.P / D ..a1; r1/; : : : ; .as; rs//

as follows. Let M.P / be the set of �-minimal elements in the family of pairs

¹.m2.H/; �.H/ � 1/ W H 2 F .P /º;

where .a; r/ � .a0; r 0/ if and only if a 6 a0 and r 6 r 0. The sequence m.P / lists the ele-
ments of M.P / in increasing order of their first coordinate (or, equivalently, in decreasing
order of their second coordinate).
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It follows from the definition of m.P / that a1 < � � � < as and r1 > � � � > rs , and that

a1 D min ¹m2.H/ W H 2 F .P /º and rs D min ¹�.H/ � 1 W H 2 F .P /º:

We remark that the sequence m.P / can be arbitrarily long. For example, if H1; : : : ; Hs
is a sequence of graphs with

m2.H1/ < � � � < m2.Hs/ and �.H1/ > � � � > �.Hs/ > 3;

and P is the monotone property with F .P / D ¹H1; : : : ;Hsº, then

m.P / D
�
.m2.H1/; �.H1/ � 1/; : : : ; .m2.Hs/; �.Hs/ � 1/

�
:

It is easy to construct such a sequence of graphs, for example by taking blow-ups of
complete graphs.

Given integers n and m and a graph property P , denote by Pn;m the family of all
graphs with vertex set ¹1; : : : ; nº and precisely m edges that belong to P .

Theorem 6.4. Let P be a non-trivial monotone property of graphs such that F .P / is
finite and let G be a uniformly chosen random graph in Pn;m. Suppose that m.P / D
..a1; r1/; : : : ; .as; rs//. The following holds for every " > 0:

(a) If n� m� n2�1=a1 , then a.a.s. G is "-quasirandom.

(b) If n2�1=ai � m� n2�1=aiC1 for some i 2 ¹1; : : : ; s � 1º, then a.a.s. G is "-close to
ri -partite.

(c) If m� n2�1=as and rs > 2, then a.a.s. G is "-close to rs-partite.

We remark that the assumption that F .P / is finite is essential. For example, suppose
that F .P / contains all (minimal) non-bipartite graphs H with m2.H/ > a for a given
a > 1. Ifm> an, then Pn;m contains only bipartite graphs, and thus if " > 0 is sufficiently
small, then there are no graphs in P that are "-quasirandom.

Note also that if rs D 1, then the conclusion of part (c) is obviously false, since no non-
empty graph is "-close to 1-partite (unless " > 1). Needless to say, it would be extremely
interesting to prove anything non-trivial about the structure of a typical element of P in
this case (even, for example, in the case F .P / D ¹C4º).

Since the proof of Theorem 6.4 is a (nowadays) standard application of the container
method, using (a robust version of) the stability theorem of Erdős and Simonovits [21,49]
(cf. the proof of [9, Theorem 1.7]), we give only a sketch of the proof.

Sketch of the proof of Theorem 6.4. Assertion (a) follows becausem2.H/> a1 for every
H 2 F .P /, by the definition of m.P /, and hence a rather straightforward generalisation
of the argument used in our proof of Proposition 4.1 shows that if m� n2�1=a1 , then
jPn;mj > e�o.m/

�.n
2/
m

�
. On the other hand, it was shown in Section 4.3 that the number of

graphs in Pn;m that are not "-quasirandom is e��.m/
�.n

2/
m

�
.

To see why assertions (b) and (c) are true, fix an i 2 ¹1; : : : ; s � 1º and observe
that every H 2 F .P / with �.H/ 6 ri satisfies m2.H/ > aiC1, by the definition
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of m.P /. In particular, the argument used in the proof of Proposition 4.1 shows that if
m � n2�1=aiC1 , then with probability e�o.m/, the uniformly chosen random balanced
ri -partite graph with n vertices and m edges contains no copy of any H 2 F .P / with
�.H/ 6 ri (and thus no copy of any H 2 F .P /). Consequently, if m � n2�1=aiC1 ,
then jPn;mj > e�o.m/

�
.1�1=ri /.n

2/
m

�
. Moreover, F .P / does not contain any graph H with

�.H/ 6 rs and hence jPn;mj >
�
.1�1=rs/.n

2/
m

�
for every m.

A nowadays standard application of the container method and the stability the-
orem of Erdős and Simonovits [21, 49] (see the proof of [9, Theorem 1.7]) shows
that if H is not bipartite and m � n2�1=m2.H/, then the number of H -free graphs
with vertex set ¹1; : : : ; nº and m edges that are not "-close to .�.H/ � 1/-partite is
e��.m/

�
.1�1=.�.H/�1//.n

2/
m

�
. Since no graph in P contains a graph H 2 F .P / as a sub-

graph, assertions (b) and (c) of the theorem follow by comparing this upper bound on the
number of H -free graphs that are far from .�.H/ � 1/-partite, where H 2 F .P / satis-
fies m2.H/ D ai and �.H/ D ri C 1, to the lower bounds on jPn;mj established in the
previous paragraph.
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