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A property of ideals of jets of functions vanishing on a set

Charles Fefferman and Ary Shaviv

Abstract. For a set E � Rn that contains the origin, we consider Im.E/ – the set
of all mth degree Taylor approximations (at the origin) of Cm functions on Rn that
vanish on E. This set is a proper ideal in Pm.Rn/ – the ring of allmth degree Taylor
approximations of Cm functions on Rn. Which ideals in Pm.Rn/ arise as Im.E/
for some E? In this paper we introduce the notion of a closed ideal in Pm.Rn/,
and prove that any ideal of the form Im.E/ is closed. We do not know whether in
general any closed proper ideal is of the form Im.E/ for some E, however we prove
in a subsequent paper that all closed proper ideals in Pm.Rn/ arise as Im.E/ when
mC n � 5.
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1. Introduction

In this article we work in the ring Pm
0 .R

n/ of m-jets (at the origin) of Cm functions
on Rn that vanish at the origin. We write Jm.F / to denote the m-jet at E0 of a function
F 2 Cm.Rn/, i.e., its mth degree Taylor approximation about the origin. Given a subset
E � Rn that contains the origin, we define an ideal Im.E/ in Pm

0 .R
n/ by

Im.E/ WD ¹Jm.F / j F 2 Cm.Rn/ and F D 0 on Eº:

Our main goal is to understand which ideals I in Pm
0 .R

n/ arise as Im.E/ for some E.
We introduce the notion that a given ideal I implies a particular jet p. The set of all

the jets implied by a given ideal I is an ideal containing I , which we call the closure of I .
We say that I is closed if it is equal to its closure.
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Main results in a nutshell

We will prove that Im.E/ is always closed (for anym and any E); see Theorem 2.18. We
know of no example of an ideal I that is closed but does not arise as Im.E/ for some E.
Indeed, in the rings P 1

0 .R
n/, Pm

0 .R
1/, P 2

0 .R
2/, P 3

0 .R
2/ and P 2

0 .R
3/ we will classify in

our subsequent paper [10] all possible closed ideals up to a natural equivalence relation,
and for each ideal I on these lists we will exhibit a setE such that I D Im.E/. The natural
equivalence relation arises from the fact that every Cm-diffeomorphism �WRn ! Rn that
fixes the origin induces an automorphism of Pm

0 .R
n/ defined by p 7! Jm.p ı �/. We

say that two ideals I and I 0 in Pm
0 .R

n/ are equivalent if I 0 is the image of I under
such an automorphism. Since this equivalence relation preserves the property of an ideal
being closed, in [10] we in particular prove that each closed ideal in the rings P 1

0 .R
n/,

Pm
0 .R

1/, P 2
0 .R

2/, P 3
0 .R

2/ and P 2
0 .R

3/ arises as Im.E/ for some closedE that contains
the origin.

Nullstellensatz-type point of view

Our problem is loosely analogous to the setting of the Hilbert Nullstellensatz, where
one asks which polynomial ideals arise as I.V /, the set of polynomials vanishing on
an algebraic subset V of Cn. In that setting, we may say that an ideal I implies a polyno-
mial p if p belongs to the radical of I . Recall that the Nullstellensatz tells us that an ideal
I C CŒx1; : : : ; xn� arises as I.V / for some algebraic subset V if and only if it is equal to
its radical. When either m D 1, n D 1 or mC n � 5, we will prove in [10] that an ideal
I C Pm

0 .R
n/ arises as Im.E/ for some closed subset E that contains the origin if and

only if it is equal to its closure. We have not yet studied enough examples to know whether
to believe that for arbitrary m and n every closed ideal in Pm

0 .R
n/ arises as Im.E/ for

some E. Perhaps, in addition to being closed, Im.E/ has further properties of which we
are so far unaware.

We stress that unlike the setting of Hilbert Nullstellensatz, we are not aware of a natural
map that assigns to each ideal I C Pm

0 .R
n/ a closed subsetE that contains the origin such

that I D Im.E/. We present numerous concrete examples in [10], and in particular it will
become evident that it does not make sense to look at the zero locus of a given ideal – we
will see that in P 2

0 .R
2/ (where .x; y/ is a standard coordinate system), I 2.¹x D 0º/ is

the principal ideal generated by x, while I 2.¹x.x2 � y3/D 0º \ ¹x � 0º/ is the principal
ideal generated by x2. The latter example also shows that Im.E/ may be not radical (and
in particular not real-radical).

A conjecture by N. Zobin

Recall that semi-algebraic sets and maps are those that can be described by finitely many
polynomial equations and inequalities and boolean operations (for detailed exposition on
semi-algebraic geometry see, for instance, [2]). In [10], we will see in particular that
each closed ideal in the rings P 1

0 .R
n/, Pm

0 .R
1/;P 2

0 .R
2/;P 3

0 .R
2/ and P 2

0 .R
3/ arises

as Im.E/ for a semi-algebraic set E that contains the origin. A conjecture of N. Zobin
(see Problem 5 in [5]) asserts that every ideal Im.E/ in Pm

0 .R
n/ already arises as the

ideal Im.V / for a semi-algebraic set V that contains the origin. Thus, we prove that the
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conjecture is true for the cases in which either m D 1, n D 1 or mC n � 5. We do not
know whether the conjecture holds for general m and n, though it seems plausible to us.

Related problems

All the questions this paper addresses may be asked with Cm functions replaced by dif-
ferent classes of functions. For instance, fix m; n 2 N and m � k 2 N [ ¹1º. Given a
subset E � Rn that contains the origin, define an ideal Im

k
.E/ in Pm

0 .R
n/ by

Imk .E/ WD ¹J
m.F / j F 2 C k.Rn/ and F D 0 on Eº:

What can we say about the ideal Im
k
.E/? Which ideals in Pm

0 .R
n/ arise as Im

k
.E/ for

some E? Does every ideal of the form Im
k
.E/ already arises as the ideal Im

k
.V / for a

semi-algebraic set V ? We would like to study these variants, however in this paper we
only deal with the case m D k.

The relation to extension problems

The ideal Im.E/ arose naturally in connection with Whitney’s extension problem: given a
function f WE ! R (with E0 2 E � Rn), we want to decide whether f extends from E to
a Cm function F on the whole Rn. If such an extension F exists, then Im.E/ expresses
the ambiguity in the jet of F at the origin. Moreover, similarly to the definition of Im.E/,
we can define the ideal Im

Ex
.E/ of m-jets of Cm functions that vanish identically on E

about an arbitrary point Ex 2 E. In this terminology, the ideal Im.E/ is Im
E0
.E/. Analyzing

the ideals Im
Ex
.E/ is often a key step for solving such Whitney type extrapolation problems

(see, for instance, [4]).
We stress here that for a given set E, one can in principle compute Im.E/; see [4]. In

this paper we are interested is the converse question: given I , can we find an E?

Intuition on implied jets

We prepare to motivate and explain the notion of an ideal I implying a jet p without
going into technicalities. We sacrifice accuracy to meet this goal. Let us set up some ad-
hoc notation and definitions for this purpose (these notation and definitions will be only
used in this introduction; the main text will include a rigorous exposition and in particular
a detailed construction of all the examples below).

We identify m-jets with mth degree Taylor polynomials. Thus, Pm
0 .R

n/ consists of
all at most mth degree polynomials on Rn with a zero constant term, Jm.F / is the mth

degree Taylor polynomial of F at the origin, and the multiplication in Pm
0 .R

n/ is given
by PQ WD Jm.PQ/.

Let � � Rn be an open set whose closure contains the origin. A Cm-flat function
on � is a function F 2 Cm.�/ such that @˛F.Ex/ D o.jExjm�j˛j/ as Ex tends to the origin
in � , for any j˛j � m. A Cm-tame function on � is a function S 2 Cm.�/ such that
@˛S.Ex/ D O.jExj�j˛j/ as Ex tends to the origin in � , for any j˛j � m.

Often, � will be a cone with vertex at the origin. If � D Rn n ¹E0º, then the Cm-flat
functions are simply the Cm functions F with Jm.F / D 0, restricted to Rn n ¹E0º. The
following simple observation will be important.
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Remark 1.1. Let F be Cm-flat on � , and let S be Cm-tame on � . Then, S � F is Cm-flat
on � .

We start by presenting two examples to show that the ideal I.E/ unsurprisingly re-
stricts the geometry of E.

Example 1.2. In P 2
0 .R

2/, suppose x2C y2 2 I 2.E/. Then, by definition there exists F 2
C 2.R2/with jet x2C y2 that vanishes onE. We have F.x;y/� .x2C y2/D o.x2C y2/
as .x; y/! .0; 0/, hence F.x; y/ is nonzero on a punctured neighborhood of the origin.
Consequently, that punctured neighborhood contains no points of E. This in turn easily
implies that I 2.E/ consists of all jets that vanish at the origin, i.e., I.E/ D P 2

0 .R
2/. We

thus proved that

x2 C y2 2 I 2.E/ H) .0; 0/ is an isolated point of E and I 2.E/ D P 2
0 .R

2/:

Example 1.3. In P 2
0 .R

2/, suppose xy 2 I 2.E/. Let � be an open sector with vertex at
the origin, whose closure in R2 n ¹E0ºmeets neither the x-axis nor the y-axis. Then, by the
argument of Example 1.2,E \ � cannot contain points arbitrarily close to the origin. This
tells us that the only possible “tangent directions to E at the origin” are the x-axis and the
y-axis.

We formalize the lesson of Examples 1.2 and 1.3 in the following definition:
Let I be an ideal in Pm

0 .R
n/ and let ! 2 Sn�1 be a unit vector (a “direction”). We

say that ! is forbidden for I if there exist jets Q1; : : : ;QL 2 I , a cone

� D ¹Ex 2 Rn W 0 < jExj < r; jEx=jExj � !j < ıº;

(for some r; ı > 0) and a constant c > 0, such that
ˇ̌
Q1.Ex/

ˇ̌
C � � � C

ˇ̌
QL.Ex/

ˇ̌
> cjExjm

for any Ex 2 � . If ! is not forbidden, we say that ! is allowed. We write Forb.I / and
Allow.I /, respectively, to denote the sets of forbidden and allowed directions in the unit
sphere.

For an ideal I D Im.E/, the argument of Example 1.2 easily shows that only allowed
directions may be tangent toE at the origin. Thus, as promised, I constrains the geometry
of any set E for which we hope that I D Im.E/.

Note that Example 1.2 also tells us that if an ideal is of the form Im.E/ for some E in
the ring P 2

0 .R
2/, and it contains the jet x2 C y2, then it contains many more jets. Let us

see more examples that illustrate how the existence of some jets in Im.E/ can force the
existence of another jet in Im.E/.

Example 1.4. In P 3
0 .R

2/, suppose x.x2C y2/ 2 I 3.E/. Then, x3; x2y;xy2 2 I 3.E/ as
well.

Indeed, since x.x2 C y2/ 2 I 3.E/, there exists F 2 C 3.R2/, with jet x.x2 C y2/,
such that F D 0 on E. Equivalently, there exists a C 3-flat function F1 on R2 n ¹E0º such
that

(1.1) x.x2 C y2/C F1.x; y/ D 0 on E:

Now set S1 D x2

x2Cy2
, and note that S1 is C 3-tame on R2 n ¹E0º. Multiplying (1.1) by S1,

we have

(1.2) x3 C S1 � F1 D 0 on E:
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Moreover, S1 � F1 is C 3-flat on R2 n ¹E0º, by Remark 1.1. Therefore, (1.2) shows that
x3 2 I 3.E/. Similar arguments using S2 D

xy

x2Cy2
and S3 D

y2

x2Cy2
in place of S1 show

that also x2 � y and xy2 belong to I 3.E/.

The argument of Example 1.2 can be modified easily to show that any proper closed
ideal in Pm

0 .R
n/ has a non-empty set of allowed directions. Example 1.4 shows that not

every ideal in Pm
0 .R

n/ with allowed directions is closed: the principal ideal generated by
x.x2C y2/ in P 3

0 .R
2/ is not closed, though ¹.0;˙1/º are allowed directions of this ideal.

Our final example in this introduction brings into play the set of allowed directions.

Example 1.5. In P 2
0 .R

3/, suppose I D I 2.E/ contains x2 and y2 � xz. Then, I con-
tains xy.

To see this, first note that outside any conic neighborhood of the z-axis, we have
jx2j C jy2 � xzj > c.x2 C y2 C z2/ for some constant c > 0 that depends on the conic
neighborhood. Therefore, Allow.I / is contained in ¹.0; 0;˙1/º and so E is tangent to the
z-axis, i.e.,

(1.3) E � ¹.x; y; z/ W j.x; y/j � g.jzj/ � jzjº;

for some function gW Œ0;1/! R that is strictly positive away from 0 and that satisfies

(1.4) g.t/! 0 as t ! 0:

Let us see how, by possibly replacing g by a function that goes to zero more slowly, we
may assume without loss of generality that g 2 C 2.0;1/ and

(1.5)
� d
dt

�k
g.t/ D O.t�kg.t// for all k 2 ¹0; 1; 2º:

Note that replacingE with its intersection with a small ball about the origin does not affect
I 2.E/, so we may first replace g by min¹g.t/; 1º. We thus may assume without loss of
generality that 0 < g.t/ � 1 for all t 2 .0;1/. Second, we set Qg.t/ WD sup¹ 2t

tCs
g.s/ W s 2

.0;1/º, for all t 2 .0;1/. Note that this sup is finite since g.s/ � 1 for all s 2 .0;1/.
By taking s D t in the above sup, we see that

(1.6) Qg.t/ � g.t/ for all t 2 .0;1/:

Fix " > 0. By (1.4), there exists ı."/ > 0 such that g.s/ < " for all 0 < s < ı."/. So we have
. 2t
tCs

/g.s/ < 2" for all 0 < s < ı."/. For s � ı."/ we have . 2t
tCs

/g.s/ � 2t
tCs
�

2t
ı."/

< 2"

for t < Qı."/ WD " � ı."/. These two facts together tell us that Qg.t/ � 2" for all t < Qı."/, and
so

(1.7) Qg.t/! 0 as t ! 0:

One readily sees that if t1=t2 2 Œ1=2; 2�, then 1
4
�
2t1
t1Cs
�

2t2
t2Cs
� 4 � 2t1

t1Cs
for all s 2 .0;1/,

and so

(1.8)
1

4
� Qg.t1/ � Qg.t2/ � 4 � Qg.t1/ if

t1

t2
2

h1
2
; 2
i
:
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Let ' 2 C1..0;1// be a non-negative function, supported in Œ1=2; 2�, and not the zero
function, and set

g�.t/ WD

Z 1
0

'
� t
s

�
� Qg.s/

ds

s
�

Then g� 2 C1..0;1//. Since t=s 2 Œ1=2; 2� in the support of the integrand, we have
from (1.8) that

(1.9) c � Qg.t/ � g�.t/ � C � Qg.t/ for all t 2 .0;1/;

where c and C above are positive constants depending only on '. Moreover, for any
t 2 .0;1/ and k 2 ¹0; 1; 2º we have

(1.10)

ˇ̌̌� d
dt

�k
g�.t/

ˇ̌̌
D

ˇ̌̌ Z 1
0

s�k '.k/
� t
s

�
� Qg.s/

ds

s

ˇ̌̌
�

Z 1
0

s�k
ˇ̌̌
'.k/

� t
s

�ˇ̌̌ ds
s
� 4 Qg.t/ D C 0 t�k Qg.t/;

where C 0 is a positive constant depending only on ', and again we exploit estimate (1.8)
in the support of the integrand. Now, (1.9) and (1.10) imply that

(1.11)
� d
dt

�k
g�.t/ D O.t�kg�.t// for all k 2 ¹0; 1; 2º:

From (1.6), (1.7) and (1.9) we see that

g�.t/! 0 as t ! 0(1.12)

and

(1.13) C 00g�.t/ � g.t/ for all t 2 .0;1/;

where C 00 is a positive constant depending only on '. Finally, thanks to (1.11), (1.12)
and (1.13), we may replace g�.t/ by gC.t/ WD C 00g�.t/ and conclude that (1.3), (1.4)
and (1.5) all hold.

We thus established that we may assume without loss of generality that (1.3), (1.4)
and (1.5) all hold. We proceed by replacing E with its intersection with a small ball about
the origin (this does not affect I 2.E/), and so we may also assume that j.x; y/j � jzj for
any .x; y; z/ 2 E.

Let �.t/ be a C 2 (cutoff) function on Œ0;1/, supported in Œ0; 2� and equal to 1 on
Œ0; 1�. We define functions on R3 n ¹E0º by

F1.x; y; z/ D
y3

z
� �
�
j.x; y/j

g.z/jzj

�
and S.x; y; z/ D

y

z
� �
�
j.x; y/j

jzj

�
:

One can readily verify that (1.4) and (1.5) imply that F1 is C 2-flat on R3 n ¹E0º and S is
C 2-tame on R3 n ¹E0º. Recall that y2 � xz 2 I 2.E/. Thus, there exists a C 2-flat function
on R3 n ¹E0º, which we denote by F2, such that

(1.14) y2 � xz C F2.x; y; z/ D 0 on E n ¹E0º:
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Multiplying (1.14) by �y=z, we find that

(1.15) xy �
y3

z
�
y

z
F2.x; y; z/ D 0 on E n ¹E0º:

By our assumption that j.x; y/j � jzj for any .x; y; z/ 2 E and (1.3), we have that

�
�
j.x; y/j

g.z/jzj

�
D �

�
j.x; y/j

jzj

�
D 1 on E;

and so

F1 D
y3

z
and S D

y

z
on E:

Consequently, (1.15) implies that

(1.16) xy � ŒF1 C SF2� D 0 on E n ¹E0º:

Recall that F1 and F2 are C 2-flat on R3 n ¹E0º, and that S is C 2-tame on R3 n ¹E0º. Thanks
to Remark 1.1, we see that F2 C SF2 is C 2-tame on R3 n ¹E0º, and so (1.16) tells us that
xy 2 I 2.E/. This completes our analysis of Example 1.5.

We stress that we got crucial help from our knowledge of Allow.I /, which told us
whereE lives and permitted us to make use of the cutoff functions �. j.x;y/j

g.z/jzj
/ and �. j.x;y/j

jzj
/,

thus avoiding the singularities of the functions y3=z and y=z.

We are now ready to define the notion of an implied jet. Unfortunately, it is not so
simple.

Let I be an ideal in Pm
0 .R

n/, and let� � Sn�1 be the set of allowed directions for I .
We say that I implies a given jet p if there exist a constant A> 0 and jetsQ1; : : : ;QL 2 I
for which the following holds:

Given " > 0, there exist ı; r > 0 such that for any 0 < � � r , there exist functions
F; S1; : : : ; SL satisfying

j@˛F.Ex/j � "�m�j˛j for all �=4 < jExj < 4� and all j˛j � mI(1.17)

j@˛Sl .Ex/j � A�
�j˛j for all �=4 < jExj < 4�, all j˛j � m and all 1 � l � LI(1.18)

if �¤;; then p.Ex/DF.Ex/CS1.Ex/Q1.Ex/CS2.Ex/Q2.Ex/C � � � CSL.Ex/QL.Ex/(1.19)
for all �=2 < jExj < 2� such that dist.Ex=jExj; �/ < ı:

The point of this definition is as follows: suppose that I implies p, and suppose that
I D Im.E/ for some E. The functions S1; : : : ; SL; F in (1.17)–(1.19) are allowed to
depend on the length scale �, but by patching together the S1; : : : ; SL; F arising from all
small length scales, we can find functions S#

1 ; : : : S
#
L that are Cm-tame on Rn n ¹E0º and a

function F # that is Cm-flat on Rn n ¹E0º such that, in some punctured neighborhood of the
origin, we have

p.Ex/ D F #.Ex/C S#
1.Ex/Q1.Ex/C S

#
2.Ex/Q2.Ex/C � � � C S

#
L.Ex/QL.Ex/ on E:

An easy argument using Remark 1.1 then shows that p 2 I D Im.E/. Thus, if I D Im.E/
then I contains any jet p implied by I , i.e., Im.E/ is always closed (Theorem 2.18 below).
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Let us see how the above definition applies to Example 1.5 by verifying that I implies
pD xy. Recall that�DAllow.I / is contained in ¹.0;0;˙1/º. We takeQ1 to be y2 � xz,
and we take (for instance) A D 109. Given " > 0, we take (for instance) ı D r D "=109.

Now, given 0 < � � r , we must produce functions F and S1 satisfying (1.17), (1.18),
and (1.19) above. We will take

F D
y3

z
� �
�
j.x; y/j

ı � �

�
and S1 D �

y

z
� �
�
j.x; y/j

�

�
;

where � is a C 3-smooth one variable cutoff function defined on Œ0;1�, equal to 1 on Œ0; 4�,
supported on Œ0; 8�, and such that � and its derivatives up to order 3 have absolute value at
most 100.

The aboveF and S1 satisfy (1.17),(1.18), and (1.19). In fact, for �=4< jExj<4�, (1.18)
is easily verified, and (1.17) holds since j@˛F.Ex/j D O.ı3�j˛j � �2�j˛j/ for all j˛j � 2. To
check (1.19), we note that �. j.x;y/j

ı�
/ D �. j.x;y/j

�
/ D 1 for �=2 < j.x; y; z/j < 2� such that

dist.Ex=jExj;�/ < ı. Consequently, (1.19) reduces to the equation xy D .�y=z/.y2 � xz/
Cy3=z. Thus, as promised, I implies xy in Example 1.5. The cutoff function �. j.x;y/j

ı ��
/

here plays the role of the cutoff �. j.x;y/j
g.jzj/�jzj

/ in Example 1.5.

Calculating implied jets

So we have defined the notion that an ideal I implies a jet p. How can we show in practice
that a given ideal I implies a given jet p? In Section 3 we develop tools that answer this
question, by introducing the notions of strong implication and strong directional implica-
tion. These notions use the definition of negligible functions, that is quite technical, but
relatively easy to work with. Then, we show that if a given jet p is strongly implied by a
given ideal I in any allowed direction of I , then the jet p is implied by I (Corollary 3.18).
We also provide an easy algorithm to calculate the set of allowed directions of a given ideal
(Corollary 3.3) – if we are given a basis of an ideal I , this algorithm always produces a set
that contains Allow.I /, and sometimes it calculates Allow.I / exactly. We routinely use
these tools in [10] when we exhibit many examples of closed ideals.

Calculating the closure of an ideal

Recall once more that the closure of I consists of all the jets implied by I , and that I
is closed if and only if it is equal to its closure. How can we calculate the closure of
a given ideal I , i.e., how can we calculate a basis for the space of all implied jets of a
given ideal? We answer this question in Section 4. In this section we show how to realize
the conditions defining implied jets as conditions about the existence of sections of some
semi-algebraic bundles (bundles in the sense of Fefferman–Luli; see [7]). Consequently,
we also explain how, in principle, we can calculate the closure of a given ideal using well
known results regarding the spaces of sections of such bundles. This algorithm is based
on results from [8, 9].

We stress that the tools in Section 3 provide useful information in many particular
cases in which we want to show that a given ideal implies a given jet, but (as far as we
know) are not guaranteed to work in general. On the other hand, the algorithm in Section 4
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is guaranteed to compute the closure of any given ideal of m-jets, but is unfortunately far
too labor-intensive to use in practice.

2. Closed ideals and a necessary condition

As said, we start a rigorous construction of our theory below, and do not rely on anything
defined in the introduction. Let us start by fixing notation.

2.1. Notation

We work in Rn with Euclidean metric, and most of the notation we use is standard.
Functions. For an open subset U � Rn and m 2 N [ ¹0º, we denote by Cm.U / the

space of real valued m-times continuously differentiable functions. We use multi-index
notation for derivatives: for a multi-index ˛ WD .˛1; ˛2; : : : ; ˛n/ 2 .N [ ¹0º/n we set
j˛j WD ˛1 C � � � C ˛n and ˛Š WD ˛1Š˛2Š � � � ˛nŠ. For Ex D .x1; x2; : : : ; xn/ 2 Rn, we set
Ex˛ WD x

˛1
1 x

˛2
2 � � � x

˛n
n . If j˛j � m and f 2 Cm.U /, we write

f .˛/ WD
@j˛jf

@x
˛1
1 @x

˛2
2 � � � @x

˛n
n

when j˛j ¤ 0, and f .˛/ WD f when j˛j D 0. We sometimes write @˛f or @˛f instead
of f .˛/. When it is clear from the context, we will sometimes write fxy or @2xyf when
˛ D .1; 1; 0; 0; : : : ; 0/ and .x; y; z; : : : / is a coordinate system on Rn, and other such
similar conventional notation.

Asymptotic behaviors. For f; g 2 Cm.U / and Ex0 2 xU , we write

f .Ex/ D o.g.Ex// as Ex ! Ex0 if
f .Ex/

g.Ex/
! 0 as Ex ! Ex0:

If Ex0 is not specified, then Ex0 D E0, unless otherwise is clear from the context. We write

f .Ex/ D O.g.Ex// as Ex ! Ex0

if ˇ̌̌f .Ex/
g.Ex/

ˇ̌̌
is bounded in some punctured neighborhood of Ex0:

Again, if Ex0 is not specified, then Ex0 D E0, unless otherwise is clear from the context.
Balls, cones, annuli and other geometric objects. For r > 0, we set B.r/ WD ¹Ex 2 Rn W

jExj < rº and set B�.r/ WD B.r/ n ¹E0º, where n should be clear from the context. For two
sets X; Y � Rn, we set

dist.X; Y / WD inf¹jEx � Eyj W Ex 2 X; Ey 2 Y º if X ¤ ; and Y ¤ ;;
dist.X; Y / D C1 otherwise,

and if one of them is a singleton, we write dist.Ex;Y / instead of dist.¹Exº; Y /, and similarly
if the other is a singleton. We denote as usual Rn � Sn�1 WD ¹jExj D 1º, and refer to points
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points in Sn�1 as directions. For � � Sn�1 and ı > 0, we denote (the dome around � of
opening ı)

D.�; ı/ WD ¹! 2 Sn�1 W dist.!;�/ < ıº:

Note that in particular if � D ;, then D.�; ı/ D ;. Given (radius) r > 0, we set

�.�; ı; r/ WD
[

r 02.0;r/

r 0D.�; ı/ D ¹Ex 2 Rn W 0 < jExj < r; dist.Ex=jExj; �/ < ıº:

Note that in particular if � D ;, then �.�; ı; r/ D ;.
For a singleton ! 2 Sn�1, we write D.!; ı/ and �.!; ı; r/ instead of D.¹!º; ı/ and

�.¹!º; ı; r/, respectively. We call a set of the form �.!; ı; r/ (respectively, �.�; ı; r/) a
cone in the direction ! (respectively, around the set of directions � � Sn�1), or a conic
neighborhood of ! (respectively, of �). Note that some cones are non-convex. Also note
that for any � � Sn�1, ı > 0 and r > 0, we have that �.�; ı; "/ is open in Rn, and
D.�; ı/ is open in Sn�1 (in the restricted topology). Finally (when n is clear from the
context), for R 3 K � 1 and R 3 r > 0 we define the annulus

AnnK.r/ WD ¹Ex 2 Rn W r=K < jExj < Krº:

2.2. Basic definitions

Definition 2.1 (Jet spaces). Let m; n 2 N. For a real valued function f 2 Cm.Rn/, we
define the mth degree jet of f at the origin (or m-jet), denoted by Jm.f /, to be the mth

degree Taylor polynomial (that has degree at mostm) of f at the origin. The jet Jm.f / is
an element of the space of (at most)mth degree (Taylor) polynomials in n variables, which
we call the mth degree jet space at the origin, and denote by Pm.Rn/. This is naturally a
(commutative unital) ring, with multiplication given by PQ WD Jm.PQ/, however it is
not a integral domain, e.g., in Pm.R1/ we always have xm � x D 0. We stress that by PQ
(and P �Q) we always mean jet product, and not the produce in the ring of polynomials,
unless we say otherwise.

Note that Pm.Rn/ is a finite dimensional vector space, and that for any f;g2Cm.Rn/,
we have Jm.f � g/ D Jm.f / � Jm.g/. In order to avoid confusion, we will use the fol-
lowing notation.

Notation 2.2. Let F � Pm.Rn/ be a family of jets. We denote by hF im the ideal in
Pm.Rn/ generated by F . For instance, in the single variable case, we have hxim D
spanR¹x; x

2; : : : ; xmº.

Definition 2.3 (Order of vanishing of functions). Letm;n 2N, and let f 2 Cm.Rn/. The
order of vanishing (at the origin) of f is said to be

• the minimal 1 � m0 � m such that Jm
0

.f / ¤ 0, if such m0 exists and f .E0/ D 0;
• more than m, if Jm.f / D 0;

• 0, if f .E0/ ¤ 0.
The order of vanishing of a jet p 2Pm.Rn/ is the order of vanishing of the polynomial p.
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Note that every Cm-diffeomorphism �WRn!Rn that fixes the origin induces an auto-
morphism of Pm.Rn/ defined by p 7! Jm.p ı �/. This automorphism does not preserve
in general the degree (as a polynomial) of a jet, however it always preserves the order of
vanishing.

Definition 2.4. We set

Pm
0 .R

n/ WD ¹p 2 Pm.Rn/ j the order of vanishing of p is not 0º:

Note that Pm
0 .R

n/ is a (commutative) ring, but it is not unital. It is also a finite dimen-
sional vector space. Equivalently, one can define Pm

0 .R
n/ as the unique maximal ideal

in Pm.Rn/.

Definition 2.5. Let E � Rn be a closed set containing the origin. We define

Im.E/ WD ¹p 2 Pm.Rn/ j 9f 2 Cm.Rn/; f jE D 0; J
m.f / D pº:

2.2.1. Simple observations. Let E;E 0 � Rn be two closed sets, both containing the ori-
gin.

(i) Im.E/ only depends on the local behavior of E around the origin: if there exists
r > 0 such that E \ B.r/ D E 0 \ B.r/, then Im.E/ D Im.E 0/.

(ii) Im.E/ is an ideal in Pm.Rn/: indeed, let p 2 Im.E/ and p0 2 Pm.Rn/. Then,
there exists f 2 Cm.Rn/ such that Jm.f / D p and f jE D 0. Note that f � p0 is
a Cm function on Rn that vanishes on E, and Jm.f � p0/D p � p0. We conclude that
p � p0 2 Im.E/, i.e., Im.E/ C Pm.Rn/.

(iii) Im.E/ � Pm
0 .R

n/, in fact it is an ideal: Im.E/ C Pm
0 .R

n/.
(iv) Im.E [E 0/ � Im.E/ \ Im.E 0/.
(v) Im.E/ � Im.E \E 0/.

2.3. Allowed and forbidden directions of an ideal and tangent directions of a set

Definition 2.6 (Allowed and forbidden directions of jets and ideals).
� Let p1; p2; : : : ; pL 2 Pm

0 .R
n/ be jets, and let ! 2 Sn�1 be a direction. We say

that ! is a forbidden direction of p1; : : : ; pL if the following holds:

There exist c; ı; r > 0 such that(2.1)
jp1.Ex/j C jp2.Ex/j C � � � C jpL.Ex/j > c � jExj

m for all Ex 2 �.!; ı; r/:

Otherwise, we say that ! is an allowed direction of p1; : : : ; pL.
� Let I C Pm

0 .R
n/ be an ideal. A direction ! 2 Sn�1 is said to be a forbidden

direction of I if there exist p1; p2; : : : ; pL 2 I such that ! is a forbidden direction of
p1; p2; : : : ; pL. Otherwise, we say that ! is an allowed direction of I .

We denote the sets of forbidden and allowed directions of I by Forb.I / and Allow.I /,
respectively. Note that the set Allow.I / � Sn�1 is always closed.
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Definition 2.7 (Tangent, forbidden and allowed directions of a set). Let E � Rn be a
closed subset containing the origin and let ! 2 Sn�1. We say that E is tangent to the
direction ! if

E \ �.!; ı; r/ ¤ ; for all ı > 0 and all r > 0:

We denote by T .E/ � Sn�1 the set of all directions to which E is tangent. Finally, for a
fixed m 2 N, we say that ! is a forbidden (respectively, allowed ) direction of E, if ! is
a forbidden (respectively, allowed) direction of Im.E/. We denote the sets of forbidden
and allowed directions of E by Forb.E/ and Allow.E/, respectively (here m should be
implicitly understood from the context).

Lemma 2.8. Let E0 2 E � Rn be a closed subset and m 2 N. Then, T .E/ � Allow.E/.

Proof. Let ! 2 T .E/. Assume towards a contradiction that ! 2 Forb.E/D Forb.Im.E//.
By Definition 2.6 and (2.1), there exist p1; : : : ;pL 2 Im.E/ such that the following holds:

There exist c; ı; r > 0 such that(2.2)
jp1.Ex/j C jp2.Ex/j C � � � C jpL.Ex/j > c � jExj

m for all Ex 2 �.!; ı; r/:

By Definition 2.5, for 1 � l � L there exists fl 2 Cm.Rn/ such that fl .Ex/ D pl .Ex/C
rl .Ex/, where

rl .Ex/ D o.jExj
m/(2.3)

and fl jE D 0. As ! 2 T .E/, there exists a sequence of points

(2.4) ¹Exiº
1
iD1 � �.!; ı; r/ \E converging to the origin.

On any of these points we have

(2.5) 0 D jf1.Exi /j C � � � C jfL.Exi /j D jp1.Exi /C r1.Exi /j C � � � C jpL.Exi /C rL.Exi /j;

and dividing (2.5) by jxi jm ¤ 0, we get

0 D
jp1.Exi /C r1.Exi /j C � � � C jpL.Exi /C rL.Exi /j

jExi jm
(2.6)

�
jp1.Exi /j C � � � C jpL.Exi /j

jExi jm
�
jr1.Exi /j C � � � C jrL.Exi /j

jExi jm
�

Now (2.6) is a contradiction, as (2.2) and (2.4) imply that .jp1.Exi /jC � � � CjpL.Exi /j/=jExi jm

is bounded from below by c, while (2.3) and (2.4) imply that, as Exi approaches the origin,
.jr1.Exi /j C � � � C jrL.Exi /j/=jExi j

m goes to zero.

Lemma 2.9. Let E02E�Rn be a closed subset, letm2N and denote�DAllow.Im.E//.
Then, given ı > 0, there exists Nr > 0 such that

(2.7)
E \ B�. Nr/ � ¹Ex 2 B�. Nr/ W dist.Ex=jExj; �/ < ıº if � ¤ ;; and

E \ B�. Nr/ D ; if � D ;:
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Proof. Assume� ¤ ; and that the lemma does not hold. Then there exist ı > 0 and a se-
quence of points ¹Exiº1iD1 �E n ¹E0º converging to the origin such that dist.Exi=jExi j; �/ � ı
for any i 2 N. Since Sn�1 is compact, by possibly diluting the sequence ¹Exiº1iD1 we
may assume that Exi=jExi j ! !� 2 Sn�1 as i !1. In particular, dist.!�; �/ � ı and so
!� 2 Forb.Im.E//. By Lemma 2.8, !� … T .E/, so there exist ı�; r� > 0 such that

E \ �.!�; ı�; r�/ D ;:

Since Exi is converging to the origin, we may assume 0 < jExi j < r� for large enough i , and
since Exi=jExi j ! !�, we may assume jExi=jExi j � !�j < ı� for large enough i . Combining
these two we have that, for large enough i ,

Exi 2 �.!
�; ı�; r�/:

But Exi 2 E, so we have
E \ �.!�; ı�; r�/ ¤ ;;

which is a contradiction. The proof of the case � D ; is almost identical but slightly
simpler (essentially repeat the proof but omit the condition “dist.Exi=jExi j; �/ � ı, for any
i 2 N” in the very beginning), thus we leave it to the reader to verify the details.

2.4. Closed ideals – a fundamental property of ideals of the form Im.E/

Recall that (when n is clear from the context) for K � 1 and r > 0, we set

AnnK.r/ WD ¹Ex 2 Rn W r=K < jExj < Krº:

Definition 2.10 (Implied jets). Let I C Pm
0 .R

n/ be an ideal, denote� WD Allow.I /, and
let p 2 Pm

0 .R
n/ be some polynomial. We say that I implies p (or that p is implied by I )

if there exist a constant A > 0 and Q1;Q2; : : : ;QL 2 I such that the following holds:
For any " > 0, there exist ı; r > 0 such that for any 0 < � � r , there exist functions

F; S1; S2; : : : ; SL 2 C
m.Ann4.�// satisfying

j@˛F.Ex/j � "�m�j˛j for all Ex 2 Ann4.�/ and all j˛j � mI(2.8)

j@˛Sl .Ex/j � A�
�j˛j for all Ex 2 Ann4.�/, all j˛j � m and all 1 � l � LI(2.9)

p.Ex/ D F.Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/(2.10)
for all Ex 2 Ann2.�/ such that dist.Ex=jExj; �/ < ı:

Remark 2.11. Definition 2.10 asserts the existence of functions S1; : : : ; SL for some
L 2 N. One can define “1-implied jets” by only allowing L D 1, so for instance (2.10)
becomes “p.Ex/D F.Ex/C S1.Ex/Q1.Ex/ for all Ex 2Ann2.�/ such that dist.Ex=jExj;�/ < ı”.
Clearly, if a jet is 1-implied by an ideal, it is also implied by the same ideal. We do not
know whether the converse also holds; in particular, we are not able to construct an ideal I
and a jet p 2 Pm

0 .R
n/ such that p is implied by I , but p is not 1-implied by I . Similar

remarks can be made regarding Definition 3.11 and Definition 3.13.
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Definition 2.12 (The closure of an ideal). Let I C Pm
0 .R

n/ be an ideal. We define its
implication closure (or simply closure) cl.I / by

cl.I / WD ¹p 2 Pm
0 .R

n/ jp is implied by I º:

We say that I is closed if I D cl.I /.

Remark 2.13. Let p 2 I C Pm
0 .R

n/. Then, we can take A D 1; l D 1;Q1 D p; S1 D 1
and F D 0, and for any " > 0 take any ı; r > 0, to prove p 2 cl.I /. Thus, we always have
I � cl.I /. Moreover, the closure of any ideal is an ideal as well.

Lemma 2.14. Let I C Pm
0 .R

n/ be an ideal, denote� WDAllow.I /, and let p 2Pm
0 .R

n/

be some polynomial that is implied by I . Then, given K � 4, there exist a constant QA > 0
and Q1;Q2; : : : ;QL 2 I such that the following holds:

For any " > 0, there exist ı; r > 0 such that for any 0 < � � r , there exist functions
F; S1; S2; : : : ; SL 2 C

m.Rn/ satisfying

j@˛F.Ex/j � "�m�j˛j for all Ex 2 Rn and all j˛j � mI(2.11)

j@˛Sl .Ex/j � QA�
�j˛j for all Ex 2 Rn , all j˛j � m and all 1 � l � LI(2.12)

p.Ex/ D F.Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/(2.13)
for all Ex 2 AnnK.�/ such that dist.Ex=jExj; �/ < ı:

Proof. Let A > 0 and Q1; Q2; : : : ; QL 2 I be as in Definition 2.10, and let K � 4. Fix
" > 0 and set Q" WD "

2C 00
, where C 00 is a constant depending only on m; n; K and A, to

be determined below. Corresponding to Q", let ı; r > 0 be as in Definition 2.10, and set
Qr D r

1000K
. Suppose 0 < � � r

1000K
. We introduce a partition of unity ¹��º�D1;:::;�max ,

satisfying:
• for all � D 1; : : : ; �max, �� 2 C1.Rn/ and supp�� � Ann2.��/ for some �

1000K
�

�� � 1000K�.
• �max � C ;

• 1 D
�maxP
�D1

��.Ex/ for any Ex 2 Ann40K.�/;

• j@˛��.Ex/j �C 0�
�j˛j
� � .1000K/mC 0��j˛j for any Ex 2Rn, �D 1; : : : ;�max and j˛j �m,

where above C and C 0 are positive constants depending only on m; n; K and A. By
Definition 2.10, for each � D 1; : : : ; �max there exist functions F � ; S�1 ; S

�
2 ; : : : ; S

�
L 2

Cm.Ann4.��// satisfying

j@˛F �.Ex/j � Q"�m�j˛j� � .1000K/m Q"�m�j˛j(2.14)
for all Ex 2 Ann4.��/ and all j˛j � mI

j@˛S�l .Ex/j � A�
�j˛j
� � .1000K/mA��j˛j(2.15)

for all Ex 2 Ann4.�/, j˛j � m and all 1 � l � LI
p.Ex/ D F �.Ex/C S�1 .Ex/Q1.Ex/C S

�
2 .Ex/Q2.Ex/C � � � C S

�
L.Ex/QL.Ex/(2.16)

for all Ex 2 Ann2.��/ such that dist.Ex=jExj; �/ < ı:
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Define

F D

�maxX
�D1

��F
�
2 Cm.Rn/;

and for l D 1; : : : ; L define

Sl D

�maxX
�D1

�� S
�
l 2 C

m.Rn/:

Then, (2.14)–(2.16), together with the properties of ¹��º�D1;:::;�max , imply that

j@˛F.Ex/j � C 00 Q"�m�j˛j D "
2
�m�j˛j < "�m�j˛j for all Ex 2 Rn and all j˛j � mI(2.17)

j@˛Sl .Ex/j � QA�
�j˛j
� for all Ex 2 Rn, j˛j � m and all 1 � l � LI(2.18)

p.Ex/ D

�maxX
�D1

��.Ex/p.Ex/(2.19)

D

�maxX
�D1

��.Ex/ŒF
�.Ex/C S�1 .Ex/Q1.Ex/C S

�
2 .Ex/Q2.Ex/C � � � C S

�
L.Ex/QL.Ex/�

D F.Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/

for all Ex 2 AnnK.�/ such that dist.Ex=jExj; �/ < ı;

where above C 00 and QA are positive constants depending only on m; n;K and A.
Finally, for a fixed " > 0, we let ı; Qr > 0 be as above. So for a given 0 < � � Qr we

have produced functions F;S1; S2; : : : ; SL 2 Cm.Rn/ satisfying (2.17)–(2.19), which are
equivalent to (2.11)–(2.13), and so the lemma holds.

Lemma 2.15. Definition 2.10 is invariant with respect to Cm coordinate changes around
the origin, namely: let I C Pm

0 .R
n/ be an ideal, let p 2 Pm

0 .R
n/ be some polynomial,

and assume I implies p. Let �WRn ! Rn be a Cm-diffeomorphism that fixes the origin,
recall it induces an automorphism of Pm.Rn/ defined by p 7! Jm.p ı �/, and denote
this automorphism by ��. Then, ��.I / implies ��.p/. In particular, the property of an
ideal being closed is invariant with respect to Cm coordinate changes around the origin.

Proof. The image of any cone under anyCm coordinate change around the origin contains
a cone. Thus, the notion of allowed directions of an ideal is invariant under Cm coordinate
changes around the origin, up to a linear coordinate change (that arises from the Jacobian
of the Cm coordinate change). The image of any annulus centered at the origin under
any Cm coordinate change around the origin is contained in an annulus centered at the
origin. These two facts together with Lemma 2.14 prove the lemma. We leave it to the
reader to verify the details.

Remark 2.16. Another invariant of a given ideal I with respect toCm coordinate changes
is dim spanRAllow.I / – we will use this fact often in [10].
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Corollary 2.17 (Sets with no allowed directions). The only closed ideal I C Pm
0 .R

n/

such that Allow.I / D ; is I D Pm
0 .R

n/. Moreover, if E � Rn is a closed subset con-
taining the origin such that Allow.Im.E// D ;, then the origin is an isolated point of E
and Im.E/ D Pm

0 .R
n/.

Proof. If I is closed and Allow.I /D ;, then any jet in Pm
0 .R

n/ is implied by I as (2.10)
vacuously holds (to satisfy (2.8) and (2.9), one may take A D 1; l D 1;Q1 D 0; S1 D 0
and F D 0). This proves that the only closed ideal I C Pm

0 .R
n/ such that Allow.I / D ;

is I D Pm
0 .R

n/. The “moreover” part follows from Lemma 2.9, the observation (i) in
Subsection 2.2.1, and the fact that Im.¹E0º/ D Pm

0 .R
n/.

Theorem 2.18. Fix m; n 2 N and let E � Rn be a closed subset containing the origin.
Then, Im.E/ C Pm

0 .R
n/ is a closed ideal.

Proof. Denote � D Allow.Im.E//. If � D ;, then the theorem follows from Corol-
lary 2.17. So we assume � ¤ ;. Let p 2 Pm

0 .R
n/ be implied by Im.E/, and let A > 0

and Q1; : : : ; QL 2 Im.E/ be such that the upshot of Definition 2.10 holds. For k 2 N,
set "k D 2�k and let ık ; rk correspond to "k as in Definition 2.10. Given 0 < � � rk , there
exist functions F; S1; S2; : : : ; SL 2 Cm.Ann4.�// such that

j@˛F.Ex/j � "k �
m�j˛j for all Ex 2 Ann4.�/ and all j˛j � mI(2.20)

j@˛Sl .Ex/j � A�
�j˛j for all Ex 2 Ann4.�/, all j˛j � m and all 1 � l � LI(2.21)

p.Ex/ D F.Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/(2.22)
for all Ex 2 Ann2.�/ such that dist.Ex=jExj; �/ < ık :

By Lemma 2.9, there exists Nrk > 0 such that

E \ B�.4 Nrk/ � ¹Ex 2 B
�.4 Nrk/ W dist.Ex=jExj; �/ < ıkº:(2.23)

Replacing Nrk by a smaller number preserves (2.23), so without loss of generality we may
assume that, for any k 2 N, Nrk is a negative integer power of 2, Nrk < rk , and NrkC1 �
2�10 Nrk . In particular, Nrk ! 0 as k !1.

Set �min to be the unique integer such that Nr1 D 2��min . For N 3 � � �min, set k.�/
to be the unique integer such that Nrk.�/C1 < 2�� � Nrk.�/. Then, for any � � �min we in
particular have 2�� � Nrk.�/ < rk.�/, so setting � WD 2�� in (2.20)–(2.22) above, we obtain
functions F � ; S�1 ; S

�
2 ; : : : ; S

�
L 2 C

m.Ann4.2��// such that

j@˛F �.Ex/j � "k.�/ .2
��/m�j˛j for all Ex 2 Ann4.2��/ and all j˛j � mI(2.24)

j@˛S�l .Ex/j � A.2
��/�j˛j for all Ex 2 Ann4.2��/, all j˛j � m and all 1 � l � LI(2.25)

p.Ex/ D F �.Ex/C S�1 .Ex/Q1.Ex/C S
�
2 .Ex/Q2.Ex/C � � � C S

�
L.Ex/QL.Ex/(2.26)

for all Ex 2 Ann2.2��/ such that dist.Ex=jExj; �/ < ık.�/:

Since 2 � 2�� < 4 Nrk.�/, we have that (2.23) and (2.26) imply that

(2.27) p.Ex/ D F �.Ex/C S�1 .Ex/Q1.Ex/C S
�
2 .Ex/Q2.Ex/C � � � C S

�
L.Ex/QL.Ex/

for all Ex 2 E \ Ann2.2��/:
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Note that k.�/!1 as � !1, and so

(2.28) "k.�/ D 2
�k.�/

! 0 as � !1:

Let ¹�� 2 Cm.Rn/º���min be such that, for some constant C1 > 0 (that depends only on
m and n), we have

0 � ��.Ex/ � 1 for all Ex 2 Rn and supp.��/ � Ann2.2��/ for all � � �minI(2.29)

j@˛��.Ex/j � C1.2
��/�j˛j for all Ex 2 Rn; all j˛j � m and all � � �minI(2.30) X

���min

��.Ex/ D 1 for all 0 < jExj � 2�10 � 2��min :(2.31)

We now define F; S1; S2; : : : ; SL 2 Cm.Rn n ¹E0º/ by

F.Ex/ WD
X
���min

��.Ex/F
�.Ex/ and Sl .Ex/ WD

X
���min

��.Ex/S
�
l .Ex/:

Fix an integer � and suppose 2�.�C1/ < jExj � 2��. Then, Ex 2 supp.��/ D Ann2.2��/
(recall (2.29)) only for � satisfying j� � �j � 2, since 2�.�C1/ < jExj< 2 � 2�� and 1

2
2�� <

jExj < 2��. Consequently, (2.24) and (2.30) yield that for some constants C2; C3 > 0 (that
depend only on m and n), we have

j@˛F.Ex/j �
X

j���j�2I���0

C2 "k.�/ .2
��/m�j˛j � C3

h X
j���j�2I���0

"k.�/

i
.2��/m�j˛j(2.32)

for all 2�.�C1/ < jExj � 2��; j˛j � m and all � 2 Z:

For a constant C4 > 0 (that depends only on m and n), we have also

(2.33) j@˛Sl .Ex/j�C4A.2��/�j˛j for 2���1< jExj�2�� , for all j˛j�m and all ���min:

Recall that Nr1 D 2��min , and (2.28), (2.32) and (2.33) imply that for some constant C5 > 0
(that depends only on m and n), we have

j@˛F.Ex/j D o.jExjm�˛/ as jExj ! 0 for all j˛j � m;(2.34)

j@˛Sl .Ex/j � jExj
j˛j < C5A for all Ex 2 B�.2�10 � Nr1/ and all j˛j � m:(2.35)

Now, (2.27), (2.29) and (2.31) imply that

(2.36) p.Ex/ D F.Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/

for all Ex 2 E \ B�.2�10 � Nr1/:

Let � 2 C1.Rn/ be such that � identically equals 1 on B�.2�11 � Nr1/ and supp.�/ �
.2�10 � Nr1/. Then, (2.36) implies that, for all Ex 2 E n ¹E0º,

p.Ex/ D Œ.1 � �.Ex// � p.Ex/C �.Ex/ � F.Ex/�(2.37)
C �.Ex/ � ŒS1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/�:
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We now define QF 2 Cm.Rn/ (thanks to (2.34)) and QS1; QS2; : : : ; QSL 2 Cm.Rn n ¹E0º/ by

QF WD

´
.1 � �.Ex// � p.Ex/C �.Ex/ � F.Ex/ if Ex ¤ E0;
0 if Ex D E0;

and QSl .Ex/ WD �.Ex/ � Sl .Ex/;

and thanks to (2.37), (2.34) and (2.35), respectively, we get

p.Ex/ D QF .Ex/C QS1.Ex/Q1.Ex/C QS2.Ex/Q2.Ex/C � � � C QSL.Ex/QL.Ex/(2.38)

for all Ex 2 E n ¹E0ºI

Jm. QF / D 0I(2.39)

j@˛ QSl .Ex/j D O.jExj
�˛/ for all j˛j � m and all 1 � l � L:(2.40)

We recall that for any 1 � l � L, Ql 2 Im.E/, so there exists F #
l
2 Cm.Rn/ with

Jm.F #
l
/ D 0 such that Ql C F #

l
D 0 on E. So now (2.38) implies that

p.Ex/ D
h
QF .Ex/ �

LX
lD1

QSl .Ex/F
#
l .Ex/

i
C

LX
lD1

QSl .Ex/ ŒQl .Ex/C F
#
l .Ex/�(2.41)

D

h
QF .Ex/ �

LX
lD1

QSl .Ex/F
#
l .Ex/

i
for all Ex 2 E n ¹E0º:

Finally, we define

F #.Ex/ WD

´PL
lD1
QSl .Ex/F

#
l
.Ex/ � QF .Ex/ if Ex ¤ E0;

0 if Ex D E0:

Since QF ;F #
1 ; F

#
2 ; : : : ; F

#
L 2 C

m.Rn/ and Jm. QF /D Jm.F #
1 /D J

m.F #
2 /D � � � D J

m.F #
L/

D 0, we get from (2.40) that F # 2 Cm.Rn/ and Jm.F #/ D 0. Moreover, from (2.41) we
get that p C F # vanishes identically on E. We conclude that p 2 Im.E/, i.e., Im.E/ is
indeed closed.

Question 2.19 (Being closed is sufficient). Fix m; n 2 N. Is it true that for any closed
ideal I C Pm

0 .R
n/ there exists a closed subset E � Rn containing the origin such that

I D Im.E/?

Question 2.20 (Semi-algebraic sets suffice). Fix m; n 2 N and let E � Rn be a closed
subset containing the origin. Is it true that there always exists a semi-algebraic subset
E 0 � Rn containing the origin such that Im.E/ D Im.E 0/?

3. Calculating implied jets

3.1. Calculating the allowed directions of an ideal

Definition 3.1 (Lowest degree homogenous part). Let p 2Pm
0 .R

n/ be a non-zero jet. We
may always uniquely write p D pk C q, with pk a homogenous polynomial of degree k,
where k is the order of vanishing of p (as p is not the zero jet, we have 1 � k � m, see
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Definition 2.3), and q is a (possibly zero) polynomial of order of vanishing more than k.
We call pk the lowest degree homogenous part of p.

The proof of the following lemma is straightforward, and so left to the reader.

Lemma 3.2. Let p 2 Pm
0 .R

n/ be a non-zero jet and let ! 2 Sn�1 be a direction. Let pk
be the lowest degree homogenous part of p. Then, the following are equivalent:

there exist a cone �.!; ı; r/ and c > 0 such that(3.1)

jp.Ex/j > c � jExjk for all Ex 2 �.!; ı; r/I

pk.!/ ¤ 0:(3.2)

Corollary 3.3. Let I D hp1; p2; : : : ; pt im C Pm
0 .R

n/ be an ideal. Then,

Allow.I / �
t\
iD1

¹ the zero set in Sn�1 of the lowest degree homogenous part of piº:

Moreover, if p1; p2; : : : ; pt are all homogenous, then

Allow.I / D
t\
iD1

¹ the zero set in Sn�1 of piº:

Proof. The first part follows immediately from Lemma 3.2 and the fact that (3.1) obvi-
ously implies (2.1). It is left to the reader to verify the “moreover” part, as it now follows
easily from Definition 2.6.

3.2. Negligible functions

Definition 3.4 (Negligible functions). Let U �Rn be open and let�� Sn�1. A function
F 2 Cm.U / is .m-)negligible for � if for all " > 0 there exist ı > 0 and r > 0 such that
the following hold:

�.�; ı; r/ � U I(3.3)

j@˛F.Ex/j � "jExjm�j˛j for all Ex 2 �.�; ı; r/ and all j˛j � mI(3.4) ˇ̌̌
@˛F.Ex/ �

X
j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex � Ey/

ˇ̌̌
� "jEx � Eyjm�j˛j(3.5)

for all Ex; Ey 2 �.�; ı; r/ distinct, and all j˛j � m:

Example 3.5 (Follows easily from Taylor’s theorem). If there exists r > 0 such that
B.r/ � U and Jm.F / D 0, then F is negligible for �, for any � � Sn�1.

Definition 3.6 (Whitney-negligible functions). Let U � Rn be open and let � � Sn�1.
A function F 2 Cm.U / is Whitney-.m-)negligible for � if for all " > 0 there exist ı > 0,
r > 0 and F" 2 Cm.Rn n ¹E0º/ such that the following hold:

�.�; ı; r/ � U I(3.6)

j@˛F".Ex/j � "jExj
m�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � mI(3.7)

F".Ex/ D F.Ex/ for all Ex 2 �.�; ı; r/:(3.8)
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We will show that a function is negligible if and only if it is Whitney-negligible
(Lemma 3.8). Before we do that, we state and prove a preliminary lemma that follows
from Whitney’s extension theorem.

Lemma 3.7. Fix m; n 2 N. There exists a constant C.m; n/ > 0 depending only on m
and n such that the following holds:

Let ; ¤ � � Sn�1, ı > 0, and F 2 Cm.Uı/, where Uı D ¹Ex 2 Rn W 1=10 < jExj < 1;
dist.Ex=jExj; �/ < ıº. Also set QUı D ¹Ex 2 Rn W 1=2 � jExj � 2=3; dist.Ex=jExj; �/ � ı=2º.
Let M > 0 be such that

j@˛F.Ex/j �M for all Ex 2 Uı and all j˛j � mI(3.9) ˇ̌̌
@˛F.Ex/ �

X
j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex � Ey/

ˇ̌̌
�M jEx � Eyjm�j˛j(3.10)

for all Ex; Ey 2 Uı distinct, and all j˛j � m:

Then, there exists QF 2 Cm.Rn/ such that

j@˛ QF .Ex/j � C.m; n/ �M for all Ex 2 Rn and all j˛j � mI(3.11)
QF .Ex/ D F.Ex/ for all Ex 2 QUı :(3.12)

Proof. We start by checking that the following holds:

(3.13)
ˇ̌̌
@˛F.Ex/ �

X
j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex � Ey/

ˇ̌̌
D o.jEx � Eyjm�j˛j/

as jEx � Eyj ! 0; subject to Ex; Ey 2 QUı distinct, and all j˛j � m:

Indeed, suppose (3.13) does not hold. Then, there exist a multi-index ˛0 with j˛0j � m, a
number � > 0 and for any � 2 N distinct points Ex� ; Ey� 2 QUı such that jEx� � Ey� j ! 0 as
� !1 and, for all � 2 N,ˇ̌̌

@˛0F.Ex�/ �
X

j j�m�j˛oj

1

Š
@˛0CF. Ey�/ � .Ex� � Ey�/


ˇ̌̌
� � � jEx� � Ey� j

m�j˛0j:(3.14)

Since QUı is a compact that is contained in the open set Uı , by passing to a subsequence we
may assume Ex� ; Ey� ! Ez 2 Uı as � !1, and that moreover there exists a closed ball B
centered at Ez such that B � Uı and Ex� ; Ey� 2 B for any � 2 N. Note that F , and all of its
derivatives up to order m, are uniformly continuous on the closed ball B . Let !.�/ be the
modulus of continuity of the mth derivatives of F on B . Then,

!.t/! 0 as t ! 0;(3.15)

and by Taylor’s theorem there exists a constant QC.m; n/ > 0 depending only on m and n
such thatˇ̌̌

@˛F.Ex/ �
X

j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex� Ey/

ˇ̌̌
� QC.m; n/ � !.jEx� Eyj/ � jEx� Eyjm�j˛j(3.16)

for all Ex; Ey 2 B distinct, and all j˛j � m:
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Applying (3.15) and (3.16) with Ex D Ex� and Ey D Ey� we get

ˇ̌̌
@˛0F.Ex�/ �

X
j j�m�j˛oj

1

Š
@˛0CF. Ey�/ � .Ex� � Ey�/


ˇ̌̌
D o.

ˇ̌
Ex� � Ey�

ˇ̌m�j˛0j
/ as � !1:

(3.17)

Now, (3.17) clearly contradicts (3.14), and so we proved that (3.13) holds.
Set P Ex D JExF (themth-jet of F about Ex) for any Ex 2 QUı . Now (3.9), (3.10) and (3.13)

tell us that

j.@˛P Ex/.Ex/j �M for all Ex 2 QUı and all j˛j � mI(3.18) ˇ̌̌
.@˛P Ex/.Ex/ �

X
j j�m�j˛j

1

Š
Œ.@˛CP Ey/. Ey/� � .Ex � Ey/

ˇ̌̌
�M jEx � Eyjm�j˛j(3.19)

for all Ex; Ey 2 QUı distinct, and for all j˛j � mI

and

(3.20)
ˇ̌̌
.@˛P Ex/.Ex/ �

X
j j�m�j˛j

1

Š
Œ.@˛CP Ey/. Ey/� � .Ex � Ey/

ˇ̌̌
D o.jEx � Eyjm�j˛j/

as jEx � Eyj ! 0; subject to Ex; Ey 2 QUı distinct, for all j˛j � m:

The above (3.18)–(3.20) are the hypothesis of the classical Whitney extension theorem
(see [11] and Theorem 2.3 in [6]), and so there exists a constant C.m; n/ > 0 depending
only on m and n and QF 2 Cm.Rn/ such that

(3.21)
ˇ̌
@˛ QF .Ex/

ˇ̌
� C.m; n/ �M for all Ex 2 Rn and all j˛j � mI

and

(3.22) JEx. QF / D P
Ex.D JExF / for all Ex 2 QUı :

In particular, (3.22) implies that

(3.23) QF .Ex/ D F.Ex/ for all Ex 2 QUı ;

which together with (3.21) implies that (3.11) and (3.12) indeed hold.

Lemma 3.8. Definitions 3.4 and 3.6 coincide. That is, let U � Rn be open, let�� Sn�1

and let F 2 Cm.U /. Then, F is negligible for � if and only if F is Whitney-negligible
for �.

Proof. If � D ;, then one readily sees that any F 2 Cm.U / is both negligible for � and
Whitney-negligible for �, so we only need to show the equivalence of Definitions 3.4
and 3.6 for � ¤ ;. Let F be Whitney-negligible for � ¤ ; and fix " > 0. Let ı; r and F"
be such that (3.7) and (3.8) hold. We immediately have from (3.7) and (3.8) that

(3.24) j@˛F.Ex/j � " jExjm�j˛j for all Ex 2 �.�; ı; r/ and all j˛j � m:
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Moreover, (3.7) and (3.8) together with Taylor’s theorem imply that for some constant
C1 > 0 (that depends only on m and n) we have

(3.25)
ˇ̌̌
@˛F.Ex/ �

X
j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex � Ey/

ˇ̌̌
� C1"jEx � Eyj

m�j˛j

for all Ex; Ey 2 �.�; ı; r/ distinct, and all j˛j � m:

We conclude that F is negligible for U .
Let F be negligible for � and fix " > 0. Let ı and r be such that (3.3), (3.4) and (3.5)

hold, and without loss of generality assume r < 1. We recall that

�.�; ı; r/ D ¹Ex 2 Rn W 0 < jExj < r; dist.Ex=jExj; �/ < ıº;

and for any 0 < � � r , we set

E.�/ WD ¹Ex 2 Rn W �=10 < jExj < �; dist.Ex=jExj; �/ < ıº:

We then have from (3.4) and (3.5) that for some constant C2 > 0, that depends only on m
and n,

j@˛F.Ex/j � C2 "�
m�j˛j for all Ex 2 E.�/ and all j˛j � mI(3.26) ˇ̌̌

@˛F.Ex/ �
X

j j�m�j˛j

1

Š
@˛CF. Ey/ � .Ex � Ey/

ˇ̌̌
� C2 " jEx � Eyj

m�j˛j(3.27)

for all Ex; Ey 2 E.�/ distinct, and all j˛j � m:

Define a function G 2 Cm.��1E.�// by G.Ex/ WD F.�Ex/. From (3.26) and (3.27) we get
that ˇ̌

@˛G.Ex/
ˇ̌
� C2"�

m for all Ex 2 ��1E.�/ and all j˛j � mI(3.28) ˇ̌̌
@˛G.Ex/ �

X
j j�m�j˛j

1

Š
@˛CG. Ey/ � .Ex � Ey/

ˇ̌̌
� C2 "�

m
jEx � Eyjm�j˛j(3.29)

for all Ex; Ey 2 ��1E.�/ distinct, and all j˛j � m:

Define
OE.�/ WD ¹Ex 2 Rn W �=2 < jExj < 2�=3; dist.Ex=jExj; �/ < ı=2º:

Applying Lemma 3.7 we find that there exists G� 2 Cm.Rn/ such that

j@˛G�.Ex/j � C.m; n/ � C2 "�
m for all Ex 2 Rn and all j˛j � mI(3.30)

G�.Ex/ D G.Ex/ for all Ex 2 ��1 OE.�/:(3.31)

Define a function F� 2 Cm.Rn/ by F�.Ex/ WD G�.��1 Ex/. From (3.30) and (3.31) we get
that

j@˛F�.Ex/j � C.m; n/ � C2 "�
m�j˛j for all Ex 2 Rn and all j˛j � mI(3.32)

F�.Ex/ D F.Ex/ for all Ex 2 OE.�/:(3.33)
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For k 2 N [ ¹0º set �k WD . 910 /
kr and let �k 2 Cm.Rn/ be such that the following hold:

1X
kD0

�k.Ex/ D 1 for all 0 < jExj � r=10I(3.34)

supp �k � ¹�k=2 � jExj � 2�k=3ºI(3.35)

j@˛�k.Ex/j � C3 � �
�j˛j

k
for all Ex 2 Rn and all j˛j � m;(3.36)

where C3 is some constant depending on m and n only. Define QF 2 Cm.Rn n ¹E0º/ by

QF .Ex/ WD

1X
kD0

�k.Ex/ � F�k .Ex/:

We have from (3.32), (3.35) and (3.36) that for some constant C4 > 0 that depends only
on m and n,

(3.37) j@˛ QF .Ex/j � C4 " jExj
m�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � m;

and from (3.33), (3.34) and (3.35) we have

(3.38) QF .Ex/ D F.Ex/ for all Ex 2 �.�; ı=2; r=10/:

We conclude that from (3.37) and (3.38) that F is Whitney-negligible for U .

Example 3.9. Set n D 3, m D 2 and .x; y; z/ a standard coordinate system on R3. Let
U D R3 n ¹z D 0º, � D ¹.0; 0;˙1/º � S2 and let F.x; y; z/ D y3=z 2 C 2.U /. Then,
F is negligible for � \D.!; 10�3/, for any ! 2 �.

Indeed, fixing ! 2 �, we have � \ D.!; 10�3/ D ¹!º. Given " > 0 (and we are
allowed to assume " < 1), one has to find ı; r > 0 such that (3.3), (3.4) and (3.5) hold,
with � being replaced by ¹!º. We claim that taking ı D 10�100 � "10 and r D 1, we
satisfy (3.3), (3.4) and (3.5): indeed, (3.3) holds trivially. In order to see (3.4) we note that
on �.!; 10�100 � "10; 1/, we have jyj < j "

10
zj. So on this cone we have:

jF .0;0;0/.x; y; z/j D
ˇ̌̌y3
z

ˇ̌̌
<
ˇ̌̌ "3z2
1000

ˇ̌̌
< ".x2 C y2 C z2/ D " jExj2I

jF .0;1;0/.x; y; z/j D
ˇ̌̌3y2
z

ˇ̌̌
<
ˇ̌̌3"2z
100

ˇ̌̌
< ".x2 C y2 C z2/1=2 D " jExjI

jF .0;0;1/.x; y; z/j D
ˇ̌̌
�y3

z2

ˇ̌̌
<
ˇ̌̌ "3z
1000

ˇ̌̌
< ".x2 C y2 C z2/1=2 D " jExjI

jF .0;2;0/.x; y; z/j D
ˇ̌̌6y
z

ˇ̌̌
<
ˇ̌̌ 6
10
"
ˇ̌̌
< "I jF .0;0;2/.x; y; z/j D

ˇ̌̌2y3
z3

ˇ̌̌
<
ˇ̌̌ 2"3
1000

ˇ̌̌
< "I

jF .0;1;1/.x; y; z/j D
ˇ̌̌
�3y2

z2

ˇ̌̌
<
ˇ̌̌ 3"2
100

ˇ̌̌
< ":

All the other partial derivatives of F are identically zero, so we showed that indeed (3.4)
holds. Finally, as �.!; 10�100 � "10; 1/ is convex, Taylor’s theorem together with (3.4)
implies (3.5).
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Lemma 3.10 (Patching negligible functions). Let U � Rn be open and let � � Sn�1.
Let ı1 : : : ; ıK > 0, let !1; : : : ; !K 2 Sn�1 and define �k WD � \ D.!k ; ık/ for any
1 � k � K. Suppose that for any 1 � k � K we are given Fk 2 Cm.U / such that Fk
is Whitney-negligible (or equivalently, negligible) for �k . Suppose that moreover we are
given �1; : : : ; �K 2 Cm.Rn n ¹E0º/ and a constant OC > 0 such that for any 1 � k � K we
have

supp�k �
°
Ex 2 Rn W

ˇ̌̌
Ex

jExj
� !k

ˇ̌̌
�
2

3
ık

±
I and(3.39)

j@˛�k.Ex/j � OC jExj
�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � m:(3.40)

Then, F.Ex/ D
PK
kD1 �k.Ex/ � Fk.Ex/ is Whitney-negligible .or equivalently, negligible/

for �.

Proof. Fix " > 0 and for each 1 � k �K let rk ; Qık > 0 and QF";k 2 Cm.Rn n ¹E0º/ be such
that (3.6), (3.7) and (3.8) hold for �k . So we have

j@˛ QF";k.Ex/j � "jExj
m�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � mI(3.41)

QF";k.Ex/ D Fk.Ex/ for all Ex 2 �.�k ; Qık ; rk/:(3.42)

Since (3.6), (3.8) and (3.42) are preserved under replacing ı and Qık by smaller numbers,
we may assume without loss of generality that Qık � ık for each 1 � k � K. Set

QF".Ex/ WD

KX
kD1

�k.Ex/ � QF";k.Ex/:

By (3.40) and (3.41) for some constant C1 > 0 (that may be dependent on K as well, in
addition to m and n) we have

(3.43) j@˛ QF".Ex/j � C1 OC "jExj
m�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � m:

Now set r WD 10�10min¹r1; : : : ; rKº, ı WD 10�9min¹Qı1; : : : ; QıKº, and let Ex 2 �.�;ı; r/. In
particular, we have 0< jExj< r � rk for any 1� k �K. Suppose that moreover Ex 2 supp�k
for some 1 � k � K. We then have by (3.39) thatˇ̌̌

Ex

jExj
� !k

ˇ̌̌
�
2

3
ık ;

and moreover, since Ex 2 �.�; ı; r/, we also haveˇ̌̌
Ex

jExj
� !00

ˇ̌̌
� 10�9 Qık � 10

�9 ık for some !00 2 �:

We conclude that

j!00 � !kj �
2

3
ık C 10

�9 ık < ık for some !00 2 �;

hence !00 2 �k , and so dist.Ex=jExj;�k/ < Qık . Recall that also 0 < jExj � rk , and therefore
Ex 2 �.�k ; Qık ; rk/. We conclude from (3.42) that

QF";k.Ex/ D Fk.Ex/ for all Ex 2 �.�; ı; r/ \ supp�k :(3.44)
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Consequently, we have

QF".Ex/ D

KX
kD1

�k.Ex/ � QF";k.Ex/ D

KX
kD1

�k.Ex/ � Fk.Ex/ D F.Ex/ for all Ex 2 �.�; ı; r/;

which together with (3.43) proves that F is Whitney-negligible for �.

3.3. Strong directional implication and strong implication

Definition 3.11 (Strong directional implication). Let I C Pm
0 .R

n/ be an ideal and let p 2
Pm
0 .R

n/ be some polynomial. We say that I strongly implies p in the direction ! 2 Sn�1

if there exist ı! > 0, r! > 0, polynomials Q1; : : : ; QL 2 I , functions S1; : : : ; SL 2
Cm.�.!;ı! ; r!//, positive constantsC1; : : : ;CL>0 and a function F2Cm.�.!;ı! ; r!//
such that the following hold:

F is negligible for Allow.I / \D.!; ı!/I(3.45)

j@˛Sl .Ex/j � Cl jExj
�j˛j for all j˛j � m; all 1 � l � L and all Ex 2 �.!; ı! ; r!/I(3.46)

p.Ex/ D

LX
lD1

Sl .Ex/ �Ql .Ex/C F.Ex/ for all Ex 2 �.!; ı! ; r!/:(3.47)

Remark 3.12. If ! … Allow.I /, then I always strongly implies p in the direction !,
for any p 2 Pm

0 .R
n/. Indeed, recall that Allow.I / is closed (see Definition 2.6) and fix

some ı! > 0 such that Allow.I / \D.!; ı!/ D ;. Now (3.45)–(3.47) hold with F D p,
L D C1 D r! D 1, Q1 D S1 D 0.

Definition 3.13 (Strong implication). Let I C Pm
0 .R

n/ be an ideal and let p 2 Pm
0 .R

n/

be some polynomial. We say that I strongly implies p if there exist r0 > 0, polynomials
Q1; : : : ;QL 2 I , functions S1; : : : ; SL 2 Cm.B�.r0//, positive constants C1; : : : ;CL > 0
and a function F 2 Cm.B�.r0// such that the following hold:

F is negligible for Allow.I /I(3.48)

j@˛Sl .Ex/j � Cl jExj
�j˛j for all j˛j � m; all 1 � l � L and all Ex 2 B�.r0/I(3.49)

p.Ex/ D

LX
lD1

Sl .Ex/ �Ql .Ex/C F.Ex/ for all Ex 2 B�.r0/:(3.50)

Remark 3.14. Let I C Pm
0 .R

n/ be an ideal and let p 2 Pm
0 .R

n/ be a jet. Clearly, if I
strongly implies p, then I strongly implies p in the direction ! for any ! 2 Allow.I /.
The following Lemma 3.15 shows that the converse also holds.

Lemma 3.15. Let I C Pm
0 .R

n/ be an ideal and let p 2 Pm
0 .R

n/ be some polynomial.
If I strongly implies p in the direction ! for any ! 2 Allow.I /, then I strongly implies p.

Proof. By Remark 3.12 and our assumption, we have that I strongly implies p in any
direction ! 2 Sn�1. Fix Q1; : : : ; QL a basis of I (as a vector space). Then, for each
! 2 Sn�1, there exist ı! > 0, r! > 0, functions S!1 ; : : : S

!
L 2 C

m.�.!; ı! ; r!//, positive
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constants C!1 ; : : : ;C
!
L > 0 and a function F ! 2 Cm.�.!; ı! ; r!// such that the following

hold:

F ! is negligible for Allow.I / \D.!; ı!/I(3.51)

j@˛S!l .Ex/j � C
!
l jExj

�j˛j for all j˛j � m; all 1 � l � L and all Ex2�.!; ı! ; r!/I(3.52)

p.Ex/ D

LX
lD1

S!l .Ex/ �Ql .Ex/C F
!.Ex/ for all Ex 2 �.!; ı! ; r!/:(3.53)

By compactness of Sn�1, there exists finitely many !1; : : : ; !K such that Sn�1 DSK
kD1D.!k ; ı!k=100/. Fix Q�1; : : : ; Q�K 2 C1.Sn�1/ such that

PK
kD1
Q�k.!/ D 1 for any

! 2 Sn�1 and supp Q�k �D.!k ; ı!k=50/ for all 1 � k � K. Defining �k.Ex/ WD Q�k.Ex=jExj/
for all Ex 2 Rn n ¹E0º and 1 � k � K, we get that for some constant OC > 0 (depending
on m, n and �1; : : : ; �K), we have

�1; : : : ; �K 2 C
1.Rn n ¹E0º/I(3.54)

KX
kD1

�k.Ex/ D 1 for all Ex 2 Rn n ¹E0ºI(3.55)

�k.Ex/ D 0 if jEx=jExj � !kj > 2ı!k=3 for all 1 � k � KI(3.56)

j@˛�k.Ex/j � OC jExj
�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � m:(3.57)

Set OrDmin¹r!1 ; : : : ; r!k º. Thanks to (3.56), we can defineF;S1;S2; : : : ;SL2Cm.B�. Or//
as follows: for all Ex 2 Rn n ¹E0º,

(3.58) F.Ex/ WD

KX
kD1

�k.Ex/F
!k .Ex/ and Sl .Ex/ WD

KX
kD1

�k.Ex/S
!k
l
.Ex/:

Thanks to (3.51), (3.56), (3.57) and Lemma 3.10, we get that

(3.59) F is negligible for Allow.I /:

Thanks to (3.52) and (3.57), we get that for some constant C 0 > 0 (depending on m, n, OC
and ¹C!k

l
º1�k�K;1�l�L), we have

(3.60) j@˛Sl .Ex/j � C
0
jExj�j˛j for all j˛j � m; all 1 � l � L and all Ex 2 B�. Or/:

Finally, from (3.53), (3.56) and (3.55), we get that

(3.61) p.Ex/ D

LX
lD1

Sl .Ex/ �Ql .Ex/C F.Ex/ for all Ex 2 B�. Or/:

Combining (3.59), (3.60) and (3.61), we proved that I strongly implies p.

Lemma 3.16. Let I C Pm
0 .R

n/ be an ideal and let p 2 Pm
0 .R

n/ be some polynomial.
If I strongly implies p (as in Definition 3.13), then I implies p (as in Definition 2.10).
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Proof. Assume that I strongly implies p and denote � WD Allow.I /. Now let r0 > 0,
Q1; : : : ; QL 2 I , S1; : : : ; SL 2 Cm.B�.r0//, C1; : : : ; CL > 0 and F 2 Cm.B�.r0// be
such that (3.48), (3.49) and (3.50) hold. Setting A WD max¹C1; : : : ; CLº > 0 we have

F is negligible for Allow.I /I(3.62)

j@˛Sl .Ex/j � AjExj
�j˛j for all j˛j � m; all 1 � l � L and all Ex 2 B�.r0/I(3.63)

p.Ex/ D

LX
lD1

Sl .Ex/ �Ql .Ex/C F.Ex/ for all Ex 2 B�.r0/:(3.64)

Fix " > 0. By (3.62), Definition 3.6 and Lemma 3.8, there exist ı; r > 0 (and without loss
of generality r < r0) and F" 2 Cm.Rn n ¹E0º/ such that

j@˛F".Ex/j � "jExj
m�j˛j for all Ex 2 Rn n ¹E0º and all j˛j � mI(3.65)

F".Ex/ D F.Ex/ for all Ex 2 �.�; ı; 4r/:(3.66)

Let 0 < � � r . From (3.63) and (3.65) we have that, for some constant C1 > 0 (depending
only on m and n), the following hold:

j@˛Sl .Ex/j � C1A�
�j˛j for all Ex 2 Ann4.�/ and all j˛j � mI(3.67)

j@˛F".Ex/j � C1"�
m�j˛j for all Ex 2 Ann4.�/ and all j˛j � m:(3.68)

Finally, from (3.64) and (3.66) we immediately get that

(3.69) p.Ex/ D F".Ex/C S1.Ex/Q1.Ex/C S2.Ex/Q2.Ex/C � � � C SL.Ex/QL.Ex/

for all Ex 2 Ann2.�/ such that dist.Ex=jExj; �/ < ı:

We thus showed that there exists a constant A > 0 such that, given " > 0, there exist
ı; r > 0 such that for any 0 < � � r there exist functions F"; S1; : : : ; SL 2 Cm.Ann4.�//
such that (3.67), (3.68) and (3.69) hold. That is, we showed that I implies p.

Remark 3.17. We do not know whether the converse of Lemma 3.16 holds, i.e.: let I C
Pm
0 .R

n/ be an ideal and p 2 Pm
0 .R

n/ be some polynomial. Assume that I implies p (as
in Definition 2.10). Is it always true that I strongly implies p (as in Definition 3.13)?

Corollary 3.18. Let I C Pm
0 .R

n/ be an ideal and let p 2 Pm
0 .R

n/ be some polynomial.
If I strongly implies p in the direction ! for any ! 2 Allow.I / .as in Definition 3.11/,
then I implies p .as in Definition 2.10/.

Proof. It follows immediately from Lemma 3.15 and Lemma 3.16.

Example 3.19. Set n D 3, m D 2 and .x; y; z/ a standard coordinate system on R3. Let
I C P 2

0 .R
3/ be such that x2; y2 � xz 2 I . Then, xy 2 cl.I /. In particular, hx2; y2 � xzi2

is not closed.
Indeed, by Corollary 3.3 we have Allow.I / � ¹.0; 0;˙1/º. By Example 3.9, the

function F D y3=z is negligible for �\D.!; 10�3/, for any ! 2 Allow.I /. So by Defi-
nition 3.11, settingLD 1, S1D�y=z andQ1D y2 � xz, we have that I strongly implies
the jet

xy D S1 �Q1 C F D .�y=z/ � .y
2
� xz/C y3=z

in the direction !, for any ! 2Allow.I /. By Corollary 3.18, I implies xy, i.e., xy 2 cl.I /.
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4. An algorithm to calculate the closure of an ideal

4.1. Background on bundles

We provide the necessary background on bundles, introduced and studied in ([4, 7]). The
notation in this section is slightly different from the rest of this paper, as we adopt here
the standard notation in the literature when such bundles are used. Thus, we start by fixing
notation.

Notation 4.1. Fix natural numbers m; n;D � 1. We write JEx.F / (or Jm
Ex
F ) to denote

the mth degree Taylor polynomial of a real valued function F 2 Cm.U /, when U is
an open neighborhood of Ex. The vector space of all such polynomials is denoted by P

(note that as a finite dimensional real vector space P can be identified with RD� for
some D� 2 N, so we can talk about semi-algebraic subsets of P ). The ring of m-jets (of
real valued functions) at Ex 2 Rn is the vector space P , with multiplication P ˇEx Q D
JEx.PQ/. Then, for two Cm functions around Ex, we have JEx.FG/ D JEx.F /ˇEx JEx.G/.
We write REx D .P ;ˇEx/ to denote the ring of m-jets at Ex.

The m-jet of a (Cm) RD -valued function EF D .F1; : : : ; FD/ at Ex 2 Rn is defined
to be Jm

Ex
. EF / D .Jm

Ex
F1; : : : ; J

m
Ex
FD/ 2 P D . The multiplication QˇEx .P1; : : : ; PD/ WD

.QˇEx P1; : : : ; QˇEx PD/ for Q;P1; : : : ; PD 2 P turns P D into a REx module, which
we denote by RD

Ex
. We will examine REx submodules of RD

Ex
, and we adopt the unusual

convention that ¹0º;RD
Ex

and the empty set are all allowed as submodules of RD
Ex

.

Warning. Before we proceed, we stress that this section deals with ideals in Pm
0 .R

n/

and how to calculate their closures. At no point in this section do we make any assumption
on an ideal I C Pm

0 .R
n/ being of the form Im.E/ for some closed subset E � Rn

containing the origin, nor do we show any ideal is of this form. The sets denoted E below
play the role of the base space for our bundles, and have nothing to do with closed subsets
E � Rn containing the origin that we studied in previous sections of this paper. We use
the same letter to stay in line with the standard notation in the literature.

Definition 4.2 (Bundles and sections). Let E � Rn be compact. A bundle (over E) is a
family

(4.1)
H D ¹HExºEx2E such that, for any Ex 2 E;

HEx is a translate of an REx submodule of RD
Ex

.

We call HEx the fiber of H over Ex. The bundle (4.1) is called semi-algebraic if the set

¹.Ex; EP / 2 Rn �P D
W Ex 2 E and EP 2 HExº � Rn �P D

is semi-algebraic. When we say that we are given (respectively, compute) a bundle, we
mean that we are given (respectively, compute) this set1.

A section of the bundle (4.1) is a (Cm) RD -valued function EF D .F1; : : : ;FD/, defined
on Rn, such that JEx EF 2 HEx for any Ex 2 E. The Cm norm of a section EF is defined by

k EF kCm WD sup
®
j@˛Fi .Ex/j

¯
1�i�D; j˛j�m; Ex2Rn 2 R�0 [ ¹1º:

1For detailed discussions of the notion of “computing a set” see Section 2.5 in [8], or more generally [1].
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For any k 2 N, the k-norm of the bundle (4.1), denoted kHkk , is the infimum over all
R 3M > 0 for which the following holds:

(4.2)
For any Ex1; : : : ; Exk 2 E there exist P1 2 HEx1 ; : : : ; Pk 2 HExk such that
j@˛Pi .Exi /j �M for all 1 � i � k and all j˛j � m;

and, for Exi ¤ Exj ; j@˛.Pi � Pj /.Exi /j �M jxi � xj jm�j˛j for all j˛j � m:

If no such M exists, we set kHkk D1.

Given a bundle H , we would like to know whether it has a section, and moreover,
if a section exists, we want to know how small can we take its Cm norm. By our con-
vention, H may have empty fibers, in which case clearly a section does not exist. To
answer these questions, [4,7] proved the existence and studied the properties of the stable
Glaeser refinement of a bundle. We refer the reader to [4, 7] for the definition and study
of these stable refinements, and list here only the properties we will use: given a bundle
H D ¹HExºEx2E , the stable Glaeser refinement of H is another bundle QH D ¹ QHExºEx2E . In
particular, it satisfies the following.

Theorem 4.3. There exist an integer constant k# � 1 and positive constants c;C > 0, all
three depending only on m, n and D , such that the following holds. Let H D ¹HExºEx2E
be a bundle, and let QH D ¹ QHExºEx2E be its stable Glaeser refinement. Then

H has a section if and only if QHEx is non empty for any Ex 2 EI(4.3)

if H has a section, then ck QHkk# � inf¹k EF kCm W EF is a section of Hº�Ck QHkk# I(4.4)

if H is semi-algebraic, then so is QH ; and moreover, QH can be computed if H is(4.5)
given:

The scalar case (D D 1) of (4.3) and (4.4) are proven in [4]. The general case (D � 1)
of (4.3) is proven in [7] by reduction to the scalar case. The same reduction can be used
to prove the general case of (4.4). The proof of (4.5) is a routine application of standard
properties of semi-algebraic sets2.

Definition 4.4. The norm of the bundle (4.1), denoted kHk, is defined to be the k#-norm
of (4.1), where k# is the integer constant from Theorem 4.3 (formally this k# is not unique,
so we choose and fix one such k#).

Taylor’s theorem easily implies that there exists a constant C 0, depending only onm, n
and D , such that kHk � C 0 k EF kCm for any section EF of H :

Definition 4.5 (Parametrized bundles). Let OE � RS be any set and let E � Rn be a
compact set. We call a point � 2 OE a parameter. For each � 2 OE, let H � D ¹H

�

Ex
ºEx2E be

a bundle over E. The family H D ¹H
�

Ex
º
�2 OE

Ex2E
is called a parametrized bundle. The stable

2More precisely, the stable Glaeser refinement is constructed by iterating finitely many times the process of
Glaeser refinement (until this process stabilizes, hence the term “stable”). Each iteration is defined by formulae
that are first order definable in the language of real fields with parameters from R, and so each iteration preserves
the property of the bundle being semi-algebraic. We refer the reader to [4] for further details on the iterated
refinement process, and to [3] for exposition on the model theoretic notion of definability in first order languages.
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Glaeser refinement of H is the parametrized bundle QH D ¹ QH �

Ex
º
�2 OE

Ex2E
, where for each fixed

� 2 OE, ¹ QH �

Ex
ºEx2E is the stable Glaeser refinement of H � .

A parametrized bundle H D ¹H
�

Ex
º
�2 OE

Ex2E
is called semi-algebraic if the set®

.�; Ex; EP / 2 RS �Rn �P D
W � 2 OE; Ex 2 E and EP 2 H �

Ex

¯
� RS �Rn �P D

is semi-algebraic. When we say that we are given (respectively, compute) a parametrized
bundle, we mean that we are given (respectively, compute) this set.

The following theorem is a generalization of (4.5), and is (again) a routine application
of standard properties of semi-algebraic sets.

Theorem 4.6. Let H be a semi-algebraic parametrized bundle, and let QH be its stable
Glaeser refinement. Then, QH is semi-algebraic as well, and moreover QH can be computed
if H is given.

4.2. The algorithm

For the remainder of this section, we fix the following: let I C Pm
0 .R

n/ be an ideal,
let Q1; : : : ; QL be a basis of I (as a vector space), denote � WD Allow.I /, and let p 2
Pm
0 .R

n/ be some polynomial. We further assume that�¤;, as if�D; then we already
know by Corollary 2.17 that any jet in Pm

0 .R
n/ is implied by I , and so cl.I /D Pm

0 .R
n/.

Definition 4.7. We say that condition C.A; "; ı; r; �Ip;Q1; : : : ; QL/ holds if there exist
functions F; S1; S2; : : : ; SL 2 Cm.Ann4.�// satisfying (2.8), (2.9) and (2.10).

Definition 4.7 immediately implies the following lemma.

Lemma 4.8. I implies p if and only if there exists A > 0 such that for any " > 0 there
exist ı; r > 0 for which, for all � 2 .0; r�, condition C.A; "; ı; r; �Ip;Q1; : : : ;QL/ holds.

Scaling F;S1; S2; : : : ; SL 2 Cm.Ann4.�// that satisfy C.A; "; ı; r; �Ip;Q1; : : : ;QL/

by setting

QF .Ex/ WD "�1��mF.�Ex/ and QSl .Ex/ WD A
�1Sl .�Ex/ for any 1 � l � L;

one easily sees that condition C.A; "; ı; r; �Ip;Q1; : : : ;QL/ is equivalent to the following
condition C�.A; "; ı; r; �Ip;Q1; : : : ;QL/:

Definition 4.9. We say that condition C�.A; "; ı; r; �Ip;Q1; : : : ;QL/ holds if there exist
functions QF ; QS1; QS2; : : : ; QSL 2 Cm.¹1=4 < jExj < 4º/ such that the following hold:

j@˛ QF .Ex/j � 1 for 1=4 < jExj < 4 and all j˛j � mI(4.6)

j@˛ QSl .Ex/j � 1 for 1=4 < jExj < 4, all j˛j � m and all 1 � l � LI(4.7)

p.�Ex/ D "�m QF .Ex/C A QS1.Ex/Q1.�Ex/C � � � C A QSL.Ex/QL.�Ex/(4.8)
for all Ex such that 1=2 < jExj < 2 and dist.Ex=jExj; �/ < ı:

So we in fact proved the following lemma (that follows from Lemma 4.8).
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Lemma 4.10. I implies p if and only if there exists A > 0 such that for any " > 0 there
exist ı; r > 0 for which, for all � 2 .0; r�, condition C�.A; "; ı; r; �Ip;Q1; : : : ;QL/ holds.

We will now introduce another condition, and then see how it relates to condition
C�.A; "; ı; r; �Ip;Q1; : : : ;QL/.

Definition 4.11. We say that condition C��."; ı; r; �I p;Q1; : : : ; QLIA/ holds if there
exist functions F �; S�1 ; S

�
2 ; : : : ; S

�
L 2 C

m.Rn/ such that the following hold:

j@˛F �.Ex/j � A for all Ex 2 Rn and all j˛j � mI(4.9)
j@˛S�l .Ex/j � A for all Ex 2 Rn, all j˛j � m and all 1 � l � LI and(4.10)
p.�Ex/ D "�mF �.Ex/C S�1 .Ex/Q1.�Ex/C � � � C S

�
L.Ex/QL.�Ex/(4.11)

for all Ex such that 1=2 < jExj < 2 and dist.Ex=jExj; �/ < ı:

Fix �2C1.Rn/ such that �D1 on ¹1=2< jExj<2º and �D 0 outside ¹1=4 < jExj < 4º,
and denote C� D k�kCm (this is a constant depending only m and n). Assume that condi-
tion C�.A; "; ı; r; �Ip;Q1; : : : ;QL/ holds. Then, there exists a constant OC > 0 depending
only on C� andm (so only onm and n) such that condition C��."; ı; r; �Ip;Q1; : : : ;QLI
OCAC OC/ holds: indeed, replacing the functions QF ; QS1; QS2; : : : ; QSL 2Cm.¹1=4 < jExj< 4º/

that satisfy C�.A; "; ı; r; �Ip;Q1; : : : ;QL/ by setting

F �.Ex/ WD �.Ex/ � QF .Ex/ and S�l .Ex/ WD A � �.Ex/ �
QSl .Ex/ for any 1 � l � L;

one easily sees that condition C��."; ı; r; �Ip;Q1; : : : ;QLI OCAC OC/ holds.
Vise versa, now assume that condition C��."; ı; r; �Ip;Q1; : : : ;QLIA/ holds. Then,

condition C�.A; A"; ı; r; �I p; Q1; : : : ; QL/ holds: indeed, if we replace the functions
F �; S�1 ; S

�
2 ; : : : ; S

�
L 2 C

m.Rn/ that satisfy C��."; ı; r; �Ip;Q1; : : : ;QLIA/ by setting

QF .Ex/ WD A�1 � F �.Ex/ and QSl WD A
�1
� QSl .Ex/ for any 1 � l � L;

one easily sees that condition C�.A;A"; ı; r; �Ip;Q1; : : : ;QL/ holds.
We found that there exists a constant OC depending only on m, n such that

C�.A; "; ı; r; �Ip;Q1; : : : ;QL/ H) C��."; ı; r; �Ip;Q1; : : : ;QLI OCAC OC/

and

C��."; ı; r; �Ip;Q1; : : : ;QLIA/ H) C�.A;A"; ı; r; �Ip;Q1; : : : ;QL/:

We conclude that the following lemma holds (and now follows easily from Lemma 4.10).

Lemma 4.12. I implies p if and only if there exists A > 0 such that for any " > 0 there
exist ı; r > 0 for which, for all � 2 .0; r�, condition C��."; ı; r;�Ip;Q1; : : : ;QLIA/ holds.

We are now ready to introduce the relevant parametrized bundle. We define a bundle

(4.12) H D ¹H
�

Ex
º
�2 OE

Ex2E.�/
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where

OE WD ."; ı; r; �; p;Q1; : : : ;QL/ 2 .0;1/
4
�PLC1

I(4.13)
E WD ¹Ex 2 Rn W 1=2 � jExj � 2º;(4.14)

and for each � 2 OE and Ex 2 E, we define

H
�

Ex
WD
®
.P0; P1; : : : ; PL/2PLC1

W p.�Ex/ D "�mP0.Ex/C
PL
lD1Pl .Ex/Ql .�Ex/

¯
(4.15)

if dist.Ex=jExj; �/ < ı and 1=2 < jExj < 2,

and

(4.16) H
�

Ex
WD PLC1 otherwise:

Remark 4.13. The parametrized bundle H given by (4.12)–(4.16) is semi-algebraic. That
follows from the fact that this bundle is given by formulae that are first order definable in
the language of real fields with parameters from R. In order to see that the set � WD
Allow.I / is semi-algebraic, note that, by the triangle inequality, we have the following
formula for this set:

Allow.I / D
°
! 2 Sn�1 W there do not exist c; ı; r > 0 such that

jQ1.Ex/j C jQ2.Ex/j C � � � C jQL.Ex/j

jExjm
> c for any Ex 2 �.!; ı; r/

±
:

We leave it to the reader to verify the remaining details.

Comparing now (4.12)–(4.16) with (4.9)–(4.11), we readily see that for a fixed � D
."; ı; r; �Ip;Q1; : : : ; QL/, condition C��."; ı; r; �Ip;Q1; : : : ; QLIA/ holds if and only
if H � admits a section with Cm-norm at most A.

We conclude that the following lemma holds (now follows easily from Lemma 4.12).

Lemma 4.14. I implies p if and only if there exists A > 0 such that for any " > 0 there
exist ı;r > 0 for which, for all �2.0;r�, the bundle H � , with �D.";ı; r;�Ip;Q1; : : : ;QL/,
admits a section with Cm-norm at most A.

Now let QH D¹ QH �

Ex
º
�2 OE

Ex2E
be the stable Glaeser refinement of H , and let k# be the integer

constant from Theorem 4.3 (see also remark in parenthesis in the end of Definition 4.4).
Then Lemma 4.14 and Theorem 4.3 imply the following:

Proposition 4.15. I implies p if and only if there exists M > 0 such that for any " > 0
there exist ı; r > 0 for which, for all � 2 .0; r�, denoting � D ."; ı; r; �Ip;Q1; : : : ;QL/,
the following holds:

For any Ex1; : : : ; Exk# 2 E there exist P1 2 QH
�

Ex1
; : : : ; Pk# 2 QH

�

Exk#
such that

j@˛Pi .Exi /j �M for all 1 � i � k# and all j˛j � m; and

j@˛.Pi � Pj /.Exi /j �M jExi � Exj j
m�j˛j

for all 1 � i; j � k# .Exi ; Exj distinct/ and all j˛j � m:
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Proposition 4.15 gives rise to an algorithm to compute the closure of a given ideal I
of m-jets: given a basis Q1; : : : ; QL for I as a vector space, we form the parametrized
bundle H defined by (4.12)–(4.16), and then compute its stable Glaeser refinement QH . We
know that QH is semi-algebraic thanks to Remark 4.13 and (4.5). Once QH is known, Propo-
sition 4.15 expresses the condition that I implies p as a first order definable condition in
the language of real fields with parameters from R. Consequently, standard semi-algebraic
technology allows us to compute the set of all p implied by I as a semi-algebraic set.
Since the set of such p is a vector subspace of Pm

0 .R
n/, another application of standard

semi-algebraic technology computes a basis for that subspace. Thus, in principle, we have
computed the closure of a given ideal I of m-jets.

We have proved the following result.

Theorem 4.16. Let I C Pm
0 .R

n/ be an ideal. Then, the above procedure computes (in
principle) the closure of I .

Remark 4.17. Fix L 2 N. Then, Theorem 4.16 together with standard semi-algebraic
geometry arguments show that there exists a semi-algebraic map that maps any basis of
an ideal Q1; : : : ; QL 2 Pm

0 .R
n/ to a basis for the closure of the ideal, i.e., a basis for

cl.hQ1; : : : ;QLim/.

Recall that Pm
0 .R

n/ is a finite dimensional vector space, and fix P1; : : : ; PD� , some
basis (as a vector space) of Pm

0 .R
n/. Then, we can naturally identify Pm

0 .R
n/ with RD� .

Fix an integer 1 � L � D�. We can now identify each ordered set of jets Q1; : : : QL 2
Pm
0 .R

n/, not necessarily all different jets, as a point in RL�D
�

. Then, each point in RL�D
�

defines a vector space I D spanR¹Q1; : : : QLº of dimension at most L. So we can think
of any point in RL�D

�

as a vector space in Pm
0 .R

n/ of dimension at most L, where not
every two different points represent necessarily different vector spaces.

Note that the condition “Q1; : : : ;QL are linearly independent” is first order definable
in the language of real fields with parameters from R. Moreover, note that the condition
“spanR¹Q1; : : :QLº D hQ1; : : :QLim” is also first order definable in the language of real
fields with parameters from R. We conclude that the set of points in RL�D

�

that represent
bases of ideals of dimension L is a semi-algebraic set.

Now Remark 4.17 implies the following.

Theorem 4.18. Fix 1�L� dimPm
0 .R

n/. Then, the set of points in RL�D
�

that represent
bases of closed ideals of dimension L is semi-algebraic.

We do not know whether the set of points in RL�D
�

that represent bases of ideals of
dimensionL of the form Im.E/ for some closedE �Rn is semi-algebraic. We also do not
know whether the set of points in RL�D

�

that represent bases of ideals of dimension L of
the form Im.E/ for some semi-algebraic closedE �Rn is semi-algebraic. These question
are closely related to Question 2.19 and Question 2.20.
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