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Sharp Hardy–Sobolev–Maz’ya, Adams and
Hardy–Adams inequalities on quaternionic hyperbolic

spaces and on the Cayley hyperbolic plane

Joshua Flynn, Guozhen Lu and Qiaohua Yang

Abstract. The main purpose of this paper is to establish the higher order Poincaré–
Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces
and on the Cayley hyperbolic plane using the Helgason–Fourier analysis on sym-
metric spaces. A crucial part of our work is to establish appropriate factorization
theorems on these spaces, which can be of independent interest. To this end, we need
to identify and introduce the “quaternionic Geller operators” and the “octonionic
Geller operators”, which have been absent on these spaces. Combining the factor-
ization theorems and the Geller type operators with the Helgason–Fourier analysis
on symmetric spaces, some precise estimates for the heat and the Bessel–Green–
Riesz kernels, and the Kunze–Stein phenomenon for connected real simple groups
of real rank one with finite center, we succeed to establish the higher order Poincaré–
Sobolev and Hardy–Sobolev–Maz’ya inequalities on quaternionic hyperbolic spaces
and on the Cayley hyperbolic plane. The kernel estimates required to prove these
inequalities are also sufficient to establish the Adams and Hardy–Adams inequali-
ties on these spaces. This paper, together with our earlier works on real and complex
hyperbolic spaces, completes our study of the factorization theorems, higher order
Poincaré–Sobolev, Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequalities
on all rank one symmetric spaces of noncompact type.

1. Introduction

LetG be a simple Lie group of real rank one. That is,G is one of the four groups SO.n;1/,
SU.n;1/, Sp.n;1/ and F4 (see, e.g., [43,44]). LetK be a maximal compact subgroup ofG,
and set X D G=K. Then X is a rank one symmetric space of non-compact type, which is
known as the real, complex and quaternionic hyperbolic spaces, and the Cayley hyperbolic
plane, which we denote by Hn

R, Hn
C , Hn

Q and H 2
O , respectively. Throughout this paper,
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we let �X be the Laplace–Beltrami operator of X , and �X will be the half-sum of the
positive roots of X. We note that

�X D

8̂̂̂<̂
ˆ̂:
.n � 1/=2; if X D Hn

R,
n; if X D Hn

C ,
2nC 1; if X D Hn

Q,
11; if X D H 2

O ,

and that �2X is the spectral gap of ��X.
Our main object of study is the sharp higher order Poincaré–Sobolev and Hardy–

Sobolev–Maz’ya inequalities and their borderline cases, the Adams and Hardy–Adams
inequalities, on X. The Hardy–Sobolev–Maz’ya inequalities, studied firstly by Maz’ya
in [65], combine the Hardy and Sobolev inequalities into a single inequality, that can be
stated as follows:Z

Rn
C

jruj2 dx �
1

4

Z
Rn
C

u2

x21
dx � Cn

� Z
Rn
C

x

1 juj

p dx
�2=p

; for u 2 C10 .R
n
C/; n � 3;

where 2 < p � 2n=.n� 2/,  D .n � 2/p=2� n, RnC D ¹.x1; x2; : : : ; xn/ 2 Rn W x1 > 0º
and Cn is a positive constant which is independent of u. (See also [24], [73], and [74] and
many references therein for Hardy type inequalities in the non-Euclidean setting.) In terms
of the half-space model of real hyperbolic spaces, one can see that such an inequality is
equivalent to the Poincaré–Sobolev inequality on Hn

R. The borderline case of the Hardy–
Trudinger–Moser inequality when n D 2 has been studied in [59, 72], and when n > 2,
in [56]. (See also the case when nD 1 in [13].) The higher order inequalities of such type,
namely the so-called Hardy–Adams inequalities, have been established in [53,54, 60,64].

1.1. The case X D H n
R

We firstly recall the Poincaré half space model and the ball model of Hn
R. The Poincaré

half space model is given by RC � Rn�1 D ¹.x1; : : : ; xn/ W x1 > 0º equipped with the
Riemannian metric ds2 D .dx21 C � � � C dx

2
n/=x

2
1 . The induced Riemannian measure can

be written as dV D dx=xn1 , where dx is the Lebesgue measure on Rn. The ball model is
given by the unit ball

Bn D ¹x D .x1; : : : ; xn/ 2 Rn W jxj < 1º

equipped with the usual Poincaré metric

ds2 D
4.dx21 C � � � C dx

2
n/

.1 � jxj2/2
�

The factorization theorem on Hn
R is given,

• in the ball model (see [57]), by�1 � jxj2
2

�kCn=2
.��/k

h�1 � jxj2
2

�k�n=2
f
i
D Pkf;
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• and in the half space model (see [61]), by

x
n=2Ck
1 .��/k.x

k�n=2
1 f / D Pkf;

where f 2 C1.Hn
R/, � is the Laplacian on Euclidean space, P1 D ��X � n.n � 2/=4

and
Pk D P1.P1 C 2/ � � � � � .P1 C k.k � 1//

is the GJMS operator of order 2k on Hn
R (see [6, 22, 23, 32, 45]). On the other hand, the

Poincaré–Sobolev inequality reads asZ
Hn

R

.�2 � �2X ��X/
s.��2X ��X/

˛=2 u � udV � Ckuk2Lp.Hn
R/
;

where 0 < ˛ < 3, � > 0 and u 2 C10 .H
n
R/. Therefore, in terms of the Poincaré half

space model and the ball model of Hn
R, we have the following Hardy–Sobolev–Maz’ya

inequalities of higher order (see [61]).

Theorem A. Let 2� k < n=2 and 2 < p � 2n=.n� 2k/. There exists a positive constant
C D C.n; k; p/ such that, for each u 2 C10 .H

n
R/,

(1.1)
Z
Hn

R

.Pku/u dV �

kY
iD1

.2i � 1/2

4

Z
Hn

R

u2 dV � C
� Z

Hn
R

jujp dV
�2=p

:

We mention in passing that the best constant C in the above Hardy–Sobolev–Maz’ya
inequalities when k D 1 and n D 3 is the same as the Sobolev constant (see [11]), and is
otherwise strictly smaller than the Sobolev constant when k D 1 and n > 3 (see [33,34]).
In the higher order derivative cases (i.e., for k � 2), it was proved in all the cases of
n D 2k C 1, the best constants are the same as the Sobolev constants [62] (see also [37]),
and are strictly less than the Sobolev constant for n � 2k C 2.

In the borderline case, there holds the Hardy–Adams inequality. We state it as follows
(see [53, 54, 62]).

Theorem B. Let n � 3, � > 0 and 0 < s < 3=2. Then there exists a constant C�;n > 0
such that for all u 2 C10 .H

n
R/ withZ

Hn
R

.�2 � �2X ��X/
s .��2X ��X/

˛=2 u � udV � 1:

there holds Z
Hn

R

�
eˇ0.n=2;n/u

2

� 1 � ˇ0 .n=2; n/ u
2
�
dV � C�;n;

where

ˇ0.˛; n/ D
n

!n�1

h�n=2 2˛ �.˛=2/
�..n � ˛/=2/

ip0
; 0 < ˛ < n;

is the best Adams constant on Rn, and !n�1 is the area of the surface of the unit n-ball.

In terms of the ball model, we have the following Hardy–Adams inequalities on Bn

(see [53, 60, 72].)
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Theorem C. There exists a constant C > 0 such that for all u 2 C10 .B
n/ withZ

Bn
jr
n=2uj2 dx �

n=2Y
kD1

.2k � 1/2
Z

Bn

u2

.1 � jxj2/n
dx � 1;

there holds Z
Bn

eˇ0.n=2;n/u
2
� 1 � ˇ0.n=2; n/u

2

.1 � jxj2/n
dx � C:

1.2. The case X D H n
C

The complex hyperbolic space is a simply connected complete Kaehler manifold of con-
stant holomorphic sectional curvature �4. There are two models of complex hyperbolic
space, the Siegel domain model Un and the ball model BnC . The Siegel domain Un � Cn

is defined as
Un
WD ¹z 2 Cn

W %.z/ > 0º;

where

(1.2) %.z/ D Im zn �

n�1X
jD1

jzj j
2:

The Bergman metric on Un is the metric with Kaehler form ! D i
2
@N@ log 1

%
. Its boundary

@Un WD ¹z 2 Cn W %.z/ D 0º can be identified with the Heisenberg group H2n�1, which
is a nilpotent group of step two with the group law

.z; t/ ı .z0; t 0/ D .z C z0; t C t 0 C 2 Im.z; z0//;

where z; z0 2 Cn�1 and .z; z0/ is the Hermite inner product

.z; z0/ D

nX
jD1

zj Nz
0
j :

Set zj D xj C i yj .1 � j � n � 1/ and define

Xj D
@

@xj
C 2yj

@

@t
; Yj D

@

@yj
� 2xj

@

@t
for j D 1; : : : ; n � 1; and T D

@

@t
�

The 2n� 1 vector fieldsX1; : : : ;Xn�1; Y1; : : : ; Yn�1; T are left-invariant and form a basis
for the Lie algebra of H2n�1. Let

L0 D
1

4

n�1X
jD1

.X2j C Y
2
j /

be the sub-Laplacian on H2n�1. Then the Laplace–Beltrami operator is given by

�X D 4% Œ%.@%% C T
2/CL0 � .n � 1/@%�:
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The ball model is given by the unit ball

BnC D ¹z D .z1; : : : ; zn/ 2 Cn
W jzj < 1º

equipped with the Kaehler metric

ds2 D �@ N@ log.1 � jzj2/:

The Laplace–Beltrami operator is given by

�X D 4.1 � jzj
2/

nX
j;kD1

.ıjk � zj Nzk/
@2

@zj @ Nzk
;

where

ıj;k D

²
1; if j D k,
0; if j ¤ k.

The Geller operator �˛;ˇ is defined by (see [29])

(1.3)

�˛;ˇ D 4.1 � jzj
2/
h nX
j;kD1

.ıjk � zj Nzk/
@2

@zj @ Nzk

C ˛

nX
jD1

zj
@

@zj
C ˇ

nX
jD1

zj
@

@zj
� ˛ˇ

i
:

Denote by

R D

nX
jD1

zj
@

@zj
and R D

nX
jD1

zj
@

@zj
�

Then we have

�˛;ˇ D 4.1� jzj
2/
h1 � jzj2
jzj2

RR�
1

jzj2
L00C

n � 1

2
�
1

jzj2
.RCR/C ˛RC ˇR� ˛ˇ

i
;

where L00 is the Folland–Stein operator ([25, 31]) on the CR sphere, defined as follows:

L00 D �
1

2

X
j<k

.MjkMjk CMjkMjk/; where Mj;k D zj @zk � zk@zj :

For simplicity, we set

�0˛;ˇ D
1

4.1 � jzj2/
�˛;ˇ :

These Geller’s operators are closely related to CR invariant operators on the Heisenberg
group in the works of Jerison and Lee [40–42].

The factorization theorem involving Geller’s operators on the complex hyperbolic
space plays an important role in establishing both the higher order Poincaré–Sobolev and
the Hardy–Sobolev–Maz’ya inequalities on the complex hyperbolic spaces, and can be
stated as follows (see [63]).
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Theorem D. Let a 2 R and k 2 N n ¹0º. In terms of the Siegel domain model, we have,
for u 2 C1.Un/,

kY
jD1

�
%@%% C a@% C %T

2
CL0 � i.k C 1 � 2j /T

�
.%.k�n�a/=2u/

D 4�k%�.kCnCa/=2
kY

jD1

�
�X C n

2
� .a � k C 2j � 2/2

�
u:(1.4)

In terms of the ball model, we have, for f 2 C1.BnC/,

kY
jD1

h
�0.1�a�n/=2;.1�a�n/=2C

.kC1�2j /2

4
�
kC1�2j

2
.R�R/

i
Œ.1�jzj2/.k�n�a/=2f �

(1.5) D 4�k.1 � jzj2/�.kCnCa/=2
kY

jD1

�
�X C n

2
� .a � k C 2j � 2/2

�
f:

We note that the left sides of (1.4) and (1.5) are closely related to the CR invariant
differential operators on the Heisenberg group and CR sphere, respectively.

We also have the following Poincaré–Sobolev inequality on Hn
C:Z

Hn
C

.�2 � �2X ��X/
s .��2X ��X/

˛=2 u � udV � Ckuk2Lp.Hn
R/
;

where 0 < ˛ < 3, � > 0 and u 2 C10 .H
n
C/. Therefore, in terms of two models ofHn

C , we
have the following Hardy–Sobolev–Maz’ya inequalities:

Theorem E. Let a 2R, 1� k < n and 2 < p � 2n=.n� k/. In terms of the Siegel domain
model, there exists a positive constant C such that for each u 2 C10 .U

n/, we haveZ
H2n�1

Z 1
0

u

kY
jD1

�
�%@%% � a@% � %T

2
�L0 C i.k C 1 � 2j /T

�
u
dzdt d%

%1�a

�

kY
jD1

.a � k C 2j � 2/2

4

Z
H2n�1

Z 1
0

u2

%kC1�a
dzdt d%

� C
� Z

H2n�1

Z 1
0

jujp % dzdt d%
�2=p

;

where  D .n� kC a/p=2� n� 1. In terms of the ball model, we have for f 2C10 .B
n
C/,Z

BnC

f

kY
jD1

�
�0.1�a�n/=2;.1�a�n/=2 C

.kC1�2j /2

4
�
kC1�2j

2
.R�R/

�
f

dz

.1�jzj2/1�a

�

kY
jD1

.a � k C 2j � 2/2

4

Z
BnC

f 2

.1 � jzj2/kC1�a
dz

� C
� Z

BnC

jf jp.1 � jzj2/ dz
�2=p

:
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In the borderline case, there holds the Hardy–Adams inequality; we state it as follows.

Theorem F. Let n � 3, � > 0 and 0 < s < 3=2. Then there exists a constant C�;n > 0

such that for all u 2 C10 .H
n
C/ withZ

Hn
C

.�2 � �2X ��X/
s.��2X ��X/

˛=2 u � udV � 1;

there holds Z
Hn

C

.eˇ0 .n;2n/u
2

� 1 � ˇ0.n; 2n/u
2/ dV � C�;n:

Furthermore, in terms of the Siegel domain model, we have that for all u 2 C10 .U
n/ with

4n
Z

H2n�1

Z 1
0

u

nY
jD1

�
�%@%% � a@% � %T

2
�L0 C i.k C 1 � 2j /T

�
u
dzdt d%

%1�a

�

nY
jD1

.a � nC 2j � 2/2
Z

H2n�1

Z 1
0

u2

%nC1�a
dzdt d% � 1;

there holds Z
H2n�1

Z 1
0

eˇ0 .n;2n/%
a u2 � 1 � ˇ0.n; 2n/%

au2

%nC1
dzdt d% � C:

In terms of the ball model, we have that for all u 2 C10 .B
n
C/ with

4n
Z

BnC

f

nY
jD1

h
�0.1�a�n/=2;.1�a�n/=2C

.nC1�2j /2

4
�
nC1�2j

2
.R�R/

i
f

dz

.1�jzj2/1�a

�

kY
jD1

.a � k C 2j � 2/2
Z

BnC

u2

.1 � jzj2/nC1�a
dz � 1;

there holds Z
BnC

eˇ0 .n;2n/ .1�jzj
2/a u2 � 1 � ˇ0.n; 2n/.1 � jzj

2/au2

.1 � jzj2/nC1
dz � C:

1.3. Our main results

In this paper, we will consider the higher order Poincaré–Sobolev and the Hardy–Sobolev–
Maz’ya inequalities on the remaining two rank one symmetric spaces of non-compact
type, i.e., the quaternionic hyperbolic spaces Hm

Q and the Cayley hyperbolic plane H 2
O .

The first main result is the factorization theorems. We shall use the NA group model (or
Damek–Ricci space) and the ball model. We note (see [3, 19, 20]) that the Damek–Ricci
space is a solvable Lie group with a left invariant Riemannian structure which includes all
the rank one symmetric spaces of non-compact type.
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The Damek–Ricci spaceNA is a semi-direct product ofAŠR with a group of Heisen-
berg typeN . Let n be a Lie algebra ofN , let z be the center of n, and let h be its orthogonal
complement. Denote by Q D 1

2
dim h C dim z the homogeneous dimension of N . We

parameterize the elements in N D exp n by .X;Z/, for X 2 h and Z 2 z. Then the group
law is given by

.X;Z/.X 0; Z0/ D .X CX 0; Z CZ0 C 1
2
ŒX;X 0�/:

Thus the multiplication in S D NA is given by

.X;Z; a/.X 0; Z0; a0/ D .X C a1=2X 0; Z C aZ0 C 1
2
a1=2ŒX;X 0�; aa0/; a; a0 > 0:

Let �Z denote the Euclidean Laplacian on the center of N , and let L0 denote the sub-
Laplacian on N . Let % denote the A-coordinate of a general point in S , and let @% denote
the unit vector in the Lie algebra of A. Then the Laplace–Beltrami operator �S on S is
given by

�S D 4%
�
%.@%% C�Z/CL0 � .Q � 1/@%

�
and the bottom of the spectrum of ��S is Q2.

Firstly, we establish the factorization theorem on a Damek–Ricci space, from which
the factorization theorems on the quaternionic hyperbolic spaces and the Cayley hyper-
bolic plane follow naturally. We state it as follows.

Theorem 1.1. Let a 2 R and f 2 C1.U/. There holds

%.kCQCa/=2
kY

jD1

h
%@%% C a@% C %�Z CL0 � i.k C 1 � 2j /

p
��Z

i �
%.k�Q�a/=2f

�
D

kY
jD1

°
%
�
%.@%% C�Z/CL0 � .Q � 1/@%

�
C
Q2

4
�
.a � k C 2j � 2/2

4

±
f:

To state the factorization theorem on the ball model ofHm
Q , we need to introduce some

conventions. First recall that the quaternionic space Qm may be identified with C2m by
the correspondence

Qm
3 q D .q1; : : : ; qm/$ C2m

3 z D .z1; : : : ; z2m/;

where qj D zj C zmCj i2. This allows us to write� in terms of the complex coordinates z:

�Xf .z/ D 4.1 � jzj
2/

² mX
i;jD1

�
.ıij � zi Nzj � NzmCi zmCj /

@2f

@zi @ Nzj
f

C . Nzi zmCj � zmCi Nzj /
@2f

@zmCi @ Nzj
C . NzmCi zj � zi NzmCj /

@2f

@zi @ NzmCj

C .ıij � Nzi zj � zmCi NzmCj /
@2f

@zmCi @ NzmCj

�
CRCR

³
;
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where now

R D

2mX
jD1

zj
@

@zj
and R D

2mX
jD1

Nzj
@

@ Nzj
�

We introduce the following “quaternionic Geller operators”: given ˛ 2 C, define the
quaternionic Geller operator

�˛f .z/ D 4.1 � jzj
2/

² mX
i;jD1

�
.ıij � zi Nzj � NzmCi zmCj /

@2f

@zi @ Nzj
f

C . Nzi zmCj � zmCi Nzj /
@2f

@zmCi @ Nzj
C . NzmCi zj � zi NzmCj /

@2f

@zi @ NzmCj

C .ıij � Nzi zj � zmCi NzmCj /
@2f

@zmCi @ NzmCj

�
C .1C ˛/.RCR/ � ˛.˛C1/

³
:

In particular, �0 D �X, and if we set

�0˛ D
1

4.1 � jzj2/
�˛;

then
�0˛ D �

0
0 C ˛.RCR/ � ˛.˛ C 1/:

We emphasize the analogy between�˛ andD˛;ˇ by pointing out the following intertwin-
ing relationships: for u 2 C1.BnC/ and s 2 R, there holds

�s�n; s�n
�
.1 � jzj2/s�n u

�
D 4�1.1 � jzj2/s�n Œ�0;0 C 4s.n � s/� u on BnC

and, for u 2 C1.BmQ/ and s 2 R, there holds

�s�2m�1
�
.1 � jzj2/s�2m�1u

�
D .1 � jzj2/s�2m�1 Œ�0 C 4s.2mC 1 � s/� on BmQ:

Recall that the spectral gaps of ��0;0 and ��0 are .2m C 1/2 and n2, respectively.
Similarly, we can also define the Geller’s operators �˛ on H 2

O through the intertwining
relationships in terms of the ball model,

�˛
�
.1 � jxj2/s�11u

�
D .1 � jxj2/s�11 Œ�X C 4s.11 � s/� ;

where 11 is the spectral gap of ��X on H 2
O . Now we can state the factorization theorem

on the ball model of Hm
Q .

Theorem 1.2. Let a 2 R and k 2 N>0. Set � D .R �R/2 � 2D1D1 � 2D1D1, where

D1 D

nX
aD1

°
Nza

@

@znCa
� NznCa

@

@za

±
and D1 D

nX
aD1

°
za

@

@ NznCa
� znCa

@

@ Nza

±
:
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Then, in the ball model, for all f 2 C1.BmQ/, there holds

4k .1 � jzj2/
kCaC.2mC1/

2

kY
jD1

�
�0.1�a�.2mC1//=2C

.kC1�2j /2

4
� i

kC1�2j

2

p
�C1

�
f

D

kY
jD1

�
�X C .2mC 1/

2
� .a � k C 2j � 2/2

� �
.1 � jzj2/�.k�a�.2mC1//=2f

�
:

The factorization theorem on H 2
O in terms of the ball model is more complex than

that in Hm
Q and Hn

C , and involves rather involved computations. We shall address it in a
forthcoming paper.

The second main result is the higher order Poincaré–Sobolev inequality. Using precise
estimates for the Bessel–Green–Riesz and the heat kernels, we obtain the following.

Theorem 1.3. Let 0<  <3, 0<  0, 2<p and 0< �. CallN D dimX. If 0<  0<N �  ,
suppose further that 2 < p � 2N

N�.C 0/
. Then there exists a constant C > 0 such that, for

all u 2 C10 .X/, there holds

kukp � C
.��X � �

2
X C �

2/
0=4 .�� � �2X/

=4u

2
:

Using Theorem 1.3 and the factorization Theorems 1.1 and 1.2, we obtain the follow-
ing Hardy–Sobolev–Maz’ya inequalities on X. Here we state only for Hm

Q .

Theorem 1.4. Let a 2R, 1� k < 2m, 2<p < 4m
2m�k

and ��
Qk
jD1.a� kC 2j � 2/

2=4.
Then there exists a constant C > 0 so that, for all u 2 C10 .U

m
Q/, there holdsZ

Hm�1
Q

Z 1
0

u

kY
jD1

h
�%@%% � a@% � %�Z �L0 � i.k C 1 � 2j /

p
��Z

i
u
dxdzd%

%1�a

� �

Z
Hm�1

Q

Z 1
0

u2 dxdzd%

%kC1�a
� C

� Z
Hm�1

Q

Z 1
0

jujp%
.2mC1�kCa/p

2 �.2m�2/ dxdzd%
�2=p

;

where Um
Q is the quaternionic Siegel domain and Hm�1

Q is the quaternionic Heisenberg
group. In terms of the ball model, for all f 2 C10 .B

m
Q/, there holdsZ

BmQ

f

kY
jD1

h
�0.1�a�.2mC1//=2 C

.kC1�2j /2

4
� i

kC1�2j

2

p
� C 1

i
f

dz

.1�jzj2/1�a

� �

Z
BmQ

f 2

.1 � jzj2/kC1�a
dz � C

� Z
BmQ

jf jp .1 � jzj2/
.2mC1�kCa/

2 �.2m�2/ dz
�2=p

:

In the limiting case, we can establish the Adams inequality on X.

Theorem 1.5. Let 0 < ˛ < 3 and � > 0. Then there exists a constant C > 0 such that, for
all u 2 C10 .X/ with

k.��X � �
2
X C �

2/.2n�˛/=4 .��X � �
2
X/
˛=4 uk2 � 1;
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there holds Z
X
.eˇ0 .N=2;N/u

2

� 1 � ˇ0.N=2;N / u
2/ dV � C:

As an application of Theorem 1.5 and the factorization theorem, we have the following
Hardy–Adams inequalities on X. We also state them only for Hm

Q .

Theorem 1.6. Let a 2 R. There exists a constant C > 0 such that, for all u 2 C10 .B
m
Q/

with

42m
Z

BnQ

u

2mY
jD1

h
�0.1�a�.2mC1//=2C

.2mC1�2j /2

4
� i

2mC1�2j

2

p
�C1

i udz

.1�jzj2/1�a

�

2mY
jD1

.a � 2mC 2j � 2/2
Z

BnQ

u2

.1 � jzj2/2mC1�a
dz � 1;

there holdsZ
BnQ

eˇ0.2m;4m/.1�jzj
2/.aC1/=2 u2 � 1 � ˇ0.2m; 4m/ .1 � jzj

2/.aC1/=2 u2

.1 � jzj2/2mC2
dz � C:

In terms of the Siegel domain model, we have that, for all u 2 C10 .U
n
Q/ with

42m
Z

Hm�1
Q

Z 1
0

u

nY
jD1

h
�%@%% � a@% � %�Z �L0 C i.kC1 � 2j /

p
��Z

i
u
dxdzd%

%1�a

�

2mY
jD1

.a � nC 2j � 2/2
Z

H�1Q

Z 1
0

u2

%2mC1�a
dxdzd% � 1;

there holdsZ
Hm�1

Q

Z 1
0

eˇ0.2m;4m/%
au2 � 1 � ˇ0 .2m; 4m/ %

au2

%2mC2
dxdzd% � C:

Finally, we set up some Adams type inequalities on Sobolev spaces W ˛;N=˛.X/ on X
with dimension N , for arbitrary positive fractional order ˛ < N . More precisely, we have
the following.

Theorem 1.7. Let N � 2, let 0 < ˛ < N be an arbitrary real positive number, set
p D N=˛, and let � satisfy � > 0 if 1 < p < 2, and � > �X.1=2 � 1=p/ if p � 2.
Then for measurable E with finite Riemannian volume measure in X, there exists C D
C.�; ˛;N; jEj/ such that

1

jEj

Z
E

exp.ˇ0.˛;N / jujp
0

/ dV � C

for any u 2 W ˛;p.X/ with
R

X j.��X � �
2
X C �

2/˛=2ujp dV � 1. Here p0 D p=.p � 1/.
Furthermore, this inequality is sharp in the sense that if ˇ0.˛; N / is replaced by any
ˇ > ˇ0.˛;N /, the above inequality can no longer hold with some C independent of u.
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Theorem 1.8. Let N � 2, let 0 < ˛ < N be an arbitrary real positive number, set
p D N=˛, and let � satisfy � > 2�X j1=2 � 1=pj . Then there exists C D C.�; ; n/ such
that the inequality Z

X
p̂.ˇ0.˛;N / juj

p0/ dV � C

holds simultaneously for any u 2 W ˛;p.X/ with
R

X j.��X � �
2
X C �

2/˛=2ujp dV � 1.
Here

p̂.t/ D e
t
�

jp�2X
jD0

tj

j Š
; with jp D min¹j 2 N W j � pº:

Furthermore, this inequality is sharp in the sense that if ˇ0.˛; N / is replaced by any
ˇ > ˇ.2n; ˛/, then the above inequality can no longer hold with some C independent
of u.

Notice that j1=2� 1=pj < 1=2 provided p > 1. Choosing � D �X in Theorem 1.8, we
have the following.

Corollary 1.1. Let N � 2, let 0 < ˛ < N be an arbitrary real positive number, and set
p D N=˛. There exists C D C.˛; n/ such that the inequalityZ

X
p̂.ˇ0.˛;N / juj

p0/ dV � C

holds simultaneously for any u 2 W ˛;p.X/ with
R

X j.��X/
˛=2ujp dV � 1.

To summarize, the following remarks are in order. In recent years, the second and third
authors of this paper used the Helgason–Fourier analysis techniques on hyperbolic spaces
to establish higher order Hardy–Sobolev–Maz’ya inequalities in our earlier works [61]
and [62], and Hardy–Adams inequalities with Li in [53,54,60] on real hyperbolic spaces,
and on complex hyperbolic spaces in [63]. The main purpose of this paper is to establish
the higher order Poincaré–Sobolev and Hardy–Sobolev–Maz’ya inequalities on quater-
nionic hyperbolic spaces and on the Cayley hyperbolic plane using the Helgason–Fourier
analysis on symmetric spaces. A crucial part of our work is to establish appropriate factor-
ization theorems on these spaces, which can of independent interest. To this end, we need
to identify and introduce the “quaternionic Geller operators” and the “octonionic Geller
operators”, which have been absent on these spaces. Combining the factorization theorems
and the Geller type operators with the Helgason–Fourier analysis on symmetric spaces,
some precise estimates for the heat and Bessel–Green–Riesz kernels, and the Kunze–Stein
phenomenon for connected real simple groups of real rank one with finite center, we suc-
ceed to establish the higher order Poincaré–Sobolev and Hardy–Sobolev–Maz’ya inequal-
ities on quaternionic hyperbolic spaces and on the Cayley hyperbolic plane. The kernel
estimates required to prove these inequalities are also sufficient to establish the Adams and
Hardy–Adams inequalities on these spaces. This paper, together with our earlier works on
higher order Hardy–Sobolev–Maz’ya inequalities on real hyperbolic spaces (see [61, 62])
and Hardy–Adams inequalities on real hyperbolic spaces (see [53, 54, 60]) and on com-
plex hyperbolic spaces [63], completes our study of the factorization theorems, higher
order Poincaré–Sobolev, Hardy–Sobolev–Maz’ya, Adams and Hardy–Adams inequali-
ties on all rank one symmetric spaces of noncompact type. The factorization theorems
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and higher order Poincaré–Sobolev and Hardy–Sobolev–Maz’ya inequalities on general
higher rank symmetric spaces of noncompact type will be studied in a forthcoming paper.

The organization of the paper is as follows. In Section 2, we recall some necessary
preliminary facts of quaternionic hyperbolic spaces and the Cayley hyperbolic plane.
We shall prove the factorization theorem, namely Theorem 1.1 and 1.2, in Section 3.
In Section 4, we recall some necessary facts of Funk–Hecke formulas for Sp.m/ � Sp.1/
and Spin.9/, and use them to compute some integrals in term of hypergeometric func-
tion. Sharp estimates of Bessel–Green–Riesz kernels and their rearrangement estimates
are given in Section 5 and Section 6, respectively. We shall prove the higher order Hardy–
Sobolev–Maz’ya inequalities, namely Theorems 1.3 and 1.4, in Section 7. In Section 8,
we prove the Hardy–Adams inequality, namely Theorems 1.5 and 1.6. In Appendix A, we
show the Adams type inequality, namely Theorems 1.7 and 1.8.

2. Preliminaries

We begin by setting up notations and then recall proper definitions shortly after.
Let Q and Ca denote, respectively, the quaternions and the Cayley algebra (i.e., octo-

nions). Let Hm
Q denote the quaternionic hyperbolic space of real dimension 4m, and

letHCa denote the Cayley plane of real dimension 16. In general, we will use F to denote
any of the three normed division algebras ¹C;Q;Caº, and Hm

F to denote the correspond-
ing hyperbolic space with F -dimensionm. We recall thatHm

F is a Riemannian symmetric
space and that, as homogeneous spaces, there hold Hm

Q D Sp.m; 1/=Sp.m/ � Sp.1/ and
HCa D F4=Spin.9/. Since there is only one Cayley plane, we shall often remove dimen-
sional superscript and subscript decorations whenever specifying F D Ca; for example,
Hm

F with F D Ca shall be written simply as HCa.
We will also use BmF � Fm and Um

F to denote Hm
F when realized, respectively, in

the Beltrami–Klein ball model and in the Siegel domain model. Let S4m�1 D @BmQ and
S15 D @BCa denote, respectively, the quaternionic and octonionic spheres, and let d�
denote the round measure (i.e., the standard surface measure endowed from the ambient
Euclidean space). Note that BCa � Ca2 D R16.

Next, let Hn
F denote the Heisenberg group over F 2 ¹C;Q;Caº, and let Z D Z.Hn

F /

denote the center of Hn
F . We make the identifications Hn

C D R2n �R, Hn
Q D R4n �R3

and HCa D R8 �R7, and note that Z.Hn
C/D R, Z.Hn

Q/D R3 and Z.HCa/D R7. The
homogeneous dimension of Hn

F is given by Q D dimR Hn
F C dimR ImF . In particular,

the homogeneous dimensions for Hn
C , Hn

Q and HCa are, respectively, 2n C 2, 4n C 6
and 22.

Recalling that the boundary of Hm
F has a natural group structure given by Hm�1

F , we
shall choose the normalization of the metric on Hm

F and sign convention on �X so that

spec.��X/ D ŒQ
2=4;1/:

We recall thatQ=2 also has the interpretation as �X, the half sum of positive roots ofHm
F

counted with multiplicities. In particular, on Hm
C , Hm

Q and HCa we evaluate Q=2 to be,
respectively, m, 2mC 1, and 11.
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For the convenience of the reader, we include a short dictionary of the Laplacians
considered in this paper:

� ! Laplace–Beltrami operator on Hm
F when F D Q or Ca,

�Hn
R

! Laplace–Beltrami operator on Hn
R for a specified n,

�Z ! Euclidean Laplacian on the center Z D Z.Hm�1
F /,

�b ! The sub-Laplacian on Hm�1
F .

In the ball model, the Riemannian volume forms on Hm
Q and HCa are given, respec-

tively, by

dV D
dz

.1 � jzj2/2mC2
and dV D

dx

.1 � jxj2/12
;

where dz and dx denote, respectively, the Lebesgue measure on Cm and R16.

2.1. Automorphisms and convolution

In this section, we recall a family of automorphisms on BmQ which are isometries and
which are used to define convolution on BmQ. Analogous automorphisms are also defined
for BCa, but require more notation, and thus we direct the reader to [71], p. 56, for formal
definitions.

Following [71], we define for each w 2 BmQ the automorphism 'w WBmQ ! BmQ as

'w.z/ D .1 � hz; wiQ/
�1
�
w � Pw.z/ �

p
1 � jwj2Qw.z/

�
;

where

Pw.z/ D

´
hz; wiQjwj

�2w if w ¤ 0;
0 if w D 0;

and Qw.z/ D z � Pw.z/:

We recall some properties of these automorphisms in the next proposition (see [71]).
Note that property (iv) is not present in [71], but it is straightforward to prove.

Lemma A. For each w 2 BmQ, the automorphism 'w satisfies the following properties:
(i) 'w.0/ D w and 'w.w/ D 0;
(ii) for z 2 BmQ, there holds

1 � j'w.z/j
2
D
.1 � jwj2/.1 � jzj2/

j1 � hz; wiQj2
;

(iii) 'w is an involutory isometry of BmQ ;

(iv) for z 2 BmQ, there holds

sinh.�.'w.z/// D
j'w.z/jp
1 � j'w.z/j2

D

�
jz � wj2 C jhz; wiQj

2 � jzj2 jwj2

.1 � jwj2/.1 � jzj2/

�1=2
;

cosh.�.'w.z/// D
1p

1 � j'w.z/j2
D

j1 � hz; wiQjp
.1 � jwj2/.1 � jzj2/

�
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We will use 'w to also denote the analogous automorphisms on BCa. We record in
the following lemma the analogues to the properties recorded in the preceding lemma. In
preparation, if z D .z1; z2/; w D .w1; w2/ 2 BCa � Ca2, then let

‰Ca.z; w/ D

´
j1 � . Nz1w2/.w

�1
2 w1/ � z2w2j

2 if w2 ¤ 0;
j1 � Nz1w1j

2 if w2 D 0:

We also have ‰Ca.z; w/ D ˆCa.z; w/ � 2hz; wiR C 1, where

ˆCa.z; w/ D jz1j
2
jw1j

2
C jz2j

2
jw2j

2
C 2<..z1z2/.w1w2//;

and h�; �iR is the Euclidean inner product on R16. We also remark that ˆCa.z; w/ is an
analogue of the form jhz; wiF j2, and‰Ca.z;w/ is an analogue of the form j1� hz; wiF j

2,
where F 2 ¹R;C;Qº. We point out that ‰Ca.z; w/ � jzj

2 jwj2.

Lemma B. For each w 2 BCa, the automorphism 'w satisfies the following properties:
(i) 'w.0/ D w and 'w.w/ D 0;
(ii) for z 2 BCa, there holds

1 � j'w.z/j
2
D
.1 � jwj2/.1 � jzj2/

‰Ca.z; w/
;

(iii) 'w is an involutory isometry of BCa ;
(iv) for z 2 BCa, there holds

sinh .� .'w.z/// D
j'w.z/jp
1 � j'w.z/j2

D

�‰Ca.z; w/ � .1 � jzj
2/.1 � jwj2/

.1 � jwj2/.1 � jzj2/

�1=2
;

cosh .� .'w.z/// D
1p

1 � j'w.z/j2
D

p
‰Ca.z; w/p

.1 � jwj2/.1 � jzj2/
�

With these automorphisms defined, we introduce the following convolution on BmF :
for two functions f and g on BmF , let

.f � g/.z/ D

Z
BmF

f .'w.z// g.w/ dV.w/;

whenever this is well defined. It is easy to see that, if f is radial, then f � g D g � f ,
when defined.

2.2. Helgason–Fourier transform on quaternionic hyperbolic spaces and on the
Cayley plane

In this section, we recall the Helgason–Fourier transforms on the quaternionic hyperbolic
spaces and on the Cayley plane, as well as the resulting Plancherel and inversion formulas
(see [27, 35, 36, 70]). Given a function f on BmQ, the Helgason–Fourier transform yf is
defined by the formula

yf .�; &/ D

Z
BmQ

f .z/ e��;& .z/ dV;
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for � 2 R and & 2 S4m�1, provided this integral exists. Here,

e�;& .z/ D
� 1 � jzj2

j1 � hz; &iQ j
2

�..2mC1/Ci�/=2
;

defined for z 2 BmQ, � 2 R and & 2 S4m�1, are eigenfunctions of� with respective eigen-
values �.2mC 1/2 � �2. Note that, for z 2 BmQ and & 2 S4m�1, the function� 1 � jzj2

j1 � hz; &iQ

�2mC1
is the Poisson kernel on BmQ.

Analogously, if f is a function on BCa, then its Helgason–Fourier transform yf is
defined by the formula

yf .�; &/ D

Z
BmQ

f .z/ e��;& .z/ dV;

for � 2 R and & 2 S4m�1, provided this integral exists, where now

e�;& .z/ D
� 1 � jzj2

‰Ca.z; &/

�.11Ci�/=2
;

defined for z 2 BCa, with � 2 R and & 2 S15, are eigenfunctions of � with respective
eigenvalues �121 � �2. Note that, for z 2 BmQ and & 2 S4m�1, the function� 1 � jzj2

‰Ca.z; &/

�11
is the Poisson kernel on BCa.

The Helgason–Fourier transform enjoys the following properties:
(i) For f; g 2 C10 .B

m
F / and g radial, there holds

1f � g D yf � yg:
(ii) For f 2 C10 .B

m
F /, there holds the inversion formula

f .z/ D Cm

Z 1
�1

Z
SF

yf .�; &/ e�;& .z/ jc.�/j
�2 d�d�.&/;

where Cm is a positive constant and c.�/ denotes the Harish-Chandra c-function;
see [35], p. 436, for an explicit formula.

(iii) For f 2 C10 .B
m
F /, there holds the Plancherel formulaZ

BmF

jf .z/j2 dV D Cm

Z 1
�1

Z
SF

j yf .�; &/j2 jc.�/j�2 d�d�.&/:

(iv) For f 2 C10 .B
m
F /, there holds

b�f .�; &/ D �
�
�2 C

Q2

4

�
yf .�; &/:
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3. Factorization theorems for the operators on X: proof of
Theorems 1.1 and 1.2

3.1. The factorization theorem on the Damek–Ricci space

Lemma 3.1. Let a 2 R and f 2 C1.U/. There holds�
%@%% C a@% C %�Z CL0

� �
%.1�Q�a/=2f

�
D %�.1CQCa/=2

°
%
�
%.@%% C�Z/CL0 � .Q � 1/%

�
C
Q2

4
�
.a � 1/2

4

±
f:

Proof. For reference, we provide explicit computations as follows. Observing that, for
any ˇ 2 R, there holds

%ˇC1
�
%@%% C a@% C %�Z CL0

�
.%�ˇf /

D %
�
%.@%% C�Z/CL0 � .2ˇ � a/@%

�
f C ˇ.ˇ C 1 � a/f;

we may choose ˇ D .Q � 1C a/=2 to obtain

%.1CQCa/=2
�
%@%% C a@% C %�Z CL0

� �
%.1�Q�a/=2f

�
D

°
%
�
%.@%% C�Z/CL0 � .Q � 1/@%

�
C
Q2

4
�
.a � 1/2

4

±
f:

The desired result follows.

Lemma 3.2. Let ˇ 2 R. There holds�
%@%%C.aCˇ/@% C %�Z CL0

� ®�
%@%% C .a � 1/@% C %�Z CL0

�2
C .ˇ � 1/2�Z

¯
D
®
Œ%@% C a@% C %�Z CL0�

2
C ˇ2�Z

¯ �
%@%% C .aC ˇ � 2/@% C %�Z CL0

�
:

Proof. Since

@%
�
%@%% C .a � 1/@% C %�Z CL0

�
D
�
%@%% C a@% C %�Z CL0

�
@% C�Z ;

we have

@%
�
%@%% C .a � 1/@% C %�Z CL0

�2
D
�
%@%% C a@% C %�Z CL0

�
@%
�
%@%% C .a � 1/@% C %�Z CL0

�
C
�
%@%% C .a � 1/@% C %�Z CL0

�
�Z

D
�
%@%% C a@% C %�Z CL0

�2
@% C

�
%@%% C a@% C %�Z CL0

�
�Z

C
�
%@%% C .a � 1/@% C %�Z CL0

�
�Z

D
�
%@%% C a@% C %�Z CL0

�2
@% C 2

�
%@%% C a@% C %�Z CL0

�
�Z ��Z@%:
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Similarly,�
%@%% C .a � 1/@% C %�Z CL0

�2
D
�
%@%% C a@% C %�Z CL0

� �
%@% C .a � 1/@% C %�Z CL0

�
� @%

�
%@%% C .a � 1/@% C %�Z CL0

�
D
�
%@%% C a@% C %�Z CL0

�2
� 2

�
%@%% C a@% C %�Z CL0

�
@% ��Z :

Combining these two computations, we obtain�
%@%%C.aCˇ/@% C %�Z CL0

� ®�
%@%%C.a � 1/@% C %�Z CL0

�2
C .ˇ � 1/2�Z

¯
D
�
%@%% C a@% C %�Z CL0

� ®�
%@%% C .a � 1/@% C %�Z CL0

�2
C .ˇ � 1/2�Z

¯
C ˇ@%

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .ˇ � 1/2�Z

¯
D
�
%@%% C a@% C %�Z CL0

�
�
® �
%@%%Ca@%C%�ZCL0

�2
� 2

�
%@%% C a@% C %�Z CL0

�
@% C ˇ.ˇ � 2/�Z

¯
C ˇ

® �
%@%% C a@% C %�Z CL0

�2
@% C 2

�
%@%% C a@% C %�Z CL0

�
�Z

C ˇ.ˇ � 2/�Z@%
¯

D
®�
%@%% C a@% C %�Z CL0

�2
C ˇ2�Z

¯ �
%@%% C .aC ˇ � 2/@% C %�Z CL0

�
:

This provides the desired identity.

Lemma 3.3. For k 2 N n ¹0º, there holds�
%@%% C .aC 2k/@% C %�Z CL0

�
kY

jD1

®
Œ%@%% C .a � 1/@% C %�Z CL0�

2
C .2j � 1/2�Z

¯
D
�
%@%%Ca@% C %�Z CL0

� kY
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C 4j 2�Z

¯
;

and �
%@%% C .aC 2k/@% C %�Z CL0

� �
%@%% C a@% C %�Z CL0

�
�

k�1Y
jD1

� �
%@%% C .a � 1/@% C %�Z CL0

�2
C 4j 2�Z

�
D

kY
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2j � 1/2�Z

¯
:
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Proof. By Lemma 3.2, we have�
%@%% C .aC 2k/@% C %�Z CL0

�
�

kY
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2j � 1/2�Z

¯
D
�
%@%% C .aC 2k/@% C %�Z CL0

�
�
® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2k � 1/2�Z

¯
�

k�1Y
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2j � 1/2�Z

¯
D
® �
%@%% C a@% C %�Z CL0

�2
C 4k2�Z

¯
�
�
%@%% C .aC 2k � 2/@% C %�Z CL0

�
�

k�1Y
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2j � 1/2�Z

¯
:

By repeating this process, we get the first identity in the lemma. The second identity is
similarly obtained.

Proof of Theorem 1.1. It is sufficient to show

kY
jD1

�
%@%% C a@% C %�Z CL0 � i.k C 1 � 2j /

p
��Z

� �
%.k�Q�a/=2f

�
D %�.kCQCa/=2

kY
jD1

°
%Œ%.@%%C�Z/CL0�.Q�1/@%�C

Q2

4
�
.a � k C 2j � 2/2

4

±
f:

We shall prove the theorem by induction. We have that, by Lemma 3.1, the identity above
is valid for k D 1. Now assume it is valid for k D l , i.e.,

lY
jD1

�
%@%% C a@% C %�Z CL0 � i.l C 1 � 2j /

p
��Z

� �
%.l�Q�a/=2f

�
D %�.lCQCa/=2

lY
jD1

°
%
�
%.@%%C�Z/CL0 � .Q�1/@%

�
C
Q2

4
�
.a� lC2j �2/2

4

±
f:

Making the substitution a! a � 1, we obtain

lY
jD1

�
%@%% C .a � 1/@% C %�Z CL0 � i.l C 1 � 2j /

p
��Z

� �
%.l�Q�aC1/=2f

�
D%�.lCQCa�1/=2

lY
jD1

°
%Œ%.@%%C�Z/CL0�.Q�1/@%�C

Q2

4
�
.a�1� lC2j �2/2

4

±
f:
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If l is even, then Lemma 3.3 gives us�
%@% C .aC l/@% C %�Z CL0

�
�

lY
jD1

�
%@%% C .a � 1/@% C %�Z CL0 � i.l C 1 � 2j /

p
��Z

�
D
�
%@%% C .aC l/@% C %�Z CL0

�
�

l=2Y
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C .2j � 1/2�Z

¯
D
�
%@%% C a@% C %�Z CL0

� l=2Y
jD1

® �
%@%% C .a � 1/@% C %�Z CL0

�2
C 4j 2�Z

¯
D

lC1Y
jD1

�
%@%% C .a � 1/@% C %�Z � i.l C 2 � 2j /

p
��Z

�
:

Therefore, by Lemma 3.1, there holds�
%@%% C .aC l/@% C %�Z CL0

�
%�.lCQCa�1/=2

�

lY
jD1

²
%
�
%.@%% C�Z/CL0 � .Q � 1/@%

�
C
Q2

4
�
.a � l C 2j � 3/2

4

³
f

D %�.lCQCaC1/=2
lY

jD1

°
%Œ%.@%%C�Z/CL0�.Q�1/@%�C

Q2

4
�
.a� lC2j �3/2

4

±
f:

The case for l is odd is obtained by the second identity in Lemma 3.3.

3.2. The factorization theorem on the ball model of Hm
Q

Recall that

�˛f .z/ D 4.1 � jzj
2/

² mX
i;jD1

�
.ıij � zi Nzj � NzmCi zmCj /

@2f

@zi@ Nzj
f

C . Nzi zmCj � zmCi Nzj /
@2f

@zmCi @ Nzj
C . NzmCi zj � zi NzmCj /

@2f

@zi @ NzmCj

C .ıij � Nzi zj � zmCi NzmCj /
@2f

@zmCi @ NzmCj

�
C .1C˛/.RCR/ � ˛.˛ C 1/

³
and

�0˛ D
1

4.1 � jzj2/
�˛:

It is easy to check that

(3.1) �0˛ D �
0
ˇ C .˛ � ˇ/.RCR/C .ˇ � ˛/.ˇ C ˛ C 1/:
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Denote by r D jzj and write

� D
1

2
ln
1C r

1 � r
�

Then
cosh � D

1
p
1 � r2

; sinh � D
r

p
1 � r2

and @� D .1 � r
2/@r :

Furthermore, if f D f .�/, then

(3.2) �f .�/ D @2�f C ..4m � 1/ coth �C 3 tanh �/ @�f:

By using the identity

�.fg/ D g�f C 2hrf;rgi C f�g

and (3.2), we have

�Œ.cosh �/af � D f�.cosh �/a C 2hr.cosh �/a;rf i C .cosh �/a�f

D
�
.4mC aC 2/a.cosh �/a � a.aC 2/.cosh �/a�2

�
f

C 2a.cosh �/a�1 sinh �@�f C .cosh �/a�f .* hr�;rf i D @�f /;

i.e.,

(3.3)

Œ��.4mC aC 2/a�Œ.cosh �/af � D Œ� � .4mC aC 2/a�Œ.1 � jzj2/a=2f �

D .cosh �/a�2
�
.cosh �/2�C 2a tanh �@� � a.aC 2/

�
f

D .cosh �/a�2
�
4�00 C 2ar@r � a.aC 2/

�
f

D .cosh �/a�2
�
4�00 C 2a.RCR/ � a.aC 2/

�
f .* RCR D r@r /

D 4.cosh �/a�2�0a=2f:

We are now ready to give the:

Proof of Theorem 1.2. It suffices to show the following:

4k .cosh �/�k�a�.2mC1/
kY

jD1

h
�0.1�a�.2mC1//=2C

.kC1�2j /2

4
� i

kC1�2j

2

p
�C1

i
f

D

kY
jD1

�
�C .2mC 1/2 � .a � k C 2j � 2/2

� �
.cosh �/k�a�.2mC1/f

�
:

We shall prove this by induction. For k D 1, we have, by (3.3),

(3.4)

�
�C .2mC 1/2 � .a � 1/2

� �
.cosh �/1�a�.2mC1/f

�
D 4.cosh �/�1�a�.2mC1/�0.1�a�.2mC1//=2f:
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Assume it holds for k. Replacing a by a � 1, we have

(3.5)

4k.cosh �/�kC1�a�.2mC1/

�

kY
jD1

h
�0.2�a�.2mC1//=2 C

.k C 1 � 2j /2

4
� i

k C 1 � 2j

2

p
� C 1

i
f

D

kY
jD1

�
�C .2mC 1/2 � .a � 1 � k C 2j � 2/2

� �
.cosh �/kC1�a�.2mC1/f

�
:

Then for k C 1, we have, by using (3.4) and (3.5),

kC1Y
jD1

�
�C .2mC 1/2 � .a � 1 � k C 2j � 2/2

� �
.cosh �/kC1�a�.2mC1/f

�
D
�
�C .2mC 1/2 � .a � 1C k/2

�
4k.cosh �/�kC1�a�.2mC1/

�

kY
jD1

h
�0.2�a�.2mC1//=2 C

.k C 1 � 2j /2

4
� i

k C 1 � 2j

2

p
� C 1

i
f

D 4kC1.cosh �/�k�1�a�.2mC1/ ��0.1�k�a�.2mC1//=2

�

kY
jD1

h
�0.2�a�.2mC1//=2 C

.k C 1 � 2j /2

4
� i

k C 1 � 2j

2

p
� C 1

i
f:

The rest of the proof is similar to that given in [63] by using Lemma 3.5, and we
omit it. The proof of Theorem 1.2 is thereby completed.

Before the proof of Lemma 3.5, we need the following.

Lemma 3.4. There holds

Œ�00; ŒRCR�� D �
0
0 �

1

2
.RCR/C

1

4
.RCR/2 �

1

4
�:

Proof. We compute

D1D1 D . Nzj @mCj � NzmCj @j / .zi N@mCi � zmCi N@i /

D zi Nzj N@mCi @mCj � Nzi N@i � Nzj zmCi N@i @mCj � NzmCi N@mCi

� NzmCj zi @j N@mCi C NzmCj zmCi @j N@i

and

D1D1 D .zj N@mCj � zmCj N@j / .Nzi @mCi � NzmCi @i /

D zj Nzi N@mCj @mCi � zi @i � zj NzmCi N@mCj @i � zmCi @mCi

� zmCj Nzi N@j @mCi C zmCj NzmCi N@j @i
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and so

�2D1D1 � 2D1D1 D 2.RCR/ � 4

mX
j;iD1

�
zi Nzj N@mCi @mCj C zmCi NzmCj N@i @j

�
C 4

mX
i;jD1

�
zi NzmCj N@mCi @j C zmCi Nzj N@i @mCj

�
:

A straightforward computation provides

1

2
Œ�0˛; RCR� D �

0
0 � .RCR/CRRC

mX
i;jD1

NzmCi zmCj @i N@j C Nzi zj @mCi N@mCj

�

mX
i;jD1

Nzi zmCj @mCi N@j C NzmCi zj @i N@mCj

D �00 � .RCR/CRRC
1

4
.2D1D1 C 2D1D1 C 2.RCR//

D �00 �
1

2
.RCR/CRRC

1

2
.D1D1 CD1D1/

D �00 CRR �
1

2
.RCR/C

1

4
..R �R/2 � �/:

The results follows.

By Lemma 3.4, it is easy to check that

Œ�0˛; �
0
ˇ � D .˛ � ˇ/ ŒRCR;�

0
0�

D 2.ˇ � ˛/
�
�00 �

1

2
.RCR/C

1

4
.RCR/2 �

1

4
�
�
:

We shall frequently use the fact

Œ�;�0˛� D ��
0
˛ ��

0
˛� D 0:

Lemma 3.5. There holds

�0.1�k�a/=2

°h
�0.2�a/=2 C

.k � 1/2

4

i2
�
.k � 1/2

4
¹� C 1º

±
f

D

°h
�0.1�a/=2 C

k2

4

i2
�
k2

4
¹� C 1º

±
�0.3�k�a/=2f:

Proof. We compute, by using (3.1) and Lemma 3.4,

�0.1�k�a/=2

h
�0.2�a/=2 C

.k � 1/2

4

i
D

�
�0.1�a/=2 C

k2

4
�
k

2
.RCR/C

k

2
.2 � a � k/

�



J. Flynn, G. Lu and Q. Yang 426

�

�
�0.1�a/=2 C

k2

4
C
1

2
.RCR/C

a � 2 � k

2

�
D

�
�0.1�a/=2 C

k2

4

�2
C
1

2

�
�0.1�a/=2 C

k2

4

�
.RCR/ �

k

2
.RCR/

�
�0.1�a/=2 C

k2

4

�
C
�k2 C .1 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
C
k.2 � a/

2
.RCR/

C
k.2 � a � k/.a � 2 � k/

4

D

�
�0.1�a/=2C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2C

k2

4

�
.RCR/C

k

2

h
�0.1�a/=2 C

k2

4
;RCR

i
�
k

4
.RCR/2 C

�k2 C .1 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
C
k.2 � a/

2
.RCR/C

k.2 � a � k/.a � 2 � k/

4

D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCR/C

k

2

�
�00; RCR

�
�
k

4
.RCR/2 C

�k2 C .1 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
C
k.2 � a/

2
.RCR/C

k.2 � a � k/.a � 2 � k/

4

D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCR/

C k
�
�00 �

1

2
.RCR/ �

1

4
�
�
C
�k2 C .1 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
C
k.2 � a/

2
.RCR/C

k.2 � a � k/.a � 2 � k/

4

D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCR/C k

�
�0.1�a/=2 C

k2

4

�
�
k

4
.� C 1/C

�k2 C .1 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCR/

�
k

4
.� C 1/C

�k2 C .3 � a/k C a � 2

2

�
�0.1�a/=2 C

k2

4

�
D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCR/ �

k

4
.� C 1/

�
.k � 1/.k C a � 2/

2

�
�0.1�a/=2 C

k2

4

�
D

�
�0.1�a/=2 C

k2

4

�2
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCRC k C a � 2/ �

k

4
.� C 1/:
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Therefore, we have

�0.1�k�a/=2

h
�0.2�a/=2 C

.k � 1/2

4

i2
�

�
�0.1�a/=2 C

k2

4

�2
�0.3�k�a/=2

D

�
�0.1�a/=2 C

k2

4

�2 �
�0.2�a/=2 C

.k � 1/2

4
��0.3�k�a/=2

�
C
1 � k

2

�
�0.1�a/=2 C

k2

4

�
.RCRC k C a � 2/

h
�0.2�a/=2 C

.k � 1/2

4

i
�
k

4
.� C 1/

h
�0.2�a/=2 C

.k � 1/2

4

i
D
k � 1

2

�
�0.1�a/=2 C

k2

4

�2
.RCRC k C a � 4/

�
k � 1

2

�
�0.1�a/=2 C

k2

4

�
.RCRC k C a � 2/

h
�0.2�a/=2 C

.k � 1/2

4

i
�
k

4
.� C 1/

h
�0.2�a/=2 C

.k � 1/2

4

i
D
k � 1

2

�
�0.1�a/=2 C

k2

4

�²�
�0.1�a/=2 C

k2

4

�
.RCRC k C a � 4/

� .RCRC k C a � 2/
h
�0.2�a/=2 C

.k � 1/2

4

i³
�
k

4
.� C 1/

h
�0.2�a/=2 C

.k � 1/2

4

i
:

On the other hand,�
�0.1�a/=2 C

k2

4

�
.RCRCkCa � 4/ � .RCRCkCa � 2/

h
�0.2�a/=2 C

.k�1/2

4

i
D

h
�0.1�a/=2 C

k2

4
;RCRCkCa � 4

i
C .RCRCkCa � 4/

�
�0.1�a/=2 C

k2

4

�
� .RCRC k C a � 2/

h
�0.2�a/=2 C

.k � 1/2

4

i
D Œ�00; RCR�C .RCRCkCa � 2/

�
�0.1�a/=2 C

k2

4
��0.2�a/=2 �

.k�1/2

4

�
� 2

�
�0.1�a/=2 C

k2

4

�
D Œ�00; RCR� � 2�

0
0 �

1

2
.RCR/2 C .RCR/ �

1

2
D �

1

2
.� C 1/:
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Combing both above inequalities yields

�0.1�k�a/=2

h
�0.2�a/=2 C

.k � 1/2

4

i2
�

�
�0.1�a/=2 C

k2

4

�2
�0.3�k�a/=2

D
� C 1

4

h
� .k � 1/

�
�0.1�a/=2 C

k2

4

�
� k

�
�0.2�a/=2 C

.k � 1/2

4

�i
D
� C 1

4

�
.k � 1/2�0.1�k�a/=2 � k

2�0.3�k�a/=2
�
:

4. Funk–Hecke formulas

4.1. The Funk–Hecke formula for the quaternionic hyperbolic space

The Funk–Hecke formula on the CR sphere was established by Frank and Lieb in [26].
Beckner, following Geller [28], used an independent calculation for the Funk–Hecke for-
mula for bigraded spherical harmonics in his treatment of radial functions on the Heisen-
berg group [10].

The main source for the following is [14, 15], where they extend Frank and Lieb’s
formula. We begin by recalling the Funk–Hecke formulas for the quaternionic case. We
recall that L2.S4m�1/ may be decomposed into the U.2m/-irreducibles decomposition

L2.S4m�1/ D
M
j;k�0

Hj;k ;

where Hj;k consists of the Euclidean harmonic homogeneous polynomials in the complex
variables .z; Nz/ and of bidegree .j; k/. Recalling thatHm

Q D Sp.m;1/=Sp.m/� Sp.1/, the
appropriate irreducible decomposition is into Sp.m/� Sp.1/-irreducibles, and is given by

(4.1) L2.S4m�1/ D
M
j�k�0

Vj;k ;

where Vj;k � Hj;k are the so-called .j; k/-bispherical harmonic spaces generated by the
Sp.m/ � Sp.1/ action on a zonal harmonic polynomial (see Theorem 3.1 (4) in [44]).

We recall the following quaternionic Funk–Hecke formula of Christ, Liu and Zhang
(Lemma 5.4 in [14]). In the following, P ˛;ˇ

k
.t/ denotes a Jacobi polynomial of degree k.

Theorem G. Let K be an L1 integrable function on the unit ball B1Q in Q. Then, any
integral operator on S4nC3 with kernel given by K.h�; N�iQ/ is diagonal with respect to
the decomposition (4.1), and the eigenvalue �j;k.K/ on Vj;k is given by

(4.2)

�j;k.K/ D
2�2nkŠ

.j � k C 1/Š .k C 2n � 1/Š

�

Z �=2

0

.sin �/4n�1 .cos �/j�kC3 P .2n�1;j�kC1/
k

.cos 2�/ d�

�

Z
S3
K.cos �u/

sin.j �kC1/�
sin�

du;

where <u D cos� (with � 2 Œ0; ��/, and du is the round measure on S3 D @B1Q.
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Using Theorem G, and inspired by the proof of Lemma 5.5 of [14], we obtain the
following integral formula, which will be used later.

Proposition 4.1. If �1=2 < ˛ <1 and 0 < r < 1, then

(4.3)
Z
S4nC3

1

j1 � hr�; �iQ j
2˛
d�.�/ D

2�2nC2

.2nC 1/Š
2F1.˛; ˛ � 1I 2nC 2I r

2/:

Proof. Define the kernel Kr .q/ D j1 � rqj�2˛ on B1Q, and observe that (4.3) may be
understood as an integral operator on S4nC3 with kernel Kr .h�; N�iQ/ applied to the con-
stant function 1 2 V0;0. Therefore, we may apply the Funk–Hecke formula (4.2) to Kr
with j D k D 0 to obtain

�0;0.Kr / D
8�2nC1

.2n � 1/Š

Z �=2

0

sin4n�1 � cos3 � P .2n�1;1/0 .cos 2�/ d�

�

Z �

0

.1C r2 cos2 � � 2r cos� cos �/�˛ sin2 � d�;

where we have used that

j1 � rqj2 D 1C r2 jqj � 2<q H) K.cos �u/ D j1C r2 cos2 � � 2r cos � cos�j�˛;

and that

du D sin2 � sin�0 d�d�0d�00; �; �0 2 Œ0; ��; �00 2 Œ0; 2��;Z �

0

Z 2�

0

sin�0 d�0d�00 D 4�:

Note also that P .2n�1;1/0 � 1. Using the cosine integral (see equation (5.11) in [26])Z �

��

.1 � 2r cos� C r2/�˛ ei`� d� D
2�

�2.˛/

X
��0

r`C2�
�.˛ C �/�.˛ C `C �/

�Š .`C �/Š

for ` 2 N, that the integrand in even and that sin2 � D 1
2
.1 � cos 2�/, we haveZ �

0

.1C r2 cos2 � � 2r cos � cos�/�˛ sin2 � d�

D
�

2�2.˛/

X
��0

r2� cos2� �
�2.˛/

.�Š/2
� r2C2� cos2C2� �

�.˛/�.2C ˛/

�Š.�C 2/Š
�

Consequently, there holds

�0;0.Kr / D
4�2nC2

.2n�1/Š �2.˛/

X
��0

�.�C˛/

�Š

�
r2�

�.�C˛/

�Š

Z �=2

0

sin4n�1 � cos3C2� � d�

� r2C2�
�.�C ˛ C 2/

.2C �/Š

Z �=2

0

sin4n�1 � cos5C2� � d�
�
:



J. Flynn, G. Lu and Q. Yang 430

Letting t D cos 2� and observing that

dt D �4 sin � cos �d�; cos2 � D
1

2
.1C t / and sin2 � D

1

2
.1 � t /;

we findZ �=2

0

sin4n�1 � cos`C3C2� � d� D
1

4

Z 1

�1

.sin2 �/2n�1 .cos2 �/
`
2C1C� dt

D 2�2�2n���`=2
Z 1

�1

.1C t /`=2C2C��1 .1 � t /2n�1 dt

D
1

2
B
�`
2
C 2C �; 2n

�
D
�.`=2C 2C �/�.2n/

2�.`=2C 2C �C 2n/
;

where B.x; y/ is the beta function.
It follows that

�0;0.Kr / D
4�2nC2

.2n � 1/Š �2.˛/

X
��0

�.�C ˛/

�Š

�
r2�

�.�C ˛/

�Š

�.2C �/�.2n/

2�.2C �C 2n/

� r2�C2
�.�C ˛ C 2/

.2C �/Š

�.3C �/�.2n/

2�.3C �C 2n/

�
D
2�2nC2

�2.˛/

�X
��1

h�2.�C ˛/.�C 1/Š
.�Š/2 .�C 1C 2n/Š

�
�.� � 1C ˛/�.�C ˛ C 1/

.� � 1/Š.�C 1C 2n/Š

i
r2�

C
�2.˛/

.2nC 1/Š

�
D .˛ � 1/

2�2nC2

�2.˛/

X
��0

�.�C ˛/�.� � 1C ˛/

�Š.�C 1C 2n/Š
r2�

D
2�2nC2

.2nC 1/Š

X
��0

.˛/� .˛ � 1/�

.2nC 2/�

r2�

�Š
D

2�2nC2

.2nC 1/Š
2F1.˛; ˛ � 1I 2nC 2I r

2/:

This is the desired identity.

4.2. The Funk–Hecke formula for the Cayley hyperbolic plane

We now discuss the Funk–Hecke formula for the octonionic case. We recall that L2.S15/
may be decomposed into the Spin.9/-irreducible decomposition

(4.4) L2.S15/ D
M
j�k�0

Wj;k

whereWj;k is the so-called .j; k/-bispherical harmonic subspace, which is a finite dimen-
sional space spanned by elements from the cyclic action of Spin.9/ on zonal harmon-
ics Zj;k.�/ (see [44] or equation 2.12 in [15] for a precise formula).
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We point out that the Funk–Hecke formula given in [15] assumes the kernel functionK
is of the formK.� � N�/, where, if �D .�1; �2/;�D .�1;�2/2Ca2, then � � N�D �1 N�1C �2 N�2.
Consideration of these kinds of kernel functions arose from their consideration of the nat-
ural distance function j1 � � � N�j on the sphere S15. However, taking into consideration
the geometry of the Cayley plane HCa and the non-associativity of Ca, it is more appro-
priate for our purposes to consider kernels of the form K.ˆCa.�; �// or K.‰Ca.�; �//,
since ˆCa.�; �/ and ‰Ca.�; �/ are octonionic analogues of j h�; �iF j

2 and j1 � h�; �iF j
2,

respectively. As a result, we will establish the following Funk–Hecke formulas, which are
more suitable for our purposes.

Theorem 4.1. Suppose K.ˆCa.�; �// is such that the integral below exists. Then the
integral operator with kernel K.ˆCa.�; �// is diagonal with respect to the bispherical
decomposition harmonic decomposition (4.4), and the eigenvalue on Wj;k is given by

�j;k.K/ D
15�4kŠ

.k C 3/Š

Z �=2

0

cosj�kC7 � sin7 � P .3;3Cj�k/
k

.cos 2�/ d�

�

Z
S

K.‰Ca..1; 0/; . Nu cos �; 0///
�
a0j;k cos.j � k/� C a1j;k cos.j � k C 2/�

C a2j;k cos.j � k C 4/� C a3j;k cos.j � k C 6/�
�
du;

where <u D cos � (with � 2 Œ0; �//, du is the standard surface measure on S (the unit
sphere in Ca/, P .3;3Cj�k/

k
.z/ is the Jacobi polynomial of order k associated to the weight

.1 � z/3.1C z/3Cj�k , and

a0j;k D
1

8

1

j � k C 3
�
1

4

1

j � k C 2
C
1

8

1

j � k C 1
;

a1j;k D
3

8

1

j � k C 3
�
1

4

1

j � k C 4
�
1

8

1

j � k C 1
;

a2j;k D �
3

8

1

j � k C 3
C
1

4

1

j � k C 2
C
1

8

1

j � k C 5
;

a3j;k D �
1

8

1

j � k C 3
C
1

4

1

j � k C 4
�
1

8

1

j � k C 5
�

Proof. Since a portion of the proof is the same as the proof of Lemma 3.3 in [15], we shall
only point out the needed adaptation.

We have from Schur’s lemma and the irreducibility of the Wj;k that the integral oper-
ator with kernel K.‰Ca.�; �// is diagonal. Let �j;k denote the eigenvalue corresponding
to the subspace Wj;k . Letting Y �

j;k
, 1 � � � dimWj;k , be a normalized orthogonal basis

of Wj;k , we then haveZ
S15

K.‰Ca.�; �// Y
�

j;k
.�/ d� D �j;k Y

�

j;k
.�/:

Letting

Zj;k.�; �/ D Zj;k.� � N�/ D

dimWj;kX
�D1

Y
�

j;k
.�/ Y

�

j;k
.�/
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be the reproducing kernel of the projection onto Wj;k , we haveZ
S15

K.‰Ca.�; �//Zj;k.� � N�/ d� D �j;k Zj;k.1/:

Here Zj;k.1/ denotes the aforementioned zonal harmonic Zj;k.�/ evaluated at � D 1. All
that is needed now is to observe that K.‰Ca.�; �// and Zj;k.�; �/ are invariant under the
action of Spin.9/. Indeed, if this were the case, then we would obtain

�j;k D Zj;k.1/
�1

Z
S15

K.‰Ca.�; �//Zj;k.� � N�/ d�

D Zj;k.1/
�1

Z
S15

K.‰Ca..1; 0/; �//Zj;k..1; 0/; �/ d�;

The remainder of the proof would follow as the proof of Lemma 3.3 in [15].
That the kernel K.‰C.�; �// is Spin.9/-invariant follows from the Spin.9/-invariance

of ˆCa.�; �/. Therefore,Z
S15

Zj;k.A�; A�/ Y
�

j;k
.�/ d� D

Z
S15

Zj;k.A�; �/ Y
�

j;k
.A�1�/ d� D Y

�

j;k
.�/;

which shows that Zj;k.A�; A�/ D Zj;k.�; �/ by the uniqueness of the representation of a
linear functional.

Lastly, we state and prove the octonionic analogue of Proposition 4.1.

Proposition 4.2. If �1=2 < ˛ <1 and 0 < r < 1, thenZ
S4nC3

1

‰Ca.r�; �/˛
d�.�/ D

2�8

7Š
2F1.˛; ˛ � 3I 8I r

2/:

Proof. The proof follows similarly to the proof of Proposition 4.1 by applying Theo-
rem 4.1 to the kernel ‰Ca.r�; �/

�˛ . It should be pointed out that

‰Ca..r; 0/; . Nu cos �; 0// D 1 � 2r cos� cos � C r2 cos2 �;

since <u D cos�.

5. Kernel estimates

We recall that the heat kernel et� on Hm
Q is given by the following formula:

et� D cm t
�1=2 e�.2mC1/

2t

Z 1
�

sinh 2r
p

cosh 2r � cosh 2�

�
�

1

sinh 2r
@

@r

�2
�

�
�

1

sinh r
@

@r

�2m�2
e�

r2

4t dr;

where cm D 2�2mC3=2 ��2m�1=2.
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The heat kernel et� on HCa is given by

et� D co t
�1=2 e�11

2t

Z 1
�

sinh 2r
p

cosh 2r� cosh 2�

�
�

1

sinh 2r
@

@r

�4�
�

1

sinh r
@

@r

�4
e�

r2

4t dr;

where co D 2�9=2��17=2.
Letting ht .�; 2 QmC 1/ denote the heat kernel on the odd dimensional real hyperbolic

space H 2 QmC1
R , we recall also that

(5.1) ht .�; 2 QmC 1/ D b Qm t
�1=2 e� Qm

2t
�
�

1

sinh �
@

@�

� Qm
e�

�2

4t ;

where b Qm D 2� Qm�1�� Qm�1=2. See for example [21], [5] and [58] for these formulas.
It will be useful to write et� in terms of ht , and this can be done as follows. We

consider Hm
Q first. Observe that, if Qm D 2m � 2, then

e�.2mC1/
2 t
D e.�12mC3/t e� Qm

2 t ;

and so,

et� D
cm

b2m�2

Z 1
�

sinh 2r
p

cosh 2r � cosh 2�

�
�

1

sinh 2r
@

@r

�2
(5.2)

� e.�12mC3/ t ht .r; 4m � 3/ dr:

Similarly, on HCa, there holds (by setting Qm D 4)

(5.3) et� D
co

b4

Z 1
�

sinh 2r
p

cosh 2r � cosh 2�

�
�

1

sinh 2r
@

@r

�4
e�105 t ht .r; 9/ dr:

We now recall the Bessel–Green–Riesz functions. For the sake of notational conve-
nience, we write

k�; D
�
�� �

Q2

4
C �2

��=2
for 0 <  < dimRH

m
F and � > 0,

k D
�
�� �

Q2

4

��=2
for 0 <  < 3.

In (iii) in page 1083 of [4], Anker and Ji established the following asymptotics for k�;
and k :

(5.4)
k�; � �

.�2/=2 e����Q�=2 for � � 1,

k � �
�2 e�Q�=2 for � � 1.

We will need several technical lemmas to obtain small distance estimates of k� . We
state them now. The first estimate is a small distance estimate for the Bessel–Green–Riesz
kernel on the real hyperbolic space H k

R (see Lemma 3.2 in [54]).
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Lemma C. Let k � 3 and 0 <  < 3. If 0 < � < 1, then�
��Hk

R
�

�k � 1
2

�2��=2
D

1

k./

1

�k�
CO

� 1

�k��1

�
;

where

k./ D
�k=2 2 �.=2/

�..k � /=2/
�

The next lemma is an exact evaluation of a hyperbolic trigonometric integral (see
Lemma 4.1 in [63]). We include a sketch of the proof here.

Lemma D. Let ˇ > 0 and � > 0. ThenZ 1
�

cosh r
.sinh r/ˇ

1
p

cosh 2r � cosh 2�
dr D

�.1=2/ �.ˇ=2/

2
p
2�..1C ˇ/=2/

1

.sinh �/ˇ
�

Proof. Substituting t D cosh 2r � cosh 2�, we haveZ C1
�

cosh r
.sinh r/ˇ

p
cosh 2r � cosh 2�

dr D
1

4

Z C1
0

1
p
t
�

1

.t=2C sinh2 �/.1Cˇ/=2
dt

D
1

2
p
2.sinh �/ˇ

Z C1
0

s�1=2.1Cs/�.1Cˇ/=2 ds:

Using the substitution t D 2s sinh2 �, we obtain the desired formula.

We remark here that the above result (and its proof) defines an integral transform that
preserves inverse powers of the hyperbolic sine function.

The last lemma pertains to controlling higher order derivatives of rˇ�2=sinh r for
large r (see also Lemma 3.1 in [54] and Corollary 5.14 in [3]).

Lemma 5.1. Let p; q 2 N�0 and let 0 <  < 3. If 0 < r , then�
�

1

sinh 2r
@

@r

�q �
�

1

sinh r
@

@r

�q rˇ�2
sinh r

. rˇ�2 e�.pC2qC1/r :

Proof. Using
1

sinh r
D

2e�r

1 � e�2r
D 2

1X
jD0

e�.2jC1/r ;

it is easy to see that�
�

1

sinh r
@

@r

�p rˇ�2
sinh r

� rˇ�2 Œe�.pC1/r C e�.pC3/r C � � � �;

and, similarly, that�
�

1

sinh 2r
@

@r

�q�
�

1

sinh r
@

@r

�p rˇ�2
sinh r

. rˇ�2e�.2qCpC1/r ;

as desired.
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In the following subsections, we will prove various kernel estimates for k , k�; 0 ,
k � k�; 0 and k � k�; 0 � f for smooth compactly supported function on BmQ and BCa.
Along with the Fourier analysis on symmetric spaces (i.e., the Plancherel theorem and
the Kunze–Stein phenomenon) and factorization, these estimates form the ingredients
of the proofs of the Poincaré–Sobolev and Hardy–Sobolev–Maz’ya inequalities on Hm

Q
and HCa.

5.1. Convolution estimates

In order to prove the kernel estimates, we will need asymptotics of certain convolutions.
This is contained in Lemmas 5.2, 5.3, 5.4 and 5.5 below. Due to the appearance of ‰Ca

in the automorphisms on BCa, separate considerations are needed for BCa, and so we
state the convolution estimates for BmQ and BCa separately. We mention that, when com-
pared to the complex hyperbolic setting, the hypothesis �1 C �2 >  C  0 � 4m C 2

differs from the reasonably expected �1 C �2 >  C  0 � 4m, and this has to do with the
higher dimensional center of Hm�1

Q . This is similar for the corresponding hypothesis in
Lemma 5.3 for HCa.

We will need the following convolution integral on Euclidean space (see [68]).

Lemma E. For 0 < ;  0 < k and 0 <  C  0 < k, there holdsZ
Rk

jxj�kjy � xj
0�kdx D

k./ k.
0/

k. C  0/
jyjC

0�k ;

where

k./ D
�k=2 2 �.=2/

�..k � /=2/
�

We may now state the main convolution estimate lemma for small distances.

Lemma 5.2. Let 0 <  < 4m, 0 <  0 < 4m, and �1 C �2 >  C  0 � 4mC 2. If 0 <
 C  0 < 4m � 1 and 0 < � < 1, then on BmQ there holds

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2

�
4m./ 4m.

0/

4m. C  0/

1

�4m��
0 CO

� 1

�4m��
0�1

�
:

If 4m� 1 �  C  0 < 4m, 0 < " < 4m�  �  0 and 0 < � < 1, then on BmQ there holds

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2

�
4m./4m.

0/

4m. C  0/

1

�4m��
0 CO

� 1

�4m��
0�"

�
:

Proof. By Lemma item (iv) of A, and by using that

dV D
dz

.1 � jzj2/2mC2
;
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we compute as follows:

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2

D

Z
BmQ

�p1 � jzj2
jzj

�4m�
.1 � jzj2/�1=2

� .1 � jwj2/.1 � jzj2/

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

� .1 � jwj2/.1 � jzj2/
j1 � hz; wiQj2

��2=2 dz

.1 � jzj2/2mC2

D .1 � jwj2/.4m�
0C�2/=2

Z
BmQ

1

jzj4m�

� 1

jz � wj2Cjhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

1

j1 � hz; wiQj�2

1

.1 � jzj2/.4C�C�
0�4m��1��2/=2

dz

D .cosh �.w//�.4m�
0C�2/ .A5 C A6/;

where
A5 D

Z
¹jzj<1=2º

� � � and A6 D

Z
¹1=2�jzj<1º

� � � :

Note that, when �.w/ < 1 and jzj � 1=2, there holds

j1 � hz; wiQj
�2 .1 � jzj2/.4CC

0�4m��1��2/=2 D 1CO.jzj/:

On the other hand, there holds

jhz; wiQj
2
� jzj2 jwj2 D jjzj2 C hz; w � ziQ j

2
� jzj2 jw � z C zj2

D j hz; w � ziQ j
2
� jzj2 jw � zj2 D jzj2 jw � zj2

hˇ̌̌D z
jzj
;
w � z

jw � zj

E
Q

ˇ̌̌
� 1

i
;

and so

jz � wj2 C jhz; wiQj
2
� jzj2 jwj2 D jz � wj2

h
1C jzj2

h ˇ̌̌ D z
jzj
;
w � z

jw � zj

E
Q

ˇ̌̌2
� 1

ii
D jz � wj2 .1CO.jzj2//:

Since 0 <  C  0 < 4m � 1, we may use Lemma E to compute

A5 D

Z
¹jzj�1=2º

1

jzj4m�
1

jz � wj4m�
0 .1CO.jzj// dz

�

Z
R4m

1

jzj4m�
1

jz � wj4m�
0 dz CO

� Z
RM

1

jzj4m��1
1

jz � wj4m�
0 dz

�
D
4m./4m.

0/

4m. C  0/

1

jwj4m��
0 CO

� 1

jwj4m��
0�1

�
:
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Similarly, if 0 < " < 4m �  �  0, we obtain

A5 D
4m./4m.

0/

4m. C  0/

1

jwj4m��
0 CO

� 1

jwj4m��
0�"

�
:

We are left with estimating A6: since

4C  C  0 � 4m � �1 � �2

2
< 1 is equivalent to  C  0 � 4mC 2 < �1 C �2;

we find

A6 D

Z
¹ 1
=
2�jzj�1º

1

jzj4m�

� 1

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

1

j1 � hz; wiQj�2

1

.1 � jzj2/.4CC
0�4m��1��2/=2

dz

�

Z
¹1=2�jzj�1º

1

.1 � jzj2/.4CC
0�4m��1��2/=2

dz

�

Z 1

1=2

r

.1 � r2/.4CC
0�4m��1��2/=2

dr <1:

In conclusion, since cosh r � 1 as r ! 0, we find

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2

�
4m./ 4m.

0/

4m. C  0/

1

jwj4m��
0 CO

� 1

jwj4m��
0�1

�
;

and the result follows since

�.w/ D
1

2
log

1C jwj

1 � jwj
D jwj CO.jwj3/ as jwj ! 0.

Lemma 5.3. Let 0<  < 16, 0<  0 <16, and �1C�2 > C  0 � 10. If 0<  C  0 <15
and 0 < � < 1, then on BCa there holds

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16� 0.cosh �/�2

�
16./16.

0/

16. C  0/

1

�16��
0 CO

� 1

�15��
0

�
:

If 15 �  C  0 < 16, 0 < " < 16 �  �  0 and 0 < � < 1, then on BCa there holds

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16� 0.cosh �/�2

�
16./16.

0/

16. C  0/

1

�16��
0 CO

� 1

�16��
0�"

�
:
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Proof. By Lemma B(iv), and by using that dV D dz=.1 � jzj2/12, we compute

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16� 0.cosh �/�2

D

Z
BmQ

�p1 � jzj2
jzj

�16�
.1 � jzj2/�1=2

� .1 � jwj2/.1 � jzj2/

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2
�

� .1 � jwj2/.1 � jzj2/
‰Ca.z; w/

��2=2 dz

.1 � jzj2/12

D .1 � jwj2/.16�
0C�2/=2

Z
BmQ

1

jzj16�

� 1

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2
�

1

‰Ca.z; w/�2=2
1

.1 � jzj2/.C
0��1��2�8/=2

dz

D .cosh �.w//�.16�
0C�2/ .A05 C A

0
6/;

where
A05 D

Z
¹jzj<1=2º

� � � and A06 D

Z
¹1=2�jzj<1º

� � � :

Note that, when �.w/ < 1 and jzj � 1=2, there holds

‰Ca.z; w/
�2=2 .1 � jzj2/.C

0��1��2�8/=2 D 1CO.jzj/:

Next, we have

‰Ca.z; a/ � .1 � jzj
2/.1 � jwj2/ D ˆCa.z; a/ � 2hz; aiR C jzj

2
C jaj2 � jzj2 jaj2

D ˆCa.z; a/C jz � aj
2
� jzj2 jaj2 D jz � aj2

�
1C

ˆCa.z; a/ � jzj
2jaj2

jz � aj2

�
:

Moreover, it is not hard to see that

ˆCa.z; w/ � jzj
2 jwj2

jz � wj2
D O.jzj2/:

Indeed, using invariance of distance �, we can assume w D .w1; w2/ with <w1 D c 2 R
and all other components are zero. Then

ˆCa.z; a/ � jzj
2
jaj2 D �c2 jz2j

2;

and clearly jz2j2=jz � aj2 is bounded as z ! a. Therefore, using also that

ˆCa.z; w/ � jzj
2
jwj2;

we obtain

‰Ca.z; a/ � .1 � jzj
2/.1 � jwj2/ D jz � aj2 .1CO.jzj2//:

The remainder of the proof is analogous to the proof of Lemma 5.2, and is thus omitted.
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Next, we will state and prove the main convolution lemma for large distances. In prepa-
ration, we recall some properties and definitions of certain special functions. First, recall
the generalized hypergeometric function

pFq.a1; : : : ; apI b1; : : : ; bqI z/ D

1X
kD0

.a1/k � � � .ap/k

.b1/k � � � .nq/k

zk

kŠ
�

Second, we recall the following hypergeometric integral (see equation 7.512.5 in [30]):
supposing the complex parameters ˛, ˇ,  , � and � satisfy

<� > 0; <� > 0; <. C � � ˛ � ˇ/ > 0;

there holds

(5.5)
Z 1

0

x��1 .1 � x/��1 2F1.˛; ˇI  I x/ dx D
�.�/�.�/

�.�C �/
3F2.˛; ˇ; �I ; �C � I 1/:

Lemma 5.4. Let 0<  < 4m, 0<  0<4m, and �1C�2> C  0 � 4mC 2. If �2 �  0<
�1 �  and 1 � �, then on BmQ there holds

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m��0.cosh �/�2
� e�.4m�

0C�2/�:

Proof. By the proof of Lemma 5.2, we have

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2

D .cosh �.w//�.4m�
0C�2/

Z
BmQ

1

jzj4m�

� 1

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

1

j1 � hz; wiQj�2

1

.1 � jzj2/.4C�C�
0�4m��1��2/=2

dz:

Setting

F.w/ D

Z
S4m�1

� 1

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2 1

j1 � hz; wiQj�2
d�;

we see that F.w/ D F.jwj/. Moreover, by Proposition 4.1, we find

lim
jwj!1�

F.w/ D lim
jwj!1�

Z
S4m�1

j1 � hz; wiQj
�.4m� 0C�2/ d�

D
2�2m

�.2m/
2F1

�4m �  0 C �2
2

;
4m �  0 C �2 � 2

2
I 2mI jzj2

�
:
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Consequently, there holds

lim
jwj!1�

Z
BmQ

1

jzj4m�

� 1

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

1

j1 � hz; wiQj�2

1

.1 � jzj2/.4C�C�
0�4m��1��2/=2

dz

D
2�2m

�.2m/

Z 1

0

r�1.1 � r2/�.4CC
0�4m��1��2/=2

� 2F1

�4m �  0 C �2
2

;
4m �  0 C �2 � 2

2
I 2mI r2

�
dr

D
2�2m

�.2m/

Z 1

0

t=2�1 .1 � t /�.4CC
0�4m��1��2/=2

� 2F1

�4m �  0 C �2
2

;
4m �  0 C �2 � 2

2
I 2mI t

�
dt;

where the change of variable r2 D t was used in the last equality. Now, using (5.5), we
have

lim
jwj!1�

Z
BmQ

1

jzj4m�

� 1

jz � wj2 C jhz; wiQj2 � jzj2 jwj2

�.4m� 0/=2
�

1

j1 � hz; wiQj�2

1

.1 � jzj2/.4C�C�
0�4m��1��2/=2

dz

D
�2m

�.2m/

�.=2/ �
�
4mC�1C�2��

0�2
2

�
�
�
4mC�1C�2� 0�2

2

�
� 3F2

�4m� 0C�2
2

;
4m� 0C�2�2

2
;


2
I 2m;

4mC�1C�2�
0�2

2
I 1
�
:

At last, using cosh r � er for 1 � r , we have proved

1

.sinh �/4m� .cosh �/�1
�

1

.sinh �/4m� 0.cosh �/�2
� .cosh �/�.4m�

0C�2/

� e�.4m�
0C�2/�:

Lemma 5.5. Let 0 <  < 16, 0 <  0 < 16, and �1 C �2 >  C  0 � 10. If �2 �  0 <
�1 �  and 1 � �, then

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16��0.cosh �/�2
� e�.16�

0C�2/�:
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Proof. By the proof of Lemma 5.3, we have

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16� 0.cosh �/�2

D .cosh �.w//�.16�
0C�2/

Z
BCa

1

jzj16�

� 1

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2
�

1

‰Ca.z; w/�2=2
1

.1 � jzj2/.C
0��1��2�8/=2

dz:

Setting

F.w/ D

Z
S4m�1

� 1

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2 1

‰Ca.z; w/�2=2
d�;

we see that F.w/ D F.jwj/. Moreover, by Proposition 4.2, we find

lim
jwj!1�

F.w/ D lim
jwj!1�

Z
S4m�1

‰Ca.z; w/
�.16� 0C�2/=2 d�

D
2�8

7Š
2F1

�16 �  0 C �2
2

;
10 �  0 C �2

2
I 8I r2

�
:

Consequently, there holds

lim
jwj!1�

Z
BCa

1

jzj16�

� 1

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2
�

1

‰Ca.z; w/�2=2
1

.1 � jzj2/.C
0��1��2�8/=2

dz

D
2�8

7Š

Z 1

0

r�1.1�r2/�.C
0��1��2�8/=2

2F1

�16� 0C�2
2

;
16� 0C�2�6

2
I 8I r2

�
dr

D
2�8

7Š

Z 1

0

t=2�1 .1 � t /�.C
0��1��2�8/=2

2F1

�16� 0C�2
2

;
10� 0C�2

2
I 8I r2

�
dt;

where the change of variable r2 D t was used in the last equality. Now, using (5.5), we
have

lim
jwj!1�

Z
BCa

1

jzj16�

� 1

‰Ca.z; w/ � .1 � jzj2/.1 � jwj2/

�.16� 0/=2
�

1

‰Ca.z; w/�2=2
1

.1 � jzj2/.C
0��1��2�8/=2

dz

D
�8

7Š

�.=2/ �..10C �1 C �2 �  � 
0/=2/

�..10C �1 C �2 �  0/=2/

� 3F2

�16 �  0 C �2
2

;
10 �  0 C �2

2
I


2
I 7;

10C �1 C �2 � 
0

2
I 1
�
:

At last, using cosh r � er for 1 � r , we have proved

1

.sinh �/16� .cosh �/�1
�

1

.sinh �/16� 0.cosh �/�2
� .cosh �/�.16�

0C�2/

� e�.16�
0C�2/�:
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5.2. Estimates for k

In this subsection, we obtain the asymptotics for k . Note that the large distance asymp-
totics (1 � �) are already contained in (5.4).

Lemma 5.6. Let 0 <  < 3 and let N D dimRH
m
F . If 0 < � < 1, then

k �
1

N ./

1

�N�
CO

� 1

�N��1

�
:

If 1 � �, then
k � �

�2 e�Q�=2:

Proof. Since the large distance asymptotics (1 � �) are already contained in (5.4), we
only need to prove the estimate for 0 < � < 1.

By using (5.2), we will write k in terms of a Bessel–Green–Riesz kernel on Hn
R,

where n D 2 Qm C 1 and Qm D 2m � 2 if F D Q, and Qm D 4 if F D Ca. Recall that
ht .�; n/ denotes the heat kernel on Hn

R (see (5.1)). Finally, let c denote cm (respec-
tively, co) from (5.2) (respectively, (5.3)), and let�D 2 (respectively, �D 4) when F DQ
(respectively, F D Ca).

Then, by the Mellin transform and (5.2) and (5.3), we have

k .�/ D
1

�.=2/

Z 1
0

t=2�1et .�CQ
2=4/ dt

D
c

b Qm

Z 1
�

sinh 2r
p

cosh 2r � cosh 2�

�
�

1

sinh 2r
@

@r

��
�

1

�.=2/

Z 1
0

t=2�1 eQ
2t=4 e� Qm

2t ht .r; n/ dt dr

D
c

b Qm

Z 1
�

sinh 2r
p

cosh 2r � cosh 2�

�
�

1

sinh 2r
@

@r

�� �
��Hn

R
�

�n � 1
2

�2��=2
dr

D A1 C A2;

where

A1 D

Z 1

�

� � � and A2 D

Z 1
1

� � � :

We begin by estimating A1. Using Lemma C, it is easy to see that, for 0 < r < 1, there
holds �

�
1

sinh 2r
@

@r

�2�
��Hn

R
�

�n � 1
2

�2��=2
D

�
�

1

sinh 2r
@

@r

�2� 1

n./

1

rn�
CO

� 1

rn��1

��
D

1

n./

.n � /.nC 2 � /

4

1

rnC4�
CO

� 1

rnC3�

�
;
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and similarly,�
�

1

sinh 2r
@

@r

�4�
��Hn

R
�

�n � 1
2

�4��=2
D

1

n./

.n � /.nC 2 � /.nC 4 � /.nC 6 � /

16

1

rnC8�
CO

� 1

rnC7�

�
:

Consequently, in the quaternionic case, there holds

sinh 2r
�
�

1

sinh 2r
@

@r

�2�
��Hn

R
�

�n � 1
2

�2�
D

1

n./

.n � /.nC 2 � /

2

1

rnC3�
CO

� 1

rnC2�

�
and, in the octonionic case, there holds

sinh 2r
�
�

1

sinh 2r
@

@r

�4�
��Hn

R
�

�n � 1
2

�2�
D

1

n./

.n � /.nC 2 � /.nC 4 � /.nC 6 � /

8

1

rnC7�
CO

� 1

rnC6�

�
:

Now, using Lemma D, we compute in the quaternionic case that

A1 D
cm

b2m�2

.n�/.nC2 � /

2n./

Z 1

�

1
p

cosh 2r� cosh 2�

h 1

rnC3�
CO

� 1

rnC2�

�i
dr

�
cm

b2m�2

.n � /.nC 2 � /

2n./

Z 1

�

cosh r
p

cosh 2r � cosh 2�

�

h 1

.sinh r/nC3�
CO

� 1

.sinh r/nC2�

�i
dr

D
cm.n � /.nC 2 � /

2n./b2m�2

�.1=2/�
�
nC3�
2

�
2
p
2�
�
nC4�
2

� 1

.sinh �/nC3�
CO

� 1

.sinh �/nC2�

�
D

1

4m./

1

.sinh �/4m�
CO

� 1

.sinh �/4m��1

�
;

where we have computed

cm.n � /.nC 2 � /

2n./ b2m�2

�.1=2/ �..nC 3 � /=2/

2
p
2�..nC 4 � /=2/

D
1

4m./
�

Similarly, we have in the octonionic case that

A1 D
1

16./

1

.sinh �/16�
CO

� 1

.sinh �/15�

�
:

Concerning estimating A2, it is clear from Lemma 5.1 that A2 . 1 for both the quater-
nionic and octonionic cases, and so

k .�/ D A1 C A2 �
1

N ./

1

�N�
CO

� 1

�N��1

�
;

as desired.
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5.3. Estimate for k�;

In this subsection, we obtain the asymptotics for k�; for 0 <  < 4m and 0 < �. Note that
the large distance asymptotics (1 � �) are already contained in (5.4).

Lemma 5.7. Let N D dimRH
m
F and let 0 <  < N , 0 < � and 0 < " < min¹1;N � º.

If 0 < � < 1, then

k�; �
1

N ./

1

�N�
CO

� 1

�N��"

�
:

If 1 � �, then
k�; � �

.�2/=2 e����Q�=2:

Proof. As mentioned above, we only need to prove the estimate for 0 < � < 1.
As before, let n D 2 QmC 1 with Qm as above, and choose Q and ` such that 0 < Q < 3,

0 � ` < n � 1 and  D Q C `. Then

k�; D k�; Q � k�;`:

Using Lemmas 5.2 and 5.3, it will be sufficient to estimate k�; Q and k�;` separately.
To estimate k�; Q , note that, by Lemma 5.6, there holds

k�; Q D
�
�� �

Q2

4
C �2

��Q=2
D

1

�. Q=2/

Z 1
0

t Q=2�1 et .�CQ
2=4��2/ dt

�
1

�. Q=2/

Z 1
0

t Q=2�1 et .�CQ
2=4/ dt D

�
�� �

Q2

4

��Q=2
D k Q

�
1

N . Q/

1

�N�Q
CO

� 1

�N�Q�1

�
:

We see that, if ` D 0, then we are done, and so we assume without loss of generality
that 0 < `.

We now estimate k�;`. As in the previous proof, let � D 2 for the quaternionic case
and � D 4 for the octonionic case, and let c denote cm or co in the respective cases. We
compute

k�;` D
1

�.`=2/

Z 1
0

t`=2�1 et .�CQ
2=4��2/ dt

D
c

b Qm

Z 1
�

sinh 2r
p

cosh 2r� cosh 2�

�
�

1

sinh 2r
@

@r

�2�
��Hn

R
�

�n�1
2

�2
C�2

��`=2
dr

D A7 C A8;

where

A7 D

Z 1

�

� � � and A8 D

Z 1
1

� � � :

From Proposition 2.5 in [53], we have that�
�� �

�n � 1
2

�2
C �2

��`=2
D

1

n./

1

�n�`
CO

� 1

�n�`�1

�
;
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and by similar computations to those given in the proof of Lemma 5.6, we have

sinh 2r
�
�

1

sinh 2r
@

@r

�2 �
��Hn

R
�

�n � 1
2

�2�
D
.n � `/.nC 2 � `/

2n./

1

rnC3�`
CO

� 1

rnC2�`

�
and

sinh 2r
�
�

1

sinh 2r
@

@r

�4�
��Hn

R
�

�n � 1
2

�2�
D
.n � `/.nC 2 � `/.nC 4 � `/.nC 6 � `/

8n./

1

rnC7�`
CO

� 1

rnC6�`

�
:

Consequently, using 1 � cosh r and Lemma D, we find for the quaternionic case that

A7 �
cm

b2m�2

.n � `/.nC 2 � `/

2n./

Z 1
�

cosh r
sinh 2r

p
cosh 2r � cosh 2�

�

h 1

.sinh r/nC3�`
CO

� 1

.sinh r/nC2�`

�i
dr

D
1

4m.`/

1

.sinh �/4m�`
CO

� 1

.sinh �/4m�`�1

�
;

where we have computed

cm.n � `/.nC 2 � `/

2n.`/ b2m�2

�.1=2/ �..nC 3 � `/=2/

2
p
2�..nC 4 � `/=2/

D
1

4m.`/
�

Similarly, we have for that octonionic case that

A7 �
1

.`/./

1

.sinh �/16�`
CO

� 1

.sinh �/15�`

�
:

Again, using Lemma 5.1, we have that A8 . 1, and so we have proved to two estimates

k�;` �
1

N .`/

1

.sinh �/N�`
CO

� 1

.sinh �/N�`�1

�
;

k�; Q �
1

N . Q/

1

.sinh �/N�Q
CO

� 1

.sinh �/N�Q�1

�
:

Now, using (5.4), we have, for any 0 < �0 < �, 0 < ˛ and 1 � �, there holds

k�;˛ � �
.˛�2/=2 e����Q=2 .˛ e��

0��Q�=2:

Therefore, using this estimate and that coshr � er and sinhr � er for r > 1, and sinhr � r
and cosh r � 1 for 0 < r < 1, we obtain the following global estimates (i.e., for 0 < �):

k�;` �
1

N .`/

.cosh �/N�Q=2�`��
0

.sinh �/N�`
CO

� .cosh �/N�Q=2�`��
0�1

.sinh �/N�`�1

�
;

k�; Q �
1

N . Q/

.cosh �/N�Q=2�Q��
0

.sinh �/N�Q
CO

� .cosh �/N�Q=2�Q��
0�1

.sinh �/N�Q�1

�
:
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Finally, using Lemmas 5.2 and 5.3 and letting 0 < " < min ¹1;N � º, we obtain

k�; D k�;` � k�; Q �
1

N .`C Q/

1

�N�Q�`
CO

� 1

�N�Q�`�"

�
;

which gives the desired estimate since  D `C Q .

5.4. Estimates for k � k�; 0

In this subsection, we obtain the asymptotics for k � k�; for 0 <  < 3, 0 <  0 < N � 
and 0 < �.

Lemma 5.8. Let 0 <  < 3, 0 <  0 <N �  , 0 < � and 0 < " <min¹1;N �  �  0; �=2º.
If 0 < � < 1, then

k � k�; 0 �
1

N . C  0/

1

�N��
0 CO

� 1

�N��
0�"

�
:

If 1 � �, then
k � k�;g 0 . e."�Q=2/�:

Proof. By Lemma 5.6, we have for 0 < � < 1 the estimate

k �
1

N ./

1

.sinh �/N�
CO

� 1

.sinh �/N��1

�
;

and, by (5.4), we have for any 0 < " and 1 � � the estimate

k � �
�2 e�Q�=2 . e."�Q�=2/:

Consequently, we obtain the following global estimate (i.e., for 0 < �):

k �
1

N ./

.cosh �/N�Q=2�C"

.sinh �/N�
CO

� .cosh �/N�Q=2�C"�1

.sinh �/N��1

�
:

Similarly, we have for 0 < � the global estimate

k�; 0 �
1

N . 0/

.cosh �/N�Q=2�
0��C"

.sinh �/N� 0
CO

� .cosh �/N�Q=2C"�
0���1

.sinh �/N� 0�1

�
:

Therefore, by Lemmas 5.2 and 5.3, there holds

k � k�; 0 �
1

N . C  0/

1

�N��
0 CO

� 1

�N��
0�"

�
for 0 < � < 1.

Similarly, using Lemmas 5.4 and 5.5 we have

k � k�; 0 . e."�Q�=2/:
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Lemma 5.9. Let 0 <  < 3, 0 <  0 < N �  , 0 < � and 0 < �0 < �. If 1 � �, then

k � k�; 0 . e�.�
0CQ�=2/

C ��2 e�Q�=2 � k�; 0 :

Proof. Using (5.4), we have

k � k�; 0 D

Z
¹z2BmF W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/

C

Z
¹z2BmF W1=2��.z/<1º

k .�.z// k�; 0.�.z; w// dV.z/

.
Z
¹z2BmF W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/

C

Z
¹z2BmF W1=2��.z/<1º

�.z/�2 e�Q=2�.z/ k�; 0.�.z; w// dV.z/

�

Z
¹z2BmF W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/C �
�2 e�Q=2 � k�; 0 :

Thus we need only show that, for 1 � �, there holdsZ
¹z2BmF W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/ . e�.�
0CQ=2/�:

By Lemma 5.6, we have that, for �.z/ < 1=2, there holds

k .�.z// .
1

�.z/N�
�

1

jzjN�
�

Next, observing that 1 � �.w/ and �.z/ < 1=2 imply 1=2 � �.w/ � �.z/ � �.z; w/, we
have by (5.4) that, for 0 < �0 < �, there holds

k�; 0.�.z; w// . e��
0�.z;w/�

Q
2 �.z;w/ � .cosh �.z; w//�.�

0CQ=2/:

Combining these estimates with Lemma A, we computeZ
¹z2BmQ W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/

.
Z
¹z2BmQ W�.z/<1=2º

1

jzj4m�

�p.1 � jwj2/.1 � jzj2/
j1 � hz; wiQj

�2mC1C� 0� 1

1 � jzj2

�2mC2
dz

� .1 � jwj2/.2mC1C�
0/=2

Z
¹z2BmQ W�.z/<1=2º

1

jzj4m�
dz

� .cosh �/�.2mC1C�
0/
� e�.�

0C2mC1/�:
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Similarly,Z
¹z2BCa W�.z/<1=2º

k .�.z// k�; 0.�.z; w// dV.z/

.
Z
¹z2BCa W�.z/<1=2º

1

jzj16�

� .1 � jwj2/.1 � jzj2/
‰Ca.z; w/

�.11C� 0/=2 � 1

1 � jzj2

�12
dz

� .1�jwj2/.11C�
0/=2

Z
¹z2BCa W�.z/<1=2º

dz

jzj16�
� .cosh �/�.11C�

0/
� e�.�

0C11/�:

6. Rearrangement estimates

We first collect known results about nonincreasing rearrangements and Lorentz spaces on
the hyperbolic spaces X. These results will be used to prove estimates on k � k�; 0 � f
for f 2 C10 .X/.

To begin, let f WX! R, and define

f �.t/ D inf ¹s > 0 W �f .s/ � tº

�f .s/ D j¹z 2 X W jf .z/j > s ºj D

Z
z2X W jf .z/j>s

dV:

Next, for a domain�� X, we recall that the Lorentz spaces Lp;q.�/ consist of functions
for which the following norm is finite:

kf kLp;q.�/ D

8<:
t1=p�1=qf �.t/

Lq.0;j�j/
if 1 � q <1;

sup
t>0

t1=pf �.t/ if q D1:

Define next f ��.t/ D 1
t

R t
0
f �.s/ds and

kf k�Lp;q.�/ D

8<:
t1=p�1=qf ��.t/

Lq.0;j�/j
if 1 � q <1;

sup
t>0

t1=pf ��.t/ if q D1:

Let 1 < r; p1; p2 <1 and 1 � s; q1; q2 � 1 satisfy

1

p1
C

1

p2
� 1 D

1

r
and

1

q1
C

1

q2
�
1

s
;

and assume f 2 Lp1; q1.X/ and g 2 Lp2; q2.X/. The generalized Young inequality (see
Theorem 2.6 in [66]),

kf � gkLr;s � C kf kLp1; q1 kgkLp2; q2 ;

and the norm equivalence (see [66] for 1 � r <1 and Theorem 3.4 in [75] for 0 < r < 1)

kf � gkLq;r � kf � gk
�
Lq;r �

q

q � 1
kf � gkLq;r

give the following lemma.
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Lemma F. Let 1 < r; p1; p2 <1 and 1 � s; q1; q2 � 1. If

1

p1
C

1

p2
� 1 D

1

r
and

1

q1
C

1

q2
�
1

s
;

then for f 2 Lp1; q1.X/ and g 2 Lp2; q2.X/, we have

kf � gkLr;s � C kf kLp1; q1 kgkLp2; q2 :

In this section, we collect the kernel estimates obtained above and state the corre-
sponding estimates for their nonincreasing rearrangements. We also prove that the square
integrability of the rearrangement Œk� � k�; 0 �� on any interval of the form .c;1/, 0 < c.

In preparation of obtaining the rearrangement estimates, we first estimate the volume
of the geodesic ball B� centered at the origin and with radius �. For Hm

Q , we may use

jB�j D !4m�1

Z �

0

.sinh r/4m�1.cosh �/3 dr

to obtain
jB�j D

!4m�1

4m
�4m CO.�4mC2/ if 0 < � < 1

and
jB�j Ï e.4mC2/� if 1 � �:

Similarly, for HCa, we may use

jB�j D !15

Z �

0

.sinh r/15 .cosh �/7 dr

to obtain
jB�j D

!15

16
�16 CO.�18/ if 0 < � < 1

and
jB�j Ï e22� if 1 � �:

Next, we collect the kernel estimates established above. OnHm
F with N D dimRH

m
F ,

there holds the following.
• Let 0 < �. If 0 <  < N , 0 < " < min¹1;N � º and 0 < � < 1, then

k�; �
1

N./

1

�N�
CO

� 1

�N��"

�
:

If 0 <  and 1 � �, then

k�; � �
.�2/=2 e�.�CQ=2/�:

• Let � D 0. If 0 <  < 3 and 0 < � < 1, then

k �
1

N ./

1

�N�
CO

� 1

�N��1

�
:

If 0 <  < 3 and 1 � �, then

k � �
�2 e�Q�=2:
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• Let 0 < �. If 0 <  < 3, 0 <  0 < N �  , 0 < " < min¹1; N �  �  0; �=2º and
0 < � < 1, then

k � k�; 0 �
1

N . C  0/

1

�N��
0 CO

� 1

�N��
0�"

�
:

If 1 � �, then
k � k�;g 0 . e."�Q=2/�:

If 0 < �0 < � and 1 � �, then

k � k�; 0 . e�.�
0CQ=2/�

C ��2 e�Q�=2 � k�; 0 :

The corresponding estimates for their rearrangements are listed now.

• Let 0 < �. If 0 <  < N , 0 < " < min¹1;N � º and 0 < t < 2, then

Œk�; �
�
�

1

N./

� N

!N�1
t
�.�N/=N

CO
�
t .C"�N/=N

�
:

If 0 <  and 2 � t , then

Œk�; �
�
� t�1=2��=N .ln t /.�2/=2

• Let � D 0. If 0 <  < 3 and 0 < t < 2, then

Œk �
�
�

1

N ./

� N

!N�1
t
�.�N/=N

CO
�
t .C1�N/=N

�
:

If 0 <  < 3 and 2 � t , then

Œk �
�
� t�1=2 .ln t /�2 :

• Let 0 < �. If 0 <  < 3, 0 <  0 < N �  , 0 < " < min¹1; N �  �  0; �=2º and
0 < t < 2, then

(6.1) Œk � k�; 0 �
�
�

1

N . C  0/

� N

!N�1
t
�.C 0�N/=N

CO
�
t .C

0C"�N/=N
�
:

If 2 � t , then

(6.2) Œk � k�;g 0 �
� . t ."�Q=2/=N :

Moreover, using Lemma 5.9, we have, for c > 0,

(6.3)
Z 1
c

jŒk˛ � k�;ˇ �
�.t/j2 dt <1:

The proof of (6.3) is similar to that given in Lemma 4.1 of [54], and we omit it.
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6.1. Estimates for k � k�; 0 � f

In this section, we prove an Lp-Lp
0

inequality for k � k�; 0 � f , which is dual to the
Poincaré–Sobolev inequality. We will need to make use of the Kunze–Stein phenomenon.
The Kunze–Stein phenomenon is important in harmonic analysis (see [16–18, 39, 47,
48, 67, 69]), and is closely related to geometric and functional inequalities, as has been
explored by Beckner, along with symmetry in Fourier analysis, see e.g., [9, 10]. In par-
ticular, in [9] and [7], Beckner identified for the first time the sharp constants for the
Kunze–Stein inequalities on SL.2;R/ and SL.2;C/ and the Lorentz groups, among other
things.

We begin by recalling relevant results. The proofs of Lemmas G and H may be found
in [63].

Cowling, Giulini and Meda (see [16–18]) established the following sharp version on
the Lorentz space (see [38,66]) of the Kunze–Stein phenomenon for connected real simple
groups G of real rank one with finite center:

Lp;q1.G/ � Lp;q2 � Lp;q3.G/

provided 1 < p < 2, 1 � q1; q2; q3 �1 and 1C 1=q3 � 1=q1 C 1=q2. In particular, this
applies to Sp.m; 1/ and F4, and by following [63], we can obtain similar phenomenon
on Hm

Q and H 2
Q. To be more precise, let Lp.G/ and Lp;q.G/ denote the usual Lebesgue

and Lorentz spaces, respectively, and let Lp;q.G=K/, Lp;q.KnG/ and Lp;q.KnG=K/
denote the closed subspaces of Lp;q.G/ of the right-K-invariant, left-K-invariant and
K-bi-invariant functions, respectively. Following [63], we can show:

Lemma G. For p 2 .1; 2/, there holds

Lp .KnG/ � Lp .G=K/ � Lp;1.KnG=K/:

Lemma H. For p 2 .1; 2/ and p0 D p=.p � 1/, there holds

Lp
0;1 .KnG=K/ � Lp.G=K/ � Lp

0

.G=K/

and, if f 2 Lp;1.KnG=K/ and h 2 Lp.G=K/, then there is a constant C > 0 such that

kf � hkLp0 .G=K/ � C kf kLp0;1.KnG=K/ khkLp.G=K/:

Using Lemma H, we prove the following estimate on k � k�; 0 � f .

Lemma 6.1. Let 0 <  < 3, 0 <  0 < N �  , 0 < � and 2N
NCC 0

� p < 2. Then, for
f 2 C10 .B

m
F /, there holds

kk � k�; 0 � f kp0 � C kf kp:

Proof. Define the cut off functions

�1.�/ D

´
k � k�; 0 for 0 < � < 1;
0 for 1 � �;

and �2.�/ D k � k�; 0 � �1.�/:
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By (6.1), there exists t0 > 0 such that, for 0 < t � t0, there holds

��1.t/ . t .C
0�N/=N ;

and, for t0 < t , there holds
��1.t/ D 0:

Next, by Lemma F, there holds

k�1 � f kLp0 D k�1 � f kLp0;p0 � C k�1kLp0=2;1 kf kLp :

But
k�1kLp0=2;1 D sup

0<t<1

t2=p
0

��1.t/ . sup
0<t <t0

t2=p
0C.C 0�N/=N <1;

provided
2

p0
C
 C  0 �N

N
> 0;

which is equivalent to

p >
2N

 C  0 CN
;

as it is assumed. Consequently, there holds

k�1 � f kLp0 . kf kLp :

Next, by (6.2), there exists 0 < t0 such that, for 0 < t � t0, there holds

�2.t/ . 1;

and, for t0 < t and 0 < " < min¹1;N �  �  0; �=2º, there holds

��2.t/ . t ."�Q=2/=N :

Consequently, we find that, for 0 < " < Q=2CN=p,

k�2kLp0;1 D

Z 1
0

t1=p
0�1 ��2.t/ dt <1:

Finally, by Lemma H, we obtain

k�2 � f kLp0 � C kf kLp ;

and therefore

kk � k�; 0 � f kLp � k�1 � f kLp0 C k�2 � f kLp � C kf kLp ;

as desired.
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7. Proofs of Theorems 1.3 and 1.4

With all the kernel estimates proved in Section 5, we are ready to prove the Poincaré–
Sobolev inequality of Theorem 1.3, and the Hardy–Sobolev–Maz’ya inequality of Theo-
rem 1.4. For the reader’s convenience, we restate these theorems before their respective
proofs.

Theorem 1.3. Let 0 <  < 3, 0 <  0, 2 < p and 0 < �. Denote by N D dim X. If 0 <
 0 < N �  , suppose further that 2 < p � 2N

N�.C 0/
. Then there exists a constant C > 0

such that, for all u 2 C10 .X/, there holds

kukp � C
.��X � �

2
X C �

2/
0=4 .�� � �2X/

=4 u

2
:

Proof. By Lemma 6.1, we have

(7.1)
.��X � �

2
X C �

2/�
0=4 .�� � �2X/

�=4 u

Lp
0 � CkukLp :

Consulting the Lemma in the Appendix of [8], we have that (7.1) is equivalent to

kukLp � C
.��X � �

2
X C �

2/
0=4 .�� � �2X/

=4 u

L2
;

thereby proving the theorem.

Proof of Theorem 1.4. We need only prove the inequality in case

� D

kY
jD1

.a � k C 2j � 2/2

4
�

We will use the factorization theorem (Theorem 1.1), and so we set

u D %.k�.2mC1/�a/=2f;

and obtain

4k
Z

Hm�1
Q

Z 1
0

u

kY
jD1

�
� %@%% � a@% � %�Z �L0 C i.k C 1 � 2j /

p
��Z

�
u
dxdzd%

%1�a

D

Z
Hm�1

Q

Z 1
0

f

kY
jD1

�
�� � .2mC 1/2 C .a � k C 2j � 2/2

�
f
dxdzd%

%2mC2

D 4

Z
Um

f

kY
jD1

�
�� � .2mC 1/2 C .a � k C 2j � 2/2

�
f dV:

Next, using that spec.��/D Œ.2mC 1/2;1/, we have the following sharp inequality:Z
Um

f

kY
jD1

�
�� � .2mC 1/2 C .a � k C 2j � 2/2

�
f dV

�

kY
jD1

.a � k C 2j � 2/2
Z

Um

f 2 dV:
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Applying Plancherel’s theorem, there holdsZ
Um

f

kY
jD1

�
���.2mC1/2C.a�kC2j �2/2

�
fdV�

kY
jD1

.a�kC2j �2/2
Z

Um

f 2dV

D Cm

Z 1
�1

Z
S4m�1

h kY
jD1

�
�2 C .a � k C 2j � 2/2

�
�

kY
jD1

.a � k C 2j � 2/2
i

� j yf .�; &/j2 jc.�/j�2 d�d�.&/:

Choosing 0 < ı so that

kY
jD1

.�2 C .a � k C 2j � 2/2/ �

kY
jD1

.a � k C 2j � 2/2 � �2 .�2 C ı/k�1;

applying Theorem 1.3, and applying the Plancherel theorem, we obtainZ
Um

f

kY
jD1

�
���.2mC1/2C.a�kC2j �2/2

�
fdV�

kY
jD1

.a�kC2j �2/2
Z

Um

f 2dV

� Cm

Z 1
�1

Z
S4m�1

�2 .�2 C ı/k�1 j yf .�; &/j2 jc.�/j�2 d�d�.&/

D

Z
Um

f .�� � .2mC 1/2/ .�� � .2mC 1/2 C ı/k�1f dV � Ckf k2Lp :

This proves the first inequality. The proof of the second inequality is similar, and we
omit it.

8. Proofs of Theorems 1.5 and 1.6

Proof of Theorem 1.5. Set�.u/D ¹x 2 BnC W ju.x/j � 1º. Then by Theorem 1.3, we have,
for p > 2,

j�.u/j D

Z
�.u/

dV �

Z
X
jujp dV . 1:

Therefore, j�.u/j � �0 for some constant �0 independent of u. We writeZ
BnC

.eˇ0.N=2;N/u
2

� 1 � ˇ0.N=2;N /u
2/ dV

D

Z
�.u/

.eˇ0.N=2;N/u
2

� 1 � ˇ0.N=2;N /u
2/ dV

C

Z
Xn�.u/

.eˇ0.N=2;N/u
2

� 1 � ˇ0.N=2;N /u
2/ dV

�

Z
�.u/

eˇ0.N=2;N/u
2

dV C

Z
Xn�.u/

.eˇ0.n;2n/u
2

� 1 � ˇ0.N=2;N /u
2/ dV:(8.1)
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The second part of right-hand of (8.1) is bounded. In fact, we haveZ
Xn�.u/

.eˇ0.N=2;N/u
2

� 1 � ˇ0.N=2;N /u
2/ dV D

Z
Xn�.u/

1X
nD2

.ˇ0.N=2;N /u
2/n

nŠ
dV

�

Z
Xn�.u/

1X
nD2

.ˇ0.N=2;N //
nu4

nŠ
dV �

1X
nD2

.ˇ0.N=2;N //
n

nŠ

Z
X
ju.x/j4 dV � C:

Here we use the fact ju.z/j < 1, z 2 X n�.u/, and Theorem 1.3.
Next we shall show that Z

�.u/

eˇ0.N=2;N/u
2

dV

is also bounded by some universal constant. Set

v D .��X � �
2
X C �

2/.2n�˛/=4 .��X � �
2
X/
˛=4u:

Then Z
X
jvj2 dV � 1;

and we can write u as a potential,

u D .��X � �
2
X C �

2/�.2n�˛/=4 .��X � �
2
X/
�˛=4v D v � �;

where

� D .��X � �
2
X C �

2/�.2n�˛/=4 .��X � �
2
X/
�˛=4

D k�;.N�˛/=2 � k˛=2:

By (6.1) and (6.3),

��.t/ �
1

N .N=2/
�

� Nt

!N�1

��1=2
CO.t ."�n/=.2n//; for 0 < t < 2;

and Z 1
c

j��.t/j2 dt <1; 8c > 0:

Closely following the proof of Theorem 1.7 in [53], we have that there exists a constant C ,
which is independent of u and �.u/, such thatZ

�.u/

eˇ0.N=2;N/u
2

dV D

Z j�.u/j
0

exp.ˇ0.N=2;N / ju�.t/j2/ dt

�

Z �0

0

exp.ˇ0.N=2;N / ju�.t/j2/ dt � C:

The proof of Theorem 1.5 is thereby completed.
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Proof of Theorem 1.6. It is enough to show that in terms of the ball model, for some � > 0,
there holds.��X � �

2
X C �

2/.2m�1/=2 .��X � �
2
X/
1=2 Œ.1 � jzj2/.aC1/=2u�


2

� 42m
Z

BnQ

u

2mY
jD1

h
�0.1�a�.2mC1//=2 C

.2mC 1 � 2j /2

4
� i

2mC 1 � 2j

2

p
� C 1

i
� u

dz

.1 � jzj2/1�a

�

2mY
jD1

.a � 2mC 2j � 2/2
Z

BnQ

u2

.1 � jzj2/2mC1�a
dz;

and in terms of the Siegel domain,.��X � �
2
X C �

2/.2m�1/=2 .��X � �
2
X/
1=2 Œ%.aC1/=2u�


2

� 42m
Z

Hm�1
Q

Z 1
0

u

nY
jD1

�
� %@%% � a@% � %�Z CL0 C i.k C 1 � 2j /

p
��Z

�
� u

dxdzd%

%1�a

�

2mY
jD1

.a � nC 2j � 2/2
Z

H�1Q

Z 1
0

u2

%2mC1�a
dxdzd%:

The proof is similar to that given in the proof of Theorem 1.4 via Plancherel’s formula,
and we omit it.

A. Proofs of Theorems 1.7 and 1.8

In this appendix, we will outline the proofs of the Adams inequalities, namely Theo-
rems 1.7 and 1.8 for the convenience of the reader. We refer the interested reader to
[53, 54, 60, 63] for all the details.

Proof of Theorem 1.7. Let f D .��X � �
2
X C �

2/˛=2 u. Then kf kp � 1 and

u D .��X � �
2
X C �

2/�˛=2f D f � k�;˛:

Using O’Neil’s lemma ([66]), we have for t > 0,

u�.t/ �
1

t

Z t

0

f �.s/ ds

Z t

0

k��;˛.s/ ds C

Z 1
t

f �.s/ k��;˛.s/ ds:

Using the rearrangement estimates of Œk�;˛��, it is easy to check that

Œk�;˛�
�.t/ �

1

N .˛/

� Nt

!2n�1

�.˛�N/=N
CO

�
t .˛C"�N/=N

�
; for 0 < t < 2IZ 1

c

jŒk�;˛�
�.t/jp

0

dt <1; 8c > 0:
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Closely following the proof of Theorem 1.13 in [54], we have that there exists a con-
stant C , which is independent of u, such that

1

jEj

Z
E

exp.ˇ0.˛;N / jujp
0

/ dV �
1

jEj

Z jE j
0

exp.ˇ0.˛;N /ju�.t/jp
0

/ dt

�
1

jEj

Z jE j
0

exp
�
ˇ0.˛;N /

ˇ̌̌1
t

Z t

0

f �.s/ ds

Z t

0

k��;˛.s/ ds C

Z 1
t

f �.s/ k��;˛.s/ ds
ˇ̌̌p0�

dt

� C:

The sharpness of the constant ˇ0.˛; N / can be verified by a process similar to that
in [1, 46], and thus the proof of Theorem 1.7 is completed.

Using the symmetrization-free argument from the local inequalities to global ones
developed by Lam and the second author in [49, 50], and subsequently used, e.g., in [12,
51, 52, 55], etc., we can conclude the:

Proof of Theorem 1.8. Let u 2 W ˛;p.X/ withZ
X
j.��X � �

2
X C �

2/˛=2ujp dV � 1:

By a Hörmander–Mikhlin type multiplier theorem (see [2]), we haveZ
X
jujp dV .

Z
X
j.��X � �

2
X C �

2/˛=2ujp dV � 1

provided � > 2�X j1=2 � 1=pj. Set �.u/ D ¹z 2 X W ju.z/j � 1º. Then we have

j�.u/j D

Z
�.u/

dV �

Z
X
jujp dV � �0;

where �0 is a constant independent of u. We writeZ
X

p̂.ˇ0.˛;N / juj
p0/ dV

D

Z
�.u/

p̂.ˇ0.˛;N / juj
p0/ dV C

Z
Xn�.u/

p̂.ˇ0.˛;N / juj
p0/ dV:

Notice that on the domain X n�.u/, we have ju.z/j < 1. Thus,

(A.1)

Z
Xn�.u/

p̂.ˇ0.˛;N / juj
p0/ dV �

1X
kDjp�1

ˇ0.˛;N /
k

kŠ

Z
Xn�.u/

1X
nD2

jujp
0k dV

�

1X
kDjp�1

ˇ0.˛;N /
k

kŠ

Z
Xn�.u/

1X
nD2

jujp dV

�

1X
kDjp�1

ˇ0.˛;N /
k

kŠ
kukpp � C:
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Moreover, by Theorem 1.7, if � satisfies � > 0 if 1 < p < 2 and � > 2n j1=p � 1=2j if
p � 2, then

(A.2)
Z
�.u/

p̂.ˇ0.˛;N / juj
p0/ dV �

Z
�.u/

exp.ˇ0.˛;N / jujp
0

/ dV � C:

Combining (A.1) and (A.2) yieldsZ
X

p̂.ˇ0.˛;N / juj
p0/ dV

D

Z
�.u/

p̂.ˇ0.˛;N / juj
p0/ dV C

Z
Xn�.u/

p̂.ˇ0.˛;N / juj
p0/ dV � C

provided that � satisfies � > 2�X j1=p � 1=2j.
The sharpness of the constant ˇ0.˛; N / can be verified by a process similar to that

in [54].
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