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Negative amphichiral knots
and the half-Conway polynomial

Keegan Boyle and Wenzhao Chen

Abstract. In 1979, Hartley and Kawauchi proved that the Conway polynomial of a
strongly negative amphichiral knot factors as f .z/f .�z/. In this paper, we normal-
ize the factor f .z/ to define the half-Conway polynomial. First, we prove that the
half-Conway polynomial satisfies an equivariant skein relation, giving the first fea-
sible computational method, which we use to compute the half-Conway polynomial
for knots with 12 or fewer crossings. This skein relation also leads to a diagrammatic
interpretation of the degree-one coefficient, from which we obtain a lower bound
on the equivariant unknotting number. Second, we completely characterize polyno-
mials arising as half-Conway polynomials of knots in S3, answering a problem of
Hartley–Kawauchi. As a special case, we construct the first examples of non-slice
strongly negative amphichiral knots with determinant one, answering a question of
Manolescu. The double branched covers of these knots provide potentially non-trivial
torsion elements in the homology cobordism group.

1. Introduction

A strongly negative amphichiral knot is a smooth oriented knot K � S3 along with
an order 2 symmetry �W .S3; K/ ! .S3; K/ which reverses the orientation of S3 and
of K, and which has fixed set S0; see Figure 1 for some examples. Since this sym-
metry reverses the orientation on S3, it is considerably more difficult to study than its
orientation-preserving cousins: periodic and strongly invertible knots. For example, in the
concordance group these knots are all torsion, so that additive concordance invariants,
such as the signature, must vanish. Consequently, it was only recently shown that strongly
negative amphichiral knots can have large 4-genus [28].

In this paper we define and study an equivariant version of the Conway polynomial.
Apart from our direct results and applications, one long-term goal of this project is to build
a foundation to study equivariant knot Floer and Khovanov homology theories for strongly
negative amphichiral knots. In the strongly invertible case, such homology theories have
been used to show that certain slice disks are not isotopic [7] (see also [13] and [14]),
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KC K� K0

Figure 1. A triple of knots related by the equivariant skein relation in Theorem 1.1; here KC is the
figure-eight knot (left), and K� (center) and K0 (right) are each the unknot. In each diagram the
symmetry is point reflection across the marked point.

and that a refinement of Khovanov homology can distinguish mutants [26]. In particular,
equivariant theories can provide inroads on non-equivariant problems.

1.1. The half-Conway polynomial

Hartley and Kawauchi showed that the Conway polynomial of a strongly negative amphi-
chiral knot factors as f .z/f .�z/ for some polynomial f .z/, see Theorem 1 in [12].
Here f .z/ corresponds to the Alexander polynomial of the non-orientable homology cir-
cle which is the quotient of the knot exterior by the amphichiral symmetry [19]. This fac-
torization is recognized as an obstruction to the existence of a strongly negative amphichi-
ral symmetry. However, the polynomial f .z/ has not been studied as an invariant of the
symmetry directly. Indeed, we provide the first method for computing f .z/ from a knot
diagram.

To produce a diagrammatic computation method, we give a method to naturally choose
an element of ¹f .z/; f .�z/;�f .z/;�f .�z/º, which we define to be the half-Conway
polynomial r.K;�/.z/ of a strongly negative amphichiral knot .K; �/; see Definition 4.3.
We can then show that the half-Conway polynomial satisfies an equivariant skein relation
analogous to the skein relation for the Conway polynomial. Such a skein relation requires
a sign associated with symmetric pairs of crossings, but there is no obvious choice; each
pair consists of a positive and a negative crossing. Nonetheless, we assign a sign to such
pairs (see Definition 3.1).

Theorem 1.1. The half-Conway polynomial satisfies the following equivariant skein rela-
tion:

r.KC; �/.z/ � r.K�; �/.z/ D z � r.K0; �/.z/;

where KC; K�; and K0 are an equivariant skein triple as in Definition 4.6.

Here .KC; �/ is any strongly negative amphichiral knot with a positive dichromatic
(see Definition 3.2) symmetric crossing pair, and .K�; �/ and .K0; �/ are obtained from
.KC; �/ by changing and resolving this crossing pair respectively. (See Figure 1 for an
example, and Section 4.1 for a precise definition of KC; K�, and K0.)

Remark 1.2. Although Hartley proved that the Conway polynomial rK.z/ factors as
f .z/f .�z/ for any negative amphichiral knot (see Theorem 3.1 in [11]), Theorem 1.1
only makes sense when the negative amphichiral symmetry is realized by a diagrammatic
involution; that is, for strongly negative amphichiral knots.
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Following the precedent of the Conway polynomial, one may hope to prove Theo-
rem 1.1 by examining a �-invariant Seifert surface or a pair of Seifert surfaces exchanged
by �. However, strongly negative amphichiral knots cannot bound symmetric Seifert sur-
faces; such a surface must contain a point-wise fixed arc but there are only two fixed points
in S3. Additionally, it is not clear how to extract the necessary homological information
from a pair of Seifert surfaces. Instead, we use a novel argument based on symmetric
surgery diagrams to piece together the skein relation.

For our first application of Theorem 1.1, we compute the half-Conway polynomial for
all strongly negative amphichiral knots with 12 or fewer crossings; see Section 8. Using
these computations of the half-Conway polynomial, we can distinguish many strongly
negative amphichiral symmetries on a given knot. (The symmetries in the following propo-
sition can also be distinguished by Theorem 15.1 in [2].)

Proposition 1.3. For any n>0, there exists a knotK with n strongly negative amphichiral
symmetries, distinguished by their half-Conway polynomials.

For a second application, we relate the half-Conway polynomial to another invari-
ant, the half-linking number h.K/ defined in Section 3. The integer h.K/ is the sum
of signs of symmetric pairs of crossings in a symmetric diagram (see Definitions 3.1
and 3.4), and we use a theory of symmetric Reidemeister moves (developed in Section 2
and Appendix A) to prove that h.K/ is invariant under equivariant isotopy. We also show
that the half-linking number provides a lower bound on the equivariant unknotting num-
ber, the minimum number of symmetric pairs of crossing changes necessary to produce
the unknot; see Section 3.1.

Theorem 1.4. Let K be a strongly negative amphichiral knot. Then the half-linking num-
ber h.K/ is a lower bound on the equivariant unknotting number. That is, zu.K/� jh.K/j.

Perhaps surprisingly, this bound turns out to be independent of the slice genus, and
even the equivariant slice genus; see Example 3.10.

In the following corollary of Theorem 1.1, we specify the relationship between the
half-Conway polynomial and the half-linking number, which further implies a relationship
between the half-linking number and the Arf invariant.

Corollary 1.5. Let .K; �/ be an oriented strongly negative amphichiral knot. Then

(1) the coefficient of z in r.K;�/.z/ is equal to the half-linking number h.K/, and

(2) h.K/ � Arf.K/ .mod 2/.

In particular, the equivalence h.K/ � Arf.K/ .mod 2/ gives a simple diagrammatic
interpretation of the Arf invariant for strongly negative amphichiral knots. Corollary 1.5
also implies the invariance of the half-linking number, but we include an additional proof
via SNA Reidemeister moves; these moves provide a platform for defining and studying
diagrammatic invariants, and we believe that they will be an important tool for studying
Questions 1.9 and 1.10 below.

Finally, we construct knots with arbitrary prescribed half-Conway polynomials, solv-
ing an open problem from Remark (3) in [12]. (The following theorem follows immedi-
ately from Theorem 6.1.)
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Theorem 1.6. Let f .z/ 2 ZŒz� be such that f .0/ D 1. Then there is an oriented strongly
negative amphichiral knot .K; �/ with half-Conway polynomial r.K;�/.z/ D f .z/:

As a particular example, this theorem allows the construction of many non-slice strong-
ly negative amphichiral knots with determinant 1 by choosing a half-Conway polynomial
which fails the Fox–Milnor condition and gives determinant 1; see Figure 2 for one exam-
ple. This answers Problem 20 (3) from [17].

Corollary 1.7. There exist non-slice (strongly negative) amphichiral knots with determi-
nant 1.

Such knots are interesting because their double branched covers represent potentially
non-trivial torsion elements in the homology cobordism group. In fact, the involutive Hee-
gaard Floer theoretic invariant called the �-complex could obstruct these double branched
covers from bounding a homology 4-ball (see [8]), although it is currently a challenge
to compute these �-complexes. It is unknown whether there is torsion in the homology
cobordism group; see [27], Section 2.

C1

�1

K

Figure 2. A symmetric surgery diagram (left) and a knot diagram (right) for a non-slice strongly
negative amphichiral knot K with determinant 1. The diagram on the right was obtained using the
KLO [32] and SnapPy [6] software.

Remark 1.8. To construct interesting integer homology spheres, Van Buskirk [33] con-
structed prime strongly negative amphichiral knots with Alexander polynomial 1, and
Siebenmann and Van Buskirk [31] constructed prime strongly positive amphichiral knots
with determinant 1. In both cases, it is unknown if the knots are non-slice. More generally,
it is unknown if there are non-slice amphichiral knots with Alexander polynomial 1, see
Problem 21 in [17].

1.2. Open questions

We conclude with some open questions which we hope will inform future research in the
area.



Negative amphichiral knots and the half-Conway polynomial 585

Question 1.9. Using the equivariant skein relation in Theorem 1.1 as a definition for the
half-Conway polynomial, is there a proof of equivariant isotopy invariance using symmet-
ric Reidemeister moves?

In this paper, we define the half-Conway polynomial by normalizing an Alexander
polynomial associated to the quotient of the knot complement so that equivariant isotopy
invariance is straightforward; in exchange the proof that it satisfies the equivariant skein
relation is somewhat complicated. We attempted the proof of invariance using symmetric
Reidemeister moves but were unable to check the SNA R4 move (see Theorem 2.7). This
proof method is of interest because it is related to the following question.

Question 1.10. Is there an equivariant version of the Jones or HOMFLY-PT polynomial
satisfying an equivariant skein relation?

It turns out that the obvious equivariant analog of the skein relation for the Jones poly-
nomial does not define an invariant of strongly negative amphichiral knots. Nonetheless,
we believe that some equivariant analog of the Jones polynomial should exist, albeit with a
more complicated skein relation. Of course, one may further wish to define an equivariant
Khovanov homology theory as has been done for strongly invertible knots; see [5,26,34].
In a related direction, the following question may be more approachable.

Question 1.11. Is there an equivariant version of knot Floer homology categorifying the
half-Conway polynomial?

One reason to construct such a theory would be to generate an equivariant slice obstruc-
tion to finish the classification of equivariantly slice strongly negative amphichiral knots
with 12 or fewer crossings (see [3]). Additionally, it may answer the fundamental Ques-
tion 1.12 below.

Question 1.12. Is the equivariant connected sum operation commutative up to equivariant
isotopy? up to equivariant concordance?

Here the equivariant connected sum depends on an orientation and choice of fixed
point; see Definition 2.5. Certainly the equivariant connected sum operation seems to be
non-commutative; recently Di Prisa proved that a similar equivariant concordance group
for strongly invertible knots is not abelian [9]. However, abelian invariants like the half-
linking number and half-Conway polynomial cannot detect non-commutativity.

Organization. In Section 2, we give some background on strongly negative amphichiral
knots and develop a theory of symmetric Reidemeister moves. In Section 3, we introduce
the half-linking number, and establish its additivity under equivariant connected sum. In
Section 3.1, we introduce the equivariant unknotting number and prove Theorem 1.4. In
Section 4, we define the half-Conway polynomial, discuss its basic properties, and prove
Proposition 1.3 and Corollary 1.5. Section 5 discusses an approach to computing the half-
Conway polynomial via symmetric surgery diagrams. In Section 6, we prove Theorem 6.1
(equivalently, Theorem 1.6) and Corollary 1.7. In Section 7, we prove Theorem 1.1. In
Section 8, we compute the half-Conway polynomial for knots with 12 or fewer crossings.
In Appendix B, we tabulate symmetric diagrams for these knots.
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2. Background on strongly negative amphichiral knots

We begin with some basic definitions about strongly negative amphichiral knots.

Definition 2.1. A strongly negative amphichiral knot is a knot K � S3 along with a
smooth involution �WS3 ! S3 with fixed-point set S0 � K.

Note that by [16, 24], all strongly negative amphichiral involutions on S3 are conju-
gate in the diffeomorphism group. Thinking of S3 as R3 [ ¹1º, we will work exclusively
with the representative of this conjugacy class given by the point reflection symmetry
across the origin. Here the two fixed points are the origin and ¹1º.

Definition 2.2. A symmetric diagram for a strongly negative amphichiral knot .K; �/ is a
regular projection ofK to a �-invariant S2 � S3 along with under and over-crossing data.

Note that a symmetric diagram must contain both fixed points of �. We will place one
of these fixed points at infinity, and the other in the center of our diagram (that we mark
with a dot) so that K may be viewed as a 2-ended tangle with a point reflection symmetry
about its center. See Figure 1.

Definition 2.3. A direction on a strongly negative amphichiral knot .K; �/ is a choice of
fixed point and orientation on K.

Diagrammatically, our convention is to place the chosen fixed point at infinity, and to
orient the knot from the left to the right of the page. We will refer to the chosen fixed point
as x1 and the other fixed point as x0. We will refer to the arc beginning at x1 and ending
at x0 as ar (often drawn in red), and the arc beginning at x0 and ending at x1 as ab (often
drawn in blue).

Definition 2.4. Two strongly negative amphichiral knots .K; �/ and .K 0; �0/ are equiva-
lent if there is an equivariant orientation-preserving homeomorphism of pairs 'W.S3;K/!
.S3;K 0/. IfK andK 0 are oriented, we further require that ' preserves the orientation, and
ifK andK 0 are directed, we require that ' takes the chosen fixed point forK to the chosen
fixed point for K 0.

Note that this notion of equivalence is the same as an equivariant isotopy between
.K; �/ and .K 0; �/ (see Theorem 2.7 below), but stronger than the existence of an orien-
tation-preserving homeomorphism  W .S3; K/! .S3; K 0/ with  .�/ isotopic to �0, the
equivalence used in the mapping class group MCG.S3; K 0/. In particular, changing the
choice of direction in an equivariant connected sum (see below) may change the equiva-
lence class of the symmetry, but not the isotopy class.

In this paper, we will work with directed strongly negative amphichiral knots, although
our invariants will be insensitive to the choice of fixed point. However, this choice is
necessary in order to define an equivariant connected sum operation.

Definition 2.5. The equivariant connected sum .K; �/ z# .K 0; �0/, or just K z#K 0, of two
directed strongly negative amphichiral knots .K; �/ and .K 0; �0/ is defined by removing
a �-invariant neighborhood of x0 from .S3; K; �/ and a �0-invariant neighborhood of x1
from .S3; K 0; �0/ and gluing the resulting 3-balls together in the way compatible with the
chosen orientations on K and K 0 and with the symmetries � and �0. The result is again a
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directed strongly negative amphichiral knot in S3 with x0 the remaining fixed point onK 0

and x1 the remaining fixed point on K. See Figure 3.

Figure 3. The equivariant connected sum of directed strongly negative amphichiral symmetries on
the knots 89 and 41. The dotted circle indicates the connected summing sphere.

Remark 2.6. We will also make use of the (non-equivariant) connected sum K # xK of
a knot K with its reverse mirror xK. Note that K # xK has an obvious strongly negative
amphichiral symmetry exchanging K and xK. If K happens to be a strongly negative
amphichiral knot, then K z#K should not be confused with K # xK, which in general are
two distinct symmetries on K #K.

2.1. Symmetric Reidemeister moves for strongly negative amphichiral knots

Perhaps the simplest way to obtain invariants of strongly negative amphichiral knots is to
define a theory of Reidemeister moves which are invariant under the symmetry, which we
call strongly negative amphichiral (SNA) Reidemeister moves.

Theorem 2.7. Every pair of equivariant diagrams for a directed strongly negative amphi-
chiral knot K are related by a finite sequence of the following moves.

(1) An equivariant planar isotopy .R0/.

(2) An equivariant pair of any of the three standard Reidemeister movesR1,R2 andR3.

(3) The following new symmetric move R4 corresponding to pulling an equivariant pair
of strands across one of the two fixed points:

Remark 2.8. If K is not directed, then there is an additional “move” which consists of
redrawing the same diagram with the other fixed point at1. In part to avoid this, we work
with directed strongly negative amphichiral knots throughout this paper.

The proof of Theorem 2.7 is somewhat involved, and perhaps of independent interest;
we provide it in Appendix A.
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3. The half-linking number

The two fixed points on a strongly negative amphichiral knot separate it into a pair of
arcs ar and ab exchanged by the involution, and a direction on the knot specifies an order
on the crossings of any symmetric diagram as follows. We say that for a pair of cross-
ings c and c0 in D, c < c0, if we encounter c before c0 when traversing K following the
orientation and starting at x1. Using this structure, we associate a sign to each equivariant
pair of crossings .c; �.c//. (Note that c and �.c/ always have opposite signs.)

Definition 3.1. Let .K; �/ be a directed strongly negative amphichiral knot, and fix an
equivariant diagram D for K. For an equivariant pair of crossings .c; �.c//, we define
sign.c; �.c// as the sign of the larger of the two crossings c and �.c/. In other words,

sign.c; �.c// D

´
sign.c/ if c > �.c/;
sign.�.c// if �.c/ > c:

Definition 3.2. Let c; �.c/ be a pair of crossings in a strongly negative amphichiral knot
diagram. If c contains an arc from ar and an arc from ab , then we call .c; �.c// a
dichromatic crossing pair. If both arcs of c belong to either ar or ab , we call .c; �.c//
a monochromatic crossing pair.

Remark 3.3. As we will see, when .c; �.c// is a dichromatic crossing pair, sign.c; �.c//
does not depend on the choice of fixed point in the direction ofK, only on the orientation;
see Proposition 3.7. On the other hand, if .c; �.c// is a monochromatic crossing pair, then
sign.c; �.c// does depend on the choice of fixed point.

We can now define an invariant of strongly negative amphichiral knots by counting the
signs of equivariant pairs of crossings involving an arc in ar and an arc in ab .

Definition 3.4. Let D be an equivariant diagram for a directed strongly negative amphi-
chiral knot .K; �/. Then the half-linking number is

h.D/ D
1

2

X
sign.c; �.c//;

where the sum is over dichromatic crossing pairs .c; �.c//.

Example 3.5. Consider the strongly negative amphichiral diagram D for the directed
strongly negative amphichiral knot 1088 shown in Figure 4. The greater in each dichro-
matic crossing pair is marked with a gray circle, and since both are positive crossings, we
have that h.D/ D 1

2
.1C 1/ D 1.

In Theorem 3.6 and Proposition 3.7 below, we show that the half-linking number is
an invariant of an oriented strongly negative amphichiral knot. In other words, the half-
linking number does not depend on the choice of equivariant diagram, or the choice of
fixed point on the knot. We will then write h.K/ to refer to the half-linking number of the
oriented strongly negative amphichiral knot K.

Theorem 3.6. Let D1 and D2 be equivariant diagrams for a directed strongly negative
amphichiral knot .K; �/. Then h.D1/ D h.D2/. In particular, the half-linking number
does not depend on the choice of equivariant diagram.
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Figure 4. A strongly negative amphichiral diagram for 1088 with a choice of direction. For conve-
nience, the arcs ar and ab are colored red and blue, respectively.

Proof. By Theorem 2.7, D1 and D2 are related by a sequence of the SNA Reidemeister
moves R0, R1, R2, R3, and R4, so it is enough to check that the half-linking number is
unchanged under each of these moves.

After an SNA R0 move, the crossings and order are identical so that the half-linking
number is unchanged.

After an SNA R1 move, there is a new invariant crossing pair, but it is monochromatic
so that it does not contribute to the half-linking number.

After an SNA R2 move, there are two new crossing pairs, and either both are dichro-
matic, or neither are. In the first case, the two crossing pairs contribute to the half-linking
number with opposite signs so that in both cases the half-linking number is unchanged.

For SNA R3 moves, there are two cases. Either all three crossing pairs are monochro-
matic, in which case invariance is clear, or one crossing pair is monochromatic and the
other two are dichromatic. In the latter case, the order on each of the two dichromatic
crossing pairs does not change. In particular, there are the same number of crossing pairs
which contribute to the half-linking number, with the same signs.

Finally, after an SNA R4 move, there are three new pairs of crossings. Regardless of
how we orient the strands (ensuring that it is compatible with the amphichiral symmetry)
and which direction we choose, exactly two of these pairs of crossings are dichromatic;
one contributes C1 to the half-linking number and one contributes �1 to the half-linking
number. Figure 5 shows the result of an SNA R4 move with one choice of orientations
and direction; the other choices are similar.

C1

�1

0

0

C1

�1

Figure 5. The half-linking number is invariant under the R4 move. The crossing pairs are labeled
with their contribution to the half-linking number.
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Proposition 3.7. Let K be a directed strongly negative amphichiral knot. Let rK be the
reverse of K, and let K� be K with the other choice of fixed point. Then

.1/ h.K/ D �h.rK/ and .2/ h.K/ D h.K�/:

Proof. Reversing the orientation on K reverses the order on the crossings, so that if c <
�.c/ in a diagram for K, then �.c/ < c in the corresponding diagram for rK. However,
the signs of the crossings themselves do not depend on the orientation. Hence, the sign of
.c; �.c// in K and rK are different and h.K/ D �h.rK/.

Next, note that in diagrams for K and rK�, the crossings along ar appear in the
opposite order, so that h.K/ D �h.rK�/. Then by (1), h.K�/ D �h.rK�/. Therefore,
h.K/ D h.K�/.

Proposition 3.8. Given two directed strongly negative amphichiral knots K and K 0,

h.K z#K 0/ D h.K/C h.K 0/:

Proof. This is immediate from the definitions by considering diagrams D and D0 for K
and K 0, respectively, and the corresponding diagram D z#D0 for K z#K 0. The dichromatic
crossing pairs inD andD0 (see Definition 3.4) correspond precisely with the dichromatic
crossing pairs in D z#D0, and since the corresponding crossing pairs have the same sign,
their contributions to the half-linking number agree.

Remark 3.9. One may wonder whether h.K/ is an equivariant concordance invariant; it
is analogous to the linking number, it is additive under equivariant connected sum, and
changing the direction on K (as needed to define the inverse in the equivariant concor-
dance group) negates h.K/. However, this is false; see the following example.

Example 3.10. Consider the knot K D 89 (with the direction as shown in Figure 6). We
compute h.K/ D �2, but K is equivariantly slice (see Figure 1 in [3]).

Figure 6. A strongly negative amphichiral diagram for the equivariantly slice knotK D 89 for which
h.K/ D �2. The four crossings contributing to h.K/ are indicated with a gray circle; they are all
negative crossings.

3.1. Equivariant unknotting

Next we discuss an application of the half-linking number to equivariant unknotting.

Definition 3.11. Given a strongly negative amphichiral knot K, the equivariant unknot-
ting number zu.K/ is the minimum number of equivariant pairs of crossing changes nec-
essary to transform K into the unknot.
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Note that a single crossing change cannot be equivariant for a strongly negative amphi-
chiral knot. We also have the immediate inequality zu.K/ � u.K/, where u.K/ is the
(usual) unknotting number of K.

Proposition 3.12. The equivariant unknotting number zu.K/ is finite.

Proof. Given an equivariant diagram D for a strongly negative amphichiral knot K, we
will produce a finite equivariant unknotting sequence. To begin, note that the two fixed
points separate K into two arcs ar and ab . In each dichromatic pair of crossings in D,
either ar passes over ab in both crossings, or vice versa. First, perform a finite sequence
of equivariant crossing changes to ensure ar always passes over ab . This produces a new
strongly negative amphichiral knot K 0 which is a connected sum J # xJ . Here xJ is the
reverse mirror of J and the symmetry on K 0 exchanges J and xJ . Now, take any finite
unknotting sequence ¹ciº for J . Then ¹�.ci /º is a finite unknotting sequence for xJ . Thus,
¹ci ; �.ci /º is a finite equivariant unknotting sequence for K 0.

Proof of Theorem 1.4. We will prove this by induction on zu.K/. Clearly zu.K/ D 0 if and
only if K is the unknot, and the half-linking number of the unknot is 0.

Now consider an equivariant pair of crossing changes which take a knot K1 with
zu.K1/ D n to a knot K2 with zu.K2/ D n � 1. By the inductive assumption, jh.K2/j �
n � 1. Taking any symmetric diagram in which this equivariant pair of crossing changes
is visible, let ar and ab be the two arcs of the diagram. On one hand, the crossing changes
transforming K1 into K2 may occur between a monochromatic crossing pair. In this case
the half-linking number is unchanged so that jh.K1/j D jh.K2/j � n� 1 � n, as desired.
Otherwise, the crossing pair is dichromatic so that h.K1/ and h.K2/ differ by ˙1. In
particular, jh.K1/j � jh.K2/j C 1 � n � 1C 1 D n.

This theorem is sharp for many knots with 12 or fewer crossings, such as in the fol-
lowing example.

Example 3.13. Consider the strongly negative amphichiral symmetry � on 12a1287 shown
in Figure 7.

Figure 7. A strongly negative amphichiral diagram for 12 a1287.

The six crossings in the bottom right are all positive, so that h.12a1287; �/ D 3, and
hence zu.12a1287; �/ � 3 by Theorem 1.4. On the other hand, changing the three equivari-
ant pairs of crossings so that the red arc ar always passes over the blue arc ab produces the
unknot, so that zu.12a1287; �/� 3. It is interesting to compare this to the (non-equivariant)
unknotting number for 12a1287, which is unknown (it is either 2 or 3).
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4. The half-Conway polynomial

Let .K; �/ be an oriented strongly negative amphichiral knot. Then � restricts to a free
involution of S3 � �.K/. The quotientQD .S3 � �.K//=� is a non-orientable homology
circle; that is, H�.QIZ/ D H�.S

1IZ/ and H3.Q; @QIZ/ D 0 (see Lemma 1 in [12]
for details). In particular, one can define the Alexander polynomial of Q after choosing
a generator of H1.QIZ/; see Kawauchi [19]. In the case of the quotient of a strongly
negative amphichiral knot exterior, an oriented meridian of K descends to a generator of
H1.QIZ/, so that an orientation onK specifies a generator ofH1.QIZ/ by the right-hand
rule. The Alexander polynomial ofQ is then the principal generator of the first elementary
ideal ofH1 of the infinite cyclic cover, thought of as a ZŒ�; ��1�-module. Unlike the usual
Alexander polynomial, it is important that the orientation of K specifies a generator � (as
opposed to ��1) since the polynomial need not be invariant under � 7! ��1.

Definition 4.1. The half-Alexander polynomial �.K;�/.�/ of .K; �/ is the Alexander
polynomial of Q D .S3 � �.K//=�.

Similarly to the usual Alexander polynomial,�.K;�/.�/ is defined only up to multipli-
cation by a unit in ZŒ�; ��1�, which we indicate with the symbol “ :

D ". Clearly�.K;�/.�/
is an oriented equivariant isotopy invariant.

Theorem 4.2 (Theorem 1 in [12]). The half-Alexander polynomial �.K;�/.�/ satisfies

(1) j�.K;�/.1/j D 1,

(2) �.K;�/.�/
:
D �.K;�/.��

�1/, and

(3) �.K;�/.�/ ��.K;�/.��/
:
D �K.�

2/.

In the following definition, we use Theorem 4.2 to resolve the ambiguity in�.K;�/.�/
of multiplication by a unit in ZŒ�; ��1�. This is analogous to the Conway normalization of
the usual Alexander polynomial [4] (see also [23], Chapter 8).

Definition 4.3. Let .K; �/ be an oriented strongly negative amphichiral knot. Then the
half-Conway polynomial r.K;�/.z/ is the unique polynomial of z such that

(1) r.K;�/.� � ��1/
:
D �.K;�/.�/, where �.K;�/.�/ is the half-Alexander polynomial

(see Definition 4.1), and
(2) r.K;�/.0/ D 1.

To see that rK;�.z/ is well defined, note that Theorem 4.2 (2) implies that for some
ai 2 Z and n � 1,

�.K;�/.�/
:
D a0 C

nX
iD1

ai .�
i
C .���1/i /:

In particular, by the fundamental theorem of symmetric polynomials, the right side
can be written as a polynomial in � � .���1/ and in � � ��1, or just � � ��1. Furthermore,
Theorem 4.2 (1) allows us to pin down the overall sign of rK;�.z/ by specifying that
rK;�.0/ D 1. Note that r.K;�/.z/ is clearly an oriented equivariant isotopy invariant.

In the second two parts of the following proposition, we show that the half-Conway
polynomial r.K;�/.z/ has similar properties to the usual Conway polynomial rK.z/ (see
Section 8 of [23] for background about the Conway polynomial). In particular, we can
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describe the effect of orientation reversal (cf. Proposition 6.12 in [23]), and of connected
sums. In Section 4.1, we will see that the half-Conway also satisfies a skein relation.

Proposition 4.4. Let .K; �/ be an oriented strongly negative amphichiral knot. Then the
half-Conway polynomial r.K;�/.z/ has the following properties:
(1) r.K;�/.z/ � r.K;�/.�z/ D rK.z/,
(2) r.K;�/.z/ D r.rK;�/.�z/, where rK is K with the opposite orientation,

(3) r.K z#K0; �z#�0/.z/ D r.K;�/.z/ � r.K0; �0/.z/.

Proof. For statement (1), recall that �K.�2/ D rK.� � ��1/. Rewriting Theorem 4.2 (3)
in terms of the Conway and half-Conway polynomial, we get

r.K;�/.� � �
�1/ � r.K;�/.�� C �

�1/ D rK.� � �
�1/;

as desired.
For statement (2), note that reversing the orientation onK corresponds to exchanging �

and ��1, and hence �.K;�/.�/
:
D �.rK;�/.�

�1/. Then substituting for the half-Conway
polynomial, we have r.K;�/.z/ D r.rK;�/.�z/.

For statement (3), let zQ; zQ0 and zQ00 be the infinite cyclic covers of .S3 � �.K//=�,
.S3 � �.K 0//=�0 and .S3 � �.K #K 0//=.� # �0/, respectively. Consider the connected
summing sphere S for K #K 0. Lifting S=� to zQ00, we have zS Š R � I , which sepa-
rates zQ00 into two pieces: one � -equivariantly homeomorphic to zQ and one � -equivariantly
homeomorphic to zQ0. Now since R � I is contractible, the Mayer–Vietoris sequence
applied to this decomposition of zQ00 gives that the ZŒ�; ��1�-module H1. zQ00/ splits as
a direct sum of H1. zQ/ and H1. zQ0/. Hence, the half-Alexander polynomial is multiplica-
tive under connected sum, and so is the half-Conway polynomial.

Proof of Proposition 1.3. Let K 0 D 1043 with � the strongly negative amphichiral sym-
metry shown in Figure 8, and let .rK 0; �/ be its reverse. In Section 8 we compute that
r.K0; �/.z/ D 1C z

2 C z3. Notice that K 0 is reversible so that K 0 and rK 0 are (non-equi-
variantly) isotopic. For any n 2 N, we can take equivariant connected sums to obtain
.Ki;j ; �i;j / WD z#i .K 0; �/ z#j .rK 0; �/, where i; j � 0 with i C j D n. Each Ki;j is iso-
topic to #nK 0 D K, but computing the half-Conway polynomials (see Proposition 4.4 (2)
and (3)) gives that

r.Ki;j ; �i;j /.z/ D .1C z
2
C z3/i .1C z2 � z3/j ;

so that each of these nC 1 symmetries is distinct.

The following proposition will be an important first step towards computing the half-
Conway polynomial for an arbitrary strongly negative amphichiral knot.

Proposition 4.5. Let J � S3 be any oriented knot, and let xJ be the reverse mirror of J
so that J # xJ has a natural strongly negative amphichiral symmetry �. Then

r.J # xJ ;�/.z/ D rJ .z/;

where rJ .z/ is the usual Conway polynomial of J .

We postpone the proof of this proposition until the end of Section 5, after we discuss
symmetric surgery presentations.
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Figure 8. A directed strongly negative amphichiral symmetry on 1043 with half-Conway polyno-
mial 1C z2 C z3.

4.1. The equivariant skein relation

Before stating the main theorem, we set up some notation and conventions as follows.
Recall that the fixed points separate K into a pair of arcs ar and ab , and recall that in
Definition 3.1 we assigned a sign to each equivariant pair of crossings.

Definition 4.6. An equivariant skein triple is a tripleKC;K�; andK0 of strongly negative
amphichiral knots such that the following hold:

(1) There are diagrams DC; D�, and D0 for KC; K�, and K0, respectively, which are
identical outside of an equivariant pair of disks.

(2) Within the equivariant pair of disks, DC is a positive dichromatic crossing pair, D�
is a negative dichromatic crossing pair, and D0 is the unique oriented resolution of
that crossing pair; see Figure 9.

� � �

cC

�.cC/

c�

�.c�/

DC D� D0

Figure 9. The diagrams DC, D�, and D0 are identical outside of the equivariant pair of disks
shown. Here cC > �.cC/ and c� > �.c�/. Note that we require .cC; c�/ to be a dichromatic
crossing pair; see Definition 3.2.

Remark 4.7. In contrast with the skein relation for the usual Conway polynomial, the
resolution of a dichromatic crossing pair is a knot rather than a link. One might wish to
extend this skein relation to all equivariant pairs of crossings. However, to do so requires
consideration of links, which arise when resolving monochromatic crossing pairs. Since
there is no clear way to assign a sign to an equivariant pair of crossings in a link, we only
define the skein relation on dichromatic crossing pairs.
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Although the equivariant skein relation is not defined for every pair of crossings, we
can still use it to compute the half-Conway polynomial r.K;�/.z/ for any strongly neg-
ative amphichiral knot K as follows. Iteratively apply the equivariant skein relation to
obtain a skein decomposition of K such that in every element in the decomposition the
arc ar always passes over the arc ab . In such a diagram, we can perform a small equiv-
ariant isotopy to pull ar above the plane of the diagram, and ab behind the plane of the
diagram, so that the plane of the diagram decomposes the knot as J # xJ for some J ,
and r.J # xJ ;�/.z/D rJ .z/; see Proposition 4.5. The half-Conway polynomials of the sum-
mands in the skein decomposition then determine the half-Conway polynomial of K by
Theorem 1.1. An example computation is worked out in Figure 10.

Figure 10. A strongly negative amphichiral diagram for KC D 817 (top), and the strongly nega-
tive amphichiral diagrams obtained by a crossing change (K� on the bottom left) and an oriented
resolution (K0 on the bottom right) on the indicated symmetric pair of crossings. Here K� is the
unknot, and K0 is 31 #x31, so that r.KC;�/.z/ D r.K�;�/.z/C z � r.K0;�/.z/ D 1C z.1C z

2/ D

1C z C z3.

In addition to providing an easy computational method, this equivariant skein relation
also allows us to relate the half-Conway polynomial and the Arf invariant to the half-
linking number of K.

Proof of Corollary 1.5. We first prove claim (1). Let a1.K/ denote the z-coefficient of
r.K;�/.z/. First, consider strongly negative amphichiral knots of the form J # xJ for some
knot J . By definition, h.J # xJ /D 0, and by Proposition 4.5, a1.J # xJ /D 0 since the Con-
way polynomialrJ .z/ is a polynomial in z2. Next, note that the half-linking number h.K/
satisfies the relation

(4.1) h.KC/ � h.K�/ D 1;

and Theorem 1.1 (along with Definition 4.3) implies that

(4.2) a1.KC/ � a1.K�/ D 1:

Now any strongly negative amphichiral knot K admits a finite sequence of dichromatic
crossing changes which transforms it to a knot of the form J # xJ , and by equations (4.1)
and (4.2), both h.K/ and a1.K/ are equal to the signed count of these crossing changes.
Hence, h.K/ D a1.K/.
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For claim (2), recall that the z2-coefficient of the Conway polynomial is the Arf invari-
ant .mod 2/, see Corollary 10.8 in [18], and by Proposition 4.4,

r.K;�/.z/ � r.K;�/.�z/ D rK.z/:

Lettingr.K;�/.z/D 1C a1zC a2 z2C � � � , we haver.K;�/.�z/D 1� a1zC a2 z2 � � � � ,
and hence

rK.z/ D 1C .2a2 � a
2
1/z

2
C � � � :

Then since .2a2 � a21/ � a1 .mod 2/, we have that Arf.K/ � a1 � h.K/ .mod 2/.

5. Computing the half-Alexander polynomial with a surgery
presentation

In this section we use a symmetric surgery description of a strongly negative amphichiral
knot to obtain an equivariant presentation for the Alexander module, from which we can
compute the half-Alexander polynomial. This is analogous to the non-equivariant discus-
sion in Section 7 of [23].

We begin with some notation. Let .K; �/ be an oriented strongly negative amphichiral
knot and let X D S3 � �.K/ be the exterior of K with quotient Q D .S3 � �.K//=�.
Let X1.K/ be the infinite cyclic cover of K. Let t be the generator of the deck transfor-
mation group specified by the orientation onK. ThenH1.X1IZ/ is naturally a ZŒt; t�1�-
module. The following proposition is implicit in the work of Kawauchi [20], but we
produce a proof here for convenience.

Proposition 5.1. The symmetry � lifts to a homeomorphism � WX1.K/! X1.K/ such
that �2 D t . Furthermore, X1.K/! X ! Q is the infinite cyclic cover of Q, and � is
the generator of the deck transformation group compatible with the orientation on K. In
particular, � is unique and the ZŒ�; ��1�-moduleH1.X1.K/IZ/ is the Alexander module
of Q.

Proof. Let m be an oriented meridian of K such that lk.m; K/ D 1; we may choose m
such that �.m/D m. Let �� denote the quotient map X !Q. Note that �� is the orienta-
tion cover of Q since it is an orientable double cover. Let l D ��.m/ be the oriented loop
in Q with .��/�.Œm�/ D 2Œl� 2 H1.QIZ/. After choosing a basepoint q 2 l , the covering
space correspondence produces from Œl � 2 �1.Q;q/ a deck transformation onX!Q and
a deck transformation ofX1.K/! X !Q. By construction, the deck transformation of
X ! Q is �, and we call the other deck transformation � WX1.K/! X1.K/. Clearly �
is a lift of �, and it remains to show that �2 D t . Since � is a lift of �, we have that �2 is
a lift of �2 D idX , and hence that �2 must be a deck transformation of the covering map
X1.K/! X . Explicitly, choosing a basepoint p 2 ��1.q/, we see that both �2 and t
correspond to Œm� 2 �1.X; p/ and hence �2 D t .

To see thatX1.K/!X!Q is the infinite cyclic cover ofQ, note thatX1.K/=� D
.X1.K/=�

2/=�DX=�DQ, and in particular, � generates the (infinite cyclic) deck trans-
formation group. It also follows from the construction in the previous paragraph that � is
compatible with the orientation of K.
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Next we show that � is the unique lift of � satisfying �2 D t . Note that all lifts of �
are deck transformations of X1.K/! Q, and hence they are of the form �n for some
n 2 Z. Clearly the only lift that squares to t is � . The final statement, that the ZŒ�; ��1�-
module H1.X1.K/IZ/ is the Alexander module of Q, follows from the second part of
the statement.

We now describe how to compute the Alexander module of Q in terms of a symmet-
ric surgery description of X1.K/. Here a symmetric surgery diagram of K refers to a
strongly negative amphichiral unknot U along with a symmetric framed link L such that
surgery along L gives S3 and U becomes K. We further require that the linking number
of each component of L with U is 0, so that the link lifts to X1.U /. See, for example,
Figures 11 and 2 (left).

We now describe one way to obtain a symmetric surgery description. Start with a
symmetric diagram .D; �/, and let ¹ci ; �.ci /º be a symmetric collection of crossings such
that changing all of these crossings produces an unknot (see Proposition 3.12). We now
change the crossings ¹ci ; �.ci /º and introduce a pair of framed surgery circles ¹˛i ; ˇiº;
see Figure 11 for the case of the figure-eight knot. The resulting unknot U , along with
¹˛i ; ˇiº, produces a symmetric description of K. Note that lk.U; ˛i / D lk.U; ˇi / D 0.

�1

˛

C1

ˇD

Figure 11. An amphichiral link for which �1-surgery on the ˛ component and the symmetric
C1-surgery on the ˇ D �.˛/ component produces the strongly negative amphichiral figure-eight
knot.

We can now lift the framed link
S
i .˛i [ ˇi / to the infinite cyclic cover of U to

obtain a surgery description for X1.K/. Since U is an unknot, the infinite cyclic cover
is D2 � R, which we project to D1 � R; see Figure 12 and 13 for the case of the figure-
eight knot. Note that � acts as the composition of a horizontal translation with a reflection
across D1 �R, taking a lift of ˛i to a lift of ˇi , and a lift of ˇi to a lift of ˛i .

Next we write a presentation matrix for the ZŒ�; ��1�-module H1.X1.K/IZ/. To
do so, we choose for each i a lift x̨i of ˛i , and an oriented meridian mi of x̨i . Then
H1.X1.K/IZ/ is generated over ZŒ�; ��1� by ¹miº. Each symmetric pair of surgery
circles .˛i ; ˇi / then gives a relator as follows. Orient x̨i so that the linking with mi isC1
and let li be the oriented parallel push-off of x̨i representing the framing. Now define

(5.1) fi;j .�/ D
X
k

lk.li ; �
k
x̨j /.��/

k
2 ZŒ�; ��1�;

and the relator corresponding to .˛i ; ˇi / is

ri D
X
j

fi;j .�/mj :
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The .i; j /th entry of the presentation matrix M is then given by fi;j . Since M is a square
matrix, we have

�.K;�/.�/
:
D det.M/:

Note that M has an unusual symmetry: fi;j .�/ D fj;i .��
�1/. Indeed, using the deck

transformation ��k , we have

lk.li ; �
k
x̨j / D .�1/

k
� lk.��kli ; x̨j / D lk..��/

�k
x̨i ; lj /;

where the .�1/k factor appears because � is orientation reversing. This symmetry implies
det.M/.�/D det.M/.���1/, and hence det.M/ already gives rise to a symmetrized half-
Alexander polynomial, but there is still an overall sign ambiguity.

Example 5.2. We will compute the half-Alexander polynomial for the strongly negative
amphichiral symmetry � on the figure-eight knot K shown on the left in Figure 11. Note
that K can be equivariantly unknotted with two crossing changes so that we have a sym-
metric surgery diagram for K shown on the right in Figure 11. We can then simplify this
link with an equivariant isotopy to obtain Figure 12.

˛

�1

ˇ

C1

Figure 12. The symmetric link from Figure 11, simplified equivariantly so that the unknot U has no
crossings.

From here, we can lift the link to the infinite cyclic cover; see Figure 13. Note that
the ZŒ�; ��1�-moduleH1.X1.K/IZ/ is generated by a single element, the meridian of x̨.
Furthermore, there is a single relator which we now compute. Since the framing on x̨
is �1, we have that

lk.l0; x̨/ D �1;

and also
lk.x̨; � x̨/ D lk.x̨; x̌/ D 1

and
lk.x̨; ��1 x̨/ D lk.x̨; t�1 x̌/ D �1:

When computing the linking numbers above, we can choose an arbitrary orientation on x̨,
and applying � or ��1 will produce an orientation on x̌ or t�1 x̌. In Figure 13 this corre-
sponds to all curves being oriented clockwise, or all oriented counterclockwise. As a result
we have the relator ��1 � 1 � � (see equation (5.1)), and therefore the half-Alexander
polynomial is

�.K;�/.�/
:
D ���1 C 1C �:
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�

t�1 x̌ x̨ x̌ t x̨
: : :: : :

C1 �1 C1 �1

Figure 13. The lifts of ˛ and ˇ in Figure 12 to the infinite cyclic cover of U . Here �1-surgery on
the tn x̨ components and C1-surgery on the tn x̌ components produces the infinite cyclic cover of
the figure-eight knot, and x̨ and x̌ are lifts from Figure 12 of ˛ and ˇ, respectively. Note that �2 D t .

5.1. Proof of Proposition 4.5

Now that we can compute the half-Alexander polynomial from a symmetric surgery pre-
sentation, we are prepared to give the proof of Proposition 4.5.

Proof of Proposition 4.5. Converting this back to a statement about the half-Alexander
polynomial by setting z D � � ��1, we have the equivalent statement

�.J # xJ ; �/.�/
:
D �J .�

2/:

To prove this, we will compare surgery descriptions for the infinite cyclic covers X1.J /
and X1.J # xJ /. Let � be the strongly negative amphichiral symmetry on J # xJ stated in
the proposition. Let† be a connected summing sphere which is �-invariant, separating S3

into two 3-balls: BC containing J and B� containing xJ . Note that .J # xJ / \† is exactly
the two fixed points of �. Start with a surgery presentation ¹˛1; ˛2; : : : ; ˛nI U º for J ,
where each ˛i is a framed circle and U is the unknot. Removing a neighborhood of a
point on J , where we perform the connected sum, this also gives a surgery description for
.BC; J \ BC/. Applying the symmetry �, we then have a symmetric surgery description
¹˛1; ˛2; : : : ; ˛n; �.˛1/; �.˛2/; : : : ; �.˛n/IU º for J # xJ .

Lifting this to the infinite cyclic coverX1.U /we get a surgery presentation of the infi-
nite cyclic coverX1.J # xJ /. The lift of the connected summing sphere† is R � I , which
separates X1.U / into the infinite cyclic cover X1.BC/ of BC over U \BC and the infi-
nite cyclic coverX1.B�/ of B� over U \B�. For each i , let x̨i be a lift of ˛i toX1.U /.
Now X1.BC/ along with the lifts

F
i;j �

2j x̨i is a surgery presentation forX1.J /, where
�2D t is the generator of the deck transformation group. Applying the lift � of the symme-
try �, we have that X1.B�/ along with the lifts

F
i;j �

2jC1 x̨i of the surgery curves �.˛i /
is a surgery presentation for X1. xJ /. We then compute �J .t/

:
D detM , where M is the

n � n matrix whose .i; j / entry is

(5.2)
X
k

lk.x̨i ; t
k
x̨j / � t

k
2 ZŒt; t�1�:

Here lk.x̨i ; x̨i / is understood to be the linking of x̨i with its appropriately framed longi-
tude. On the other hand, the half-Alexander polynomial�.J # xJ ;�/.�/

:
D detN , where N is

the n � n matrix whose the .i; j / entry isX
k

lk.x̨i ; �
k
x̨j / � .��/

k
2 ZŒ�; ��1�:
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Note that lk.x̨i ; �2mC1 x̨j / D 0 for all m since x̨i and �2mC1 x̨j are separated by the lift
of the connected summing sphere †. Therefore, the .i; j / entry of N is

(5.3)
X
k

lk.x̨i ; .�
2/k x̨j / � .�

2/k :

Comparing equations (5.2) and (5.3), we see that

�J .�
2/
:
D detM jtD�2

:
D detN :

D �.J # xJ ;�/.�/:

6. Realizations of half-Conway polynomials

In this section we characterize which polynomials can be realized as the half-Alexander
polynomial of a strongly negative amphichiral knot. Work of Kawauchi (Theorem 1.6
in [19]) implies that any polynomial f .�/ 2ZŒ�; ��1�with f .�/ :D f .���1/ and jf .1/j D
1 is the half-Alexander polynomial of a strongly negative amphichiral knot in an integer
homology 3-sphere. However, it was unknown if these polynomials can be realized by
knots in S3 (see Remark (3) in [12]). We show that this is the case by directly constructing
such knots using an equivariant version of the construction in [22]. The precise statement
follows.

Theorem 6.1. Let f .�/ D
PN
iD�N ai�

i 2 ZŒ�; ��1� be such that

(1) ai D .�1/ia�i , and

(2)
P
i ai D 1.

Then there is a strongly negative amphichiral knot .K; �/ such that �.K;�/.�/
:
D f .�/.

Proof. We directly construct a knot .K;�/with�.K;�/.�/
:
D f .�/ via a symmetric surgery

description as follows. Let bi D a2i for 1 � i � k D bN=2c. Likewise, let ci D �a2i�1
for 1 � i � l D b.N C 1/=2c. Then the knot .K; �/ is shown in Figure 14. First, observe
thatK is a strongly negative amphichiral knot in S3, since the blue and red surgery curves
form a �-invariant 2-component unlink. Indeed, ignoring K, the bi crossing boxes each
untwist and then the ci crossing boxes cancel in pairs.

Now let ˛ be the C1-surgery curve and let ˇ be the �1-surgery curve, and choose a
lift x̨ of ˛ to the infinite cyclic cover of the unknot. Then the i th coefficient of �.K;�/.�/
is lk.x̨; � i x̨/; for i ¤ 0, since H1.X1IZ/ is ZŒ�; ��1� modulo a single relation (see
equation (5.1)). By examining a surgery diagram for the infinite cyclic cover of K, we
can see that lk.x̨; �2i x̨/ D bi and that lk.x̨; �2i�1 x̨/ D ci . Specifically, observe that the
only crossings between x̨ and �2i x̨ are the lifts of the crossings in the twisting region
labeled �bi . Indeed, the two arcs of ˛ disjoint from the �bi twisting region link the knot i
and �i times, and �2i is the i th power of the deck transformation. Note that the crossings
in the �bi regions are positive crossings since the two arcs are oriented in opposite hori-
zontal directions. (This computation is identical to the non-equivariant case in Section 5
of [22]; see, in particular, Figures 1 and 3 of [22].)

Similarly, the only crossings between x̨ and �2i�1 x̨ are the lifts of the crossings in the
twisting region labeled �ci . See Figures 12 and 13 for the case where c1 D 1 and all other
coefficients are 0. Generalizing this, the arc of ˛ between the�c1 and�ci twisting regions
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Figure 14. A symmetric surgery description of a strongly negative amphichiral knot K which has a
prescribed half-Alexander polynomial.

links the knot i � 1 times so that the �ci twisting region contributes to the linking number
between x̨ and �2i�1 x̨. Finally, the constant term of�.K;�/.�/ is forced by condition (2).
As a result, we have that �.K;�/.�/

:
D f .�/.

Using Theorem 6.1, we can construct strongly negative amphichiral knots with a
specific Alexander polynomial. In particular, we can construct strongly negative amphichi-
ral knots for which the determinant is 1 and simultaneously the Fox–Milnor condition
obstructs sliceness.

Proof of Corollary 1.7. LetK be a strongly negative amphichiral knot with half-Alexander
polynomial n��3C n��1C 1� n� � n�3 for either nD 1 or n� 3 prime. The case nD 1
is shown in Figure 2. Let�K.t/ be the Alexander polynomial ofK. Then, by Theorem 4.2,

�K.�
2/ D .n��3 C n��1 C 1 � n� � n�3/.�n��3 � n��1 C 1C n� C n�3/;

so that

�K.t/ D �n
2 t�3 � 2n2 t�2 C n2 t�1 C .1C 4n2/C n2t � 2n2 t2 � n2 t3:

Plugging in t D �1, we have that the determinant is 1, and we will use the Fox–Milnor
condition (see [10]) to see that K is not slice by showing that �K.t/ does not factor
as f .t/f .t�1/ for any Laurent polynomial f .t/. For n D 1, this is apparent since �K.t/
is irreducible over Q. For n � 3 prime, we will argue by contradiction. Let f .t/ D a0 C
a1t C a2 t

2 C a3 t
3, and suppose that f .t/f .t�1/ D �K.t/. That is,

.a0 C a1 t C a2 t
2
C a3 t

3/.a0 C a1 t
�1
C a2 t

�2
C a3 t

�3/ D �K.t/:
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Comparing coefficients, we have the system of equations

a0a3 D �n
2;

a0a2 C a1a3 D �2n
2;

a0a1 C a1a2 C a2a3 D n
2;

a20 C a
2
1 C a

2
2 C a

2
3 D 4n

2
C 1:

Since n is prime, the first equation implies that a0; a3 2 ¹˙1;˙n;˙n2º. However, the
last equation immediately rules out a0 D ˙n2 or a3 D ˙n2 since n � 3. We may then
assume without loss of generality that a0 D n and a3 D �n. In this case the second, third,
and fourth equations reduce to

a2 � a1 D �2n;

a1a2 D �n
2;

a21 C a
2
2 D 1C 2n

2;

which has no solutions.

There are no strongly negative amphichiral knots with determinant 1 which have 12
or fewer crossings, so that this knot is necessarily somewhat complicated. Moreover,
this is the first example of a non-slice strongly negative amphichiral knot with determi-
nant 1, answering Problem 20 (3) in [17]. Such knots are of interest because their double
branched covers potentially represent non-trivial torsion elements in the homology cobor-
dism group; non-trivial torsion elements in this group are currently not known to exist (see
Section 2 in [27]).

7. Proof of Theorem 1.1

LetKC andK� be strongly negative amphichiral knots related by a dichromatic equivari-
ant crossing change .cC; �.cC//! .c�; �.c�// such that the pair of crossings .cC; �.cC//
in KC is positive (see Definition 3.1). We can take an equivariant unknotting sequence
for K� outside of the neighborhood of .c�; �.c�//. This gives us a symmetric surgery
description for K� from the unknot U , which determines a symmetric surgery descrip-
tion of X1.K�/ in X1.U / D D2 �R; see Section 5. Let M� be the presentation matrix
of H1.X1.K�/IZ/ induced by this surgery. The unknotting sequence for K� gives an
unknotting sequence for KC by adding in the additional crossing change .cC; �.cC//!
.c�; �.c�//. The surgery presentation for KC is then obtained from the surgery presenta-
tion forK� by adding an equivariant pair of surgery circles; see Figure 15. LetMC be the
corresponding presentation matrix forH1.X1.KC/IZ/. Finally, replacing the˙1-framed
circles corresponding to .cC; �.cC// ! .c�; �.c�// with 0-framed circles, we obtain a
new framed link in S3 � �.U / which lifts to a framed link zL0 in X1.U /. Let X01 be the
manifold obtained by surgery on zL0, and letM0 be the corresponding presentation matrix
for the ZŒ�; ��1�-module H1.X01IZ/.



Negative amphichiral knots and the half-Conway polynomial 603

C1

�1

1

1

0

0

KC K� K00

Figure 15. The local surgeries needed to obtain KC;K�, and K00. Note that K00 is distinct from the
resolution K0 in Figure 9. The crossings in the top row come after the crossings in the bottom row,
so that the sign of each pair is the sign of the top crossing; see Definition 3.1.

Remark 7.1. Note that the ZŒ�; ��1�-moduleH1.X01IZ/ is the Alexander module of the
strongly negative amphichiral knot K 00 in .S1 � S2/ # .S1 � S2/ obtained from K� by
0-surgery on the pair of circles on the right in Figure 15.

The following proposition (which depends on Lemmas 7.3, 7.4, and 7.5 below) is our
first step towards proving Theorem 6.1.

Proposition 7.2. Let MC;M�, and M0 be as above. Then

(1) det.MC/ � det.M�/ D det.M0/,

(2) det.MC/j�D1 D det.M�/j�D1,

(3) and letting z D � � ��1,

@ det.M0/

@z

ˇ̌̌
zD0
D
1

2
�
@ det.M0/

@�

ˇ̌̌
�D1
D det.M�/j�D1:

Proof. We start by writing the matrices MC and M0 in terms of M�. Recall that the
entries of a presentation matrix are linking numbers between lifts of surgery curves (see
equation (5.1)). Hence, MC and M0 are each obtained from M� by adding a row and a
column containing linking numbers involving lifts of the extra equivariant pair of surgery
circles as shown in Figure 15. Furthermore, the added surgery circles forK 00 andKC differ
only by their framings, so the off-diagonal entries inMC andM0 are identical. Concretely,
let n D rank.M�/. Then there are Laurent polynomials f .�/ and h.�/, and a n-tuple of
Laurent polynomials Eg.�/ D .g1.�/; g2.�/; : : : ; gn.�// such that

(7.1) MC D

�
M� Eg.�/

EgT .���1/ f .�/

�
and M0 D

�
M� Eg.�/

EgT .���1/ h.�/

�
:
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By Lemma 7.3 below, f .�/ D h.�/C 1, and we compute

det.MC/ � det.M�/ D det
�

M� Eg.�/

EgT .���1/ f .�/

�
� det

�
M� 0

0 1

�
D det

�
M� Eg.�/

EgT .���1/ f .�/

�
� det

�
M� Eg.�/

0 1

�
D det

�
M� Eg.�/

EgT .���1/ f .�/ � 1

�
D det.M0/;

proving Proposition 7.2 (1). Next, we will show that det.MC/j�D1 D det.M�/j�D1. By
Lemma 7.4 below, Eg.1/ D 0 D EgT .�1/ and f .1/ D 1, so that

det.MC/j�D1 D det
�
M�j�D1 Eg.1/

EgT .�1/ f .1/

�
D det

�
M�j�D1 0

0 1

�
D det.M�/j�D1:

For the final claim, we have

@ det.M0/

@z

ˇ̌̌
zD0
D
1

2
�
@ det.M0/

@�

ˇ̌̌
�D1

;

by the chain rule. Let Eri be the i th row of M�. Then we compute

1

2
�
@ detM0

@�

ˇ̌̌
�D1
D
1

2

�
det

�
M�j�D1 Eg.1/

.EgT /0.�1/ h0.1/

�
C

nX
iD1

Hi

�
;

where

Hi D det

266666666664

Er1.1/ g1.1/

Er2.1/ g2.1/
:::

:::

.Eri /
0.1/ g0i .1/
:::

:::

Ern.1/ gn.1/

EgT .�1/ h.1/

377777777775
D det

266666666664

Er1.1/ g1.1/

Er2.1/ g2.1/
:::

:::

.Eri /
0.1/ g0i .1/
:::

:::

Ern.1/ gn.1/

0 0

377777777775
D 0;

in which the bottom row is 0 by Lemma 7.4. Hence,

1

2
�
@ detM0

@�

ˇ̌̌
�D1
D
1

2
det

�
M�j�D1 Eg.1/

.EgT /0.�1/ h0.1/

�
D
1

2
det

�
M�j�D1 0

.EgT /0.�1/ 2

�
D det.M�/j�D1;

where in the second equality we have Eg.1/ D 0, by Lemma 7.4, and h0.1/ D 2, by Lem-
ma 7.5, also below.

Lemma 7.3. In equation (7.1), f .�/ D h.�/C 1.
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Proof. Let ˛ be the C1-surgery curve for KC in Figure 15 and let l be the C1-framed
longitude of ˛. Similarly, let ˛0 be the 0-surgery curve for K 00 and let l 0 be the 0-framed
longitude of ˛0. Additionally, choose a lift x̨ of ˛ in X1.KC/ and a push-off xl of x̨ that
lifts l , and choose lifts x̨0 and xl 0 in X01 similarly. Then

f .�/ D
X
i

lk.xl ; � i x̨/.��/i and h.�/ D
X
i

lk.xl 0; � i x̨0/.��/i :

Only the framings on ˛ and ˛0 differ between these two sums, and the framing only affects
the i D 0 term. Hence, the non-constant terms in f .�/ and h.�/ are identical. To compare
the constant terms, note thatX

i

lk.xl ; �2i x̨/ D lk.˛; l/ D 1 and
X
i

lk.xl 0; �2i x̨0/ D lk.˛0; l 0/ D 0;

where �2i D t i are the usual deck translations. We can then compute the difference

f .�/ � h.�/ D lk.xl ; x̨/ � lk.xl 0; x̨0/

D

X
i

lk.xl ; �2i x̨/ �
X
i

lk.xl 0; �2i x̨0/ D 1 � 0 D 1;

where the first two equalities both use the fact that the non-constant terms in f .�/ and h.�/
are equal. Hence, f .�/ D h.�/C 1.

Lemma 7.4. In equation (7.1), Eg.1/D Eg.�1/D 0 and f .1/D 1. In particular, h.1/D 0.

Proof. Let ˛; l; x̨; and xl be defined as in Lemma 7.3. Then

f .1/ D
X
i

lk.xl ; � i x̨/.�1/i :

Furthermore, for all j 2 Z, we have

lk.xl ; �2jC1 x̨/ D �lk.��2j�1xl ; x̨/ D �lk.��2j�1 x̨; xl/;

so that the odd terms in the previous equation cancel, giving us

f .1/ D
X
i

lk.xl ; �2i x̨/ D lk.l; ˛/ D 1:

Then h.1/ D 0 since f .�/ D h.�/C 1 (Lemma 7.3). We will now show that gj .1/ D 0
for 1 � j � n. Let j̨ and �. j̨ / be the equivariant pair of surgery curves corresponding
to the j th row of M�. Let x̨j be a lift of j̨ to X1.K�/. Then

gj .1/ D
X
i

lk.x̨; � i x̨j /.�1/
i
D

X
i

lk.x̨; �2i x̨j / �
X
i

lk.x̨; �2iC1 x̨j /

D lk.˛; j̨ / � lk.˛; �. j̨ // D 0 � 0 D 0:

Here lk.˛; j̨ /D lk.˛; �. j̨ //D 0 since the surgery curves are all pairwise unlinked. The
argument that gj .�1/ D 0 is similar. Therefore, Eg.1/ D Eg.�1/ D 0.
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Lemma 7.5. Let h be defined as in equation (7.1). Then

@h

@z

ˇ̌̌
zD0
D
1

2
�
@h

@�

ˇ̌̌
�D1
D 1:

Proof. Using the notation from Lemma 7.3, we have

h.�/ D
X
i

lk.xl 0; � i x̨0/.��/i ;

so that
1

2
h0.1/ D

1

2

X
i

i � lk.xl 0; � i x̨0/.�1/i :

By the symmetry, lk.xl 0; �2i x̨0/ D lk.xl 0; ��2i x̨0/ for all i 2 Z, so that the terms corre-
sponding to index 2i and �2i cancel each other for all i , and we are left with

1

2
h0.1/ D �

1

2

X
i

.2i C 1/ lk.xl 0; �2iC1 x̨0/ D �
1

2

X
i

.2i C 1/ lk.x̨0; �2iC1 x̨0/:

It remains to check that

(7.2) �
1

2

X
i

.2i C 1/ lk.x̨0; �2iC1 x̨0/ D 1:

We begin by putting the surgery curves ˛0 and �.˛/0 in a particular position relative to the
unknot U as follows. Pull U straight and let ar and ab be the two arcs of U separated
by the fixed points of �. The surgery curve ˛0 (see Figure 15) bounds a disk which inter-
sects U in two points, one on ar and one on ab . This disk is isotopic, under the isotopy
which pullsU straight, to the band sum of a pair of meridional disks,D1 around ar andD2
around ab . Let b be the band connecting D1 and D2. Equivariantly, let D01 D �.D1/ and
D02 D �.D2/ so that �.˛0/ bounds a disk which is a band sum of D01 and D02. See Fig-
ure 16. Note that b and �.b/ may be knotted and linked, but are disjoint from U and the
interiors of D1;D2;D01, and D02.

D01

D2

D02

D1�.b/

:::

�.b/

:::

b
:::

b
:::

U

Figure 16. The 0-framed symmetric surgery curves ˛0 D @.D1 [D2 [ b/ and �.˛0/ D @.D01 [

D02 [ �.b// for K00 are isotopic to this standard position in a neighborhood of U .

We can then choose a new projection for Figure 16, where U is perpendicular to the
diagram, and where a neighborhood N of the projection of U containing D1; D2; D01;
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and D02 is disjoint from the interiors of b and �.b/; see Figure 17. Let 
 and ı be the
arcs on the boundary of b disjoint from N as indicated. Then lift Figure 17 to the infinite
cyclic cover X1.U / as shown in Figure 18. Here xı and x
 are lifts of ı and 
 , respectively,
and x�1 and x�2 are lifts of boundary pieces of D1 and D2, respectively, so that x̨0 D xı [
x
 [ x�1 [ x�2 as shown.

N




ı

ı




�2

�1

Figure 17. Figure 16 rotated so that U is perpendicular to the diagram. For clarity, ˛0 has been col-
ored red and �.˛0/ has been colored blue. The intersection ˛0 \N consists of two components: �1
and �2. The arcs ı and 
 are the edges of the band b, so that ˛0 D �1 [ �2 [ ı [ 
:

: : : : : :x�2

�x�2

�x�1

��1x�2

��1 x�1

x�1

xıxı x
x


Figure 18. The lift of Figure 17 to X1.U /.

We can now compute equation (7.2) directly by counting signs of crossings between x̨0

and
S
i �

2iC1 x̨0 in Figure 18. First, consider x�1 and x�2. We directly see that cross-
ings involving these arcs contribute � � ��1 to h.�/: a � contribution from the cross-
ings with �x�2, and a ���1 contribution from the crossings with ��1 x�2. This contributes
�
1
2
� .�2/ D 1 to the left-hand side of equation (7.2). It remains to show that the cross-

ings involving xı and x
 contribute 0. To see this, observe that the crossings between x
 or xı
and

S
i �
2iC1 x̨0 occur as shown in Figure 19, where the pair of strands in each band are

related by a �2 (or, equivalently, t ) shift since �i loops around K once. Indeed, each band
crossing in S3 consists of 4 crossings. Since we are only interested in crossings involving
�2iC1 x̨0, we only consider band crossings between b and �.b/. Such band crossings lift to
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exactly two band crossings in X1.U / which involve x
 or xı. In these two band crossings,
there are 4 total crossings involving xı or x
 . These contribute

˙
1

2
.�2n�1 � �2nC1 C �2nC3 � �2nC1/

to h.�/, where the sign depends on the orientation of the band crossing and the 1=2 is part
of the usual linking number formula. This results in a contribution of 0 to the left-hand
side of equation (7.2).

�2 D t

x


��2 xı

�2nC1 x̨0

�2n�1 x̨0

�2x


xı

�2nC3 x̨0

�2nC1 x̨0

Figure 19. The two lifts of a band crossing to X1.U / involving x
 and xı. Note that the two strands
in each band are in distinct components of the lift of ˛; one is a �2 (or, equivalently, t ) shift of the
other.

We need one additional lemma before proving Theorem 1.1.

Lemma 7.6. For M0 and K0 as above, det.M0/ D � � .� � �
�1/ ��.K0;�/.�/, for some

� 2 Q.

Proof. Recall that det.M0/ is the Alexander polynomial of K 00 (see Figure 15). Let B0 be
the ball shown on the top right in Figure 9, and let B 00 be the corresponding ball for K 00
shown on the top right in Figure 15. Take their pre-images xB0 and xB 00 in the infinite
cyclic covers of K0 and K 00, respectively, and let E1 D .X1.K0/ � . xB0 [ � xB0//. Note
that there is a natural identification between E1 and .X1.K 00/ � . xB

0
0 [ �

xB 00//. We can
decompose

X1.K0/ D E1 [ . xB0 [ � xB0/ and X1.K
0
0/ D E1 [ .

xB 00 [ �
xB 00/:

Now let ƒQ D QŒ�; ��1�. We can compare the ƒQ-modules H1.X1.K0/IQ/ and
H1.X1.K

0
0/IQ/ using the Mayer–Vietoris sequence on this � -equivariant decomposition.

We use Q coefficients to simplify the linear algebra, sinceƒQ is a principal ideal domain.
Let xS be the pre-image of @B0 in the infinite cyclic cover (either X1.K0/ or X1.K 00/).
Note that xS and � xS are disjoint. We have the Mayer–Vietoris sequences as follow:

H1. xS [ � xS IQ/
i1˚i2
����! H1.E1IQ/˚H1. xB0 [ � xB0IQ/! H1.X1.K0/IQ/! 0

and

H1. xS [ � xS IQ/
i1˚i

0
2

����! H1.E1IQ/˚H1. xB
0
0 [ �

xB 00IQ/! H1.X1.K
0
0/IQ/! 0:

In particular, H1.X1.K0/IQ/ and H1.X1.K 00/IQ/ are the cokernels of i1 ˚ i2 and
i1 ˚ i

0
2, respectively. We can then obtain presentation matrices for H1.X1.K0/IQ/ and
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for H1.X1.K 00/IQ/ as follows. Since ƒQ is a principal ideal domain, H1.E1IQ/ can
be written as

ƒQ=f1 ˚ƒQ=f2 ˚ � � � ˚ƒQ=fn

for some f1;f2; : : : ;fn 2ƒQ. Thus,H1.E1IQ/ admits a square presentation matrixAE :
the diagonal matrix with entries f1;f2; : : : ;fn. Note that xS is homeomorphic to two copies
of R� Œ0; 1�with infinitely many tubes connecting them, as shown on the left in Figure 21.
Here �2 acts by shifting the tubes one place to the right, and � exchanges xS and � xS . Let xm1
and xm2 be lifts of m1 and m2, respectively, from Figure 20 as shown. Then H1. xS [
� xS IQ/ Š ƒQh xm1; xm2i. Similarly, xB0 is homeomorphic to an infinite ladder: two copies
of D2 �R connected by infinitely many solid tubes; see Figure 21. As with xS , �2 acts by
shifting the rungs of the ladder one place to the right, so that we haveH1. xB0 [ � xB0IQ/Š
ƒQŒ xm2�. Now we obtain a presentation matrix for H1.X1.K0/IQ/ by enlarging AE :

A D

�
0 1 0

Ev1 Ev2 AE

�
:

Here Ev1 and Ev2 are the coefficients of i1.Œ xm1�/ and i1.Œ xm2�/, respectively. Furthermore,
the (1,1)-entry is 0 since i2.Œ xm1�/ D 0, and the (1,2)-entry is 1 since i2.Œ xm2�/ D Œ xm2�.

a

c

b d

m1

m2

a d

b c

m1

m2

a
b

d c

m2

m1

0

Figure 20. The left figure shows curves m1 and m2 in the 4-punctured sphere S2 � ¹a; b; c; dº �
@B0 D @B 00. The center figure shows m1 and m2 on the boundary of B0 after an isotopy which
rotates the blue arc upside down. The right figure shows m1 and m2 on the boundary of B 00 after an
isotopy which uncrosses the red and blue arcs.

Similarly, xB 00 can be obtained from an infinite ladder by performing surgeries along the
lifts of the 0-surgery curves, each of which encircles the gap between an adjacent pair of
rungs; see Figure 21. ThenH1. xB 00 [ � xB

0
0IQ/ŠƒQŒx��, where x� is the meridian of one of

the surgery curves; see Figure 21. Here xm1 is isotopic to one of the surgery curves, and xm2
is a meridian of a rung as shown. In particular, i 02.Œ xm1�/ D 0 and i 02.Œ xm2�/ D .1 � �

2/Œ��.
Therefore, H1.X1.K 00/IQ/ has a presentation matrix

A0 D

�
0 .1 � �2/ 0

Ev1 Ev2 AE

�
:

We now compare the first elementary ideals ofH1.X1.K0/IQ/ andH1.X1.K 00/IQ/
from these matrices. The first elementary ideal E of H1.X1.K0/IQ/ is generated by the
.n C 1/ � .n C 1/ minors of A, and the first elementary ideal E 0 of H1.X1.K 00/IQ/
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xm1 t xm1t�1 xm1

xm2 t xm2

xm1 t xm1t�1 xm1

xm2 t xm2

xm2 t xm2
t�1 xm2

0 0

� t�

Figure 21. One component of each of xB0 (top right), and xB 00 (bottom right). On the left is the pre-
image xS of @B0 in the infinite cyclic cover,X1.K0/ orX1.K00/. In the bottom right, the 0-framing
refers to the lift of the 0-framing in Figure 20.

is generated by the .nC 1/ � .nC 1/ minors of A0. Since A and A0 are identical apart
from the .1; 2/-entry, we can see that the minors of A0 are precisely .1 � �2/ times the
corresponding minors of A. In particular, a generator for E 0 is .1 � �2/ times a generator
of E , up to multiplication by a unit in ƒQ.

Note that det.M0/D�.K00;�/.�/ generates E 0 and that�.K0;�/.�/ generates E . There-
fore, det.M0/ and .� � ��1/�.K0;�/.�/ are equal up to multiplication by a unit in ƒQ.
Furthermore, since both det.M0/ and .� � ��1/�.K0;�/.�/ are symmetric under � !
���1, they are in fact equal up to multiplication by a unit in Q.

Proof of Theorem 1.1. Let "D det.MC/j�D1, which is 1 or �1 by Theorem 4.2. Note that
by Proposition 7.2 (2), "D det.M�/j�D1 as well. By construction, det.M˙/

:
D�.K˙;�/.�/.

Then, since det.M˙/ is symmetric and r.K˙;�/.z/ is normalized to have constant term 1,
letting z D � � ��1 gives us

det.MC/ D " � r.KC;�/.z/ and det.M�/ D " � r.K�;�/.z/:

By Lemma 7.6,

det.M0/ D �.� � �
�1/r.K0;�/.� � �

�1/ D �zr.K0;�/.z/:

To determine �, note that Proposition 7.2 (3) gives that the z-coefficient of det.M0/ is ".
Furthermore, since r.K0;�/ is normalized to have constant term 1, �D ", whence we have

det.M0/ D " � zr.K0;�/.z/:
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Then by Proposition 7.2 (1), det.MC/ � det.M�/ D det.M0/, so that

" � r.KC; �/.z/ � " � r.K�; �/.z/ D " � zr.K0; �/.z/:

Dividing by ", we have

r.KC; �/.z/ � r.K�; �/.z/ D zr.K0; �/.z/;

as desired.

8. The half-Conway polynomials for knots with 12 or fewer crossings

In this section we list the values of the half-Conway polynomial for all strongly negative
amphichiral knots with 12 or fewer crossings. Since the choice of orientation can replace z
with �z, we normalize so that the lowest order odd power of z has a positive coefficient.
For compactness we list the coefficients ordered by degree. For example, Œ1; 0;�2� repre-
sents 1 � 2z2.

Most of these polynomials can be computed from only the Conway polynomial (when
it factors uniquely), see Proposition 4.4 (1). Eleven of the remaining polynomials can be
computed with the additional data of the half-linking number (indicated by bold type-
face in Table 1); see Corollary 1.5 (1), and Example 8.1. The remaining example 12a1152
(boxed in Table 1) requires some extra effort using Theorem 1.1; see Example 8.2. In
Appendix B, we also provide symmetric diagrams for these knots, which we used to com-
pute the half-linking number.

Example 8.1. Consider the strongly negative amphichiral knot .K;�/ shown in Figure 22.
Here the Conway polynomial is rK.z/ D 1 � 2z4 C z8 D .1 � z/2.1C z/2.1C z2/2,
so that the half-Conway polynomial can be either .1 � z/.1 C z/.1 C z2/ D 1 � z4

or .1C z/2.1C z2/ D 1 C 2z C 2z2 C 2z3 C z4 by Proposition 4.4. However, from
Figure 22, we compute that the half-linking number is h.K/ D 2 so that r.K;�/.z/ D
1C 2z C 2z2 C 2z3 C z4 by Corollary 1.5.

Figure 22. A strongly negative amphichiral symmetry on 12a435.

Example 8.2. LetK D 12a1152 and let � be the strongly negative amphichiral symmetry
on K with h.K/ D 1 as shown in Figure 23. We know that rK.z/ D 1 � z2 � z6 C z8.
This polynomial factors in multiple ways, so that the half-Conway polynomial is not deter-
mined by the Conway polynomial. Indeed, the possibilities are 1C z � z3 � z4; 1C 3zC
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K r.K;�/.z/ K r.K;�/.z/ K r.K;�/.z/

41 Œ1; 1� 63 Œ1; 1; 1� 83 Œ1; 2�

89 Œ1; 2; 1; 1� 812 Œ1; 1;�1� 817 Œ1; 1; 0; 1�

818 Œ1; 1; 1; 1� 1017 Œ1; 2; 3; 1; 1� 1033 Œ1; 2; 2�

1037 Œ1; 1; 2� 1043 Œ1; 0; 1; 1� 1045 Œ1; 0;�1; 1�

1079 Œ1; 1; 3; 1; 1� 1081 Œ1; 1; 2; 1� 1088 Œ1; 1; 0;�1�

1099 Œ1; 0; 2; 0; 1� 10109 Œ1; 1; 2; 0; 1� 10115 Œ1; 1; 1;�1�

10118 Œ1; 2; 2; 1; 1� 10123 Œ1; 0;�1; 0;�1� 12a4 Œ1; 1;�1;�1;�1�

12a58 Œ1; 1; 1; 1; 1� 12a125 Œ1; 1;�2; 1� 12a268 Œ1; 1; 2; 2; 1�

12a273 Œ1; 1; 1; 2� 12a341 Œ1; 1; 0; 0;�1� 12a435 Œ1; 2; 2; 2; 1�

12a458 Œ1; 0; 0; 1;�1� 12a462 Œ1; 1;�1; 1;�1� 12a465 Œ1; 2; 0; 0;�1�

12a471 Œ1; 1;�2� 12a477 Œ1; 2;�1;�1� 12a499 Œ1; 0; 1; 1; 1�

12a506 Œ1; 0;�1; 1;�1� 12a510 Œ1; 2; 2; 2� 12a627 Œ1; 1; 0; 0;�1�

12a819 Œ1; 2; 3; 3; 1; 1� 12a821 Œ1; 2; 2; 2� 12a868 Œ1; 0;�1; 2;�1�

12a887 Œ1; 0; 0; 1;�1� 12a890 Œ1; 1; 1; 2� 12a906 Œ1; 1;�2; 2;�1�

12a960 Œ1; 0;�1; 2� 12a990 Œ1; 2; 2; 2; 1� 12a1008 Œ1; 1; 0; 2�

12a1019 Œ1; 0; 1; 0;�1� 12a1039 Œ1; 2;�1; 1;�1� 12a1102 Œ1; 2; 0; 0; 1�

12a1105 Œ1; 0; 0; 0; 1� 12a1123 Œ1; 1; 0; 1;�1� 12a1124 Œ1; 3; 1;�1�

12a1127 Œ1; 2;�2� 12a1152 Œ1; 1; 0;�1;�1� 12a1167 Œ1; 2; 1; 2; 1�

12a1188 Œ1; 0; 0; 1; 1� 12a1202 Œ1; 0;�3� 12a1209 Œ1; 1; 2; 3; 1; 1�

12a1211 Œ1; 0; 1; 2; 0; 1� 12a1218 Œ1; 1; 1; 3; 0; 1� 12a1225 Œ1; 2; 2; 3; 1; 1�

12a1229 Œ1; 1;�1; 3;�1; 1� 12a1249 Œ1; 0; 0; 2; 0; 1� 12a1251 Œ1; 2; 3; 2�

12a1254 Œ1; 2; 0; 3; 0; 1� 12a1260 Œ1; 2; 1; 3; 0; 1� 12a1267 Œ1; 2; 0; 2�

12a1269 Œ1; 2;�1; 2� 12a1273 Œ1; 3; 3; 4; 1; 1� 12a1275 Œ1; 3; 2; 2�

12a1280 Œ1; 2; 0; 1;�1� 12a1281 Œ1; 3; 1; 2� 12a1287 Œ1; 3�

12a1288 Œ1; 3; 2; 4; 1; 1� 12n356 Œ1; 1;�1; 1� 12n462 Œ1; 2; 1�

12n706 Œ1; 0;�2; 0;�1� 12n873 Œ1; 3; 2; 1; 1�

Table 1. Negative amphichiral knots and the corresponding coefficients (ordered by degree) of half-
Conway polynomials. Symmetric diagrams for these knots are given in Appendix B.

4z2 C 3z3 C z4; or 1 C z C z3 C z4. Noting that the half-linking number (which can
readily be computed from Figure 23) is 1, we still cannot determine whether the half-
Conway polynomial is 1 C z � z3 � z4 or 1 C z C z3 C z4. However, we can use the
equivariant skein relation (see Theorem 1.1) on the indicated pair of crossings. Changing
the indicated crossings in the top diagram in Figure 23 gives .K 0; �0/z# .K 0; �0/ (Figure 23,
bottom left), where .K 0; �0/ is the figure-eight knot with h.K 0; �0/D 1. On the other hand,
resolving these crossings gives .K 00; �00/ with K 00 D 818 and h.K 00; �00/ D 1 (Figure 23,
bottom right). For both .K 0; �0/ and .K 00; �00/ we can compute the half-Conway polyno-
mial by using only the Conway polynomial and the half-linking number. In particular,
r.K00; �00/.z/D 1C z C z

2 C z3 and r.K0; �0/z# .K0; �0/.z/D .r.K0; �0/.z//
2 D 1C 2z C z2.

Now Theorem 1.1 gives that

r.K0; �0/z# .K0; �0/.z/ � r.K; �/.z/ D zr.K00; �00/.z/;

and hence r.K; �/.z/ D 1C z � z3 � z4.
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Figure 23. Strongly negative amphichiral symmetries on 12a1152 (top), 41 # 41 (bottom left), and
818 (bottom right) which are related by an equivariant skein relation on the regions indicated in
gray. Note that we performed an SNA R2 move to obtain the diagram for 41 # 41 and an SNA R1
move to obtain the diagram for 818.

A. Proof of Theorem 2.7

In this appendix, we prove Theorem 2.7, which follows immediately from Theorem A.13.
The proof works with long knots in RP 2 � I , which naturally arise as quotient objects
of strongly negative amphichiral knots. Roughly, we will produce triangle moves relat-
ing equivalent long knots which then lift to symmetric triangle moves relating strongly
negative amphichiral knots. The projections of these triangle moves decompose as Reide-
meister moves. We begin by setting up some definitions.

Definition A.1. Let .F; �/ be a pointed surface. A (smooth, tame, or polygonal) long
knot K in F �R, is a (smooth, tame, or polygonal) embedding KWR! F �R such that
there is a constant C.K/ > 0 and for all jxj > C.K/, K.x/ D �.

For convenience, we take D2 to be the unit disk and set the basepoint of D2 (and its
quotient RP 2) to be the origin when dealing with long knots in D2 �R or RP 2 �R.

Definition A.2. Let F be a surface. A map f WF �R! F �R is end-fixing if there is a
constant C.f / > 0 so that for all x 2 R with jxj > C.f /, f .p; x/D .p; x/ for all p 2 F .

Definition A.3. Two long knots K1 and K2 in F �R are ambient isotopic if there exists
a family of end-fixing homeomorphisms ht W F � R ! F � R such that h0 D id and
h1.K1/ D K2.

Remark A.4. We will be interested in the isotopy classes of these end-fixing homeomor-
phisms and, in particular, the mapping class group of end-fixing self-homeomorphisms of
RP 2 � R, which is equivalent to M.RP 2 � I; @/, the mapping class group of RP 2 � I
fixing the boundary.

Given two elements f;g 2M.RP 2 � I; @/, in addition to their composition f ı g, we
can also concatenate them to get a map .RP 2 � Œ0; 2�; @/! .RP 2 � Œ0; 2�; @/ given by f
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on .RP 2 � Œ0; 1�; @/ and g on .RP 2 � Œ1; 2�; @/. Rescaling Œ0; 2� back to Œ0; 1� gives us
a map f �g W .RP 2 � I; @/! .RP 2 � I; @/. We will use this concatenation operation as
the group operation in M.RP 2 � I; @/, as justified by the following lemma.

Lemma A.5. The two homeomorphisms f ı g and f � g represent the same class in
M.RP 2 � I; @/.

Proof. By squashing f vertically along the I direction, we see that f is isotopic to a
homeomorphism f 0 which fixes RP 2 � Œ0; 0:5�, and similarly g is isotopic to a homeo-
morphism which fixes RP 2 � Œ0:5; 1�. Then composing f 0 with g0 is exactly f � g.

We can now compute M.RP 2 � I; @/.

Theorem A.6. M.RP 2 � I; @/ Š Z, and a generator is represented by the homeomor-
phism T1 shown in Figure 24.

T1

Figure 24. The homeomorphism T1WRP 2�I!RP 2�I defined by T1.r; �; y/ D .r; �C�y; y/,
where RP 2 is the quotient of D2.r; �/ by the antipodal map on the boundary. The map T1 is a
generator of M.RP 2 � I; @/ Š Z.

Proof. We begin by identifying RP 2 � I with the quotient of D2 � I , which identifies
antipodal points of the boundary of each D2 � ¹�º. Let C be the cylinder which is the
quotient of @D2 � I in RP 2 � I . Now consider the vertical annulus A0 � RP 2 � I
defined as the quotient of the product ` � I , where ` is a diameter of D2. Furthermore,
for i 2 Z, let Ai be the image of A0 under the homeomorphism Ti WD .T1/

i . Note that
theAi ’s can be distinguished by their intersections with C ; eachAi intersects C in a curve
which wraps i times around C .

We will show that for any homeomorphism hW .RP 2 � I; @/! .RP 2 � I; @/, h.A0/
is ambient isotopic to some Ai fixing @.RP 2 � I /. Note that the boundary circles of A0
intersect C in two points, and are fixed by h, so that @.h.A0/ \ C/ is still two points and
hence the intersection h.A0/ \ C , after a small isotopy to make the intersection trans-
verse, contains a single arc 
 . Now h.A0/ \ C may also contain some closed loops. Note
that these closed loops are disjoint from the arc 
 . In particular, they bound disks both
in C and in h.A0/. Working from an innermost closed loop, the union of these disks is
an embedded sphere. Then since RP 2�I is irreducible, this sphere bounds a ball, and
we can isotope h.A0/ to remove the innermost intersection circle with C . (Note that the
only prime reducible 3-manifolds are S2-bundles over S1, see, for example, Lemma 3.13
in [15], so that RP 2 � I is irreducible since it is prime.) Repeating this process, we may
assume that h.A0/ \ C D 
 . Now in C , keeping the boundary fixed, the arc 
 is isotopic
to C \ Ai for exactly one i 2 Z. Additionally, h.A0/ � C and Ai � C are ambient iso-
topic disks in .RP 2 � I � C/ Š .D2 � I /, fixing the boundary. Hence, after an ambient
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isotopy, we may assume that h.A0/ D Ai . Given this, we will show that h is isotopic
to Ti . To see this, note that h ı T�i .A0/ D A0 so that h ı T�i produces a homeomor-
phism of .RP 2 � I / � A0 D B3, fixing the boundary. Then since M.B3; @/ D 0, we
conclude that h ı T�i is isotopic to the identity and so h is isotopic to Ti . Finally, note that
for i ¤ 0, .Ai \ C; @/ is not isotopic to .A0 \ C; @/ so that the T1 has infinite order in
M.RP 2 � I; @/.

Proposition A.7. Let K1 and K2 be two long knots in RP 2 � R. If there exists an end-
fixing homeomorphism hWRP 2 � R! RP 2 � R so that h.K1/ D K2, then K1 and K2

are ambient isotopic.

Proof. As pointed out earlier, the mapping class group of end-fixing homeomorphisms of
RP 2 �R can be identified with M.RP 2 � I; @/. By Theorem A.6, h is isotopic to Ti for
some i 2 Z. Let C � 0 be a constant so that both K1 and K2 restrict to 0 � ŒC;1/ �
RP 2 � ŒC;1/ and so that h fixes RP 2 � ŒC;1/. We define t�i WRP 2 �R!RP 2 �R by

t�i .r; �; y/ D

´
.r; � � i�.y � C/; y/; y 2 ŒC; C C 1�;

.r; �; y/; otherwise.

Note that h ı t�i .K1/ D K2. Moreover, since ti is isotopic to T�i , the map h ı t�i is iso-
topic to the identity map through end-fixing homeomorphismsHt , t 2 Œ0; 1�;Ht provides
an ambient isotopy connecting K1 and K2.

Definition A.8. Two long knots K1;K2 � RP 2 � R are said to be narrowly ambient
isotopic if there exists a neighborhood N of K1 such that N Š D2 � R and an ambient
isotopy Ht WN ! N that fixes @N and deforms K1 to K2.

In other words, two long knots in RP 2 � R are narrowly ambient isotopic of long
knots if they are ambient isotopic as long knots in some D2 �R embedded in RP 2 �R.

Definition A.9. Two long knots K1;K2 � RP 2 �R are said to be narrowly equivalent if
there exists finitely many long knots J1;J2; : : : ;Jm such that J1 D K1, Jm D K2, and Ji
is narrowly ambient isotopic to JiC1 for i D 1; 2; : : : ; m � 1.

Lemma A.10. Let K1 and K2 be two long knots in RP 2 � R. Suppose K1 and K2 are
ambient isotopic, then they are narrowly equivalent.

Proof. Up to small isotopy and perturbations, we may assume that K1 and K2 are smooth
and that there is a smooth ambient isotopy Ht that deforms K1 to K2. Let ˆWR � I !
RP 2 � R denote the trace of the ambient isotopy. Specifically, if K1 is represented by
the embedding f WR! RP 2 �R, then ˆ.x; t/ D Ht .f .x//. Then there exist 0 D a0 <
a1 < � � � < am D 1 such that the long knots Ji WD ˆ.�; ai / admit neighborhoods Ni Š
D2 �R and such that ˆ.x; t/ 2 Ni for t 2 Œai ; aiC1�, i D 1; 2; : : : ; m � 1. Next, for i D
1; 2; : : : ; m � 1, we show that Ji and JiC1 are narrowly ambient isotopic by constructing
an ambient isotopy H .i/

t WNi ! Ni , t 2 Œ0; 1�. We will define H .i/
t to be the time-t flow

map of a time-dependent vector field Xt supported in a compact subset of Ni away from
the boundary. More specifically, we define Xt .ˆ.x; .1 � t /ai C t aiC1// D 1

.aiC1�ai /
@ˆ
@t

and extend it smoothly to a t -dependent vector field compactly supported away from @Ni .
By construction, H .i/

t fixes @Ni and deforms Ji to JiC1.
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Definition A.11. Let K1 and K2 be polygonal knots in a PL manifold. The knots K1
and K2 are related by a triangle move if there is a (possibly degenerate) PL 2-simplex
with two edges on K1 and one edge on K2, or vice versa, and K1 and K2 are identical
away from this simplex. The knots K1 and K2 are �-equivalent if they are related by a
finite sequence of triangle moves.

Lemma A.12. Let K1 and K2 be two polygonal long knots in D2 � R. If there exists
an end-fixing PL homeomorphism f WD2 �R! D2 �R so that f .K1/ DK2, then K1

and K2 are �-equivalent.

Proof. We may assume the PL homeomorphism f is isotopic to the identity map through
end-fixing homeomorphisms; if not, using a similar argument as in the proof of Proposi-
tion A.7, we may replace f by its composition with an appropriate twisting map that fixes
both K1 and K2. (Here, we used the fact that M.D2 � I;D2 � ¹0; 1º/ Š Z, where the
mapping classes are represented by twisting maps; we omit the proof, and remark that this
can be seen by a similar argument as in the proof of Theorem A.6.) In particular, now we
may isotope f in the complement of �.K1/[ �.K2/ so that it fixes a collar neighborhood
of @.D2 �R/, where �.Ki / denotes a regular neighborhood of Ki . LetDr denote the disk
¹.x; y/j x2 C y2 � r2º. Up to reparametrization, we may assume K1 [K2 � D1=5 �R
and that f fixes the complement of D1=2 �R.

Let C � 0 so that both K1 and K2 restricts to ¹0º � .�1; C � [ ¹0º � ŒC;1/, and
so that f fixes RP 2 � ¹yº for jyj � C . Let ` be an arc obtained by shifting K1 \D1=5 �

Œ�C; C � horizontally so that ` is contained in the neighborhood of @.D2 � R/ which is
fixed by f . Let K 01 be the knot obtained by joining the upper end of ` to the lower end of
¹0º � ŒC;1/ and joining the lower end of ` to the upper end of ¹0º � .�1; C �.

We now claim that both K1 and K2 are �-equivalent to K 01. To see this, we can
perform triangle moves along the horizontal shift between K1 and K 01. Applying f then
produces triangle moves relating K2 D f .K1/ and K 01 D f .K

0
1/. Composing these gives

the �-equivalence between K1 and K2.

Theorem A.13. Let .K1; �/ and .K2; �/ be equivalent strongly negative amphichiral
knots in S3. Then any symmetric diagram for K1 is related to any symmetric diagram
for K2 by a finite sequence of SNA Reidemeister moves.

Proof. Throughout the proof, we will fix a generic �-invariant S2� S3 containing all knot
diagrams. We may assume, by applying a small isotopy if necessary, thatK1 andK2 coin-
cide in a neighborhood of each fixed point in S3. This small isotopy projects to a planar
isotopy of the symmetric diagram. Now removing neighborhoods of the two fixed points,
we can consider the quotient of S3 by the amphichiral symmetry, which is RP 2 �R. The
images of K1 and K2 are (oriented) long knots K1 and K2, and the equivariant homeo-
morphism between K1 and K2 descends to an end-fixing homeomorphism between K1

and K2. In fact, by Proposition A.7, there is an end-fixing ambient isotopy between K1

and K2. Then, by Lemma A.10, K1 and K2 are narrowly equivalent through a sequence
of long knots J1; : : : ; Jm. It suffices to show that the symmetric diagrams for the strongly
negative amphichiral knots corresponding to Ji and JiC1 (which are narrowly ambient
isotopic) are related by SNA Reidemeister moves. For convenience we will just assume
that K1 and K2 are narrowly ambient isotopic in some D2 �R � RP 2 �R. This narrow
ambient isotopy produces a homeomorphism f WD2 � R! D2 � R with f .K1/ D K2.
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Furthermore, by applying small isotopies which induce planar isotopies of the correspond-
ing symmetric diagrams, we will assume that K1 and K2 are polygonal.

We will use f to get a PL homeomorphism D2 � R! D2 � R sending K1 to K2.
(The proof is a straightforward modification to that of the corresponding statement for
knots in S3; see, for example, Theorem 6.1 in [30] or Theorem A.3 in [21].) By Theorem 2
in [29], we can find a homeomorphism f 0 which is an approximation of f and which is
piecewise-linear on the exterior .D2 � R/ � �.K1/ of K1, where �.K1/ is a PL-regular
neighborhood of K1. A priori, f 0.�.K1// may not be a PL-regular neighborhood of K2,
but it is at least a PL submanifold of D2 � R, since its boundary f 0.@�.K1// is a PL
submanifold. We can then find a PL-regular neighborhood �.K2/ inside f 0.�.K1//, and
there is a PL strip R � Œ0; 1� interpolating between the image of a longitude L1 of K1 in
f 0.@�.K1// and a longitude L2 of K2 in @�.K0/, by Theorem 3 in [1]. This strip gives
a PL isotopy between L2 and f 0.L1/. We also have PL isotopies between K1 and L1, and
between K2 and L2. In particular, there is a composite PL homeomorphism:

.D2
�R;K1/! .D2

�R;L1/! .D2
�R; f 0.L1//! .D2

�R;L2/! .D2
�R;K2/:

Now by Lemma A.12, we have a �-equivalence between K1 and K2. Lifting the
triangle moves from this equivalence to S3 produces equivariant pairs of triangle moves
relating K1 and K2. Let � and �.�/ be an equivariant pair of triangles, and consider the
projections of � and �.�/ to the S2 of the diagram. If the projections of � and �.�/ are
disjoint, then we are reduced to an equivariant isotopy or an equivariant pair of R1, R2,
or R3 moves. If instead � and �.�/ have overlapping projections, then (possibly after
replacing � with a smaller triangle in a subdivision) the union of their projections is a
�-invariant contractible region and hence contains exactly one of the two fixed points. The
projections of� and �.�/ can then be subdivided into an equivariant sequence of R1, R2,
and R3 moves, and one of the two R4 moves as shown in the statement of Theorem 2.7.

B. Table of strongly negative amphichiral knots

For convenience we provide a table of symmetric diagrams for all strongly negative amphi-
chiral prime knots with 12 or fewer crossings. This table was produced by taking the list
of all negative amphichiral knots with 12 or fewer crossings (see, for example, [25]) and
adjusting the diagrams to be symmetric.

41 63 83

89 812 817
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818 1017 1033

1037 1043 1045

1079 1081 1088

1099 10109 10115

10118 10123 12a4

12a58 12a125 12a268

12a273 12a341 12a435

12a458 12a462 12a465
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12a471 12a477 12a499

12a506 12a510 12a627

12a819 12a821 12a868

12a887 12a890 12a906

12a960 12a990 12a1008

12a1019 12a1039 12a1102

12a1105 12a1123 12a1124

12a1127 12a1152 12a1167
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12a1188 12a1202 12a1209

12a1211 12a1218 12a1225

12a1229 12a1249 12a1251

12a1254 12a1260 12a1267

12a1269 12a1273 12a1275

12a1280 12a1281 12a1287

12a1288 12n356 12n462

12n706 12n873
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