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On Gaussian decay rates of harmonic oscillators and
equivalences of related Fourier uncertainty principles

Aleksei Kulikov, Lucas Oliveira and João Pedro Gonçalves Ramos

Abstract. We make progress on a question posed by Vemuri on the optimal Gaussian
decay of harmonic oscillators, proving the original conjecture up to an arithmetic
progression of times. The techniques used are a suitable translation of the problem at
hand in terms of the free Schrödinger equation, the machinery developed in the work
of Cowling, Escauriaza, Kenig, Ponce and Vega (2010), and a lemma which relates
decay on average to pointwise decay.

Such a lemma produces many more consequences in terms of equivalences of
uncertainty principles. Complementing such results, we provide endpoint results in
particular classes induced by certain Laplace transforms, both to the decay lemma
and to the remaining cases of Vemuri’s conjecture, shedding light on the full endpoint
question.

1. Introduction

1.1. Historical background

Uncertainty principles have permeated mathematics and physics for many years, since the
introduction of such concept by Heisenberg in the context of quantum mechanics. For the
Fourier transform

(1.1) yf .�/ D

Z
R
e�2�ix��f .x/ dx ;

Heisenberg’s uncertainty principle can be stated simply asZ
R
jf .x/j2 dx � 4�

� Z
R
jxj2 jf .x/j2 dx

�1=2� Z
R
j�j2 j yf .�/j2 d�

�1=2
:

This inequality states essentially that we cannot concentrate too much on the space and
frequency sides at the same time, and has the physical interpretation that we cannot make
measurements about the position and momentum of a particle (in the probabilistic sense)
with high precision for both.
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Further than Heisenberg’s initial contribution, there are many other instances and kinds
of uncertainty principles. Benedicks’s uncertainty principle [5], for example, predicts that
for f 2 L1.Rd / the measures of the sets ¹x 2 Rd W f .x/ ¤ 0º and ¹x 2 Rd W yf .x/ ¤ 0º
cannot be both finite, unless f � 0. The Amrein–Berthier uncertainty principle [1] com-
plements the previous one stating that for any f 2 L2.Rd / and any pair of finite measure
sets E;F � Rd , there is a positive constant C D C.E; F / such that

kf k2
L2
D C

� Z
Ec
jf .x/j2 dx C

Z
F c
j yf .x/j2 dx

�
:

Recently, a different kind of uncertainty principle related to sign changes of the Fourier
transform has attracted some attention. For example, in [8], Bourgain, Clozel and Kahane
have proved that f and yf cannot simultaneously concentrate negative mass on arbitrarily
small neighbourhoods of the origin. For further developments in this direction, see [11,
24–26], and the references therein.

In this work we are concerned with uncertainty principles that are, to some extent,
related to the properties of the Gaussian. The first such result was obtained by Hardy [27]
in 1933, and can be stated as follows: if jf .x/j � Ae��x

2
and j yf .x/j � Be��x

2
, then

there is a constant C such that f .x/ D yf .x/ D Ce��x
2
. In fact, Hardy proved more than

this:
• if f and yf are of order O.jxjme��x

2
/ for some m and for large x, then f is a linear

combination of Hermite functions;
• if f is O.e��x

2
/ and yf is o.e��x

2
/ (or vice versa), then f D 0.

On the other hand, it is not enough to assume that jf .x/j � Ae���x
2

and j yf .�/j �
Ae����

2
for some 0 < �; � < 1, since the nontrivial functions f satisfying these condi-

tions form an infinite dimensional space.
The techniques coming from complex analysis (to be precise, the Phragmén–Lindelöf

principle) were decisive in the proof of the above result, as well as in the proof of the
following extension obtained by Beurling in 1964 (whose proof seems to have been lost,
until Hörmander [29] in 1991 provided a full proof, based on personal notes taken during
a discussion of this result with Beurling himself [6]): if f 2 L1.R/ is such that

B.f; yf / WD

Z
R

Z
R
jf .x/j j yf .y/j e2�jxyj dxdy <1 ;

then f � 0.
It is worth mentioning that interesting generalisations of this result have been recently

obtained by Bonami–Demange [7], Hedenmalm [28] and Gao [20].
In a different direction, and also relevant to our current work, are the generalisations

of Hardy’s uncertainty principle where we can combine different kinds of Gaussians and
different control of Lp-norms, where Hardy’s theorem can be seen as an L1-norm ver-
sion of a more general principle. Major contributions along these lines were obtained by
Cowling and Price [13] and Morgan [31].

In our context, Cowling–Price’s uncertainty principle can be stated in the following
way: kfeax

2
kLp <1 and kfebx

2
kLq <1 imply f � 0 when ab > �2. When ab < �2,

in the same way as in Hardy’s theorem, there are nontrivial examples of functions f
satisfying these conditions.
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More recently, Hardy’s uncertainty principle has been shown to be related to the study
of the decay behaviour of evolution equations. Indeed, let us consider the question of
uniqueness for solutions of a Schrödinger evolution of the kind

(1.2) i
@u

@t
C
@2u

@x2
C F.u; u/ D 0:

We are interested in determining when two solutions u1 and u2 of (1.2) coincide, given
they are equal on a set S � .0;C1/ �R. Escauriaza, Kenig, Ponce and Vega [15] exten-
ded such a study by observing that Hardy’s result may be reformulated as the property
that, if a solution to

(1.3) i
@u

@t
C
@2u

@x2
D 0

has sufficient Gaussian decay at two different times, it must vanish identically. In line with
this, exploring techniques and ideas based on the convexity of solutions of Schrödinger
equations such as (1.2) with additional Gaussian control, in [17] Escauriaza, Kenig, Ponce
and Vega observed that such solutions should satisfy a weak version of Hardy’s uncertainty
principle. In [12], Cowling, Escauriaza, Kenig, Ponce and Vega found a real variable proof
of Hardy’s and Cowling–Price’s uncertainty principles. Their result may be summarised as
follows: if v.x; t/ is a solution of the free Schrödinger equation (1.3), with initial condition
v.x; 0/DO.e�˛x

2
/; and such that v.x;T /DO.e�ˇx

2
/ for some T > 0 with T˛ˇ > �2,

then v � 0.

1.2. Main results

We were able to show that Lp-bounds on a function and its Fourier transform imply
pointwise bounds up to an " in the exponent. For example, we prove that ifZ

Rn

jf .x/j2 e2�˛jxj
2

dx <1 and
Z

Rn

j yf .x/j2 e2�˛jxj
2

dx <1

then, for each " > 0 there is a positive constant A D A."; f / such that

jf .x/j � Ae�.1�"/a�jxj
2

:

In particular, this implies that Cowling–Price’s uncertainty principle follows from the
Hardy’s one.

This result is inspired by an attempt to attack a conjecture of Vemuri [34] about the
decay of solutions of the quantum harmonic oscillator. For f; gWRn ! C, we denote
Cp.f; g/ D kfgk

p
Lp , and for g.x/ D e2�ajxj

2
, we write Cp.f; g/ D C

p
a .f /. Consider

the class of functions

(1.4) Epa .n/ D ¹f W R
n
! C W Cpa .f / <1 and Cpa . Of / <1º:

In terms of these spaces, the result we formulated in the beginning of this section can be
restated in the following form: if f 2 E2a.n/, then for all " > 0 we have f 2 E1a�".n/.
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Let H WD ��C 4�2jxj2 denote the (normalised) quantum harmonic oscillator and
fix f 2 L2.Rn/. We define ˆ.x; t/ to be the solution of the time-dependent initial value
problem

(1.5)

´
i@tˆ D Hˆ; for .x; t/ 2 Rn �RI

ˆ.x; 0/ D f .x/; on Rn:

The solution ˆ to this problem is intimately related to the Hermite functions when n D 1.
Indeed, if we have

f .x/ D
X
k�0

ak hk.x/;

then we may write the solution above at time t 2 R as

ˆ.x; t/ D
X
k�0

e2�.2kC1/�it ak hk.x/;

where we define our normalisation of the Hermite functions ¹hkºk�0 to be the complete
orthonormal system in L2 such that F .hk/ D .�i/khk . This formula for the solution
converges in a pointwise sense for f in the Schwartz space �.R/. From now on, we will
use the notation f̂ .x; t/ to denote the solution to (1.5) with initial value f . Whenever it
is obvious from context, we shall simply write ˆ.x; t/ as above.

With these definitions, Vemuri’s conjecture [34] states that, if f 2 E1tanh.2˛/.n/; then
for all t > 0 we have

ˆ.�; t / 2 E1tanh.˛/.n/;

In fact, Vemuri proved thatˆ.�; t /2E1tanh.˛/�".n/ holds for all "> 0. He obtained such res-
ults (in the nD1 situation) exploring the decay estimates for the coefficients in the Hermite
expansion. We note that a similar result was obtained by Garg and Thangavelu [21] in
higher dimensions.

By relating the evolution of the harmonic oscillator problem to the Schrödinger equa-
tion and the optimal decay for Schrödinger evolutions as in, for instance, [12], we obtain
an L2-version of Vemuri’s conjecture: if C 2a .f /; C

2
a .
yf / < C1; then

C 2tanh.˛/.ˆ.�; t // < C1;

where a D tanh.2˛/. Our first main result is, as far as we know, the first step towards
settling Vemuri’s conjecture in the original L1 case.

Theorem 1.1. Let f 2 E1tanh.2˛/.n/; for some ˛ > 0. Then ˆ.�; t / 2 E1tanh.˛/.n/ whenever
t 62 ¹1=16C k=8; k 2 Zº.

We will, in fact, prove that Vemuri’s conjecture can be sharpened in the case when
t 62 ¹1=16 C k=8; k 2 Zº. That is, the largest b > 0 for which ˆ.�; t / 2 E1

b
satisfies

b > tanh.˛/; whenever t is not in the exceptional set above.
The techniques used in order to prove Theorem 1.1 are based on several recent results

in the literature involving Gaussian decay of Schrödinger equations. Indeed, we first make
use of a change of variables which takes the evolution of the harmonic oscillator into
that of the free Schrödinger equation. Although we provide an alternative proof of such
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lemma, we note that this kind of formulas seems to be known in the physics literature; see,
for instance, [32,33]. It was pointed to us recently that such changes of variables have also
been employed in a similar context by B. Cassano and L. Fanelli in [10] (see also [2, 9]
and the references therein).

We use a change of variables which preserves the free Schrödinger equation, in the
same spirit as in [12], in order to be able to use the original results by Escauriaza, Kenig,
Ponce and Vega on convexity properties of Gaussian decay of Schrödinger equations.
Finally, the last technique used is the mechanism described above to pass from L2 to L1;
and vice versa.

It is worth to mention, though, that in order to achieve such a result in higher dimen-
sions, we will need a version of the observation about the Gaussian above for all dimen-
sions. This is achieved through the following result.

Lemma 1.2. Suppose that a measurable function wWRd ! Œ1;1/ and a C1 function
f WRd ! C satisfy the following assumptions:
(i) for some 1 � p <1, we have

(1.6)
Z

Rn

jf .x/jpw.x/p dx <1I

(ii) the sets ¹x W w.x/ < tº are convex for each t > 1;
(iii) there is 1 � r � 1 such that, for all m 2 N0, we have rmf 2 Lr .Rd /.

Then, for each " > 0 and eachm 2N0, there is a constantAm;f;" such that for all x 2Rd ,
we have

(1.7) jr
mf .x/j � Am;f;"w.x/

�.1�"/:

It has recently come to our attention that a version of this result is known in dimen-
sion 1 (see Theorem 1.7 in [30]). As we could not find a suitable reference for the higher-
dimensional result, we decided to include it here, together with its proof, as it is also of
independent interest. With such a tool at hand, we get a sharp relation (up to the endpoint)
between Hardy’s, Cowling–Price’s and Morgan’s uncertainty principles in the subcritical
regime. As we have already recalled Hardy’s and Cowling–Price’s uncertainty principles
above, we briefly recall Morgan’s uncertainty principle below (in a generalized version
obtained by Ben Farah and Mokni in [4]). For that, we shall use the notation

ea;b.x/ D e
a�jxjb :

Theorem (Morgan, Ben Farah–Mokni). Suppose that ea;˛f 2 Lp.Rd / and that eb;ˇ yf 2
Lq.Rd / for 1 � p; q � 1, ˛ > 2 and ˇ D ˛=.˛ � 1/. Then we have the following:
• if .a˛/1=˛.bˇ/1=ˇ > sin1=ˇ .�

2
.ˇ � 1//, then f � 0;

• if .a˛/1=˛.bˇ/1=ˇ < sin1=ˇ .�
2
.ˇ � 1//, then there are nontrivial functions satisfying

both conditions.

Observe that, in all the situations mentioned, when we are in the subcritical situation,
that is, when the theorems above do not conclude that f � 0, these theorems do not
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provide clear information about the behavior of the functions. Our goal is to provide bet-
ter information about the structure and behavior of such functions, and additionally, to
reformulate this as a kind of quantitative relation. In that regard, we have the following.

Corollary 1.3 (Subcritical estimates). If the function f WRd !C is such that ea;˛f 2 Lp

and ea;ˇ Of 2 Lq for some a; b; ˛; ˇ > 0 and p; q � 1, then for all " > 0 there exists
C D C."; f / such that jf .x/j � Ce�.1�"/a�jxj

˛
.

Corollary 1.3 may be then seen as a step in order to convert L2 results for Gaussian
weights into L1 ones: if f 2 E2a.n/, then for all " > 0 we have f 2 E1a�".n/. Indeed, in
the supercritical case ab � 1 in Cowling–Price’s uncertainty principle, this result shows
that the only relevant case is indeed ab D 1, as all others imply the hypotheses in Hardy’s
uncertainty principle.

The last results which we prove in this paper address the question of the endpoint in
both Theorem 1.1 and Corollary 1.3. Indeed, Theorem 1.1 leaves out of its statement, per-
haps suggestively, the sequence ¹.2k C 1/=16ºk2Z, which contains the (dilated) version
of the eigenvalues of the harmonic oscillator. Furthermore, Corollary 1.3 leaves open the
question of determining whether a function f such thatZ

R
jf .x/j2 e2�˛jxj

2

dx <1 and
Z

R
j yf .x/j2 e2�˛jxj

2

dx <1

automatically satisfies f .x/ea�x
2
2 L1. In this direction, given a finite measure � with

support on the positive real line, we consider its Laplace transform

(1.8) L�.s/ D

Z C1
0

e�st d�.t/

and let
'.x/ D L�.�jxj2/:

Theorem 1.4. If ' 2 E2a.1/; then ' 2 E1a .1/.

For the endpoint of Theorem 1.1 question, we consider a slightly different class of
functions: indeed, as we shall see in Subsection 4.1, the endpoint version of Corollary 1.3
is much easier for Laplace transforms of measures supported on the positive real line.

Nevertheless, one may still wonder whether this example may be suitably tweaked in
order to obtain a class of functions for which Vemuri’s conjecture is indeed sharp. In fact,
Vemuri himself obtained that, if

Ga.x/ WD e
��.aCi

p
1�a2/ jxj2 ;

with a D tanh.2˛/ 2 .0; 1/; then

jˆGa.y;�1=16/j D Ce
�� tanh.˛/jyj2 :

Inspired by this observation, we prove that the full version of Vemuri’s conjecture, as well
as the endpoint version of our main result, hold and are sharp for a class of transforms
based on the functions Ga above.
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Theorem 1.5. Let a D tanh.2˛/ 2 .0; 1/; and let

'.x/ D

Z 1

0

Gr .x/ d�.r/

for some finite measure �. Then,

(1) if ' 2 E2a.1/; then ' 2 E1a .1/ ;
(2) if ' 2 E1a .1/; then for all ˇ 2 R; we have ˆ.�; ˇ/ 2 E1tanh.˛/.1/.

The structure of the article is as follows. In Section 2, we will prove Lemma 1.2,
as well as Lemma 2.1, which shows that strong enough Lp bounds on f and Of imply
that f 2 �.Rn/. In Section 3, we will prove Corollary 1.3 and Theorem 1.1. Finally, in
Section 4, we will prove Theorems 1.4 and 1.5, which introduce a large class of examples
that satisfy the conclusions of Theorem 1.1 and Corollary 1.3 without the " loss for the
case of Gaussian type weights. In this part, besides our main results and techniques, we
shall resort to complex analysis methods as well.

2. Main lemmas

The proof of Lemma 1.2 is based on the following higher-dimensional version of the
Kolmogorov–Landau inequality. For the reader’s convenience, we provide a short proof
of it.

Lemma 2.1. Let � D ¹x D .x1; : : : ; xn/ 2 Rn W x1 > 0º and let f 2 Lp.�/ \ Cm. N�/
for some 1 � p �1,m > n. For each 0 � k � m� n, there exists C D Ck;m;n such that
for all 1 � r � 1 we have

(2.1) jr
kf .0/j � C kf k˛Lp.�/ kr

mf k1�˛Lr .�/;

where ˛ D ˛.k; n;m; p; r/ D m�k�n=r
mCn=p�n=r

.

Note that by using an orthogonal transformation, this lemma can be applied to any
half-space in place of �, and to any point p on its boundary in place of 0.

Proof. First, we show that the right-hand side of (2.1) is positive unless f is identically
zero. Indeed, if kf kLp D 0, then f is zero almost everywhere, hence zero identically
since f 2 Cm.�/. Similarly, if krmf kLr D 0, then rmf is identically zero, hence f is
a polynomial of degree at most m � 1. But then it is not in Lp.�/ unless it is identically
zero.

So we can assume that both kf kLp and krmf kLr are strictly positive. If any of them
is infinite, then there is nothing to prove. Let us consider the function g.x/ D af .bx/ for
some a; b > 0. Observe that the estimates (2.1) for f and for g are equivalent due to our
choice of ˛, since both sides are multiplied by the same amount. By choosing appropriate
numbers a and b, we can assume, without loss of generality, that kgkLp D krmgkLr D 1,
and we have to show that jrkg.0/j � C .

Let U D Œ0; 1� � Œ�1=2; 1=2�n�1. Since p; r � 1 and the measure of U is 1, we have
kgkL1.U / � 1 and krmgkL1.U / � 1 by Hölder’s inequality. It remains to use two well-
known facts from the theory of Sobolev spaces:



A. Kulikov, L. Oliveira and J. P. G. Ramos 488

(i) the spaceW m
1 .U / (functions having weak derivatives up to orderm in L1.U / on the

bounded Lipschitz domain U ) continuously embeds into C n�m. NU/;
(ii) for such spaces, considering only the norm of the function and its m-th derivative

yields an equivalent norm.
Since 0 2 NU ; we get the desired result.

Proof of Lemma 1.2. Let us fix x0 2 Rn. Since the set V D ¹x 2 Rn j w.x/ < w.x0/º is
convex and x0 … V , we can find a half-space � such that x0 is on its boundary and for all
x 2 � we have w.x/ � w.x0/. We haveZ

�

jf .x/jp dx � w.x0/
�p

Z
�

jf .x/jpw.x/p dx

� w.x0/
�p

Z
Rn

jf .x/jpw.x/p dx D w.x0/
�pCf

and
kr

mf kLr .�/ � kr
mf kLr .Rn/ D Cf;m:

Applying Lemma 2.1 to f , we get for m > nC k,

jr
kf .x0/j � Ck;n;mw.x0/

�˛C ˛f C
1�˛
f;m :

Observe that for fixed k, n, p and r , given " > 0, for big enough m we have ˛ > 1 � ".
Choosing such an m gives us the desired estimate.

To verify condition (iii) of Lemma 1.2, we will use the following lemma, which says
that if f and Of decay faster than any polynomial on average, then f 2 �.Rn/.

Lemma 2.2. Let f WRn ! C and let 1 � p; q <1. If for all m2N0 we haveZ
Rn

jf .x/jp.1C jxj/pm dx <1 and
Z

Rn

j Of .x/jq.1C jxj/qm dx <1;

then f 2 �.Rn/.

Proof. First, we show that rmf is bounded and continuous for all m 2 N0. For a multi-

index ˇ 2Nn
0 , we have b@ˇf .x/D .2�i/jˇ jxˇ Of .x/. Thus, if xˇ Of .x/ 2L1.Rn/ then @ˇf

is bounded and continuous. We have

kxˇ Of .x/kL1.Rn/ � k.1C jxj/
jˇ j Of .x/kL1.Rn/

� k.1C jxj/m Of .x/kLq.Rn/ k.1C jxj/
jˇ j�m

kLq=.q�1/.Rn/:

Ifm is chosen bigger than jˇj C n, then this quantity is finite and thus xˇ Of .x/ 2 L1.Rn/.
In particular, we get that f 2 C1.Rn/. To finish the proof of the lemma, we are going

to apply Lemma 1.2 to f . Consider the weight w.x/ D .1 C jxj/m. The functions f
and w satisfy the assumptions of Lemma 1.2 with p D p, r D1. Thus, for all " > 0, and
in particular for " D 1=2, we have

jr
kf .x/j � C.1C jxj/."�1/m D C.1C jxj/�m=2:

Since m and k are arbitrary, we get that f 2 �.Rn/.



Gaussian decay of harmonic oscillators and Fourier uncertainty 489

3. Proof of Corollary 1.3 and Theorem 1.1

Proof of Corollary 1.3. With the tools we have at our disposal, Corollary 1.3 becomes a
trivial consequence. Indeed, when we are treating the situation in Cowling–Price’s uncer-
tainty principle, which corresponds to the case ˛DˇD2, since the estimates jf .x/jea�jxj

2

2 Lp and j yf .x/jeb�jxj
2
2 Lq imply, by Lemma 2.2, that f 2 �.Rn/, we are in position to

apply Lemma 1.2 and obtain for each " > 0 the existence of a constant A" > 0 such that

jf .x/j � A" e
��a.1�"/ jxj2 ;

and the analogous estimate holds for the Fourier transform. The case of the Morgan uncer-
tainty principle, corresponding to the case of general ˛ and ˇ, is entirely analogous, and
thus we are done.

We now move on to the proof of our main theorem.

Proof of Theorem 1.1. The proof will be divided into several steps.

Step 1. Translating between the quantum harmonic oscillator and the linear Schrö-
dinger equation.

As we saw in the introduction, there is a simple way to write solutions to (1.5) in terms
of the Hermite basis. We will use this connection, and the action of the Schrödinger evol-
ution, to provide a simple proof of the link between (1.5) and the Schrödinger equation.

Before continuing, we introduce some notation for the Hermite eigenfunctions of the
Fourier transform in higher dimensions. For a multi-index .˛1; ˛2; : : : ; ˛n/D ˛ 2Nn

0 , we
define the Hermite function of order ˛ as

h˛.x/ D
nY
iD1

h˛i .xi /:

We know from Lemma 11 in [23] that

eit�.h˛/.x/

D .1C 4�it/�n=2 exp
h 4�2i t

1C 16�2t2
jxj2

i
�

�r
1 � 4�it

1C 4�it

�j˛j
h˛
� x
p
1C 16�2t2

�
:

Thus, we may write, whenever f 2 �.Rn/; f .x/ D
P
˛2Nn a˛ h˛.x/,

eit�f .x/ D .1C 4�it/�n=2 exp
h 4�2i t

1C 16�2t2
jxj2

i
�

X
˛2Nn

ei arctan.�4�t/j˛j
� a˛ � h˛

� x
p
1C 16�2t2

�
D .1C16�2t2/�n=4 exp

h 4�2i t

1C16�2t2
jxj2

i
�ˆ
� x
p
1C16�2t2

;
arctan.�4�t/

4�

�
;(3.1)

where ˆ.x; t/ is the solution of the quantum harmonic oscillator (1.5). The correspond-
ence established in (3.1) will be crucial for the next step.
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Step 2. Using the estimates by Escauriaza–Kenig–Ponce–Vega in order to deduce
decay for the solution of the Schrödinger equation.

We make use of the translation from the previous step to establish the decay. We follow
the overall approach of [12,15–17,19]. In particular, the proof of Theorem 1 in [12] yields
as a by-product that, if u is a solution to´

i@tu D ��u in Rn �R;

u.x; 0/ D g.x/ on Rn;

then the function
v.x; t/ D .i t/�n=2 e�

jxj2

4it u.x=t; 1=t � 1/

satisfies 8̂<̂
:
i@tv D ��v in Rn � .0;C1/;

v.x; 0/ D .4�/�n=2 e
�i jxj2

4 yg.x=4�/ on Rn;

v.x; 1/ D i�n=2 e�jxj
2=4i g.x/ on Rn:

We shall use this fact with g being a suitable dilation of f . Indeed, let g.x/ D f . x

2
p
�
/.

Then we know that jg.x/j . e�ajxj
2=4 and that jyg.�=4�/j . e�ajxj

2=4; where we put a D
tanh.2˛/. For such g;we have that the associated solution v above satisfies v.x;0/;v.x;1/
2 L2.e

a�"
4 jxj

2
dx/; for all " > 0. We may now invoke the following result, which first

appears in the works of Escauriaza–Kenig–Ponce–Vega (see Theorem 3 in [18]).

Lemma 3.1. Assume that w 2 C.Œ0; 1�; L2.Rn// satisfies

i@tw C�w D 0 in Rn � Œ0; 1�.

Then
sup
t2Œ0;1�

keA.t/jxj
2

w.t/k2 . keAjxj2w.0/k2 C keAjxj
2

w.1/k2;

where
A.t/ D

R

2.1CR2.2t � 1/2/
; A D

R

2.1CR2/
;

and 0 < R < 1.

We then use Lemma 3.1 withAD .a� "/=4. LetRa;" be the unique number between 0
and 1 such that

a � "

4
D

Ra;"

2.1CR2a;"/
;

that is,

Ra;" D

2
a�"
�

q
4

.a�"/2
� 4

2
D

1

a � "
�

s
1

.a � "/2
� 1:

Denote the function A.t/ thus obtained by Aa;".t/. We then have

sup
t2Œ0;1�

keAa;".t/jxj
2

v.x; t/kL2.dx/ < C1:
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Reverting back to u; we find out that for all s > 0, we have

keBa;".s/jxj
2

u.x; s/k2 < C1;

where

Ba;".s/ D
Aa;".1=.s C 1//

.s C 1/2
�

Observe that eit�f .x/ D u.2
p
�x; 4�t/, and thus we have proven that for all t > 0 we

have
ke4�Ba;".4�t/jxj

2

eit�f .x/k2 < C1:

Step 3. Translating back.
Using the correspondence (3.1) between solutions of the quantum harmonic oscillator

and Schrödinger’s equation, we see that for all t > 0 we have


 exp
�
.1C 16�2t2/ 4�Ba;".4�t/ jxj

2
�
ˆ
�
y;

arctan.�4�t/
4�

�



2
< C1:

Let

�a;".t/ WD .1C 16�
2t2/4� � Ba;".4�t/ D

.1C 16�2t2/ � 4� �Ra;"

2Œ.4�t C 1/2 CR2a;".4�t � 1/
2�
�

Notice however that, as Ra;" < 1; this function has exactly one minimum point, which
happens at t D 1

4�
, as

�a;".t/ � �Ra;" D
�Ra;".1 �R

2
a;"/.4�t � 1/

2

Œ.4�t C 1/2 CR2a;".4�t � 1/
2�
� 0:

At t D 1
4�

, we have
�a;".

1
4�
/ D �Ra;":

As "! 0; we have, by the explicit formula for Ra;"; that Ra;" ! 1=a �
p
1=a2 � 1.

As a D tanh.2˛/; the previous quantity equals to cosh.2˛/�1
sinh.2˛/ D tanh.˛/. Let then �a D

lim"!0�a;". We observe that, for s 2 .�1=16; 0/, we have

kˆ.y; s/ � ebjyj
2

k2 < C1

for all b < �a.� tan.4�s//. As �a.� tan.4�s// > � tanh.˛/ for s 2 .�1=16; 0/; there is
b.s/ > � tanh.˛/ so that

(3.2) kˆ.y; s/ � eb.s/jyj
2

k2 < C1:

In order to extend this analysis to the rest of the claimed set, we first notice that
jˆ.y;�1=8/j D jF f .y/j; jˆ.y; 1=8/j D jF �1f .y/j; and so on, so that

ˆ.y; k=8/ � exp.a�jyj2/ 2 L1
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a � �

�
a � �

��
Ra � �

0 1=4� 1=2�

t

Figure 1. The limiting function �a is bounded from below by the curve in orange above. The
dashed line represents the predicted gain of decay in Vemuri’s conjecture.

whenever k 2 Z. Moreover, if we let ‰ be a solution of (1.5) with the initial condition
F k.f /; then we have

j‰.y; t/j D jˆ.y; t � k=8/j:

Using these observations, together with the fact that (1.5) is time-reversible, we are able to
conclude that, for all s 2 R n ¹1=16C k=8; k 2 Zº; there is b.s/ > � tanh.˛/ so that (3.2)
holds.

Step 4. Conclusion.
Finally, we use our main result to conclude. Indeed, by the explicit formula for the

solution of (1.5), we have that jFyˆ.y; t/j D jˆ.y; t � 1=8/j. If t 62 ¹1=16C k=8; k 2 Zº,
then t � 1=8 62 ¹1=16C k=8; k 2 Zº; and so, for c.t/ D min¹b.t/; b.t � 1=8/º; we have

ˆ.y; t/ec.t/jyj
2

; .Fyˆ.y; t// � e
c.t/jyj2

2 L2.Rn/:

From Corollary 1.3, we have ˆ.y; t/e.c.t/�"/jyj
2
2 L1 for any " > 0. Taking " > 0 suffi-

ciently small shows that
ˆ.y; t/e� tanh.˛/jyj2

2 L1.Rn/

if t … ¹1=16C k=8; k 2 Zº. This finishes the proof of Theorem 1.1.

Remark 3.2. Observe that the combination of the lemmas in Section 2 is quite powerful,
but in order to use the Lemma 1.2 to generate pointwise control, we do not need to impose
that the function is controlled in space and frequency: much weaker estimates are more
than enough to ensure the control that we need. This opens the door to understand other
kinds of uncertainty principles in a broad range of situations.

Remark 3.3. The proof of Theorem 1.1 highlights that the original conjecture by Vemuri,
albeit sharp if one considers the set of all times t 2 R; is almost-never sharp for a given
time t 2 R. Indeed, we can ‘upgrade’ Vemuri’s original conjecture to the following ver-
sion:
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Conjecture 3.4. Let f 2 E1tanh.2˛/.n/; for some ˛ > 0. Then

ˆ.�; t / 2 E1�˛.t/.n/

for all t 2 R, where we let

�˛.t/ D
.1C 16�2s2/ � 2 � tanh.˛/

Œ.4�s C 1/2 C tanh.˛/2.4�s � 1/2�
;

with s D � tan.4�t/. In case tan.4�t0/ is not defined, we interpret �˛.t0/ as a limit
when t ! t0.

Notice that the cases in the conjecture above where a limit interpretation is needed
correspond exactly to the decay given by hypothesis on f and yf . That is, for such t , we
have

�˛.t/ D
2 tanh.˛/

1C tanh2.˛/
D tanh.2˛/I

moreover, we have that tan.4�t/ is undefined if and only if t 2 ¹1=8C k=4; k 2 Zº.
As we will see in the next section, in the particular cases of Theorem 1.5, we are also

able to settle this conjecture. This is a strong reason why we believe such a conjecture
should be true.

4. On the endpoint versions of Corollary 1.3 and Theorem 1.1

4.1. Proof of Theorem 1.4

We start by noticing that, from Corollary 1.3, we have that ' 2 E1a�".1/; for any " > 0.
We then have the following lemma on the decay of the Laplace transform.

Lemma 4.1. Let � be a finite measure supported on the positive real line. Suppose that
for some C > 0 and c0 2 RC, the Laplace transform of � satisfies jL�.s/j � Ce�c0s for
all s > 0. Then supp.�/ � Œc0;C1/.

Proof. To prove this lemma, we define the function

F.z/ D e�ic0zL�.�iz/:

Note that, by the definition of the Laplace transform, F is a holomorphic function in the
upper half plane H. Moreover, it has the following properties:

(1) F is bounded on the real line. This follows from the fact that L�.�i t/ is just a
(rescaled) Fourier transform of the measure �. As � is finite, its Fourier transform is
bounded, and the modulation factor e�ic0t has absolute value one.

(2) jF.is/j � C for all s > 0: This follows directly from our decay assumption.
(3) jF.z/j � QCec0jzj for some QC > 0. This follows again by the fact that L� is uni-

formly bounded on the upper half space.
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With these properties at hand, we are able to use the Phragmén–Lindelöf principle in
the first and second quadrants separately. This implies that F is bounded and continuous
in H. Thus, F may be written as a Poisson integral of its boundary values. In particular,
by Young’s convolution inequality, we have

kF.� C iy/kL2.dx/ D k.F jR/ � Py.x/kL2.dx/ � kF jRk2:

This inequality only holds, of course, if F jR 2 L2. For now, let us assume that d� D
f .x/ dx, with f 2 L1 \L2. Then the computation above shows us that F 2H 2.H/ (the
Hardy space on the upper half space). In particular, by the Paley–Wiener theorem, we must
have that F jR D yh, where supp.h/ � .0;C1/. On the other hand, we see that F jR may
be written as a (rescaled) Fourier transform of f .x C c0/1xCc0>0. Thus, f .x C c0/ ¤ 0
only if x � 0; and so f .y/¤ 0 only if y � c0. This concludes the proof in the case where
d� D f .x/dx, f 2 L1 \ L2.

For the general case, consider a smooth, positive compactly supported function � so
that supp.�/ is contained in the positive real line .0;C1/; and

R
� D 1. Let then �".x/D

.d�/ � �".x/;where we define �".y/D 1
"
�
�
y
"

�
. By Young’s inequality, we have that�" 2

L1 \L2.R/. Moreover, L�" D .L�/ � .L�"/ by the definition of �. As jLf .s/j � kf k1
uniformly on s 2 ¹z 2 CWRe.z/ � 0º; we have that

jL�".s/j � C e
�c0s;

uniformly on " > 0. Thus, supp.�"/ � Œc0;C1/. As �"
�
* d� in the space of finite

measures on the real line, we see that supp.�/ � Œc0;C1/; as desired.

We are now ready to finish the proof of Theorem 1.4.

Proof of Theorem 1.4. First we notice that, by our main result, ' 2E1a�" for all " > 0. This
implies that jL�.s/j." e�.a�"/s for all s > 0. By Lemma 4.1, we conclude that supp.�/�
Œa � ";C1/. Since " > 0 is arbitrary, this plainly implies that supp.�/� Œa;C1/; which
in turn implies that j'.x/j . e��ajxj

2
. By observing that the Fourier transform

(4.1) y'.�/ D

Z 1
0

1

t1=2
e�

�
t j�j

2

d�.t/ DW

Z 1
0

e�r�j�j
2

d�.r/

also satisfies that j�j.RC/ �
R1
a

1

t1=2
jd�j.t/ <C1; we may employ the same reasoning

to conclude that also jy'.�/j . e�a�j�j
2
. This finishes the proof.

The above results lead us to the following question: if f 2 E2a.n/, does it then follow
that f 2 E1a .n/? We are led to speculate that such a question has an affirmative answer
based on the previous theorem, and thus we believe that we should have a control in the
subcritical regime of the uncertainty principles without the "-loss that is present in the
Corollary 1.3.

In view of the considerations above, one may may wonder whether the class of Laplace
transforms presented in Subsection 4.1 represents the almost sharp rate of decay obtained
in Theorem 1.1. In order to analyze that, we need to introduce the following concept.



Gaussian decay of harmonic oscillators and Fourier uncertainty 495

For ˇ 2R, we define the fractional Fourier transform of order ˇ to act on the Hermite
functions as

Fˇhk D e
�ikˇhk ;

and extended it to L2 in the canonical way. By the properties of the Hermite polynomials
and the Mehler kernel [3], one is led to deduce that these transforms have the following
representation as integral transforms:

(4.2) Fˇf .x/ D
ei.�.ˇ/�=2�ˇ=2/p
j sin.ˇ/j

ei�x
2 cot.ˇ/

Z
R
e�2�i.xy csc.ˇ/�y2 cot.ˇ/=2/f .y/ dy;

where �.ˇ/ D sign.sin.ˇ//. The relationship between fractional Fourier transforms and
the evolution of the quantum harmonic oscillator is evident from the definition. Indeed,
we may write

ˆ.y; t/ D e2�it .F�4�tf /.y/:

The key feature of this definition is the relationship with (4.2), which allows us to compute
easily fractional Fourier transforms of Gaussians and related functions.

As a first observation, notice that for f .x/ D e���jxj
2
; the integral in (4.2) is just the

Fourier transform of e��y
2.�Ci cot.ˇ// evaluated at the point x csc.ˇ/. This in turn evaluates

directly to

(4.3)
1

.�C i cot.ˇ//1=2
e
�
� csc2.ˇ/jxj2
�Ci cot.ˇ/ D

1

.�C i cot.ˇ//1=2
e
��jxj2

� csc2.ˇ/�i csc2.ˇ/ cot.ˇ/
�2Ccot2.ˇ/ :

Now let '.x/ D L�.�jxj2/; with d� a finite measure. If we have ' 2 E1a ; then, by
Lemma 4.1, we see that supp.�/ � Œa;C1/. On the other hand, by using Lemma 4.1
for y' with the � given by (4.1), we obtain that supp.�/ � Œa;C1/; which is easily seen
to be equivalent to supp.�/ � Œ0; 1=a� by a change of variables in (4.1). Thus supp.�/ �
Œa; 1=a�. The computation of the fractional Fourier transform of the Gaussian above shows
that

jFˇ'.x/j .
Z 1=a

a

e
��jxj2

� csc2.ˇ/
�2Ccot2.ˇ/ jd�j.�/

. k�kTV max
®
e
��jxj2

a csc2.ˇ/
a2Ccot2.ˇ/ ; e

��jxj2
a csc2.ˇ/
1Ca cot2.ˇ/

¯
:

(4.4)

For a < 1; we can see that

min
° a csc2.ˇ/
a2 C cot2.ˇ/

;
a csc2.ˇ/

1C a cot2.ˇ/

±
� a;

with equality if and only if ˇ D k�=2; k 2 Z. Thus, (4.4) implies that there is #.ˇ/ > a
whenever ˇ ¤ k�=2; k 2 Z; so that

jFˇ'.x/j . k�kTV e
��#.ˇ/jxj2 :

Thus, by relating the fractional Fourier transform to the quantum harmonic oscillator, we
obtain a much stronger version of Vemuri’s conjecture when '.x/ D L�.�jxj2/.
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4.2. Proof of Theorem 1.5

The proof of Theorem 1.5 is based on the following result on support of measures on the
circle with rapidly decaying Laplace transform. This, on the other hand, is an analogue of
Lemma 4.1 on the circle.

Lemma 4.2. Let � be a finite measure on the circle S1 � C. Suppose that the Laplace
transform

L�.t/ D

Z
S1
e�zt d�.z/

satisfies jL�.t/j � Ce�c0t for some C > 0, c0 2 RC. Suppose additionally that there is
ı > 0 so that supp.�/� S1 \ ¹z W Re.z/ >�1C ıº (or, equivalently,�1 … supp.�//. Then

supp.�/ � S1 \ ¹z W Re.z/ � c0º:

Proof. As L� is defined and decays as e�c0t on the positive half-line, we may take its
(real line) Laplace transform, which we will denote by

F.s/ D

Z 1
0

estL�.t/ dt:

By the decay of L�; F is well-defined and holomorphic on the half-space ¹s WRe.s/ < c0º.
Moreover, F obeys the bound

(4.5) jF.s/j � C jc0 � Re.s/j�1; whenever Re.s/ < c0:

On the other hand, by Fubini’s theorem, we have the representation

(4.6) F.s/ D

Z
S1

1

z � s
d�.z/; whenever jsj < 1:

The right-hand side of (4.6) can be further extended as an analytic function whenever
s 62 supp.�/, as the set C n supp.�/ is connected thanks to the additional hypothesis on
the support of �. Thus,

R
S1

1
z�s

d�.z/ must agree with F.s/ on the intersection between
C n supp.�/ and ¹Re.s/ < c0º. We will also denote by F.s/ the analytic function that
continues over the union of both sets above.

Notice that, by this definition, we also have

(4.7) jF.s/j . dist.s; supp.�//�1:

In order to finish, we observe that we may replace the measure � by Q� D �jA; where
A D ¹z 2 S1WRe.z/ � c0º; in each of the steps above. Let FQ� be the function constructed
in association with it. Then:

(1) FQ� is well-defined and holomorphic on C n
®
c0 ˙ i

p
1 � c20

¯
I

(2) We have that

jFQ�.s/j .
ˇ̌
s �

�
c0 C i

p
1 � c20

�ˇ̌�1
C
ˇ̌
s �

�
c0 � i

p
1 � c20

�ˇ̌�1 for all s 2 C.
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Indeed, If Re.s/ � 0; then the claim is trivial in light of (4.5). More generally, the
claim follows by either (4.5), (4.6) or (4.7) whenever

dist.s; supp. Q�// � B;

with B > 0 an absolute constant to be determined later. Thus, we may restrict ourselves
to Re.s/ > 0; dist.s; supp. Q�// < B .

Let c0 C i
p
1 � c20 D z0; for shortness. Consider first the region

R1 D
°
s D z0 C w;Re.s/ > 0; Im.w/ >

.c0 C 1/

2
jwj
±
:

In that region, the angle between w and z0 is always strictly less than �=2; and thus we
have

jsj2 D 1C jwj2 C 2hz0; wi � 1C C.c0/ jwj;

where we may write, in more explicit terms,

C.c0/ D
p
1 � c20

c0 C 1

2
�

�
1 �

.c0 C 1/
2

4

�1=2
c0 �

p
1 � c20

1 � c0

2
�

Therefore, jsj � 1 & jwj D js � z0j; and as jsj � 1 D dist.s;S1/ for s 2 R1; we have the
claim in that region from (4.7). Analogously, if we consider the region

R2 D
°
s D z0 C w;Re.s/ > 0; Im.w/ < �

c0 C 1

2
jwj; jwj � 1

±
;

we see that jsj2 � 1 � �.c0/jwj; and thus dist.s;S1/ D 1 � jsj & jwj; and the conclusion
follows in the same manner.

Now, if we let

R3 D
°
s D z0 C w; c0 > Re.s/ > 0; Im.w/ 2

�
�
c0 C 1

2
jwj;

c0 C 1

2
jwj
�±
;

we have jRe.w/j> .1� .c0 C 1/2=4/1=2 jwj. In particular, jRe.s/� c0j D jRe.w/j& jwj;
and (4.5) gives us the result once again. On the other hand, the estimate in the region

R4 D
°
s D z0 C w;Re.s/ > c0; Im.w/ 2

�
�
c0 C 1

2
jwj;

c0 C 1

2
jwj
�±

follows directly from (4.7) and the fact that supp. Q�/ � S1 \ ¹Re.s/ � c0º. By repeating
the same process above, but reflected, to the point z0 shows the result in a neighbourhood
of size ı.c0/ > 0 of supp. Q�/. Let then B D ı.c0/ in the beginning. This proves the claim.

(3) jsFQ�.s/j is bounded as s !1; which follows from (4.6).
From these properties, we are led to consider the function

H.s/ D .s � z0/.s � z0/FQ�.s/:

By the considerations above,H is an entire function, bounded by a polynomial of degree 1.
Thus, H is itself a polynomial of degree 1, say, H.s/ D ˛s C ˇ. Then

FQ�.s/ D
˛s C ˇ

.s � z0/.s � z0/
D




z0 � s
C

�

z0 � s
;
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� z0

� z0

R4

R1

R3

R2

Figure 2. The regions R1, R2, R3 and R4 as described in the proof above, with c0 D 0:7. Notice
that we dropped the condition that dist.s; supp. Q�// is small for a clearer visualisation.

for some 
; � 2C. In order to finish, we employ a theorem of F. Riesz and M. Riesz [22]
saying that for two measures �1 and �2 on the unit circle we haveZ

S1

1

z � s
d.�1 � �2/.z/ D 0

for all s 2 D if and only if d�1 � d�2 D �.s/dm.s/; where � belongs to the Hardy
space H 1.D/, and where dm denotes the arclength measure on the circle S1. Applied to
our case, we obtain

Q� D 
 � ız0 C � � ız0 C �.s/ dm.s/;

for some � 2 H 1.@D/. But supp. Q� � 
 � ız0 � � � ız0/ � S1 \ ¹Re.z/ � c0º. This shows
that � vanishes on the arc joining z0 and z0. A classical uniqueness result for functions
from the Hardy space, saying that such functions cannot be zero on a subset of S1 of pos-
itive measure (see, for instance, Duren’s book [14]) implies that � � 0. This implies that

supp.�/ � S1 \ ¹Re.z/ � c0º;

which finishes the proof of Lemma 4.2.

With Lemma 4.2 at our disposal, we may proceed to the proof of Theorem 1.5.

Proof of Theorem 1.5. We first rewrite what we wish to prove in terms of Laplace trans-
forms of measures on the circle, as done above.
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For a finite measure � on the interval Œ0; 1�; let �1WS1! Œ�1; 1� denote the projection
onto the first coordinate, and let pW Œ0; 1�!AD ¹z D ei� ; � 2 Œ0;�=2�º denote the inverse
of this map restricted to the set A. We then let

� D p�.�/

be the pushforward measure of � to the circle through p. We readily see that this measure
is finite, and supp.�/ � A � S1 \ ¹Re.s/ � 0º. Finally, from the definition of � and ';
we may write

'.x/ D

Z
S1
e�z�jxj

2

d�.z/ D L�.�jxj2/:

Proof of part (1). As ' 2 E2a.1/, Corollary 1.3 shows that ' 2 E1a�".1/ for all " > 0. But,
by the correspondence above, we have jL�.t/j �Ce�.a�"/t ; for any "> 0. By Lemma 4.2,
this implies that supp.�/� S1 \ ¹Re.s/� a� "º. Thus, supp.�/� S1 \ ¹Re.s/� aº. But
this is equivalent to supp.�/ � Œa; 1�. This plainly implies that j'.x/jea�jxj

2
2 L1.R/.

On the other hand, we see that y' may be written as

y'.�/ D

Z 1

0

Gr .�/ �
1

.r C i
p
1 � r2 /1=2

d�.r/ DW

Z 1

0

Gr .�/ d Q�.r/:

The measure Q� is again a finite measure, and one can repeat the argument above, now
using the “conjugate” map pW Œ0; 1�! A D ¹z D ei� ; � 2 Œ��=2; 0�º, to define the push-
forward measure. This directly implies that jy'.�/jea�j�j

2
2 L1.R/; which finally shows

that ' 2 E1a .1/, as desired.
Proof of part (2). We first notice that for ˇ 62 ¹��=4� k�=2; k 2 Zº; Theorem 1.1 covers
this part. Thus, we may suppose without loss of generality that ˇ D ��=4 � k�=2, for
k 2 Z.

If ' 2 E1a .1/; then either Theorem 1.1, or even Vemuri’s Theorem 3.1 in [34], show
that F��=4�k�=2' 2 E

1
tanh.˛/�" for all " > 0 and k 2 Z. Now, a calculation using (4.3)

with � D r C i
p
1 � r2 and ˇ D ��=4C k�=2 yields

(4.8) jF��=4�k�=2Gr .x/j . exp
�
�

r�jxj2

1 � .�1/k
p
1 � r2

�
:

On the other hand, as ' 2 E1tanh.2˛/.1/; using the same argument as that of the proof of
part (1) above, we have that supp.�/� Œtanh.2˛/; 1�. Thus, as we know that the following
functions of r 2 Œ0; 1�:

r 7!
r

1 �
p
1 � r2

and r 7!
r

1C
p
1 � r2

are, respectively, decreasing and increasing, (4.8) implies that

jF��=4�k�=2'.x/j . k�kTV max
°

exp
�
�

a�jxj2

1C
p
1 � a2

�
; exp.��jxj2/

±
D k�kTV max

®
exp.� tanh.˛/�jxj2/; exp.��jxj2/

¯
as a D tanh.2˛/. This concludes the proof of part (2), and thus also that of Theorem 1.5.
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Remark 4.3. Using the notation employed in the statement of Conjecture 3.4, we have,
for given t 2 R and " > 0; that F�4�tf 2 E

1
�˛.t/�"

.1/ for any t 2 R. A calculation
using (4.3) and the same strategy as in part (2) of the proof of Theorem 1.5 above shows
that, in fact, ˆ.�; t / 2 E1

�˛.t/
.1/. This shows the validity of Conjecture 3.4 for the class of

Laplace transforms with support on the circle discussed above.
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