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Involutive Yang–Baxter: cabling, decomposability,
and Dehornoy class

Victoria Lebed, Santiago Ramírez and Leandro Vendramin

Abstract. We develop new machinery for producing decomposability tests for invol-
utive solutions to the Yang–Baxter equation. It is based on the seminal decomposabil-
ity theorem of Rump and on “cabling” operations on solutions and their effect on the
diagonal map T . Our machinery yields an elementary proof of a recent decompos-
ability theorem of Camp-Mora and Sastriques, as well as original decomposability
results. It also provides a conceptual interpretation (using the language of braces)
of the Dehornoy class, a combinatorial invariant naturally appearing in the Garside-
theoretic approach to involutive solutions.

1. Introduction

A finite non-degenerate involutive set-theoretic solution to the Yang–Baxter equation,
called solution in this paper, is a non-empty finite set X endowed with an involutive map

r WX �X ! X �X; r.x; y/ D .�x.y/; �y.x//;

satisfying
r1r2r1 D r2r1r2;

where the maps ri WX3 ! X3 are defined by r1 D r � IdX and r2 D IdX � r , and the
maps �x and �x are bijective for all x 2 X . Throughout the paper, we will assume that
n D jX j > 1. The origins, applications and recent results on solutions can be found in the
extensive literature which followed [16, 19].

A solution is called decomposable if the set X decomposes into two non-empty dis-
joint partsX DY tZ, with r.Y �Y /DY �Y and r.Z �Z/DZ �Z. This is equivalent
to asking the permutation group G .X; r/ of .X; r/, which is the group of permutations
on X generated by all the �x , to be non-transitive [16]. A natural approach to the (as
for now unattainable) problem of classifying all solutions consists in constructing all
indecomposable solutions [4–7,12,13,26–29], and then understanding how these building
blocks can cement together [1, 2, 8, 9, 25].
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The first and most famous result on decomposability is the 1996 conjecture of Gateva-
Ivanova, proved by Rump in 2005 [23]: a square-free solution (i.e., satisfying r.x; x/ D
.x;x/ for all x) is decomposable. In general, a solution needs not be square-free; however,
the diagonal map

T W x 7! ��1x .x/

always defines a permutation on X , satisfying

r.T .x/; x/ D .T .x/; x/:

The permutation T splits X into orbits. This induces a partition of nD jX j, which we call
the T -partition of .X;r/ and denote by PT DPT .X;r/. Two recent papers [3,22] revealed
that this simple numerical datum may suffice to determine the (in)decomposability of a
solution:

• PT D .1; : : : ; 1/ ) .X; r/ decomposable (Rump’s theorem, Theorem 1 in [23]);
• PT D .n � 1; 1/ ) .X; r/ decomposable (Theorem 3.10 in [22]);
• PT D .n � 2; 1; 1/, n odd ) .X; r/ decomposable (Theorem 3.13 in [22]);
• PT D .n � 3; 1; 1; 1/, 3 − n ) .X; r/ decomposable (Theorem 3.13 in [22]);
• more generally, gcd.jT j; n/ D 1 ) .X; r/ decomposable (Camp-Mora–Sastriques

(CMS) theorem, Theorem A in [3]);
• PT D .n/ ) .X; r/ indecomposable (Theorem 3.5 in [22]).

In this paper, we give a short and elementary proof of the CMS theorem (which was
originally proved using advanced group theory), and present several original decomposab-
ility results. To explain them, we need the structure group of our solution .X; r/, see [16].
It is defined by the following presentation:

G.X; r/ D hX j xy D �x.y/�y.x/ for all x; y 2 Xi:

It carries a second, commutative operation C, satisfying the following compatibility rela-
tion:

(1.1) a.b C c/ D ab � aC ac:

Such ring-like structures are called braces. They are extensively used in order to bring
ring-theoretic tools into the study of the Yang–Baxter equation: see [24] and references
thereto. In the present work, we will employ braces in a very different way. Namely, given
a positive integer k, consider the map

�.k/ W X ! G.X; r/;

x 7! kx WD x C � � � C x .k summands/:

Theorem A. Take a solution .X; r/ and a positive integer k. The map �.k/ above is inject-
ive. Its image is a sub-solution of G.X; r/.

Here the solution r is extended from X to G.X; r/ in the usual way. A push-back
through �.k/ then defines a new solution on X , called the k-cabled solution r .k/. Equa-
tion (2.2) describes it explicitly. Some relations between a solution and its cablings are
given in the following result.
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Theorem B. Take a solution .X; r/ and a positive integer k.

(1) The diagonal map of .X; r .k// is T k .

(2) Let x 2 X lie in a G .X; r/-orbit of size m, and in a G .X; r .k//-orbit of size m0.
Then m0 is a multiple of the maximal divisor mk of m which is coprime to k: mk jm
and gcd.mk ; k/ D 1.

In particular, if the solution .X;r/ is indecomposable and gcd.jX j;k/D1, then .X;r .k//
remains indecomposable (since jX jk D jX j). Taking k D jT j, we then reduce the CMS
theorem to Rump’s result. On the other hand, taking k D p, k D a, and k D 2 respectively,
we obtain new decomposability theorems:

Theorem C. Take an indecomposable solution .X; r/ of size pq, where p ¤ q are prime
numbers. Then its T -partition cannot contain a term s satisfying .p � 1/q < s < pq and
gcd.s; p/ D 1.

For instance, for jX j D 14, this excludes cycles of size 9; 11 and 13, and for jX j D 15,
this excludes cycles of size 11; 13 and 14.

Theorem D. Take an indecomposable solution .X; r/ of size ab and T -partition .a; c; c0/,
where the numbers a, b, c and c0 are pairwise coprime, except for, possibly, c and c0. Then
one cannot have b > aC c.

As a consequence, indecomposable solutions .X; r/ of size 2b with odd b � 5 cannot
have T -partition .2; b � 4; b C 2/.

Theorem E. Take an indecomposable solution .X; r/ of size 2d , where d is odd, with
T -partition .2a; b; c/, where gcd.2d; abc/ D 1 and b � c. Then 2aC b D c.

For instance, for jX j D 18 this excludes the T -partition .10;7;1/, and for jX j D 22 this
excludes the T -partitions .10; 9; 3/, .10; 7; 5/, and .6; 7; 9/. Neither of these are covered
by Theorems C and D.

In parallel with its decomposition into T -cycles, a solution carries several other relev-
ant decompositions: into imprimitivity blocks, and also into G .X; r .k//-orbits (for well
chosen k). Comparing them, and using the recent classification of primitive solutions
from [11], we obtain the following.

Theorem F. Take an indecomposable solution .X; r/ of size pq, with p < q prime. Then
its T -partition contains either only multiples of q, or at least one multiple of p.

In particular, for an indecomposable solution of size nD 2q, with q an odd prime, the
only possible T -partition with only odd terms is .q; q/.

More generally, Theorem B allows one to considerably reduce the list of possible
T -partitions for indecomposable solutions. This has the potential to speed up algorithms
constructing all indecomposable solutions of small size.

In another vein, cabling can produce new indecomposable solutions out of old ones:
see Example 4.2.

In the final part of the paper, cabling and brace ideas are used to explore an important
invariant of a solution .X;r/, which we propose to call its Dehornoy class. It is the smallest
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positive integer m such that

(1.2) 8x 2 X; �Tm�1.x/ � � � �T.x/�x D Id:

Such anm always exists, and is< .n2/Š. The elementsmx, x 2 X , then generate a normal
free abelian subgroup of G.X; r/ of finite index. The corresponding finite quotient plays
the same role as Coxeter groups play for Artin groups. In particular, it suffices for recon-
structing the Garside structure on the whole G.X; r/. For details, see [14, 15]. A partial
generalisation to non-involutive solutions is proposed in [21].

The permutation group G .X; r/ inherits the brace structure from G.X; r/, see [10].
We then give a new conceptual interpretation of the Dehornoy class in terms of the abelian
group .G .X; r/;C/:

Theorem G. The Dehornoy class m of a solution .X; r/ is the least common multiple
of the orders of the generators �x , x 2 X , of the group .G .X; r/;C/. If the solution is
indecomposable, m is the order of any �x .

Another type of problems where cabling can be useful is the structural study of braces.
Since these questions are out of the focus of the present work, we simply illustrate this
approach with a quick proof of two important properties of finite braces at the end of
Section 3.

2. Cabling a solution

In this section, we prove Theorem A.
Recall that, with respect to the operation C, G.X; r/ is a free abelian group, and the

elements x 2 X yield its basis [24]. Therefore the map �.k/ is injective.
To get the second assertion of the theorem, we will prove an explicit formula for the

extension R of r to G.X; r/:

(2.1) R.kx; ly/ D .l�kx.y/; kT
k�1 �ly T

�kC1.x//;

where k and l are positive integers. This yields

(2.2) r .k/.x; y/ D .�kx.y/; T
k�1 �ky T

�kC1.x//;

and finishes the proof of Theorem A.
Recall that the operationC on G.X; r/ is a natural extension of the law

x C y D x��1x .y/; x; y 2 X:

In particular,

(2.3) kx D xU.x/U 2.x/ � � � U k�1.x/;

where
U W x 7! ��1x .x/

is the inverse of the diagonal map T . One recognises the frozen words from [14] (for
k D 2), and the twisted powers xŒk� from [15] (for general k).

Let us look at

(2.4) rk;l .xU.x/U
2.x/ � � � U k�1.x/ ; yU.y/U 2.y/ � � � U l�1.y// D .u;w/;
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where the tuples .x1; : : : ; xs/ are denoted by x1 � � � xs for simplicity, and the solution r is
extended, this time, to the powers of X :

rk;l D .rl � � � r1/ � � � .rkCl�2 � � � rk�1/.rkCl�1 � � � rk/ W X
k
�X l ! X l �Xk :

These maps induce the solution R on G.X; r/, as explained in [18] with an inductive
argument, and in [20] with a graphical argument. Both entries in (2.4) are frozen tuples,
that is, they remain unchanged when r is applied to any neighbouring positions, since
r.z; U.z// D .z; U.z// for all z 2 X . But the Yang–Baxter equation for r guarantees that

ri rk;l D

´
rk;l rkCi if 1 � i � l � 1;
rk;l ri�l if l C 1 � i � l C k � 1:

Here ri is the solution r applied at the positions i and i C 1 of a tuple. As a result, u andw
are also frozen:

u D y0U.y0/ � � � U l�1.y0/ D ly0; w D x0U.x0/ � � � U k�1.x0/ D kx0:

Thus R.kx; ly/ D .ly0; kx0/. Further, (2.4) implies

y0 D �xU.x/U 2.x/���U k�1.x/.y/ D �kx.y/;

U k�1.x0/ D �yU.y/U 2.y/���U l�1.y/ U
k�1.x/ D �ly U

k�1.x/;

and hence
x0 D U�kC1 �ly U

k�1.x/ D T k�1 �ly T
�kC1.x/;

as announced.

3. Properties of cabled solutions

In this section, we first prove Theorem B, and then turn to other properties of cabled
solutions.

Proof of Theorem B. For all positive integer k and x 2 X , the tuple

xU.x/U 2.x/ � � � U 2k�1.x/ 2 X2k

is frozen. Since applying the solution rk;k to a 2k-tuple boils down to applying r repeat-
edly at different positions, one gets

rk;k
�
xU.x/U 2.x/ � � � U k�1.x/; U k.x/U kC1.x/ � � � U 2k�1.x/

�
D
�
xU.x/U 2.x/ � � � U k�1.x/; U k.x/U kC1.x/ � � � U 2k�1.x/

�
:

In other words,
R.kx; kU k.x// D .kx; kU k.x//;

that is,
r .k/.x; U k.x// D .x; U k.x//:
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Since T is the inverse of U , this yields

r .k/.T k.x/; x/ D .T k.x/; x/:

Therefore, T k is the diagonal map for r .k/.
Now let x 2X lie in the G .X; r/-orbit of sizem and in the G .X; r .k//-orbit of sizem0.

Denote by G .X; r/x and G .X; r .k//x their stabilisers in the two groups. One has

jG .X; r/j D m jG .X; r/xj and jG .X; r .k//j D m0 jG .X; r .k//xj:

The permutation groups G .X; r/ and G .X; r .k// inherit brace structures from the corres-
ponding structure groups G.X; r/ and G.X; r .k// (see [10]). Moreover, the abelian group
.G .X; r .k//;C/ is obtained from the abelian group .G .X; r/;C/ by multiplying each of
its generators �x , x 2 X , by k. Thus its size is the size of .G .X; r/;C/ divided by some
product pd11 � � � p

dl
l

of powers of prime divisors of k. Also, since the permutation group
G .X; r .k// is the subgroup of G .X; r/ generated by the permutations �kx , x 2 X , the
stabiliser G .X; r .k//x is a subgroup of G .X; r/x . Hence

jG .X; r .k//xj D
jG .X; r/xj

t

for some positive integer t . Summarising, we obtain

m0 D
jG .X; r .k//j

jG .X; r .k//xj
D
jG .X; r/j =.pd11 � � �p

dl
l
/

jG .X; r/xj =t
D

mt

p
d1
1 � � �p

dl
l

�

Since this fraction is an integer, it is a multiple of an integer of the form m=.p
d 01
1 � � �p

d 0
l

l
/.

Recalling that the pi are prime divisors of k, we see that m=.pd
0
1
1 � � �p

d 0
l

l
/ is a multiple of

the maximal divisor mk of m which is coprime to k, as announced.

Proposition 3.1. The iteration of cablings remains a cabling. More precisely, given a
solution .X; r/ and positive integers k and k0, one has

.r .k//.k
0/
D r .kk

0/:

Proof. Formula (2.2) implies

.r .k//.k
0/.x; y/ D .�k0kx.y/; �/ and r .kk

0/.x; y/ D .�kk0x.y/; �/:

Recall the relation

(3.1) T�x D �
�1
x T

connecting the � ’s and the � ’s (see for instance Proposition 2.2 in [16]). It implies that the
� -component uniquely determines a solution. We are done.

Recall that a solution .X; r/ is called retractable if, for some x ¤ x0 2 X , one has
�x D �x0 (and hence �x D �x0 ). Identifying all such x and x0, one gets the retraction
Ret.X; r/ of .X; r/; it is a solution again, as explained in [16]. This is an important prop-
erty of solutions: see [17] and references thereto.
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Proposition 3.2. If a solution .X; r/ is retractable, then so are all its cablings. More
precisely, Ret.X; r .k// is a quotient of Ret.X; r/.k/ for all positive integers k.

Proof. Using the brace structure G .X; r/ inherits fromG.X; r/, we can write �kx D k�x .
Thus the relation �x D �x0 implies �kx D �kx0 . From (2.2), one then concludes that ele-
ments x and x0 identified in Ret.X; r/ are necessarily identified in Ret.X; r .k// as well.

Until now, all connections between solutions and braces that we used went through
the brace structures on the structure and permutation groups of a solution. But one can go
the other way round, and define a solution on any brace [24]. This gives one the intuition
on how to cable a brace. Concretely, take a brace .B;C; ı/ and a positive integer k. The
elements ka, a 2 B , form a sub-brace B.k/ of B , called its k-cabling. Indeed, we have

kaC kb D k.aC b/;

ka ı kb D k..ka/ ı b � .k � 1/a/;

as follows from the commutativity ofC and from relation (1.1), respectively. The additive
structure of B.k/ is obtained from .B;C/ by multiplication by k. One can thus easily
determine its size. The multiplicative group .B; ı/ then has a subgroup of the same size.
Here are two direct applications:

(1) A quick proof of the solvability of the multiplicative group of a finite brace (first
established in Theorem 2.15 of [16]). Indeed, let .B;C; ı/ be a brace of size ab
with gcd.a; b/ D 1. Looking at the additive structure, one sees that B.a/ is of size b.
Therefore .B.a/; ı/ is a b-Hall subgroup of .B; ı/. Thus .B; ı/ is solvable.

(2) LetB be a finite brace with cyclic additive group, and let d be a divisor of its size jBj.
Then .B; ı/ contains a subgroup of size d . Indeed, looking at the additive structure
and using the cyclicity of .B;C/, one sees that B.jBj=d/ is of size d .

4. Applications: (in)decomposability results

We now turn to applications of Theorem B. Its assertion is particularly transparent when
the solution .X; r/ is indecomposable, and the cabling parameter k is coprime to its
size jX j, which is now the size of the only G .X; r/-orbit. Since jX jk D jX j, the the-
orem implies that the solution .X; r .k// remains indecomposable, with diagonal map T k .
Here are some interesting particular cases.

(1) If gcd.jT j; jX j/D1, then .X;r .jT j// has to be indecomposable, with diagonal map Id,
which is impossible by Rump’s theorem. We thus recover the Camp-Mora–Sastri-
ques (CMS) theorem.

(2) If the cycle decompositions of T and T k are different, we get a new indecomposable
solution on the same set X . For instance, if .X; r/ is the indecomposable solution
with T -partition .2; 6/ (cf. Table 3.2 in [22]), we have jX j D 2C 6 D 8, which is
comprime with kD 3. Then .X;r .3// is an indecomposable solution with T -partition
.2; 2; 2; 2/, and hence not isomorphic to .X; r/.
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To treat other cases, we need the following elementary observation.

Lemma 4.1. Given a solution .X; r/ with diagonal map T , any T -orbit in X lies entirely
within a single G .X; r/-orbit.

Proof. Take an element x 2 X from a G .X; r/-orbit Y . By [16], r restricts to Y � Y
and defines a solution on Y . The diagonal map of this restricted solution has to be the
restriction of T to Y . Thus the T -orbit of x lies entirely within Y .

Now, take an indecomposable solution .X; r/ and a cabling parameter k which is not
coprime to jX j, but which makes jX jk big enough. Then the sizes of all G .X; r .k//-orbits
are multiples of jX jk . On the other hand, by the above lemma, all the T k-orbits lie entirely
inside these G .X; r .k//-orbits. In several cases, for numerical reasons, this can happen
only when there is only one G .X; r .k//-orbit. The solution .X; r .k// is then indecom-
posable, which imposes some constraints on the sizes of the T k-orbits, for instance by
the CMS theorem. This leads to a contradiction in various cases which are not themselves
covered by the CMS theorem. Here are some of them.

(1) Take an indecomposable solution .X;r/ of size pq, where p¤ q are primes. Assume
that a T -orbit is of size .p � 1/q < s < pq, with gcd.s; p/ D 1. We will show that
this is impossible, and thus we shall prove Theorem C. For any t 2 N, the diagonal
map T p

t
of .X; r .p

t // inherits this orbit, since gcd.s; p/ D 1. Thus this T p
t
-orbit of

size s lies entirely within a G .X; r .p
t //-orbit, whose size is a multiple of jX jpt D q.

Since .p � 1/q < s < pq, this G .X; r .p
t //-orbit has to be the whole set X . In other

words, the pt -cabled solution .X; r .p
t // is indecomposable. But, for t big enough,

the sizes of all T p
t
-orbits are coprime to p. But they are also coprime to q since

there is one orbit of size .p � 1/q < s < pq and several smaller orbits of total size
pq � s < q. As a consequence, gcd.jX j; jT p

t
j/D gcd.pq; jT p

t
j/D 1. By the CMS

theorem, the solution .X; r .p
t // is then decomposable, contradiction.

(2) Take an indecomposable solution .X; r/ of size ab and T -partition .a; c; c0/, where
b > a C c, and the numbers a; b; c; c0 are pairwise coprime, except for, possibly, c
and c0. We will show that this is impossible, and thus we shall prove Theorem D. The
a-cabling of .X;r/ has T -partition .c; c0; 1; : : : ; 1/, with a ones. Since gcd.jX j; jT aj/
divides gcd.ab; cc0/ D 1, the CMS theorem says that .X; r .a// is decomposable,
and that there are at least two G .X; r .a//-orbits. One of them does not contain the
T a-orbit of size c0, hence its size is � c C a < b, which is impossible for a multiple
of jX ja D jabja D b.

(3) Take an indecomposable solution .X; r/ of size 2d , with d odd, and T -partition
.2a; b; c/, where gcd.2d; abc/D 1 and b � c. We will show that this imposes heavy
restrictions on a;b;c, and thus we shall prove Theorem E. The 2-cabling of .X;r/ has
T -partition .a; a; b; c/, since b and c are odd. The sizes of its G .X; r .2//-orbits are
multiples of .2d/2 D d , as d is odd. Since gcd.jX j; jT 2j/ divides gcd.2d;abc/D 1,
the CMS theorem says that .X; r .2// is decomposable, so there are precisely two
G .X; r .2//-orbits, each of size d . Each of the four T 2-orbits lies entirely in one of
these two G .X; r .2//-orbits. Since the numbers a, b, c and d are all odd, this is
possible only if d D 2aC b D c.
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(4) Assume that .X; r/ is an indecomposable solution of size 30. We will show that its
T -partition cannot be .21; 7; 1; 1/. Indeed, the 3-cabled solution .X; r .3// would then
have T -partition .7; 7; 7; 7; 1; 1/, and would be decomposable by the CMS theorem.
On the other hand, its G .X; r .3//-orbits are multiples of 303 D 10. However, the
only way to divide the multiset .7; 7; 7; 7; 1; 1/ into parts whose total sums are all
divisible by 10 is to take the whole multiset. Thus the solution .X; r .3// is indecom-
posable, contradiction. As in the above situations, this example generalises to an
infinite family.

In another vein, cabling can produce new indecomposable solutions out of old ones.

Example 4.2. Consider the indecomposable solution .X;r/ (found by a computer), where
X D ¹1; : : : ; 8º, r.x; y/ D .�x.y/; ��1�x.y/.x//, and

�1 D .12/.34/.56/.78/; �2 D .12/.36/.47/.58/; �3 D .1543/.2678/;

�4 D .1367/.2854/; �5 D .17/.24/.38/.56/; �6 D .1763/.2458/;

�7 D .1345/.2876/; �8 D .15/.26/.38/.47/:

Its diagonal map is
T D .12/.345678/;

so its T -partition is .2;6/. According to Theorem B, its 3-cabling .X;r .3// is still indecom-
posable (as gcd.3; 8/ D 1) and has T -partition .2; 2; 2; 2/. It is thus not isomorphic to
.X; r/.

5. Primitivity and further (in)decomposability results

A solution .X; r/ is called imprimitive if the G .X; r/-action on X is so, and primitive oth-
erwise. That is, an imprimitive solution X admits a non-trivial decomposition into blocks
which is preserved by the G .X; r/-action. A recent result from [11] asserts that, up to iso-
morphism, the only primitive solutions are the permutation solutions .Z=pZ; r.a; b/ D
.b � 1; a C 1//, with p prime. By [16], these are the only indecomposable solutions of
prime size. Thus, in the interesting case of non-prime size, an indecomposable solution
can be split into imprimitivity blocks. Their interaction with T -cycles is quite intricate.
We will now analyse this interaction in the particular settings of Theorem F, and deduce a
proof of that theorem.

Consider an indecomposable solution .X; r/ of size pq, with primes p < q. Assume
that its T -partition contains no multiples of p, and at least one term which is not a multiple
of q. We will obtain a contradiction, proving Theorem F.

By Theorem B, one can choose a suitable k coprime with pq such that the solution
.X; r .k// is still indecomposable, has T -partition with all terms of the form p˛qˇ , and per-
mutation group G .X; r .k// of size paqb . (For the latter property, recall that the k-cabling
multiplies all the elements of .G .X; r/;C/ by k.) Since the cabling can only split T -orbits
into equal parts, the T -partition of .X; r .k// still contains no multiples of p, and at least
one term which is not a multiple of q. Thus it suffices to work with solutions having these
properties.
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Summarizing all the constraints on the T -partition we obtained, one sees that it has
to be of the form .q; : : : ; q; 1; : : : ; 1/, with at least one term 1 and one term q (otherwise
Rump’s theorem applies).

Since pq is not prime, our solution is imprimitive. Thus X non-trivially decomposes
into blocks preserved by the G .X; r/-action. Since .X; r/ is indecomposable, G .X; r/

permutes these blocks in a transitive manner, hence they are all of the same size. This
leaves us with two possibilities.

Case 1. There are p blocks of size q.
Since our solution is indecomposable, some map �x permutes 1 < p0 � p blocks in

a cyclic manner. It thus has an orbit of size p0q0, with 1 � q0 � q. Since this size is of
the form p˛qˇ (the group G .X; r/ having the size of this form), and since p < q are
primes, one necessarily has p0 D p. Thus �x permutes all the p blocks in a cyclic manner.
As a result, x and U.x/ D ��1x .x/ lie in different blocks. Since U D T �1, one obtains
a T -cycle which does not entirely lie in a single block. Now, again by Theorem B, one
can choose a suitable m such that the solution .X; r .p

m// is decomposable, with orbits
whose sizes are multiples of q. The permutation group G .X; r .p

m// is a subgroup of the
group G .X; r/ of size paqb . Its size, as well as the sizes of all the G .X; r .p

m//-orbits, are
then of the same form. Being multiples of q, the sizes of the G .X; r .p

m//-orbits are then
all precisely q. One of them has to entirely contain our T -cycle of size q (which is also
a T .p

m/-cycle). This G .X; r .p
m//-orbit then intersects several blocks. Since the subgroup

G .X; r .p
m// of G .X; r/ permutes these blocks, our G .X; r .p

m//-orbit has to be of size
p0q0, with 1 < p0 � p and 1 � q0 � q. But q cannot be written in this way.

Case 2. There are q blocks of size p.
The permutations �x of X , for x 2 X , generate a transitive group, since so do the �x ,

and the two are related by the conjugation by T (see relation (3.1)). Therefore some ele-
ment f 2 X fixed by T is moved to an element c from a T -cycle of size q by some �x .
That is, c D �x.f /. We will use the relation

T .�x.f // D ��f .x/.f /

from Lemma 3.8 in [22]. Applied k times, it yields

T k.c/ D ��k
f
.x/.f /:

As a result, the size of the �f -orbit containing x is a multiple of the size of the T -orbit
containing c, which is q. Since p < q, it intersects q0 > 1 blocks of size p. On the other
hand, since �f fixes f , it fixes at least one block. Thus q0 < q. Summarizing, the size q
of our orbit decomposes as p0q0, with 1 � p0 � p and 1 < q0 < q. But this is impossible.

Remark 5.1. Along the lines of the proof of Lemma 3.8 in [22], one can establish the
relation

T k.�x.y// D ��ky.x/.T
k.y//;

valid for all x; y 2 X (not necessarily T -fixed) and all k.
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6. Applications: Dehornoy class

In this section, we will prove Theorem G. The main ingredient is:

Lemma 6.1. For all elements x from the same G .X; r/-orbit of a solution .X; r/, the
order of �x in the finite abelian group .G .X; r/;C/ is the same.

Proof. Relation (2.1) specialised at k D 1 yields the relation

(6.1) �x.ly/ D l�x.y/

in the structure group G.X; r/. In its quotient G .X; r/, it becomes

��x .l�y/ D l��x.y/:

Thus l�y vanishes if and only if l��x.y/ does. As a consequence, �y and ��x.y/ have the
same order in .G .X; r/;C/ for all x; y 2 X .

Remark 6.2. Relation (6.1) means that the cabling operation �.l/W x 7! lx is equivariant
with respect to the leftG.X;r/-actions induced by the maps �x . It thus behaves better than
the diagonal map T , which instead of the equivariance obeys the less tractable rule (3.1).

Proof of Theorem G. Relation (1.2) can be rewritten as

8x 2 X; �x �U.x/ � � � �Um�1.x/ D Id;

which, by (2.3), simply meansm�x D 0. This yields the first assertion of the theorem. The
second then directly follows from Lemma 6.1.

We finish with the following observation, relating the Dehornoy class of a solution to
its diagonal map:

Proposition 6.3. Let .X; r/ be a solution. Then the order jT j of its diagonal map divides
its Dehornoy class m.

Proof. We need to prove the relation Tm D Id, or, equivalently, Um D Id. Let us compute

(6.2) rm;1.xU.x/U
2.x/ � � � Um�1.x/; Um.x//

in two ways. On the one hand, the definition of the Dehornoy class allows one to sim-
plify (6.2) as

rm;1.mx;U
m.x// D .�mx.U

m.x//; �/ D ..m�x/.U
m.x//; �/ D .Um.x/; �/:

On the other hand, since the tuple xU.x/U 2.x/ � � � Um.x/ is frozen, (6.2) equals

.x; U.x/U 2.x/ � � � Um�1.x/Um.x//:

Hence Um.x/ D x for all x 2 X .
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