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Finite distortion curves: Continuity, differentiability
and Lusin’s (N) property

Lauri Hitruhin and Athanasios Tsantaris

Abstract. We define finite distortion !-curves and we show that for some forms !
and when the distortion function is sufficiently exponentially integrable, the map is
continuous, differentiable almost everywhere and has Lusin’s (N) property. This is
achieved through some higher integrability results about finite distortion !-curves. It
is also shown that this result is sharp both for continuity and for Lusin’s (N) property.
We also show that if we assume weak monotonicity for the coordinates of a finite
distortion !-curve, we obtain continuity.

1. Introduction

The study of mappings of finite distortion is a central theme in geometric function the-
ory. Their importance stems in part from the various connections with other fields like
holomorphic dynamics, PDEs and non-linear elasticity, to name a few. A mapping f 2
W
1;1

loc .�;R
n/, where� is a domain in Rn, is said to be of finite distortion if Jf 2 L1loc and

there exists a measurable function Kf .x/ � 1, which is finite almost everywhere, and is
such that the following inequality is satisfied:

(1.1) jDf.x/jn � Kf .x/Jf .x/ a.e.;

where jDf j denotes the sup norm of the differentialDf , and Jf the Jacobian determinant.
When Kf .x/ � K < 1 almost everywhere, where K constant, such a map is called
quasiregular (also known as maps of bounded distortion).

Quasiregular maps are the correct higher dimensional generalization of holomophic
maps in the complex plane. Starting with Reshetnyak, they have been studied extensively
since the sixties, and by now their theory is well developed. We refer to the books [19, 20]
for more details on quasiregular maps. In many applications, the distortion must be allowed
to blow up in a controlled manner. This has led to systematic study of the more general
class of mappings with finite distortion. By now, there is a quite extensive literature for
these maps; we refer to the books [8, 12] for their general theory.
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One of the basic facts about maps of finite distortion concerns their continuity. In [21],
Vodopyanov and Goldshtein showed that a mapping of finite distortion f W�! Rn that
belongs in the Sobolev space W 1;n

loc .�;R
n/ has a continuous representative in the same

Lebesgue class. But finite distortion mappings do not necessarily belong inW 1;n
loc .�;R

n/.
However, in Theorem 7.1 of [10], it was shown that if we assume that e�Kf .x/ 2 L1loc

for some large enough � > 0, then we have that f is in W 1;n
loc .�;R

n/, and as a result,
that it has a continuous representative. In fact, in [11] it was shown that e�Kf .x/ 2 L1loc,
for any � > 0, is enough in order to obtain continuity. Moreover, mappings of finite dis-
tortion with e�Kf .x/ 2 L1loc, for some � > 0, are almost everywhere differentiable and
have Lusin’s (N) property, i.e., they map sets of zero (Lebesgue) measure to sets of zero
measure, see [8] and also [14, 15].

Recently, there has been a lot of interest in generalizing quasiregular mappings in the
setting where the range and the domain of definition do not have the same dimension,
see [6,7,17,18]. Pankka in [18] called such maps quasiregular curves, in accordance with
their holomorphic counterparts, which are called holomorphic curves. In this paper, we
study under what conditions do curves of finite distortion, which are a generalization of
quasiregular curves, have the desirable properties we mentioned above. By �n.Rm/ we
denote the space of smooth differential n-forms in Rm, where n � m. In the following
definition, ! 2 �n.Rm/ is a smooth, non-vanishing and closed differential n-form. We
call such forms n-volume forms.

Definition 1.1 (Finite distortion !-curve). A mapping f 2 W 1;1
loc .�;R

m/, where � is a
domain in Rn and n � m, is called a finite distortion !-curve if ?f �! 2 L1loc and there
exists a measurable function Kf .x/ � 1, which is finite almost everywhere, and is such
that the following inequality is satisfied almost everywhere on �:

(1.2) .k!k ı f /jDf.x/jn � Kf .x/.?f
�!/;

Here, ?f �! is the Hodge star of the n-volume form f �! (the pullback of !), that
is, the function that satisfies .?f �!/ dx1 ^ � � � ^ dxn D f �!. In other words, if ! DP
I �I .x/ dxI , where the sum is over all multi-indices I D .i1; : : : ; in/, and if dxI D

dxi1 ^ � � � ^ dxin , then
?f �! D

X
I

�.f .x// JI ;

where JI denotes the Jacobian of the map .fi1 ; : : : ; fin/. The function k!kWRm! Œ0;1/

is the pointwise comass norm of !, defined as

k!k.p/ D sup¹j!p.v1; : : : ; vn/j W v1; : : : ; v2 2 Rm; jvi j � 1º

for each p 2 Rm.
When Kf .x/ � K <1, where K is some constant, we get the class of quasiregular

!-curves. We note here that in [18], quasiregular curves are assumed to be continuous by
definition. However, in [17], Pankka and Onninen showed that the continuity assumption
can be dropped from the definition when the form ! has constant coefficients.

Our first result shows that, unlike the case of mappings of finite distortion, the con-
dition exp.�Kf .x// 2 L1loc for any � > 0 is not enough to guarantee the existence of
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a continuous representative even for the most simple forms. In fact, it shows that even
f 2 W

1;n
loc .�;R

m/ is not enough (compare this with Theorem 1.4 in [11]).

Theorem 1.2. For every � < 2, there exists a finite distortion !-curve f WR2 ! R3 for
! D dx ^ dy, such that f 2W 1;2

loc .R
2;R3/ and exp.�Kf .x// 2L1loc, but f does not have

a continuous representative.

The situation is similar for Lusin’s (N) condition as well. The condition exp.�Kf .x//
2 L1loc, for any � > 0, is not enough.

Theorem 1.3. For every � < 2, there exists a finite distortion !-curve f WR2 ! R4 for
! D dx ^ dy, such that f 2W 1;2

loc .R
2;R4/ and exp.�Kf .x// 2L1loc, but f does not have

Lusin’s (N) property.

To explain why finite distortion curves differ from finite distortion maps in terms of
their continuity properties, we need to introduce the important concept of weak mono-
tonicity. A real valued function u2W 1;1

loc .�/ is called weakly monotone if the following
holds: for all balls B compactly contained in� and all constantsm;M 2R,m�M , such
that

jM � uj � ju �mj C 2u �m �M 2 W
1;1
0 .B/;

we have that
m � u.x/ �M;

for almost every x 2B . Here W 1;1
0 .B/ stands for the closure of C10 .B/, the compactly

supported smooth functions, with respect to the Sobolev space norm. For continuous func-
tions, this is equivalent to the more well known notion of monotonicity, namely

osc
B
u � osc

@B
u;

where oscB u D supx;y2B ju.x/ � u.y/j.
The reason that weak monotonicity is important when discussing continuity is that

the coordinate functions of a finite distortion map in a suitable Orlicz–Sobolev space are
weakly monotone, see for example Theorem 7.3.1 in [12]. It is also well known that
weakly monotone functions in that same Orlicz–Sobolev space have continuous repres-
entatives (for more precise formulations, see Lemma 2.1 in Section 2). Thus, roughly
speaking, to show the existence of a continuous representative for a mapping of finite dis-
tortion it is enough to show that the map has sufficient regularity and its coordinates are
weakly monotone.

However, the situation is different for curves of finite distortion. Their coordinate func-
tions are not necessarily weakly monotone, as our example in Theorem 1.2 shows. On
the other hand, if we assume the weak monotonicity of the coordinate maps and that
e�Kf .x/ 2 L1loc, for some � > 0, then by adapting the arguments in Theorem 2.4 of [8] and
Theorem 7.5.2 of [12], we obtain the existence of a continuous representative.

Theorem 1.4. Let f D .f1; : : : ; fm/W� ! Rm be a finite distortion !-curve, for a
bounded n-volume form ! in Rm, such that the coordinate functions f1; : : : ; fm are
weakly monotone. Suppose that there exists � > 0 such that e�Kf .x/ 2 L1loc. Then f has a
continuous representative in �.
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Our next result gives some sufficient conditions in order for a finite distortion !-curve
to have a continuous representative which is also almost everywhere differentiable and
has Lusin’s (N) property in the simple case of constant coefficient forms. We will call
an n-volume form in Rm, ! D

P
I �I .x/ dxI , where the sum is over all multi-indices

I D .i1; : : : ; in/, 1 � i1 < � � � < in �m, a constant coefficient form when the functions �I
are constant. Here dxI denotes the n-covector dxi1 ^ � � � ^ dxin .

Theorem 1.5. Let f W�! Rm be a finite distortion !-curve, for a constant coefficient
n-volume form ! in Rm. There exists c2 D c2.n/ > 0 such that if exp.�Kf .x// 2 L1loc,
for some � > c2 and f 2 W 1;n

loc .�;R
m/, then f has a continuous and almost everywhere

differentiable representative. Moreover, this representative has Lusin’s (N) property, that
is, it maps sets of zero n-dimensional Lebesgue measure to sets of zero n-dimensional
Lebesgue measure.

Our results in Theorems 1.2 and 1.3 essentially show that the integrability condition
on the distortion cannot be relaxed.

Next we consider more general classes of forms. We will call an n-volume form in Rm,
! D

P
I �I .x/ dxI , bounded if all the non-zero, real valued functions �I .x/ are bounded

in Rm, and there is a constant c > 0 such that, for all x 2Rm, there is a multi-index Ix
such that j�Ix .x/j > c. Notice that for a bounded form !, there is a constant c > 0 so that
k!k.x/ > c, for all x 2Rm. We will use the symbols j!j`1 and j!jinf to denote

sup
x 2Rm

X
I

j�I .x/j and inf¹k!k.x/ W x 2Rmº;

respectively. When the functions �I are constant, we say that ! is a constant coefficient
form. Notice that for bounded forms, we have that j!j`1 < 1 and j!jinf > 0. For an
n-volume form ! D

P
I �I .x/ dxI , we will also denote by H! the set of multi-indices I

such that �I .x/ is not identically zero.
We define Ef to be the following set:

Ef D ¹x 2� W there exists a sequence xn ! x such that
?f �dxI .xn/!1; for some multi-index I 2H!º:

Notice that ?f �dxI is a real valued function for all I . For a bounded n-form !, we say
that the pair .f; !/ satisfies condition (D) if the set Ef can be covered by a countable
number of open balls ¹Biº1iD1, and if on each ball Bi , there exists a multi-index Ii such
that ?f �dxIi � maxI ¹?f �dxI º. So roughly speaking, condition (D) says that on balls
where ?f �! gets large, one of the terms ?f �dxI dominates the others.

Theorem 1.6. Let f W�! Rm be a finite distortion !-curve, for a bounded n-volume
form ! in Rm, such that the pair .f;!/ satisfies condition (D). Suppose that cD c.n;!/D
n
c1
j!j`1=j!jinf, where c1 D c1.n/ > 0 constant. If exp.�Kf .x//2L1loc, for some � > c,

then there is a continuous and almost everywhere differentiable representative of f . More-
over, this representative has Lusin’s (N) property, i.e., it maps sets of zero n-dimensional
Lebesgue measure to sets of zero n-dimensional Lebesgue measure.

Remark 1.7. The constant c1 in Theorem 1.6 comes from a well-known result about
the higher integrability if the Jacobian of mappings of finite distortion proven in [5], see



Finite distortion curves: Continuity, differentiability and Lusin’s (N) property 697

Lemma 2.3 in Section 2 for the precise statement. It is known that in two dimensions,
c1 D 1 (see Theorem 20.4.12 in [2]), but the exact value of this constant remains unknown
in higher dimensions. Notice that when n D 2 and the form ! D dx ^ dy, we have that
the constant above is c D 2. Thus Theorems 1.2 and 1.3 imply that Theorem 1.6 is sharp
in this case.

An immediate corollary of the above theorems, which is worth pointing out, is the area
formula (see [16]). Here, Hn denotes the n-dimensional Hausdorff measure in Rm.

Corollary 1.8 (Area formula). Let f be as in Theorem 1.6 or 1.5. ThenZ
E

h.x/

q
det.Df TDf / dx D

Z
f .E/

X
x 2f �1.y/

h.x/ dHn.y/

holds for all measurable functions hWRn ! Œ0;1� and all measurable sets E � Rn.

Theorems 1.6 and 1.5 follow from the fact that curves of finite distortion satisfying the
assumptions of the theorems enjoy a higher than natural amount of regularity. We state the
precise results, since they are of independent interest.

Theorem 1.9. Let f W�! Rm be a finite distortion !-curve, for a bounded n-volume
form ! in Rm, such that the pair .f;!/ satisfies condition (D). If exp.�Kf .x//2L1loc.�/,
for some � > 0, then there exists a constant c1 D c1.n/ > 0 such that

?f �! loga.e C ?f �!/ 2 L1loc.�/ and jDf.x/jn loga�1.e C jDf.x/j/ 2 L1loc.�/;

for all a < c1� j!jinf=j!j`1 .

Theorem 1.10. Let f W�! Rm be a finite distortion !-curve, where ! is an n-volume
form with constant coefficients. If exp.�Kf .x// 2 L1loc.�/, for some � > 0, and if f 2
W
1;n

loc .�;R
m/, then there is a c3 D c3.n/ > 0 such that

?f �! loga.e C ?f �!/ 2 L1loc.�/ and jDf.x/jn loga�1.e C jDf.x/j/ 2 L1loc.�/;

for all a < c3�.

It is also interesting to point out that the higher integrability implies also modulus
of continuity estimates. This can be achieved through an embedding result for Orlicz–
Sobolev spaces of Donaldson and Trudinger (Theorem 3.6 in [4]; see also Theorem 8.40
in [1]).

Theorem 1.11. Let f W�! Rm be a finite distortion !-curve, where ! is

(i) either an n-volume form with constant coefficients and f 2 W 1;n
loc .�;R

m/,

(ii) or a bounded n-volume form such that the pair .f; !/ satisfies condition (D).
Then there exists a constant q D q.n; !/ > 0 such that if exp.�Kf .x// 2 L1loc.�/, for
some � > q, then for every compact subdomain F � � and every x; y 2 F , we have

(1.3) jf .x/ � f .y/j � Qkf kW 1;P

Z 1
jx�yj�n

P�1.t/

t .nC1/=n
dt;

whereP.t/D tn loga.eC t /, with a > n,QDQ.n;F / > 0 is a constant, and kf kW 1;P D

kf kP C kDf kP .
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The rest of the paper is organized as follows. In Section 2, we introduce the neces-
sary notation and terminology, and we recall results from the theory of finite distortion
maps that we are going to need. In Section 3, we prove the higher integrability results of
Theorems 1.9 and 1.10, while in Section 4 we give the proofs of Theorems 1.6 and 1.5.
In Section 5, we prove Theorem 1.4. Finally, in Section 6, we construct the functions of
Theorems 1.2 and 1.3.

2. Preliminaries on Orlicz–Sobolev spaces and finite distortion maps

Here we collect results and terminology from Orlicz–Sobolev spaces and finite distortion
maps that we are going to need for the proofs of our results, we refer to [1, 12] for more
details.

First we need to introduce the Orlicz spaces and the Orlicz–Sobolev spaces. An Orlicz
function is a continuous and increasing function P W Œ0;1/ ! Œ0;1/ with P.0/ D 0

and limt!1 P.t/ D 1. We will also assume that the function P is convex. The Orlicz
space LP .�/ consists of all measurable functions uWRn ! R such that

kukP WD

Z
�

P.�juj/ <1; for some � D �.u/ > 0:

The functional k � kP , which is usually called the Luxemburg functional, is a norm in LP ,
and in fact LP is a Banach space with this norm.

The Orlicz space LP for P.t/ D tp loga.e C t /, 1 � p <1 and a > 1 � n, will be
denoted as Lp loga L.�/.

For an Orlicz function P , the Orlicz–Sobolev space W 1;P .�/ is simply the set of
functions that belong in W 1;1

loc .�/ and their weak partial derivatives are also in LP .�/.
It is easy to see that the vector valued versions of the above spaces are simply the maps
whose coordinate functions are in the corresponding space of real valued functions.

For the proof of Theorem 1.4, we shall require the following result, see Theorem 7.5.1
in [12].

Lemma 2.1. Let u 2 W 1;P .�/, where P.t/ D tn= log.eC t /. If u is a weakly monotone
function, then u has a continuous representative.

For the proof of Theorem 1.6, we are going to need the following lemma, which is an
amalgamation of Theorems B and C in [13].

Lemma 2.2. Let g W�! Rm be a function in the Orlicz–Sobolev space W 1;P .�;Rm/,
where P.t/ D tn loga.e C t /, with a > n � 1. Then g has a continuous and almost
everywhere differentiable representative. Moreover, this representative has Lusin’s (N)
property.

We note that the aforementioned theorems in [13] are stated about functions in the
Lorentz space. However, there is an equivalent way of defining Lorentz spaces using
Orlicz spaces which we have used in the above lemma. We refer to the discussion pre-
ceding Theorems B and C in [13] for more details.

Due to the above lemma, to prove Theorem 1.6 it is enough to show that the coordinate
functions fi of our finite distortion !-curve f are in the right Orlicz–Sobolev space.
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To prove that, we require another important result about the higher integrability of finite
distortion maps proven in Theorem 1.1 of [5], compare this with Theorems 1.9 and 1.10.

Lemma 2.3. Let g W�! Rn, n � 2, be a mapping of finite distortion. Assume that the
distortion function Kg.x/ satisfies exp.ˇKg/ 2 L1loc, for some ˇ > 0. Then there is a
constant c1 D c1.n/, 0 < c1 < 1, such that

Jg.x/ loga.e C Jg.x// 2 L1loc.�/ and jDg.x/jn loga�1.e C jDg.x/j/ 2 L1loc.�/

for all a < c1ˇ.

We are going to need the following important inequality. Its proof can be found in the
Appendix of [5], or in Lemma 6.2 of [8].

Lemma 2.4. Let x; y � 1. Then, for any a > �1 and b > 0, we have

xy loga.C.n/.xy/1=n/ �
C.n/

b
x logaC1.x1=n/C C.a; b; n/ exp.by/;

We also require a slight variant of the above inequality. We include a proof here for
completeness.

Lemma 2.5. Let x; y � 1. Then, for any a > �1 and b > 0, we have

xy loga.e C .xy/1=n/ �
C1.a; b; n/

b
x logaC1.e C x1=n/C C2.a; b; n/ exp.by/;

where C1.a; b; n/ and C2.a; b; n/ are constants.

Proof. If x < eby=2, then since there is a C2 D C2.a; b; n/ such that

y loga.e C .xy/1=n/ � C2 eby=2;

we obtain that

xy loga.e C .xy/1=n/ � C2 eby :

If on the other hand, x � eby=2, then y � 2
b

log x. Hence we have that

y loga.e C .xy/1=n/ �
2

b
log x loga

�
e C

�
x
2

b
log x

�1=n�
�
2

b
log.e C x/ loga

�
e C .x2=bC1/1=n

�
�

�b C 2
b

�a 2n
b

log.e C x/1=n loga .e C x1=n/ � C1.a; b; n/ logaC1.e C x1=n/;

where

C1.a; b; n/ D
�b C 2

b

�a 2n
b
�

Thus in that case we have

xy loga.e C .xy/1=n/ � C1.a; b; n/ x logaC1.e C x1=n/;

and we are done.
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3. Higher integrability of finite distortion curves

In this section, we give the proofs of Theorems 1.9 and 1.10, which combined with
Lemma 2.2, will give us Theorems 1.6 and 1.5.

Proof of Theorem 1.9. LetK be a compact subset of� and let P.t/D tn loga.eC t /. We
want to find the values of a for which

R
K
P.?f �!/ dx <1. To that end, writeZ

K

P.?f �!/ dx D I1 C I2;

where

I1 D

Z
Kn.

S
i Vi /

P.?f �!/ dx and I2 D

Z
.
S
i Vi /\K

P.?f �!/ dx:

Here, the sets Vi , i D 1; 2; : : :, are open subsets covering the set Ef from condition (D)
such that Vi � Bi , where Bi are the balls of condition (D).

We now want to estimate the integrals I1 and I2. We start with I1. Notice that if
!y D

P
I �I .y/ dxI , for y 2 Rm, then ?f �! D

P
I �.f .x// ? f

�dxI .x/, with x 2Rn.
Moreover, since the ! form is bounded, we have that .k!k ı f /.x/ � j!jinf and thatP
I �.f .x// � j!j`1 . By condition (D), we know that on the set K n .

S
i Vi / the func-

tions ?f �dxI , for I any multi-index, are uniformly bounded by a constantM2 > 0 almost
everywhere, since on this set there is no sequence xn such that ?f �dxI .xn/!1 for any
multi-index I . Hence

I1 �

Z
Kn.

S
i Vi /

P.C/ dx;

where C D C.!;f / > 0 is a constant. The integral on the right-hand side is finite sinceK
is compact.

To estimate I2, notice first that

(3.1) I2 �

1X
i

Z
Vi\K

P.?f �!/ dx:

On each of the sets Vi , there is a multi-index Ii such that ?f �dxIi � maxI ¹?f �dxI º.
Since there are finitely many multi-indices, we enumerate them as Ij , with j D 1; : : : ;

�
m
n

�
.

We can now consider the finitely many sets Aj D .
S
k Vk/\K, where k runs over all the

sets Vi where ?f �dxIj � maxI ¹?f �dxI º. We can rewrite (3.1) as

I2 �

.mn/X
j

Z
Aj

P.?f �!/ dx:

We fix a j and notice that Aj � Wj WD .
S
k Bk/ \ K", where k runs over the balls Bi

for which ?f �dxIj � maxI ¹?f �dxI º and K" is a "-neighbourhood of K. On Wj , the
distortion inequality (1.2) becomes

(3.2) .k!k ı f /.x/jDf.x/j � Kf .x/ ? f
�dxIj

X
I

�I .f .x//:
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Notice that if we set fIj D .fj1 ; : : : ; fjn/, where Ij D .j1; : : : ; jn/, then by (3.2) and using
the fact that the ! form is bounded and jDfIj .x/j � jDf.x/j, we obtain

(3.3) jDfIj .x/j �
j!j`1
j!jinf

Kf .x/ ? f
�dxIj ; for almost every x 2Wj :

Notice that j!j`1=j!jinf > 1. Hence, (3.3) implies that fIj is a mapping of finite distortion
on Wj with distortion function KfIj D j!j`1=j!jinfKf .x/. By assumption, we know that

exp.�Kf / 2 L1loc.�/, or equivalently,

exp
�
�
j!jinf

j!j`1
KfIj

�
2 L1loc.�/; for some � > 0:

Therefore, by Lemma 2.3 we obtain

?f �dxIj loga.e C ?f �dxIj / 2 L
1
loc.Wj /;

for all a < c1� j!jinf=j!j`1 . Hence I2 <1 for those a, as we wanted.

Next, we want to show that
R
K
OP .jDf.x/j/ dx <1, where OP .t/D tn loga�1.eC t /,

for all a < c1� j!jinf=j!j`1 . By the distortion inequality, we obtain thatZ
K

OP .jDf.x/j/ dx �

Z
K

OP
�
j!j`1
j!jinf

Kf .x/ ? f
�!
�
:

By Lemma 2.5, we have that for all b > 0,

(3.4)

OP
�
j!j`1
j!jinf

Kf .x/ ? f
�!
�

�
C1

b
? f �! loga.e C ?f �!1=n/C C2 exp

�
b
j!j`1
j!jinf

Kf .x/
�
:

By what we have proven so far, we have that the first term of the right-hand side is
integrable on K when a < c1� j!jinf=j!j`1 . Moreover, for suitable b > 0, we have that

C2 exp
�
b
j!j`1
j!jinf

Kf .x/
�
2 L1.K/. Hence, (3.4) gives us that

R
K
OP .jDf.x/j/ dx <1, for

a < c1� j!jinf=j!j`1 , as we wanted.

The classical way to prove higher integrability results about quasiregular maps is
through the so called weak reverse Hölder inequalities and Gehring’s lemma, see for
example [3] and [9]. The same method was adapted to the setting of quasiregular curves
by Pankka and Onninen in [17]. The proof of higher integrability for finite distortion maps
in [5] was inspired by the same methods.

To prove Theorem 1.10, we will adapt the arguments in [5] to our setting. To this
end, we need the Hardy–Littlewood maximal function, which is defined for any locally
integrable mapping g WRn ! R by

M.g/.x/ D sup
r>0

1

jB.x; r/j

Z
B.x;r/

jg.y/j dy:

We start with a generalized version of Gehring’s lemma which is implicitly contained
in the proof of Theorem 1.1 in [5].
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Lemma 3.1 (Generalized Gehring’s lemma). Let g;KW� ! R be functions such that
g2L1loc.�/,K.x/ is measurable and 1�K.x/<1 a.e., and exp.ˇK.x//2L1loc for some
ˇ > 0. Suppose that these functions satisfy the generalized weak reverse Hölder inequality

(3.5)
−
1
2B

jg.x/j dx � C1.n/
� −

B

.K.x/ jg.x/j/s dx
�1=s

;

for some s < 1 and all balls B �� �. Then there is a constant c1 D c1.n/ > 0 such that

(3.6)

−
1
2B

jg.x/j loga
�
e C

jg.x/j¬
B
jg.y/j dy

�
dx

� C2.n; ˇ; s/

−
B

exp.ˇK.x// dx
−
B

jg.x/j dx;

for all a < c1.n; s/ˇ.

Proof. Fix a ball B0.x0; r0/ �� �. Since both (3.5) and (3.6) are homogeneous with
respect to g, we can assume without loss of generality that

R
B0
jg.x/jdx D 1. Let d.x/D

dist.x;Rn n B0/, and define the functions h1; h2WRn ! R by

h1.x/ D d.x/
n
jg.x/j and h2.x/ D �B0.x/;

for all x 2� and 0 outside of �. We are going to prove that for all balls B � Rn, either

(3.7)
� −

B

h1.x/ dx
�1=n

� C1.n/
� −

2B

.K.x/h1.x//
s dx

�1=sn
;

in case 3B � B0, or

(3.8)
� −

B

h1.x/ dx
�1=n

� C3.n/
� −

2B

h2.x/ dx
�1=n

;

when 3B is not contained in B0. We can assume that B \ B0 6D ;, since otherwise the
left-hand side is zero and thus the inequalities hold trivially. So suppose that 3B � B0.
Then a simple geometric argument shows that

max
B
d.x/ � 4min

2B
d.x/:

Hence, by (3.5), we have� −
B

h1.x/ dx
�1=n

� max
B
d.x/

� −
B

jg.x/j dx
�1=n

� C1.n/min
2B

d.x/
� −

2B

.K.x/ jg.x/j/sdx
�1=sn

� C1.n/
� −

2B

.K.x/h1.x//
sdx

�1=sn
:

On the other hand, suppose that 3B is not contained in B0. Since B0 intersects B ,
again a simple geometric argument shows that

max
B
d.x/ � max

2B
d.x/ � C4.n// j2B \ B0j

1=n:
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Hence, using the fact that
R
B0
jg.x/j dx D 1, we have that� 1

jBj

Z
B

h1.x/ dx
�1=n

� max
B
d.x/

� 1

jBj

Z
B\B0

jg.x/j dx
�1=n

� C4.n/
�
j2B \ B0j

jBj

Z
B0

jg.x/j dx
�1=n

� C3.n/
� −

2B

h2.x/ dx
�1=n

:

By (3.7), we have that when the sup is achieved for a ball B with 3B � B0, then

M.h1/.y/
1=n
� C1.n/M..Kh1/

s/.y/1=snI

otherwise, by (3.8), we have that

M.h1/.y/
1=n
� C4.n/M.h2/

1=n:

Notice thatM.h2/.y/ � 1, and thus there exists �1.n/ such that, for every � > �1, the set
¹y 2 RnWC4.n/M.h2/.y/ � �nº is empty. Hence, when � large, we have

¹y 2 RnWM.h1/.y/ � �
n
º � ¹y 2 RnWC1.n/M..Kh1/

s/.y/ � �snº;

which implies that

j¹y 2 RnWM.h1/.y/ � �
n
ºj � j¹y 2 RnWC1.n/M..Kh1/

s/.y/ � �snºj:

We want to apply Proposition 2.1 in [5] (twice) to conclude that

(3.9)
Z
¹h1>�nº

h1.x/ dx � C5.n/ �
n�sn

Z
¹C6.n;s/Kh1>�nº

.K.x/h1.x//
s dx:

To do that, we need to show that h1 and .Kh1/s are in L1.Rn/. This is easy to see for
h1, since g 2L1loc. For .Kh1/s , we can argue using the inequality

ab � exp.�a/C
2b

�
log.e C b=�/

and the fact thatK.x/ is exponentially integrable and h1 is in L1. We refer to the proof of
Theorem 1.4 for a more detailed argument.

Let a > 0 be a constant, and set

‰.�/ D
n � sn

a
loga.�/C loga�1 �:

Notice that

ˆ.�/ WD
d

d�
‰.�/ D

n � sn

�
loga�1.�/C

a � 1

�
loga�2 �;

and that ˆ.�/ > 0 for all � > �2.n; s/ D e1=.n�sn/. Moreover,

�n�snˆ.�/ D
d

d�
.�n�sn loga�1 �/:



L. Hitruhin and A. Tsantaris 704

We multiply both sides of (3.9) byˆ.�/ and we integrate with respect to � over the interval
.�0; j /, where �0Dmax¹�1;�2º and for j > �0 large. Note that the functionsˆ.�/h1.x/
and .K.x/h1.x//s �s�snˆ.�/ are non-negative on the sets we are integrating over. Hence,
by the Fubini–Tonelli theorem, we can change the order of integration to obtainZ

A1

h1.x/

Z h
1=n
1

�0

ˆ.�/ d�dx C

Z
A01

h1.x/

Z j

�0

ˆ.�/ d�dx

� C5.n/

Z
A2

.K.x/h1.x//
s

Z .C6Kh1/
1=n

�0

�n�snˆ.�/ d�dx

C C5.n/

Z
A02

.K.x/h1.x//
s

Z j

�0

�n�snˆ.�/ d�dx;

where

A1 D ¹�0 < h
1=n
1 < j º; A01 D ¹h

1=n
1 � j º;

A2 D ¹�0 < .C6Kh1/
1=n < j º; A02 D ¹.C6Kh1/

1=n
� j º:

Notice thatZ
A2

.K.x/h1.x//
s

Z j

�0

�n�snˆ.�/d�dx �

Z
A2

K.x/h1.x/ loga�1.C6K.x/h1.x//1=n dx;

and thus we obtainZ
A1

h1.x/.‰.h
1=n
1 / �‰.�0// dx C

Z
A01

h1.x/.‰.j / �‰.�0// dx

� C5.n/
� Z

A2

C6.n/K.x/h1.x/ loga�1.C6K.x/h1.x//1=n dx

C

Z
A02

.K.x/h1.x//
sj n�sn loga�1 j dx

�
;

which implies

(3.10)

n � sn

a

� Z
A1

h1.x/ loga.h1=n1 / dx C

Z
A01

h1.x/ loga j dx
�

� C7.n/I1 C C5.n/I2 C C8.n; s; a/
� Z

A1

h1.x/ dx C

Z
A01

h1.x/ dx
�
;

where
I1 D

Z
A2

K.x/h1.x/ loga�1.C6K.x/h1.x//1=n dx

and
I2 D

Z
A02

.K.x/h1.x//
sj n�sn loga�1 j dx:



Finite distortion curves: Continuity, differentiability and Lusin’s (N) property 705

Notice that since
R
B0
jg.x/j dx D 1 and d.x/ � r0, we have thatZ

A1

h1.x/ dx C

Z
A01

h1.x/ dx � 2

Z
B0

d.x/n jg.x/j dx � C9.n/ jB0j:

Hence, (3.10) becomes

(3.11)

1

a

� Z
A1

h1.x/ loga.h1=n1 / dx C

Z
A01

h1.x/ loga j dx
�

� C10.n; s/I1 C C11.n; s/I2 C C12.n; s; a/ jB0j:

Notice that ¹h1 >�n0º � ¹C6.n/K.x/h1.x/ > �
n
0º, since its not hard to see thatC6.n/ > 1.

Hence we can write

I1 D

Z
E1

K.x/h1.x/ loga.C6K.x/h1.x//1=n dx

C

Z
E2

K.x/h1.x/ loga.C6K.x/h1.x//1=n dx;

where

E1 D A2 \ ¹h
1=n
1 � �0º and E2 D ¹h

1=n
1 > �0º \ ¹.C6Kh1/

1=n < j º � A1:

The first integral on the right-hand side is bounded by C13.n; s/
R
B0
eˇK.x/. We will call

the second integral P0.
Moreover, we can do the same for the integral I2 and write it as a sum of integrals

over the sets A01, A02 n A
0
1 \ ¹h

1=n
1 � �0º and A02 n A

0
1 \ ¹h

1=n
1 > �0º � A1, which we

call P1, P2 and P3, respectively. Again, the integral over the set A02 n A
0
1 \ ¹h

1=n
1 � �0º

is bounded by C14.n; s/
R
B0
eˇK.x/. Furthermore, notice that

P3 �

Z
A1

C n�sn6 K.x/h1.x/ loga�1.C6K.x/h1.x//1=n DW P4:

Hence (3.11) gives us

1

a

� Z
A1

h1.x/ loga.h1=n1 / dx C

Z
A01

h1.x/ loga j dx
�

� C10.n; s/P0CC11.n; s/.P1CP4/CC15.n; s/

Z
B0

eˇK.x/CC12.n; s; a/ jB0j:(3.12)

We apply Lemma 2.4 and obtain

P0 � C.n; a/

Z
A1

eˇK.x/ dx C
C
1=n
6

ˇ

Z
A1

h1.x/ loga.h1.x//1=n dx;

P4 � C
0.n; a/

Z
A1

eˇK.x/ dx C
C
n�snC1=n
6

ˇ

Z
A1

h1.x/ loga.h1.x//1=n dx;
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and

P1 �C
00.n;a/

Z
A01

eıK.x/
s

dxC
1

ı

Z
A01

hs1.x/j
n�sn loga�1j log

�
h
s=n
1 j 1�s log.a�1/=sj

�
dx;

for some ı > 0 which will be fixed later. We call P5 the second integral on the right-hand
side. Using the above estimates and the fact that A1; A01 � B0 and eıK.x/

s
< ceˇK.x/ for

some constant c D c.ı/ > 0, (3.12) gives

(3.13)

1

a

� Z
A1

h1.x/ loga.h1=n1 / dx C

Z
A01

h1.x/ loga j dx
�

�
C16.n; s/

ˇ

Z
A1

h1.x/ loga.h1.x//1=n dx C
C11.n; s/

ı
P5

C C17.n; s; a; ˇ/

Z
B0

eˇK.x/ dx C C12.n; s; a/ jB0j;

Put a D ˇ=.2C16.n; s//. It is not hard to see that for all j and for large enough ı > 0, we
have that

C11

ı
P5 �

1

a

Z
A01

h1.x/ loga j dx:

Hence, (3.13) impliesZ
A1

h1.x/ loga.h1=n1 / dx � C17.n; s; a; ˇ/

Z
B0

eˇK.x/ dx C C12.n; s; a/ jB0j:

It is easy to see that jB0j <
R
B0
eˇK.x/dx. Hence, if we take limits as j !1, then by the

monotone convergence theorem we obtain

(3.14)
Z
¹h1>�

n
0º

h1.x/ loga.h1=n1 / dx � C18.n; s; ˇ/

Z
B0

eˇK.x/dx:

We are now ready to prove (3.6). First notice that since �n0 > 1, there is a constant
k > 0 such that x loga.e C x/ � kx loga.x/, for all x > �n0 . Now notice thatZ

B0

h1.x/ loga.e C h1/ dx D
Z
¹h1>�

n
0º

h1.x/ loga.e C h1/ dx

C

Z
¹h1��

n
0º\B0

h1.x/ loga.e C h1/ dx:

The second integral on the right-hand side is bounded by C19.n; s/jB0j. ThusZ
B0

h1.x/ loga.e C h1/ dx � k
Z
¹h1>�

n
0º

h1.x/ loga.h1/ dx C C19.n; s/ jB0j:

Using (3.14), we obtainZ
B0

h1.x/ loga.e C h1/ dx � C20.n; s; ˇ/
Z
B0

eˇK.x/dx:
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Notice that in the ball 1
2
B0 we have that d.x/n � rn0 =2

n � C23.n/jB0j. Hence the above
inequality implies

C21.n/jB0j

Z
1
2B0

jg.x/j loga.e C C21 jB0j jg.x/j/ dx � C22.n; s; ˇ/
Z
B0

eˇK.x/dx:

Using the normalization
R
B0
jg.x/jdxD 1 and the inequality c loga.eCx/< loga.eCcx/,

for c < 1, in the case that C21.n/ < 1 we obtain−
1
2B0

jg.x/j loga
�
eC

jg.x/j¬
B0
jg.y/j dy

�
dx �C2.n;ˇ; s/

−
B0

exp.ˇK.x//dx
−
B0

jg.x/jdx;

as we wanted.

Next, we have the analogues of the weak reverse Hölder inequalities for finite distor-
tion curves.

Lemma 3.2 (Generalized weak reverse Hölder inequality). Let f 2 W 1;n
loc .�;R

m/ be a
finite distortion !-curve, where ! is an n-volume form with constant coefficients, and let
B �� �. Then−

1
2B

?f �! dx � C.n;m/
� −

B

.Kf .x/ ? f
�!/n=.nC1/ dx

�.nC1/=n
:

Proof. By following the argument in the proof of Lemma 6.1 in [17], where the authors
prove a Cacciopoli-type inequality for quasiregular !-curves, we can show that for all
balls B.y; r/ �� � and all functions � 2 C10 .B/, we haveZ

B

�.x/.?f �!/.x/ dx � k!k

Z
B

jr�.x/j jf .x/ � fB j jDf.x/j
n�1 dx;

where fB D
¬
B
f .x/ dx (integration is meant coordinate-wise). Indeed, since ! is exact,

there exists an .n� 1/-form � such that d� D !, �fB D 0. Since ! is a constant coefficient
form, it is easy to see that � is k!k-Lipschitz, meaning that k�k.y/ � k!kjy � fB j for all
y 2 Rm. HenceZ

B

�.?f �!/ D

Z
B

�f �d� D

Z
B

�df �� D

Z
B

d.�f ��/ �

Z
B

d� ^ f � d�

D �

Z
B

d� ^ f �d� �

Z
B

jr�j.k�k ı f /jDf jn�1 � k!k

Z
B

jr�j jf � fB j jDf j
n�1;

as we wanted. It is important to note that this argument uses the fact that f 2W 1;n
loc .�;R

m/.
We choose now � so that �.x/ D 1 when x 2 1

2
B , 0 � � � 1, and jr�j � 2=r . With this

choice for � and by applying Hölder’s inequality, we obtain

(3.15)

Z
1
2B

.?f �!/.x/ dx

�
2k!k

r

� Z
B

jf .x/ � fB j
n2dx

�1=n2� Z
B

jDf.x/jn
2=.nC1/ dx

�n2�1=n2
:
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By applying the Poincaré–Sobolev inequality (see for example Theorem A.18 in [8])
coordinate-wise, it is easy to see that� Z

B

jf .x/ � fB j
n2 dx

�1=n2
� C0.n;m/

� Z
B

jDf.x/jn
2=.nC1/ dx

�.nC1/=n2
:

Hence, (3.15) becomes−
1
2B

.?f �!/.x/ dx � k!kC.n;m/
� −

B

jDf.x/jn
2=.nC1/ dx

�.nC1/=n
:

Applying the distortion inequality (1.2) in the above inequality gives−
1
2B

.?f �!/.x/ dx � C.n;m/
� −

B

.Kf .x/ ? f
�!/n=.nC1/ dx

�.nC1/=n
;

which is what we wanted.

The proof of Theorem 1.10 readily follows.

Proof of Theorem 1.10. The fact that

(3.16) ?f �! loga.e C ?f �!/ 2 L1loc.�/

follows immediately from Lemmas 3.1 and 3.2. On the other hand,

jDf.x/jn loga�1.e C jDf.x/j/ 2 L1loc.�/

follows by using (3.16) and the inequality in Lemma 2.4.

4. Proofs of Theorems 1.6, 1.5 and 1.11

Proof of Theorem 1.6. For k � 1, let

Uk D ¹x 2�W dist.x; @�/ > 1=kº \ B.0; k/;

where B.0; k/ is the open ball centred at 0 and of radius k. If we take

c D c.n; !/ D
n

c1

j!j`1
j!jinf

;

then we can find a p so that n � 1 < p and p C 1 < �c1 j!jinf=j!j`1 , since � > c. By
Theorem 1.9, now we have that f is in W 1;P .Uk/ for P.t/ D tn logp.e C t / and some
p > n � 1. Hence, Lemma 2.2 implies that f has a continuous and almost everywhere
differentiable representative in Uk , which also has Lusin’s (N) property, for each large
enough k. Since Uk � UkC1 and

S1
kD1 Uk D �, this immediately implies that f has a

representative in � with all the above properties.

Proof of Theorem 1.5. The proof follows in the same way as that of Theorem 1.6, except
that instead of Theorem 1.9, we use Theorem 1.10.
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Proof of Theorem 1.11. First we assume that F is a ball compactly contained in �. We
want to apply Theorem 3.6 in [4] to the coordinate functions of f in F . To do that, we
need to know that they are in W 1;P

loc .�/, with P.t/ such thatZ 1
1

P�1.t/

t .nC1/=n
dt <1:

It is not hard to see that this last condition is satisfied when P.t/ D tn loga.e C t /, with
a > n. By Theorems 1.9 and 1.10, there is a constant q such that if exp.�Kf .x//2L1loc.�/

for some � > q, then we have that f 2 W 1;P
loc .�/. Thus, by applying Theorem 3.6 in [4]

to the coordinate functions, it is easy to see that (1.3) holds and we are done. For a general
compact set F , the result follows routinely. We sketch the proof for completeness. Cover
the set F by a finite number of balls Bi � �, i D 1; : : : ; k, consider the segment connect-
ing x and y (if the segment is not in F , just consider a polygonal path), and find points xi ,
i D 0; : : : ; k0 < k, such that x0 D x, xk0 D y and xi 2 Bi \ BiC1, i D 1; : : : ; k0 � 1

(by renaming the balls if necessary). By applying the special case of the theorem for balls
in Bi , we can conclude that

jf .xi / � f .xiC1/j � Qikf kW 1;P

Z 1
jxi�xiC1j�n

P�1.t/

t .nC1/=n
;

for i D 1; : : : ; k0 < k. The triangle inequality and the fact that jxi � xiC1j�n > jx � yj�n

give us the required inequality.

5. Monotonicity implies continuity

Here we prove Theorem 1.4. The proof is essentially an adaptation of that of Lemma 2.8
in [8].

Proof of Theorem 1.4. From Lemma 2.1, it is enough to show that the coordinate func-
tions are in W 1;P .�/, where P.t/ D tn= log.e C t /. For that it is enough to show that
jDf j 2 Ln log�1L.�/.

First notice that, because the function P.t/, t > 0, is increasing, and because ! is a
bounded form, we have that

jDf jn

log.e C jDf j/
�

c0Kf .x/ ? f
�!

log.e C .c0Kf .x/ ? f �!/1=n/

�
c0Kf .x/ ? f

�!

log.e C .c0 ? f �!/1=n/
� n

c0Kf .x/ ? f
�!

log.e C c0 ? f �!/
;

where c0 > 0 is a constant that depends on !. Hence, for any compact set K � �, we
have that

(5.1)
Z
K

jDf jn

log.e C jDf j/
dx � n

Z
K

c0Kf .x/ ? f
�!

log.e C c0 ? f �!/
dx:
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By using (5.1) and the inequality (see Lemma 2.7 in [8] for a proof)

ab � exp.�a/C
2b

�
log.e C b=�/; for all a � 1; b � 0; � > 0;

with

a D Kf .x/; b D
c0 ? f

�!

log.e C c0 ? f �!/
and � D �;

we obtain

Z
K

jDf jn

log.e C jDf j/
dx � n

Z
K

exp.�Kf .x// dx

C
2n

�

Z
K

c0 ? f
�!

log.eCc0 ?f �!/
log

�
e C

c0 ? f
�!

� log.eCc0 ?f �!/

�
dx:

The first integral is finite by assumption. We can split the second integral into two integ-
rals, over the sets

A1 D ¹x 2KW� log.e C c0 ? f �!/ � 1º and A2 D K n A1:

On A2, the integrand is dominated by c0 ? f �!, which is integrable, while on A1, notice
that ?f �! � e1=��1=c0, and since the function t= log.eC t / is increasing, we obtain that
the integrand is bounded in A1, and we are done.

6. Counterexamples to continuity and Lusin’s condition

Proof of Theorem 1.2. Let zD .x;y/ and f .x;y/D .f1.x;y/;f2.x;y/;f3.x;y//, where
we take

f1.z/ D

´
x
jzj
Œe C log.1=jzj/��1 for jzj � 1;

x=e forjzj > 1;

f2.z/ D

´
y
jzj
Œe C log.1=jzj/��1 for jzj � 1;

y=e forjzj > 1;

f3.z/ D log log.e C j log jzjj/:

Let F.z/ D .f1.z/; f2.z//. This map is then a mapping of finite distortion, meaning that
F 2 W

1;1
loc and that jDF j2 � K 0.z/JF for some function K 0.z/ which is finite almost

everywhere. Moreover, it is true that e�K
0.z/ 2L1loc.R

2/, for all �< 2. In fact, we have that

jDF.z/j D

´
1

jzj.e�log jzj/ for jzj � 1;

1=e for jzj > 1;
JF D

´
1

jzj2 .e�log jzj/3 for jzj � 1;

1=e3 for jzj > 1;

and

K 0.z/ D

´
.e � log jzj/ for jzj � 1;
e for jzj > 1:
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Moreover,

jDf3.z/j �
1

jzj.e � log jzj/ log.e � log jzj/
; for jzj � 1;

jDf3.z/j �
1

jzj.e C log jzj/ log.e C log jzj/
; for jzj > 1:

It is also easy to see that ?f �! D JF , for k!k D 1, and that .f; !/ satisfies condi-
tion (D). Putting everything together, we obtain

jDf j2 � .jDF j C jDf3j/
2
�

�p
K 0.z/JF C

p
K 0.z/JF

log.e C j log jzjj/

�2
D

� 1

log.e C j log jzjj/
C 1

�2
K 0.z/JF :

So that (1.1) is true with

K.z/ D
� 1

log.e C j log jzjj/
C 1

�2
K 0.z/:

Notice that for any " > 0, there is an r."/D r > 0 such that 1
log.eCj log jzjj/ < ", for jzj � r .

Also, notice that K.z/ is bounded in R2 n B.0; r/. Hence,Z
R2

exp.�K.z// dz D
Z

R2nB.0;r/

exp.�K.z// dz C
Z
B.0;r/

exp.�K.z// dz;

and the first integral is finite for all � > 0, whileZ
B.0;r/

exp.�K.z// dz �
Z
B.0;r/

exp.�.1C "/2K 0.z// dz;

which is finite for all � < 2=.1C "/2. Since " > 0 can be arbitrary, we have e�K.z/ 2 L1loc,
for any given � < 2. However, the map f does not have a continuous representative since
its third coordinate f3 does not (f3 has a logarithmic singularity at 0).

For the construction in Theorem 1.3, we will need a special case of Lemma 5.1 in [13].

Lemma 6.1. There exists a function u 2 W 1;n
loc .B.0; 1// so that u is non-negative, radial,

continuous outside the origin, tends to1 when x ! 0, and satisfies

(6.1)
Z
B.0;1/

ˆ.jru.x/j/ dx <1;

where ˆ.t/ D tn logn�1.e C t / logn�1.log.e C t // and

(6.2) jru.x/j �
1

jxj.1 � log jxj/ log j log jxjj
; when jxj is small enough:
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Proof. Let �.t/ D t�n log�n.e C t / log�n.log.e C t //. We define the real functions

hk.t/ WD inf¹s > 0 W �.2s/ � .2kt /nº; t 2 .0;1/:

Notice that

(6.3) hk.t/ �
1

t.1 � log t / log j log t j
;

for all k � 1 and all t small enough. Indeed, it is enough to show that

�
� 2

t.1 � log t / log j log t j

�
� .2kt /n;

which is equivalent to

.1 � log t / log j log t j

log
�
e C 2

t.1�log t/ log j log t j

�
log

�
log

�
e C 2

t.1�log t/ log j log t j

�� � 2k�1:
Notice that the left-hand side goes to 1 as t! 0, so the above inequality is true for all k � 1
and t small enough. Next we wish to show that

R 1
0
hk.t/dt D 1. To that end, notice that

we can find a �k such that �.2�k/ < 2kn, which implies that

¹.t; s/ W s > �k ; 0 < t < 2
�k�1=n.2s/º � ¹.t; s/ W 0 < t < 1; 0 < s � hk.t/º:

Hence, by Fubini’s theorem, we have thatZ 1

0

hk.t/ dt D

Z
¹.t;s/W0<t<1;0<s�hk.t/º

dt ds �

Z
¹.t;s/Ws>�k ; 0<t<2

�k�1=n.2s/º

dt ds

D 2�k
Z 1
�k

�1=n.2s/ ds:

It is not hard to see that the last integral is 1. Hence, we can define a decreasing se-
quence ¹akº of positive real number such that a1 D 1 andZ ak

akC1

hk.x/ dx D 1; for all k 2 N:

The above implies that hk.akC1/ � 1 and thus �.2/ � 2nkan
kC1

. Hence ak ! 0. We set

u.x/ D k C

Z ak

jxj

hk ; when akC1 � jxj � ak ;

which is continuous outside the origin, radial, non-negative and limx!0 u.x/D1. More-
over, (6.3) implies

jru.x/j D jhk.jxj/j �
1

jxj.1 � log jxj/ log j log jxjj
;
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which proves (6.2). Finally, since �.hk.t// � .2kt /n, we have that

hk.t/
n logn�1.e C hk.t// logn�1.log.e C hk.t/// � .2kt /1�n hk.t/;

and thusZ
B.0;1/

ˆ.jru.x/j/ dx �
X
k

Z
¹akC1�jxj�akº

.2kt /1�nhk.jxj/ dx

D

X
k

2�

Z ak

akC1

rn�1.2kr/1�nhk.r/ dx D 2�
X
k

2k.1�n/ <1:

Hence (6.1) is proven, and since tn � ˆ.t/ for all t > 0, we have that

jru.x/jn � ˆ.jr�.x/j/;

which implies that u 2 W 1;n
loc .B.0; 1//.

Proof of Theorem 1.3. We define f D .f1;f2;f3;f4/, where F.z/D .f1.z/;f2.z//, with
z D .x; y/, will be a mapping of finite distortion. The function G D .f3; f4/ will be
constructed by adapting the construction in Theorem 5.2 of [13].

We start by constructing F first.
Construction of F . The function F will be obtained as the limit of a sequence of finite

distortion mappings. First we set z D .x; y/ and

g.z/ D

´
z
jzj
Œ1C log.1=jzj/��1 for jzj � 1;

z for jzj > 1:

Similarly as in the proof of Theorem 1.2, it is easy to calculate that

jDg.z/j D

´
1

jzj.1�log jzj/ for jzj � 1;

1 for jzj > 1;
; Jg D

´
1

jzj2.1�log jzj/3 for jzj � 1;

1 for jzj > 1;

and

Kg.z/ D

´
.1 � log jzj/ for jzj � 1;
1 for jzj > 1:

Take four disjoint balls Bi;0.ci;0; R0/, i D 1; 2; 3; 4, with centres ci;0 in the segment
Œ�1; 1� � ¹0º and radii to be determined later. Let also Ai;0.ci;0; R0; r0/ denote the annuli
of the same centres, outer radius R0 and inner radius r0, which is also to be defined later.
Define the finite distortion map

f1.z/ D

8̂̂<̂
:̂
R0.1 � log.R0//g.z � ci;0/ for jzj 2 Ai;0.ci;0; R0; r0/;
R0.1�logR0/
r0.1�log r0/

z for jzj 2 B.ci;0; r0/;

z otherwise.
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Inductively, now, inside each of the balls Bi;n�1.ci;n�1; rn�1/, i D 1; : : : ; 4n, take four
disjoint balls with centres on the segment Œ�1; 1� � ¹0º. Thus we obtain the collection of
balls Bi;n.ci;n; Rn/, i D 1; : : : 4nC1. We define the finite distortion map

fnC1.z/ D

8̂̂<̂
:̂
Rn.1 � log.Rn//g.z � ci;n/ for jzj 2 Ai;n.ci;n; Rn; rn/;
Rn.1�logRn/
rn.1�log rn/

z for jzj 2 B.ci;n; rn/;

z otherwise.

:

Let
Fn.z/ D f1 ı � � � ı fn;

which will be a sequence of finite distortion mappings. It is easy to see that Fn converges
in the W 1;2-norm to a finite distortion function F 2 W 1;2

loc .R
2;R2/, for suitable choice

of Rn. Indeed, a computation shows that for F to be in W 1;2
loc .R

2;R2/, it is enough to
have

P1
nD0 an <1, where

an D

n�1Y
jD0

R2j .1 � logRj /2

r2j .1 � log rj /2
R2n.1 � logRn/2:

If we choose Rn small enough, we can make an < 1=2n so that F 2 W 1;2
loc .R

2;R2/. We
want F to have exponentially integrable distortion. It is easy to see that for � < 2 we haveZ

R2

exp.�KF .z// dz D
1X
nD0

4nC1
Z
Ai;n.ci;n;Rn;rn/

exp.�KfnC1.z// dz

D

1X
nD0

4nC1
Z 2�

0

Z Rn

rn

e�e�� log r r dr d�

D

1X
nD0

2� 4nC1 e�

��C 2
.R��C2n � r��C2n / �

1X
nD0

2� 4nC1 e�

��C 2
R��C2n :

Thus, if we take

Rn �
�
��C 2

2� e� 8n

�1=.��C2/
;

then
1X
nD0

2� 4nC1 e�

��C 2
R��C2n <1;

and F will be exponentially integrable for any � < 2. Finally, it is easy to check that for
z 2 Ai;n.ci;n; Rn; rn/, we have that

JF .z/ D an
1

jz � ci;nj2.1 � log jz � ci;nj/3
and KF .z/ D 1 � log jz � ci;nj:

Notice that so far we have no restriction placed on rn and Rn other than Rn being
small enough and rn < Rn.
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The function G that we are going to construct will be such that G 2 W 1;2
loc .R

2;R2/,
and for any fixed " > 0 and suitable sequences rn and R0n < Rn, it will satisfy

jDG.z/j �
p
an

"

jz � ci;nj.1 � log jz � ci;nj/
D "

p
KF .z/JF .z/;

for all z 2 Ai;n.ci;n; R0n; rn/, and jDG.z/j D 0 otherwise. Moreover, we will have that
G.Œ�1; 1� � ¹0º/ D Œ�1; 1�2. Assuming that we have constructed this function, we will
then have that the map f D .F;G/ 2 W 1;2

loc .R
2;R2/ will satisfy the distortion inequality

jDf.z/j2 � .jDF.z/j C jDG.z/j/2 � .1C "/2KF .z/JF .z/ D Kf .z/ ? f
�!;

almost everywhere. Since KF is exponentially integrable, so is Kf . Since " can be arbit-
rarily small,Kf can be arbitrarily close to �-exponentially integrable. Moreover, it is easy
to see that F.Œ�1; 1� � ¹0º/ D Œ�1; 1� � ¹0º. Hence, f .Œ�1; 1� � ¹0º/ will be a surface
with non zero Hausdorff 2-measure, which means f does not have Lusin’s (N) property.
All that remains is to construct G.

Construction of G. We are going to construct recursively a sequence of functions Gn
in W 1;2

loc .R
2;R2/ which will converge uniformly to the desired function G. We start by

partitioning the square Œ�1; 1�2 in dyadic squares. We set

S0 D ¹Œ�1; 0� � Œ0; 1�; Œ�1; 0� � Œ�1; 0�; Œ0; 1� � Œ0; 1�; Œ0; 1� � Œ�1; 0�º;

and more generally, Sn will be a collection of 4nC1 squares obtained by partitioning each
of the squares of Sn�1 into four. For i D 1; : : : ; 4nC1, we will denote byKi;n the elements
of Sn, and by wi;n, their centres. Also we let w0;�1 D 0.

We proceed with the definition of ¹Gnº. First we define G0 D 0. Assuming that we
have defined G0; : : : ;Gn, we construct GnC1 as follows. We use the sequences Rn and rn
from the construction of F . First, we can choose R0 small enough so that the two dimen-
sional version of the function u from Lemma 6.1 satisfies (6.2) when jzj � R0. Moreover,
since

R
B.0;1/

ˆ.jru.z/j/ dz <1, we can choose Rn small enough so that

(6.4)
Z
B.0;Rn/

ˆ.jru.z/j/ dz <
1

2nC14nC1
;

for all n D 0; 1; : : : Finally, for any fixed " > 0, we first temporarily choose rn D R0n and
then take R0n < Rn small enough so that

(6.5)
1

log j log jz � ci;njj
� "
p
an;

when jz � ci;nj�R0n. This is possible since an is constant on the annulusAi;n.ci;n;Rn; rn/.
Next, since u.z/!1 as z ! 0, we can in fact reselect rn < R0n so that

u.rn; rn/ � u.R
0
n; R

0
n/ D dn;

where dn denotes the distance between the centres of a square in Sn and one of its sub-
dividing squares in SnC1, Kj;nC1 � Ki;n. Remember there is no restriction on rn, and
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decreasing it makes an larger, so (6.5) is not affected by that. Define GnC1 to be Gn
outside of the balls Bi;n.ci;n; R0n/. When rn � jz � ci;nj � R0n, define

GnC1.z/ D wj;n�1 C .u.z � ci;n/ � u.R
0
n; R

0
n//

wi;n � wj;n�1

jwi;n � wj;n�1j
;

where j is the unique index such that Ki;n � Kj;n�1. Finally, when jz � ci;nj � rn, we
define

GnC1.z/ D wi;n:

Next, we need to show that the sequence Gn converges uniformly. To prove that,
notice that Gn and GnC1 differ only inside the balls Bi;n.ci;n; R0n/, where Gn is constant
while GnC1 maps the ball to a segment of length dn. Hence, for m > n,

kGm �Gnk1 �

m�1X
kDn

kGkC1 �Gkk1 �

m�1X
kDn

dk :

Since the lengths dk shrink at a geometric rate, we have that Gn is a uniformly Cauchy
sequence, and we are done. Thus the limit map G will be continuous, and it is easy to see
that (6.4) implies

4nC1X
iD1

Z
Bi;n.ci;n;R

0
n/

ˆ.jDGnC1.z/j/ dz <
1

2nC1
;

which in turn implies that G2 W 1;2.R2;R2/. Moreover, from (6.2) and (6.5) we obtain
that

jDG.z/j D jru.z/j �
"
p
an

jz � ci;nj.1 � log jz � ci;nj/
;

when rn� jz � ci;nj �R0n. Finally, it is easy to see that for anywi;n, there exists a sequence
of points zk 2 Ai;k.ci;k ; R0k ; rk/, converging to some point in the segment Œ�1; 1� � ¹0º,
such that G.zk/ D wi;n. Since the set of all centres ¹wi;nºi;n2N is dense in the square
Œ�1; 1�2 and since G is continuous, we have that

G.Œ�1; 1� � ¹0º/ D Œ�1; 1�2;

as we wanted.
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