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Abstract. We show that the action of Hecke operators away from p on the space of (p-adic) over-
convergent modular forms is (p-adically) locally analytic in a certain sense. As a corollary, the
action of the Hecke algebra can be extended naturally to an action of rigid functions on its generic
fiber. This directly determines the Hodge–Tate–Sen weights of Galois representation associated to
an overconvergent eigenform and confirms a conjecture of Gouvêa.

Keywords: overconvergent modular forms, fake-Hasse invariants, locally analytic action.

1. Introduction

The notion of p-adic modular forms was introduced by Serre in the study of congru-
ences between modular forms. It is well known that to get a better spectral theory of
the Up-operator, one should consider the subspace of overconvergent modular forms, on
which Up acts completely continuously. In this short note, we will show that Hecke opera-
tors away from p also have a better convergence when acting on overconvergent modular
forms. As a consequence, we deduce that the action of the (big) Hecke algebra T nat-
urally extends to an action of the rigid functions on its generic fiber (denoted by T rig

by some people). Since having a Hodge–Tate–Sen weight 0 is a Zariski-closed property
on Spec T rig, the density of classical points implies directly the following theorem.

Theorem 1.1 (Corollary 4.6). The two-dimensional semi-simple Galois representation
associated to an overconvergent eigenform of weight k 2 Z has the Hodge–Tate–Sen
weights 0, k � 1.

This confirms a conjecture of Gouvêa [10, Conjecture 4]. We remark that this result
was recently obtained by myself in [13] and by Sean Howe independently in [11] (when
k ¤ 1), by relating overconvergent modular forms with completed cohomology. Our
method here is more straightforward. Hopefully, it will be clear to the readers that the
argument can be easily generalized to other contexts.
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This note is organized as follows. We will first introduce a class of actions of alge-
bras on a p-adic Banach space called locally analytic action and give several (simple)
examples. Then using fake-Hasse invariants introduced by Scholze [16], we show that the
action of the Hecke algebra on the space of overconvergent modular forms (with fixed
radius) is locally analytic. As suggested by Matthew Emerton, this also reproves a result
of Calegari–Emerton. At the end, we also discuss a similar phenomenon in the context of
locally analytic vectors of completed cohomology.

2. Locally analytic action

Definition 2.1. Let W be a p-adic Banach space over Qp . A continuous linear operator
T 2 End.W / is called locally analytic if there exists a monic polynomial f .X/ 2 ZpŒX�
such that f .T /.W o/ � pW o, where W o denotes the unit ball of W .

Note that for a locally analytic operator T , if W o is T -stable, then the image of T in
End.W o=pW o/ generates a finite Fp-algebra.

Example 2.2. Suppose W is a finite-dimensional vector space over Qp . Then any linear
operator of norm � 1 is locally analytic by considering its characteristic polynomial.

Example 2.3. Suppose W D QphZi, the (p-adic) completion of QpŒZ� with respect to
the unit ball ZpŒZ�. Let T 2 End.QphZi/ be the translationZ 7!ZC 1. It is locally ana-
lytic because .T p � 1/ � F.Z/ D F.Z C p/ � F.Z/ 2 pZpŒZ� for any F.Z/ 2 ZpŒZ�.

Recall that an operator T onW is called topologically nilpotent if limn!1 T
n � v D 0

for any v 2 W , i.e., the sequence ¹T nºn�0 converges to zero in the space of linear opera-
tors on W with respect to the weak topology.

Proposition 2.4. Let W be a p-adic Banach space over Qp . Suppose T 2 End.W o/ is
topologically nilpotent. The following are equivalent:

(1) T is locally analytic;

(2) T n.W o/� pW o for some n� 1, i.e., T n � v converges to 0 uniformly for all v 2W o;

(3) the sequence ¹T nºn�0 converges to zero in End.W o/ with respect to the p-adic topol-
ogy (equivalently the norm topology).

Proof. (2) and (3) are clearly equivalent. (2) implies (1) by taking f .T / D T n in the def-
inition of locally analytic operators. It remains to show that (1) implies (2). Suppose that
f .T /.W o/ � pW o for some monic polynomial f .X/ 2 ZpŒX�. Write f .X/ mod p D
Xkg.X/ with g.X/ 2 FpŒX� and g.0/¤ 0. Then g.T / is invertible onW o=pW o as T is
topologically nilpotent. Hence T k D f .T / D 0 viewed as elements in End.W o=p/.

We can also generalize this notion to representations of algebras.

Definition 2.5. Suppose A is a unital ring andW is a p-adic Banach space equipped with
a left A-module structure. We say the action of A on W is locally analytic if there exists
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an A-stable open and bounded lattice L � W such that the image of A! End.L=pnL/

is finite for any n� 1. If this happens, the image ofA! End.L0=pnL0/ is finite for any n
and any A-stable open and bounded lattice L0 � W .

In some cases, we only need to consider the image of A! End.L=pL/.

Lemma 2.6. Suppose A is a Noetherian ring and W is a p-adic Banach space equipped
with an A-module structure. The action of A on W is locally analytic if there exists an
A-stable open and bounded lattice L � W such that the image of A ! End.L=pL/

is finite.

Proof. Let In be the kernel of A! End.L=pnL/. Clearly, I n1 � In. Hence it is enough
to show thatA=I n1 is finite. The assumption implies thatA=I1 is finite. SinceA is Noethe-
rian, we have I n1 =I

nC1
1 is also finite. Our claim follows as A=I n1 is filtered by I k1 =I

kC1
1 ,

k D 0; : : : ; n � 1.

The following proposition justifies the terminology “locally analytic operator”.

Proposition 2.7. SupposeG is a compact p-adic Lie group andW is a continuous p-adic
Banach space representation of G. Then the following are equivalent:

(1) there exists a G-stable open and bounded lattice L � W such that L=pL is fixed by
some open subgroup G0 of G;

(2) the induced action of ZpŒG� (the group algebra of G) on W is locally analytic;

(3) the induced action of the Iwasawa algebra ZpJGK on W is locally analytic;

(4) W is an analytic representation of some open subgroup G0 of G. In particular, W is
a locally analytic representation of G in the usual sense.

Proof. Note that ZpJGK is Noetherian, cf. [15, Theorems 33.4 and 27.1]. Hence by
Lemma 2.6, part (3) follows from (1) by noting that the action of ZpJGK on L=pL

factors through FpŒG=G0� for some open normal subgroup of G. Part (3) implies (2)
because ZpŒG� � ZpJGK. To see (2) implies (1), we may assume G is pro-p by replac-
ing it by an open subgroup. Then g � 1 is topologically nilpotent on W for any g 2 G.
The same argument of Proposition 2.4 shows that .g � 1/p

n
.L/ � pL for some n > 0

and some open bounded G-stable lattice L and any g 2 G. Hence Gp
n

fixes L=pL.
Part (1) follows as Gp

n
contains an open subgroup of G, cf. [15, Theorem 27.1 and

Remark 26.9].
It remains to prove the equivalence between (1) and (4). This is well known. Part (4)

follows from (1) by considering the Mahler coefficients and invoking Amice’s theorem,
cf. [7, Proposition IV.4]. Now assume (4). There is a G0-equivariant isomorphism

W Š .W y̋Qp
C an.G0;Qp//

G0 ;

where G0 acts on the right-hand side via the right translation action on C an.G0;Qp/, the
space of Qp-valued analytic functions onG0, cf. [13, §2.1]. Part (1) follows by noting that
C an.G0;Qp/

o=p is fixed by an open subgroup G0 by [13, Lemma 2.1.2.].
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Example 2.8. Suppose G D Zkp and W is a Qp-Banach space representation of G.
Then ZpJGK Š ZpJT1; : : : ; TkK, where Ti D gi � 1 and g1; : : : ; gk form a basis of G.
Now suppose that the action of ZpJGK on W is locally analytic. It follows from the
previous discussion that there exists n > 0 such that T ni .W

o/ � pW o, i D 1; : : : ; k, or
equivalently T n

i

p
has norm� 1. Hence the action of ZpJT1; : : : ; TkK onW can be extended

to Qph
T n

1

p
; : : : ;

T n
k

p
; T1; : : : ; Tki.

Geometrically, the generic fiber of ZpJT1; : : : ; TkK is an open ball and the rigid analyt-
ic space associated to Qph

T n
1

p
; : : : ;

T n
k

p
; T1; : : : ; Tki corresponds to a closed polydisk in-

side. Roughly speaking, this means the spectrum of W is in a bounded region with radius
strictly less than 1.

Remark 2.9. Proposition 2.7 shows that one can extend the notion of locally analytic
representations to general topological groups. More precisely, a Qp-Banach space rep-
resentation W of a topological group G is called locally analytic if the action of ZpŒG�
on W is locally analytic in our sense. When G D GK , the local Galois group of a finite
extension K of Qp , these locally analytic representations show up naturally in the recent
development of Sen’s theory. For example, one can show that for a locally analytic repre-
sentation W of GK , there is a natural isomorphism

W y̋Qp
xK Š .W y̋Qp

xK/HK ;�K;n-an y̋Kn
xK

for some n>0. HereHKDGal. xK=K.�p1//,KnDK.�pn/, �K;nDGal.K.�p1/=Kn/,
and the superscript HK denotes taking the HK-invariants and “�K;n-an” denotes taking
the �K;n-analytic vectors. See [14, Theorem 3.3.3] for a relative version of this result.
We remark that when G D GK , the equivalence between parts (1) and (3) of Lemma 2.6
still holds, even though ZpJGKK is not Noetherian. This is a consequence of the local
class field theory: for any finite extension L of Qp , the dimension of Hom.GL; Fp/ is
finite.

3. Fake-Hasse invariants

In order to study the Hecke action on overconvergent modular forms, we need fake-Hasse
invariants and strange formal integral models of the modular curve constructed by Scholze
in [16, Chapter 4]. The fact that the Hecke action is locally analytic will be a formal
consequence of the existence of these Hecke-invariant sections.

Our setup is as follows. Let C D Cp , the p-adic completion of xQp with ring of inte-
gers OC . For a sufficiently small open compact subgroup K of GL2.Af /, we denote
by X�K;C the complete adelic modular curve over C of level K and by X�K its associated
rigid analytic space. We will always assumeK is sufficiently small so that X�K;C is a vari-
ety. If we choose an isomorphism between C and C, the non-cusp points of X�K;C .C / are
given by the usual double cosets GL2.Q/ n .C nR/�GL2.Af /=K. On X�K , we have the
usual automorphic line bundle !KpKp

. Fix an open compact subgroup Kp � GL2.A
p

f
/

contained in the level-N -congruence subgroup for some N � 3 prime to p. For a suffi-
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ciently small open subgroupKp �GL2.Qp/, in the proof of [16, Theorem 4.3.1], Scholze
constructed

� a formal integral model X�KpKp
of X�KpKp

with an affine open cover VKp ;1, VKp ;2;

� an ample line bundle ! int
KpKp

on X�KpKp
whose generic fiber is !KpKp

;

Moreover, fix n � 1. For a sufficiently small open subgroup Kp � GL2.Qp/, there are

� global sections xsn;1;xsn;2 2H 0.X�KpKp
; ! int
KpKp

=pn/ (fake-Hasse invariants) such that
VKp ;i is the locus where xsn;i is invertible for i D 1; 2. In particular, xsn;1, xsn;2 gener-
ate ! int

KpKp
=pn.

All X�KpKp
, VKp ;1, VKp ;2 and ! int

KpKp
are functorial in KpKp , hence GL2.A

p

f
/ acts

on the tower of .X�KpKp
; ! int
KpKp

/. Both sections xsn;1 and xsn;2 are invariant under this
action.

We briefly recall Scholze’s construction. Scholze proved that when the level at p
varies, the inverse limit lim

 �Kp�GL2.Qp/
X�KpKp

exists as a perfectoid space, which will
be denoted by X�Kp . Moreover, there is the so-called Hodge–Tate period morphism

�HTW X
�
Kp ! F`

defined via the position of the Hodge–Tate filtration on the first cohomology of the univer-
sal elliptic curve (on the non-cusp points). Here F` (Š P1) denotes the associated adic
space of the flag variety of GL2=C . The pull-back of the tautological ample line bun-
dle !F` on F` along �HT is canonically identified with the pull-back of !KpKp

to X�Kp

(up to a Tate twist). Note that �.F`; !F`/ has a canonical basis f1, f2, whose pull-back
to X�Kp will be denoted by e1, e2. Let U1; U2 � X�Kp be the open subsets defined by
k
e2

e1
k � 1 and k e1

e2
k � 1, respectively. Hence ei is an invertible section on Ui for i D 1; 2.

Scholze proved that U1 and U2 are affinoid perfectoid and are the preimages of some
affinoid open subsets VKp ;1, VKp ;2 of X�KpKp

for sufficiently small Kp . Fix n � 1. For
a sufficiently small subgroup Kp and i D 1; 2, we may find

� sn;i 2 �.VKp ;i ; !KpKp
/ such that k1 � sn;i

ei
k � kpnk;

� xn;i 2 �.VKp ;i ;OX�
KpKp

/ such that k e3�i

ei
� xn;ik � kp

nk.

This is possible because the natural map

lim
�!
Kp

�.VKp ;i ;OX�
KpKp

/! �.Ui ;OX�
Kp
/

has dense images. The formal integral model X�KpKp
is obtained by glueing VKp ;1 WD

SpfOC.VKp ;1/ and VKp ;2 WD SpfOC.VKp ;2/ along SpfOC.VKp ;1 \ VKp ;2/. The integral
line bundle ! int

KpKp
is defined by requiring sn;i being invertible on Vi for i D 1; 2. This

does not depend on n and the choice of sn;i . For the fake-Hasse invariants, observe that
sn;1 mod pn and sn;2xn;2 mod pn glue a global section xsn;1 2 H 0.X�KpKp

; ! int
KpKp

=pn/

by our choice of sn;i , xn;i . Similarly, one can construct xsn;2. We remark that xsn;1, xsn;2
are independent of the choice of sn;i , xn;i because xsn;i may be viewed as ei mod pn.
Thus xsn;1, xsn;2 are fixed by the action of GL2.A

p

f
/.
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Let T D TKp D ZpŒGL2.A
p

f
/==Kp� be the abstract Hecke algebra ofKp-biinvariant

compactly supported functions on GL2.A
p

f
/, where the Haar measure gives Kp mea-

sure 1. Let Kp be a sufficiently small subgroup of GL2.Qp/ so that X�KpKp
and V1,

V2 are defined. (We drop some subscripts Kp from the notations.) It follows from the
functorial properties of V1, V2 that H 0.Vi ; .!

int
KpKp

/˝k/, i D 1; 2 and k 2 Z, admits
a natural action of T . Denote by Vi D VKp ;i � X�KpKp

the generic fiber of Vi . Then
H 0.Vi ; !

˝k
KpKp

/ is a p-adic Banach space with unit ball H 0.Vi ; .!
int
KpKp

/˝k/. Our main
result here is

Theorem 3.1. For i D 1; 2 and k 2 Z, the Hecke action of T on H 0.Vi ; !
˝k
KpKp

/ is
locally analytic.

Remark 3.2. We will relate H 0.Vi ; !
˝k
KpKp

/ with classical overconvergent modular
forms later in the next section. See the proof of Corollary 4.6.

Since Vi is affine, H 0.Vi ; .!
int
KpKp

/˝k/=pn D H 0.Vi ; .!
int
KpKp

/˝k=pn/. It follows
from the construction of ! int

KpKp
that if K 0p is an open subgroup of Kp , the pull-back

map

H 0.Vi ; .!
int
KpKp

/˝k=pn/! H 0.VK0p ;i
; .! int

KpK0p
/˝k=pn/

is injective as xsk1;i generates both .! int
KpKp

/˝k=p and .! int
KpK0p

/˝k=p on Vi and VK0p ;i
,

respectively. Therefore, for a fixed n, we are free to replace Kp by a smaller subgroup.
In particular, we may assume xsn;i exists. Note that xsn;i is an invertible section on Vi and
commutes with the Hecke actions. There are T -equivariant isomorphisms:

H 0.Vi ;OX�
KpKp

=pn/
�xsk

n;i

! H 0.Vi ; .!
int
KpKp

/˝k=pn/:

Hence H 0.Vi ; .!
int
KpKp

/˝k/=pn is independent of k as a Hecke module. Thus it suffices
to prove Theorem 3.1 for k D 0, and we have the following corollary.

Corollary 3.3. The Hecke actions of T on� Y
k2Z

H 0.Vi ; .!
int
KpKp

/˝k/
�
˝Zp

Qp; i D 1; 2;

are locally analytic.

Proof of Theorem 3.1. Fix n � 1. By definition, we need to show that the image of

T ! End.H 0.Vi ;OX�
KpKp

=pn//

is finite. By shrinking Kp if necessary, we may assume xsn;i exists. Since Vi is the locus
where xsn;i is invertible, we may write

H 0.Vi ;OX�
KpKp

=pn/ D lim
�!
�xsn;i

H 0.X�KpKp
; .! int

KpKp
/˝k=pn/:
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Hence it suffices to show that the image of

T ! End.H 0.X�KpKp
; .! int

KpKp
/˝k=pn//

is finite and the kernel stabilizes when k is sufficiently large. For the finiteness, by the
ampleness of ! int

KpKp
, when k is sufficiently large, we have

H 0.X�KpKp
; .! int

KpKp
/˝k=pn/ D H 0.X�KpKp

; .! int
KpKp

/˝k/=pn:

Since H 0.X�KpKp
; .! int

KpKp
/˝k/ is p-torsion free, it is enough to show that the image of

T ! EndOC
.H 0.X�KpKp

; .! int
KpKp

/˝k// � EndC .H 0.X�KpKp
; !˝kKpKp

//

is a finite Zp-module. Indeed, the properness of X�KpKp
implies that the space of global

sections H 0.X�KpKp
; .! int

KpKp
/˝k/ is a finite OC -module and H 0.X�KpKp

; !˝kKpKp
/ is

a finite-dimensional C -vector space. Our claim is clear as X�KpKp
, the sheaf !KpKp

and
Hecke actions are all defined over Qp .

To see that the kernel of T! End.H 0.X�KpKp
; .! int

KpKp
/˝k=pn// stabilizes, consider

the exact sequence (for simplicity, we drop the subscript KpKp in ! int
KpKp

)

0! .! int/˝k�1=pn
.xsn;1;xsn;2/
�! .! int/˝k=pn ˚ .! int/˝k=pn

.xsn;2;�xsn;1/
�! .! int/˝kC1=pn ! 0:

(This essentially comes from the non-split sequence 0! O.�1/! O˚2 ! O.1/! 0

on P1.) When k is sufficiently large, taking global sections of this exact sequence remains
exact as! int

KpKp
is ample. Thus the Hecke action of T onH 0.X�KpKp

; .! int
KpKp

/˝kC1=pn/

factors through H 0.X�KpKp
; .! int

KpKp
/˝k=pn/˚2, which proves the claim.

4. Hodge–Tate–Sen weights

In this section, we study Galois representations attached to eigenforms inH 0.Vi ;!
˝k
KpKp

/.
Let me introduce some (standard) notation first. For simplicity, from now on we assume
Kp � GL2.A

p

f
/ is of the form

Q
l¤p Kl . Let S be a finite set of rational primes contain-

ing p such that Kl Š GL2.Zl / for l … S . Denote by

TS D Zp
h
GL2.ASf /==

Y
l…S

Kl

i
� T

the subalgebra generated by spherical Hecke operators. Consider the image Ti;1 of TS !
End.H 0.Vi ;OX�

KpKp
=p//. By Theorem 3.1, this is a finite Fp-algebra. Moreover, by [16,

Corollary 5.11], there is a continuous 2-dimensional determinant D of GQ;S valued
in Ti;1 in the sense of Chenevier [6] satisfying the following property: for any l … S ,
the characteristic polynomial of D.Frobl / is

X2 � l�1TlX C l
�1Sl :
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Here GQ;S denotes the Galois group of the maximal extension of Q unramified outside
of S and infinity, Frobl 2 GQ;S denotes a geometric Frobenius element at l and Tl , Sl
denote the usual Hecke operators�

Kl

�
l 0

0 1

�
Kl

�
;

�
Kl

�
l 0

0 l

�
Kl

�
:

Let F be a finite field so that all residue fields of Ti;1 can be embedded into F . Fix
an embedding of W.F/Œ 1

p
� into xQp , or equivalently an embedding F ! OC =p. In this

case, Ti;1 ˝Fp
F acts on H 0.Vi ;OX�

KpKp
=p/, and we denote by Ti its image in

End.H 0.Vi ;OX�
KpKp

=p//. Finally, for any maximal ideal m of Ti , we have a continuous
2-dimensional determinant Dm of GQ;S valued in Ti=m D F . Let Rps

m be the universal
formal W.F/-algebra parametrizing all liftings of Dm. This is a Noetherian ring. Denote
the product over all m by

Rps
D

Y
m2Spec Ti

R
ps
m:

Now for any k 2 Z, n > 0, by [16, Corollary 5.1.11], there is a lifting of
Q

m2Spec Ti
Dm

valued in the image of TS ˝Zp
W.F/ ! End.H 0.X�KpKp

; .! int
KpKp

/˝k=pn//. By the
universal property, this image receives a map from Rps. Hence we obtain an action of Rps

on H 0.Vi ; !
˝k
KpKp

/ factoring through the Hecke action. In particular, by Corollary 3.3,
we have the following assertion.

Corollary 4.1. The action of Rps on .
Q
k2Z H

0.Vi ; .!
int
KpKp

/˝k// ˝Zp
Qp is locally

analytic.

Concretely, since eachRps
m is a Noetherian local formalW.F/-algebra, it can be written

as a quotient of W.F/Jx1; : : : ; xgK for some g. As explained in Example 2.8, there exists
an integer n>0 such that

xn
j

p
has norm�1 acting on .

Q
k2ZH

0.Vi ; .!
int
KpKp

/˝k//˝Zp
Qp

for any jD1; : : : ;g. Therefore, letE� xQp be a finite extension ofW.F/Œ 1
p
� containing an

n-th root of p and fix such a root p1=n2E. We can extend the action ofW.F/Jx1; : : : ; xgK
to an E-linear action of Eh x1

p1=n ; : : : ;
xg

p1=n i on .
Q
k2Z H

0.Vi ; .!
int
KpKp

/˝k//˝Zp
Qp .

Recall that geometrically, the generic fiber of W.F/Jx1; : : : ; xgK is an open ball and
Eh x1

p1=n ; : : : ;
xg

p1=n i corresponds to a closed polydisk inside. This means the spectrum of
the Banach space H 0.Vi ; !

˝k
KpKp

/ is in a bounded region with radius strictly less than 1.
We make such a choice for each m. As a consequence, the action of Rps can be

extended to an action of a topologically finitely generated Banach E-algebra. We denote
its image in

End
�� Y

k2Z

H 0.Vi ; .!
int
KpKp

/˝k/
�
˝Zp

Qp

�
by R. There is a natural map Rps!R. Hence we have a 2-dimensional determinantDR

of GQ;S valued in R which is continuous with respect to the p-adic topology on R.
The whole point of showing that the Hecke action is locally analytic is to improve the con-
tinuity of the determinant on Rps from the rad.Rps/-adic topology to a p-adic topology.
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The Hecke action on H 0.X�KpKp
; !˝kKpKp

/, k � 0, extends naturally to R. In fact,
the image of TS ˝ E in End.H 0.X�KpKp

; !˝kKpKp
// agrees with the image of R. In

particular, the action of R on H 0.X�KpKp
; !˝kKpKp

/ is semi-simple.

Lemma 4.2. The kernel of

R! End
�Y
k�0

H 0.X�KpKp
; !˝kKpKp

/
�

is trivial.

Proof. This is a standard application of fake Hasse invariants. See the proof of [16, The-
orem 4.4.1]. We give a sketch here. Suppose f 2 R is a non-zero element in the kernel
of the above map. We may assume it has norm � 1 acting on

Q
k2ZH

0.Vi ; .!
int
KpKp

/˝k/

and its image in End .
Q
k2ZH

0.Vi ; .!
int
KpKp

/˝k=p// is non-zero. Now since Rps ˝W.F/

E!R has a dense image, the action of f onH 0.Vi ; .!
int
KpKp

/˝k=p/ commutes with xs n1;i
if n is sufficiently divisible by p. Indeed, since ! int

KpKp
is ample, xs l1;i lifts to a global sec-

tion s1 2 H 0.X�KpKp
; .! int

KpKp
/˝l / for l large enough. Then

.g � 1/ � s1 2 pH
0.X�KpKp

; .! int
KpKp

/˝l /

for any g 2 GL2.ASf /. Thus .g � 1/ � sp
k

1 2 p
kC1H 0.X�KpKp

; .! int
KpKp

/˝lp
k
/ for k � 0.

In particular,

T .s
pk

1 x/ � s
pk

1 T .x/ 2 pkC1H 0.Vi ; .!
int
KpKp

/˝mClp
k

/

for T 2 TS and x 2 H 0.Vi ; .!
int
KpKp

/˝m/. By continuity, this also holds for T 2 Rps.
We can write

f D
f 0

pk
C pf 00;

where f 0 2Rps˝OE and f 00 2R with norm� 1 acting on
Q
k2ZH

0.Vi ; .!
int
KpKp

/˝k/.
It follows that f

0

pk and f commute with .xs1;i /lp
k

. This means that f acts non-trivially on
H 0.X�KpKp

; .! int
KpKp

/˝k=p/ for some sufficiently large k by the same argument as in the
proof of Corollary 3.3. In this case,

H 0.X�KpKp
; .! int

KpKp
/˝k=p/ D H 0.X�KpKp

; .! int
KpKp

/˝k/=p

by the ampleness of ! int
KpKp

. But this contradicts our assumption on f .

Recall that there is a determinant DR of GQ;S valued in R. Since R is over a char-
acteristic zero field, one can also view this as a function T WGQ;S ! R, which behaves
like the trace of a two-dimensional representation, i.e., a pseudo-representation. For any
non-zero E-algebra homomorphism �WR ! xQp , we can associate a two-dimensional
semi-simple continuous representation ��WGQ;S ! GL2.xQp/, well-defined up to con-
jugation, whose trace is given by � ı T . Moreover, if � arises from an eigenform in
H 0.X�KpKp

; !˝kKpKp
/, then by Faltings’s result [9], ��jGQp

has the Hodge–Tate weights
0; k � 1. Our convention is that the cyclotomic character has the Hodge–Tate weight �1.
The density result of Lemma 4.2 has the following consequence.
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Theorem 4.3. For any �WR! xQp , one of the Hodge–Tate–Sen weights of ��jGQp
is 0,

i.e., .�� ˝Qp
C/GQp ¤ 0.

Proof. Recall that given a continuous representation ofGQp
!GLn.xQp/, Sen constructs

a monic polynomial PSen;� of degree n with coefficients in xQp ˝Qp
Qp.�p1/. It is

called the Sen polynomial of � and only depends on the semi-simplification of �. Its
roots are called the Hodge–Tate–Sen weights of � (or up to a sign depending on the
normalization). Moreover, Sen shows that this polynomial varies analytically in family.
See [17, 18] and also [2, Théorème 5.1.4]. We are going to apply Sen’s theory in our
context.

First, suppose that there exists a continuous Galois representation

�RW GQ;S ! GL2.R/

whose trace is T . Then by Sen’s result, we can find a polynomial PSen;�R
with coeffi-

cients in R ˝Qp
Qp.�p1/, such that for any �WR ! xQp , the Sen polynomial of �� is

given by �.PSen;�R
/. According to Lemma 4.2 and Faltings’s result, the constant term

of PSen;�R
vanishes as it vanishes after composing with any � arisen from an eigenform

in H 0.X�KpKp
; !˝kKpKp

/. (Implicitly, we are using that Qp.�
1
p / is flat over Qp .) This

immediately implies our claim.
In general, we may assume R is an integral domain. We are going to use the following

lemma, whose proof will be given later.

Lemma 4.4. Assume R is normal. There exists a polynomial P 2 R˝Qp
Qp.�p1/ŒX�

such that for any �WR! xQp , the Sen polynomial of �� is �.P /.

Let R0 be the normal closure of R in its fraction field. Note that R is a quotient of
products ofEhx1; : : : ; xki. Hence it is excellent because the Tate algebraEhx1; : : : ; xki is
excellent by the weak Jacobian condition [12, Theorem 102]. In particular, R is a Nagata
ring and R0 is a finite R-algebra. Thus R0 is a Banach E-algebra.

Now consider the pseudo-representationGQ;S
T
�!R!R0. Note that by the going-up

property of an integral extension, any �WR! xQp can be extended to a map �0WR0! xQp

and �� Š ��0 . In particular, it is enough to show that ��0 has a Hodge–Tate–Sen weight
zero for any �0WR0 ! xQp . Applying the previous lemma to R0, we get a universal Sen
polynomial P with coefficients in R0 ˝Qp

Qp.�p1/. Again, it suffices to show that
the constant term of P vanishes. Write the constant term of P as

Pl
iD1 ai ˝ bi with

ai 2 R0, bi 2Qp.�
1
p /, and bi are linearly independent over Qp . If one of ai is non-zero,

say a1, we can find a monic polynomial Q.X/ 2 RŒX� with constant term Q.0/ ¤ 0

and Q.a1/ D 0. By Lemma 4.2, there exists a �WR ! xQp arisen from an eigenform in
H 0.X�KpKp

;!˝kKpKp
/ and �.Q.0//¤ 0. Let �0WR0! xQp be a map extending �. By Falt-

ings’s result, �0.a1/ D 0. But

0 D �0.Q.a1// D �.Q.0// ¤ 0:

Contradiction. Thus we prove P.0/ D 0.
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Proof of Lemma 4.4. First we recall some standard constructions in the theory of pseudo-
representations. Fix a complex conjugation �� 2 GQ;S . Our pseudo-representation T is
odd in the sense that T .��/ D 0. For any �; � 2 GQ;S , let

� a.�/ D T.���/CT.�/
2

;

� d.�/ D T .�/ � a.�/;

� x.�; �/ D a.��/ � a.�/a.�/.

We denote by I the ideal of R generated by all x.�; �/. It is called the ideal of reducibility
as �� is reducible if and only if �.I/ D 0. If I is generated by some x.�0; �0/ ¤ 0, then

� 2 GQ;S 7!

 
a.�/ x.�;�0/

x.�0;�0/

x.�0; �/ d.�/

!
defines a representationGQ;S!GL2.R/whose trace is T . In this case, our claim follows
from Sen’s result directly.

In general, I might not even be principal. Here is a sketch of our strategy. X WD SpmR

is viewed as an affinoid rigid analytic variety. Consider the blowup zX of X along the
ideal sheaf defined by I. Then I becomes an invertible sheaf on zX and we can apply the
previous construction and glue a polynomial on zX interpolating the Sen polynomial at
each point. Now the normal assumption guarantees that the coefficients of this polynomial
actually belong to R. This gives the polynomial we are looking for. Since everything is
relatively simple here, the blowup process will be replaced by the explicit construction
below. But it seems helpful to keep this blowup picture in mind.

If I D 0, then a, d are characters and our claim is clear. So we may assume I ¤ 0

from now on. Let x1 D x.�1; �1/; : : : ; xr D x.�r ; �r / be a set of non-zero generators of I.
Denote by RC the unit ball of R and by K the fraction field of R. For each i 2 ¹1; : : : ; rº,
we define RCi as the p-adic completion of RCŒx1

xi
; : : : ; xr

xi
� �K and Ri D RCi Œ

1
p
�. Con-

sider the pseudo-representation GQ;S
T
�!R!Ri . The ideal of reducibility in this case is

generated by xi . Hence we have a polynomial Pi 2 Ri ˝Qp
Qp.�p1/ŒX� interpolating

the Sen polynomial at each point of Spm Ri .
Denote by Yi � Spm Ri the open subset defined by xi ¤ 0 and by Xi � X the open

subset defined by xi ¤ 0;kxj k � kxik; j D 1; : : : ; r . It is easy to see that Yi maps isomor-
phically onto Xi under the natural map �i W Spm Ri ! X. Hence we may view Pi jYi

as
a polynomial on Xi . Clearly, it interpolates the Sen polynomial at each point in Xi . Hence
we can glue all Pi and get a polynomial P on X0 WD X n V.I/, the locus of irreducible
representations. (Here we are using that R is reduced.) Since R is normal and the coeffi-
cients of P are bounded functions, by Bartenwerfer’s result [1, §3], the coefficients of P
can be extended to functions defined everywhere on X, i.e., P 2 R˝Qp

Qp.�p1/ŒX�.
We claim that this polynomial P interpolates the Sen polynomial at each point in X.

By construction, this is true for points in X0. It remains to verify points in V.I/. Let
�WR ! xQp be a non-zero map whose kernel contains I. Note that there exists i 2
¹1; : : : ; rº such that � can be extended to a map �0WRŒx1

xi
; : : : ; xr

xi
�! xQp . This is because

the usual blowup (in algebraic geometry) of Spec R along I maps surjectively onto
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Spec R. Fix an integer n so that �0.RCŒp
nx1

xi
; : : : ; p

nxr

xi
�/ is contained in the ring of

integers of xQp . We define R0Ci as the p-adic completion of RCŒp
nx1

xi
; : : : ; p

nxr

xi
� and

R0i D R0Ci Œ
1
p
�. Then �0 extends to R0i naturally. Again, there is a polynomial

P 0i 2 R0i ˝Qp
Qp.�p1/ŒX�

interpolating the Sen polynomial at each point of Spm R0i . It suffices to prove that P , con-
sidered as an element of .R0i /

red ˝Qp
Qp.�p1/ŒX�, agrees with P 0i . Clearly, this is true

for points in the irreducible locus Spm R0i n V.xi /. But this also implies points in V.xi /
as xi is not a zero-divisor in R0i by the flatness of R0Ci over RCŒp

nx1

xi
; : : : ; p

nxr

xi
� � K .

(Note that R0Ci is the p-adic completion of the Noetherian ring RCŒp
nx1

xi
; : : : ; p

nxr

xi
�.)

This finishes the proof.

Remark 4.5. In fact, the normal assumption in Lemma 4.4 can be waived here because
the local universal deformation ring at p of a pseudo-representation is normal by [3,
Theorem 1.4].

Corollary 4.6. The two-dimensional semi-simple Galois representation associated to an
overconvergent eigenform of weight k 2 Z has the Hodge–Tate–Sen weights 0; k � 1.

Proof. We use the (generalized) notion of overconvergent modular forms introduced in
[13, Definition 5.2.5]. See also the discussion there for its relation to classical overcon-
vergent modular forms. For an open compact subgroup Kp of GL2.Qp/, denote by VKp

the set of open subsets V � X�KpKp
such that

� ��1Kp
.V / D ��1HT .V1/ for some open neighborhood V1 of1 2 P1 D F`.

Here �Kp
WX�Kp ! X�KpKp

denotes the projection map and �HTWX
�
Kp ! F` is the

Hodge–Tate period morphism, cf. the discussion in the beginning of Section 3. For exam-
ple, VKp ;2 introduced in Section 3 is an element of VKp

if Kp is sufficiently small. Open
sets in VKp

form a projective system by inclusions. If K 0p � Kp is an open subgroup,
there is a natural map VKp

! VK0p induced by taking the preimages. The space of over-
convergent modular forms of weight k is defined as

M
�

k
.Kp/ WD lim

�!
Kp!1

lim
�!

V 2VKp

H 0.V; !kKpKp
/:

(This is equivalent to [13, Definition 5.2.5] by [13, Proposition 5.2.6 and Lemma 5.2.9].)
Fix a V 2 VKp

. The Hecke operators away from p act on H 0.V; !kKpKp
/. An (non-

zero) eigenvector of TS in M �

k
.Kp/ is called an overconvergent eigenform of weight k.

We remark that elements of form
�
pl 0
0 1

�
2 GL2.Qp/ act on M �

k
.Kp/.

Let M2 �M
�

k
.Kp/ be the image of

lim
�!
Kp!1

H 0.VKp ;2; !
k
KpKp

/!M
�

k
.Kp/:

We claim that

M
�

k
.Kp/ D

[
n2Z

�
pn 0

0 1

�
�M2:
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This implies the corollary. Indeed, the action of
�
pn 0
0 1

�
commutes with the action of

the Hecke algebra. Hence our assertion follows from Theorem 4.3 because the (usual)
determinant of the Galois representation associated to an overconvergent eigenform of
weight k has the Hodge–Tate weight k � 1. To prove the claim, we first note that

��1Kp
.VKp ;2/ D �

�1
HT .U /

for some open subset U of F` containing1, which is independent of Kp . For any open
neighborhood V1 of1,

�
pn 0
0 1

�
� U � V1 for some n. This implies that given V 2 VKp

,
there exists a sufficiently small open subgroup K 0 � GL2.Qp/ and an integer n such
that

� gK 0g�1 � Kp , where g D
�
pn 0
0 1

�
;

� under the isomorphism 'WX�KpK0
�
�! X�

KpgK0g�1 induced by g�1, we have

'.VK0;2/ � �
�1.V /;

where � WX�
KpgK0g�1 ! X�KpKp

denotes the projection map.

Thus the map H 0.V; !kKpKp
/ ! M

�

k
.Kp/ factors through g � H 0.VK0;2; !

k
KpK0/, and

our claim follows.

5. A result of Calegari–Emerton

Matthew Emerton pointed out the following consequence of Corollary 3.3, which reproves
a result of Calegari–Emerton [5, Theorem 2.2] and can be viewed as some evidence
towards a question of Buzzard [4, Question 4.4] asking whether for a fixed level, all
Hecke eigenvalues of arbitrary weights lie in a finite extension of Qp . We denote by Zp
the ring of integers of xQp and by m its maximal ideal.

Theorem 5.1. Let S be a finite set of rational primes containing p andK D
Q
l Kl be an

open compact subgroup of GL2.Af / withKl ŠGL2.Zl / for l … S . There exists a rational
number � D �.K; p/ such that for any �WTS ! Zp appearing in H 0.Vi ; !

˝k
KpKp

/ and
�0WTS ! Zp appearing inH 0.Vi ; !

˝k0

KpKp
/ for some integers k, k0 (�, �0 may come from

classical forms, for example) if � � �0 mod m, then

� � �0 mod p�Zp:

Proof. Clear as the action of TS on H 0.Vi ; !
˝k
KpKp

/ is locally analytic.

6. Hecke action on locally analytic vectors of admissible representations

In this last section, we provide another example of locally analytic Hecke actions: the case
of the Hecke algebra acting on the locally analytic vectors in the completed cohomology.
In fact, we will prove this result in a more general setup.
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Suppose that

� G is a finite-dimensional p-adic Lie group.

� W is an admissible Banach space representation of G. Recall that this means that for
any open compact subgroup K of G and any open bounded K-stable lattice L � W ,
the Fp-dimension of .L=pL/K is finite.

� A is a ring and W is equipped with an A-module structure which commutes with G.

For simplicity, we also assume the following:

� W o is AŒK�-stable for some open subgroup K of G.

A typical example to keep in mind is that W is Emerton’s completed cohomology
introduced in [8] for arithmetic quotients of symmetric spaces andA is the Hecke algebra.
If these arithmetic quotients are Shimura varieties defined over a number field F , one can
also take A D ZpŒGF �.

Let K be an open subgroup of G sufficiently small so that W o is K-stable and it
makes sense to talk about analytic functions on it, cf. [15, Theorem 27.1]. We denote
by W K�an � W the subspace of K-analytic vectors. It is a Qp-Banach space and an
A-module.

Theorem 6.1. The action of A on W K�an is locally analytic.

Proof. We denote by C an.K;Qp/ the space of Qp-valued analytic functions on K with
the unit open ball C an.K;Qp/

o. Fix n � 1. Then

W K�an;o
D .W o y̋Zp

C an.K;Qp/
o/K ;

cf. [13, §2.1]. The completed tensor product is p-torsion free. Hence there is an inclu-
sion

W K�an;o=pn � .W o
˝Zp

C an.K;Qp/
o=pn/K :

Note that C an.K;Qp/
o=pn is fixed by some open subgroupK 0 ofK: when nD 1, see [13,

Lemma 2.1.2]. The same argument works for any n. Hence

W K�an;o=pn � .W o
˝Zp

C an.K;Qp/
o=pn/K

0

D .W o=pn/K
0

˝Zp=pn C an.K;Qp/
o=pn:

(Implicitly, we use that C an.K;Qp/
o=pn is flat over Zp=pn.) Note that all the maps are

A-equivariant. Thus the image of A! End.W K�an;o=pn/ factors through the image of
A! End..W o=pn/K

0

/. But .W o=pn/K
0

is finite by the admissibility. By definition, this
means that the action of A on W K�an is locally analytic.

Remark 6.2. If W is the completed cohomology of modular curves and A D ZpŒGQp
�,

this result implies that Sen’s theory can be applied toW K�an. For example, it follows that
the Sen operator acts on W K�an y̋Qp

C , cf. [13, Remark 5.1.16].
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