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Deformation classification of quartic surfaces
with simple singularities

Çisem Güneş Aktaş

Abstract. We give a complete equisingular deformation classification of simple spa-
tial quartic surfaces which are in fact K3-surfaces.

1. Introduction

Throughout the paper, all varieties are over the field C of complex numbers.

1.1. Motivation and historical remarks

Thanks to the global Torelli theorem [30] and the surjectivity of the period map [19], the
equisingular deformation classification of singular projective models of K3-surfaces with
any given polarization becomes a mere computation. The most popular models studied
intensively in the literature are plane sextic curves and spatial quartic surfaces. Using the
arithmetical reduction [7], Akyol and Degtyarev [1] completed the problem of equisingu-
lar deformation classification of simple plane sextics. Simple quartic surfaces, which play
the same role in the realm of spatial surfaces as sextics do for curves, are a relatively new
subject, promising interesting discoveries. We confine ourselves to simple quartics only,
i.e., those with A–D–E type singularities (quartic surfaces with a non-simple singular
point, i.e., when the quartic is not a K3-surface, are quite different, see Degtyarev [10,11]).
The work was originated in Urabe [38–40], and was extended by Yang [41], who gave a
complete list of sets of singularities realized by simple quartics. Then, after a period of
oblivion, it was resumed by Güneş Aktaş in [15], where she obtained the classification
of the so-called nonspecial simple quartics by using the same aproach as in Degtyarev
and Akyol [1]. In the meanwhile, Shimada [33], inspired by the work on quartics, pro-
duced a complete list of the connected components of the moduli space of Jacobian elliptic
K3-surfaces (which can be regarded as U -polarized K3-surfaces).

It has become quite apparent that the classical approach to quartics and sextics based
on the defining equations is bound to fail (see, for instance, Artal et al. [2–4]; Degt-
yarev [6], or Oka and Pho [27]); even when the classification is already known, it requires
a tremendous amount of work to find the defining equations of curves/surfaces with large
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sets of singularities. On the other hand, the more modern K3-theoretic approach, pion-
eered by Urabe [38, 39] and Yang [41], has already demonstrated its productivity, see,
e.g., [1], [15] or [33].

Also worth mentioning is the vast literature related to the study of the deformation
classification problems in the real case, singular or smooth: the classification of real
smooth quartic surfaces by Kharlamov [18], the study on moduli space of realK3-surfaces
by Nikulin [26], or the work on quartic spectrahedra by Degtyarev and Itenberg [9] and
Ottem et al. [28].

1.2. Principal results

The present paper originates from the article [15], where the author has made a contribu-
tion to the systematic study of simple spatial quartics. Our principal result is extending
the classification given in [15] for only nonspecial simple quartics to the whole space of
simple quartics and, thus, completing the equisingular deformation classification of simple
quartic surfaces. This result closes a long standing project initiated by Persson [29] and
Urabe [38–40].

A set of simple singularities of a simple quartic can be identified with a root lattice
(see [12] and Section 3.3) and recall that the total Milnor number �.X/ of a simple quartic
X � P3 is given by the rank of the corresponding root lattice. One has �.X/ � 19 (see
[39], cf. [29]); if �.X/D 19, the quartic X is called maximizing. (Recall that maximizing
quartics are projectively rigid.)

Our classification is based on the arithmetical reduction found by Degtyarev and Iten-
berg [9], that reduces the equisingular deformation classification of simple quartic surfaces
to a purely lattice-theoretical question. The resulting arithmetical problem is solved by first
using Nikulin’s theory of discriminant forms [25]. Then, the computation is done separ-
ately for the maximizing (�.X/ D 19) and the non-maximizing (�.X/ � 18) case; for
the former, we use Gauss’s theory of binary quadratic forms [14]; for the latter, we apply
Miranda–Morrison’s results [21–23], reducing the analysis of the orthogonal groups of
indefinite lattices to a relatively simple computation in finite abelian groups.

Denote by X the space of all spatial quartics; it is subdivided into equisingular strata
X.S/, where S is a set of simple singularities. Each stratum X.S/ is further subdivided
into its connected components corresponding to equisingular deformation families. The
equisingular strata X.S/ splits also into families X�.S/, where the subscript � is the
sequence of invariant factors of a certain finite group K (see Sections 2.4 and 4.1). A com-
plete description of the strata X1.S/ constituted by the so-called nonspecial quartics, i.e.,
K D 0, is given by Güneş Aktaş [15]. We complete this project in this paper by giving a
complete description of the whole equisingular strata X.S/ consisting also of the quartics
with K ¤ 0.

Our classification is obtained by implementing in GAP [37] the algorithms given
in Section 4, as the number of classes is huge (about 12.000). The original code used
in [15], where we settled the case of nonspecial quartics, was based partially on manually
precomputed data specific to a particular degree. Therefore, the code has been exten-
ded to implement a complete version of the Miranda–Morrison theory [21–23] and a
genuinely repetition free enumeration of realizable configurations (see Section 3.3). The
principal novelty, compared to the nonspecial case, where K D 0, is that the imprimitivity,
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Table 1. Quartic surfaces with simple singularities

� 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Total
ss 1 2 3 6 9 16 24 39 57 88 128 193 276 403 563 765 880 738 278 4469

cf 1 2 3 6 9 17 26 46 74 130 211 361 580 939 1370 1779 1766 1178 347 8845

r 1 2 3 6 9 17 26 46 74 130 211 361 580 939 1370 1778 1765 1167 304 8789

c 1 1 11 86 99

ex 2 1 36 all 39

i.e., K ¤ 0, is also taken into account; furthermore, we have developed a more advanced
method of computing the Miranda–Morrison homomorphism based on lifting reflections
to a p-adic lattice (see Section 2.6.1) and settled the missing types.

The standard coordinatewise complex conjugation conjWP3 ! P3, z 7! Nz, induces a
real structure cWX ! X (i.e., an antiholomorphic involution) which takes a quartic to its
conjugate. A connected component D � X.S/ is called real if c.D/ D D . Clearly, each
stratum X.S/ consists of real and pairs of complex conjugate components; this classific-
ation of components is given in [1] for sextics and in [15] for nonspecial quartics.

By a perturbation of a set of singularities S , we mean a primitive root sublattice S 0

of the corresponding root lattice S . Recall that unlike high degrees, for a simple quartic
surface X with the set of singularities S , any perturbation of S is actually realized by
a perturbation of X . Our extremal families are extremal in the sense that they are not
obtained by perturbation from any bigger family. The list of all equisingular strata X.S/ is
too huge to be listed explicitly; thus in the existence part of the statement of Theorem 1.1,
we describe only those strata that are extremal in terms of perturbations (see Section 3.4).

The ultimate result can be stated as follows.

Theorem 1.1. The equisingular deformation families of simple quartic surfaces X � P3

are the perturbations of the 390maximizing .�D 19/ families listed in Table 3, and the 39
extremal families listed in Table 4.

In particular, a non-maximizing quartic is uniquely determined by its configuration
(see Definition 3.2) up to deformation and complex conjugation, and there are only 13
non-maximizing families listed in Table 5 that are not real.

The counts are summarized in Table 1, where we list the following data, itemized by
the total Milnor number � WD rankS :

• ssD the number of sets of singularities;
• cfD the number of configurations(see Definition 3.2), or lattice types in [32];
• .r; c/D the numbers of real components and pairs of complex conjugate ones;
• exD the number of extremal families.

1.3. Contents of the paper

In Section 2, after recalling basic notions and facts of Nikulin’s theory of discriminant
forms and lattice extensions [25], we give a brief introduction to Miranda–Morrison’s
theory [21–23] and recast some of their results in a more convenient way to use for our
purposes. Then in Section 2.6, as one of the principal novelties of this paper, we introduce
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an approach for lifting reflections from finite quadratic form to the p-adic lattices which
resolves exceptional remaining cases in our computations.

In Section 3, we consider quartics asK3-surfaces, define the notions of configurations
and their realizations and use the theory of K3-surfaces to reduce the original geometric
problem to a purely arithmetical question concerning realizations of configurations.

Having the conceptual part settled, the principal result of the paper, stated in Sec-
tion 1.2, is proved in Section 4, where we outline the algorithm used to enumerate the
equisingular deformation classes of quartics and give some examples illustrating the steps
listed in the general scheme. Finally, in Section 4.6, we demonstrate the proof of The-
orem1.1 in a detailed way for the particular set of singularities S D A15 ˚ A3 and then
make some concluding remarks. The tables referred to in the main result Theorem 1.1 are
given in Section 4.8.

2. Integral lattices

In this introductory section, we recall briefly a few elementary facts concerning integral
lattices, their discriminant forms and extensions. The principal reference is [25].

2.1. Finite quadratic forms (see [21, 25])

A finite quadratic form is a finite abelian group L equipped with a map qWL! Q=2Z
quadratic in the sense that

q.x C y/ D q.x/C q.y/C 2b.x; y/; q.nx/ D n2q.x/; x; y 2 L; n 2 Z;

where bWL ˝ L! Q=Z is a symmetric bilinear form (which is determined by q) and
2WQ=Z ! Q=2Z is the natural isomorphism. We abbreviate x2 WD q.x/ and x � y WD
b.x; y/.

Each finite quadratic form can be decomposed into the orthogonal direct sum L DL
p Lp of its p-primary components, Lp WD L˝Zp , where the summation runs over all

primes p. The length `.L/ is the minimal number of generators of L; we put p̀.L/ WD

`.Lp/. A finite quadratic form L is called even if x2 D 0 mod Z for each element x 2L2

of order 2; it is called odd otherwise.
A finite quadratic form is nondegenerate if the homomorphism

L! Hom.L;Q=Z/; x 7! .y 7! x � y/

is an isomorphism. We denote by Aut.L/ the group of automorphisms of L preserving the
form q. A subgroup K �L is called isotropic if the restriction of the quadratic form q on
L to K is identically zero. If this is the case, K?=K also inherits from L a nondegenerate
quadratic form.

For a fraction m=n 2 Q=2Z, with .m; n/ D 1 such that mn D 0 mod 2, we denote by
hm=ni the nondegenerate finite quadratic form on Z=nZ sending the generator to m=n,
i.e., , ˛2 D m=n mod 2Z for a generator ˛. For an integer k � 1, let Un and Vn be the
length 2 forms on .Z=nZ/2, defined by the matrices

Un WD

�
0 1=n

1=n 0

�
; Vn WD

�
2=n 1=n

1=n 2=n

�
; where n D 2k :
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Nikulin [25] proved that, a nondegenerate finite quadratic form splits into an orthogonal
direct sum of cyclic forms hm=ni (defined on the cyclic group Z=nZ) and length 2
blocks Un and Vn. Unless the 2-torsion consists of the summands of length 2, we describe
nondegenerate finite quadratic forms by expressions of the form hq1i : : : hqri, where qi D
ni=mi 2 Q as above; the group is generated by pairwise orthogonal elements ˛1; : : : ; ˛n
(numbered in the order of appearance) so that ˛2i D mi=ni mod 2Z and order of ˛i is ni .

Definition 2.1. Let L be a nondegenerate quadratic form. Given a prime p, the determi-
nant of the Gram matrix (in any minimal basis) of Lp has the form u=jLpj for some unit
u 2 Z�p , and this unit is well defined modulo .Z�p /

2 unless p D 2 and L2 is odd; in the
latter case, u is well defined modulo the subgroup generated by .Z�2 /

2 and 5. We define
detp LD u=jLpj, where u 2 Z�p =.Z

�
p /
2 or u 2 Z�2 =.Z

�
2 /
2 � ¹1; 5º is as above (see [23]).

Remark 2.2. According to Nikulin [25], given a prime p and a quadratic form L on a p
group, there is a p-adic lattice L such that rkLD p̀.L/ and discrLDLp . Unless p D 2
and L is odd, such a lattice L is determined by L uniquely up to isomorphism. In the
exceptional case pD 2 and L is odd, there are two such lattices that differ by determinants.
One has detL D detp LjLpj

2 D ujLpj for some unit u as in the Definition 2.1 (Nikulin
uses this equality as a definition of detp L).

2.2. Integral lattices and discriminant forms

An (integral) lattice is a finitely generated free abelian groupL equipped with a symmetric
bilinear form bWL˝L! Z. Whenever the form is fixed, we use the abbreviations x2 WD
b.x; x/ and x � y WD b.x; y/. A lattice L is called even if x2 D 0 mod 2 for all x 2 L; it
is called odd otherwise. The determinant detL 2 Z is the determinant of the Gram matrix
of b in any integral basis of L. A lattice L is called unimodular if detL D ˙1; it is called
nondegenerate if detL ¤ 0, or equivalently, if the kernel

kerL D L? WD ¹x 2 L j x � y D 0 for all y 2 Lº

is trivial.
The signature of a nondegenerate lattice L is the pair .�C; ��/ of its inertia indices.

A nondegenerate lattice is called hyperbolic if �CL D 1. Given a lattice L, the bilinear
form on L can be extended by linearity to a Q-valued bilinear form on L˝Q. If L is
nondegenerate, then we have canonical inclusion

L � L_ WD Hom.L;Z/ D ¹x 2 L˝Q j x � y 2 Z for all y 2 Lº:

The finite quotient group discrL WDL_=L of order jdetLj is called the discriminant group
of L. In particular, L is unimodular if and only if discrL D 0, i.e., L D L_

The discriminant group inherits fromL˝Q a nondegenerate symmetric bilinear form

bW discrL˝ discrL! Q=Z; .x mod L/˝ .y mod L/ 7! .x � y/ mod Z;

and if L is even, its quadratic extension

qW discrL! Q=2Z; .x mod L/ 7! x2 mod 2Z;
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called, respectively, the discriminant bilinear form and the discriminant quadratic form.
Note that the discriminant group of an even lattice is a finite quadratic form. We use the
notation discrp L for the p-primary part of discrL. When speaking about the discriminant
groups and their (anti-)isomorphisms, these forms are always taken into account.

Lattices are naturally grouped into genera. Omitting the precise definition, we follow
Nikulin [25], who states that two nondegenerate even lattices L0 and L00 are in the same
genus if and only if one has rkL0 D rkL00, �L0 D �L00 and discrL0 Š discrL00. Each
genus consists of finitely many isomorphism classes.

An isometry  WL!L0 between two lattices is a group homomorphism respecting the
bilinear forms; obviously, one always has Ker � KerL. The group of bijective autoi-
sometries of a nondegenerate latticeL is denoted byO.L/. The action ofO.L/ extends to
L˝Q by linearity, and the latter action descents to discrL. Therefore, there is a natural
homomorphism O.L/ ! Aut.discr L/, where Aut.disc L/ denotes the group of auto-
morphisms of discrL preserving the discriminant form q on discrL. In general, this map is
neither one-to-one nor onto; however, without any confusion we freely apply autoisomet-
ries g 2O.L/ to objects in discrL. Obviously, one has Aut.discrL/D

Q
p Aut.discrpL/,

where the product runs over all primes. The restriction of d to p-primary components are
denoted by dpWO.L/! Aut.discrp L/.

A 4-polarized lattice is a nondegenerate hyperbolic lattice L equipped with a distin-
guished vector h 2 L such that h2 D 4; this vector is usually assumed but often omitted
from the notation. The group of autoisometries of L preserving h is denoted by Oh.L/.

The orthogonal projection establishes a linear isomorphism between any two maximal
positive definite subspaces in L ˝ R, thus providing a way for comparing orientations.
A coherent choice of orientations of all maximal positive definite subspaces is called a
positive sign structure on L. We denote by OC.L/ � O.L/ the subgroup consisting of
the autoisometries preserving a positive sign structure. Either one has OC.L/ D O.L/,
or O.L/C is a subgroup of O.L/ of index 2. In the latter case, each element of O.L/ X
OC.L/ is called a skew-autoisometry of L, i.e., the autoisometries of L that reverse the
positive sign structure.

Of special importance are the so called reflections of L: given a nonzero vector a 2 L,
the reflection defined by a is the automorphism

taWL! L; x 7!
2.a � x/

a2
a:

It is well defined if and only if .2a=a2/ 2 L_. Note that ta is an involution. Each image
dp.ta/ is also a reflection, and if a2 D ˙1 or a2 D ˙2, then the induced automorphism
d.ta/ of the discriminant group is the identity and ta extends to any lattice containing L.

2.3. Root lattices

A root in an even lattice L is a vector r 2 L of square .�2/. A root lattice is an even neg-
ative definite lattice generated by its roots. Each root lattice has a unique decomposition
into orthogonal direct sum of irreducible root lattices, the latter being those of types An,
n � 1, Dn, n � 4, or En, n D 6; 7; 8.

Given a root lattice S , the vertices of the Dynkin diagram � WD �S can be identified
with the elements of a basis for S constituting a single Weyl chamber. Thus, one has an
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obvious homomorphism Sym.�/! O.S/, where Sym.�/ is the group of symmetries of
the Dynkin diagram � . By the classification of the connected Dynkin graphs, for irredu-
cible root lattices, the groups Sym.�/ are given as follows:
(1) if S is A1, E7 or E8, then Sym.�/ D 1,
(2) if S is D4, then Sym.�/ D S3,
(3) for all other types, Sym.�/ D Z2.

If S is Ap , p � 2, D2kC1 or E8, then the only nontrivial symmetry of � induces � id
on discrS . If S is E8 then discrS D 0 and if S is A1, A7 of D2k , the groups discrS are F2
modules and � id D id on Aut.discrS/.

2.4. Lattice extensions

From now on, unless specified otherwise, all lattices considered are even and nondegen-
erate. An extension of an even lattice S is an even lattice L containing S . Two extensions
L0; L00 � S are called isomorphic if there is a bijective isometry L0 ! L00 preserving S ,
in particular, if the isomorphism L0 ! L00 is identical on S , the extensions L0 and L00

are called strictly isomorphic. More generally, one can also fix a subgroup G 2 O.S/ and
speak about G-isomorphisms of the extensions, i.e., bijective isometries whose restriction
to S is in G.

The two extreme cases are finite index extensions, i.e., L contains S as a subgroup of
finite index and primitive extensions, i.e., L=S is torsion free. The general case L � S
splits into the finite index extension QS � S and the primitive extension L � QS , where

QS WD ¹x 2 L j nx 2 S for some n 2 Zº

is the primitive hull of S in L.
Any extension L� S of finite index admits a unique embedding L� S ˝Q. Since S

is nondegenerate, we have L � S_, and hence the natural inclusions

S � L � L_ � S_:

The subgroup K WD L=S � S_=S D discrS is called the kernel of the finite index exten-
sion L � S . This subgroup K is isotropic (since L is an even integral lattice), i.e., the
restriction to K of the quadratic form qW discrS ! Q=2Z is identically zero. Conversely,
if K � discrS is isotropic, the lattice

L WD ¹x 2 S ˝Q j x mod S 2Kº

is an extension of S and we say that L is the extension of S by K . Thus, we have the
following statement.

Theorem 2.3 (Nikulin [25]). Let S be a nondegenerate even lattice, and fix a subgroup
G � O.S/. The map

L 7!K WD L=S � discrS

establishes a one-to-one correspondence between the set of G-isomorphism classes of
finite index extensions L � S and the set of G-orbits of isotropic subgroups K � discrS .
Under this correspondence, one has discrL DK?=K .
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Furthermore,

(1) an autoisometry g 2 O.S/ extends to L if and only if g.K/ DK;
(2) two extensions L0 and L00 are isomorphic if and only if their kernels K 0 and K 00 are

in the same O.S/-orbit, i.e., if there is g 2 O.S/ such that g.K 0/ D g.K 00/.

Another extreme case is that of a primitive extension L � S , (i.e., such that the
group L=S is torsion free). Such extensions are studied by fixing (the isomorphism class
of) the orthogonal complement T WD S? 2L. ThenL is a finite index extension of S ˚ T ,
in which T is also primitive, and by Theorem 2.3, it is described by an isotropic subgroup

K � discr.S ˚ T / D discrS ˚ discrT:

Since S and T are both primitive in L, the kernel K does not intersect with any of discrS
and discrT . It follows that the projection maps

projS WK ! discrS and projT WK ! discrT

are both monomorphisms. Since K is isotropic, it is the graph of a bijective anti-isometry
 WdiscrS 0! discrT 0, where discrS 0 D projS .K/ and discrT 0 D projT .K/. Conversely,
given a bijective anti-isometry WdiscrS 0! discrT 0, where discrS 0 � discrS and discrT 0

� discr T , the graph of  is an isotropic subgroup K � discr S ˚ discr T and the cor-
responding finite index extension L � S ˚ T is a primitive extension whose kernel is K .
Thus, we have the following statement (cf. Nikulin [25]).

Lemma 2.4. Given two nondegenerate even lattices S and T and a subgroup G � O.S/
�O.T /, there is a one-to-one correspondence between the set of G-isomorphism classes
of finite index extensions L � S ˚ T in which both S and T are primitive, and that of
G-conjugacy classes of bijective anti-isometries

(2.1)  W discrS 0 ! discrT 0;

where discr S 0 � discr S and discr T 0 � discr T . Furthermore, a pair of isometries f 2
O.S/ and g 2O.T / extends toL if and only if f jdiscrS 0 D 

�1gjdiscrT 0 in Aut.discrS 0/.

If L above is unimodular, discLD 0, we have jdiscrS jjdiscrT j D jdiscrS 0jjdiscrT 0j.
Hence, discrS 0 D discr S and discr T 0 D discr T , and  in (2.1) is an anti-isomorphism
discr S ! discr T . Since also �˙T D �˙L � �˙S , it follows that the genus g.T / is
determined by the genera g.S/ and g.L/; we will denote this common genus by g.S?L /
(We emphasize that g.S?L / merely encodes a “local data” composed formally from g.S/

and g.L/; a priori, it may even be empty, cf. Theorem 2.6 below). If L is also indefinite,
it is unique in its genus (see, e.g., Siegel [34–36]). Then we have the following corollary
of the above lemma.

Corollary 2.5. Given a subgroup G � O.S/ and a unimodular even indefinite lattice L,
a primitive isometry S ,! L gives rise to a bijective isometry  W discr S ! � discr S?,
and G-isomorphism classes of a primitive isometry S ,! L are in canonical bijection
with the following sets of data:

(1) an even lattice (isomorphism class) T 2 g.S?L /, and

(2) a bi-coset in GnAut.discrT /=O.T /.

In particular, the extension L � S exists if and only if the genus g.S?L / is nonempty.
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From now on, we fix the notation L WD 3U˚ 2E8, where U stands for the hyperbolic
plane, the lattice generated by a pair of vectors u and v (referred to as the standard basis
of U) with u2 D v2 D 0 and u � v D 1. Note that 3U˚ 2E8 is the unique even unimodular
lattice of rank 22 and signature .3; 19/. We are concerned about this lattice as it is the
intersection index form of a K3-surface X , i.e., H2.X IZ/ Š L. We are interested in the
primitive embeddings to L. The following theorem, that gives a criterion for g.S?L / ¤ ;,
is a combination of the above observation and Nikulin’s existence theorem [25] applied to
the genus g.T /.

Theorem 2.6 (Nikulin [25]). Given a nondegenerate even lattice S , a primitive extension
L � S exists if and only if the following conditions hold:
(1) �CS � 3, ��S � 19 and `.�/ � 22 � rkS , where � D discrS ;
(2) one has that j� j detp.�/ D .�1/�CS�1 mod .Z�p /

2 for each prime p > 2 such that
p̀.�/ D 22 � rkS ;

(3) if `2.�/ D 22 � rkS and �2 is even, then j� j det2.�/ D ˙1 mod .Z�2 /
2.

2.5. Miranda–Morrison theory

Following the classical approach, Nikulin [25] gives the sufficient conditions to obtain
the uniqueness of an even indefinite lattice T of rank at least 3 in its genus and surjectiv-
ity of the map d WO.T / ! Aut.discr T /. However, those conditions do not capture all
the cases that we want to cover, hence we apply the stronger (non)uniqueness criteria
due to Miranda–Morrison [21–23] extending Nikulin’s work. Throughout this section, we
assume that T is an indefinite nondegenerate even lattice of rank rkT � 3.

With the ultimate goal of calculating the groups E.T / and EC.T / (see the definitions
in (2.2) and (2.11) below), and the images of some certain maps in these groups, it is
convenient to introduce the following groups:

�p W D ¹˙1º �Q�p =.Q
�
p /
2;

�0 W D ¹˙1º � ¹˙1º � �Q WD ¹˙1º �Q�=.Q�/2;

and following subgroups related to �p :
• �p;0 WD ¹.1; 1/; .1; up/; .�1; 1/; .�1; up/º � �p; here, p is odd and up is the only

nontrivial element of Z�p =.Z
�
p /
2,

• �2;0 WD ¹.1; 1/; .1; 3/; .1; 5/; .1; 7/; .�1; 1/; .�1; 3/; .�1; 5/; .�1; 7/º � �2,
• �2;2 WD ¹.1; 1/; .1; 5/º � �

CC
2 ,

• ���0 WD ¹.1; 1/; .�1;�1/º � �0.
We also define

�A;0 WD
Y
p

�p;0 � �A WD �A;0 �
X
p

�p � � WD
Y
p

�p;

where we use � to denote the sum of subgroups, while we reserve the notation
P

and
Q

to distinguish between direct sums and products. Note that

�A D ¹.dp; sp/ 2 � j.dp; sp/ 2 �p;0 for almost all pº:
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Following [23], we will consider certain subgroups

†]p.T / WD †
].T ˝ Zp/ and †p.T / WD †.T ˝ Zp/;

which are both a priori subgroups of �p (we refer the reader to see Section 4 in Chapter 7
of [23] for the precise definitions). In fact, †]p � �p;0 always and †p � �p;0 for almost
all p. The subgroups†]p.T / are computed explicitly in [23] (see Theorems 12.1,12.2, 12.3
and 12.4 in Chapter 7). One has

†].T / WD
Y
p

†]p.T / � �A;0 and †.T / WD
Y
p

†p.T / � �A:

We introduce the Miranda–Morrison group E.T / as it is defined in [23] (see Chapter 8,
Sections 5, 6 and 7):

E.T / WD �A;0 =
Y
p

†]p.T / � �0:(2.2)

Crucial is the fact that †]p.T / D �p;0 unless p j det.T /; thus, (2.2) reduces to finitely
many primes p:

E.T / D
Y

pj det.T /

�p;0 =
Y

pj det.T /

†]p.T / � �0:(2.3)

Hence, this group is finite. We call a prime p irregular with respect to T if p j det.T /.
Consider the natural map Q�=.Q�/2 ! Q�p =.Q

�
p /
2 inducing the projections

'p W �0 ! �p;0:

We define the invariants

ep.T / WD Œ�p;0 W †
]
p.T /� and Q†p.T / D †

]
0.T ˝ Zp/ WD '

�1
p .†]p.T // � �0;

used in the following theorem.

Theorem 2.7 (Miranda–Morrison [23]). Let T be a non-degenerate indefinite even lattice
with rk.T / � 3. Then there is an exact sequence

(2.4) O.T /
d
�! Aut.discrT /

e
�! E.T /! g.T /! 1;

where g.T / is the genus group of T . One has

(2.5) jE.T /j D
e.T /

Œ�0 W Q†.T /�
;

where
e.T / WD

Y
pj det.T /

ep.N / and Q†.T / WD
\

pj det.T /

Q†p.T /:

Algorithms computing ep.N / and Q†p.N / explicitly are given in [22]. Computations
are in terms of rkT , detT and discrT only, it follows that the genus group g.T / determ-
ines ep.T / and Q†p.T / and also Coker.d WO.T /!Aut.discrT //. Computing the Miranda–
Morrison group E.T / is even easier than computing its constituents, Coker.d/ and the
genus group g.T /. Since one can read the subgroups Q†p.T / and †]p.T / from the tables
given in [21] (see Chapter 7, Section 12), the computation is immediate.
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As an unimodular even indefinite lattice is unique in its genus, one can obtain the next
statement by combining the Corollary 2.5 and Theorem 2.7.

Theorem 2.8 (Miranda–Morrison [21, 22]). Let S be a primitive sublattice of an even
unimodular lattice L such that T WD S? is a non-degenerate indefinite even lattice with
rk.T / � 3. Then the strict isomorphism classes of primitive extensions S ,! L are in a
canonical one-to-one correspondence with the group E.T /.

Given a unimodular lattice L and a primitive sublattice S � L, fix an anti-isometry
 W discrS ! discrT and consider the induced map d WO.S/! Aut.discrT / (see Sec-
tion 2.4). If T is as in Theorem 2.8, then Im d � Aut.discrT / is a normal subgroup with
abelian quotient, and we have a homomorphism

d? W O.S/! Aut.discrT /
e
�! E.T /(2.6)

independent of  . Then the next statement generalizing Theorem 2.8 follows from The-
orem 2.7 and Corollary 2.5.

Corollary 2.9. Let S be a primitive sublattice of an even unimodular lattice L such that
T WD S? is a non-degenerate indefinite even lattice with rk.T / � 3, and let G � O.S/
be a subgroup. Then, the G-isomorphism classes of primitive extensions S ,! L are in a
one-to-one correspondence with the F2-module E.T /=d?.G/.

Let p be a prime and consider the homomorphism

Aut.discrT / D
Y
p

Aut.discrp T /
�
�!

Y
p

†p.T /=†
]
p.T /;(2.7)

which is the product of the epimorphisms �pWAut.discrp T /�†p.T /=†
]
p.T /: Note that

the map
e W
Y
p

Aut.discrT /! E.T /

given in (2.4) does not preserve product structures.

Remark 2.10. Crucial is the fact that the map e in (2.4) is given as e D ˇ ı �, where ˇ is
the quotient projection

ˇ W
Y

p
†p.T /=†

]
p.T /! E.T /:

2.6. Reflections and their lifts

Let p be a prime and consider an element a 2 discrp T satisfying

(2.8) pka D 0 and a2 D
2u

pk
mod 2Z; gcd.u; p/ D 1; k 2 N:

Then the map x 7! 2.x � a/=a2 mod pk is a well defined functional; thus there is a reflec-
tion ta 2 Aut.discrp T /:

taW x 7! x �
2.x � a/

a2
a:

Note that if 2a D 0 then ta D id.
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The images of the homomorphism � given in (2.7) can easily be computed on the
reflections ta by lifting them to the corresponding p-adic lattice: let t Na be a lift of ta to the
p-adic lattice, where Na 2 T ˝Zp is such that a D . Na=pk/ mod T ˝Zp . Then, the image
of �p on ta is given via the spinor norm spin.ta/ introduced in [23] (see Chapter 1.10),
which is essentially defined as

(2.9) spin.ta/ D
1

2
Na2 mod .Z�p /

2:

The map �p is then defined as the spinor norm modulo the indeterminacy subgroup
†
]
p.T /, hence, as given in [1], one has

�p W Aut.discrp T / � †p.T /=†
]
p.T /

ta 7! .�1; upk/;(2.10)

where a is as in (2.8).
To attain the goal of this paper, we need to compute the image �p.ta/; however, the

main problem is that in our computations we do not know the lattice T , we only know
its genus by Nikulin [25], hence our goal is to do this computation in terms of genus,
i.e., the signature .�CT; ��T / and the finite quadratic form T D discr T only. With few
exceptions, while computing �p.ta/ as in (2.10), the value of Na=2 is almost always well
defined whenever u is sufficiently well defined; the exceptions are treated in Section 2.6.1.

2.6.1. Principal novelty of the paper. While computing the image �p.ta/ in (2.10), the
following two cases are exceptional and need special treatment:

(1) p D 2 and a2 D 0 mod Z,
(2) p D 2 and a2 D 1=2 mod Z.

In these two cases, the approach in computing the image �2.ta/ as in (2.10) has a dis-
ambiguation to be clarified: in (2.8), the value of u in the numerator is defined mod 2Z
for the former case, and mod 4Z for the latter; which is not enough, as mod .Z�2 /

2 is
essentially mod 8 (see (2.9)). Hence, we need to actually write down the 2-adic lattice
T ˚ Z2 and actually find a lift Na. To recover T ˚ Z2 precisely, we use the partial normal
form decomposition given in [23] (see Chapter 4.4) for discr2 T . Basically, to lift each
summand in this decomposition one by one, for each standard rational matrix, we write a
standard 2-adic matrix.

However, there is another problem to be fixed when the discriminant discr2 T is odd:
if discr2 T is odd, according to Nikulin [25], up to isomorphism there are two different
2-adic lattices T 0 and T 00 with rk.T 0/ D rk.T 00/ D `2.discrT / and discrT 0 D discrT 00 D
discr2 T , the ratio of their determinants being 5 2 Z�2 =.Z

�
2 /
2, see Remark 2.2. Roughly

speaking, if the discr2 T contains summands of the form h˙1=2i, then each of them lifts to
either Œ˙2� or Œ˙10�. We choose lifts arbitrarily in all such summands but one, and this one
remaining lift is adjusted by using det T , which is an invariant of the genus group g.T /:
recall that det T D .�1/�� j discr T j, thus the correct 2-adic lift T � is the one satisfying
detT � D .�1/�� j discrT j mod .Z�2 /

2.
Once the correct lift is chosen, to compute the image of �2.ta/, we expand the vector

a 2 discr2 T in the basis vectors of discriminant group, take a particular lift Na 2 T ˝ Z2
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with the same coordinate vector and compute Na2 honestly without reducing it mod 2Z to
finally compute the value Na2 mod .Z�2 /

2 given in (2.9)
Then, as in Remark 2.10, the images of the map e on the reflections ta 2 Aut.discrT /

can be computed via � and ˇ.
Defined and computed in [22], we introduce the group

EC.T / WD �A;0 =
Y

p
†]p.T / � �

��
0 ;(2.11)

where the product reduces to finitely many primes p j det T as in (2.3). Then one has an
exact sequence

OC.T /
d
�! Aut.discrT /

eC
�! EC.T /! g.T /! 1;

as in Theorem 2.7, where for the order jEC.T /j one only replaces Œ�0 W Q†.T /� in (2.5)
with Œ���0 W Q†.T / \ ���0 �. Under this setting, as in (2.6), we have a well-defined homo-
morphism

d?C WO.S/! Aut.discrT /
eC
�! EC.T /:(2.12)

Then for an element a2 discrp T satisfying (2.8), the image of the map eC on the reflection
ta 2 Aut.discrp T / is given by eC D ˇC ı �C, where the maps � and ˇ in Remark 2.10
are replaced with �C and ˇC by replacing the group �0 and any subgroup H of it with
���0 and H \ ���0 , respectively.

Remark 2.11. The ideas explained in Section 2.6.1 are not a panacea, as the group
Aut.discr2 T / is not always generated by reflections. However, experimentally it turns out
that lifting just reflections in Aut.discr2 T / is enough to cover all our needs, see Section 4,
and furthermore, it appears that it would cover most of K3-related problems.

Remark 2.12. As given in [23], the spinor norm is computed in terms of reflections, i.e.,

spin.�/ D
Y

�2i mod .Z�2 /
2

for an element � 2O.T / such that � D t�1 t�2 � � � t�r , where t�i is a reflection against �i 2 T .
Shimada [32] uses an alternative approach: instead of decomposing an automorphism of
discrp T into reflections and lifting them one by one, he lifts (rather approximates) the
whole automorphism and then decomposes it into reflections.

3. K3-surfaces

In this section we give a brief introduction to the theory ofK3-surfaces; for further details,
we refer the interested reader to [17]. Then we discuss simple quartics as K3-surfaces.

3.1. K3-surfaces

A K3-surface over C is a simply connected, compact complex surface whose canonical
bundle is trivial. All K3-surfaces are Kähler, and since any smooth complete surface is
projective, K3-surfaces are all projective.
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Even though K3-surfaces are those that are given in some Pn by a system of polyno-
mial equations, these equations almost never enter the picture: by means of such funda-
mental results as the global Torelli theorem [30], the surjectivity of the period map [19]
and the results of Saint-Donat [31], we identify aK3-surface X with its polarized Néron–
Severi lattice NS.X/3 h and study the latter by purely arithmetical means, see Section 2.4,
Section 2.5 and Section 3.5. As is well known, the Néron–Severi lattice NS.X/ of any pro-
jectiveK3-surfaceX is hyperbolic, i.e., �CNS.X/D 1 and admits a primitive embedding

NS.X/ � H2.X IZ/ Š L D 3U˚ 2E8;

where L is the only (up to isomorphism) even unimodular lattice of signature .3; 19/, see
Section 2.4, hence rk NS.X/ � 20.

3.2. Quartics as K3-surfaces

A quartic is a surface X � P3 of degree four. A quartic is simple if all its singular points
are simple, i.e., those of type A, D or E, see [12]. Given a simple quartic X � P3, its
minimal resolution of singularities QX is a K3-surface; hence, H2. QX/ Š 2E8 ˚ 3U. We
fix the notation LX WD H2. QX/.

For each simple singular point p of X , the components of the exceptional divisor
over p span a root lattice in LX . The orthogonal sum of these sublattices, denoted by SX ,
is identified with the set of singularities of X . Recall that the types of individual singular
points are uniquely recovered from SX , see Section 2.3.

In what follows, we identify homology and cohomology of QX via Poicaré duality, and
introduce the following vectors and sublattices:

• SX � LX : the sublattice generated the set of classes of exceptional divisors appearing
in the blow-up map QX ! X ;

• hX 2 LX : the pull-back of the hyperplane section class in H2.P2/;
• SX;h D SX ˚ ZhX � LX ;
• QSX WD .SX ˝Q/\ LX and QSX;h WD .SX;h ˝Q/\ LX : the primitive hulls of SX and
SX;h, respectively; we have QSX � QSX;h � LX ;

• !X � LX ˝R: the oriented 2-subspace spanned by the real and imaginary parts of the
class of a holomorphic 2-form on QX (the period of QX ).
Note that !X is positive definite and orthogonal to hX ; furthermore, the Picard group

Pic QX can be identified with the lattice !?X \ LX . In particular !X 2 QS?X ˝ R. The rank
rk.SX / equals the total Milnor number �.X/. Since SX � L is negative definite and
��.L/ D 19, one has �.X/ � 19 (see [39], cf. [29]). If �.X/ D 19, the quartic is called
maximizing.

Given a root lattice S � L, let QSh WD .Sh ˝Q/ \ L be the primitive hull of Sh WD
S ˚ Zh. Since �C QS?h D 2, all positive definite 2-subspaces in QS?

h
˚ R can be oriented

in a coherent way. Let ! be one of these coherent orientations. The following statement
gives a criterion for the realizability of the triple .S;h;L/ by a simple quarticX 2 P3. It is
a combination of the Saint-Donat’s description [31] of projective models of K3-surfaces
and the results of Urabe [39].
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Proposition 3.1. A triple .S; h;L/ is realizable by a simple quartic X 2 P3 (with set of
singularities S/ if and only if the following conditions satisfied:

(1) each vector e 2 .S ˝Q/ \ QSh with e2 D �2 and e � h D 0 lies in S ,

(2) there is no vector e 2 QSh such that e2 D 0 and e � h D 2.

Then the oriented 2-subspace !X defines the orientation !.

3.3. Configurations and L-realizations

Isomorphism classes of simple singularities are known to be in one-to-one correspondence
with those of irreducible root lattices (see Dufree [12]). Hence a set of simple singularities
can be identified with a root lattice, the irreducible summands of the latter correspond to
the individual singularity points. Thus, the set of simple singularities of a quartic surface
X � P3 can be seen as a root lattice S � L.

Definition 3.2. A configuration is a finite index extension QSh � Sh D S ˚ Zh, h2 D 4,
satisfying the following conditions:

(1) each root r 2 .S ˝Q/ \ QSh with r2 D �2 is in S ,
(2) QSh does not contain an element v with v2 D 0 and v � h D 2.

An isomorphism between two configurations QS 0
h
; QS 00
h
� Sh is an isometry QS 0

h
! QS 00

h

preserving both h and S (as a set). We denote by Auth. QSh/ the group of automorphisms
of a configuration QSh, i.e., autoisometries of QSh preserving h. Since S is a characteristic
sublattice of QS D h?

QSh
, any isometry of QSh preserving h preserves S ; then by item (1) in

the Definition 3.2, we have Auth. QSh/ � O.S/.

Definition 3.3. An L-realization of a configuration QSh is a primitive isometry QSh ,! L.

Two L-realizations QS 0
h0
; QS 00
h00
,! L are said to be isomorphic if there is an element of

the groupO.L/ taking h0 to h00 and S 0 to S 00 (as a set). Let !0 and !00 be the orientations of
these two L-realizations; then these oriented L-realizations are called strictly isomorphic if
there is an isomorphism between them taking !0 to !00, An L-realization QSh ,! L is called
symmetric if it is preserved by an element a 2 Oh.L/XOCh .L/, i.e., an autoisometry of L
preserving S (as a set) and h and reversing the positive sign structure; such autoisomet-
ries are called as skew-automorphisms of the L-realization. If an L-realization QSh ,! L
admits an involutive skew-automorphism, it is called reflexive. The notion of isomorphism
classes, where we ignore the orientations, may be needed to simplify the classification of
L-realizations; namely, we have the following remark.

Remark 3.4. Each isomorphism class consists of one or two strict isomorphism classes
depending on whether the L-realizations are symmetric or not, respectively.

3.4. Perturbations

Recall that a set of simple singularities can be identified with a root lattice. A perturbation
of a set of singularities S is a primitive root sublattice S 0 of S . According to E. Looi-
jenga [20], deformation classes of perturbations of an individual simple singular point
of type S are in a one-to-one correspondence with the isomorphism classes of primitive
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extensions S 0 ,! S of root lattices, see Sections 2.3 and 2.4. As shown in [13], S admits
a perturbation to S 0 if and only if the Dynkin graph of S 0 is an induced subgraph of that
of S . Hence, given a simple quartic X , any perturbation of X to a simple quartic X 0 gives
rise to a perturbation of the set of singularities S of X to the set of singularities S 0 of X 0.
According to [8], the converse also holds: given a simple quartic surface X with set of
singularities S , any perturbation of S to S 0 is realized by a perturbation of X to X 0 whose
set of singularities is S 0.

Note that a perturbation S 0 � S of root lattices gives rise to a perturbation of config-
urations QS 0h � QSh, i.e., a primitive sub-configuration. Here the isotropic subgroup K is
inherited automatically. Thus, any L-realization of S gives a canonical L-realization of S 0

as one has the chain of primitive extensions QS 0
h
� QSh � L.

3.5. The arithmetical reduction

Two simple quartics X0 and X1 in P3 are said to be equisingular deformation equivalent
if there exists a path Xt , t 2 Œ0; 1�, in the space of simple quartics such that the Milnor
number �.X/ in Xt remains constant. The deformation classification of simple quartics
is based on the following statement.

Theorem 3.5 (Theorem 2.3.1 in [9]). The map sending a simple quartic surface X � P3

to its oriented L-realization establishes a one to one correspondence between the set of
equisingular deformation classes of quartics and that of strict isomorphism classes of
oriented L-realizations. Complex conjugate quartics have isomorphic L-realizations that
differ by the orientations.

We denote by X.S/ the equisingular deformation class corresponding to S under the
bijection given in Theorem 3.5.

Proposition 3.6. Consider an L-realization extending a fixed set of singularities S , and
let X.S/ be the equisingular deformation class. Then,

• X.S/ in invariant under complex conjugation if and only if its L-realization is sym-
metric,

• X.S/ contains a real quartic if and only if its L-realization is reflexive.

According to Proposition 3.6, symmetric L-realizations corresponds to real, i.e., con-
jugation invariant components of X.S/.

4. Deformation classification. Proof of Theorem 1.1

Fix a set of singularities S , and consider the corresponding 4-polarized lattice Sh D
S ˚Z, h2D 4. Typically, the question whether the moduli space X WDX.S/ is nonempty
depends on the polarized lattice QSh only. To assert that X ¤ ;, and that a very general
member X 2 X has the desired geometric properties, we use the results of Nikulin [25]
and Saint-Donat [31], which reduce the problem to a certain set of conditions given in
Definition 3.2. According to Theorem 3.5 and Definition 3.2, a set of singularities S is
realized by a simple quartic surface if and only if a configuration QSh extending Sh admits
a primitive isometry QSh ,! L. Hence the general case splits into two subcases, as finite
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index extensions Sh � QSh as in Definition 3.2 and primitive extensions QSh ,! L. The-
orem 3.5 states that any configuration QSh gives rise to a number of nonempty connected
strata X.S/ which are in a bijection with the isomorphism classes of primitive isometries
QSh ,! L. A typical member X 2 X has NS.X/ D QSh. The non-generic members X for

which NS.X/ 3 h fails to be a configuration constitute a countable union of divisors the
complement of which is still connected. Hence the applications of Theorem 3.5 rely upon
the following three questions:

(1) find all configurations QSh (up to isomorphism) extending a given 4-polarized lat-
tice Sh;

(2) detect if QSh admits an L-realization;
(3) list all equivalence (isomorphism) classes of the L-realizations of QSh.

The classification of the L-realizations of configurations QSh extending Sh is done in
four steps answering the three questions listed above.

4.1. Step 1. Enumerating the configurations QSh extending Sh

Question (1) above is settled by Theorem 2.3, where QSh is determined by a choice of
an isotropic subgroup K � discr Sh, where we have discr QSh D K?=K . The connected
components of the moduli space X.S/ modulo complex conjugation conjWP3 ! P3 are
enumerated by the kernel K of the finite index extension Sh � QSh in the given isomorph-
ism class.

Remark 4.1. If K D 0, then QSh D Sh and one has discr QSh D discrS ˚ h1
4
i and Auth.Sh/

DO.S/. This case corresponds to the classification of nonspecial quartics handled in [15].

There are examples, see Example 4.2 below, where the set of singularities S admits
more than one configuration QSh.

4.2. Step 2. Detecting if QSh admits an L-realization

Question (2), which reduces to deciding if genus g. QS?
h
/ ¤ 0 (in L) in Corollary 2.5, is

settled by the existence criterion giving in Theorem 2.6. For the first part of the state-
ment, if suffices to list (using Theorem 2.6) all configurations QSh that extends to an
L-realization. Implementing the algorithms given in Sections 4.1 and 4.2 in GAP, we
found that there are 4469 sets of realizable set of singularities, splitting into 8845 config-
urations, where 278 sets of singularities splitting into 347 configurations are realized by a
maximizing quartic. The discussion on perturbation in the first part the statement is given
in Section 4.4 below.

4.3. Step 3. Listing all isomorphism classes of L-realizations of QSh

The key to question (3) is Corollary 2.5 and to apply it we need tools to list all classes
T 2 g. QS?

h
/ (assuming the latter is non-empty) and to compute (the cokernels of) the

natural homomorphisms

dS W Oh. QSh/! Aut.discr QSh/ and dT W O.T /! Aut.discrT /:
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There are examples, see Example 4.3 or Example 4.6 below, where the genus g. QS?
h
/

does contain more than one isomorphism class, or for a fixed representative T 2 g. QS?
h
/,

see Examples 4.4, 4.5 and 4.7 below, where the quotient set given in Corollary 2.5 does
consist of more than one bi-coset, thus giving rise to more than one L-realization. Once
the lattice T D QS?

h
is chosen, one can fix an anti-isometry discr QSh! discrT , and, hence,

an isomorphism Aut discr QSh D Aut discrT .
We investigate the isomorphism classes of L-realizations of QSh (i.e., primitive iso-

metries QSh ,! L) separately for the maximizing case (i.e., �.S/ D 19) and the non-
maximizing case (i.e., �.S/ � 18), where for the lattice T D QS?

h
we use

• either Gauss’s theory of binary forms [14], if T is definite of small rank,
• or Miranda–Morrison’s theory [21–23], if T is indefinite.

If �.S/ D 19, the lattice T D QS?
h

is a positive definite sublattice of rank 2, and the
numbers .r; c/ of connected components of the space X.S/ listed in Table 3 can easily be
computed by the Gauss theory of binary quadratic forms [14]. Thus, throughout the rest
of the proof we assume �.S/ � 18.

If�.S/�18, then T is an indefinite lattice of rank rkT �3, hence Miranda–Morrison’s
theory [21–23] applies, see Section 2.5, and gives us both g. QS?

h
/ and Coker dT with in

the single finite abelian group E.T / and the natural homomorphism

(4.1) e W Aut.discrT /! E.T /:

Thus, with K , and hence QSh fixed, the further primitive extensions QSh ,! L are enumer-
ated by the cokernel of the well-defined homomorphism

(4.2) d? W Auth. QSh/! E.T /;

see Section 2.5. In the special case K D 0, due to the isomorphism Auth QSh D O.S/, we
have a canonical bijection

�0.X1.S/= conj/ D CokerŒd? W O.S/! E.T /�;

assuming that QSh D Sh does admit a primitive extension to L and taking for T any rep-
resentative of the genus S?

h
.

Therefore, the L-realization QSh ,! L is unique up to isomorphism, that is, the space
X.S/= conj is connected if and only if the map d? is surjective.

Distinguishing between a component and its complex conjugate, by Proposition 3.6,
for a fixed QSh, the component of the strata X.S/ realizing QSh is real if and only if the cor-
responding L-realization extending QSh is symmetric, otherwise it consist of two complex
conjugate components (asymmetric L-realizations exist, see Example 4.2). Thus, to enu-
merate the real and complex conjugate components of a strata X.S/, one can recast (4.1)
and (4.2) by replacing e with eC and E.T / with EC.T /, and conclude that for each con-
figuration QSh, the corresponding component of the strata X.S/ is real if and only if

(4.3) d?C W Auth. QSh/! EC.T /

is surjective. This latter statement was proved by computer aided calculations in GAP.
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4.4. Step 4. Perturbations

We compute all iterated perturbations, i.e., perturbations of all families, and find out that
the 390 maximizing families given in Table 3 and 39 extremal families given in Table 4
are not perturbations of anything bigger.

We have effectively implemented all algorithms described in this section in GAP [37],
and have obtained conclusive results that give us, for each realizable set of singularit-
ies S , the isomorphism classes of configurations QSh extending Sh, and for each verified
configuration QSh, the strict isomorphism classes of primitive isometries QSh ,! L.

In conclusion, the implemented calculations in GAP complete the proof by first listing
all the configurations QSh extending Sh and admitting an L-realization, and then enumer-
ating the strict isomorphism classes of L-realizations, i.e., computing the numbers .r; c/
of the stratum X.S/.

4.5. Examples

In this section, we show some interesting examples.

Example 4.2. The set of singularities S D 2A7 ˚ A3 ˚ A1 admits twelve different con-
figurations QSh (up to isomorphism). Each of them extends to a unique (up to conjug-
ation) L-realization, where eleven of them is symmetric and the remaining one is not;
hence X.S/ consists of eleven real components and one pair of complex conjugate com-
ponents.

Example 4.3. The set of singularities S D A10 ˚ A9 admits a unique configuration QSh.
It extends to two L-realizations, which differ by the lattices QS?

h
. One of the L-realizations

is symmetric, the other one is not, so that X.S/ consists of one real component and one
pair of complex conjugate components.

Example 4.4. The set of singularities S D 2D6 ˚ A4 ˚ A3 admits a unique configur-
ation QSh. It extends to two different L-realizations, where the two lattices QS?

h
are iso-

morphic. Both L-realizations are symmetric, hence X.S/ consists of two real compon-
ents.

Example 4.5. The set of singularities S D D6 ˚ A9 ˚ A4 admits a unique configura-
tion QSh. It extends to two different L-realizations (with isomorphic lattices QS?

h
), where

one of them is symmetric and the other one is not; hence X.S/ consists of one real com-
ponent and one pair of complex conjugate components.

Example 4.6. The set of singularities S D A9 ˚ A6 ˚ A3 ˚ A1 admits two different
configurations QSh, each of them extends to two different L-realizations which differ by
the lattices QS?

h
, where one of them is symmetric and the other one is not; hence X.S/

consists of two real components and two pairs of complex conjugate components.

Example 4.7. The set of singularities S DA8˚A6˚A3˚A2 admits a unique configur-
ation QSh. It extends to three different L-realizations (with isomorphic lattices QS?

h
), where

all of them are not symmetric; hence X.S/ consists of three pairs of complex conjugate
components.
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4.6. Demonstration for the set of singularities S D A15 ˚ A3

We demonstrate the calculations handled by GAP for the set of singularity S DA15˚A3.
Let Sh D S ˚ Zh, where h2 D 4. Then one has

discrSh Š h�1516 i ˚ h�
3
4
i ˚ h

1
4
i Š .Z=16Z/˚ .Z=4Z/˚ .Z=4Z/:

We fix the generators

˛1 for discr A15 Š h�1516 i, ˛2 for discr A3 Š h�34 i, ˛3 for discr Zh Š h1
4
i;

and use the coordinate vector notation Œx; y; z� for the vector x˛1 C y˛2 C z˛3.
Step 1. We determine all isotropic subgroups K � discrSh such that the corresponding

finite index extension QSh satisfies the conditions in Definition 3.2, i.e., QSh is a configura-
tion extending Sh. Up to action of O.S/, we have three such isotropic subgroups K (i.e.,
three isomorphism classes of configurations QSh), which are given in Table 2.

Table 2. The isotropic subgroups Ki

Generators

K1 Œ8; 2; 2� cyclic of order 2
K2 Œ4; 0; 2� cyclic of order 4
K3 Œ12; 2; 0� cyclic of order 4

As the computations given in what follows repeat almost the same for all the configur-
ations, from now on we fix the configuration QSh as the one corresponding to the isotropic
subgroup K DK1. Then discr QSh, which is given by K?=K , is generated by the vectors
¹Œ4; 3; 1�; Œ4; 3; 3�; Œ15; 3; 0�º of orders 2; 2 and 16, respectively.

Step 2. Consider the orthogonal complement T WD QS?
h

given by the signature .2; 1/
and discrT D � discr QSh. Then, by applying Nikulin’s existence theorem (Theorem 2.6),
we verified that the configuration QSh admits a primitive isometry QSh ,! L, i.e., an L-
realization.

Step 3. The lattice T D QS?
h

is an indefinite lattice of rank 3, hence Miranda-Morrison’s
theory (see Section 2.5 and Section 4.3) can be applied to enumerate the equivalence
classes of primitive isometries QSh ,! L. By using (2.5), one gets jE.T /j D 1, and the map
d?WAuth. QSh/! E.T / is automatically surjective. Thus, as explained in Section 4.3, the
space X.S/=conj is connected. To enumerate the real and complex conjugate components
of X.S/, we need to compute d?C WAuth. QSh/ ! EC.T / (see (2.12)). We compute the
group EC.T / directly from the definition given in (2.11), which can be restated as

EC.T / D
Y

pj det.T /

�p;0 =
Y

pj det.T /

†]p.T / � �
��
0 :(4.4)

Since we have one irregular prime p D 2, we obtain

EC.T / D �2;0 =†
]
2.T / � �

��
0 ;

where †]2.T / D ¹.1; 1/; .�1; 7/; .1; 5/; .�1; 3/º. Thus EC.T / D ¹˙1º.
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The group K?=K is given by the following Gram matrix:

Q WD

241=2 0 0

0 1=2 0

0 0 5=16

35 ;
in the basis vectors ¹ˇ1; ˇ2; ˇ3º, where ˇ1 D 4˛1 C 3˛2 C ˛3, ˇ2 D 4˛1 C 3˛2 C 3˛3

and ˇ3 D 15˛1 C 3˛2. From now on, the coordinate vector notation Œx; y; z� will be used
for the vector xˇ1 C yˇ2 C zˇ3. We are interested in the induced action of Auth. QSh/ on
the discriminant discr T D �K?=K . The group Auth. QSh/ is generated by a nontrivial
symmetry of A15 and a nontrivial symmetry of A3 where the former give rise to a reflec-
tion ta in discrT with a D Œ1; 1; 2� and a2 D �9=4. Thus, one has eC.ta/ D 1 2 EC.T /.

A nontrivial symmetry of A3 induces a reflection tb in discr T with b D Œ1; 1; 8� and
b2 D �21 D 0 mod Z, i.e., this reflection is one of the exceptional ones listed in Sec-
tion 2.6.1, Proceeding as in Section 2.6.1, we lift the reflection tb to t Nb in a 2-adic lattice
T ˝ Z2.

Since the discriminant discrT is odd, the algorithm given in Section 2.6.1 gives us the
following two candidate lattices, which agree by Nikulin [25]:

T 0 D

24 �2 0 0

0 �2 0

0 0 �90

35 and T 00 D

24 �10 0 0

0 �2 0

0 0 �90

35 :
We choose the second one as the lift since one has det T 00 D �j discr T j mod .Z�2 /

2. For
the purpose of computing the image of eC on the reflection tb 2 Aut.discr T / by lifting
it to t Nb , we replace the first entry of �Q with �5=2. Then one gets Nb2 D �23, see (2.9),
and hence, eC.t Nb/D �1 2 E

C.T /. Thus the map d?C is surjective implying that the strata
X.S/ corresponding to QSh consists of one real component.

4.7. Concluding remarks

Clearly, any connected component C � X�.S/ containing a real curve is real. However,
the converse in not true: the known counterexamples are discovered in the realm of irre-
ducible sextics and nonspecial quartics; where the exception for the former is the stratum
X1.A7 ˚ A6 ˚ A5/ found by Akyol and Degtyarev [1] and for the latter is the strata
X1.A7 ˚ A6 ˚ A3 ˚ A2/ and X1.D7 ˚ A6 ˚ A3 ˚ A2/ found by Güneş Aktaş [16]. It
is worth mentioning that studying phenomena of this kind in the whole space of simple
sextics or simple quartics would only need an extension of the algorithms, studied in [1]
and [16], for both of which one has K D 0; the extension should be provided in such a
way that the kernels K ¤ 0 are also taken into account. This nontrivial case is still open
for simple quartics.

4.8. Tables

This subsection is devoted to present the tables referred in Theorem 1.1. In Table 3, Table 4
and Table 5, the first column refers the set of simple singularities S which are realized by
the families of quartics belonging to the spaces indicated in the table names. For each set
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of singularities S , the column .r; c/ gives the numbers of real (r) and pairs of complex
conjugate (c) components of the stratum X.S/ separately for each configuration QSh, i.e.,
for a fixed S , the numbers .r; c/ are aligned in a separate line for each different config-
uration QSh extending Sh. The third column, titled as “generators of kernels”, gives the
description of each separate configuration QSh by listing the generators of the kernel K , as
each QSh is determined by a choice of K � discr Sh D discr S ˚ h1

4
i. The generators of

K are encoded by using the glue code and glue vectors introduced in Conway and Sloane
[5] (see Chapter 16:1). The only difference it that one more entry for the discriminant
group h1

4
i corresponding to the polarization h, is added to the end of the each glue vector.

To save more space, the brackets of the basis vectors are removed, instead different vec-
tors are separated by a semicolon and only in the cases where a coefficient with two digits
appear in the basis vector, comma is used to distinguish the entries.

Remark 4.8. The generators of the kernel of the real equisingular deformation family
X.S/ with S D 4D4 ˚ 3A1 listed in Table 3 are removed as they are too long to fit in the
line. The display of the generators in the third column is as follows:

21201010I 30031102I 00110112I 23021100I 22000112:

Remark 4.9. The generators of the kernel of the real equisingular deformation family
X.S/ with S D 16A1 listed in the first row of Table 4 are removed as they are too long
to fit in the table. This quartic, known as the Kummer quartic, is described in [24], and is
explicitly generated by

00000111110010002I 01000011001101110I 00100101101111000I

00001101110001110I 00011111000110010I 11110010001110000:

Remark 4.10. The generators of the kernel of the real equisingular deformation family
X.S/ with S D 3D4 ˚ 6A1 listed in Table 4 are removed as they are too long to fit in the
line. The display of the generators in the third column is as follows:

0330100012I 0110011002I 2200001012I 3010000112I 0001111112:

Table 3. The space X.S/ with �.S/ D 19

Singularities .r; c/ Generators of kernels

6A3 ˚ A1 .1; 0/ 13030001; 21313000; 30013302
A4 ˚ 5A3 .1; 0/ 0312211; 0003313
4A4 ˚ A2 ˚ A1 .1; 0/ 3344000
A5 ˚ A4 ˚ 3A3 ˚ A1 .1; 0/ 3013311; 3002012
3A5 ˚ 4A1 .1; 0/ 30010112; 03310010; 30301010; 44200000
3A5 ˚ 2A2 .1; 0/ 303002; 204220; 444000
3A5 ˚ A4 .1; 0/ 03302; 24200
A6 ˚ A4 ˚ 3A3 .1; 0/ 003331
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

A6 ˚ 2A4 ˚ A3 ˚ A2 .2; 0/

A6 ˚ A5 ˚ A4 ˚ A3 ˚ A1 .2; 0/ 030212
A6 ˚ 2A5 ˚ A3 .1; 0/ 03320

.1; 0/ 03302
2A6 ˚ A4 ˚ A2 ˚ A1 .0; 1/

2A6 ˚ A5 ˚ A2 .2; 0/

3A6 ˚ A1 .2; 0/ 53600
A7 ˚ 3A3 ˚ A2 ˚ A1 .1; 0/ 0331003; 2031002
A7 ˚ 4A3 .0; 1/ 602233; 003313

.1; 0/ 222031; 003313

.1; 0/ 031112; 601302
A7 ˚ A4 ˚ 2A3 ˚ 2A1 .1; 0/ 2031110; 4000112

.1; 0/ 2001003; 0022112
A7 ˚ A4 ˚ 2A3 ˚ A2 .1; 0/ 201102

.0; 1/ 200301
A7 ˚ 2A4 ˚ A2 ˚ 2A1 .1; 0/ 4000112
A7 ˚ 2A4 ˚ A3 ˚ A1 .1; 0/ 600103
A7 ˚ A5 ˚ 2A3 ˚ A1 .2; 0/ 600103; 430010

.1; 0/ 601302; 430010
A7 ˚ A5 ˚ A4 ˚ 3A1 .1; 0/ 0301112; 4300010
A7 ˚ A5 ˚ A4 ˚ A3 .1; 0/ 20033
A7 ˚ A6 ˚ A3 ˚ A2 ˚ A1 .2; 0/ 603001
A7 ˚ A6 ˚ 2A3 .0; 2/ 60033

.0; 1/ 60112
A7 ˚ A6 ˚ A4 ˚ 2A1 .1; 0/ 400112
A7 ˚ A6 ˚ A4 ˚ A2 .0; 1/

A7 ˚ A6 ˚ A5 ˚ A1 .0; 1/ 40310
A7 ˚ 2A6 .0; 2/

2A7 ˚ A2 ˚ 3A1 .1; 0/ 1501111; 4000112
2A7 ˚ A3 ˚ 2A1 .0; 1/ 621103; 042110

.1; 0/ 770103; 042110

.1; 0/ 771102; 400112

.1; 0/ 710103; 641003
2A7 ˚ A3 ˚ A2 .0; 1/ 64303

.0; 1/ 60101

.1; 0/ 64303; 44000

.1; 0/ 64303; 66002
2A7 ˚ A4 ˚ A1 .1; 0/ 77011
2A7 ˚ A5 .1; 0/ 7333
A8 ˚ 3A3 ˚ A2 .1; 0/ 033303
A8 ˚ A5 ˚ A3 ˚ A2 ˚ A1 .0; 1/ 032012; 640100
A8 ˚ A5 ˚ A4 ˚ A2 .2; 0/ 34020
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

A8 ˚ A6 ˚ A3 ˚ A2 .0; 3/

A8 ˚ A6 ˚ A4 ˚ A1 .0; 1/

A8 ˚ A6 ˚ A5 .1; 1/

A8 ˚ A7 ˚ A3 ˚ A1 .2; 0/ 06303
2A8 ˚ A2 ˚ A1 .1; 1/ 33000
A9 ˚ A4 ˚ A3 ˚ A2 ˚ A1 .1; 1/ 502010

.1; 1/ 500012
A9 ˚ 2A4 ˚ 2A1 .1; 0/ 500012; 644000
A9 ˚ 2A4 ˚ A2 .1; 0/ 41100
A9 ˚ A5 ˚ A3 ˚ A2 .2; 0/ 53000
A9 ˚ 2A5 .0; 1/ 5030

.1; 0/ 0332
A9 ˚ A6 ˚ A2 ˚ 2A1 .1; 0/ 500102
A9 ˚ A6 ˚ 2A2 .1; 0/

A9 ˚ A6 ˚ A3 ˚ A1 .1; 1/ 50210
.1; 1/ 50012

A9 ˚ A7 ˚ 3A1 .1; 0/ 501110; 040112
A9 ˚ A7 ˚ A2 ˚ A1 .0; 1/ 50012
A9 ˚ A7 ˚ A3 .2; 0/ 0633
A9 ˚ A8 ˚ 2A1 .0; 1/ 50102
A9 ˚ A8 ˚ A2 .1; 1/

2A9 ˚ A1 .1; 0/ 5012; 8600
.1; 0/ 5502; 8600

A10 ˚ 3A3 .1; 0/ 03331
A10 ˚ A4 ˚ A3 ˚ A2 .0; 1/

A10 ˚ A5 ˚ A3 ˚ A1 .0; 1/ 03212
A10 ˚ A5 ˚ A4 .1; 0/

A10 ˚ A6 ˚ A2 ˚ A1 .1; 0/

A10 ˚ A6 ˚ A3 .0; 2/

A10 ˚ A7 ˚ 2A1 .1; 0/ 04112
A10 ˚ A7 ˚ A2 .0; 2/

A10 ˚ A8 ˚ A1 .0; 1/

A10 ˚ A9 .1; 1/

A11 ˚ A3 ˚ 2A2 ˚ A1 .1; 0/ 300001; 402100
.1; 0/ 310002; 402100

A11 ˚ 2A3 ˚ 2A1 .1; 0/ 311011; 022112
A11 ˚ 2A3 ˚ A2 .1; 0/ 92201

.1; 0/ 30003

.0; 1/ 33002

.0; 1/ 33200
A11 ˚ A4 ˚ 2A2 .1; 0/ 80120

.1; 0/ 60002; 80120
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

.1; 0/ 30001; 80120
A11 ˚ A4 ˚ A3 ˚ A1 .1; 0/ 90001

.1; 0/ 90102
A11 ˚ A5 ˚ 3A1 .1; 0/ 031112; 600110; 820000
A11 ˚ A5 ˚ A2 ˚ A1 .1; 0/ 93011; 82000

.1; 0/ 90001; 82000
A11 ˚ A5 ˚ A3 .1; 0/ 9001

.1; 0/ 9001; 8200

.1; 0/ 3032

.1; 0/ 3032; 8200
A11 ˚ A6 ˚ 2A1 .0; 1/ 60110

.1; 0/ 30001
A11 ˚ A6 ˚ A2 .0; 2/

.0; 1/ 6002

.2; 0/ 9003
A11 ˚ A7 ˚ A1 .1; 0/ 9403

.1; 0/ 9003

.0; 1/ 9613
A11 ˚ A8 .1; 0/ 903
A12 ˚ A3 ˚ 2A2 .2; 0/

A12 ˚ A4 ˚ A2 ˚ A1 .0; 1/

A12 ˚ A5 ˚ A2 .1; 1/

A12 ˚ A6 ˚ A1 .1; 1/

A13 ˚ A3 ˚ A2 ˚ A1 .0; 1/ 70010
A13 ˚ A4 ˚ 2A1 .1; 0/ 70100
A13 ˚ A4 ˚ A2 .1; 0/

A13 ˚ A5 ˚ A1 .1; 0/ 7302
.1; 0/ 7010

A13 ˚ A6 .0; 2/

A14 ˚ 2A2 ˚ A1 .1; 0/ 52000
A14 ˚ A3 ˚ A2 .0; 2/

.0; 1/ 5020
A14 ˚ A5 .0; 2/

A15 ˚ A2 ˚ 2A1 .1; 0/ 20101
A15 ˚ 2A2 .0; 1/

.1; 0/ 8000

.1; 0/ 4002
A15 ˚ A3 ˚ A1 .0; 1/ 12,3,1,3

.1; 0/ 10,3,1,2

.1; 0/ 10,0,1,3
A15 ˚ A4 .1; 0/ 12,0,2
A16 ˚ A2 ˚ A1 .1; 0/

Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

A17 ˚ 2A1 .1; 0/ 9102
.1; 0/ 9102; 6000

A17 ˚ A2 .1; 1/

.1; 0/ 12,0,0
A18 ˚ A1 .1; 1/

A19 .1; 0/ 10,2
D4 ˚ 5A3 .1; 0/ 2102113; 2031110; 2002022
D4 ˚ 2A5 ˚ 2A2 ˚ A1 .1; 0/ 2330000; 3300012; 0442200
D4 ˚ 2A5 ˚ A3 ˚ 2A1 .1; 0/ 1302010; 2030012; 2300102
D4 ˚ 2A5 ˚ A4 ˚ A1 .1; 0/ 333000; 203012
D4 ˚ 3A5 .1; 0/ 13030; 23300; 02420
D4 ˚ A7 ˚ 2A3 ˚ A2 .1; 0/ 063003; 240200

.1; 0/ 223300; 202202
D4 ˚ A7 ˚ A4 ˚ 2A2 .1; 0/ 240002
D4 ˚ A7 ˚ A5 ˚ A2 ˚ A1 .1; 0/ 103012; 140002
D4 ˚ A7 ˚ A6 ˚ A2 .1; 0/ 24002
D4 ˚ 2A7 ˚ A1 .1; 0/ 37511; 34002
D4 ˚ A9 ˚ A5 ˚ A1 .1; 0/ 35302; 20312
D4 ˚ A11 ˚ 2A2 .1; 0/ 26000; 04210

.1; 0/ 09001; 04210
2D4 ˚ 3A3 ˚ A2 .1; 0/ 1313303; 3220200; 1300202
4D4 ˚ 3A1 .1; 0/ see Remark 4.8
D5 ˚ 2A7 .1; 0/ 1730; 2042
D6 ˚ A5 ˚ A4 ˚ A3 ˚ A1 .1; 0/ 300212; 230012

.1; 0/ 300212; 230210
D6 ˚ A5 ˚ 2A4 .1; 0/ 33002
D6 ˚ 2A5 ˚ A3 .1; 0/ 33002; 23300

.1; 0/ 33020; 23300
D6 ˚ A6 ˚ A5 ˚ A2 .2; 0/ 10302
D6 ˚ A7 ˚ A3 ˚ A2 ˚ A1 .1; 0/ 063001; 102012
D6 ˚ A7 ˚ 2A3 .1; 0/ 22233; 24200

.1; 0/ 06332; 20222
D6 ˚ A7 ˚ A4 ˚ A2 .1; 0/ 24002
D6 ˚ A7 ˚ A5 ˚ A1 .0; 1/ 34010; 14302

.1; 0/ 24002; 04310
D6 ˚ A7 ˚ A6 .0; 1/ 2402
D6 ˚ A8 ˚ A5 .1; 1/ 1032
D6 ˚ A9 ˚ 2A2 .1; 0/ 15000
D6 ˚ A9 ˚ A3 ˚ A1 .0; 1/ 15202; 30212
D6 ˚ A9 ˚ A4 .1; 1/ 1500
D6 ˚ A11 ˚ A2 .0; 1/ 2600

.1; 0/ 0301
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

D6 ˚ A13 .0; 1/ 172
D6 ˚ D4 ˚ A5 ˚ A3 ˚ A1 .1; 0/ 313202; 330012; 110210

.1; 0/ 313000; 330012; 110210
D6 ˚ 2D4 ˚ A3 ˚ 2A1 .1; 0/ 1102100; 2120110; 2330002; 2212000
D6 ˚ D5 ˚ A7 ˚ A1 .1; 0/ 23213; 12012
2D6 ˚ A4 ˚ A3 .2; 0/ 33020; 22022
2D6 ˚ A5 ˚ 2A1 .1; 0/ 110110; 033110; 203102
2D6 ˚ A5 ˚ A2 .1; 0/ 10302; 33002
2D6 ˚ A7 .1; 0/ 1102; 3342
2D6 ˚ D4 ˚ 3A1 .1; 0/ 1121102; 2031102; 0310102; 1010012
2D6 ˚ D4 ˚ A2 ˚ A1 .1; 0/ 121010; 303012; 031012
2D6 ˚ D5 ˚ 2A1 .1; 0/ 212100; 032012; 302102
3D6 ˚ A1 .1; 0/ 31200; 23300; 20112

.1; 0/ 31200; 13002; 30302
D7 ˚ 4A3 .1; 0/ 110321; 103213

.1; 0/ 113122; 010313
D7 ˚ 2A4 ˚ 2A2 .1; 0/

D7 ˚ A5 ˚ A4 ˚ A2 ˚ A1 .0; 1/ 230012
D7 ˚ 2A5 ˚ 2A1 .1; 0/ 033110; 203012
D7 ˚ A6 ˚ A4 ˚ A2 .0; 1/

D7 ˚ A6 ˚ A5 ˚ A1 .2; 0/ 20312
D7 ˚ 2A6 .0; 1/

D7 ˚ A7 ˚ A3 ˚ 2A1 .1; 0/ 123112; 202112
.1; 0/ 120113; 202112
.1; 0/ 063001; 202112

D7 ˚ A7 ˚ A3 ˚ A2 .0; 1/ 16100
.0; 1/ 16203
.0; 1/ 02301

D7 ˚ A9 ˚ A2 ˚ A1 .1; 0/ 25010
.1; 0/ 05012

D7 ˚ A10 ˚ A2 .0; 1/

D7 ˚ A11 ˚ A1 .1; 0/ 1900
.1; 0/ 0903

D7 ˚ D6 ˚ A5 ˚ A1 .1; 0/ 23300; 21012
.1; 0/ 03302; 21012

D7 ˚ 2D6 .1; 0/ 2222; 0132
2D7 ˚ A3 ˚ A2 .1; 0/ 11101
D8 ˚ 3A3 ˚ A2 .1; 0/ 313103; 302002
D8 ˚ A5 ˚ A3 ˚ 3A1 .1; 0/ 3301000; 2021012; 1001102

.1; 0/ 3321002; 2021012; 1001102
D8 ˚ A5 ˚ A4 ˚ 2A1 .1; 0/ 330100; 100112
D8 ˚ A6 ˚ A3 ˚ A2 .0; 1/ 30202
Continued on next page
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Singularities .r; c/ Generators of kernels

D8 ˚ A7 ˚ A2 ˚ 2A1 .1; 0/ 300112; 040112
D8 ˚ A7 ˚ A3 ˚ A1 .1; 0/ 36103; 30202
D8 ˚ A9 ˚ 2A1 .1; 0/ 10112; 35102
D8 ˚ D4 ˚ A3 ˚ 2A2 .1; 0/ 122000; 232002
D8 ˚ D4 ˚ A5 ˚ 2A1 .1; 0/ 120110; 310002; 223100
D8 ˚ D5 ˚ A5 ˚ A1 .1; 0/ 02312; 30310
D8 ˚ D6 ˚ A3 ˚ 2A1 .1; 0/ 110010; 232010; 300112

.1; 0/ 110010; 230012; 302110
D8 ˚ D6 ˚ A4 ˚ A1 .1; 0/ 21012; 13010
D8 ˚ D6 ˚ A5 .1; 0/ 2130; 1332
D8 ˚ D6 ˚ D4 ˚ A1 .1; 0/ 11212; 03112; 30102
D8 ˚ D7 ˚ 2A2 .1; 0/ 32002
2D8 ˚ 3A1 .1; 0/ 221012; 300112; 010112
2D8 ˚ A2 ˚ A1 .1; 0/ 31000; 12002
D9 ˚ A5 ˚ A4 ˚ A1 .1; 0/ 23012
D9 ˚ 2A5 .1; 0/ 2330
D9 ˚ A6 ˚ 2A2 .1; 0/

D9 ˚ A7 ˚ A2 ˚ A1 .1; 0/ 32013
D9 ˚ A9 ˚ A1 .0; 1/ 2510
D10 ˚ A4 ˚ 2A2 ˚ A1 .1; 0/ 300012
D10 ˚ A4 ˚ A3 ˚ 2A1 .2; 0/ 202112; 300102
D10 ˚ A5 ˚ A2 ˚ 2A1 .1; 0/ 130000; 300102
D10 ˚ A5 ˚ A3 ˚ A1 .1; 0/ 13202; 30210

.1; 0/ 13000; 30210

.1; 0/ 13202; 30012

.1; 0/ 13000; 30012
D10 ˚ A5 ˚ A4 .1; 0/ 3300
D10 ˚ A6 ˚ A2 ˚ A1 .1; 0/ 30012
D10 ˚ A7 ˚ 2A1 .0; 1/ 24110; 14012
D10 ˚ A7 ˚ A2 .1; 0/ 2402
D10 ˚ A8 ˚ A1 .1; 0/ 1012
D10 ˚ A9 .1; 0/ 152
D10 ˚ D6 ˚ A2 ˚ A1 .1; 0/ 33000; 10012
D10 ˚ D6 ˚ A3 .1; 0/ 3100; 1322
D10 ˚ D7 ˚ 2A1 .1; 0/ 22112; 10102
D10 ˚ D8 ˚ A1 .1; 0/ 2302; 1112
D11 ˚ 2A3 ˚ A2 .1; 0/ 11101
D11 ˚ A6 ˚ A2 .0; 1/

D11 ˚ A7 ˚ A1 .1; 0/ 3203
D12 ˚ A3 ˚ 2A2 .1; 0/ 32000

.1; 0/ 30002
D12 ˚ A4 ˚ A2 ˚ A1 .1; 0/ 10002
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

D12 ˚ A5 ˚ 2A1 .1; 0/ 10110; 33102
D12 ˚ A5 ˚ A2 .1; 0/ 3002
D12 ˚ A6 ˚ A1 .0; 1/ 3002
D12 ˚ D6 ˚ A1 .1; 0/ 1200; 3112
D13 ˚ A5 ˚ A1 .1; 0/ 2312
D14 ˚ A3 ˚ 2A1 .1; 0/ 22112; 12012
D14 ˚ A4 ˚ A1 .1; 0/ 1010
D14 ˚ A5 .1; 0/ 132
D15 ˚ 2A2 .1; 0/

D16 ˚ A2 ˚ A1 .1; 0/ 3000
D18 ˚ A1 .1; 0/ 312
E6 ˚ A11 ˚ 2A1 .1; 0/ 03001; 18000
E6 ˚ A11 ˚ A2 .1; 0/ 0301; 1800
E6 ˚ A12 ˚ A1 .1; 0/

E6 ˚ A13 .1; 0/

E6 ˚ D8 ˚ D5 .1; 0/ 0122
E6 ˚ D9 ˚ A4 .1; 0/

E6 ˚ D10 ˚ A2 ˚ A1 .1; 0/ 01012
E6 ˚ D12 ˚ A1 .1; 0/ 0302
E6 ˚ D13 .1; 0/

2E6 ˚ D7 .1; 0/

3E6 ˚ A1 .1; 0/ 21100
E7 ˚ 2A4 ˚ A3 ˚ A1 .1; 0/ 100212
E7 ˚ A5 ˚ A4 ˚ A3 .1; 0/ 13002

.1; 0/ 13020
E7 ˚ A6 ˚ A4 ˚ A2 .1; 0/

E7 ˚ A6 ˚ A5 ˚ A1 .1; 0/ 10302
E7 ˚ 2A6 .0; 1/

E7 ˚ A7 ˚ A3 ˚ 2A1 .1; 0/ 063001; 102102
E7 ˚ A7 ˚ A3 ˚ A2 .1; 0/ 06103
E7 ˚ A7 ˚ A4 ˚ A1 .0; 1/ 14010
E7 ˚ A7 ˚ A5 .0; 1/ 1032
E7 ˚ A8 ˚ A3 ˚ A1 .0; 1/ 10212
E7 ˚ A8 ˚ A4 .2; 0/

E7 ˚ A9 ˚ A2 ˚ A1 .1; 0/ 15000
.1; 0/ 05012

E7 ˚ A9 ˚ A3 .0; 1/ 1500
E7 ˚ A10 ˚ A2 .0; 1/

E7 ˚ A11 ˚ A1 .1; 0/ 1911
.1; 0/ 0903

E7 ˚ A12 .1; 1/

E7 ˚ D4 ˚ A5 ˚ A2 ˚ A1 .1; 0/ 113000; 130012
Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

E7 ˚ D4 ˚ A7 ˚ A1 .1; 0/ 10410; 12012
E7 ˚ D5 ˚ A5 ˚ 2A1 .1; 0/ 023012; 120102
E7 ˚ D5 ˚ A7 .1; 0/ 1323
E7 ˚ D6 ˚ A4 ˚ A2 .1; 0/ 13002
E7 ˚ D6 ˚ A5 ˚ A1 .1; 0/ 03302; 11002
E7 ˚ D6 ˚ A6 .0; 1/ 1102
E7 ˚ D6 ˚ D5 ˚ A1 .1; 0/ 12012; 01212
E7 ˚ 2D6 .1; 0/ 0132; 1120
E7 ˚ D7 ˚ A4 ˚ A1 .2; 0/ 12012
E7 ˚ D7 ˚ A5 .1; 0/ 1230

.1; 0/ 1032
E7 ˚ D8 ˚ A2 ˚ 2A1 .1; 0/ 030112; 120102
E7 ˚ D8 ˚ A3 ˚ A1 .1; 0/ 01202; 11010
E7 ˚ D10 ˚ 2A1 .1; 0/ 11000; 03012
E7 ˚ D10 ˚ A2 .1; 0/ 1100
E7 ˚ D11 ˚ A1 .1; 0/ 1212
E7 ˚ D12 .1; 0/ 012
E7 ˚ E6 ˚ A6 .1; 0/

E7 ˚ E6 ˚ D5 ˚ A1 .1; 0/ 10212
E7 ˚ E6 ˚ D6 .1; 0/ 1012
2E7 ˚ A4 ˚ A1 .1; 0/ 11002
2E7 ˚ A5 .1; 0/ 1032

.1; 0/ 1102
2E7 ˚ D4 ˚ A1 .1; 0/ 11300; 10112
2E7 ˚ D5 .1; 0/ 1102
E8 ˚ 3A3 ˚ A2 .1; 0/ 031101
E8 ˚ 2A4 ˚ A2 ˚ A1 .1; 0/

E8 ˚ A6 ˚ A3 ˚ A2 .0; 1/

E8 ˚ A6 ˚ A4 ˚ A1 .1; 0/

E8 ˚ A6 ˚ A5 .1; 0/

E8 ˚ A7 ˚ A2 ˚ 2A1 .1; 0/ 040112
E8 ˚ A7 ˚ A3 ˚ A1 .1; 0/ 02303
E8 ˚ A9 ˚ 2A1 .1; 0/ 05102
E8 ˚ A9 ˚ A2 .1; 0/

E8 ˚ A10 ˚ A1 .1; 0/

E8 ˚ A11 .1; 0/ 091
E8 ˚ D5 ˚ A5 ˚ A1 .1; 0/ 02312
E8 ˚ D6 ˚ A5 .1; 0/ 0132
E8 ˚ D7 ˚ 2A2 .1; 0/

E8 ˚ D10 ˚ A1 .1; 0/ 0312
E8 ˚ E6 ˚ A4 ˚ A1 .1; 0/

E8 ˚ E6 ˚ D5 .1; 0/

Continued on next page
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Table 3 – continued from previous page

Singularities .r; c/ Generators of kernels

E8 ˚ E7 ˚ A3 ˚ A1 .1; 0/ 01212
E8 ˚ E7 ˚ A4 .1; 0/

2E8 ˚ A2 ˚ A1 .1; 0/

Table 4. Extremal families

Singularities .r; c/ Generators of kernels

16A1 .1; 0/ see Remark 4.9
4D4 .1; 0/ 13320; 22110
D4 ˚ 3A3 ˚ 4A1 .1; 0/ 133101103; 222011000; 002211110
6A3 .1; 0/ 1320330; 2031130

.1; 0/ 1313002; 3003332; 0022022
2A7 ˚ 4A1 .1; 0/ 2600110; 0411110
2D4 ˚ 2A3 ˚ 4A1 .1; 0/ 202010102; 310211000; 222200000; 002211110
3D4 ˚ 6A1 .1; 0/ see Remark 4.10
D5 ˚ 3A3 ˚ 4A1 .1; 0/ 231100113; 202211000; 202000112
D5 ˚ D4 ˚ 2A3 ˚ 3A1 .1; 0/ 30111113; 03201012; 01220110
2D5 ˚ 3A2 ˚ 2A1 .1; 0/ 22000112
2D5 ˚ 2A3 ˚ 2A1 .1; 0/ 1331000; 2020112

.1; 0/ 1303113; 2020112
2D5 ˚ 2A4 .1; 0/

2D5 ˚ A7 ˚ A1 .1; 0/ 31200
2D5 ˚ A8 .1; 0/

2D5 ˚ D4 ˚ A4 .1; 0/ 22102
2D5 ˚ 2D4 .1; 0/ 02322; 20112
3D5 ˚ A2 ˚ A1 .1; 0/ 131013
3D5 ˚ A3 .1; 0/ 33213
D6 ˚ 3A3 ˚ 3A1 .1; 0/ 11330103; 10220100; 20201102
D6 ˚ A7 ˚ A3 ˚ 2A1 .1; 0/ 323101; 202112
D6 ˚ D4 ˚ 2A3 ˚ 2A1 .1; 0/ 3002012; 1020102; 2200112
D6 ˚ D5 ˚ A3 ˚ 4A1 .1; 0/ 32210000; 12001110; 02200112
D6 ˚ D5 ˚ 2A3 ˚ A1 .1; 0/ 213113; 102012
2D6 ˚ 2A3 .1; 0/ 22220; 33020
2D6 ˚ D4 ˚ 2A1 .1; 0/ 312112; 033012; 101012
D7 ˚ 2D5 ˚ A1 .1; 0/ 33103
D8 ˚ 2D5 .1; 0/ 2222

.1; 0/ 3220
D9 ˚ D5 ˚ A3 ˚ A1 .1; 0/ 31303
D9 ˚ D5 ˚ D4 .1; 0/ 2222
2D9 .1; 0/

Continued on next page
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Table 4 – continued from previous page

Singularities .r; c/ Generators of kernels

E6 ˚ A5 ˚ 2A2 ˚ 3A1 .1; 0/ 03001112; 14120000
E6 ˚ A5 ˚ A3 ˚ 2A2 .1; 0/ 240110
E6 ˚ 2A5 ˚ A2 .1; 0/ 22400
E6 ˚ A11˚ A1 .1; 0/ 1800

.1; 0/ 0602; 1800
E6 ˚ D4 ˚ 4A2 .1; 0/ 2022220

Table 5. Nonreal strata X.S/ with �.S/ � 18.

Singularities .r; c/ Generators of kernels

5A3 ˚ A1 .0; 1/ 1331313
A7 ˚ 3A3 ˚ A1 .0; 1/ 213113
2A6 ˚ 2A3 .0; 1/

3A6 .0; 1/

2A7 ˚ 2A2 .0; 1/

2A7 ˚ A3 ˚ A1 .0; 1/ 22311
A11 ˚ A3 ˚ A2 ˚ 2A1 .0; 1/ 600110
A11 ˚ 2A3 ˚ A1 .0; 1/ 31111
D5 ˚ 2A6 ˚ A1 .0; 1/

D5 ˚ A9 ˚ A3 ˚ A1 .0; 1/ 25010
D6 ˚ 2A6 .0; 1/

D6 ˚ A7 ˚ A3 ˚ 2A1 .0; 1/ 342102; 102012
E7 ˚ A7 ˚ A3 ˚ A1 .0; 1/ 14010
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