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Kostant’s problem for fully commutative permutations

Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz

Abstract. We give a complete combinatorial answer to Kostant’s problem for simple
highest weight modules indexed by fully commutative permutations. We also propose
a reformulation of Kostant’s problem in the context of fiab bicategories and classify
annihilators of simple objects in the principal birepresentations of such bicategories
generalizing the Barbasch–Vogan theorem for Lie algebras.

1. Introduction and description of the results

Kostant’s problem, as defined and popularized by Joseph in [19], is a famous open prob-
lem in representation theory of Lie algebras. It asks for which simple modules L over a
semi-simple complex finite-dimensional Lie algebra the universal enveloping algebra sur-
jects onto the space of adjointly finite linear endomorphisms of L. Although several (both
positive and negative) results are known, see Section 3.6 for a historical overview, the
general case is wide open even for simple highest weight modules in the principal block
of BGG category O.

Knowing the answer to Kostant’s problem for a particular simple module is important
for potential applications, for example, understanding the structure of induced modules,
see [23, 34], using the approach of establishing equivalences of categories for Lie algebra
modules proposed in [36].

As described in Section 3.6, the existing results on Kostant’s problem can be divided
into four classes:
• there are some classes of simple modules for which the answer is known to be positive;
• there are some classes of simple modules for which the answer is known to be negative;
• there are some results that relate the answer for one simple module to the answer for

another simple module;
• there are some complete classification results for Lie algebras of small rank.

To the best of our knowledge, none of the existing results provides a complete solution to
Kostant’s problem for some natural general class of simple modules which contains both
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simple modules with positive and negative answers. The main result of the present paper
is the first result of this kind.

We look at a natural family of permutations (elements of the symmetric group Sn)
which are called fully commutative. The latter means that any two reduced expressions
for such an element can be transformed one into another just by using the commutativity
relations for simple reflections. The number of fully commutative elements in Sn is given
by the Catalan number Cn D 1

nC1

�
2n
n

�
. Under the Robinson–Schensted correspondence,

fully commutative elements are exactly those permutations which correspond to two-row
partitions. From the point of view of the Kazhdan–Lusztig combinatorics in type A, it is
well known that fully commutative elements form a union of two-sided Kazhdan–Lusztig
cells and that, for general n, the value of Lusztig’s a-function on fully commutative ele-
ments in Sn can be arbitrarily large. This demonstrates that the class of fully commutative
permutations is quite large. Fully commutative permutations naturally index a basis in the
Temperley–Lieb algebra, which is a certain quotient of the Hecke algebra of Sn.

The main result of the present paper, Theorem 5.1, gives a complete combinatorial
classification of the fully commutative permutations such that Kostant’s problem for the
corresponding simple modules in the principal block of BGG category O has positive
answer (we call such elements Kostant positive). The answer is both quite beautiful and
rather non-trivial. We first define certain special fully commutative involutions. These are
permutations of the following form:

1 � � � i�j�1 i�j i�jC1 � � � i iC1 iC2 � � � iCjC1 iCjC2 � � � n

1 � � � i�j�1 i�j i�jC1 � � � i iC1 iC2 � � � iCjC1 iCjC2 � � � n

For a special involution, we call the area where this involution acts non-trivially its sup-
port. In Theorem 5.1, we show that a fully commutative involution w is Kostant positive
if and only if it is a product of distant special involutions, in the sense that the supports of
any two special factors in w are separated in the diagram of w by at least one vertical line.

Our approach to Kostant’s problem for fully commutative elements is crucially based
on the availability of the following three things:
• the explicit description of the Serre subcategory of category O generated by the simple

objects indexed by fully commutative elements and the action of projective functors
on this category, due to Brundan and Stroppel, see [8];

• Kåhrström’s conjectural combinatorial reformulation of Kostant’s problem, see [25,
Conjecture 1.2];

• the 2-representation theoretic approach to Kåhrström’s conjecture in relation to Kos-
tant’s problem as developed by Ko, Mrd̄en and the second author in [25, Theorem B].

The idea behind the proof is to use Kåhrström’s combinatorial reformulation of Kostant’s
problem to reduce it to the question of solvability of certain equations in the Temperley–
Lieb algebra. Then we establish, in the appropriate cases, the solvability of these equations
by explicitly giving the solutions. In the remaining cases, we establish the impossibility
of solving these equations by a rather technical case-by-cases analysis.
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Our answer to Kostant’s problem for fully commutative elements is explicit enough to
compute its asymptotic behavior. More precisely, in Theorem 6.1, we prove the following:
• asymptotically, the answer to Kostant’s problem for fully commutative elements is

almost surely negative;
• asymptotically, the answer to Kostant’s problem for fully commutative involutions is

almost surely negative;
• asymptotically, the answer to Kostant’s problem for fully commutative elements (or

involutions) of a fixed a-value is almost surely positive.
From its very definition, Kostant’s problem is intimately connected with the problem

of understanding the annihilators of simple modules over semi-simple Lie algebras. These
annihilators are classified by combining two classical theorems of Duflo and Barbasch–
Vogan. In the last section of the paper, Section 7, we provide an analogue of the Barbasch–
Vogan theorem for a class of bicategories known as fiab bicategories. We also propose a
reformulation of Kostant’s problem in this more general context.

2. Category O preliminaries

2.1. Setup

We work over C. Let g denote a semi-simple finite-dimensional Lie algebra with a fixed
triangular decomposition

(2.1) g D n� ˚ h˚ nC:

Here h is a Cartan subalgebra. We denote by W the corresponding Weyl group, by S the
set of all simple reflections in W associated to the triangular decomposition (2.1), and
by w0 the longest element of W .

2.2. Category O

Consider the BGG category O associated to the triangular decomposition (2.1), see [5,17].
Explicitly, this is the full subcategory of the category of all g-modules whose objects are
finitely generated, diagonalizable with respect to the action of h and locally finite with
respect to the action of nC.

2.3. Principal block

Let O0 denote the principal block of O, that is the direct summand containing the trivial
g-module. Up to isomorphism, the simple objects in O0 are the simple highest weight
modules Lw WD L.w � 0/, where 0 2 h� is the zero weight and w 2 W . Here ‘ � ’ is the
usual dot-action of W on h� defined, for � 2 h�, via w � � D w.�C �/ � �, where � is
half of the sum of all positive roots.

For w 2 W , we denote by �w the Verma cover and by Pw the indecomposable pro-
jective cover of Lw . Let A be the opposite of the endomorphism algebra of the direct sum
of the Pw , taken over all w 2 W . Then A is a finite-dimensional associative algebra and
the category A-mod of finite-dimensional A-modules is equivalent to O0.
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2.4. Projective functors

For w 2 W , we denote by �w the unique, up to isomorphism, indecomposable projective
endofunctor of O0, in the sense of [6], determined by the property �w Pe Š Pw .

We denote by P the monoidal category of all projective functors acting on O0. Note
that, thanks to Soergel’s combinatorial description, P is equivalent to the monoidal cate-
gory of Soergel bimodules over the coinvariant algebra associated to W .

2.5. Graded lift

The algebra A is Koszul, in particular, it has the corresponding Koszul Z-grading, see
for example [40, 43]. We denote by OZ

0 the category of all finite-dimensional Z-graded
A-modules.

All structural modules in O0 admit graded lifts. For indecomposable modules, these
graded lifts are unique, up to isomorphism and grading shift. For indecomposable struc-
tural modules, there is a preferred graded lift, called standard lift.

Abusing notation, we will denote the ungraded objects in O0 by the same symbols as
their standard graded lifts. We use a similar convention for the graded version of projec-
tive functors, see [43], and denote by PZ the monoidal category of all graded projective
functors acting on OZ

0 .

2.6. Hecke algebra combinatorics

Let HDH.W;S/ be the Hecke algebra ofW over ZŒv;v�1� (in the normalization of [42]).
The algebra H has the standard basis ¹Hw W w 2 W º and the Kazhdan–Lusztig basis
¹Hw W w 2 W º, see [22].

The Grothendieck group GrŒOZ
0 � is isomorphic to H by sending Œ�w � to Hw . This

isomorphism sends ŒPw � to Hw , see [4, 10].
The split Grothendieck group Gr˚ŒPZ� is isomorphic to H by sending Œ�w � to Hw .

The action of PZ on OZ
0 decategorifies to the right regular H-module, see [41].

We denote by �L, �R and �J the Kazhdan–Lusztig left, right and two-sided pre-
orders on W , respectively. The associated equivalence classes are called left, right and
two-sided cells. Each left and right cell contains a distinguished involution, also called the
Duflo involution. In type A, all involutions are Duflo involutions.

2.7. Indecomposability conjecture

The following conjecture is proposed in [24, Conjecture 2].

Conjecture 2.1. If g Š sln, then, for any x; y 2 W , the module �xLy is either indecom-
posable or zero.

We will denote by KM.x; y/ 2 ¹true; falseº the value of the claim “the module
�xLy is either indecomposable or zero”. We also denote by KM.�; y/ the conjunction of
the KM.x; y/ over all x 2 W .
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3. Kostant’s problem

3.1. Annihilators of simple modules

Let L be a simple g-module. By Dixmier–Schur’s lemma, L has a central character, say
�WZ.g/! C, where Z.g/ is the center of the universal enveloping algebra U.g/ of g.
Assume that L is such that � coincides with the central character of the trivial g-module.

Then Duflo’s theorem [11] asserts that there exists w 2 W such that the annihilator
AnnU.g/.L/ of L in U.g/ coincides with AnnU.g/.Lw/.

Further, a result of Barbasch and Vogan [2, 3] says that, given x; y 2 W , we have
AnnU.g/.Lx/ � AnnU.g/.Ly/ if and only if x �L y.

3.2. Harish-Chandra bimodules

Recall, see [18, Kapitel 6], that a g-g-bimodule is called a Harish-Chandra bimodule if it
is finitely generated and, additionally, if the adjoint action of g on it is locally finite and
has finite multiplicities.

A typical example of a Harish-Chandra bimodule is the bimodule U.g/=AnnU.g/.M/,
for M 2 O0.

Here is another example: LetM;N be objects in O0, then the space L.M;N / of linear
maps from M to N on which the adjoint action of g is locally finite is a Harish-Chandra
bimodule. If M D N , then U.g/=AnnU.g/.M/ � L.M;M/.

3.3. Classical Kostant’s problem

Kostant’s problem, as advertised in [19], is formulated as follows:
Kostant’s problem. For which w 2 W is the embedding

U.g/=AnnU.g/.Lw/ ,! L.Lw ; Lw/

an isomorphism?
We will denote by K.w/DKg.w/ 2 ¹true;falseº the logical value of the claim “the

embedding U.g/=AnnU.g/.Lw/ ,! L.Lw ; Lw/ is an isomorphism”.

3.4. Kåhrström’s conjecture

The following conjecture is due to Johan Kåhrström, see [25, Conjecture 1.2].

Conjecture 3.1. Assume that we are in type An�1, soW Š Sn, the symmetric group. Let
d 2 Sn be an involution. Then the following assertions are equivalent:
(1) K.d/ D true.
(2) For any x; y 2 W such that x ¤ y and �xLd ¤ 0 and �yLd ¤ 0, we have �xLd 6Š

�yLd .
(3) For any x; y 2W such that x ¤ y and �xLd ¤ 0 and �yLd ¤ 0, we have Œ�xLd �¤�

�yLd
�

in GrŒOZ
0 �.

(4) For any x; y 2W such that x ¤ y and �xLd ¤ 0 and �yLd ¤ 0, we have Œ�xLd �¤�
�yLd

�
in GrŒO0�.
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3.5. Kostant’s problem vs Kåhrström’s conjecture and the indecomposability
conjecture

One of the main results of [25] is Theorem B, which asserts that Conjecture 3.1 (1) is
equivalent to the conjunction of Conjecture 3.1 (2) with KM.�; d /.

3.6. Known results on Kostant’s problem

Here is a (possibly incomplete) list of known results on Kostant’s problem, in particular,
a list of the special cases in which the answer to Kostant’s problem is known.

• In type A, the value K.w/ is constant on Kazhdan–Lusztig left cells, see [34, Theo-
rem 61].

• Let p be a parabolic subalgebra of g containing h˚ nC. LetW p be the corresponding
parabolic subgroup ofW and wp

0 the longest element inW p. Then K.wp
0w0/D true,

see [15, Theorem 4.4] and [18, Section 7.32].
• Let p be a parabolic subalgebra of g and s2W p a simple reflection. Then K.swp

0w0/D

true, see [31, Theorem 1].
• Let p be a parabolic subalgebra of g and w 2W p. Let a be the semi-simple part of the

Levi quotient of p. Then we have Ka.w/D true if and only if Kg.ww
p
0w0/D true,

see [20, Theorem 1.1].
• Theorem 1 of [21] gives a module-theoretic characterization of the statement K.w/D

true.
• A complete answer to Kostant’s problem for sln, where n D 2; 3; 4; 5, is given in

[21, Section 4]. There one can also find a partial answer for sl6. Some further cases
for sl6 are dealt with in [20, Section 6]. A complete answer to Kostant’s problem for
sl6 is given in [25, Section 10.1].

4. Fully commutative permutations and the Temperley–Lieb algebra

4.1. Fully commutative permutations

Consider the symmetric group Sn as a Coxeter group in the usual way, that is, fixing the
elementary transpositions si WD .i; i C 1/, for i D 1; 2; : : : ; n � 1, as the set of simple
reflections. The classical presentation of Sn with respect to these generators has the fol-
lowing relations:

s2i D e;(4.1)
sisj D sj si if ji � j j ¤ 1;(4.2)

sisi˙1si D si˙1sisi˙1:(4.3)

The classical result of Matsumoto [29] asserts that, forw 2W , any reduced expression
ofw can be transformed into any other reduced expression ofw by using only the relations
in (4.2) and (4.3). An element w 2 Sn is said to be fully commutative provided that any
reduced expression of w can be transformed into any other reduced expression of w by
only using relation (4.2).
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The classical Robinson–Schensted correspondence, see [38] and [37, Section 3.1],

RS W Sn !
a
�`n

SYT� � SYT�;

assigns to an element of Sn a pair of standard Young tableaux of the same shape (that
shape is a partition of n). An element w 2 Sn is fully commutative provided that the
shape of the tableaux in RS.w/ is a partition with at most two parts. Alternatively, an
element w is fully commutative provided that it avoids the .3; 2; 1/-pattern, that is, the
longest decreasing subsequence for w has length at most two. We refer to [12, 13] for
details.

4.2. Temperley–Lieb algebra

Let A be a commutative ring and ı 2 A. For n � 1, the corresponding Temperley–Lieb
algebra TLn.A; ı/ is an A-algebra which is free as an A-module with a basis consisting of
all planar (i.e., non-crossing) pairings of 2n points in a plane. Composition is defined via
concatenation of diagrams, straightening the outcome to a new diagram and, finally, multi-
plication with ık , where k is the number of closed loops removed during the straightening
procedure. We refer to [28, Chapter 6] for details. Here is an example:

� � � � � � �

� � � � � � � � � � � � � �

� D ı2�

� � � � � � � � � � � � � �

� � � � � � �

For ADZŒv; v�1� and ıD vC v�1, one can give the following alternative description
of TLn.A; ı/. It is the quotient of the Hecke algebra Hn for Sn modulo the ideal generated
by all Hw , where w is not fully commutative. We note that the latter ideal is just the
ZŒv; v�1�-span of all such Hw . By construction, TLn.ZŒv; v�1�; v C v�1/ has a basis
given by all Hw , for w fully commutative. Setting ei WD H si , for i D 1; 2; : : : ; n� 1, we
have the following presentation for TLn.ZŒv; v�1�; v C v�1/:

e2i D .v C v
�1/ei ;(4.4)

eiej D ejei if ji � j j ¤ 1;(4.5)
eiei˙1ei D ei :(4.6)

Here ei corresponds to the diagram

� � : : : � � � � : : : � �

� � : : : � � � � : : : � �

where the horizontally paired points are i and i C 1.
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For a fully commutative element w 2 W , we denote by ew the image of Hw in
TLn.ZŒv; v�1�; vC v�1/. Taking any reduced expression w D s1s2 : : : sk , we have ew D
es1es2 : : : esk , see [12].

The number of cups (or caps) in ew coincides with the value of Lusztig’s a-function
on w. Also, the cups and caps determine the corresponding Kazhdan–Lusztig right and
left pre-orders, respectively. For example, x �L y if and only if each cap of ex is a cap
of ey . For details, see [14, Section 3].

Remark 4.1. Let x; y; z 2 Sn be fully commutative elements such that exey D f .v/ez ,
for some f .v/ 2 ZŒv; v�1�. Then the number of cups (resp. caps) in ez is greater than or
equal to the maximum of the numbers of cups (resp. caps) in ex and ey .

Remark 4.2. Let x 2 Sn be a fully commutative element. Then ex�1 is obtained from ex
by reflection in a horizontal line.

4.3. Results of Brundan and Stroppel

Given two arbitrary fully commutative elements x; y 2 Sn, the corresponding module
�xLy in the category O for sln is either indecomposable or zero. If y belongs to a
Kazhdan–Lusztig right cell containing an element of the formw

p
0w0, for some parabolic p,

this follows by combining [8, Theorem 4.11] and [9, Theorem 1.1]. Indeed, [9, Theo-
rem 1.1] asserts, among other things, that, in type A, the principal block of the parabolic
category O corresponding to a maximal parabolic subalgebra is equivalent to the module
category of a certain diagrammatic algebra studied in [8]. For the latter algebra, the claim
of [8, Theorem 4.11 (iii)] translates exactly into the statement that �xLy is either zero or
has simple top. Using [34, Proposition 35], we can remove this assumption on the right
cell of y. In particular, this implies that KM.�; w/ D true for any fully commutative
w 2 Sn.

Note that, by [16, Theorem 5.1], the two-sided order on Sn is given by the dominance
order on partitions. Consequently, if x 2 Sn is not fully commutative while y 2 Sn is, then
�xLy D 0 by [32, Lemma 12]. Combined with [25, Theorem B], we obtain equivalence
of assertions (1) and (2) in Conjecture 3.1 in the case of fully commutative elements
x; y 2 Sn.

5. Main result

5.1. Special fully commutative involutions

Set
�i;0 WD si for i 2 ¹1; 2; : : : ; n � 1º:

Also, for j 2 ¹1; : : : ;min.i � 1; n � 1 � i/º and i 2 ¹1; 2; : : : ; n � 1º, consider the fol-
lowing element of Sn:

�i;j D si .si�1 siC1/.si�2 si siC2/ � � � .si�j si�jC2 � � � siCj / � � � .si�2 si siC2/.si�1 siC1/si :
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As a permutation, the element �i;j has the following diagram:

1 � � � i�j�1 i�j i�jC1 � � � i iC1 iC2 � � � iCjC1 iCjC2 � � � n

1 � � � i�j�1 i�j i�jC1 � � � i iC1 iC2 � � � iCjC1 iCjC2 � � � n

It is readily seen that this element is .3; 2; 1/-avoiding and hence fully commutative
(cf. [7, Theorem 2.1]). The corresponding Temperley–Lieb diagram is:

1 � � � i�j�1 i�j i�jC1 � � � i iC1 � � � iCj�1 iCjC1 iCjC2 � � � n

1 � � � i�j�1 i�j i�jC1 � � � i iC1 � � � iCj�1 iCjC1 iCjC2 � � � n

We will call the set ¹i � j; i � j C 1; : : : ; i C j C 1º the support of �i;j and the set
¹i � j � 1; i � j; i � j C 1; : : : ; i C j C 1; i C j C 2º the extended support of �i;j .
Elements of the form �i;j will be called special.

We will say that �i;j and �i 0;j 0 are distant provided that their extended supports inter-
sect in at most one element. For example, s1 D �1;0 and s4 D �4;0 are distant, since
¹0; 1; 2; 3º \ ¹3; 4; 5; 6º D ¹3º, while s1 D �1;0 and s3 D �3;0 are not distant, since
¹0; 1; 2; 3º \ ¹2; 3; 4; 5º D ¹2; 3º is neither empty nor a singleton. We note that, in the
latter example, the supports of �1;0 and �3;0 do not have common elements.

5.2. Formulation of the main result

Theorem 5.1. Conjecture 3.1 is true for all fully commutative involutions in Sn. More-
over, if d 2 Sn is a fully commutative involution, then K.d/ D true if and only if d is a
product of pairwise distant special elements.

In other words, for a fully commutative involution d , we have K.d/ D true if and
only if any two non-nested cups (or caps) in the Temperley–Lieb diagram of d are sepa-
rated by at least one vertical line. We will call such fully commutative involutions Kostant
involutions.

Corollary 5.2. If w 2 Sn is a fully commutative element, then K.w/ D true if and only
if any two caps in ew are either nested or separated by at least one propagating line.

Proof. This follows from Theorem 5.1, the first bullet in Section 3.6, the paragraph before
Remark 4.1, the last paragraph of Section 2.6, as well as the fact that Lusztig’s a-function
is constant on left cells.

The two directions of Theorem 5.1 will be proved in Sections 5.4 and 5.5.
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5.3. Auxiliary lemmata

Lemma 5.3. Let x and y be two fully commutative elements in Sn. Then �xLy ¤ 0 is
equivalent to the condition that each cup of ex�1 is a cup of ey .

Proof. By [32, Lemma 12], the condition �xLy ¤ 0 is equivalent to x�1 �L y. Note that
.�x/

� Š �x�1 and that the diagram for x�1 is the flip of the diagram for x. As recalled in
the text above Remark 4.1, the condition x�1 �L y holds if and only if the cups of ex�1
form a subset of those of ey . By Remark 4.1, this implies the result.

Lemma 5.4. Let x; y; z be three fully commutative elements in Sn such that

exey D f .v/ez for some f .v/ 2 ZŒv; v�1�:

Then �x�y is isomorphic to �f .1/z ˚ � , where �Lw D 0 for any fully commutative element
w 2 Sn.

Proof. This follows from the realization of the Temperley–Lieb algebra as a quotient
of the Hecke algebra and the action of the latter on O0 via projective functors. Recall
from Section 2.6 that, for w 2 ¹x; y; zº, the Grothendieck class Œ�w � 2 Gr˚ŒPZ� corre-
sponds to the Kazhdan–Lusztig basis element Hw 2 H, which, in turn, is mapped to the
Temperley–Lieb diagram ew 2 TLn.ZŒv; v�1�; v C v�1/. Therefore, the combinatorics
of the �w corresponds precisely to the combinatorics of the ew (after putting v D 1). All
this is, of course, up to higher order Kazhdan–Lusztig basis elements. These latter ele-
ments correspond to the additional summand � in the formulation and are killed in the
Temperley–Lieb quotient. In particular, we also have �Lw D 0, for all fully commuta-
tive w.

5.4. Positive answer

Let d be a fully commutative involution which is a product of pairwise distant special
elements. We are going to prove that d has the property described in Conjecture 3.1 (4).

Recall that, for fully commutative elements, assertions (1) and (2) in Conjecture 3.1
are equivalent. We also have the obvious implications (4)) (3)) (2). Hence, K.d/ D
true for any fully commutative involution d that is a product of pairwise distant special
elements.

Let x; y 2 Sn be two different elements such that �xLd ¤ 0 and �yLd ¤ 0. In partic-
ular, this implies that x and y are fully commutative, see Section 4.3. To prove that d has
the property described in Conjecture 3.1 (4), it is enough to find some u; v 2 Sn such that
dim Homg.�uPv; �xLd / ¤ dim Homg.�uPv; �yLd /. By adjunction, we have

Homg.�uPv; �xLd / Š Homg.�x�1�uPv; Ld /;

Homg.�uPv; �yLd / Š Homg.�y�1�uPv; Ld /:

Note that, for a projective module P , the dimension of Homg.P; Ld / equals the multi-
plicity of Pd as a direct summand of P . Therefore, we need to find u and v such that the
multiplicity of �d as a summand of �x�1�u�v is different from the multiplicity of �d as a
summand of �y�1�u�v .
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Since �d is self-adjoint and both u and v are arbitrary, we can reformulate this as
follows: find u and v such that the multiplicity of �d as a summand of �v�u�x differs
from the multiplicity of �d as a summand of �v�u�y .

For future use, we record the following technical lemma.

Lemma 5.5. In the notation from above, the multiplicity of �d as a summand of �d�x�1�x
equals 22a.

Proof. The diagram ex�1ex is self-dual (i.e., symmetric with respect to reflection in a hor-
izontal line), has a cups and a caps, and also a circles in the middle before straightening.
By Lemma 5.3, each cup of this diagram corresponds to a cap of ed . Therefore, the num-
ber of circles removed when straightening the product edex�1ex equals 2a. This implies
the claim.

Without loss of generality, we may assume that the number a of caps in ex is greater
than or equal to the number b of caps in ey .

In most cases below, we will see that the choice v D d and u D x�1 does the job.
Case 1. Let us assume that a > b, so there is at least one cup of ex which is not a cup
of ey . Set u D x�1 and v D d .

By Lemma 5.5, the multiplicity of �d as a summand of �d�x�1�x equals 22a.
If the underlying diagram of edex�1ey is not ed , then, by Lemma 5.4, the multiplicity

of �d as a summand of �d�x�1�y equals 0 and we are done. If the underlying diagram of
edex�1ey is ed , we need to compute the number of closed loops removed when straight-
ening the product edex�1ey . Each closed loop contains at least one cap. The total number
of original caps in edex�1ey before straightening is a C b C c, where c is the number
of caps in ed . As c � a > b by Lemma 5.3, the resulting diagram has at least c caps,
see Remark 4.1. Therefore, the number of closed loops removed during the straightening
procedure is at most a C b < 2a. Consequently, the multiplicity of �d as a summand of
�d�x�1�y is at most 2aCb < 22a. This completes Case 1.
Case 2. Let us assume aD b and that ex and ey have exactly the same cups. Set uD x�1

and v D d .
Since x and y are different by assumption, there should be at least one cap of ex

which is not a cap of ey . This implies that the underlying diagrams eq of ex�1ex and ep
of ex�1ey are different.

Now we claim that the underlying diagram for edex�1ex is ed , while the underlying
diagram for edex�1ey is different from ed . This, of course, will complete the present case.
The underlying diagram of edex�1ex being ed follows directly from the fact that each cap
of ex is also a cap of ed , see Lemma 5.4. Here is an example:

ed

ex�1

ex

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � �
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Let us now look at the underlying diagram for edex�1ey . Recall that:
• ep and eq have exactly the same cups,
• not all caps in ep and eq are the same,
• any cap of ep and any cap of eq is also a cap of ed ,
• d D d1d2 � � � dr is a product of pairwise distant special elements di .

This implies that there exists a special factor di of d such that the number of caps edi
shares with eq is different from the number of caps edi shares with ep .

Take the leftmost such factor. Due to this assumption, to the left of this factor in ed ,
the diagrams edex�1ex and edex�1ey fully agree. We have two subcases.

Subcase 2a. The number of caps edi shares with eq is smaller than the number of caps edi
shares with ep .

In this case, the additional caps of edi , when multiplied with ep , are moved to the
right. Here is a fairly generic example:

edi W � � � � � � � � �

� � � � � � � � �

ep W � � � � � � � � �

� � � � � � � � �

This makes the resulting diagram different from ed , as claimed.

Subcase 2b. The number of caps edi shares with eq is greater than the number of caps edi
shares with ep .

In this case, we have some additional points corresponding to propagating lines to the
left of the nested caps in ep . The rightmost of these points either hits a cap in ed or it hits
a propagating line in ed . In the former case, we obtain a cap in edep which is not a cap
in ed . Here is a fairly generic example:

ed W � � � � � � � �

� � � � � � � �

ey W � � � � � � � �

� � � � � � � �

This makes the resulting diagram different from ed .
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In the latter case, the resulting diagram has a non-vertical propagating line. Here is a
fairly generic example:

ed W � � � � � � � �

� � � � � � � �

ey W � � � � � � � �

� � � � � � � �

This makes the resulting diagram again different from ed and completes Case 2.

Case 3. Let us assume aD b and that ex and ey have exactly the same caps. Set uD x�1

and v D d as before.
Consider first the situation when the underlying diagrams of ex�1ex and ex�1ey coin-

cide; let us call this diagram ez . Note that ez has a caps. As ex and ey have the same
caps but are assumed to be different, not all of their cups can coincide. In particular, the
multiplicity of ez in ex�1ey is strictly smaller than the multiplicity 2a of ez in ex�1ex .
Consequently, if we now multiply with ed on the left, we obtain ed as the underlying dia-
gram in both edex�1ex and edex�1ey , but with different multiplicities, and we are done
with this situation.

Now consider the situation when the underlying diagrams eq of ex�1ex and ep of
ex�1ey are different. Let us assume, for a contradiction, that

edex�1ex D edex�1ey :

Notice that edex�1ex D 22aed by Lemma 5.5. The total number of original caps in
edex�1ey is 2a C r , where r is the number of caps in ed . The underlying diagram of
edex�1ey is ed , which accounts for r caps. The only way to get 22a as the multiplicity
of ed in edex�1ey is to have a bijection between the set of original caps in edex�1ey and
the union of the set of all caps in ed with the set of all closed loops removed during the
straightening procedure. In particular, each such closed loop consists of exactly one cup
and one cap.

By the previous paragraph, each propagating line in ed must hit a propagating line
in ep . Since all propagating lines in ed are vertical, the same has to be true for the cor-
responding propagating lines in ep by Lemma 5.3. In other words, the set of propagating
lines in ed is a subset of the set of propagating lines in ep .

Take now a cap C in ed which is not nested inside any other cap in ed . Due to our
assumptions on d , the immediate outside neighbors of C are propagating lines. Therefore,
the endpoints of C correspond to either a cup or two propagating lines in ep . In the former
case, all caps nested inside C correspond to cups of ep . In the latter case, both of these
propagating lines have to be vertical, otherwise there would exist some extra caps in ep
which are not caps of ed .

We proceed by induction on the number k of nested caps contained inside C which
do not correspond to any cups in ep , to show that ep and eq coincide in the corresponding
regions which interact with C and all inner points of C during the multiplications edep
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and edeq . This implies ep D eq , which contradicts our assumption. If k D 0, the above
argument shows that both endpoints of C hit vertical propagating lines in ep . Since ep
and eq have the same caps and all propagating lines of eq are vertical by construction,
these two propagating lines of ep are also propagating lines of eq , and we are done. If
k > 0, there is a unique outermost cap C 0 nested inside C by our assumption that d is
a product of pairwise distant special elements. The argument that we just applied to C
applies to C 0. Proceeding inductively we obtain that ep and eq coincide at all parts that
hit the endpoints and all inner points of C . This completes Case 3.

Case 4. Let us assume that a D b and that some of the caps and some of the cups in ex
and ey are different. Set uD x�1 and v D d as before. In most situations, it is possible to
adapt the argument we used in Case 3.

If edex�1ex ¤ edex�1ey , then we are done. So, let us assume edex�1ex D edex�1ey .
Note that edex�1ex D 22aed by Lemma 5.5.

As before, if the underlying diagrams of ex�1ex and ex�1ey are the same, the mul-
tiplicity of ed in edex�1ey is strictly smaller than 22a. Therefore, it remains to consider
the situation when the underlying diagram eq of ex�1ex is different from the underlying
diagram ep of ex�1ey . If eq and ep have the same caps, we can use the argument from
Case 3. In particular, we may assume that not all caps in eq and ep agree. In this case, we
will need to construct a modification ed 0 of ed which will take the place of ev .

The same argument as in Case 3 shows that the set of propagating lines of ed is a
subset of both the set of propagating lines of ep and the set of propagating lines of eq .
Furthermore, the sets of caps of ep and eq are (different) subsets of the set of caps of ed .

Let us consider some full collection F of nested caps in ed . Let ˛ and ˇ be the
numbers of caps of ep , respectively, eq contained in this collection.

Note that eq has a caps while ep has at least a caps. Therefore, since not all caps in ep
and eq agree, we can assume that ˛ > ˇ for the chosen F . The argument from Case 3
implies that each cap in F either hits a cup or two vertical lines in ep . This means that the
parts of ep and eq corresponding to F are as in the following example:

ep W � � � � � � � � � �

� � � � � � � � � �

eq W � � � � � � � � � �

� � � � � � � � � �

Consider the element d 0 such that ed 0 is the same as ed except F is adjusted as
follows:

ed W � � � � � � � � � �

� � � � � � � � � �

ed 0 W � � � � � � � � � �

� � � � � � � � � �
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Then ed 0ep is a multiple of ed while ed 0eq is not. This completes the proof for the
positive answer.

5.5. Negative answer

Let d be a fully commutative involution which is not a product of pairwise distant special
elements. We are going to prove that d does not have the property described in Con-
jecture 3.1 (2). More explicitly, we will find two different fully commutative elements x
and y such that �xLd is isomorphic to �yLd .

Recall that, for fully commutative elements, assertions (1) and (2) in Conjecture 3.1
are equivalent. We also have the obvious implications :(2)) :(3)) :(4) of the other
assertions. The above therefore implies K.d/D false and, moreover, the rest of Conjec-
ture 3.1 for the involution d .

If d is not a product of pairwise distant special elements, the diagram ed has two
adjacent non-nested caps. Let us fix a pair A and B of such adjacent non-nested caps
(with A on the left). We may assume that they are not nested in some other cap which
itself has an adjacent non-nested cap. Let A0 and B 0 be the corresponding cups.

Define the element ex by changing ed as follows:
• remove B and B 0,
• if applicable, remove all caps in which A and B are nested,
• remove all cups corresponding to the latter caps,
• replace all the removed cups and caps by propagating lines.

The latter process is unique due to the non-intersection condition.
Define the element ey by changing ed as follows:

• remove A and B 0,
• if applicable, remove all caps in which A and B are nested,
• remove all cups corresponding to the latter caps,
• replace all the removed cups and caps by propagating lines.

Again, the latter process is unique due to the non-intersection condition. Here is an exam-
ple, with A and B colored:

ed W � � � � � �

� � � � � �

ex W � � � � � �

� � � � � �

ey W � � � � � �

� � � � � �

Let c denote the number of caps in ed and a the number of caps in ex . Then a �
c � 1, by construction, and also a equals the number of caps in ey . We are going to
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prove that �xLd and �yLd are isomorphic as graded modules. For this we need some
combinatorial preparation for estimates of graded shifts. The following statements can
probably be deduced from the results of [8], but it is easier to prove them directly.

Lemma 5.6. Let u and w be two fully commutative permutations such that �uLw ¤ 0.
Let k be the minimum of the numbers of caps in eu and in ew . Then �uLw is a graded
self-dual module and, for ji j > k, the graded component .�uLw/i is zero.

Proof. The module �uLw is self-dual as it is the image of a self-dual module Lw under
a projective functor. In order to prove the rest of the lemma, it is enough to argue that,
for i < �k, the graded component .�uPw/i is zero. Since the algebra of O0 is positively
graded, all standard graded lifts of projectives live in non-negative degrees. When comput-
ing the product euew , the number of closed loops removed in the straightening procedure
is at most k. This gives the scalar .v C v�1/m, where m � k. Therefore, the maximal
graded shift of a projective in �uPw is bounded by k. The claim follows.

Corollary 5.7. Both modules �xLd and �yLd have simple tops, which live in degree �a.

Proof. Both modules �xLd and �yLd have simple tops by [8, Theorem 4.11]. We prove
the second claim for �xLd . For �yLd , the arguments are similar. Lemma 5.6 implies that
the simple top of �xLd lives in some degree i � �a.

Let us now look more closely at the proof of Lemma 5.6. Note that, when computing
the product exed , we need to remove exactly a circles. This means that the degree �a
component of �xPd is non-zero.

At the same time, any simple subquotient Lw in the radical of Pd lives in a strictly
positive degree. Therefore, using Lemma 5.6 and an appropriate shift of grading in the
positive direction, the module �xLw lives in degrees that are strictly bigger than �a. Thus
the degree�a component of �xLd is indeed non-zero. Due to the positivity of the grading,
this component is the top of �xLd .

We want to prove that two graded modules �xLd and �yLd which have simple tops
that live in the same degree are isomorphic. Due to the positivity of the grading, it is
enough to show that there is a non-zero degree zero morphism from �xLd to �yLd .
By adjunction, this is equivalent to the existence of a degree zero morphism from Ld
to �x�1�yLd .

By construction, ex and ey have the same cups. Therefore, during the straightening
of the product ex�1ey , there are a loops to remove. Let ep be the underlying diagram of
ex�1ey and note that it has exactly the same caps as ey . By an analogue of Corollary 5.7
for ep (which works verbatim since ep and ey have the same caps), the module �pLd is a
self-dual indecomposable module with simple top in degree �a. Since �p appears exactly
once with shift a in the decomposition of �x�1�y , it follows that Ld appears, as a graded
module, in the socle of �x�1�yLd . This completes the proof of the negative answer and
the proof of Theorem 5.1.

5.6. Sanity check: comparison to previously known results

As already mentioned in Section 3.6, it is known that all elements of the form w
p
0w0,

where p is a parabolic subalgebra of sln, are Kostant positive.
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If we take p to be a maximal parabolic subalgebra, that is, one for which the semi-
simple part of the Levi factor equals sli ˚ sln�i , for i D 0; 1; : : : ; bn=2c, the element
wp
0w0 turns out to be fully commutative. The Temperley–Lieb diagram of the element

wp
0w0 is as follows, where i is the number of caps:

� : : : � � : : : � � : : : �

� : : : � � : : : � � : : : �

If i D n=2, this element is an involution, in fact, it is �a;b , where aD n=2 and bD n=2� 1.
If i < n=2, the above element belongs to the left Kazhdan–Lusztig cell of �a;b , where aD i
and b D i � 1. Therefore, for such elements, our Theorem 5.1 agrees with the previous
results.

Moreover, all known results in small ranks mentioned in Section 3.6 indeed agree with
Theorem 5.1.

We also note that Theorem 5.1, combined with [20, Theorem 1.1], gives a lot of new
full answers to Kostant’s problem even for not necessarily fully commutative permuta-
tions.

5.7. Problems to extend outside fully commutative elements

The fact that the answers to Kostant’s problem for the elements s1 s2 s1 and s2 s3 s2 of S5
are different, see [21, Section 4], suggests that it will not be straightforward to extend
Theorem 5.1 outside the set of fully commutative elements.

6. Asymptotic results

6.1. Various sequences

For n 2 Z�1, we denote
• by kin the number of fully commutative Kostant involutions in Sn,
• by kn the number of fully commutative w 2 Sn for which K.w/ D true,
• by min the number of fully commutative involutions in Sn,
• by mn the number of fully commutative elements in Sn.

For a 2 Z�1 and x 2 ¹kin; kn;min;mnº, we denote by xa the number of elements in the
family x with exactly a caps.

It is very well known that mn equals the n-th Catalan number

Cn WD
.2n/Š

nŠ.nC 1/Š
D

1

nC 1

�
2n

n

�
:

6.2. Main asymptotic results

Theorem 6.1. (a) We have limn!1 kin=min D 0.
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(b) We have limn!1 kn=mn D 0.

(c) For any fixed a 2 ¹0; 1; : : : ; bn=2cº, we have limn!1 kian=mian D 1.

The remainder of this section is devoted to the proof of this theorem. In Sections 6.3,
6.4 and 6.5, we first establish some explicit formulas for the enumeration of the main
protagonists defined in the previous subsection. We are sure that some of the combina-
torial arguments and results presented in this section are not new and can be found in or
derived from the existing literature. However, we feel that is would be more difficult to
find appropriate references than to prove these results. When working on the proofs, the
Online Encyclopedia of Integer Sequences was really helpful.

6.3. Fully commutative Kostant involutions

Recall the family of Fibonacci polynomials Fn.x/, where n � 0, given by the following
recursion:

F0.x/ D 1; F1.x/ D x;

Fn.x/ D xFn�1.x/C Fn�2.x/; n � 2:

Here are some initial members of this family:

n : 0 1 2 3 4 5

Fn.x/ : 1 x x2 C 1 x3 C 2x x4 C 3x2 C 1 x5 C 4x3 C 3x

The evaluation Fn.1/ is exactly the n-th Fibonacci number.

Proposition 6.2. We have

Fn.x/ D

bn=2cX
aD0

kian � x
n�2a:

Proof. This is easy to check for n D 1; 2. Therefore, it suffices to show that the numbers
kian satisfy the same recursion as the coefficients of the Fibonacci polynomials. Observe
that kian D 0 for a > bn=2c.

Let d be a Kostant involution and look at the strand in ed which starts at the top point 1.
If this strand is vertical, removing it yields a Kostant involution for n � 1 with the same
number of caps as ed . If this strand is a cup, removing it together with the corresponding
cap produces a Kostant involution for n � 2 with one fewer cap than ed . This defines a
bijection between the set of all Kostant involutions for n with a caps and the union of the
set of all Kostant involutions for n� 1with a caps and the set of all Kostant involutions for
n� 2 with a � 1 caps. This implies kian D kian�1C kia�1n�2, which establishes the necessary
recursion.

Corollary 6.3. The number kin is the n-th Fibonacci number.

Proof. Evaluate the equality in Proposition 6.2 at 1.

Corollary 6.4. We have kian D
�
n�a
a

�
.
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Proof. Again, this is easy to verify for small values of n, so we only need to check that
the binomial coefficients on the right-hand side satisfy the same recursion as kian. By the
usual Pascal triangle formula, we have�
n � a

a

�
D

�
.n � 1/ � a

a

�
C

�
n � 1 � a

a � 1

�
D

�
.n � 1/ � a

a

�
C

�
.n � 2/ � .a � 1/

a � 1

�
:

This implies the claim.

6.4. Fully commutative Kostant elements

Under the Robinson–Schensted correspondence, two-sided Kazhdan–Lusztig cells in type
A are in bijection with partitions of n, and the left cells in a given two-sided cell corre-
sponding to � ` n are in bijection with the standard tableaux of shape �. More specifically,
the Robinson–Schensted correspondence gives a bijection between the elements w in
a left cell and pairs .P.w/; Q.w// of standard Young tableaux of shape � for which
Q.w/ is fixed, by [22, Theorem 1.4] (for the present formulation of that result and a
more elementary proof, see [1, Theorem A]). In particular, two-sided cells of fully com-
mutative permutations correspond to partitions with at most two rows and the value of
the a-function is given by the length of the second row. This follows from, for example,
[35, Lemma 6.5].

Corollary 6.5. We have

kan D
�
n � a

a

�
nŠ.n � 2aC 1/Š

aŠ.n � 2a/Š.n � aC 1/Š
:

Proof. As recalled above, the two-sided cell which corresponds to our a is indexed by the
partition .n � a; a/. Since every Kazhdan–Lusztig left cell contains a unique involution,
the number kan is the product of kian with the size of this left cell. The latter equals the num-
ber of standard Young tableaux P.w/ of shape .n � a; a/ under the Robinson–Schensted
correspondence. Now the claim of our corollary follows from Corollary 6.4 and the Hook
formula.

6.5. Fully commutative involutions

Proposition 6.6. We have min D
�

n
bn=2c

�
.

Proof. This claim is easy to check for small values of n, so we need to show that both
sides satisfy the same recursion.

Let d be a fully commutative involution. Consider the strand of ed connected to the
upper point 1. If it is vertical, removing it results in a fully commutative involution for
n� 1. If the strand is a cupX connecting 1 to some point 2i , there is a crossingless pairing
of 2i � 2 points inside this cup. RemovingX and all cups contained inside it together with
the corresponding caps, we obtain a fully commutative involution for n� 2i . This implies
that we have the following recursion for the left-hand side of our formula:

min D min�1 C
bn=2cX
iD1

Ci�1min�2i :
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We claim the middle binomial coefficients
�

n
bn=2c

�
satisfy the same recursion. Indeed,

consider the Pascal triangle with the point .x; y/ corresponding to
�
x
y

�
, for all appropriate

x and y. Then
�
n
i

�
is exactly the number of shortest paths between .0; 0/ and .n; i/ in this

triangle.
Assume first that n D 2k. Then we need to prove that�

2k

k

�
D

�
2k � 1

k � 1

�
C

kX
iD1

Ci�1

�
2k � 2i

k � i

�
:

Equivalently, we need to show that�
2k � 1

k

�
D

kX
iD1

Ci�1

�
2k � 2i

k � i

�
:

For i D 1;2; : : : ;k, let Pi be the set of all shortest paths between .0;0/ and .2k � 1;k/ such
that the path goes through the point .2.k � i/; k � i/ and i is minimal with this property.
The set of all paths between .0; 0/ and .2k � 1; k/ is the disjoint union of the Pi . There
are

�
2k�2i
k�i

�
shortest paths between .2.k � i/; k � i/ and .0; 0/. The classical interpretation

of Catalan numbers as paths in a square that do not cross the diagonal implies that there
are exactly Ci�1 shortest paths between .2k � 1; k/ and .2.k � i/; k � i/ satisfying the
condition for the minimality of i . This establishes the necessary recursion formula for the
right-hand side.

The case n D 2k C 1 is similar and left to the reader.

Darij Grinberg informed us that the formula in Proposition 6.6 can be found in [39,
Proposition 3] with a different proof.

6.6. Proof of Theorem 6.1 (c)

As remarked at the beginning of Section 6.4, the partition corresponding to a is .n� a;a/,
hence mian D

nŠ.n�2aC1/Š
aŠ.n�2a/Š.n�aC1/Š

by the Hook formula. Using Corollary 6.4, we have

kian
mian
D
.n � a/ŠaŠ.n � 2a/Š.n � aC 1/Š

aŠ.n � 2a/ŠnŠ.n � 2aC 1/Š
D
.n � aC 1/.n � a/ � � � .n � 2aC 2/

n.n � 1/ � � � .n � aC 1/
:

Here both the numerator and the denominator are polynomials in n of degree a and with
leading coefficient 1. The claim of Theorem 6.1 (c) follows.

6.7. Proof of Theorem 6.1 (a)

By Corollary 6.3, the number kin is the n-th Fibonacci number. It is given by the formula

.1C
p
5

2
/n � .1�

p
5

2
/n

p
5

:

Since the absolute value of 1�
p
5

2
is less than 1, it follows that Fn grows as .1C

p
5

2
/n.
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At the same time, if n D 2k, the central binomial coefficient
�
2k
k

�
is not smaller than

4k

2kC1
, as follows directly from

4k D 22k D .1C 1/2k D

2kX
iD0

�
2k

i

�
:

If n D 2k C 1, the coefficient
�
2kC1
k

�
is not smaller than

�
2k
k

�
. This implies that

�
n
bn=2c

�
grows at least as fast as 2

n

n
. Since 1C

p
5

2
< 2, the claim of Theorem 6.1 (a) follows.

6.8. Proof of Theorem 6.1 (b)

Using Corollary 6.5, we need to show that

(6.1)
bn=2cX
aD0

.nC 1/
�
n�a
a

��
2n
n

� �
nŠ.n � 2aC 2/Š

aŠ.n � 2a/Š.n � aC 1/Š
! 0; n!1:

We rewrite the expression in (6.1) as

bn=2cX
aD0

.nC 1/.n � a/ŠnŠ.n � 2aC 1/ŠnŠnŠ

aŠ.n � 2a/ŠaŠ.n � 2a/Š.n � aC 1/Š.2n/Š
;

and then, further, as

bn=2cX
aD0

.nC 1/.n � a/Š.n � a/ŠnŠ.n � 2aC 1/ŠnŠnŠaŠ

aŠ.n � 2a/ŠaŠ.n � 2a/Š.n � aC 1/Š.2n/ŠaŠ.n � a/Š
;

and, finally, as

(6.2)
bn=2cX
aD0

.nC 1/
�
n�a
a

��
n�a
a

��
n
a

��
n�aC1
a

��
2n
n

� :

Note that �
n � a

a

�
�

�
n � aC 1

a

�
and hence the expression in (6.2) is bounded from above by

(6.3)
bn=2cX
aD0

.nC 1/
�
n�a
a

��
n
a

��
2n
n

� :

The Fibonacci coefficient
�
n�a
a

�
is bounded by the n-th Fibonacci number and hence grows

at most as .1C
p
5

2
/n. The coefficient

�
n
a

�
is bounded by

�
n
bn=2c

�
and hence grows as 2n up to

some factor of at most polynomial growth. At the same time,
�
2n
n

�
grows as 4n up to some

factor of at most polynomial growth. As the number of summands is linear in n, it follows
that the whole expression (6.3) tends to 0, when n!1. This proves Theorem 6.1 (b).
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6.9. Conjectures

Taking Theorem 6.1 into account, we conjecture the following for general elements of Sn:
• Among all involutions in Sn, the proportion of those for which the answer to Kostant’s

problem is positive is asymptotically 0.
• The proportion of elements in Sn for which the answer to Kostant’s problem is positive

is asymptotically 0.
• Fix a partition � of some m and consider, for n > m, the partition �.n/ of n obtained

from � by increasing the first part by n�m. Then, among the elements in Sn belonging
to the two-sided cell indexed by the partition �.n/, the proportion of those for which
the answer to Kostant’s problem is positive is asymptotically 1.

We note that the recent results in [30, Section 4.10] support, in some mild sense, these
conjectures.

7. Kostant’s problem and Barbasch–Vogan theorem for fiab
bicategories

7.1. Fiat 2-categories

Let C be a fiab bicategory in the sense of [27], i.e., a finitary bicategory with weak invo-
lution ? and adjunction morphisms. Consider the left, right and two-sided pre-orders �L,
�R and �J on the set �.C / of isomorphism classes of indecomposable 1-morphisms
in C . In particular, we have F�L G provided that there exists a 1-morphism H such that G
is isomorphic to a direct summand of HF. The other pre-orders are defined similarly, see
[33, Section 3] for details.

The associated equivalence classes are called cells (left, right and two-sided, respec-
tively). Each left and each right cell contains a unique special 1-morphism called the Duflo
1-morphism, see [32, Section 4.5].

7.2. Kostant’s problem for fiat bicategories

Fix a left cell L in C . Then there is an object i 2 C such that all elements of L have i as
a domain. Consider the abelianization Pi of the principal birepresentation Pi of C in the
sense of [26, Section 3].

Denote by OL the set of all F 2 �.C / such that F �L L. The collection of Serre sub-
categories of the Pi.j/, for j 2 C , generated by all simple objects LF, where F 2 OL, is
invariant under the action of C . We denote the corresponding (abelian) birepresentation
of C by ML and its (finitary) restriction to projective objects by ML.

On the other hand, let DL be the Duflo 1-morphism in L and consider the finitary
birepresentation KL given by the action of C on the additive closure of CLDL

. The
Yoneda morphism from Pi to KL sending 1i to LDL

factors through ML by construction.
We will say that DL is Kostant positive provided that the induced morphism of birepre-
sentations from ML to KL is an equivalence.

Let us now look what happens in the case of the bicategory P . The identity object
of P is given by the quotient of the universal enveloping algebra modulo the annihilator
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of O0. By [6, Theorem 5.9], O0 itself is equivalent to the subcategory of the principal
birepresentation of P generated by the quotient of the universal enveloping algebra by the
central character of O0. Hence, we can view a simple module Lw 2 O0 as a simple object
of the principal birepresentation of P . Take nowwD d to be the Duflo involution in some
Kazhdan–Lusztig left cell L. Then the corresponding birepresentation ML as defined
above is generated, as a birepresentation of P , by the quotient of the universal enveloping
algebra by the annihilator of Ld . At the same time, in [25, Proposition 7.2] it is shown
that the corresponding birepresentation KL as defined above is generated by L.Lp; Lp/.
Therefore, the fact that the natural embedding of ML into KL is an equivalence is, indeed,
equivalent to the fact that the answer to Kostant’s problem for Ld is positive, see [25,
Corollary 7.6].

Note that the kernel of the above Yoneda morphism from Pi to KL is exactly the anni-
hilator of LDL

in C , i.e., the left biideal of 2-morphisms ˛ in C such that Pi.˛/LDL
D 0.

This connects our reformulation of Kostant’s problem in this more general setup to the
problem of studying annihilators of simple objects in principal birepresentations. This
naturally leads to an analogue of the classical Barbasch–Vogan theorem for fiab bicate-
gories, presented in the next subsection.

7.3. Barbasch–Vogan theorem for C

Note that the abelianization Pi of Pi is an abelian birepresentation of C . For j 2 C and
an indecomposable 1-morphism F 2 C .i; j/, denote by JF the annihilator of LF in C .
Then JF is a left biideal of C .

Theorem 7.1. For two indecomposable 1-morphism F and G in C , the following condi-
tions are equivalent:
(a) F �R G,

(b) JG �JF.

Proof. In this proof, we will use the word “module” instead of “birepresentation”. The
direct sum of all principal C -modules has the obvious structure of a C -C -bimodule, the
regular C -C -bimodule.

Given an object M of this regular C -C -bimodule and any 1-morphism F 2 C which
acts on M on the right, we have

AnnC .M/ � AnnC .MF/

of left annihilators. Also, if some LG is a subquotient of M , we have

AnnC .M/ � AnnC .LG/:

Let F and G be two 1-morphisms in C . Then F �R G if and only if there exists H in C
such that G is a summand of FH. By adjunction, this is equivalent to

0 ¤ HomC .FH; LG/ Š HomC .F; LGH?/:

In other words, F �R G is equivalent to the existence of H such that LF is a subquotient
of LGH?. The previous paragraph now yields that F �R G implies JG �JF.
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For the converse, note that if F —R G, then either F >R G, or F and G are not compa-
rable in the right order.

If G <R F, then all elements in the two-sided cell of F annihilate LG by [32, Lem-
ma 12]. By the same lemma, there are elements in the two-sided cell of F that do not
annihilate LF. Therefore, JF ¨ JG.

If F and G are not comparable in the right order, then the two-sided cells of F and G
annihilate LG and LF, respectively, again by [32, Lemma 12]. On the other hand, the two-
sided cell of F does not annihilateLF, and similarly that of G does not annihilateLG. Thus
the annihilators are not comparable.

This completes the proof.

We can also give slightly more detailed information.

Proposition 7.2. In the setup of Theorem 7.1, if F <R G and i is the codomain for both
F and G, then there is H 2 C .i; i/ such that

dim HomC=JG.H; 1i/ ¤ dim HomC=JF.H; 1i/:

Proof. We take H to be the Duflo 1-morphism in the right cell of G. Then HLF D 0 by
[32, Lemma 12] and hence the evaluation of any element of HomC .H;1i/ atLF is the zero
morphism. At the same time, the evaluation of the morphism H! 1i which defines H as
a Duflo 1-morphism (see [32, Section 4.5]) at LG is non-zero. The claim follows.

7.4. Classical Barbasch–Vogan theorem

The above proposition implies the following classical result due to Barbasch and Vogan,
see [2, 3].

Corollary 7.3. Let g be a semi-simple finite-dimensional complex Lie algebra with Weyl
groupW . Then, for x;y 2W , we have AnnU.g/.Lx/�AnnU.g/.Ly/ if and only if y �L x,
where �L is the Kazhdan–Lusztig left order on W .

The appearance of the left order in Corollary 7.3, compared to the right order in Theo-
rem 7.1, is due to the right nature of the action of the bicategory of projective functors on
category O.

Proof. Consider the bicategory P of projective functors acting on O0. The latter is,
naturally, a subbirepresentation of the abelianized principal birepresentation P and is
equivalent to a certain category of Harish-Chandra bimodules for g by [6, Theorem 5.9].
This equivalence matches the indecomposable projective object P�e corresponding to the
identity with the quotient of U.g/ modulo the trivial central character.

Sending P�e to the dominant Verma module in O0 using the Yoneda lemma, defines a
morphism of birepresentations from P to O0 which sends simple objects to simple objects.
By Theorem 7.1, y �L x implies AnnP.Lx/ � AnnP.Ly/.

In particular,

HomAnnP.Lx/

� M
w2W

�w ; �e

�
� HomAnnP.Ly/

� M
w2W

�w ; �e

�
� HomP

� M
w2W

�w ; �e

�
;
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where the latter corresponds to the quotient ofU.g/modulo the ideal generated by the triv-
ial central character under the equivalence from [6, Theorem 5.9]. Hence, AnnU.g/.Lx/�
AnnU.g/.Ly/.

Since P has only one object, the fact that y<Lx implies AnnU.g/.Lx/¨AnnU.g/.Ly/
follows directly from Proposition 7.2. As in the proof of Theorem 7.1, if x and y are not
comparable in the left order, their annihilators are incomparable, which completes the
proof.
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