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Abstract. Motivated by the question of optimal vaccine allocation strategies in heterogeneous
population for epidemic models, we study various properties of the effective reproduction num-
ber. In the simplest case, given a fixed non-negative matrix K, this corresponds mathematically to
the study of the spectral radius Re.�/ of the matrix product Diag.�/K, as a function of � 2 Rn

C
.

The matrix K and the vector � can be interpreted as a next-generation operator and a vaccination
strategy. This can be generalized in an infinite-dimensional case where the matrix K is replaced by
a positive integral compact operator, which is composed with a multiplication by a non-negative
function �. We give sufficient conditions for the function Re to be convex or a concave. Eventually,
we provide equivalence properties on models which ensure that the function Re is unchanged.

Keywords: integral operator, vaccination strategy, effective reproduction number.

1. Introduction

1.1. The mathematical question

For p 2 Œ1;C1�, we consider the Lebesgue space Lp , with its usual norm k�kp , on a � -
finite measure space .�; F; �/. We denote by k�kLp the operator norm on the Banach
space of bounded operators from Lp to Lp . For a bounded operator T on Lp , we denote
by �.T / D limn!1kT

nk
1=n
Lp its spectral radius. We recall that an operator T on Lp is

positive if T .LpC/ � L
p
C, where LpC denotes the set of non-negative functions in Lp .

For h 2 L1C , let MhWf 7! hf denote the bounded operator on Lp .
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According to the Krein–Rutman theorem, if T is a positive compact operator on Lp

such that �.T / is positive, then �.T / is also an eigenvalue. For such an operator, we define
the map ReŒT � on L1C by

ReŒT �.h/ D �.TMh/: (1)

By homogeneity of the spectral radius, for the study of the mapReŒT �, it is enough to con-
sider this map only on the subset�� L1C of non-negative measurable functions bounded
by 1. Our aim is to provide sufficient conditions on T for the map ReŒT � to be convex or
concave on �. We briefly explain in the next section how this question is related to the
optimal vaccination problem in epidemic models.

1.2. The epidemic motivation

In finite metapopulation models, the population is divided into N � 2 different sub-
populations; this amounts to considering the discrete state space�dD¹1; : : : ;N º. Follow-
ing [22], the entry Kij of the so-called next-generation matrix K is equal to the expected
number of secondary infections for people in subgroup i resulting from a single randomly
selected non-vaccinated infectious person in subgroup j . The matrix K has non-negative
entries and represents the compact positive operator T . Let � 2 � D Œ0; 1�N represent
a vaccination strategy, that is, �i is the fraction of non-vaccinated individuals in the i -th
sub-population; thus �i D 0 when the i -th sub-population is fully vaccinated, and 1 when
it is not vaccinated at all – this seemingly unnatural convention is in particular motivated
by the simple form of equation (1). So, the strategy 1 2 �, with all its entries equal to 1,
corresponds to an entirely non-vaccinated population.

The effective reproduction number ReŒK�.�/ associated to the vaccination strategy �
is then the spectral radius of the matrix K � Diag.�/:

ReŒK�.�/ D �.K � Diag.�//; (2)

where Diag.�/ is the diagonal matrix with diagonal entries �. It may be interpreted as
the mean number of infections coming from a typical case in the SIS model (where S
and I stand for susceptible and infected). In particular, we denote by R0 D ReŒK�.1/
the so-called basic reproduction number associated to the metapopulation epidemiologi-
cal model, see Lajmanovich and Yorke [26]. Let us mention that in this model if R0 � 1,
then there is no endemic equilibrium (i.e., the epidemic vanishes asymptotically), whereas
if R0 > 1, there exists at least one non-trivial endemic equilibrium (which means that the
epidemic is persistent). With the interpretation of the function Re in mind, it is then very
natural to minimize it under a constraint on the cost of the vaccination strategies �. This
constrained optimization problem appears in most of the literature for designing efficient
vaccination strategies for multiple epidemic situation (SIS/SIR/SEIR) [7,10,15,16,22,29,
31,38]. Note that in some of these references, the effective reproduction number is defined
as the spectral radius of the matrix Diag.�/ �K. Since the eigenvalues of Diag.�/ �K are
exactly the eigenvalues of the matrix K � Diag.�/, this actually defines the same func-
tion ReŒK�.



The effective reproduction number: Convexity, concavity and invariance 3

Given the importance of convexity to solve optimization problems efficiently, it is
natural to look for conditions on the matrix K that imply convexity or concavity for the
mapReŒK� defined by (2). Those properties can be useful to design vaccination strategies
in the best possible way; see the companion paper [12].

1.3. The finite-dimensional case

In their investigation of the behavior of the map ReŒK� defined in (2), Hill and Longini
conjectured in [22] sufficient spectral conditions to get either concavity or convexity.
More precisely, guided by explicit examples, they state that ReŒK� should be convex if all
the eigenvalues of K are non-negative real numbers, and that it should be concave if all
eigenvalues are real, with only one positive eigenvalue.

Our first series of results show that, while this conjecture cannot hold in full gen-
erality (see Section 4.1), it is true under an additional symmetry hypothesis. Recall that
a matrixK is called diagonally symmetrizable if there exist positive numbers .d1; : : : ;dN /
such that for all i , j , diKij D djKj i . Such a matrix is diagonalizable with real eigenval-
ues according to the spectral theorem for symmetric matrices. The following result, which
appears below in the text as Theorem 4.1, settles the conjecture for diagonally symmetriz-
able matrices. Let us mention that the eigenvalue �1 in the theorem below is non-negative
and is equal to the spectral radius of K, that is, �1 D ReŒK�.1/ D R0, thanks to the
Perron–Frobenius theory. We consider the function Re D ReŒK� defined on Œ0; 1�N .

Theorem 1.1. Let K be an N � N matrix with non-negative entries. Suppose that K is
diagonally symmetrizable with eigenvalues �1 � �2 � � � � � �N .

(i) If �N � 0, then the function Re is convex.

(ii) If �2 � 0, then the function Re is concave.

Note that case (i) appears already in Cairns [7]; see Section 4.1 below for a detailed
comparison with existing results. This completes results on log-convexity of the map
ReŒK� given in [17, 19]. Notice also that if K and K 0 are diagonally similar up to trans-
position, they define the same function Re; see [13] for more results in this direction.
Eventually, the concavity of the map ReŒK� implies that K has a unique irreducible com-
ponent in its Perron–Frobenius diagonalization as shown in Lemma 5.10 below.

Let us stress that diagonally symmetrizable next-generation matrices appear in a wide
variety of models used in the literature. Typically, the next-generation matrix is expressed
as a product of a diagonal matrix giving the activity level per group and a mixing matrix
that satisfies the conditions of Busenberg and Castillo-Chavez [5]. With this form, the
next-generation matrix is indeed diagonally symmetrizable.

1.4. The general case

We now give our main result in the setting of Section 1.1. We give in Definition 4.2 an
extension to the notion of “diagonally symmetrizable” for compact operators. For exam-
ple, according to Proposition 4.9, if T 0 is a self-adjoint compact operator on L2 and f , g
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are two non-negative measurable functions defined on � bounded and bounded away
from 0, then the operator T D Mf T 0Mg is a compact diagonally symmetrizable on L2.
In particular, Corollary 4.8 states that diagonally symmetrizable compact operators onLp ,
with p 2 Œ1;C1/, have a real spectrum.

For a compact operator T , let p.T / (resp. n.T /) denote the number of eigenvalues
with positive (resp. negative) real part taking into account their (algebraic) multiplicity.
Then, we obtain the following result given in Theorem 4.10 below.

Theorem 1.2 (Convexity/concavity of Re). Let T be a positive compact diagonally sym-
metrizable operator on Lp with p 2 Œ1;C1/. We consider the function Re D ReŒT �

defined on �.

(i) If n.T / D 0, then the function Re is convex.
(ii) If p.T / D 1, then the function Re is concave.

The proof of the concavity property relies on the explicit expression of the second
derivative of ReŒT � when T is self-adjoint and on the Sylvester’s inertia theorem.

The concavity property of ReŒT � implies a strong structural property on the opera-
tor T . In order to establish this result, we present in Section 5 an atomic decomposition of
the space� related to the operator T following [34]. In particular, we extend the notion of
quasi-irreducible operator to the non-self-adjoint case and say an operator is monatomic
if it has only one non-trivial irreducible component; see Definition 5.5 in Section 5.2. If T
is a positive compact operator on Lp for some p 2 Œ1;C1/ with R0 D ReŒT �.1/ > 0,
where 1 2 � is the constant function equal to 1, then we have the following properties:

(i) If ReŒT � is concave, then T is monatomic according to Lemma 5.10.
(ii) If p.T / D 1, then R0 is simple and the only eigenvalue in R�C, and thus T is

monatomic according to Lemma 5.9.
(iii) More generally, using the decomposition from Lemma 5.3, we get that if Spec.T /�

R� [ ¹R0º and T is a diagonally symmetrizable operator, then the function Re is
the maximum of m concave functions which are non-zero on m pairwise disjoint
subsets of �, where m is the (algebraic) multiplicity of R0.

Considering a general positive compact operator T on Lp for some p 2 Œ1;C1/,
by [34], we provide in Corollary 5.4 the decomposition ReŒT � on the irreducible atoms,

ReŒT � D max
i2I

ReŒTi �;

where Ti .�/D 1�iT .1�i �/with .�i ; i 2 I / the at most countable collection of irreducible
atoms in � associated to T .

1.5. Structure of the paper

After recalling the mathematical framework in Section 2, we discuss invariance properties
of Re in Section 3. The convexity properties of Re and the related conjecture of Hill and
Longini are discussed in Section 4. Finally, the case of reducible operators is treated in
Section 5, using the Frobenius decomposition from [34].
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2. Setting, notations and previous results

2.1. Spaces, operators, spectra

All metric spaces .S; d/ are endowed with their Borel � -field denoted by B.S/. The
set K of compact subsets of C endowed with the Hausdorff distance dH is a metric space,
and the function rad from K to RC defined by rad.K/ D max¹j�j; � 2 Kº is Lipschitz
continuous from .K; dH/ to R endowed with its usual Euclidean distance.

Let .�;F;�/ be a measured space, with a � -finite (positive and non-zero) measure �.
For real-valued functions f and g defined on �, we may write hf; gi or

R
�
fg d� forR

�
f .x/g.x/�.dx/ whenever the latter is meaningful. For p 2 Œ1;C1�, we denote by

Lp D Lp.�/ D Lp.�;�/ the space of real-valued measurable functions g defined on �
such that kgkp D .

R
jgjp d�/1=p (with the convention that kgk1 is the �-essential supre-

mum of jgj) is finite, where functions which agree �-a.e. are identified. We denote by LpC
the subset of Lp of non-negative functions. We define � as the subset of L1 of Œ0; 1�-
valued measurable functions defined on�. We denote by 1 (resp. 0) the constant function
on � equal to 1 (resp. 0).

Let .E; k�k/ be a complex Banach space. We denote by k�kE the operator norm
on L.E/, the Banach algebra of bounded operators. The spectrum Spec.T / of T 2 L.E/

is the set of � 2 C such that T � � Id does not have a bounded inverse operator, where Id
is the identity operator on E. Recall that Spec.T / is a compact subset of C, and that the
spectral radius of T is given by

�.T / D rad.Spec.T // D lim
n!1
kT nk

1=n
E :

The element � 2 Spec.T / is an eigenvalue if there exists x 2 E such that T x D �x and
x ¤ 0. Following [25], we define the (algebraic) multiplicity of � 2 C by

m.�; T / D dim
� [
k2N�

ker.T � � Id/k
�
;

so that � is an eigenvalue if m.�; T / � 1. We say the eigenvalue � of T is simple if
m.�; T / D 1.

If E is also an algebra of functions, for g 2 E, we denote by Mg the multiplication
operator (possibly unbounded) defined by Mg.h/ D gh for all h 2 E; if furthermore g is
the indicator function of a set A, we simply write MA for M1A .

2.2. Invariance and continuity of the spectrum for compact operators

We collect some known results on the spectrum and multiplicity of eigenvalues related to
compact operators. Let .E; k�k/ be a complex Banach space. Let A 2 L.E/. We denote
by A> the adjoint of A. A sequence .An; n 2N/ of elements of L.E/ converges strongly
to A 2 L.E/ if limn!1kAnx � Axk D 0 for all x 2 E. Following [1], a set of oper-
ators A � L.E/ is collectively compact if the set ¹Ax W A 2 A; kxk � 1º is relatively
compact. Recall that the spectrum of a compact operator is finite or countable and has
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at most one accumulation point, which is 0. Furthermore, 0 belongs to the spectrum of
compact operators in infinite dimension.

We refer to [33] for an introduction to Banach lattices and positive operators; we
shall only consider the real Banach lattices Lp D Lp.�; �/ for p 2 Œ1;C1� on a mea-
sured space .�;F; �/ with a � -finite positive non-zero measure, as well as their complex
extension. (Recall that the norm of an operator on Lp or its natural complex exten-
sion is the same, see [18, Corollary 1.3].) A bounded operator A on Lp is positive if
A.L

p
C/ � L

p
C.

We say that two complex Banach spaces .E; k�k/ and .E 0; k�k0/ are compatible if
.E \ E 0; k�k C k�k0/ is a Banach space, and E \ E 0 is dense in E and in E 0. Given two
compatible spaces E and E 0, two operators A 2 L.E/ and A0 2 L.E 0/ are said to be
consistent if, with E 00 D E \ E 0, A.E 00/ � E 00, A0.E 00/ � E 00 and Ax D A0x for all
x 2 E 00.

Lemma 2.1 (Spectral properties). Let A, B be elements of L.E/.

(i) If E is a Banach lattice, and if A, B and A � B are positive operators, then we
have

�.A/ � �.B/:

(ii) If A is compact, then A>, AB and BA are compact and we have

Spec.A/ D Spec.A>/ and m.�; A/ D m.�; A>/ for � 2 C�; (3)

Spec.AB/ D Spec.BA/ and m.�; AB/ D m.�; BA/ for � 2 C�; (4)

and in particular,
�.AB/ D �.BA/: (5)

(iii) Let .E 0; k�k0/ be a complex Banach space and A0 2 L.E 0/ such that .E; k�k/ and
.E 0; k�k0/ are compatible, and A and A0 are consistent. If A and A0 are compact,
then we have

Spec.A/ D Spec.A0/ and m.�; A/ D m.�; A0/ for � 2 C�:

(iv) Let .An; n 2 N/ be a collectively compact sequence which converges strongly to A.
Then, we have limn!1 Spec.An/ D Spec.A/ in .K; dH/, limn! �.An/ D �.A/

and for � 2 Spec.A/\C�, r > 0 such that �0 2 Spec.A/ and j�� �0j � r implies
� D �0, and all n large enough:

m.�; A/ D
X

�02Spec.An/; j���0j�r

m.�0; An/: (6)

Proof. Property (i) can be found in [28, Theorem 4.2]. Property (iii) is in [8, Theo-
rem 4.2.15].

Equation (3) from property (ii) can be deduced from [25, p. 20, Theorem]. Using [25,
p. 25, Proposition], we get the second part of (4) and Spec.AB/\C� D Spec.BA/\C�,
and thus (5) holds. To get the first part of (4), we only need to consider if 0 belongs to the
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spectrum or not. We first consider the infinite-dimensional case: as A is compact, we get
that AB and BA are compact, thus 0 belongs to their spectrum. We then consider the
finite-dimensional case: as det.AB/ D det.A/ det.B/ D det.BA/, where A and B denote
also the matrix of the corresponding operator in a given base, we get that 0 belongs to the
spectrum of AB if and only if it belongs to the spectrum of BA.

We eventually check property (iv). We deduce from [1, Theorems 4.8 and 4.16] (see
also (d), (g) [take care that d.�; K/ therein is the algebraic multiplicity of � for the
compact operator K and not the geometric multiplicity] and (e) in [2, Section 3]) that
limn!1 Spec.An/ D Spec.A/ and (6). Then use that the function rad is continuous to
deduce the convergence of the spectral radius from the convergence of the spectra.

We complete this section with an example of compatible Banach spaces. Accord-
ing to [8, p. 49, Problem 2.2.9], the spaces Lp.�/ are compatible for all p 2 Œ1;C1/.
We shall use the following slightly more general result. We recall that two � -finite mea-
sures on .�;F/, say � and �, are mutually absolutely continuous if for A 2 F, we have
�.A/ D 0, �.A/ D 0. Due to the Radon–Nikodym theorem, the � -finite measures �
and � are mutually absolutely continuous if and only if there exists a positive finite mea-
surable function h such that d� D h d�.

Lemma 2.2 (Compatibility of Lp spaces). Let � and � be two � -finite measures on
.�; F/ which are mutually absolutely continuous, and let p; r 2 Œ1;C1/. Then, the
spaces Lp.�/ and Lr .�/ are compatible.

Proof. First note that a property is true �-a.e. if and only if it is true �-a.e. since � and �
are mutually absolutely continuous. Hence, we shall simply write that the property is true
a.e. in this case.

Let us prove that Lp.�/ \ Lr .�/ is dense in Lp.�/. Let f 2 Lr .�/ such that f > 0

a.e. For any g 2 LpC.�/, note that the non-decreasing sequence .min.g; nf /; n 2 N/ of
elements of Lp.�/ \ Lr .�/ converges towards g a.e.; and so, it converges in Lp.�/
according to the dominated convergence theorem. This gives Lp.�/ \ Lr .�/ is dense
in Lp.�/ and in Lr .�/ by symmetry.

To prove that Lp.�/ \ Lr .�/ is complete (with respect to the norm given by the sum
of the norms in Lp.�/ and Lr .�/), it is enough to check that if a sequence .hn; n 2 N/
converges to g in Lp.�/ and to f in Lr .�/, then g D f a.e. This is immediate: for such
a sequence, one can extract a sub-sequence which converges to g a.e. and to f a.e.

2.3. The effective reproduction number Re

For p 2 Œ1;C1/ and � 2 �, the multiplication operator M� is bounded, and if T is
a compact operator on Lp , then so is TM� . Following [10], where only integral opera-
tors were considered, and keeping similar notations, we define the reproduction number,
associated to the positive compact operator T (on Lp for some p 2 Œ1;C1/) as its spec-
tral radius,

R0ŒT � D �.T /;
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the effective spectrum function SpecŒT � from � to K by

SpecŒT �.�/ D Spec.TM�/;

and the effective reproduction number function ReŒT � D rad ı SpecŒT � from � to RC by

ReŒT �.�/ D rad.Spec.TM�// D �.TM�/:

Take care that

Spec.T / D SpecŒT �.1/ and R0ŒT � D ReŒT �.1/:

When there is no risk of confusion on the positive compact operator T , then we simply
write Re and R0 for the function ReŒT � and the number R0ŒT �. We have the follow-
ing immediate properties for the function ReŒT � (use Lemma 2.1 (i) for the third prop-
erty).

Proposition 2.3 (Elementary properties of Re). The function Re D ReŒT �, where T is
a positive compact operator on Lp with p 2 Œ1;C1/ satisfies the following properties:

(i) Re.�1/ D Re.�2/ if �1 D �2, � a.s., and �1; �2 2 �,

(ii) Re.0/ D 0 and Re.1/ D R0,

(iii) Re.�1/ � Re.�2/ for all �1; �2 2 � such that �1 � �2,

(iv) Re.��/ D �Re.�/, for all � 2 � and � 2 Œ0; 1�.

We shall use the following continuity property of the spectrum; see also [10, Proposi-
tion 3.6] for stronger results when considering integral operators and the weak topology
on �.

Lemma 2.4 (Continuity of the spectrum). Let T be a compact operator on Lp with p 2
Œ1;C1/. Let .vn; n 2 N/ and .wn; n 2 N/ be two bounded sequences in L1 which
converge to v1 and w1, respectively, and let Tn DMvnTMwn . Then for any � 2�, as n
goes to infinity, we have that

(i) SpecŒTn�.�/ converges to SpecŒT1�.�/ in K,

(ii) ReŒTn�.�/ converges to ReŒT1�.�/ in R,

(iii) for any � 2 Spec.T1M�/ \ C� and any r > 0 such that �0 2 Spec.T1M�/ and
j� � �0j � r implies � D �0, then for all n large enough,

m.�; T1M�/ D
X

�02Spec.TnM�/; j���0j�r

m.�0; TnM�/:

Proof. Set T 0n D TM�vnwn for n 2 xN, where xN D N [ ¹C1º. Using Lemma 2.1 (ii) for
the second equality, we have that for n 2 xN,

SpecŒTn�.�/ D Spec.MvnTM�wn/ D Spec.TM�vnwn/ D Spec.T 0n/;

and similarly for the multiplicity. Notice the set of functions �0 D ¹�vnwn W � 2 � and
n 2 Nº is bounded in L1, and thus the set of multiplication operators ¹Mh W h 2 �

0º is
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bounded in L.Lp/. We deduce from [1, Proposition 4.2] that the set ¹TMh W h 2 �
0º is

collectively compact. In particular, the sequence .T 0n; n 2 N/ is collectively compact.
Let h 2 Lp , we have kT 01h � T

0
nhkp � kT kLpk.v1w1 � vnwn/hkp . Then, use

dominated convergence to get that limn!1k.v1w1 � vnwn/hkp D 0. This implies that
the sequence .T 0n; n 2 N/ converges strongly to T 01. Then use Lemma 2.1 (iv) to con-
clude.

Remark 2.5 (On integral operators). Consider the positive integral operator defined by

Tk.g/.x/ D

Z
�

k.x; y/g.y/�.dy/; (7)

where k is a kernel on �, that is, a non-negative measurable function defined on � ��.
Under the hypothesis that k has a finite double norm in Lp for some p 2 Œ1;C1/, that is,

kkkpp;q D
Z
�

� Z
�

jk.x; y/jq�.dy/
�p=q

�.dx/

is finite with q D p=.p � 1/, the operator Tk is compact if p > 1, and T 2k is compact
if p D 1; see [20, p. 293]. When p > 1, one gets stronger results on the continuity of
the function ReŒTk�; see [10, Theorem 3.5 and Proposition 3.6] (where ReŒTk� is denoted
by ReŒk� therein).

We conclude this section with a remark on the definition of the operator Mf TMg

when T is a positive operator and f and g are non-negative measurable functions.

Remark 2.6 (OnMf TMg ). Let T be a positive compact operator onLp.�/ for some p 2
Œ1;C1/ and f , g be non-negative measurable functions defined on �. If the functions
f , g are bounded, then the operator Mf TMg is a positive compact operator on Lp.�/.
Motivated by Example 4.5, we shall however be interested in considering possibly un-
bounded functions f and g. In this case, the operator TMg is a positive compact operator
from E D Lp..1C g/p d�/ to Lp.�/, and thus Mf TMg is a positive compact operator
from E to E 0 D Lp..1 C f /�1d�/. Let r 2 Œ1;C1/ and let � be a � -finite measure
mutually absolutely continuous with �. Taking F D E or E 0, and using the compatibility
between F and Lr .�/ given by Lemma 2.2, we deduce that there exists at most a unique
continuous extension of Mf TMg as a bounded operator on Lr .�/, which we shall still
denote byMf TMg . By construction, this extension, when it exists, is also positive. How-
ever, let us stress that it is not compact a priori.

3. Spectrum-preserving transformations

In this section, we consider a measured space .�;F; �/ with � a non-zero � -finite mea-
sure, and we discuss two operations on the positive compact operator T which leave
invariant the functions SpecŒT � and ReŒT � defined on �. Recall the discussion on the
operator Mf TMg from Remark 2.6.
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Lemma 3.1. Let T be a positive compact operator on Lp for some p 2 Œ1;C1/ and h
be a measurable non-negative function defined on �.

(i) IfMhT and TMh are positive compact operators (on Lr and Ls , respectively, with
r; s 2 Œ1;C1/ possibly distinct), then we have

SpecŒMhT � D SpecŒMhTM¹h>0º� D SpecŒM¹h>0ºTMh� D SpecŒTMh�;

ReŒMhT � D ReŒMhTM¹h>0º� D ReŒM¹h>0ºTMh� D ReŒTMh�:

(ii) If h is positive and if MhTM1=h is a positive compact operator (on some Lr with
p; r 2 Œ1;C1/ possibly distinct), then we have

SpecŒT � D SpecŒMhTM1=h� and ReŒT � D ReŒMhTM1=h�:

(iii) The adjoint operator T > is a positive compact operator on Lq with q D p=.p � 1/
and we have

SpecŒT � D SpecŒT >� and ReŒT � D ReŒT
>�:

Let us stress that the compactness hypothesis of T can be removed in the statement
of (i). Even if (ii) is a consequence of (i), we state it separately since (ii) and (iii) describe
two modifications of T that leave the functions Re and Spec invariant. See Remark 5.2
and Lemma 4.7 for other transformations on the operators which leave the functions Re
and Spec invariant. See also [13] for further results in the finite-dimensional case.

Proof. Since Re D rad ı Spec, we only need to prove the lemma for the function Spec.
We give a detailed proof of (ii) and (iii). The proof of (i), which is very similar, is left to
the reader. We first assume that T is a positive compact operator on Lp , and h and 1=h
are bounded. The operators TM� and MhTM�=h and the multiplication operators Mh

and M1=h are bounded operators on Lp . We have, using that TM�=h is compact and (4)
for the second equality,

Spec.TM�/ D Spec.TM�=hMh/ D Spec.MhTM�=h/:

Since � 2 � is arbitrary, this gives that

SpecŒT � D SpecŒMhTM1=h�:

In the general case, we use an approximation scheme. Let h be a positive function and
assume that T 0 DMhTM1=h is compact on Lr with r 2 Œ1;C1/. For n 2 N�, set

vn D 1¹n�h�1=nº and hn D n
�1
_ .h ^ n/:

Notice that Tn D MvnTMvn and T 00n D MvnhnTMvn=hn are positive compact operators
on Lp . Let � 2 �. From the first part of the proof, we get

Spec.TnM�/ D Spec.T 00nM�/:
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Consider also the positive compact operator on Lr defined by T 0n D MvnT
0Mvn . Since

the sequence .vn; n 2 N�/ converges in L1 to 1, we deduce from Lemma 2.4 that

lim
n!1

Spec.TnM�/ D Spec.TM�/ and lim
n!1

Spec.T 0nM�/ D Spec.T 0M�/:

Since the compact operators T 0n and T 00n are consistent and Lp and Lr are compatible
according to Lemma 2.2, we deduce from Lemma 2.1 (iii) that

Spec.T 00nM�/ D Spec.T 0nM�/:

In conclusion, we obtain that Spec.TM�/ D Spec.T 0M�/ and thus SpecŒT � D SpecŒT 0�.
We now prove (iii). Notice that TM� and .TM�/

> are compact operators. We have

Spec.T >M�/ D Spec.M�T
>/ D Spec..TM�/

>/ D Spec.TM�/;

where we used (4) for the first equality, the self-adjointness of M� for the second, and (3)
for the third. Since this is true for any � 2 �, this gives SpecŒT >� D SpecŒT �.

Remark 3.2 (Multiplicity of the eigenvalues). Following closely the proof of item (ii) of
Lemma 3.1, we also get under the assumption of Lemma 3.1 (ii) that

m.�; T / D m.�;MhTM1=h/ for all � 2 C�.

4. Sufficient conditions for convexity or concavity of Re

4.1. A conjecture by Hill and Longini

Recall that, in the metapopulation framework with N groups, the effective reproduction
number is equal to the spectral radius of the matrixK �Diag.�/, where the next-generation
matrix K is an N � N matrix with non-negative entries and � 2 � D Œ0; 1�N is the
vaccination strategy giving the proportion of non-vaccinated people in each group. The
Hill–Longini conjecture [22] conditions on the spectrum of the next-generation matrix
that should imply convexity or concavity of the effective reproduction number. The con-
jecture states that the function ReŒK� is

(i) convex when Spec.K/ � RC,

(ii) concave when Spec.K/ n ¹R0º � R�.

It turns out that the conjecture cannot be true without additional assumptions on the
matrix K. Indeed, consider the following next-generation matrix:

K D

0@16 12 11

1 12 12

8 1 1

1A : (8)

Its eigenvalues are approximately equal to 24:8, 2:9 and 1:3. Since Re is homogeneous,
the function is entirely determined by the value it takes on the plane ¹� W �1 C �2 C
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ReRe

�2 �2

�1 �1
1=3 1=3

1=3 1=3

(a) (b)

Fig. 1. Counter-example of the Hill–Longini conjecture. (a) Convex case: K given by (8). (b) Con-
cave case: K given by (9). The plan of strategies P D ¹� W �1 C �2 C �3 D 1=3º is represented as
a gray surface. The triangulated surface corresponds to the graph of � 7! Re ŒK�.�/ restricted to P .

�3 D 1=3º. The graph of the function Re restricted to this set has been represented in
Figure 1 (a). The view clearly shows the saddle nature of the surface. Hence, the Hill–
Longini conjecture (i) is contradicted in its original formulation.

In the same manner, the eigenvalues of the next-generation matrix

K D

0@ 9 13 14

18 6 5

1 6 6

1A (9)

are approximately equal to 26:3, �1:4 and �3:9. Thus, K satisfies the condition that
should imply the concavity of the effective reproduction number in the Hill–Longini con-
jecture (ii). However, as we can see in Figure 1 (b), the function Re is neither convex nor
concave.

Despite these counter-examples, the Hill–Longini conjecture is indeed true when mak-
ing further assumption on the next-generation matrix. LetM be a square real matrix. The
matrix M is diagonally similar to a matrix M 0 if there exists a non-singular real diagonal
matrix D such that M D D �M 0 � D�1. The matrix M is said to be diagonally sym-
metrizable or simply symmetrizable if it is diagonally similar to a symmetric matrix, or,
equivalently, ifM admits a decompositionM DD �S (orM D S �D), whereD is a diag-
onal matrix with positive diagonal entries and S is a symmetric matrix. If a matrix M is
diagonally symmetrizable, then its eigenvalues are real since similar matrices share the
same spectrum. We obtain the following result when the next-generation matrix is sym-
metrizable as a particular case of Theorem 4.10 below.
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Theorem 4.1. Let K be a diagonally symmetrizable N � N matrix with non-negative
entries, and consider the function Re D ReŒK� defined on � D Œ0; 1�N .

(i) If Spec.K/ � RC, then the function Re is convex.

(ii) If R0 D R0ŒK� is a simple eigenvalue of K and Spec.K/ � R� [ ¹R0º, then the
function Re is concave.

The first point (i) has been proved by Cairns in [7]. In [19], Friedland obtained that
if the next-generation matrix K is not singular and its inverse is an M -matrix (i.e., its
non-diagonal coefficients are non-positive), then ReŒK� is convex. Friedland’s condition
does not imply that K is symmetrizable nor that Spec.K/ � RC. On the other hand, the
following matrix is symmetric definite positive (and thus Re is convex) but its inverse is
not an M -matrix:

K D

0@3 2 0

2 2 1

0 1 4

1A with inverse K�1 D

0@ 1:4 �1:6 0:4

�1:6 2:4 �0:6

0:4 �0:6 0:4

1A :
Thus Friedland’s condition and property (i) in Theorem 4.1 are not comparable. Note that
if K is diagonally symmetrizable and its inverse is an M -matrix, then the eigenvalues
of K are actually non-negative thanks to [3, Chapter 6, Theorem 2.3], and one can apply
Theorem 4.1 (i) to recover Friedland’s result in this case.

4.2. Generalization to compact operators

In this section, we give the analog of Theorem 4.1 for positive compact operators instead
of matrices. First, we proceed with some definitions. By analogy with the matrix case,
we introduce the notion of diagonally symmetrizable operators.

Recall that .�;F; �/ is a measured space with � a � -finite non-zero measure. Recall
the definition of consistent operators given in Section 2.2 before Lemma 2.1.

Definition 4.2 (Diagonally symmetrizable operator). A compact operator T on Lp.�/,
with p 2 Œ1;C1/, is called diagonally symmetrizable if there exists a � -finite measure �0

mutually absolutely continuous with respect to �, and a compact self-adjoint operator T 0

on L2.�0/ such that T and T 0 are consistent.

Remark 4.3 (Diagonally symmetrizable operator in finite dimension). Let us check that
Definition 4.2 coincides with the definition of diagonally symmetrizable matrices in finite
dimension. Let � be a finite set, say ¹1; : : : ; nº, and without loss of generality assume
that the measure �, as well as �0, which can be seen as vectors of Rn, have positive
entries. The sets Lp.�/ and L2.�0/ are all equal to Rn, and T D T 0 can be represented
by a matrix, say M , in the canonical base of Rn. Let D be the diagonal matrix with
diagonal entries �0. Then T 0 being self-adjoint in L2.�0/ is equivalent toDM being sym-
metric, and thus the matrix M is diagonally symmetrizable (in the sense of the previous
section).
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We give an example of diagonally symmetrizable integral operator motivated by the
epidemiological framework of Example 4.5 below. Recall from Remark 2.5 that a kernel k
on � is a non-negative measurable function defined on � ��.

Proposition 4.4 (Diagonally symmetrizable integral operators). Let p 2 .1;C1/ and
let q be its conjugate, k be a symmetric kernel on�2, and f , g be two positive measurable
functions on � such thatZ

�

f .x/p
� Z

�

k.x; y/qg.y/q�.dy/
�p=q

d�.x/ < C1;Z
�2
f .x/g.x/k2.x; y/f .y/g.y/�.dx/�.dy/ < C1:

Then, the integral operator T W u 7! .x 7!
R
�
f .x/k.x; y/g.y/u.y/�.dy// on Lp.�/ is

compact positive and diagonally symmetrizable.

Proof. The measure d�0 D .g=f /d� is � -finite and mutually absolutely continuous with
respect to �. Consider the integral operator

T 0W u 7!
�
x 7!

Z
�

f .x/k.x; y/f .y/u.y/�0.dy/
�
:

The integrability assumptions ensure that T is compact on Lp.�/ and T 0 is compact
(and in fact, Hilbert–Schmidt) on L2.�0/; see Remark 2.5. According to Lemma 2.2,
the Banach spaces Lp.�/ and L2.�0/ are compatible. Since the operators T and T 0 are
defined by the same kernel formula on their respective space, they are consistent. Finally,
the compact operator T 0 is clearly self-adjoint on L2.�0/. This implies that T is diago-
nally symmetrizable.

Example 4.5 (Epidemics on graphon). Consider the SIS model on graphon introduced
in [11, Example 1.3]. In this example, the next-generation operator is an integral operator,
as defined in Remark 2.5, associated to the kernel k given by

k.x; y/ D
ˇ.x/W.x; y/�.y/

.y/
;

where ˇ.x/ represents the susceptibility, �.x/ the infectiousness and .x/ the recovery
rate of the individuals with trait x, and W corresponds to the graph of the contacts within
the population. More precisely, for x; y 2 �, the quantity W.x; y/ 2 Œ0; 1� represents the
density of contacts between individuals with traits x and y and is equal to W.y; x/ by
construction. We deduce from Proposition 4.4 that if ˇ 2 Lp.�/ and �= 2 Lq.�/ with
p 2 .1;C1/ and q its conjugate, then the integral operator Tk with kernel k defined by (7)
is diagonally symmetrizable.

Remark 4.6 (Related notions). An operator T on a Hilbert space is classically called
symmetrizable if there exists a positive bounded self-adjoint operator H such that HT is
self-adjoint; this notion is discussed, for example, in [21, 32, 36]. Our definition is closer
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in spirit to [27], where symmetrizability is discussed for operators on Banach spaces with
respect to a scalar product. In the matrix case, our setting is a bit more restrictive than
general symmetrizability since we symmetrize by a diagonal matrix with positive terms.
In the general case, the conditions are not comparable, since we do not impose any upper
nor lower bound assumption on the density d�=d�.

We complete Section 3 with another example of operators having the same effective
spectrum.

Lemma 4.7. Let T be a diagonally symmetrizable compact operator on Lp.�/, with
p 2 Œ1;C1/, and let T 0 be the associated self-adjoint operator from Definition 4.2. Then,
we have that on �,

SpecŒT � D SpecŒT 0�; ReŒT � D ReŒT
0� and m.�; T / D m.�; T 0/ for � 2 C�:

Proof. Let �0 be the measure from Definition 4.2. Recall that the Banach spaces Lp.�/
andL2.�0/ are compatible thanks to Lemma 2.2. Let �2�. SinceM� is bounded (both on
Lp.�/ and L2.�0/), the operators TM� and T 0M� , acting on Lp.�/ and L2.�0/, respec-
tively, are both compact. Since T and T 0 are consistent, the operators TM� and T 0M� are
also consistent. Then use Lemma 2.1 (iii) to conclude.

The next corollary is immediate as the spectrum of a self-adjoint operator, say T 0,
is real and its spectral radius is zero if and only if T 0 D 0.

Corollary 4.8. Let T be a compact operator on Lp.�/, with p 2 Œ1;C1/. If T is
diagonally symmetrizable, then its spectrum is real, and T cannot be quasi-nilpotent:
R0.T / D 0 if and only if T D 0.

For a compact operator T , let p.T / and n.T / denote the number of its eigenvalues
with positive and negative real part, respectively, taking into account their (algebraic)
multiplicity

p.T / D
X

Re.�/>0

m.�; T / and n.T / D
X

Re.�/<0

m.�; T /:

We now give a consequence of Sylvester’s inertia theorem [6, Theorem 6.1].

Proposition 4.9 (Sylvester). Let T be a compact diagonally symmetrizable operator
on Lp.�/, with p 2 Œ1;C1/. Let f , g be positive bounded measurable functions de-
fined on � which are also bounded away from 0. Then the compact operator Mf TMg

on Lp.�/ is diagonally symmetrizable with the same inertia as T ,

p.T / D p.Mf TMg/ and n.T / D n.Mf TMg/:

Proof. First note that if h is a positive bounded and bounded away from 0, then for any
r 2 Œ1;C1/ and � -finite non-zero measure �, the multiplication operatorMh is bounded
with bounded inverse on Lr .�/. In particular, the operator zT D Mf TMg is a compact
operator on Lp.�/ as T is compact.
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Let T 0 be the compact self-adjoint operator on L2.�0/ associated to T from Defini-
tion 4.2. The measure dz�0 D .g=f / d�0 is � -finite and mutually absolutely continuous
with respect to both �0 and �. The mapping ˆ D Mpf=g is an isometry between the
Hilbert spaces L2.z�0/ and L2.�0/.

We now define the operator zT 0 on L2.z�0/ by

zT 0 D ˆ ı .MpfgT
0Mpfg/ ıˆ

�1:

Since T 0 is compact, the operator zT 0 is also compact. Since f and g are bounded and
bounded away from 0, the sets Lp.�/ \ L2.�0/ and Lp.�/ \ L2.z�0/ are equal. Since T
and T 0 coincide on this set, so do Mf TMg D zT and zT 0. The operator MpfgT

0Mpfg
is bounded and symmetric on L2.�0/, and therefore self-adjoint. Since ˆ is an isome-
try, we deduce that zT 0 is self-adjoint on L2.z�0/. Therefore, the operator zT D Mf TMg

on Lp.�/ is diagonally symmetrizable.
We now establish the following string of equalities:

p.T / D p.T 0/ D p.MpfgT
0Mpfg/ D p. zT 0/ D p. zT / D p.Mf TMg/: (10)

By Lemma 4.7, p.T / D p.T 0/ and p. zT 0/ D p. zT /. Since Mpfg is invertible in L2.�0/
and T 0 is self-adjoint (thus with real eigenvalues), we get, using the generalization of
Sylvester’s inertia theorem [6, Theorem 6.1] (the definition of inertia in that paper being
consistent with the definition of p.�/ and n.�/, which can be checked using [6, Theo-
rem 4.5 (ii)]) that

p.T 0/ D p.MpfgT
0Mpfg/:

Finally, since ˆ is an isometry, p.MpfgT
0Mpfg/ D p. zT 0/, and (10) is justified.

The equalities are similar for the number of negative eigenvalues n.�/.

The following result is the analog of Theorem 4.1 for positive compact operators.
Note that if T is a positive compact operator with R0ŒT � > 0, then R0ŒT � is an eigenvalue
of T thanks to the Krein–Rutman theorem, see [34, Corollary 9], and thus p.T / � 1.

Theorem 4.10 (Convexity/concavity ofRe). Let T be a positive compact diagonally sym-
metrizable operator on Lp.�/, with p 2 Œ1;C1/. We consider the function Re D ReŒT �
defined on �.

(i) If n.T / D 0, then the function Re is convex.

(ii) If p.T / D 1, then the function Re is concave.

The proof for a positive self-adjoint operator T is given in Section 4.3 for the con-
vex case and in Section 4.4 for the concave case when T is compact. The extension to
diagonally symmetrizable positive compact operators follows directly from Lemma 4.7.

Remark 4.11 (Rank-one operator). The so-called configuration model occurs in finite
dimension when the next-generation matrix has rank one. This corresponds to a classical
mixing structure called the proportionate mixing introduced by [30] and used in many
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different epidemiological models. Motivated by the finite-dimensional case, we consider
a configuration kernel k defined by

k D f ˝ g; where .f ˝ g/.x; y/ D f .x/g.y/;

with f 2Lp and g 2Lq for some p 2 .1;C1/ and q D p=.p � 1/. We also suppose that
�.fg > 0/> 0. Let Tk denote the integral operator with kernel k, see Remark 2.5. Accord-
ing to Proposition 4.4, with k D 1¹f >0º˝ 1¹g>0º and h 2 ¹f;gº replaced by hC h01¹hD0º
for some positive function h0 2 Lp.�/ \ Lq.�/, we deduce that the integral operator Tk

on Lp.�/ is compact positive and diagonally symmetrizable. Since Tk is of rank one,
we deduce from Theorem 4.10 that ReŒTk� is convex and concave and thus linear. This
can be checked directly as it is immediate to notice that

ReŒTk�.�/ D

Z
�

fg� d�:

We shall provide in a forthcoming work a deeper study of configuration kernels in the
context of epidemiology.

4.3. The convex case

The proof of property (i) in Theorem 4.10 relies on an idea from [19] (see therein just
before Theorem 4.3). Suppose that T is a self-adjoint operator on L2 D L2.�/ such that
Spec.T / � RC. AsR0ŒT �D 0 implies T D 0 and thusReŒT �D 0, we shall only consider
the case R0ŒT � > 0. Since T is a self-adjoint positive semi-definite operator on L2, there
exists a self-adjoint positive semi-definite operator Q on L2 such that Q2 D T . Thanks
to (5), we have for � 2 �,

ReŒT �.�/ D �.TM�/ D �.Q
2M�/ D �.QM�Q/:

Since the self-adjoint operator QM�Q on L2 is also positive semi-definite, we deduce
from the Courant–Fischer–Weyl min-max principle that

ReŒT �.�/ D �.QM�Q/ D sup
u2L2.�/n¹0º

hu;QM�Qui

hu; ui
�

Since the map � 7! hu;QM�Qui defined on � is linear, we deduce that � 7! ReŒT �.�/

is convex as a supremum of linear functions.

4.4. The concave case

The proof of property (ii) in Theorem 4.10 relies on a computation of the second deriva-
tive of the function Re . Let T be a positive compact self-adjoint operator on L2.�/ such
that p.T /D 1. Let�� be the subset of� of the functions which are bounded away from 0.
The set �� is a dense convex subset of � (for the L2.�/-convergence or simple conver-
gence). The function Re D ReŒT � is continuous on �, see Lemma 2.4 (indeed, with the
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notations therein, take vn D 1,wn 2� and notice thatReŒTn�.1/DReŒT �.wn/ converges
to ReŒT1�.1/ D ReŒT �.w1/). So it suffices to prove that Re D ReŒT � is concave on ��.
Let �0, �1 be elements of ��, and set �˛ D .1� ˛/�0 C ˛�1 for ˛ 2 Œ0; 1� (which is also
an element of��). We write T˛ D TM�˛ , so that T˛ D T0C ˛TM , whereM DM�1��0

is the multiplication by .�1 � �0/ operator, and, with R.˛/ D Re.�˛/,

R.˛/ D �.T˛/ D �.T0 C ˛TM/:

So, to prove thatRe is concave on�� (and thus on�), it is enough to prove that ˛ 7!R.˛/

is concave on .0; 1/. Thanks to Sylvester’s inertia theorem stated in Proposition 4.9 (with
f D 1 and gD �˛), we also get that p.T˛/D p.T /D 1. This implies thatR.˛/ is positive
and a simple eigenvalue.

We consider the following scalar product onL2.�/ defined by hu; vi˛Dhu; �˛vi. The
operator T˛ is self-adjoint and compact on L2.�˛d�/ with spectrum Spec.T˛/ thanks to
Lemmas 2.1 (iii) and 2.2. Let .�n; n 2 I D ŒŒ0;N ŒŒ /, with N 2 N [ ¹1º, be an enumera-
tion of the non-zero eigenvalues of T˛ with their multiplicity so that �0 D R.˛/ > 0, and
thus �n < 0 for n 2 I � D I n ¹0º, and denote by .un; n 2 I / a corresponding sequence
of orthogonal eigenvectors (in L2.�˛d�/). The functions v˛ D u0 and �˛ D �˛u0 are the
right and left eigenvectors for T˛ (seen as an operator on L2.�/) associated to R.˛/.

We now follow [24] to get that ˛ 7! R.˛/ D �.T0 C ˛TM/ is analytic and compute
its second derivative. Let �˛ be the projection on the (h�; �i˛)-orthogonal of v˛ , and define

S˛ D .T˛ �R.˛//
�1�˛:

In other words, S˛ maps u0 to 0 and ui to .�i � R.˛//�1ui . Let ˛ 2 .0; 1/ and let " be
small enough so that ˛ C " 2 Œ0; 1�. We have

T˛C" D T˛ C "TM;

and thus kT˛C" � T˛kL2.�˛d�/ D O."/. Using [24, Theorem 2.6] on the Banach space
L2.�˛ d�/, we get that

R.˛ C "/ D R.˛/C "hv˛; TMv˛i˛ � "
2
hv˛; TMS˛TMv˛i˛ CO."

3/:

LetN˛ DM1=�˛M DMM1=�˛ be the multiplication by .�1 � �0/=�˛ bounded operator.
Since ˛ 7! R.˛/ is analytic and T is self-adjoint (with respect to h�; �i), we get that

R00.˛/ D �2hv˛; TMS˛TMv˛i˛

D �2hMT˛v˛; S˛TMv˛i

D �2R.˛/hMv˛; S˛TMv˛i

D �2R.˛/hN˛v˛; S˛T˛N˛v˛i˛:

Since the kernel and the image of T˛ are orthogonal (in L2.�˛d�/), and the latter is
generated by .un; n 2 I /, we have the decomposition N˛v˛ D g C

P
n2I anun with

g 2 Ker.T˛/ and an D hN˛v˛; uni˛=hun; uni˛ . This gives, with I � D I n ¹0º,

R00.˛/ D 2R.˛/
X
n2I�

�n

R.˛/ � �n
a2nhun; uni˛:
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Since �n < 0 for all n 2 I �, we deduce that R00.˛/ � 0, and thus ˛ 7! R.˛/ is concave
on Œ0; 1�. This implies that ReŒT � is concave.

Remark 4.12. The same proof with obvious changes gives that if T is a positive quasi-
irreducible compact self-adjoint operator (see Section 5.2 for the precise definition of
quasi-irreducible operator) such that n.T / D 0, then ReŒT � is convex on �. Then, using
the decomposition of a compact operator on its irreducible atoms (see Section 5.1 and
more precisely Lemma 5.3) and the fact that the maximum of convex functions is convex
(used in (14)), we can recover Theorem 4.10 (i).

5. The reproduction number and reducible positive compact operators

Following [34], we present in Section 5.1 the atomic decomposition of a positive compact
operator T on Lp , where p 2 Œ1;C1/ and state a formula which “reduces” the effective
reproduction function of T on the whole space to the ones of the restriction of T to each
atoms (or irreducible components); see Corollary 5.4 below. Then, we consider the notion
of quasi-irreducible and monatomic operators in Section 5.2, and provide some properties
of monatomic operators and prove that if the effective reproduction number is concave
then the operator is monatomic.

5.1. Atomic decomposition

Our presentation is a direct application of the Frobenius decomposition [23, 34, 35] or
the “super diagonal” form [14, Part II.2]. For convenience, we follow [34] for positive
compact operators on Lp.�/ for some p 2 Œ1;C1/; see also [4, Lemma 5.17] in the case
of integral operators with symmetric kernel. We stress that the results in [34] are stated
under the hypothesis that � is a finite measure, but it is elementary to check that the main
results (Theorems 7 and 8 therein) also hold if the measure � is � -finite.

For A;B 2 F, we write A � B a.e. if �.Bc \ A/ D 0 and A D B a.e. if A � B a.e.
and B � A a.e. Let T be a positive compact operator on Lp for some p 2 Œ1;C1/. Let
f0 2 L

p and g0 2 Lq be positive functions and consider the operator T0 D Mg0TMf0
from L1 to L1. We define the function kT on F2 for A;B 2 F as

kT .B;A/ D
Z
B

.T01A/.x/�.dx/ D h1B ; T01Ai: (11)

It is clear from (11) that the family of sets .B;A/ such that kT .B;A/D 0 does not depend
on the choice of the positive functions f0 2 Lp and g0 2 Lq . If the measure � is finite,
then one can take f0 D g0 D 1 and thus T0 D T .

A set A 2 F is T -invariant, or simply invariant, when there is no ambiguity on the
operator T if kT .Ac ; A/ D 0. We recall that I is called a closed ideal of Lp (with p 2
Œ1;C1/) if and only if it is equal to IB D ¹f 2 L

p W f 1B D 0º for some measurable set
B 2 F; see [33, Section III.1, Example 2] or [37, Section III.2]. Notice that a set A 2 F is
invariant if and only if the ideal IA is invariant for T , that is, T .IA/ � IA.
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A positive compact operator T onLp is (ideal)-irreducible if the only closed invariant
ideals are ¹0º and Lp . Thus, the positive compact operator T is irreducible if and only
if any T -invariant set A is such that either �.A/ D 0 or �.Ac/ D 0. According to [9,
Theorem 3] (see also [37, Section III.3] for an elementary presentation in Lp), if T is
an irreducible positive compact operator on Lp , then either R0ŒT � > 0, or the situation
is degenerate in the sense that � is an atom of � (that is, for all A 2 F, we have either
�.A/ D 0 or �.Ac/ D 0) and T D 0.

Let A be the set of T -invariant sets, and notice that A is stable by countable unions
and countable intersections. Let Finv D �.A/ be the � -field generated by A. Then, thanks
to [34, Theorem 8], the operator T restricted to an atom of� in Finv is irreducible. We shall
only consider non-degenerate atoms, and say that the atom (of � in Finv) is non-zero if
the restriction of the operator T to this atom has a positive spectral radius. We denote by
.�i ; i 2 I / the at most countable (but possibly empty) collection of non-zero atoms of �
in Finv. The atoms are defined up to an a.e. equivalence and can be chosen to be pairwise
disjoint. For i 2 I , we set

Ti DM�iTM�i ;

which is a positive compact operator on Lp . Note that

T � T 0; where T 0 D
X
i2I

Ti : (12)

We now give some properties of the Frobenius decomposition.

Remark 5.1 (Properties of the Frobenius decomposition). We have, with i 2 I ,

(i) By definition of the non-zero atoms,�.�i / > 0 and T restricted to�i is irreducible
with positive spectral radius, that is, R0ŒTi � > 0.

(ii) According to [34, Theorem 8], the spectral radius of Ti is a simple eigenvalue of Ti
such that m.R0.Ti /; Ti / D 1.

(iii) According to [34, Theorem 7], for all � 2 C�, we have

m.�; T / D
X
j2I

m.�; Tj /: (13)

(iv) Consider the complement of the non-zero atoms, say �0 D .
S
j2I �j /

c (with the
convention that 0 does not belong to the set of indices I ). Then, the restriction of T
to �0 is quasi-nilpotent, that is ReŒT �.1�0/ D 0.

From those properties, we deduce the following elementary results:

(v) The cardinal of the set of indices i 2 I such that R0ŒTi �DR0ŒT � is exactly equal to
the multiplicity of R0Œk� for T , that is, m.R0ŒT �; T /.

(vi) There exists at least one non-zero atom (]I � 1) if and only if R0ŒT � > 0.

(vii) The operator T is quasi-nilpotent if and only if there is no non-zero atom (]I D 0).

(viii) If A 2 F invariant implies Ac invariant (which is in particular the case if T is self-
adjoint and p D 2), then we have T D

P
i2I Ti , and thus the restriction of T to�0

is zero (intuitively T is block diagonal).
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Fig. 2. Example of a kernel k on � D Œ0; 1� and the kernel k0 D
P
i2I ki , with ki .x; y/ D

1�i .x/k.x; y/1�i .y/ and .�i ; i 2 I / the non-zero atoms. (a) A representation of the kernel k
with the white zone included into ¹k D 0º. (b) A representation of the kernel k0 D

P
i2I ki with

the white zone included into ¹k0 D 0º. We have SpecŒTk� D SpecŒTk0 � and thus Re ŒTk� D Re ŒTk0 �.

Remark 5.2. Assume that T D Tk is an integral operator with kernel k on � D Œ0; 1�;
see Remark 2.5. Then, the operators Ti are integral operators with respective kernels ki
given by ki .x; y/ D 1�i .x/k.x; y/1�i .y/, and the operator T 0 D Tk0 is also an integral
operator with kernel k0 D

P
i2I ki . We represent in Figure 2 (a) an example of a kernel k

with its atomic decomposition using a “nice” order on� (see [14,23,35] on the existence
of such an order relation; intuitively, the kernel is upper block triangular: the population
on the “left” of an atom does not infect the population on the “right” of this atom) and in
Figure 2 (b) the corresponding kernel k0. Notice that k.�i ;�j /D 0 for j “smaller” than i ,
where k.A;B/ D

R
�2

1A.x/k.x; y/1B.y/�.dx/�.dy/ is a consistent notation with (11).

For i 2 I and � 2 �, we set �i D �1�i and recall that Ti DM�iTM�i . We now give
the decomposition of ReŒT � according to the irreducible components .�i ; i 2 I / of T .

Lemma 5.3. Let T be a positive compact operator on Lp for some p 2 Œ1;C1/. With
the convention that the maximum of an empty space is 0, we have for � 2 �,

ReŒT �.�/ D max
i2I

ReŒTi �.�i / D max
i2I

ReŒTi �.�/ D max
i2I

ReŒT �.�1�i /; (14)

and more generally,

m.�; TM�/ D
X
i2I

m.�; TiM�/ for all � 2 C�. (15)

Before proving the lemma, we first state a direct consequence of (15), in the spirit
of Section 3 on a spectrum-preserving transformation. Recall that T 0 D

P
i2I Ti by for-

mula (12).
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Corollary 5.4. Let T be a positive compact operator on Lp for some p 2 Œ1;C1/. We
have

SpecŒT � D SpecŒT 0� D
[
i2I

SpecŒTi � and ReŒT � D ReŒT
0� D max

i2I
ReŒTi �:

Proof of Lemma 5.3. Let T 0 be a positive compact operator on Lp . Recall the kernel kT 0
defined in (11). For A 2 F, let m.�; T 0; A/ denote the multiplicity (possibly equal to 0)
of the eigenvalue � 2 C� for the operator T 0MA. A direct application of [34, Lemma 11]
(which holds also if � is a � -finite measure) gives that for A;B 2 F such that A\B D ;
a.e. and kT 0.B;A/ D 0, we have for all � 2 C� that

m.�; T 0; A [ B/ D m.�; T 0; A/Cm.�; T 0; B/; (16)

and thus
ReŒT

0�.1A C 1B/ D max.ReŒT 0�.1A/; ReŒT 0�.1B//:

Let A;B 2 F be such that A\ B D ; a.e. and kT .B;A/ D 0. Let � 2 �. Clearly, we
have kTM�.B; A/ � kT .B; A/ and thus kTM�.B; A/ D 0. Use (16) to get that for � 2 �
and � 2 C�,

m.�; TM�; A [ B/ D m.�; TM�; A/Cm.�; TM�; B/:

Then, an immediate adaptation of the proof of [34, Theorem 7] gives that for all � 2 C�,

m.�; TM�; �/ D
X
i2I

m.�; TM�; �i /: (17)

By definition of m.�; �; �/, we get

ReŒT �.�/ D max¹j�j W m.�; TM�; �/ > 0º;

ReŒTM�i �.�/ D max¹j�j W m.�; TM�; �i / > 0º:

This gives
ReŒT �.�/ D max

i2I
ReŒTM�i �.�/:

To conclude, notice, using Lemma 3.1 (i) for the second equality, that

ReŒT �.�1�i / D ReŒTM�i �.�/ D ReŒM�iTM�i �.�/ D ReŒTi �.�/ D ReŒTi �.�i /:

Similarly, we deduce (15) from (17).

5.2. Monatomic operators and applications

Recall that for a measurable subset A � �, MA stands for the multiplication operator
by 1A. Following [4, Definition 2.11], a positive compact operator T is quasi-irreducible
if there exists a measurable set �a � � such that �.�a/ > 0, T D M�aTM�a and T
restricted to�a is irreducible with positive spectral radius. The quasi-irreducible property
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is natural in the setting of positive compact self-adjoint operators; in a more general set-
ting, one would still want to consider a positive compact operator with only one irre-
ducible component. This motivates the next definition. Recall the atomic decomposition
of the previous section.

Definition 5.5 (Monatomic operator). Let T be a positive compact operator on Lp with
some p 2 Œ1;C1/. The operator is monatomic if there exists a unique non-zero atom
(]I D 1).

In a sense, the operator T is “truly reducible” when ]I � 2. We shall give in a forth-
coming work other characterizations of monatomic operator.

Remark 5.6 (Link between (quasi-)irreducible and monatomic operators). Irreducible
positive compact operators with positive spectral radius and quasi-irreducible positive
compact operators are monatomic, and we have T D Ta, where Ta DM�aTM�a and �a

is the non-zero atom, with �a D � in the reducible case.

Remark 5.7 (Reducibility for integral operators). We consider an integral operator Tk

with kernel k, see Remark 2.5, and we say the kernel k is irreducible, quasi-irreducible or
monatomic whenever the integral operator Tk satisfies the corresponding property. Then,
the notion of irreducibility of a kernel depends only on its support. Indeed, provided
that the measure � is finite and the kernel so that all the operators are well defined and
compact, the kernel k is irreducible (resp. quasi-irreducible, resp. monatomic) if and only
if the kernel 1¹k>0º is irreducible (resp. quasi-irreducible, resp. monatomic). Furthermore,
the corresponding integral operators have the same atoms.

We have represented in Figure 3 (a) a monatomic kernel k on � D Œ0; 1� and in
Figure 3 (b) the kernel ka (with ka.x; y/ D 1�a.x/k.x; y/1�a.y/) associated to the quasi-
irreducible integral operator Ta DM�aTkM�a ; the set � D Œ0; 1� being “nicely ordered”
so that the representation of the kernels are upper triangular. Using the epidemic interpre-
tation of Remark 5.8 below, we also represented the subset �i of the population infected
by the non-zero atom �a.

Remark 5.8 (Epidemiological interpretation). In the infinite-dimensional SIS model de-
veloped in [11], the space .�;F; �/ represents all the traits of the population with �.dy/
the infinitesimal size of the population with trait y. The next-generation operator is given
by the integral operator Tk; see (7), where the kernel kD k= is defined in terms of a trans-
mission rate kernel k and a recovery rate function  by the formula k.x;y/D k.x;y/=.y/
and has a finite double norm in Lp for some p 2 .1;C1/; the basic reproduction num-
ber R0 D R0ŒTk� is then the spectral radius of Tk. Intuitively, k.x; y/ > 0 (resp. D 0)
means that individuals with trait y can (resp. cannot) infect individuals with trait x.

When the integral operator Tk is monatomic, with non-zero atom �a, then the popu-
lation with trait in �a can infect itself as well as the population with other distinct traits,
say �i. The population with trait �i can only infect itself (but not �a!), and there is no
persistent epidemic outside �a [ �i. We shall see in a forthcoming paper that the set
�a [�i is characterized as the smallest invariant set containing the atom �a.
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Fig. 3. Example of kernels k and ka of a monatomic integral operator Tk and the quasi-irreducible
integral operator Ta D Tka on � D Œ0; 1�, with non-zero atom �a. (a) A representation of
a monatomic kernel. (b) A representation of a quasi-irreducible kernel. The kernels are zero on
the white zone and are irreducible when restricted to the zone.

From Lemma 5.3, we deduce the following two results related to monatomic ope-
rators.

Lemma 5.9. Let T be a positive compact operator on Lp with some p 2 Œ1;C1/,
and set R0 D R0ŒT �. If the operator T is monatomic, then R0 > 0 and R0 is simple
(i.e., m.R0; T / D 1). If R0 is simple and the only eigenvalue in .0;C1/, then the opera-
tor T is monatomic.

Proof. Let T be monatomic, so that there exists only one non-zero atom, say �a. Set
Ta DM�aTM�a . Since the restriction of Ta (or T ) to �a is irreducible and non-zero, we
deduce from [9, Theorem 3] that its spectral radius is positive, and thusR0ŒTa� > 0. Using
Lemma 5.3, this implies that R0ŒT � D R0ŒTa� > 0. According to [34, Theorem 8], we get
that R0ŒTa� is simple for Ta. Since according to (13) m.�; T / D m.�; Ta/ for all � 2 C�,
we deduce that R0ŒT � is simple for T .

For the second part, if T is not monatomic and R0ŒT � > 0, we deduce that there
exist at least two non-zero atoms, and thus ]I � 2 (if there is no non-zero atom, then T
would be quasi-nilpotent and R0ŒT � D 0). The restrictions of T to those non-zero atoms
have positive spectral radius according to [9, Theorem 3] and thus at least one positive
eigenvalue by the Krein–Rutman theorem. We deduce from (13) that T has at least two
positive eigenvalues (counting their multiplicity if they are equal). This gives the result
by contraposition.

Lemma 5.10. Let T be a positive compact operator on Lp for some p 2 Œ1;C1/ such
thatR0ŒT � > 0. If the functionReŒT � is concave on�, then the operator T is monatomic.

Proof. Since R0ŒT � is positive, we deduce that T is not quasi-nilpotent. Suppose that T
is not monatomic. This means that the cardinal of the at most countable set I in decom-
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position (14) is at least 2. So let T1 and T2 be two quasi-irreducible components of T ,
where we assume that ¹1; 2º � I . Let�1 and�2 denote their respective non-zero atoms.
Without loss of generality, we can suppose that R0ŒT2� � R0ŒT1� > 0. Consider the
strategies �1 D 1�1 and �2 D R0ŒT1�R0ŒT2�

�11�2 (which both belong to �). For � 2
Œ0; 1�, we deduce from (14) and the homogeneity of the spectral radius that ReŒT �.��1 C
.1 � �/�2/D ReŒT1�max.�; 1� �/. Since � 7! max.�; 1� �/ is not concave, we deduce
that ReŒT � is not concave on �.
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