© 2023 Real Sociedad Matemática Española Published by EMS Press and licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

On the Moebius deformable hypersurfaces

Miguel Ibieta Jimenez and Ruy Tojeiro

Abstract. Li, Ma and Wang [Adv. Math. 256 (2014), 156–205] have investigated the interesting class of Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. The classification of Moebius deformable hypersurfaces of dimension $n \geq 4$ stated in the aforementioned article, however, misses a large class of examples. In this article, we complete that classification for $n \geq 5$.

1. Introduction

Let $f: M^n \to \mathbb{R}^m$ be an isometric immersion of a Riemannian manifold (M^n, g) into Euclidean space, and let $\alpha \in \Gamma(\text{Hom}(TM, TM; N_f M))$ be its normal bundle-valued second fundamental form. Let $\|\alpha\|^2 \in C^\infty(M)$ be given at any point $x \in M^n$ by

$$
\|\alpha(x)\|^2 = \sum_{i,j=1}^n \|\alpha(x)(X_i, X_j)\|^2,
$$

where $\{X_i\}_{1 \le i \le n}$ is an orthonormal basis of T_xM . Define $\phi \in C^\infty(M)$ by

(1.1)
$$
\phi^2 = \frac{n}{n-1} (\|\alpha\|^2 - n\|\mathcal{H}\|^2),
$$

where $\mathcal H$ is the mean curvature vector field of f. Notice that ϕ vanishes precisely at the umbilical points of f . The metric

$$
g^* = \phi^2 g,
$$

defined on the open subset of non-umbilical points of f , is called the *Moebius metric* determined by \hat{f} . The metric g^* is invariant under Moebius transformations of the ambient space, that is, if two immersions differ by a Moebius transformation of \mathbb{R}^m , then their corresponding Moebius metrics coincide.

It was shown in [\[9\]](#page-17-0) that a hypersurface $f: M^n \to \mathbb{R}^{n+1}$ is uniquely determined, up to Moebius transformations of the ambient space, by its Moebius metric and its *Moebius shape operator* $S = \phi^{-1}(A - H I)$, where A is the shape operator of f with respect to a

²⁰²⁰ Mathematics Subject Classification: Primary 53B25; Secondary 53A31.

Keywords: Moebius metric, Moebius deformable hypersurface, Moebius bending.

unit normal vector field N and H is the corresponding mean curvature function. A similar result holds for submanifolds of arbitrary codimension (see [\[9\]](#page-17-0) and Section 9:8 of [\[4\]](#page-17-1)).

Li, Ma and Wang investigated in [\[8\]](#page-17-2) the natural and interesting problem of looking for the hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ that are not determined, up to Moebius transformations of \mathbb{R}^{n+1} , only by their Moebius metrics. This fits into the fundamental problem in submanifold theory of looking for data that are sufficient to determine a submanifold up to some group of transformations of the ambient space.

More precisely, an umbilic-free hypersurface $f: M^n \to \mathbb{R}^{n+1}$ is said to be *Moebius deformable* if there exists an immersion $\tilde{f}: M^n \to \mathbb{R}^{n+1}$ that shares with f the same Moebius metric and is not Moebius congruent to f on any open subset of $Mⁿ$. The first result in [\[8\]](#page-17-2) is that a Moebius deformable hypersurface with dimension $n > 4$ must carry a principal curvature with multiplicity at least $n - 2$. As pointed out in [\[8\]](#page-17-2), for $n \ge 5$ this is already a consequence of Cartan's classification in [\[1\]](#page-17-3) (see also [\[3\]](#page-17-4) and Chapter 17 of [\[4\]](#page-17-1)) of the more general class of *conformally deformable* hypersurfaces. These are the hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ that admit a non-trivial *conformal deformation* $\tilde{f}: M^n \to \mathbb{R}^{n+1}$, that is, an immersion such that f and \tilde{f} induce conformal metrics on M^n and do not differ by a Moebius transformation of \mathbb{R}^{n+1} on any open subset of M^n .

According to Cartan's classification, besides the conformally flat hypersurfaces, which have a principal curvature with multiplicity greater than or equal to $n - 1$ and are highly conformally deformable, the remaining ones fall into one of the following classes:

- (i) *conformally surface-like hypersurfaces*, that is, those that differ by a Moebius transformation of \mathbb{R}^{n+1} from cylinders and rotation hypersurfaces over surfaces in \mathbb{R}^3 , or from cylinders over three-dimensional hypersurfaces of \mathbb{R}^4 that are cones over surfaces in \mathbb{S}^3 ;
- (ii) *conformally ruled hypersurfaces*, i.e., hypersurfaces $f : M^n \to \mathbb{R}^{n+1}$ for which M^n carries an integrable $(n - 1)$ -dimensional distribution whose leaves are mapped by f into umbilical submanifolds of \mathbb{R}^{n+1} ;
- (iii) hypersurfaces that admit a non-trivial *conformal variation* $F: (-\varepsilon, \varepsilon) \times M^n \to$ \mathbb{R}^{n+1} , that is, a smooth map defined on the product of an open interval $(-\varepsilon, \varepsilon) \subset \mathbb{R}$ with M^n such that, for any $t \in (-\varepsilon, \varepsilon)$, the map $f_t = F(t; \cdot)$, with $f_0 = f$, is a non-trivial *conformal deformation* of f ;
- (iv) hypersurfaces that admit a single non-trivial conformal deformation.

It was shown in [\[8\]](#page-17-2) that, among the conformally surface-like hypersurfaces, the ones that are Moebius deformable are those that are determined by a Bonnet surface $h: L^2 \to \mathbb{Q}_\varepsilon^3$ admitting isometric deformations preserving the mean curvature function. Here $\mathbb{Q}^3_{\varepsilon}$ stands for a space form of constant sectional curvature $\varepsilon \in \{-1, 0, 1\}$. It was also shown in [\[8\]](#page-17-2) that an umbilic-free conformally flat hypersurface $f: M^n \to \mathbb{R}^{n+1}$, $n \geq 4$ (hence with a principal curvature of constant multiplicity $n - 1$), admits non-trivial deformations preserving the Moebius metric if and only if it has constant Moebius curvature, that is, its Moebius metric has constant sectional curvature. Such hypersurfaces were classified in [\[5\]](#page-17-5), and an alternative proof of the classification was given in $[8]$. They were shown to be, up to Moebius transformations of \mathbb{R}^{n+1} , either cylinders or rotation hypersurfaces over the socalled *curvature spirals* in \mathbb{R}^2 or \mathbb{R}^2_+ , respectively, the latter endowed with the hyperbolic metric, or cylinders over surfaces that are cones over curvature spirals in \mathbb{S}^2 .

It is claimed in [\[8\]](#page-17-2) that there exists only one further example of a Moebius deformable hypersurface, which belongs to the third of the above classes in Cartan's classification of the conformally deformable hypersurfaces. Namely, the hypersurface given by

(1.2)
$$
f = \Phi \circ (\text{id} \times f_1) : M^n := \mathbb{H}^{n-3}_{-m} \times N^3 \to \mathbb{R}^{n+1}, \quad m = \sqrt{\frac{n-1}{n}},
$$

where id is the identity map of \mathbb{H}_{-m}^{n-3} , $f_1: N^3 \to \mathbb{S}_m^4$ is Cartan's minimal isoparametric hypersurface, which is a tube over the Veronese embedding of \mathbb{RP}^2 into \mathbb{S}^4_m , and $\Phi: \mathbb{H}_{-m}^{n-3} \times \mathbb{S}_{m}^{4} \subset \mathbb{L}^{n-2} \times \mathbb{R}^{5} \to \mathbb{R}^{n+1} \setminus \mathbb{R}^{n-4}$ is the conformal diffeomorphism given by

$$
\Phi(x, y) = \frac{1}{x_0} (x_1, \dots, x_{n-4}, y)
$$

for all $x = x_0 e_0 + x_1 e_1 + \dots + x_{n-3} e_{n-3} \in \mathbb{L}^{n-2}$ and $y = (y_1, \dots, y_5) \in \mathbb{S}^4 \subset \mathbb{R}^5$. Here $\{e_0, \ldots, e_{n-3}\}\$ denotes a pseudo-orthonormal basis of the Lorentzian space \mathbb{L}^{n-2} with $\langle e_0, e_0 \rangle = 0 = \langle e_{n-3}, e_{n-3} \rangle$ and $\langle e_0, e_{n-3} \rangle = -1/2$. The deformations of f preserving the Moebius metric have been shown to be actually compositions $f_t = f \circ \phi_t$ of f with the elements of a one-parameter family of isometries $\phi_t: M^n \to M^n$ with respect to the Moebius metric; hence all of them have the same image as f .

The initial goal of this article was to investigate the larger class of *infinitesimally* Moebius bendable hypersurfaces, that is, umbilic-free hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ for which there exists a one-parameter family of immersions f_t : $M^n \to \mathbb{R}^{n+1}$, with $t \in (-\varepsilon, \varepsilon)$ and $f_0 = f$, such that the Moebius metrics determined by f_t coincide up to the first order, in the sense that $\frac{\partial}{\partial t}|_{t=0}g_t^* = 0$. This is carried out for $n \ge 5$ in the forthcoming paper [\[7\]](#page-17-6).

In the course of our investigation, however, we realized that the infinitesimally Moebius bendable hypersurfaces of dimension $n \geq 5$ in our classification that are not conformally surface-like are actually also Moebius deformable. Nevertheless, except for the example in the preceding paragraph, they do not appear in the classification of such hypersurfaces as stated in [\[8\]](#page-17-2). This has led us to revisit that classification under a different approach from that in [\[8\]](#page-17-2).

To state our result, we need to recall some terminology. Let $f: M^n \to \mathbb{R}^{n+1}$ be an oriented hypersurface with respect to a unit normal vector field N . Then the family of hyperspheres $x \in M^n \mapsto S(h(x), r(x))$ with radius $r(x)$ and center $h(x) = f(x) +$ $r(x)N(x)$ is enveloped by f. If, in particular, $1/r$ is the mean curvature of f, such family of hyperspheres is called the *central sphere congruence* of f .

Let \mathbb{V}^{n+2} denote the light cone in the Lorentz space \mathbb{L}^{n+3} and let $\Psi = \Psi_{v,w,C}$: \mathbb{R}^{n+1} $\rightarrow \mathbb{L}^{n+3}$ be the isometric embedding onto

$$
\mathbb{E}^{n+1} = \mathbb{E}_w^{n+1} = \{u \in \mathbb{V}^{n+2} : \langle u, w \rangle = 1\} \subset \mathbb{L}^{n+3}
$$

given by

(1.3)
$$
\Psi(x) = v + C x - \frac{1}{2} ||x||^2 w,
$$

in terms of $w \in \mathbb{V}^{n+2}$, $v \in \mathbb{E}^{n+1}$ and a linear isometry $C: \mathbb{R}^{n+1} \to \{v, w\}^{\perp}$. Then we have that the congruence of hyperspheres $x \in M^n \mapsto S(h(x), r(x))$ is determined by the map $S: M^n \to \mathbb{S}^{n+2}_{1,1}$ that takes values in the Lorentzian sphere

$$
\mathbb{S}^{n+2}_{1,1} = \{x \in \mathbb{L}^{n+3} : \langle x, x \rangle = 1\}
$$

and is defined by

$$
S(x) = \frac{1}{r(x)} \Psi(h(x)) + \frac{r(x)}{2} w,
$$

in the sense that $\Psi(S(h(x), r(x))) = \mathbb{E}^{n+1} \cap S(x)^{\perp}$ for all $x \in M^n$. The map S has rank $0 < k < n$, that is, it corresponds to a k-parameter congruence of hyperespheres, if and only if $\lambda = 1/r$ is a principal curvature of f with constant multiplicity $n - k$ (see Section 9.3 of [\[4\]](#page-17-1) for details). In this case, S gives rise to a map $s: L^k \to \mathbb{S}^{n+2}_{1,1}$ such that $S \circ \pi = s$, where $\pi: M^n \to L^k$ is the canonical projection onto the quotient space of leaves of ker $(A - \lambda I)$.

Theorem 1.1. Let $f: M^n \to \mathbb{R}^{n+1}$, $n \geq 5$, be a Moebius deformable hypersurface that is *not conformally surface-like on any open subset and has a principal curvature of constant multiplicity* $n - 2$ *. Then the central sphere congruence of* f *is determined by a minimal* $space$ -like surface $s: L^2 \rightarrow \mathbb{S}_{1,1}^{n+2}$.

Conversely, any simply connected hypersurface $f : M^n \to \mathbb{R}^{n+1}$, $n \geq 5$, whose central sphere congruence is determined by a minimal space-like surface $s: L^2 \to \mathbb{S}^{n+2}_{1,1}$ is *Moebius deformable. In fact,* f *is Moebius bendable*: *it admits precisely a one-parameter family of conformal deformations, all of which share with* f *the same Moebius metric.*

Remarks 1.2. (1) Particular examples of Moebius deformable hypersurfaces $f: M^n \rightarrow$ \mathbb{R}^{n+1} that are not conformally surface-like on any open subset and have a principal curvature of constant multiplicity $n - 2$ are the minimal hypersurfaces of rank two. These are well-known to admit a one-parameter associated family of isometric deformations, all of which are also minimal of rank two. The elements of the associated family, sharing with f the same induced metric, all have the same scalar curvature and, being minimal, also share with f the same Moebius metric. These examples are not comprised in the statement of Proposition 9.2 in [\[8\]](#page-17-2) and, since the elements of the associated family of a minimal hypersurface of rank two do not have in general the same image, neither in the statement of Theorem 1:5 therein.

(2) More general examples are the compositions $f = P \circ h$ of minimal hypersurfaces $h: M^n \to \mathbb{Q}_c^{n+1}$ of rank two with a "stereographic projection" P of \mathbb{Q}_c^{n+1} (minus one point if $c > 0$) onto \mathbb{R}^{n+1} . The latter are precisely the hypersurfaces $f: M^n \to \mathbb{R}^{n+1}$ with a principal curvature of constant multiplicity $n - 2$ whose central sphere congruences are determined by minimal space-like surfaces $s: L^2 \to \mathbb{S}^{n+2}_{1,1} \subset \mathbb{L}^{n+3}$ such that $s(L)$ is contained in a hyperplane of \mathbb{L}^{n+3} orthogonal to a vector $T \in \mathbb{L}^{n+3}$ satisfying $-\langle T, T \rangle = c$ (see, e.g., Corollary 3:4:6 in [\[6\]](#page-17-7)).

(3) The central sphere congruence of the hypersurface given by [\(1.2\)](#page-2-0) is a Veronese surface in a sphere $\mathbb{S}^4 \subset \mathbb{S}^{n+2}_{1,1}$.

(4) The proof of Theorem [1.1](#page-3-0) makes use of some arguments in the classification of the conformally deformable hypersurfaces of dimension $n \geq 5$ given in Chapter 17 of [\[4\]](#page-17-1).

2. Preliminaries

In this short section, we recall some basic definitions and state Wang's fundamental theorem for hypersurfaces in Moebius geometry.

Let $f: M \to \mathbb{R}^{n+1}$ be an umbilic-free immersion with Moebius metric $g^* = \langle \cdot, \cdot \rangle^*$ and Moebius shape operator S. The *Blaschke tensor* ψ of f is the endomorphism defined by

$$
\langle \psi X, Y \rangle^* = \frac{H}{\phi} \langle SX, Y \rangle^* + \frac{1}{2\phi^2} \left(\| \text{grad}^* \phi \|_*^2 + H^2 \right) \langle X, Y \rangle^* - \frac{1}{\rho} \text{Hess}^* \phi(X, Y)
$$

for all $X, Y \in \mathcal{X}(M)$, where grad * and Hess * stand for the gradient and Hessian, respectively, with respect to g^* . The *Moebius form* $\omega \in \Gamma(T^*M)$ of f is defined by

$$
\omega(X) = -\frac{1}{\phi} \left(\text{grad}^* H + \text{Sgrad}^* \phi, X \right)^*.
$$

The Moebius shape operator, the Blaschke tensor and the Moebius form of f are Moebius invariant tensors that satisfy the conformal Gauss and Codazzi equations:

(2.1) $R^*(X, Y) = SX \wedge^* SY + \psi X \wedge^* Y + X \wedge^* \psi Y,$

$$
(2.2) \qquad (\nabla_X^* S)Y - (\nabla_Y^* S)X = \omega(X)Y - \omega(Y)X,
$$

for all $X, Y \in \mathcal{X}(M)$, where ∇^* denotes the Levi-Civita connection, R^* the curvature tensor and \wedge^* the wedge product with respect to g^* . We also point out for later use that the Moebius shape operator $S = \phi^{-1}(A - H I)$, besides being traceless, has constant norm $\sqrt{(n-1)/n}$.

The following fundamental result was proved by Wang (see Theorem 3.1 in [\[9\]](#page-17-0)).

Proposition 2.1. *Two umbilic-free hypersurfaces* f_1 , f_2 : $M^n \rightarrow \mathbb{R}^{n+1}$ *are conformally* (*Moebius*) *congruent if and only if they share the same Moebius metric and the same Moebius second fundamental form* (*up to sign*)*.*

3. Proof of Theorem [1.1](#page-3-0)

This section is devoted to the proof of Theorem [1.1.](#page-3-0) In the first subsection, we use the theory of flat bilinear forms to give an alternative proof of a key proposition proved in [\[8\]](#page-17-2) on the structure of the Moebius shape operators of Moebius deformable hypersurfaces. The proof of Theorem [1.1](#page-3-0) is provided in the subsequent subsection.

3.1. Moebius shape operators of Moebius deformable hypersurfaces

The starting point for the proof of Theorem [1.1](#page-3-0) is Proposition [3.3](#page-8-0) below, which gives the structure of the Moebius shape operator of a Moebius deformable hypersurface of dimension $n \geq 5$ that carries a principal curvature of multiplicity $(n - 2)$ and is not conformally surface-like on any open subset.

First we provide, for the sake of completeness, an alternative proof for $n \geq 5$, based on the theory of flat bilinear forms, of a result first proved for $n \geq 4$ by Li, Ma and Wang in [\[8\]](#page-17-2) (see Theorem 6:1 therein) on the structure of the Moebius shape operators of any pair of Euclidean hypersurfaces of dimension $n \geq 5$ that are Moebius deformations of each other (see Proposition [3.2](#page-6-0) below).

Recall that if $W^{p,q}$ is a vector space of dimension $p + q$ endowed with an inner product $\langle \langle , \rangle \rangle$ of signature (p, q) , and V, U are finite dimensional vector spaces, then a bilinear form $\beta: V \times U \to W^{p,q}$ is said to be *flat* with respect to $\langle \! \langle , \rangle \rangle$ if

$$
\langle \langle \beta(X,Y), \beta(Z,T) \rangle \rangle - \langle \langle \beta(X,T), \beta(Z,Y) \rangle \rangle = 0
$$

for all $X, Z \in V$ and $Y, T \in U$. It is called *null* if

$$
\langle \!\langle \beta(X,Y), \beta(Z,T) \rangle \!\rangle = 0
$$

for all $X, Z \in V$ and $Y, T \in U$. Thus a null bilinear form is necessarily flat.

Proposition 3.1. Let $f_1, f_2: M^n \to \mathbb{R}^{n+1}$ be umbilic-free immersions that share the same *Moebius metric* \langle , \rangle^* . Let S_i *and* ψ_i , $i = 1, 2$, *denote their corresponding Moebius shape operators and Blaschke tensors. Then, for each* $x \in M^n$, the bilinear form $\Theta: T_xM \times$ $T_{x}M \rightarrow \mathbb{R}^{2,2}$ *defined by*

$$
\Theta(X,Y) = \Big(\langle S_1 X, Y \rangle^*, \frac{1}{\sqrt{2}} \langle \Psi_+ X, Y \rangle^*, \langle S_2 X, Y \rangle^*, \frac{1}{\sqrt{2}} \langle \Psi_- X, Y \rangle^* \Big),
$$

where $\Psi_{+} = I \pm (\Psi_1 - \Psi_2)$, is flat with respect to the (*indefinite*) *inner product* $\langle \langle \cdot, \cdot \rangle \rangle$ in $\mathbb{R}^{2,2}$. Moreover, Θ is null for all $x \in M^n$ if and only if f_1 and f_2 are Moebius congruent.

Proof. Using (2.1) for f_1 and f_2 , we obtain

$$
\langle (\Theta(X, Y), \Theta(Z, W)) \rangle - \langle (\Theta(X, W), \Theta(Z, Y)) \rangle \n= \langle (S_1 Z \wedge^* S_1 X) Y, W \rangle^* - \langle (S_2 Z \wedge^* S_2 X) Y, W \rangle^* \n+ \langle ((\psi_1 - \psi_2) Z \wedge^* X) Y, W \rangle^* + \langle (Z \wedge^* (\psi_1 - \psi_2) X) Y, W \rangle^* \n= 0
$$

for all $x \in M^n$ and $X, Y, Z, W \in T_xM$, which proves the first assertion.

Assume now that Θ is null for all $x \in M^n$. Then

$$
0 = \langle \langle \Theta(X, Y), \Theta(Z, W) \rangle \rangle = \langle S_1 X, Y \rangle^* \langle S_1 Z, W \rangle^* - \langle S_2 X, Y \rangle^* \langle S_2 Z, W \rangle^*
$$

+
$$
\frac{1}{2} \langle (I + (\psi_1 - \psi_2))X, Y \rangle^* \langle (I + (\psi_1 - \psi_2))Z, W \rangle^*
$$

-
$$
\frac{1}{2} \langle (I - (\psi_1 - \psi_2))X, Y \rangle^* \langle (I - (\psi_1 - \psi_2))Z, W \rangle^*
$$

for all $x \in M^n$ and $X, Y, Z, W \in T_xM$. This is equivalent to

$$
\langle S_1 X, Y \rangle^* S_1 - \langle S_2 X, Y \rangle^* S_2 + \frac{1}{2} \langle (I + (\psi_1 - \psi_2))X, Y \rangle^* (I + (\psi_1 - \psi_2))
$$

$$
- \frac{1}{2} \langle (I - (\psi_1 - \psi_2))X, Y \rangle^* (I - (\psi_1 - \psi_2))
$$

$$
= \langle S_1 X, Y \rangle^* S_1 - \langle S_2 X, Y \rangle^* S_2 + \langle X, Y \rangle^* (\psi_1 - \psi_2) + \langle (\psi_1 - \psi_2)X, Y \rangle^* I
$$

= 0

for all $x \in M^n$ and $X, Y \in T_xM$. Now we use that

$$
(3.2) \qquad (n-2)\langle \psi_i X, Y \rangle^* = \text{Ric}^*(X, Y) + \langle S_i^2 X, Y \rangle^* - \frac{n^2 s^* + 1}{2n} \langle X, Y \rangle^*
$$

for all $X, Y \in T_xM$, where Ric^{*} and s^{*} are the Ricci and scalar curvatures of the Moebius metric (see, e.g., Proposition 9:20 in [\[4\]](#page-17-1)), which implies that

$$
\operatorname{tr} \psi_1 = \frac{n^2 s^* + 1}{2n} = \operatorname{tr} \psi_2.
$$

Therefore, taking traces in (3.1) yields

$$
\langle (\psi_1 - \psi_2)X, Y \rangle^* = 0
$$

for all $x \in M^n$ and $X, Y \in T_xM$. Thus $\psi_1 = \psi_2$, and hence $\langle S_1 X, Y \rangle^* S_1 = \langle S_2 X, Y \rangle^* S_2$. In particular, S_1 and S_2 commute. Let λ_i and ρ_i , $1 \le i \le n$, denote their respective eigenvalues. Then $\lambda_i \lambda_j = \rho_i \rho_j$ for all $1 \le i, j \le n$ and, in particular, $\lambda_i^2 = \rho_i^2$ for any $1 \le i \le n$. If $\lambda_1 = \rho_1 \neq 0$, then $\lambda_i = \rho_i$ for any j, and then $S_1 = S_2$. Similarly, if $\lambda_1 = -\rho_1 \neq 0$, then $S_1 = -S_2$. Therefore, in any case, f_1 and f_2 are Moebius congruent by Proposition [2.1.](#page-4-1)

Proposition 3.2. Let f_1, f_2 : $M^n \to \mathbb{R}^{n+1}$, $n \geq 5$, be umbilic-free immersions that are *Moebius deformations of each other. Then there exists a distribution* Δ of rank $(n - 2)$ *on an open and dense subset* $\mathcal{U} \subset M^n$ *such that, for each* $x \in \mathcal{U}$, $\Delta(x)$ *is contained in eigenspaces of the Moebius shape operators of both* f_1 *and* f_2 *at* x *correspondent to a common eigenvalue* (*up to sign*)*.*

Proof. First notice that, for each $x \in M^n$, the kernel

$$
\mathcal{N}(\Theta) := \{ Y \in T_x M : \Theta(X, Y) = 0 \text{ for all } X \in T_x M \}
$$

of the flat bilinear form $\Theta: T_xM \times T_xM \to \mathbb{R}^{2,2}$ given by Proposition [3.1](#page-5-1) is trivial, for if $Y \in T_xM$ belongs to $\mathcal{N}(\Theta)$, then $(\Psi_+Y, Y)^* = 0 = (\Psi_-Y, Y)^*$, which implies that $\langle Y, Y \rangle = 0$, and hence $Y = 0$.

Now, by Proposition [2.1](#page-4-1) and the last assertion in Proposition [3.1,](#page-5-1) the flat bilinear form Θ is not null on any open subset of M^n , for f_1 and f_2 are not Moebius congruent on any open subset of M^n . Let $\mathcal{U} \subset M^n$ be the open and dense subset where Θ is not null. Since $n \ge 5$, it follows from Lemma 4.22 in [\[4\]](#page-17-1) that, at any $x \in \mathcal{U}$, there exists an orthogonal decomposition $\mathbb{R}^{2,2} = W_1^{1,1} \oplus W_2^{1,1}$ according to which Θ decomposes as $\Theta = \Theta_1 + \Theta_2$, where Θ_1 is null and Θ_2 is flat with dim $\mathcal{N}(\Theta_2) \geq n - 2$.

We claim that $\Delta = \mathcal{N}(\Theta_2)$ is contained in eigenspaces of both S_1 and S_2 at any $x \in \mathcal{U}$. In order to prove this, take any $T \in \Gamma(\Delta)$, so that $\Theta(X,T) = \Theta_1(X,T)$ for any $X \in T_xM$, and hence $\langle \Theta(X, T), \Theta(Z, Y) \rangle \rangle = 0$ for all X, Y, Z $\in T_xM$. Equivalently,

$$
(3.3) \quad \langle S_1 X, T \rangle^* S_1 - \langle S_2 X, T \rangle^* S_2 + \langle (\psi_1 - \psi_2) X, T \rangle^* I + \langle X, T \rangle^* (\psi_1 - \psi_2) = 0
$$

for any $X \in T_xM$. In particular, for X orthogonal to T,

$$
\langle S_1 X, T \rangle^* S_1 - \langle S_2 X, T \rangle^* S_2 + \langle (\psi_1 - \psi_2) X, T \rangle I = 0.
$$

Assume that T is not an eigenvector of S_1 . Then there exists X orthogonal to T such that $\langle S_1 X, T \rangle^* \neq 0$. Since f_1 is umbilic-free, we must have $\langle S_2 X, T \rangle^* \neq 0$. Thus S_1 and S_2 are mutually diagonalizable. Let X_1, \ldots, X_n be an orthonormal diagonalizing basis of both S_1 and S_2 with respective eigenvalues λ_i and ρ_i , $1 \le i \le n$. Since T is not an eigenvector, there are at least two distinct eigenvalues, say, $0 \neq \lambda_1 \neq \lambda_2$, with corresponding eigenvectors X_1 and X_2 , such that $\langle X_1, T \rangle^* \neq 0 \neq \langle X_2, T \rangle^*$. Thus [\(3.3\)](#page-6-1) yields

$$
\lambda_1 \langle X_1, T \rangle^* S_1 - \rho_1 \langle X_1, T \rangle^* S_2 + \langle (\psi_1 - \psi_2) X_1, T \rangle^* I + \langle X_1, T \rangle^* (\psi_1 - \psi_2) = 0,
$$

$$
\lambda_2 \langle X_2, T \rangle^* S_1 - \rho_2 \langle X_2, T \rangle^* S_2 + \langle (\psi_1 - \psi_2) X_2, T \rangle^* I + \langle X_2, T \rangle^* (\psi_1 - \psi_2) = 0.
$$

It follows from [\(3.2\)](#page-6-2) that $(n - 2)(\psi_1 - \psi_2) = S_1^2 - S_2^2$. Hence

$$
\lambda_1 S_1 - \rho_1 S_2 + \frac{1}{n-2} (\lambda_1^2 - \rho_1^2) I + (\psi_1 - \psi_2) = 0,
$$

$$
\lambda_2 S_1 - \rho_2 S_2 + \frac{1}{n-2} (\lambda_2^2 - \rho_2^2) I + (\psi_1 - \psi_2) = 0.
$$

Taking traces in the above expressions, we obtain

$$
\lambda_1^2 - \rho_1^2 = 0 = \lambda_2^2 - \rho_2^2.
$$

On the other hand, the above relations also yield

$$
\lambda_1 \lambda_i - \rho_1 \rho_i + \frac{1}{n-2} (\lambda_i^2 - \rho_i^2) = 0,
$$

$$
\lambda_2 \lambda_i - \rho_2 \rho_i + \frac{1}{n-2} (\lambda_i^2 - \rho_i^2) = 0,
$$

for any $1 \le i \le n$. Assume first that $\lambda_1 = \rho_1$, and hence $\lambda_2 = \rho_2$. Then the preceding expressions become

$$
(\lambda_i - \rho_i) \left(\lambda_j + \frac{1}{n-2} \left(\lambda_i + \rho_i \right) \right) = 0
$$

for $j = 1, 2$ and $1 \le i \le n$. Since $S_1 \ne S_2$ and both tensors have vanishing trace, there must exist at least two directions for which $\lambda_i - \rho_i \neq 0$. For such a fixed direction, say k, we have

$$
\lambda_j + \frac{1}{n-2}(\lambda_k + \rho_k) = 0,
$$

with $j = 1, 2$. Thus $\lambda_1 = \lambda_2$, which is a contradiction.

Similarly, if we assume $\lambda_1 = -\rho_1$, we obtain that $\lambda_2 = -\rho_2$, and then

$$
(\lambda_i + \rho_i)\left(\lambda_j + \frac{1}{n-2}(\lambda_i - \rho_i)\right) = 0
$$

for $j = 1, 2$ and $1 \le i \le j$. By the same argument as above, we see that $\lambda_1 = \lambda_2$, reaching again a contradiction. Therefore T must be an eigenvector of S_1 . Since S_2 is not a multiple of the identity, taking X orthogonal to T we see from (3.3) that T must also be an eigenvector of S_2 . Given that $T \in \Gamma(\Delta)$ was chosen arbitrarily, we conclude that Δ is contained in eigenspaces of both S_1 and S_2 .

Let μ_1 and μ_2 be such that $S_1|_{\Lambda} = \mu_1 I$ and $S_2|_{\Lambda} = \mu_2 I$. By [\(3.3\)](#page-6-1), we have

$$
\mu_1^2 - \mu_2^2 + \frac{2}{n-2} (\mu_1^2 - \mu_2^2) = 0.
$$

Thus $\mu_1^2 - \mu_2^2 = 0$, and hence $\mu_1 = \pm \mu_2$.

It remains to argue that dim $\Delta = n - 2$. After changing the normal vector of either f_1 or f_2 , if necessary, one can assume that $\mu_1 = \mu_2 := \mu$. Since $S_1|_{\Delta} = \mu I = S_2|_{\Delta}$, if $\dim \Delta = n - 1$ then the condition tr $(S_1) = 0 = \text{tr}(S_2)$ would imply that $S_1 = S_2$, a contradiction.

Now we make the extra assumptions that f is not conformally surface-like on any open subset of M^n and has a principal curvature with constant multiplicity $n-2$.

Proposition 3.3. Let f_1 : $M^n \to \mathbb{R}^{n+1}$, $n \geq 5$, be a Moebius deformable hypersurface with *a principal curvature* λ *of constant multiplicity* $n - 2$. Assume that f_1 *is not conformally* surface-like on any open subset of M^n . If f_2 : $M^n \to \mathbb{R}^{n+1}$ is a Moebius deformation of f_1 , then the Moebius shape operators S_1 and S_2 of f_1 and f_2 , respectively, have con*stant eigenvalues* $\pm \sqrt{(n-1)/2n}$ *and* 0*, and the eigenspace* Δ *correspondent to* λ *as a common kernel. In particular,* λ *and the corresponding principal curvature of* f_2 *coincide with the mean curvatures of* f_1 *and* f_2 *, respectively. Moreover, the Moebius forms of* f_1 *and* f_2 *vanish on* Δ .

For the proof of Proposition [3.3,](#page-8-0) we will make use of Lemma [3.4](#page-8-1) below (see Theorem 1 in [\[2\]](#page-17-8) or Corollary 9:33 in [\[4\]](#page-17-1)), which characterizes conformally surface-like hypersurfaces among hypersurfaces of dimension n that carry a principal curvature with constant multiplicity $n - 2$ in terms of the splitting tensor of the corresponding eigenbundle. Recall that, given a distribution Δ on a Riemannian manifold M^n , its *splitting tensor* $C: \Gamma(\Delta) \rightarrow \Gamma(\text{End}(\Delta^{\perp}))$ is defined by

$$
C_T X = -\nabla_X^h T
$$

for all $T \in \Gamma(\Delta)$ and $X \in \Gamma(\Delta^{\perp})$, where $\nabla_X^h T = (\nabla_X T)_{\Delta^{\perp}}$.

Lemma 3.4. Let $f: M^n \to \mathbb{R}^{n+1}$, $n \geq 3$, be a hypersurface with a principal curvature of *multiplicity* $n - 2$ *and let* Δ *denote its eigenbundle. Then* f *is conformally surface-like if and only if the splitting tensor of* Δ *satisfies* $C(\Gamma(\Delta)) \subset \text{span}\{I\}$ *.*

Proof of Proposition [3.3](#page-8-0). Since f_1 has a principal curvature λ of constant multiplicity $n - 2$, it follows from Proposition [3.2](#page-6-0) that, after changing the normal vector field of either f_1 or f_2 , if necessary, we can assume that the Moebius shape operators S_1 and S_2 of f_1 and f_2 have a common eigenvalue μ with the same eigenbundle Δ of rank $n - 2$.

Let λ_i , $i = 1, 2$, be the eigenvalues of $S_1|_{\Delta}$. In particular, $\lambda_1 \neq \mu \neq \lambda_2$. The conditions tr $(S_1) = 0 = \text{tr}(S_2)$ and $||S_1||^2 = (n-1)/n = ||S_2||^2$ imply that S_1 and S_2 have the same eigenvalues. Then we must also have $\lambda_1 \neq \lambda_2$, for otherwise S_1 and S_2 would coincide.

Let X, $Y \in \Gamma(\Delta^{\perp})$ be an orthonormal frame of eigenvectors of $S_1|_{\Delta^{\perp}}$ with respect to g^* . Then $S_1 X = \lambda_1 X$, $S_1 Y = \lambda_2 Y$, $S_2 X = b_1 X + cY$ and $S_2 Y = cX + b_2 Y$ for some

smooth functions b_1 , b_2 and c. Since tr $(S_1) = 0 = \text{tr}(S_2)$ and $||S_1||^{*2} = (n-1)/n$ $||S_2||^{*2}$, we have

(3.4)
$$
\lambda_1 + \lambda_2 + (n-2)\mu = 0,
$$

(3.5)
$$
\lambda_1^2 + \lambda_2^2 + (n-2)\mu^2 = \frac{n-1}{n},
$$

(3.6)
$$
b_1 + b_2 + (n-2)\mu = 0,
$$

(3.7)
$$
b_1^2 + b_2^2 + 2c^2 + (n-2)\mu^2 = \frac{n-1}{n}.
$$

Thus the first assertion in the statement will be proved once we show that μ vanishes identically. The last assertion will then be an immediate consequence of [\(2.2\)](#page-4-2).

The umbilicity of Δ , together with [\(2.2\)](#page-4-2) evaluated in orthonormal sections T and S of Δ with respect to g^* , imply that $\omega_1(T) = T(\mu) = \omega_2(T)$, where ω_i is the Moebius form of f_i , $1 \le i \le 2$. Taking the derivative of [\(3.4\)](#page-9-0) and [\(3.5\)](#page-9-1) with respect to $T \in \Gamma(\Delta)$, we obtain

$$
T(\lambda_1) = \frac{(n-2)(\mu - \lambda_2)}{\lambda_2 - \lambda_1} T(\mu) \quad \text{and} \quad T(\lambda_2) = \frac{(n-2)(\lambda_1 - \mu)}{\lambda_2 - \lambda_1} T(\mu).
$$

The X and Y components of [\(2.2\)](#page-4-2) for S_1 evaluated in X and $T \in \Gamma(\Delta)$ give, respectively,

(3.8)
$$
(\mu - \lambda_1)\langle \nabla_X^* T, X \rangle^* = T(\lambda_1) - T(\mu) = -\frac{n\lambda_2}{\lambda_2 - \lambda_1}T(\mu)
$$

and

(3.9)
$$
(\mu - \lambda_2) \langle \nabla_X^* T, Y \rangle^* = (\lambda_1 - \lambda_2) \langle \nabla_T^* X, Y \rangle^*.
$$

Similarly, the X and Y components of [\(2.2\)](#page-4-2) for S_1 evaluated in Y and T give, respectively,

(3.10)
$$
(\mu - \lambda_1) \langle \nabla_Y^* T, X \rangle^* = (\lambda_2 - \lambda_1) \langle \nabla_T^* Y, X \rangle^*
$$

and

(3.11)
$$
(\mu - \lambda_2) \langle \nabla_Y^* T, Y \rangle^* = T(\lambda_2) - T(\mu) = \frac{n\lambda_1}{\lambda_2 - \lambda_1} T(\mu).
$$

We claim that S_1 and S_2 do not commute, that is, that $c \neq 0$. Assume otherwise. Then equations [\(3.4\)](#page-9-0) to [\(3.7\)](#page-9-2) imply that $S_2X = \lambda_2X$ and $S_2Y = \lambda_1Y$. Hence, the X and Y components of [\(2.2\)](#page-4-2) for S_2 evaluated in X and $T \in \Gamma(\Delta)$ give, respectively,

(3.12)
$$
(\mu - \lambda_2) \langle \nabla_X^* T, X \rangle^* = T(\lambda_2) - T(\mu)
$$

and

(3.13)
$$
(\mu - \lambda_1) \langle \nabla_X^* T, Y \rangle^* = (\lambda_2 - \lambda_1) \langle \nabla_T^* X, Y \rangle^*.
$$

Similarly, the X and Y components of [\(2.2\)](#page-4-2) for S_2 evaluated in Y and T give, respectively,

(3.14)
$$
(\mu - \lambda_2) \langle \nabla_Y^* T, X \rangle^* = (\lambda_1 - \lambda_2) \langle \nabla_T^* Y, X \rangle^*
$$

and

(3.15)
$$
(\mu - \lambda_1) (\nabla_Y^* T, Y)^* = T(\lambda_1) - T(\mu).
$$

Adding (3.9) and (3.13) yields

$$
(2\mu - \lambda_1 - \lambda_2)\langle \nabla_X^* T, Y \rangle^* = 0.
$$

Similarly, equation $s(3.10)$ $s(3.10)$ and (3.14) give

$$
(2\mu - \lambda_1 - \lambda_2)\langle \nabla^*_{Y}T, X \rangle^* = 0.
$$

If $(2\mu - \lambda_1 - \lambda_2)$ does not vanish identically, there exists an open subset $U \subset M^n$ where $\langle \nabla_X^* T, Y \rangle^* = 0 = \langle \nabla_Y^* T, X \rangle^*$. Now, from [\(3.8\)](#page-9-7) and [\(3.12\)](#page-9-8) we obtain

$$
(\lambda_2 - \lambda_1) \langle \nabla_X^* T, X \rangle^* = T(\lambda_1 - \lambda_2).
$$

Similarly, using (3.11) and (3.15) we have

$$
(\lambda_1 - \lambda_2) \langle \nabla_Y^* T, Y \rangle^* = T(\lambda_2 - \lambda_1).
$$

The preceding equations imply that the splitting tensor C^* of Δ with respect to the Moebius metric satisfies C_T^* T^* \in span $\{I\}$ for any $T \in \Gamma(\Delta|_U)$. From the relation between the Levi-Civita connections of conformal metrics, we obtain

$$
(3.16) \tC_T^* = C_T - T(\log \phi) I,
$$

where ϕ is the conformal factor of g^* with respect to the metric induced by f_1 and C is the splitting tensor of Δ corresponding to the latter metric. Therefore, we also have $C_T \in$ span $\{I\}$ for any $T \in \Gamma(\Delta|_U)$, and hence $f_1|U$ is conformally surface-like by Lemma [3.4,](#page-8-1) a contradiction. Thus $(2\mu - \lambda_1 - \lambda_2)$ must vanish everywhere, which, together with [\(3.4\)](#page-9-0), implies that also μ is everywhere vanishing. Hence $\lambda_1 = -\lambda_2$, and therefore $S_1 = -S_2$, which is again a contradiction, and proves the claim.

Now we compute

$$
\langle (\nabla_T^* S_2) X, X \rangle^* = \langle \nabla_T^* (b_1 X + cY), X \rangle^* - \langle S_2 \nabla_T^* X, X \rangle^*
$$

= $T(b_1) + c \langle \nabla_T^* Y, X \rangle^* - c \langle \nabla_T^* X, Y \rangle^* = T(b_1) + 2c \langle \nabla_T^* Y, X \rangle^*.$

In a similar way,

$$
\left\langle \left(\nabla_T^* S_2\right) Y, Y \right\rangle^* = T(b_2) + 2c \left\langle \nabla_T^* X, Y \right\rangle^*.
$$

Adding the preceding equations and using [\(3.6\)](#page-9-11) yield

(3.17)
$$
\langle (\nabla_T^* S_2) X, X \rangle^* + \langle (\nabla_T^* S_2) Y, Y \rangle^* = (2 - n) T(\mu).
$$

From [\(2.2\)](#page-4-2), we obtain

$$
\langle (\nabla_T^* S_2) X, X \rangle^* = \langle (\nabla_X^* S_2) T, X \rangle^* + T(\mu) = \mu \langle \nabla_X^* T, X \rangle^* - \langle \nabla_X^* T, S_2 X \rangle^* + T(\mu) = (\mu - b_1) \langle \nabla_X^* T, X \rangle^* - c \langle \nabla_X^* T, Y \rangle^* + T(\mu),
$$

and similarly,

$$
\langle (\nabla_T^* S_2) Y, Y \rangle^* = (\mu - b_2) \langle \nabla_Y^* T, Y \rangle^* - c \langle \nabla_Y^* T, X \rangle^* + T(\mu).
$$

Substituting the preceding expressions in [\(3.17\)](#page-10-0) gives

$$
(3.18) \ \ nT(\mu) + (\mu - b_1) \langle \nabla_X^* T, X \rangle^* + (\mu - b_2) \langle \nabla_Y^* T, Y \rangle^* = c \langle \nabla_X^* T, Y \rangle^* + c \langle \nabla_Y^* T, X \rangle^*.
$$

Let us first focus on the terms on the left-hand side of the above equation. Using (3.8) and (3.11) , we obtain

$$
nT(\mu) + (\mu - b_1)\langle \nabla_X^* T, X \rangle^* + (\mu - b_2)\langle \nabla_Y^* T, Y \rangle^*
$$

=
$$
nT(\mu) - \frac{n\lambda_2(\mu - b_1)}{(\mu - \lambda_1)(\lambda_2 - \lambda_1)}T(\mu) + \frac{n\lambda_1(\mu - b_2)}{(\mu - \lambda_2)(\lambda_2 - \lambda_1)}T(\mu)
$$

=
$$
\frac{(n-1)(\lambda_1 - b_1)}{(\mu - \lambda_2)(\lambda_2 - \lambda_1)}T(\mu).
$$

For the right-hand side of (3.18) , using (3.9) and (3.10) we have

$$
c(\langle \nabla_X^* T, Y \rangle^* + \langle \nabla_Y^* T, X \rangle^*) = c\left(\frac{\lambda_1 - \lambda_2}{\mu - \lambda_2} \langle \nabla_T^* X, Y \rangle^* + \frac{\lambda_2 - \lambda_1}{\mu - \lambda_1} \langle \nabla_T^* Y, X \rangle^*\right)
$$

=
$$
c \frac{(\lambda_1 - \lambda_2)(\mu - \lambda_1 + \mu - \lambda_2)}{(\mu - \lambda_1)(\mu - \lambda_2)} \langle \nabla_T^* X, T \rangle^* = c \frac{n\mu(\lambda_1 - \lambda_2)}{(\mu - \lambda_1)(\mu - \lambda_2)} \langle \nabla_T^* X, Y \rangle^*.
$$

Therefore [\(3.17\)](#page-10-0) becomes

(3.19)
$$
(n-1)(b_1 - \lambda_1)T(\mu) = nc\mu(\lambda_1 - \lambda_2)^2 \langle \nabla_T^* X, T \rangle^*.
$$

Now evaluate [\(2.2\)](#page-4-2) for S_2 in X and T. More specifically, the Y component of that equation is

$$
T(c) = (\mu - b_2) \langle \nabla_X^* T, Y \rangle^* - c \langle \nabla_X^* T, X \rangle + (b_2 - b_1) \langle \nabla_T^* X, Y \rangle^*.
$$

Substituting (3.8) and (3.9) in the above equation, and using (3.4) and (3.6) , we obtain

$$
T(c) = \frac{(\mu - b_2)(\lambda_1 - \lambda_2)}{\mu - \lambda_2} \left\langle \nabla_T^* X, Y \right\rangle^* + \frac{cn\lambda_2}{(\mu - \lambda_1)(\lambda_2 - \lambda_1)} T(\mu) + (b_2 - b_1) \left\langle \nabla_T^* X, Y \right\rangle^* = \frac{\mu \lambda_1 - \mu \lambda_2 - b_2 \lambda_1 + b_2 \lambda_2 + \mu b_2 - \mu b_1 - \lambda_2 b_2 + b_1 \lambda_2}{\mu - \lambda_2} \left\langle \nabla_T^* X, Y \right\rangle^* + \frac{cn\lambda_2}{(\mu - \lambda_1)(\lambda_2 - \lambda_1)} T(\mu) (3.20) = \frac{n\mu(\lambda_1 - b_1)}{\mu - \lambda_2} \left\langle \nabla_T^* X, Y \right\rangle^* + \frac{cn\lambda_2}{(\mu - \lambda_1)(\lambda_2 - \lambda_1)} T(\mu).
$$

Similarly, the X component of [\(2.2\)](#page-4-2) for S_2 evaluated in Y and T gives

$$
T(c) = (\mu - b_1) (\nabla_Y^* T, X)^* - c (\nabla_Y^* T, Y)^* + (b_2 - b_1) (\nabla_Y^* X, Y)^*.
$$

Substituting (3.10) and (3.11) in the above equation, we obtain

(3.21)
$$
T(c) = -\frac{cn\lambda_1}{(\mu - \lambda_2)(\lambda_2 - \lambda_1)}T(\mu) + \frac{n\mu(\lambda_1 - b_1)}{\mu - \lambda_1} \langle \nabla_T^* X, Y \rangle^*.
$$

Using (3.5) , it follows from (3.20) and (3.21) that

(3.22)
$$
(n-1)cT(\mu) = n\mu(\lambda_1 - b_1)(\lambda_1 - \lambda_2)^2 \langle \nabla_T^* X, Y \rangle^*.
$$

Comparing [\(3.19\)](#page-11-2) and [\(3.22\)](#page-12-1) yields

$$
\mu\left((\lambda_1 - b_1)^2 + c^2\right) \langle \nabla_T^* X, Y \rangle^* = 0.
$$

Since $(\lambda_1 - b_1)^2 + c^2 \neq 0$, for otherwise the immersions would be Moebius congruent, then $\mu \langle \nabla_T^* X, Y \rangle^* = 0$.

If μ does not vanish identically, then there is an open subset U where $(\nabla_T^* X; Y)^* = 0$ for any $T \in \Gamma(\Delta)$. Then [\(3.9\)](#page-9-3) and [\(3.10\)](#page-9-5) imply that the splitting tensor of Δ with respect to the Moebius metric satisfies C_T^* T^* \in span $\{I\}$ for any $T \in \Gamma(\Delta)$. As before, this implies that the splitting tensor of Δ with respect to the metric induced by f_1 also satisfies $C_T \in$ span $\{I\}$ for any $T \in \Gamma(\Delta)$, and hence $f_1|_U$ is conformally surface-like by Lemma [3.4,](#page-8-1) a contradiction. Thus μ must vanish identically.

3.2. Proof of Theorem [1.1](#page-3-0)

In this subsection, we prove Theorem [1.1.](#page-3-0) First we recall one further definition.

Let $f: M^n \to \mathbb{R}^{n+1}$, $n \geq 3$, be a hypersurface that carries a principal curvature of constant multiplicity $n - 2$ with corresponding eigenbundle Δ . Let $C: \Gamma(\Delta) \to \Gamma(\text{End}(\Delta^{\perp}))$ be the splitting tensor of Δ . Then f is said to be *hyperbolic* (respectively, *parabolic* or *elliptic*) if there exists $J \in \Gamma(\text{End}(\Delta^{\perp}))$ satisfying the following conditions:

- (i) $J^2 = I$ and $J \neq I$ (respectively, $J^2 = 0$, with $J \neq 0$, or $J^2 = -I$),
- (ii) $\nabla_T^h J = 0$ for all $T \in \Gamma(\Delta)$,
- (iii) $C(\Gamma(\Delta)) \subset \text{span}\{I, J\}$, but $C(\Gamma(\Delta)) \not\subset \text{span}\{I\}$.

Proof of Theorem [1.1](#page-3-0). Let f_2 : $M^n \to \mathbb{R}^{n+1}$ be a Moebius deformation of $f_1 := f$. By Proposition [3.3,](#page-8-0) the Moebius shape operators S_1 and S_2 of f_1 and f_2 , respectively, share a common kernel Δ of dimension $n-2$. Let S_i , $i = 1, 2$, denote also the restriction $S_i|_{\Delta}$. and define $D \in \Gamma(\text{End}(\Delta^{\perp}))$ by

$$
D=S_1^{-1}S_2.
$$

It follows from Proposition [3.3](#page-8-0) that det $D = 1$ at any point of M^n , while Proposition [2.1](#page-4-1) implies that D cannot be the identity endomorphism up to sign on any open subset $U \subset M^n$, for otherwise $f_1|_U$ and $f_2|_U$ would be Moebius congruent by Lemma [3.4.](#page-8-1) Therefore, we can write $D = aI + bJ$, where b does not vanish on any open subset of M^n , and $J \in \Gamma(\text{End}(\Delta^{\perp}))$ satisfies $J^2 = \varepsilon I$, with $\varepsilon \in \{1, 0, -1\}$, $J \neq I$ if $\varepsilon = 1$, and $J \neq 0$ if $\varepsilon = 0$.

From the symmetry of S_2 and the fact that b does not vanish on any open subset of M^n , we see that S_1J must be symmetric. Moreover, given that tr $S_1 = 0 = \text{tr } S_2$, also $\text{tr } S_1 J = 0.$

Assume first that $J^2 = 0$. Let $X, Y \in \Gamma(\Delta^{\perp})$ be orthogonal vector fields, with Y of unit length (with respect to the Moebius metric g^*), such that $JX = Y$ and $JY = 0$. Replacing J by $||X||^*J$, if necessary, we can assume that also X has unit length. Let $\alpha, \beta, \gamma \in C^{\infty}(M)$ be such that $S_1 X = \alpha X + \beta Y$ and $S_1 Y = \beta X + \gamma Y$, so that $S_1 J X =$ $\beta X + \gamma Y$ and $S_1 J Y = 0$. From the symmetry of $S_1 J$ and the fact that tr $S_1 J = 0$, we obtain $\beta = 0 = \gamma$, and hence $\alpha = \text{tr } S_1 = 0$. Thus $S_1 = 0$, which is a contradiction.

Now assume that $J^2 = I$, $J \neq I$. Let X, Y be a frame of unit vector fields (with respect to g^*) satisfying $JX = X$ and $JY = -Y$. Write $S_1X = \alpha X + \beta Y$ and $S_1Y = \gamma X + \delta Y$ for some $\alpha, \beta, \gamma, \delta \in C^{\infty}(M)$, so that $S_1 J X = \alpha X + \beta Y$ and $S_1 J Y = -\gamma X - \delta Y$. Since tr $S_1J = 0 =$ tr S_1 , then $\alpha = 0 = \delta$. The symmetry of S_1 and S_2J implies that $\beta = 0 = \gamma$, which is again a contradiction.

Therefore, the only possible case is that $J^2 = -I$. Let $X, Y \in \Gamma(\Delta^{\perp})$ be a frame of unit vector fields such that $JX = Y$ and $JY = -X$. Write, as before, $S_1X = \alpha X + \beta Y$ and $S_1 Y = \gamma X + \delta Y$ for some $\alpha, \beta, \gamma, \delta \in C^{\infty}(M)$. Then $S_1 J X = \gamma X + \delta Y$ and $S_1 J Y =$ $-\alpha X - \beta Y$, hence $\beta = \gamma$, for tr $S_1 J = 0$. From the symmetry of S_1 , we obtain

$$
\langle S_1 JX, Y \rangle = \langle JX, S_1 Y \rangle = \langle Y, S_1 Y \rangle = \gamma \langle X, Y \rangle + \delta = \beta \langle X, Y \rangle + \delta,
$$

and similarly,

$$
\langle S_1 J Y, X \rangle = -\alpha - \beta \langle X, Y \rangle.
$$

Comparing the two preceding equations, and taking into account the symmetry of S_1J and the fact that tr $S_1 = 0$, we obtain that $\beta \langle X, Y \rangle = 0$. If β is nonzero, then X and Y are orthogonal to each other. This is also the case if β , hence also γ , is zero, for in this case X and Y are eigenvectors of S_1 . Thus, in any case, we conclude that J acts as a rotation of angle $\pi/2$ on Δ^{\perp} .

Equation [\(2.2\)](#page-4-2) and the fact that $\omega_i |_{\Delta} = 0$ imply that the splitting tensor of Δ with respect to the Moebius metric satisfies

$$
\nabla_T^{*h} S_i = S_i C_T^*
$$

for all $T \in \Gamma(\Delta)$ and $1 \le i \le 2$, where

$$
(\nabla_T^{*h} S_i) X = \nabla_T^{*h} S_i X - S_i \nabla_T^{*h} X
$$

for all $X \in \Gamma(\Delta^{\perp})$ and $T \in \Gamma(\Delta)$. Here $\nabla_T^{*h} X = (\nabla_T^* X)_{\Delta^{\perp}}$. In particular,

$$
S_i C_T^* = C_T^{*t} S_i, \quad 1 \le i \le 2.
$$

Therefore,

$$
S_1 D C_T^* = S_2 C_T^* = C_T^{*t} S_2 = C_T^{*t} S_1 D = S_1 C_T^* D,
$$

and hence

$$
[D, C_T^*] = 0.
$$

This implies that C_T^* T^* commutes with J, and hence C^*_T T^* \in span $\{I, J\}$ for any $T \in \Gamma(\Delta)$. It follows from [\(3.16\)](#page-10-1) that also the splitting tensor C of Δ corresponding to the metric induced by f satisfies $C_T \in \text{span}\{I, J\}$ for any $T \in \Gamma(\Delta)$. Moreover, by Lemma [3.4](#page-8-1) and the assumption that f is not surface-like on any open subset, we see that $C(\Gamma(\Delta)) \not\subset$ span $\{I\}$ on any open subset. Now, since J acts as a rotation of angle $\pi/2$ on Δ^{\perp} , then $\nabla_T^h J = 0$. We conclude that f is elliptic with respect to J.

By Proposition [3.3,](#page-8-0) the central sphere congruence $S: M^n \to \mathbb{S}^{n+2}_{1,1}$ of f is a twoparameter congruence of hyperspheres, which therefore gives rise to a surface s: $L^2 \rightarrow$ $\int_{1,1}^{n+2}$ such that $s = S \circ \pi$, where $\pi: M^n \to L^2$ is the (local) quotient map onto the space of leaves of Δ . Since $\nabla_T^h J = 0 = [C_T, J]$ for any $T \in \Gamma(\Delta)$, it follows from Corollary 11.7 in [\[4\]](#page-17-1) that J is projectable with respect to π , that is, there exists $\bar{J} \in$ End (TL) such that $\overline{J} \circ \pi_* = \pi_* \circ J$. In particular, the fact that $J^2 = -I$ implies that $\overline{J}^2 = -I$, where we denote also by I the identity endomorphism of TL .

Now observe that, since f_2 shares with f_1 the same Moebius metric, its induced metric is conformal to the metric induced by f_1 . Moreover, f_2 is not Moebius congruent to f_1 on any open subset of M^n and f_1 has a principal curvature of constant multiplicity $(n-2)$. Thus f_1 is a so-called *Cartan hypersurface*. By the proof of the classification of Cartan hypersurfaces given in Chapter 17 of [\[4\]](#page-17-1) (see Lemma 17:4 therein), the surface s is *elliptic* with respect to \bar{J} , that is, for all $\bar{X}, \bar{Y} \in \mathcal{X}(L)$ we have

(3.23)
$$
\alpha^{s}(\bar{J}\bar{X},\bar{Y})=\alpha^{s}(\bar{X},\bar{J}\bar{Y}).
$$

We claim that \bar{J} is an orthogonal tensor, that is, it acts as a rotation of angle $\pi/2$ on each tangent space of L^2 . The minimality of s will then follow from this, the fact that $\bar{J}^2 = -I$, and [\(3.23\)](#page-14-0).

In order to show the orthogonality of \bar{J} , we use the fact that the metric $\langle \cdot, \cdot \rangle'$ on L^2 induced by s is related to the metric of $Mⁿ$ by

(3.24)
$$
\langle \bar{Z}, \bar{W} \rangle' = \langle (A - \lambda I)Z, (A - \lambda I)W \rangle
$$

for all $\bar{Z}, \bar{W} \in \mathcal{X}(L)$, where A is the shape operator of f, λ is the principal curvature of f having Δ as its eigenbundle, which coincides with the mean curvature H of f by Proposition [3.3,](#page-8-0) and Z and W are the horizontal lifts of \overline{Z} and \overline{W} , respectively. Notice that $(A - \lambda I)$ is a multiple of S_1 . Since S_1J is symmetric, then also $(A - \lambda I)J$ is symmetric. Therefore, given any $\bar{X} \in \mathcal{X}(L)$ and denoting by $X \in \Gamma(\Delta^{\perp})$ its horizontal lift, we have

$$
\langle \bar{X}, \bar{J}\bar{X}\rangle' = \langle (A - \lambda I)X, (A - \lambda I)JX \rangle = \langle (A - \lambda I)J(A - \lambda I)X, X \rangle
$$

= $\langle J(A - \lambda I)X, (A - \lambda I)X \rangle = 0$,

where in the last equality we have used that J acts as a rotation of angle $\pi/2$ on Δ^{\perp} . Using again the symmetry of $(A - \lambda I)J$, the proof of the orthogonality of \overline{J} is completed by noticing that

$$
\langle \bar{J}\bar{X}, \bar{J}\bar{X}\rangle' = \langle (A - \lambda I)JX, (A - \lambda I)JX \rangle = \langle J(A - \lambda I)JX, (A - \lambda I)X \rangle
$$

=
$$
\langle JJ^{t}(A - \lambda I)X, (A - \lambda I)X \rangle = -\langle J^{2}(A - \lambda I)X, (A - \lambda I)X \rangle = \langle \bar{X}, \bar{X} \rangle'.
$$

Conversely, assume that the central sphere congruence of $f: M^n \to \mathbb{R}^{n+1}$, with M^n simply connected, is determined by a space-like minimal surface $s: L^2 \to \mathbb{S}^{n+2}_{1,1}$. Let $\overline{J} \in$ $\Gamma(\text{End}(TL))$ represent a rotation of angle $\pi/2$ on each tangent space. Then $\bar{J}^2 = -I$ and the second fundamental form of s satisfies (3.23) by the minimality of s. In particular, s is elliptic with respect to J. By Lemma 17.4 in [\[4\]](#page-17-1), the hypersurface f is elliptic with respect to the lift $J \in \Gamma(\text{End}(\Delta^{\perp}))$ of \overline{J} , where Δ is the eigenbundle correspondent to the principal curvature λ of f with multiplicity $n - 2$, which coincides with its mean curvature. Therefore, the splitting tensor of Δ satisfies $C_T \in \text{span}\{I, J\}$ for any $T \in \Gamma(\Delta)$. Since $(A - \lambda I) C_T$ is symmetric for any $T \in \Gamma(\Delta)$, as follows from the Codazzi equation, and $C(\Gamma(\Delta)) \not\subset$ span $\{I\}$ on any open subset, for f is not conformally surface-like on any open subset, then $(A - \lambda I)J$ is also symmetric.

By Theorem 17.5 in [\[4\]](#page-17-1), the set of conformal deformations of f is in one-to-one correspondence with the set of tensors $\overline{D} \in \Gamma(\text{End}(TL))$ with det $\overline{D} = 1$ that satisfy the Codazzi equation

$$
\left(\nabla'_{\bar{X}}\bar{D}\right)\bar{Y}-\left(\nabla'_{\bar{Y}}\bar{D}\right)\bar{X}=0
$$

for all $\bar{X}, \bar{Y} \in \mathcal{X}(L)$, where ∇' is the Levi-Civita connection of the metric induced by s. For a general elliptic hypersurface, this set either consists of a one-parameter family (continuous class) or of a single element (discrete class; see Section 11:2 and Exercise 11:3 in [\[4\]](#page-17-1)). The surface s is then said to be of the complex type of first or second species, respectively. For a minimal surface $s: L^2 \to \mathbb{S}^{n+2}_{1,1}$, each tensor $\bar{J}_{\theta} = \cos \theta I + \sin \theta \bar{J}$, $\theta \in [0, 2\pi)$, satisfies both the condition det $\bar{J}_\theta = 1$ and the Codazzi equation, since it is a parallel tensor in L^2 . Thus $\{\bar{J}_{\theta}\}_{{\theta}\in [0,2\pi)}$ is *the* one-parameter family of tensors in L^2 having determinant one and satisfying the Codazzi equation. In particular, the surface s is of the complex type of first species. Therefore, the hypersurface f admits a one-parameter family of conformal deformations, each of which determined by one of the tensors $\bar{J}_{\theta} \in \text{End}(TL)$, $\theta \in [0, 2\pi)$. The proof of Theorem [1.1](#page-3-0) will be completed once we prove that any of such conformal deformations shares with f the same Moebius metric.

Let $f_\theta: M^n \to \mathbb{R}^{n+1}$ be the conformal deformation of f determined by \bar{J}_θ . Let F_{θ} : $M^{n} \rightarrow \mathbb{V}^{n+2}$ be the *isometric light-cone representative* of f_{θ} , that is, F_{θ} is the isometric immersion of Mⁿ into the light-cone $\mathbb{V}^{n+2} \subset \mathbb{L}^{n+3}$ given by $F_{\theta} = \varphi_{\theta}^{-1}(\Psi \circ f_{\theta})$, where φ_{θ} is the conformal factor of the metric $\langle \cdot, \cdot \rangle_{\theta}$ induced by f_{θ} with respect to the metric $\langle \cdot, \cdot \rangle$ of Mⁿ, that is, $\langle \cdot, \cdot \rangle_{\theta} = \varphi_{\theta}^2 \langle \cdot, \cdot \rangle$, and $\Psi : \mathbb{R}^n \to \mathbb{V}^{n+2}$ is the isometric embedding of \mathbb{R}^n into \mathbb{V}^{n+2} given by [\(1.3\)](#page-2-1). As shown in the proof of Lemma 17.2 in [\[4\]](#page-17-1), as part of the proof of the classification of Cartan hypersurfaces of dimension $n \geq 5$ given in Chapter 17 therein, the second fundamental form of F_{θ} is given by

$$
(3.25) \qquad \alpha^{F_{\theta}}(X,Y) = \langle AX,Y \rangle \mu - \langle (A - \lambda I)X,Y \rangle \zeta + \langle (A - \lambda I)J_{\theta}X,Y \rangle \overline{\zeta}
$$

for all $X, Y \in \mathcal{X}(M)$, where $\{\mu, \zeta, \bar{\zeta}\}\$ is an orthonormal frame of the normal bundle of F_{θ} in \mathbb{L}^{n+3} with μ space-like, $\lambda = -(\mu, F_{\theta})^{-1}$ and $\zeta = \lambda F_{\theta} + \mu$ (hence $\langle \zeta, \zeta \rangle = -1$). Here J_{θ} is the horizontal lift of \bar{J}_{θ} , which has been extended to TM by setting $J_{\theta}|_{\Delta} = I$.

Let $\bar{X}, \bar{Y} \in \mathcal{X}(L)$ be an orthonormal frame such that $\bar{J}\bar{X} = \bar{Y}$ and $\bar{J}\bar{Y} = -\bar{X}$, and let X, $Y \in \Gamma(\Delta^{\perp})$ be the respective horizontal lifts. It follows from [\(3.24\)](#page-14-1) that $\{(A \lambda I$)X, $(A - \lambda I)Y$ is an orthonormal frame of Δ^{\perp} . From the symmetry of $(A - \lambda I)J$ and $(A - \lambda I)$, we have

$$
\langle J(A - \lambda I)X, (A - \lambda I)X \rangle = \langle (A - \lambda I)J(A - \lambda I)X, X \rangle
$$

= $\langle (A - \lambda I)X, (A - \lambda I)JX \rangle = \langle \overline{X}, \overline{J}\overline{X} \rangle' = 0.$

In a similar way, one verifies that $\langle J(A - \lambda I)Y, (A - \lambda I)Y \rangle = 0$ and

$$
\langle J(A - \lambda I)Y, (A - \lambda I)X \rangle = 1 = -\langle J(A - \lambda I)X, (A - \lambda I)Y \rangle.
$$

Thus J acts on Δ^{\perp} as a rotation of angle $\pi/2$. The symmetry of both $(A - \lambda I)J$ and $(A - \lambda I)$ implies that tr. $(A - \lambda I) = 0 = \text{tr}(A - \lambda I)J$, hence

(3.26) tr.A I /J D 0

for all $\theta \in [0, 2\pi)$.

Now we use the relation between the second fundamental forms of f_θ and F_θ , given by equation 9:32 in [\[4\]](#page-17-1), namely,

$$
(3.27) \qquad \alpha^{F_{\theta}}(X,Y) = \langle \varphi(A_{\theta} - H_{\theta}I)X, Y \rangle_2 \tilde{N} - \psi(X,Y)F_{\theta} - \langle X, Y \rangle \zeta_2,
$$

where $\langle \cdot, \cdot \rangle_{\theta} = \varphi_{\theta}^2 \langle \cdot, \cdot \rangle$ is the metric induced by f_{θ} , A_{θ} and H_{θ} are its shape operator and mean curvature, respectively, ψ is a certain symmetric bilinear form, $\tilde{N} \in \Gamma(N_F M)$, with $\langle \tilde{N}, F_{\theta} \rangle = 0$, is a unit space-like vector field, and $\zeta_2 \in \Gamma(N_F M)$ satisfies $\langle \tilde{N}, \zeta_2 \rangle = 0$ $\langle \zeta_2, \zeta_2 \rangle$ and $\langle F_\theta, \zeta_2 \rangle = 1$. Equations [\(3.25\)](#page-15-0) and [\(3.27\)](#page-16-0) give

$$
\langle (A - \lambda I)J_{\theta} X, Y \rangle = \langle \alpha^{F_{\theta}}(X, Y), \overline{\xi} \rangle = \varphi_{\theta} \langle (A_{\theta} - H_{\theta} I)X, Y \rangle \langle \overline{N}, \overline{\xi} \rangle - \langle X, Y \rangle \langle \overline{\xi}_2, \overline{\xi} \rangle
$$

for all $X, Y \in \mathfrak{X}(M)$, or equivalently,

(3.28)
$$
(A - \lambda I)J_{\theta} = \varphi_{\theta} \langle \tilde{N}, \bar{\zeta} \rangle (A_{\theta} - H_{\theta}I) - \langle \zeta_{2}, \bar{\zeta} \rangle I.
$$

Using that

$$
\operatorname{tr}(A - \lambda I)J_{\theta} = 0 = \operatorname{tr}(A_{\theta} - H_{\theta}I),
$$

we obtain from the preceding equation that $\langle \zeta_2, \bar{\zeta} \rangle = 0$. Thus $\bar{\zeta} \in \text{span}\{F_\theta, \zeta_2\}^{\perp}$, and hence $\xi = \pm N$. Therefore, [\(3.28\)](#page-16-1) reduces to

(3.29)
$$
(A - \lambda I)J_{\theta} = \pm \varphi (A_{\theta} - H_{\theta}I).
$$

In particular, $(A_{\theta} - H_{\theta}I)|_{\Delta} = 0$, hence also $S_{\theta}|_{\Delta} = 0$, where $S_{\theta} = \phi_{\theta}^{-1}(A_{\theta} - H_{\theta}I)$ is the Moebius shape operator of f_θ , with ϕ_θ given by [\(1.1\)](#page-0-0) for f_θ . Since the Moebius shape operator of an umbilic-free immersion is traceless and has constant norm $\sqrt{(n-1)/n}$, then S_θ must have constant eigenvalues $\sqrt{(n-1)/2n}$, $-\sqrt{(n-1)/2n}$ and 0. The same holds for the Moebius second fundamental form S_1 of f, which has also Δ as its kernel. We conclude that the eigenvalues of $(A_{\theta} - H_{\theta} I)|_{\Delta^{\perp}}$ are

$$
\delta_1 = \phi_\theta \sqrt{(n-1)/2n}
$$
 and $\delta_2 = -\phi_\theta \sqrt{(n-1)/2n}$

and, similarly, that the eigenvalues of $(A - \lambda I)|_{\Delta}$ are

$$
\lambda_1 = \phi_1 \sqrt{(n-1)/2n}
$$
 and $\lambda_2 = -\phi_1 \sqrt{(n-1)/2n}$,

where ϕ_1 is given by [\(1.1\)](#page-0-0) with respect to f. On the other hand, since

$$
\det((A - \lambda I)J_{\theta}) = \det((A - \lambda I)),
$$

for det $J_\theta = 1$, and both $(A - \lambda I)$ and $(A - \lambda I)J_\theta$ are traceless (see [\(3.26\)](#page-16-2)), it follows that $(A - \lambda I)$ and $(A - \lambda I)J_{\theta}$ have the same eigenvalues. This and [\(3.29\)](#page-16-3) imply that

$$
\phi_1^2 = \varphi_\theta^2 \, \phi_\theta^2,
$$

hence the Moebius metrics of f and f_θ coincide.

Г

Funding. This research was initiated while the first author was supported by CAPES-PNPD Grant 88887.469213/2019-00, and was finished under the support of Fapesp Grant 2022/05321-9. The second author was partially supported by Fapesp Grant 2016/23746-6 and CNPq Grant 307016/2021-8.

References

- [1] Cartan, E.: [La déformation des hypersurfaces dans l'espace conforme réel à](https://doi.org/10.24033/bsmf.975) $n > 5$ dimensions. *Bull. Soc. Math. France* 45 (1917), 57–121.
- [2] Dajczer, M., Florit, L. A. and Tojeiro, R.: [On a class of submanifolds carrying an extrinsic](https://doi.org/10.1007/BF02773380) [totally umbilical foliation.](https://doi.org/10.1007/BF02773380) *Israel J. Math.* 125 (2001), 203–220.
- [3] Dajczer, M. and Tojeiro, R.: [On Cartan's conformally deformable hypersurfaces.](https://doi.org/10.1307/mmj/1030132593) *Michigan Math. J.* 47 (2000), no. 3, 529–557.
- [4] Dajczer, M. and Tojeiro, R.: *[Submanifold theory. Beyond an introduction](https://doi.org/10.1007/978-1-4939-9644-5)*. Universitext, Springer, New York, 2019.
- [5] Guo, Z., Li, T., Lin, L., Ma, X. and Wang, C.: [Classification of hypersurfaces with constant](https://doi.org/10.1007/s00209-011-0860-4) [Möbius curvature in](https://doi.org/10.1007/s00209-011-0860-4) \mathbb{S}^{m+1} . *Math. Z.* 271 (2012), no. 1-2, 193-219.
- [6] Hertrich-Jeromin, U.: *[Introduction to Möbius differential geometry](https://doi.org/10.1017/CBO9780511546693)*. London Mathematical Society Lecture Note Series 300, Cambridge University Press, Cambridge, 2003.
- [7] Jimenez, M. I. and Tojeiro, R.: Infinitesimally Moebius bendable hypersurfaces. Preprint 2023, arXiv:[2307.16341.](https://arxiv.org/abs/2307.16341)
- [8] Li, T., Ma, X. and Wang, C.: [Deformation of hypersurfaces preserving the Möbius metric and](https://doi.org/10.1016/j.aim.2014.02.002) [a reduction theorem.](https://doi.org/10.1016/j.aim.2014.02.002) *Adv. Math.* 256 (2014), 156–205.
- [9] Wang, C.: [Moebius geometry of submanifolds in](https://doi.org/10.1007/s002290050080) Sⁿ. Manuscripta Math. 96 (1998), no. 4, 517–534.

Received August 24, 2022. Published online August 5, 2023.

Miguel Ibieta Jimenez

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo Av. Trabalhador São Carlense 400, 13566-590 São Carlos, Brazil; mibieta@icmc.usp.br

Ruy Tojeiro

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo Av. Trabalhador São Carlense 400, 13566-590 São Carlos, Brazil; tojeiro@icmc.usp.br