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Generating series and matrix models for meandric systems
with one shallow side

Motohisa Fukuda and Ion Nechita

Abstract. In this article, we investigate meandric systems having one shallow side: the arch
configuration on that side has depth at most two. This class of meandric systems was intro-
duced and extensively examined by I. P. Goulden, A. Nica, and D. Puder [Int. Math. Res. Not.
IMRN 2020 (2020), 983–1034]. Shallow arch configurations are in bijection with the set of
interval partitions. We study meandric systems by using moment-cumulant transforms for non-
crossing and interval partitions, corresponding to the notions of free and Boolean independence,
respectively, in non-commutative probability. We obtain formulas for the generating series of
different classes of meandric systems with one shallow side by explicitly enumerating the sim-
pler, irreducible objects. In addition, we propose random matrix models for the corresponding
meandric polynomials, which can be described in the language of quantum information theory,
in particular that of quantum channels.

1. Introduction

Meanders are fundamental combinatorial objects of great complexity, defined by a
simple non-crossing closed curve intersecting a reference line at 2n points. Their
enumeration (as a function of n) is an important open problem in combinatorics [1].
There is a large theoretical body of work dealing with the combinatorics of meanders;
see [9, 16].

Mathematically, meandric systems are generalizations of meanders consisting of
two arch configurations, one on top and the other on the bottom of the reference line.
An arch configuration corresponds precisely to a non-crossing pairing of the coordi-
nate set ¹1; 2; : : : ; 2nº. It is this connection to the theory of non-crossing partitions
that had been put forward by A. Nica in [19], starting the study of meandric systems
with the help of tools from free probability theory [18,24]. This line of work has been
pursued further, with new results about semi-meanders [21], meandric systems with
large number of loops [12], and random meandric systems [10].
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An important result was obtained by I. P. Goulden, A. Nica, and D. Puder in [14],
where a particular subclass of meandric systems was described combinatorially: the
authors studied meandric systems where the arch configurations on top of the refer-
ence line correspond to interval partitions; the authors named such meandric systems
shallow top meanders. Due to the simpler combinatorial structure of the top arch con-
figurations, shallow top meanders are tractable enough to provide interesting lower
bounds on the total number of meanders.

Our work drew most of its inspiration from [14] but tackles the enumeration of
special classes of meandric systems in a systematic way, employing tools from non-
commutative probability theory. Our main insight is to reduce the enumeration of
meandric systems to that of a simpler class of objects, sometimes called “irreducible”
(see [4] for the general flavor in combinatorics). If the initial class of meandric systems
corresponds to the moments of some non-commutative distribution, the simpler mean-
dric systems correspond to its cumulants. The type of cumulants involved depends on
the structure of the initial meandric systems: general non-crossing partitions yield
free cumulants, while interval partitions Boolean cumulants. Once the probabilis-
tic machinery is applied, we can then directly enumerate the simpler combinatorial
objects and in theory the initial, allowing us to treat several situations in a unified
manner. We discuss the case of shallow top meanders in Theorem 5.1, the case of
thin meanders in Theorem 4.1, and the case of shallow top semi-meandric systems in
Theorem 6.1.

Historically, meandric systems were also studied using methods from random
matrix theory. P. Di Francesco and his collaborators developed several such models in
[8,9]. Later, an intriguing connection to the theory of quantum information theory was
put forward in [13]. We provide at the end of this paper several new matrix models
for the various classes of meandric systems we consider, which also fall in the field
of quantum information. Indeed, we show that the meandric polynomial is equal to
the asymptotic moments of the output state of a tensor product of completely posi-
tive maps, acting on the maximally entangled state. The choice of completely positive
maps depends on the type of partitions on the bottom side one considers: random
Gaussian channels for general non-crossing partitions and a depolarizing channel for
interval partitions. These models (presented in Theorems 7.3, 7.6, and 7.7) are con-
ceptually simpler than the past ones and allow us to treat the different subsets of
meanders in a unified manner.

Our paper is organized as follows. Section 2 contains the main definitions and
tools from the combinatorial theory of permutations and meanders. In Section 3, we
recall the basic tools from Boolean and free probability theory used in this work. The
following three sections contain the main body of the paper, dealing with three differ-
ent classes of meandric systems: thin (both shallow top and shallow bottom) meandric
systems in Section 4, shallow top meandric systems in Section 5, and shallow-top
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semi-meanders in Section 6. Finally, random matrix models are discussed in Sec-
tion 7.

2. Combinatorial aspects of meandric systems

2.1. Basics of non-crossing partitions and permutations

This section contains the necessary definitions and properties of the combinatorial
objects meandric systems are built on, which are mainly non-crossing and interval
partitions. We refer the reader to [5] or [20] for more details.

We denote by �n the group of permutations of n symbols. For a permutation ˛ 2
Sn, we denote by k˛k its length: k˛k is the minimal number m of transpositions
�1; : : : ; �m which multiply to ˛:

k˛k WD min¹m � 0 W 9�1; : : : ; �m 2 �n transpositions s.t. ˛ D �1 � � � �mº:

The length k � k endows the symmetric group �n with a metric structure, by defining

d.˛; ˇ/ D k˛�1ˇk:

The following relation between the number of cycles #.˛/ of a permutation and its
length is crucial to us:

k˛k C #.˛/ D n:

Both statistics #.�/ and k � k are constant on conjugation classes; hence, the following
relations hold:

k˛k D k˛�1k and k˛ˇk D kˇ˛k:
Let us now introduce the different classes of partitions which will be of interest

to us. A partition B1 t B2 t � � � t Bm D ¹1; 2; : : : ; nº DW Œn� is called non-crossing
if its blocks Bk do not cross: there do not exist distinct blocks Bi ; Bj and a; b 2
Bi and c; d 2 Bj such that a < c < b < d . The partition ¹1; 4; 5º t ¹2; 3º of Œ5�
is non-crossing; see Figure 1. The partition ¹1; 3º t ¹2; 4; 5º on the other hand is
crossing; see Figure 2. The set of non-crossing partitions of Œn� is denoted by NC.n/
or NC.1; 2; : : : ; n/, if we want to emphasize the underlying set. The subset of non-
crossing partitions consisting of pairings (i.e., all the blocks have size two) is denoted
by NC2.n/; in this case, n must obviously be even. Finally, the subset of interval
partitions, denoted by Int.n/, consists of (non-crossing) partitions having blocks made
of consecutive integers. We have

jNC.n/j D jNC2.2n/j D Catn D 1

nC 1
�
2n

n

�
and jInt.n/j D 2n�1:
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1 2 3 4 5

Figure 1. A non-crossing partition.

1 2 3 4 5

Figure 2. A crossing partition.

In many cases, it is important to identify non-crossing partitions with a class of
permutations, called geodesic permutations. This correspondence, initially observed
in [5] (see also [20, Lecture 23]), is key in many areas and used extensively in ran-
dom matrix theory for example. The bijection is defined as follows: one associates to
each block of a non-crossing partition a cycle in a permutation where the elements are
ordered increasingly. For example, the non-crossing partition from Figure 1 is iden-
tified to the permutation .1; 4; 5/.2; 3/ 2 �5. Note that the cycles of the permutation
are precisely the blocks of the non-crossing partition, with the choice of (cyclically)
ordering the elements increasingly.

Importantly, it was shown by Biane [5] that geodesic permutations are character-
ized using the metric induced by the length function on the symmetric group: ˛ 2 �n

is a geodesic permutation if and only if it saturates the triangle inequality

k˛k C k˛�1k D kk D n � 1;

where  D .1; 2; : : : ; n/ is the full-cycle permutation. Note that in this case ˛ lies on
a geodesic between the identity permutation idD .1/.2/ � � � .n/ and  D .1; 2; : : : ; n/.

In this paper, we will identify geodesic permutations ˛ 2 �n with the correspond-
ing non-crossing partition ˛ 2 NC.n/. With this identification, the identity permu-
tation id corresponds to the singleton partition 0n, and the full cycle permutation 
corresponds to the single-block partition 1n. Apart from these two special (extremal)
objects, we will use the same notation for geodesic permutations and non-crossing
partitions, usually Greek letters ˛; ˇ; �; etc.

The set NC.n/ is endowed with a partial order called reversed refinement: ˛ � ˇ
if every block of ˛ is contained in a block of ˇ. Note that this order relation is not
total: for example, the partitions ¹1º t ¹2; 3º and ¹2º t ¹1; 3º are not comparable.
This partial order can be nicely characterized in terms of the associated geodesic
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1 2 3 4 5 61 2 3 4 5 6N N N N N N
Figure 3. The Kreweras complement of ˛ D ¹1º t ¹2; 6º t ¹3; 4º t ¹5º is ˛Kr D ¹1; 6º t
¹2; 4; 5º t ¹3º.

permutations: ˛ � ˇ is equivalent to ˛ lying on a geodesic between id and ˇ:

k˛k C k˛�1ˇk D kˇk:

Let us now discuss the important notion of Kreweras complement for non-crossing
partitions. The Kreweras complement is an order-reversing map ˛ 7! ˛Kr of NC.n/,
defined in the following way [20, Definition 9.21]. First, double the elements of the
basis set to obtain ¹1; N1; 2; N2; : : : ; n; Nnº and then consider ˛Kr 2 NC.N1; N2; : : : ; Nn/ Š
NC.n/ to be the largest non-crossing partition such that ˛ t ˛Kr is still a non-crossing
partition on ¹1; N1; 2; N2; : : : ; n; Nnº. This operation is best explained by an example; see
Figure 3: for ˛ D .1/.2; 6/.3; 4/.5/, we have ˛Kr D .1; 6/.2; 4; 5/.3/. The extremal
elements in NC.n/ are swapped: idKr D  and Kr D id. In the language of geodesic
permutations, given a geodesic permutation id�˛ �  , the Kreweras complement of
˛ corresponds to the permutation ˛Kr 2 �n defined as

˛Kr D ˛�1 I (1)

see [20, Remark 23.24] for details. Importantly, for ˛ 2 NC.n/, we have

k˛k C k˛Krk D n � 1: (2)

Finally, let us discuss the bijection between NC.n/ and NC2.2n/, called fattening
(Note that both sets are counted by the Catalan numbers.) For a given non-crossing
partition ˛ 2 NC.n/, we consider two points i� and iC for both sides of each i 2
¹1; : : : ; nº, left and right, respectively, doubling in this way the index set. We associate
to ˛ the following pairing: connect iC and j� if ˛.i/ D j , where ˛ is seen now as
a permutation. It can be shown that the pair partition obtained in this way is non-
crossing; see [20, Lecture 9] for the details.

2.2. Loops in meandric systems

As discussed in the introduction, there has been a lot of interest in counting meandric
systems with respect to their number of connected components, which we call loops.
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1− 1+ 2− 2+ 3− 3+ 4− 4+ 5− 5+1 2 3 4 5

Figure 4. A meandric system generated by the geodesic permutations (in black) ˛ D
.1; 2/.3; 4; 5/ and ˇ D .1; 2; 4/.3/.5/. The two loops (blue and red together) with arrows are
formed by the action of ˛�1ˇ.

In this paper, we will regard meandric systems as pairs of non-crossing partitions
(or geodesic permutations). This point of view is best explained with an example;
see Figure 4. In this figure, the meandric system is made of the blue and red arches,
connecting the points ¹i˙ºi2Œ5�. The blue (resp., red) arches on top (resp., bottom)
on the reference line are associated to non-crossing pairings (called arch configura-
tions in [9]), which, in turn, are in bijection to the non-crossing partitions connect-
ing the points ¹iºi2Œ5� displayed in black. In the figure, the black lines above and
below the reference line correspond to non-crossing partitions ˛ D .1; 2/.3; 4; 5/ and
ˇ D .1; 2; 4/.3/.5/, respectively. The blue and red lines are fattenings of those per-
mutations, which are non-crossing pairings generating the meandric system. In this
example, the number of loops in this meandric system is 2. Remarkably, it can be
calculated by

#.˛�1ˇ/ D #..1; 2/.5; 4; 3/ ı .1; 2; 4/.3/.5// D #..1/.2; 3; 5; 4// D 2:

To see this, one can follow the arrows in the figure to count the number of loops. In
addition, note that in this example the top side is shallow while the bottom is not.

In short, graphically, two permutations over and under the straight lines give struc-
tural lines. “Fattening” them (or drawing new lines on both sides of those lines) gives
loops of the meandric system. We state this property in general in the following propo-
sition. One can refer to [19, Section 3] or [12, Proposition 3.1] for the proof.

Proposition 2.1. Suppose that a meandric system on 2n points is generated by ˛;ˇ 2
NC.n/. Then, the number of loops of the meandric system is #.˛�1ˇ/, the number of
cycles of the permutation ˛�1ˇ.

The result above is crucial to our work, since it allows us to relate the problem of
counting loops of meandric systems to a combinatorial problem on (special subsets
of) the symmetric group. We will also need the following lemma, showing that the
Kreweras complement operation does not change the statistics of the systems.
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Proposition 2.2. For ˛; ˇ 2 NC.n/, we have

#..˛Kr/�1ˇKr/ D #.˛�1ˇ/:

Proof. By using the property of Kreweras complement, we have

.˛Kr/�1ˇKr D .˛�1/�1.ˇ�1/ D �1˛ˇ�1:

Since #.�/ is a class function, we have proved the claim.

3. Free and Boolean transformations

Our approach for the enumeration of special subsets of meandric systems is based
on the theory of non-commutative probability theory. More precisely, using the vari-
ous notions of independence existing in the non-commutative setting, we decompose
meandric systems in irreducible components via the corresponding moment-cumulant
formulas, which we then proceed to enumerate. In this section, we gather the relevant
facts and formulas from the theory of free and Boolean independence, as well as some
related technical combinatorial results that will be used in the later sections.

3.1. Basics

Below we discuss structures of the non-crossing partitions and the interval partitions
and associated transforms. Although these notions stem from various notions of non-
commutative independence, we will not make use of the probabilistic interpretations
and focus on the combinatorics. Concretely, we will use these transforms to relate
the generating series of some combinatorial class (encoded by the moments of some
non-commutative distribution) to the generating series of a simpler class (encoded by
the cumulants of some type). In the free probability theory, one can define inevitable
transforms called moment-cumulant formula: for a lattice L.n/ 2 ¹Int.n/;NC.n/º, it
holds that

'.a1 � � � an/ D
X

�2L.n/
�� Œa1; : : : ; an�;

where '.�/ and �.�/ are, respectively, moment and cumulant functionals (depending
on L), and ai ’s are non-commutative random variables. Interested readers can refer
to [17, 20, 22]. Now, restricting ourselves to the case

a D a1 D � � � D an
and using the multiplicativity of �.�/, we define the following transformations.
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Definition 3.1. Between sequences of numbers, the Boolean transform Fboole and the
free transform Ffree

F� W ¹�nº1nD1 7! ¹mnº1nD1
are defined by

mn D
X

�2L.n/

Y
c2�

�jcj:

Here, L.n/ D Int.n/ in the case of Fboole and L.n/ D NC.n/ in the case of Ffree,
while c 2 � are the blocks of � . This can be extended naturally to maps between
polynomials (moment and cumulant generating functions)

F� W K.X/ 7!M.X/;

where

M.X/ D
1X
nD1

mnX
n and K.X/ D

1X
nD1

�nX
n:

We quote a well-known property of the Boolean transform.

Proposition 3.2 (Functional relation for Boolean transform [22, Proposition 2.1]).
Suppose that the moment and cumulant generating functions M D M.X/ and K D
K.X/ are related through the Boolean transform as in Definition 3.1: Fboole WK 7!M .
Then,

K D M

1CM and M D K

1 �K :

Next, we state a simple generalization of the moment-cumulant formula for free
independence [20, Lecture 11] which treats the last block (i.e., the block containing
n for a partition ˇ 2 NC.n/) separately. It is a standard fact in free probability theory
[20, Theorem 12.5] that the two generating seriesK;M , related by the free transform

Ffree W K 7!M;

satisfy the implicit equation

M.X/ D K.X.1CM.X///:

Lemma 3.3. For two sequences ¹hnº1nD1 and ¹gnº1nD1, we have

1X
nD1

Xn
X

ˇ2NC.n/

hjˇ.n/j
Y
c2ˇ 0

gjcj D
1X
sD1

hsX
s

 
1C

1X
iD1
OgiX i

!s
:
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Here, ¹ Ognº1nD1 is the free transform of ¹gnº1nD1 as defined in Definition 3.1, and we
used the following decomposition:

ˇ D ˇ0 t ˇ.n/; (3)

where ˇ.n/ is the block of ˇ containing n.

Proof. Our proof is a standard computation:

1X
nD1

Xn
X

ˇ2NC.n/

hjˇ.n/j
Y
c2ˇ 0

gjcj

D
1X
nD1

nX
sD1

hsX
s

X
i1C���CisDn�s

with ij�0

sY
jD1

X
ˇ 0
j
2NC.ij /

Y
c2ˇ 0

j

gjcjX jcj„ ƒ‚ …
.|/

D
1X
sD1

hsX
s

1X
mD0

X
i1C���CisDm

with ij�0

sY
jD1
OgijX ij

D
1X
sD1

hsX
s

 
1C

1X
iD1
OgiX i

!s
:

In the calculation, we have .|/D 1 when ij D 0 (we setX0 D 1), which corresponds
to the Catalan number Cat0 D 1.

3.2. Join and meet

On the lattice of NC.n/, two important operations are defined. The first one is the
so-called join: it is the smallest element  2 NC.n/ such that  � ˛; ˇ. The other
one is the so-called meet: the largest element  2 NC.n/ such that  � ˛; ˇ. More
precisely, for ˛; ˇ 2 NC.n/, we consider their

join: ˛ _ ˇ D min¹ 2 NC.n/ W ˛; ˇ � º;
meet: ˛ ^ ˇ D max¹ 2 NC.n/ W ˛; ˇ � º:

Here, the smallest and the largest elements in NC.n/ are denoted by 0n and 1n such
that 0n D .1/ � � � .n/ and 1n D .1; : : : ; n/. Note that

.˛ ^ ˇ/Kr D ˛Kr _ ˇKr

and
.˛ _ ˇ/Kr D ˛Kr ^ ˇKrI

see [20, Lecture 9].



M. Fukuda and I. Nechita 308

First, we restrict the operations meet and join to Int.n/ � NC.n/. To this end, we
denote the complement of Int.n/ by

Kr Int.n/ D ¹˛Kr W ˛ 2 Int.n/º:

Notice that a partition is included in Kr Int.n/ if and only if it consists of a block
containing n and singletons. See Lemma 3.9 for details. Then, we have the following.

Definition 3.4. We define join and meet in Int.n/: for ˛; ˇ 2 NC.n/,

˛ _Int ˇ D min¹ 2 Int.n/ W ˛; ˇ � º;
˛ ^Kr Int ˇ D max¹ 2 Kr Int.n/ W ˛; ˇ � º:

The new join ˛ _Int ˇ is obtained by finding the smallest interval partition which
is larger than or equal to both of the interval partitions naturally induced by the “outer
shells” of ˛ and ˇ. The new meet ˛ ^Kr Int ˇ can be calculated as follows. Take the
blocks in ˛ and ˇ which contain n and denote them as ˛.n/ and ˇ.n/. Then, ˛ ^Kr Int ˇ

is the partition consisting of the block induced by the set ˛.n/ \ ˇ.n/ and isolated
points. The above construction lets us recover the similar identity as before:

.˛ _Int ˇ/
Kr D ˛Kr ^Kr Int ˇ

Kr:

Remark 3.5. The notion ˛ _Int ˇ in Definition 3.4 coincides with the definition of
“interval closure” in [3, Definition 2.3—(11)].

Lemma 3.6 (Key decomposition). We have the following bijective map: for fixed
� D c1 � � � cm 2 Int.n/, where the ci ’s are the blocks of � ,

¹.˛; ˇ/ 2 Int.n/ � NC.n/ W ˛ _Int ˇ D �º

!
m¡

iD1
¹.˛i ; ˇi / 2 Int.jci j/ � NC.jci j/ W ˛ _Int ˇ D 1jci jº:

Also, a similar one-to-one relation holds true after replacing NC.n/ by Int.n/.

Proof. First, we define the map. The condition � D ˛ _Int ˇ has two implications.
One is that we can write ˛ DFm

iD1 ˛jci and ˇ DFm
iD1 ˇjci , where ˛jci 2 Int.jci j/

and ˇjci 2 NC.jci j/; i.e., each block of ˛ and ˇ belongs to one of ci ’s. This is because
˛ _Int ˇ would be coarser otherwise. The other is that ˛jci _Int ˇjci D 1jci j because
˛ _Int ˇ would be finer otherwise. Next, it is clear that the map is injective because
if two permutations are identical on each sub-interval, they are necessarily the same.
Finally, to show surjectivity, take ˛jci 2 Int.jci j/ and ˇjci 2 NC.jci j/ with ˛jci _Int

ˇjci D 1jci j, and form ˛ D Fm
iD1 ˛jci 2 Int.n/ and ˇ D Fm

iD1 ˇjci 2 NC.n/. The
construction implies that ˛ _Int ˇ � � , and the condition ˛jci _Int ˇjci D 1jci j implies
that ˛ _Int ˇ � � . This completes the proof.
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Definition 3.7. For L.n/ D NC.n/ or Int.n/, define the following sets:

Mn;r;a;b D ¹.˛; ˇ/ 2 Int.n/ � L.n/ W k˛�1ˇk D r; k˛k D a; kˇk D bº;
Kn;r;a;b D ¹.˛; ˇ/ 2 Kr Int.n/ � KrL.n/ W

k˛�1ˇk D r; k˛�11nk D a; kˇ�11nk D b; ˛ ^Kr Int ˇ D 0nº
$ ¹.˛; ˇ/2 Int.n/�L.n/ W k˛�1ˇkDr; k˛kDa; kˇk D b; ˛ _Int ˇD1nº

and functions

M.X; Y;A;B/ D
1X
nD1

mnX
n; where mn D

X
˛2Int.n/
ˇ2L.n/

Y k˛�1ˇkAk˛kBkˇk; (4)

K.X; Y;A;B/ D
1X
nD1

�nX
n; where �n D

X
˛2Int.n/
ˇ2L.n/
˛_IntˇD1n

Y k˛�1ˇkAk˛kBkˇk: (5)

Now, we show that M.X; Y; A; B/ and K.X; Y; A; B/ are related by the Boolean
transform Fboole.

Theorem 3.8. We have

Fboole W K.X; Y;A;B/ 7!M.X; Y;A;B/:

Proof. Following the notations in Definition 3.7 and using Lemma 3.6, we have

mn D
X

�2Int.n/

X
˛2Int.n/
ˇ2L.n/
˛_IntˇD�

Y k˛�1ˇkAk˛kBkˇk

D
X

�2Int.n/

Y
c2�

X
˛2Int.jcj/
ˇ2L.jcj/
˛_IntˇD1jcj

Y k˛�1ˇkAk˛kBkˇk:

We conclude by identifying the Boolean cumulants �n from (5) using Definition
3.1.

3.3. Useful lemmas

In this subsection, we collect claims to be used in the following sections. Readers can
come back later when they are needed.

Lemma 3.9. The following sets are in one-to-one correspondence:

Kr Int.n/$ ¹Q t ¹nº W Q � Œn � 1�º:
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1 1 2 i1 i1 im imim−1N NN N

Figure 5. Showing how to construct elements of Kr Int.n/, where im D n. The support of the
non-trivial red block is Q t ¹nº in Lemma 3.9.

Proof. Take some interval partition

˛ D .1; : : : ; i1/.i1 C 1; : : : ; i2/ � � � .im�1 C 1; : : : ; im/ 2 Int.n/ with im D n:
Then, by the definition of Kreweras complement, the elements i1; i2; : : : ; n constitute
a block in the complement, but other elements are always isolated. See Figure 5.

Remark 3.10. We make some remarks on Lemma 3.9.

(1) The identification shows that each element in Kr Int.n/ has at most one non-
trivial block Q t ¹nº, which necessarily contains the element n. We call this
block a comb.

(2) Given an element ˛ 2 Kr Int.n/, we denote by Q˛ � Œn � 1� the subset Q
appearing in the identification from Lemma 3.9.

Lemma 3.11. For ˛ 2 Kr Int.n/ and ˇ 2 NC.n/, the block containing n of the parti-
tion ˛ ^Kr Int ˇ 2 Kr Int.n/ is given by

.Q˛ t ¹nº/ \ ˇ.n/;
where ˇ.n/ is the block of ˇ containing n. In particular, if ˇ 2 Kr Int.n/, then

˛ ^Kr Int ˇ D ˛ ^ ˇ:
Proof. By Lemma 3.9 and Definition 3.4, the block in question is given by

max¹Q t ¹nº W Q � Œn � 1�; Q t ¹nº � Q˛ t ¹nº; ˇ.n/º D .Q˛ t ¹nº/ \ ˇ.n/:
Next, ˇ 2 Kr Int.n/ implies that

˛ ^Kr Int ˇ D .Q˛ \Qˇ / t ¹nº D ˛ ^ ˇ:
This completes the proof.

Lemma 3.12. For ˛ 2 Kr Int.n/ and ˇ 2 NC.n/ with ˛ ^Kr Int ˇ D 0n, we have

#.˛�1ˇ/ D 2 � j¹c 2 ˇ0 W Q \ c D ;ºj C 1 � #.ˇ0/C jQj;
where ˇ D ˇ0 t ˇ.n/ such that ˇ.n/ is the block containing n, and Q D Q˛ .
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n

Q n

(n)

t f g
`

ˇ

(a) ` 2Q˛ \ ˇ.n/ 6D ; contradicts ˛ ^Kr Int ˇ D 0n

c

Q t nf g

ˇ2 0

(b) One new loop is made if jQ \ cj D 0

Qt nf g

c ˇ2 0

(c) No new loop will be made if jQ \ cj D 1

Q t nf g

c ˇ2 0

(d) .jQ \ cj � 1/ new loops “inside” if jQ \ cj � 2

Figure 6. Panels (b), (c), and (d) describe (6) with jcj D 3. The upper black lines represent
Q t ¹nº and the lower black lines c. Preexisting loops of meandric systems are represented by
blue lines, and new loops produced by adding c are indicated by red lines.

Proof. We count loops in the meandric system made of .˛; ˇ/ by adding cycles in ˇ
one by one. First, the condition ˛ ^Kr Int ˇ D 0n and Lemma 3.11 imply that

Q \ ˇ.n/ D ;:

Figure 6a shows that having ` 2 Q \ ˇ.n/ would contradict the condition

˛ ^Kr Int ˇ D 0n:

This means that adding ˇ.n/ does not increase the number of loops, which corre-
sponds to case 2 below. Next, we add a cycle c 2 ˇ0 to increase the number of loops
as follows:

case 1: jQ \ cj D 0)C1;
case 2: jQ \ cj D 1)˙0;
case 3: jQ \ cj � 2)CjQ \ cj � 1:

(6)

Although case 3 includes case 2, we use the above classification to make things clear.
First, the condition

jQ \ cj D 0
means that the block c produces a loop without any interaction with Q t ¹nº as in
Figure 6b, where a newly created loop is drawn in red. Second, with the condition

jQ \ cj D 1;
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no new loop will be created although the preexisting loop containing n will be
stretched by c, which is drawn by the blue line in Figure 6c. Third, in case

jQ \ cj D m � 2;

suppose that
Q \ c D ¹i1; : : : ; imº;

and we connect Q t ¹nº and c one after another. To begin with, i1 does not make
any loop as in case 2. Next, however, connection at i2 gives a new loop, which will
be enclosed by the preexisting loop, increasing genus by one; see Figure 6d. This
inductive argument shows the claim on case 3.

Therefore,

#.˛�1ˇ/ D 1C
X
c2ˇ 0

Œ2 � 1Q\cD; � 1C jQ \ cj�;

which leads to the formula because Q \ ˇ.n/ D ; implies thatX
c2ˇ 0
jQ \ cj D jQj:

This completes the proof.

Remark 3.13. The result follows equally from the equivalence 1,4 from [14, The-
orem 4.4] and the equality

1C j¹c 2 ˇ0 W Q \ c D ;ºj D #.˛z_ˇ/;

where z_ denotes the join operation in the lattice of all partitions.

Lemma 3.14. For any partition ˇ of order n, not necessarily in NC.n/,X
Q�Œn�

AjQjB j¹c2ˇ WQ\cD;ºj D
Y
c2ˇ

�
.AC 1/jcj C B � 1�:

Proof. First, note that the LHS, which we denote by S.ˇ/, is multiplicative for block
decomposition in NC.n/. Indeed, for ˇ D ˇ1 t ˇ2,

S.ˇ/ D
X
Q�Œn�

AjQjB j¹c2ˇ1WQ\cD;ºjB j¹c2ˇ2WQ\cD;ºj

D
X

Q1�Œˇ1�

X
Q2�Œˇ2�

AjQ1jCjQ2jB j¹c2ˇ1WQ1\cD;ºjB j¹c2ˇ2WQ2\cD;ºj

D S.ˇ1/S.ˇ2/;
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where Œˇi � is the support of ˇi . Clearly, the RHS is also multiplicative, so we prove
the formula only for the case ˇ D 1m. Indeed,

.LHS/ D
X
Q�Œm�

AjQj � 1C B D .AC 1/m C B � 1 D .RHS/;

where we treated the case Q D ; separately.

4. Thin meandric systems

In this section, we consider the case where paths on both the upper and the lower sides
of the coordinate line consist of interval partitions; i.e.,

.˛; ˇ/ 2 Int.n/ � Int.n/:

A meandric system having, say, the top partition being an interval partition is called
in [14] shallow top. Since such a meandric system has both a shallow top and a
shallow bottom, we will call it thin meandric system. Since in this case there is no
complicated layer structure due to non-crossing partitions, all the calculations are
straightforward.

Theorem 4.1. For meandric systems of Int.n/ � Int.n/, the moment generating func-
tionM.X;Y;A;B/ and the cumulant generating functionK.X;Y;A;B/ in Definition
3.7 are calculated as follows:

M.X; Y;A;B/ D X

1 �X.1C AB C .AC B/Y /
and

K.X; Y;A;B/ D X

1 �X.AB C .AC B/Y / :

Proof. We compute K.X; Y;A;B/:

K.X; Y;A;B/ D
1X
nD1

Xn
X

˛;ˇ2Int.n/
˛_IntˇD1n

Y k˛�1ˇkAk˛kBkˇk

D
1X
nD1

Xn
X

˛;ˇ2Kr Int.n/
˛^Kr IntˇD0n

Y k˛�1ˇkAk˛�11nkBkˇ�11nk

D
1X
nD1

Xn
X

Q;R�Œn�1�
Q\RD;

Y jQjCjRjAn�1�jQjBn�1�jRj:
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Here,Q t ¹nº and R t ¹nº are the supports of the combs (see Remark 3.10) of ˛ and
ˇ, and clearly,

˛ ^Kr Int ˇ D 0n” Q \R D ;;

which also implies that
k˛�1ˇk D jQj C jRj:

In addition, (1) and (2) explain the powers of A and B .
Therefore,

K.X; Y;A;B/ D
1X
nD1

Xn
X

Q;R�Œn�1�
Q\RD;

.AB/n�1�jQj�jRj.AY /jRj.BY /jQj

D
1X
nD1

Xn.AB C .AC B/Y /n�1

D X

1 �X.AB C .AC B/Y / :

The generating function M.X; Y; A; B/ is obtained from K.X; Y; A; B/ by using
Proposition 3.2:

M.X; Y;A;B/ D X

1 �X.AB C .AC B/Y /
�
1 � X

1 �X.AB C .AC B/Y /
��1

D X

1 �X.1C AB C .AC B/Y / :

Corollary 4.2. The number of thin meandric systems of order n having k connected
components is given by

2n�1
�
n � 1
k � 1

�
:

Proof. Set A D B D 1 in the above result and extract the coefficient of XnY n�k:

ŒXnY n�k�M.X; Y / D ŒXnY n�k�
�

X

1 � 2X.1C Y /
�

D ŒXnY n�k�X
1X
nD0

.2X.1C Y //n:

This completes the proof.

Notice that thin meanders (i.e., k D 1 above) correspond to Q and R forming a
partition of Œn � 1�; hence, there are 2n�1 such objects.
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5. Meandric systems with shallow top

This section contains one of the main results of the paper, a generating series for the
number of meandric systems with shallow top. The terminology comes from [14],
where meandric systems having one partition (say, the top one) being an interval
partition have been called shallow top meanders. It was recognized in [14] that this
restricted setting allows for an explicit enumeration of meanders (meandric systems
with one connected component) due to the simpler structure of the arches involved.

We derive the cumulant generating function of shallow top meandric systems and
then apply the machinery from Section 3 to obtain the moment generating function.
Our results generalize [14, Theorem 1.1] adding two new statistics to the generating
function: the number of loops of the meandric system (counted by Y ) and the number
of cycles of the non-interval partition (ˇ in our notation, counted by B). The explicit
number of loops of such meandric systems has been computed in [14].

Theorem 5.1. For meandric systems of Int.n/ � NC.n/, the Boolean cumulant gen-
erating function K.X; Y;A;B/ in Definition 3.7 is given by

K.X/ D h.X.1C Og.X///: (7)

Here, Og D Ffree.g/, and g.x/ and h.x/ are defined as

g.X/ D
1X
nD1

gnX
n; where gn D BY Œ.1C AY /n C .AY /n.Y �2 � 1/�;

h.X/ D
1X
nD1

hnX
n; where hn D .AY /n�1:

(8)

The generating function for shallow top meandric systems is given by

M.X; Y;A;B/ D
1X
nD1

Xn
X

˛2Int.n/
ˇ2NC.n/

Y k˛�1ˇkAk˛kBkˇk D K.X; Y;A;B/

1 �K.X; Y;A;B/ :

Proof. Using Lemma 3.12 with the decomposition ˇ D ˇ0 t ˇ.n/, we have

K.X; Y;A;B/ D
1X
nD1

Xn
X

ˇ2NC.n/

X
˛2Int.n/
˛_IntˇD1n

Y k˛�1ˇkAk˛kBkˇk

D
1X
nD1

Xn
X

ˇ2NC.n/

X
˛2Kr Int.n/
˛^Kr IntˇD0n

Y k˛�1ˇkAk˛�11nkBkˇ�11nk

D
1X
nD1

Xn
X

ˇ2NC.n/

X
Q�Œˇ 0�

Y n�2�j¹c2ˇ 0WQ\cD;ºj�1C#.ˇ 0/�jQjAn�1�jQjB#.ˇ 0/:
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Here, Œˇ0� is the support of ˇ0 and Q D Q˛ , and

kˇ�11nk D n � 1 � kˇk D n � 1 � .n � #.ˇ// D #.ˇ0/:

Moreover, we used the fact that

˛ ^Kr Int ˇ D 0n” Q \ ˇ.n/ D ;:

Then, we continue our calculation with Lemma 3.14:

K.X; Y;A;B/

D
1X
nD1

Xn
X

ˇ2NC.n/

.AY /n�1.BY /#.ˇ 0/
X
Q�Œˇ 0�

.A�1Y �1/jQj.Y �2/j¹c2ˇ 0WQ\cD;ºj

D
1X
nD1

Xn
X

ˇ2NC.n/

.AY /jˇ 0jCjˇ.n/j�1.BY /#.ˇ 0/
Y
c2ˇ 0

�
.A�1Y �1 C 1/jcj C Y �2 � 1�

D
1X
nD1

Xn
X

ˇ2NC.n/

.AY /jˇ.n/j�1
Y
c2ˇ 0

BY
�
.1C AY /jcj C .AY /jcj.Y �2 � 1/�:

Therefore, using the definition (8) and Lemma 3.3, we calculate

K.X; Y;A;B/ D
1X
nD1

Xn
X

ˇ2NC.n/

hjˇ.n/j
Y
c2ˇ 0

gjcj D
1X
sD1

hsX
s

 
1C

1X
iD1
OgiX i

!s
;

where Ffree W g 7! Og is the free transform. This completes the proof.

Note that the Boolean cumulant generating function K from (7) is not quite ex-
plicit due to the definition of the function Og, which is given implicitly through its
free transform Ffree. Solving for Og explicitly requires inverting a function, which can-
not be done in full generality. Our theorem has the theoretical interest of expressing
the moment generating function of the shallow top meandric systems with the help
of the functional transforms associated to the type of lattices, the top, respectively,
the bottom, partitions belong to. Moreover, one can use the implicit formulas from
Theorem 5.1 to extract useful information regarding the enumeration of shallow top
meandric systems. For example, the main result of [14] states that the number of shal-
low top meanders on 2n points withm blocks on the bottom is the LHS of the identity

1

n

�
n

m � 1
��

nCm � 1
m � 1

�
D ŒXnY n�1An�m�M.X; Y;A; 1/:

We could not recover the LHS from the RHS, which is ours, while the identity itself
is true.
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1 1 2 2 3 3 4 4 5 5 6 6
NNN N N N N

(a) For ˇrainbow D .1; 6/.2; 5/.3; 4/, we have
ˇKr

rainbow D . N1; N5/. N2; N4/. N3/. N6/

1 1 2 2 3 3 4 4 5 5 6 6 7 7N N N N N N N
(b) For ˇrainbow D .1; 7/.2; 6/.3; 5/.4/, we have
ˇKr

rainbow D . N1; N6/. N2; N5/. N3; N4/. N7/

Figure 7. Examples for the rainbow partition ˇrainbow when n D 6; 7 and its Kreweras comple-
ment.

6. Shallow top semi-meandric systems

In this section, we consider shallow top semi-meandric systems: meandric systems
formed by an interval partition and the so-called rainbow partition, which is defined
as follows:

ˇrainbow D
8<: .1; n/.2; n � 1/ � � �

�
n
2
; n
2
C 1� (n is even);

.1; n/.2; n � 1/ � � � �nC1
2

�
(n is odd):

The terminology is justified by the fact that meandric systems with one of the par-
titions (say, the bottom one) is fixed to be the rainbow partition are called semi-
meandric systems [9]. We further specialize this setting by considering interval parti-
tions on the top.

One can find graphical representations of rainbow partitions (as well as their
Kreweras complements) in Figure 7. By using the decomposition in (3), we can write

ˇKr
rainbow D .ˇKr

rainbow/
0 t ˇKr

rainbow.n/: (9)

It always holds that
ˇKr

rainbow.n/ D ¹nº;
and .ˇKr

rainbow/
0 2 NC.n � 1/ is a rainbow partition. Moreover, all cycles in .ˇKr

rainbow/
0

are of length 2, unless n is even, when only one exceptional cycle consists of a single
point: ¹n=2º.

Note that the definition of the moment generating function in Definition 3.7 can
be naturally extended to the current case, so we can state and prove the main result of
this section.

Theorem 6.1. The generating function of shallow top semi-meandric systems M.X;
Y;A/ defined by Int.n/ � ¹ˇrainbowº is given by

M.X; Y;A/ WDM.X; Y;A; 1/ D X CX2.Y C A/
1 �X2Y.1C 2YAC A2/ : (10)
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Proof. In this proof, we treat our problem in the Kreweras-complement view but do
not use the cumulant generating function. First, by writing

ˇ WD ˇKr
rainbow;

we have

M.X; Y;A/ D
1X
nD1

Xn
X

˛2Int.n/

Y k˛�1ˇrainbowkAk˛k

D
1X
nD1

Xn
X

˛2Kr Int.n/
˛^Kr IntˇD0n

Y k˛�1ˇkAk˛�11nk;

where we used Proposition 2.2. We claim that the condition ˛ ^Kr Int ˇ D 0n always
holds in this case. Indeed, as in Remark 3.10, ˛ 2 Kr Int.n/ consists of isolated points
and possibly at most one non-trivial cycle containing n. On the other hand, we see
from (9) and Figure 7 that ¹nº is always an isolated point in ˇ. Hence, Definition 3.4
implies that the meet of the two partitions inside the lattice Kr Int.n/ is trivial.

Next, we apply Lemma 3.12 to NC.n/ and then Lemma 3.14 to NC.n � 1/:

M.X; Y;A/ D
1X
nD1

Xn
X

Q�Œn�1�
Y n�2�j¹c2ˇ 0WQ\cD;ºj�1Cb

n
2 c�jQjAn�1�jQj

D
1X
nD1

XnY n�1Cb
n
2 cAn�1

X
Q�Œn�1�

.Y �2/j¹c2ˇ 0WQ\cD;ºj..YA/�1/jQj

D
1X
nD1

Xn .YA/n�1Y b
n
2 c
Y
c2ˇ 0

�
..YA/�1 C 1/jcj C Y �2 � 1�„ ƒ‚ …

.?/

:

Moreover, recall that the cycles of ˇ0 are all pairs, except for the case when n is even,
where we have an extra singleton. Hence, we can make .?/ explicit:

.?/ D �.YA/�2 C 2.YA/�1 C Y �2�bn2 c�e.n/�.YA/�1 C Y �2�e.n/;
where

e.n/ D
´
1; n is even;

0; n is odd:

Here, note that
2
�jn
2

k
� e.n/

�
C e.n/ D n � 1;

which is the number of points in ˇ0.
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Finally, dividing the series into two parts depending on the parity of n, we have

M.X; Y;A/ D
1X
nD1

XnŒY.1C 2YAC A2/�bn2 c�e.n/.Y C A/e.n/

D X
1X
mD0

ŒX2Y.1C 2YAC A2/�m

CX2.Y C A/
1X
mD0

ŒX2Y.1C 2YAC A2/�m

D X CX2.Y C A/
1 �X2Y.1C 2YAC A2/ :

This completes the proof.

Remark 6.2. It is straightforward to extract the distribution of the number of loops
at fixed n from (10):

8n � 1; ŒXn�M.X; Y; 1/ D
´
.2Y /k�1.Y C 1/k if n D 2k;
.2Y.Y C 1//k�1 if n D 2k � 1:

In particular, the number of shallow top semi-meanders is the coefficient of XnY n�1

inM.X;Y;1/, which is 2dn=2e�1. Note that this number can also be computed directly.

7. Random matrix models for meandric systems

We present in this section several matrix models for the different types of meandric
systems that we study. These models are motivated by quantum information theory,
and they allow for a uniform presentation, the matrix model being constructed from a
tensor product of two (random) completely positive maps related, respectively, to the
type of non-crossing partitions used to build the meander.

Let us introduce basic definitions in quantum information theory as far as we need.
First, a matrix � 2Md .C/ is called a quantum state if it is positive semi-definite and
has unit trace so that the eigenvalues give a probability distribution. Bell states are
notable quantum states showing non-classical features. An un-normalized Bell state
can be written as

!d D �d��d 2Md2.C/;

where �d is a vector in Cd ˝Cd :

�d D
dX
iD1

ei ˝ ei 2 Cd ˝Cd ;
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where ¹eiºdiD1 is the canonical basis for Cd . Note that !d is a rank-one projection
onto the subspace spanned by �d . Next, a linear map ˆ W Md .C/ ! Md 0.C/ is
called a quantum channel if it is completely positive (CP) and trace preserving. The
CP condition is thatˆ˝ idd 00 is positive for any d 00 2N [25, Section 2.2]. Here, idd 00
is the identity map on Md 00.C/. We require complete positivity rather than positivity
because quantum channels should preserve positivity in arbitrarily larger systems.
According to the Stinespring dilation theorem [23] from operator theory, any CP map
ˆ WMd .C/!Md 0.C/ can be written as

ˆA.X/ D Œidd 0 ˝Trs�.AXA�/

for some operator A W Cd ! Cd 0 ˝ Cs . Here, Trs is the trace operation on Ms.C/.
Note that taking sD dd 0 allows one to recover all CP maps by varyingA. Moreover, if
A is an isometry,ˆA is also trace preserving yielding a quantum channel; all quantum
channels can be written as ˆA [25, Corollary 2.27].

7.1. Meanders

We start with the case of usual meanders and meandric systems, obtained by stack-
ing two general non-crossing partitions one on top of the other. We will first state
two models from the literature and then introduce a new, simpler one, which will be
generalized in later subsections to different types of meandric systems.

Let us define the meander polynomial

mn.`/ D
X

˛;ˇ2NC.n/
`#.˛�1ˇ/;

where ˛; ˇ are the non-crossing partitions used to build the meandric system hav-
ing #.˛�1ˇ/ loops (or connected components). Note that mn can be related to the
coefficient of Xn of the following polynomial M (similar to the one in (4); see also
[12, Section 5]), evaluated at A D B D 1:

M.X; Y;A;B/ D
1X
nD1

Xn
X

˛;ˇ2NC.n/
Y k˛�1ˇkAk˛kBkˇk: (11)

The first matrix models for meandric systems are due to P. Di Francesco and
collaborators; see [9, Section 5] or [8, Section 6]. We recall here, for the sake of com-
parison with our new models, the GUE-based construction from the former reference.
A Ginibre random matrixG is a matrix having independent and identically distributed
(i.i.d.) entries Gij following a standard complex Gaussian distribution; a Ginibre ran-
dom matrix can be rectangular, and we do not assume any symmetry properties for it.
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Define now a GUE (Gaussian Unitary Ensemble) random matrix

B D G CG�p
2
2Md .C/;

where G is a d � d Ginibre matrix. Note that the GUE matrix defined above is not
normalized in the usual way; see [2, Chapter 2] or [18, Chapter 1].

Proposition 7.1 ([9, Section 5]). Let ` be a fixed positive integer, and consider

B1; : : : ; B` 2Md .C/

i.i.d. GUE matrices. Then, for all n � 1,

mn.`/ D lim
d!1

E
1

d2
Tr

 X̀
iD1

Bi ˝ xBi
d

!2n
:

A second matrix model for meanders was discovered in relation to the theory of
quantum information, more precisely in the study of partial transposition of random
quantum states. We recall briefly the setup here. A Wishart random matrix of parame-
ters .d; s/ is simply defined byW D GG�, where G 2Md�s.C/ is a Ginibre matrix.
Note that W is by definition a positive semi-definite matrix, and thus, its normalized
version � D W= TrW is called a density matrix or a quantum state in quantum the-
ory [25]. This model for random density matrices was introduced in [26], and it is
called the induced measure of parameters .d; s/. For bipartite quantum states

� 2Md2.C/ DMd .C/˝Md .C/;

the partial transposition operation

�� WD Œidd ˝ transpd �.�/

plays a crucial role in quantum information theory, in relation to the notion of entan-
glement [15]. Before stating the result from [13], let us also mention that the combina-
torics of meanders appears also in computations related to random quantum channels;
see [11, Section 6.2].

Proposition 7.2 ([13, Theorem 4.2]). Let � 2Md2.C/ be a random bi-partite quan-
tum state of parameters .d2; `/ for some fixed integer ` � 1. Then, for all n � 1,

mn.`/ D lim
d!1

E
1

d2
Tr.`d��/2n:

We would like to introduce now a new, simpler matrix model for meandric sys-
tems, which we will later generalize to include different types of non-crossing parti-
tions.
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G G

H H

Z

�

�

H

Figure 8. A graphical representation of the bi-partite matrix Z D ŒˆG ˝ ˆH �.!`/. Round
labels represent the space Cd , while square labels represent C`.

Theorem 7.3. Consider two independent Ginibre matrices G;H 2Md2�`.C/ and
the corresponding CP maps ˆG;H WM`.C/!Md .C/. Define

Z WD ŒˆG ˝ˆH �.!`/ 2Md2.C/:

Then, for all n � 1,

mn.`/ D lim
d!1

E
1

d2
Tr
�
Z

d2

�n
:

Proof. The statement is a moment computation which is quite standard in the theory
of random matrices. We give a proof using the graphical version of Wick’s formula
developed in [7]. The diagram corresponding to the matrix Z is depicted in Figure 8.

To compute the n-th moment of Z, E TrZn, one considers the expectation value
of the trace of the concatenation of n instances of the diagram in Figure 8. This
expectation value is, according to the graphical Wick formula [7, Theorem 3.2], a
combinatorial sum indexed by two permutations ˛; ˇ 2 �n of diagrams D˛;ˇ . Note
that we have here two (independent) permutations since we are dealing with indepen-
dent Gaussian matrices G and H : the permutation ˛ is encoding the wiring of the
G-matrices, while ˇ encodes the wiring of the H -matrices. A diagram D˛;ˇ consists
of the following (see Figure 9 for a simple example):

• #.˛/C #.˛�1/ loops corresponding to the round decorations of G,

• #.ˇ/C #.ˇ�1/ loops corresponding to the round decorations of H ,

• #.˛�1ˇ/ loops corresponding to all the square decorations,

where  D .123 � � � p/ 2 �p is the full-cycle permutation and the boxes are numbered
from right to left. Let us first justify the formula for the number of d -dimensional
(i.e., corresponding to round decorations) loops given by ˛. Note that the permutation
˛, acting on the top boxes, gives rise to two types of loops: the top ones, in which
the output of the i -th G box is connected to the corresponding input of the i -th G�

box, and the bottom ones, where the output of the i -th G box is connected to the
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Figure 9. The diagram D˛D.1/.2/;ˇD.12/ as a term in the graphical Wick expansion of ETrZ2.
This diagram consists of 6 d -dimensional loops (3 corresponding to the top (red) pictures and
3 corresponding to the bottom (blue) ones) and of 1 `-dimensional loop.

corresponding input of the .i/-th G� box. It is now an easy combinatorial fact that
the number of connected components of a bipartite graph on 2n vertices having edges

¹.i; nC .i//ºniD1 t ¹.i; nC �.i//ºniD1
is precisely #.��1/, proving our claim. A similar argument settles the case of the `-
dimensional loops, where the top and the bottom symbols are identified by the wires
corresponding to the maximally entangled state !d .

The result of applying the graphical Wick formula is thus

d�2�2pE TrZp D d�2�2p
X

˛;ˇ2�n

d #.˛/C#.˛�1/C#.ˇ/C#.ˇ�1/`#.˛�1ˇ/:

Using standard combinatorial inequalities about permutations (see [5] or [20, Lecture
23]), we have

#.˛/C #.˛�1/ � p C 1;
#.ˇ/C #.ˇ�1/ � p C 1

with equality if and only if both ˛ and ˇ are geodesic permutations (see Section 2.1)
corresponding to non-crossing partitions. Moreover, for such permutations, #.˛�1ˇ/
is precisely the number of loops of the meandric system built from ˛ and ˇ (see
Proposition 2.1), finishing the proof.

Remark 7.4. In the statement above, one can replace the random CP map ˆH with
ˆG or even ˆ xG . This fact, quite surprising at first, is due to the particular asymp-
totic regime we are interested in, that is, d !1 and ` fixed. When performing the
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Gaussian integration using the graphical Wick calculus, one obtains a sum over per-
mutations ˛ 2 �2n; however, due to the fact that ` is fixed, the permutation ˛ will be
constraint to leave invariant the top (resp., the bottom) n points; this, in turn, amounts
to having a decomposition ˛ D ˛T t ˛B , with ˛T;B 2 �n, and the proof would con-
tinue as above. Note that if ` would grow with d , different behavior would occur; see,
e.g., [6].

Remark 7.5. One can keep track of the parameters A and B appearing in the def-
inition of the generating function M from (11) by adding a decoration of type “A”
(resp., “B”) on the partial traces appearing in the Stinespring dilation formulas for the
channels ˆG (resp., ˆH ); we leave the details to the reader.

7.2. Shallow top meanders

We consider in this section shallow top meanders, that is, meanders built out of a
general non-crossing partition and an interval partition (which sits on the top). We
will construct a random matrix model for these combinatorial objects by replacing
the random channelˆH from Theorem 7.3 by a non-random channel. First, we define
the corresponding shallow top meander polynomial by

mST
n .`/ WD

X
˛2Int.n/
ˇ2NC.n/

`#.˛�1ˇ/ D
X

˛2Kr Int.n/
ˇ2NC.n/

`#.˛�1ˇ/:

Theorem 7.6. Consider a Ginibre matrix G 2 Md2�`.C/ and the corresponding
completely positive map

ˆG WM`.C/!Md .C/

X 7! ŒTrd ˝ idd �.GXG�/:

Define

Z WD ŒˆG ˝‰�.!`/ 2Md`.C/;

Z0 WD ŒˆG ˝ id�.!`/ 2Md`.C/;

where the completely positive map ‰ is defined by

‰ WM`.C/!M`.C/ (12)

X 7! X C .TrX/I`:

Then, for all integers n; ` � 1,

mST
n .`/ D lim

d!1
E
1

d
TrŒ.d�1Z0/.d�1Z/n�1�:
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G G

Cn

G G

C2

G G

C1

� ��

Figure 10. The diagram corresponding to TrŒZ0Zn�1�.

Ci

Ci

C (i)

C1

“

Figure 11. Connecting the Choi–Jamiołkowski matrices Ci by the permutation ˇ and  , where
.i/ D i C 1.

Proof. We will use the graphical Wick formula to compute the expectation value
E TrŒZ0Zn�1�. We will encode the action of the linear map ‰ by its Choi–
Jamiołkowski matrix C‰ D !` C I`2 . Diagrammatically, we will apply the Wick for-
mula to the diagram in Figure 10, with

C1 D C2 D � � � D Cn�1 D C‰ D !` C I`2 and Cn D !`:

Applying the graphical Wick formula to compute the expectation over the Gaus-
sian random matrix G, we have

E TrŒZ0Zn�1� D
X
ˇ2�n

d #.ˇ/d #.ˇ�1/ Trˇ; ŒC1; C2; : : : ; Cn�;

where the trace factor above corresponds to the diagram obtained by connecting the
top output of the i -th C -box to the top input of the ˇ.i/-th C -box and the bottom
output of the i -th C -box to the bottom input of the .i/-th C -box; see Figure 11.
Note that the matrices Ci are of finite size `2. Thus, in order to take the limit d !1,
we have to maximize the exponent #.ˇ/C #.ˇ�1/. Using the triangle inequality, we
obtain (see the proof of Theorem 7.3)

lim
d!1

E
1

d
TrŒ.d�1Z0/.d�1Z/n�1� D

X
ˇ2NC.n/

Trˇ; ŒC1; C2; : : : ; Cn�:



M. Fukuda and I. Nechita 326

Ci

iˇ. /

Ci

i j −1 −1N Nqjq. / H jNqˇ

Figure 12. Following the top outputs (in red) of the C -boxes in the diagram
Trˇ; ŒC

Q

1
; C
Q

2
; : : : ; C

Q

n�1
; Cn�. Left: ˇ.i/ … xQ; right: ˇ.i/ D Nqj 2 xQ.

We will now develop the diagram corresponding to the trace in the sum above. We
will encode the choice of !` or I`2 for each matrix Ci (here, i 2 Œn � 1�) by a subset
Q � Œn � 1�: an integer i 2 Œn � 1� is an element of Q if and only if we choose the
matrix !` for the box Ci . Let ˛ 2 Kr Int.n/ be the comb partition encoded by the
subset Q (see Lemma 3.9). We claim that

Trˇ; ŒC
Q
1 ; C

Q
2 ; : : : ; C

Q
n�1; Cn� D `#.˛�1ˇ/; (13)

where, for i 2 Œn � 1�,

C
Q
i D

´
!` if i 2 Q;
I`2 if i … Q:

The claim (13) allows us to conclude, since

mST
n .`/ D

X
Q�Œn�1�
ˇ2NC.n/

Trˇ; ŒC
Q
1 ; C

Q
2 ; : : : ; C

Q
n�1; Cn� D

X
˛2Kr Int.n/
ˇ2NC.n/

`#.˛�1ˇ/:

Let us now prove (13). Recall from Lemma 3.9 that the geodesic comb permuta-
tion ˛ 2 Kr Int.n/ associated to a subset Q � Œn � 1� is given by

˛.i/ D
´
NqjC1 if i D Nqj 2 xQ;
i if i … xQ;

where xQ DQ t ¹nº D ¹ Nq1; : : : ; NqjQjC1º. Hence, if we were to follow the top outputs
of the boxes CQi , we would have (see Figure 12)

i 7!
´
ˇi D ˛�1 ı ˇ.i/ if ˇ.i/ … xQ;
Nqj�1 D ˛�1 ı ˇ.i/ if ˇ.i/ D Nqj 2 xQ;

which shows the claim (13), finishing the proof.
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or =

Figure 13. The LHS shows the Choi–Jamiołkowski matrices of the two possible operations:
X 7! TrŒX�I` or X 7! X , respectively.

Figure 14. The diagram for TrŒ!lZn�1�. Each row contains .n � 1/ boxes corresponding to
the Choi–Jamiołkowski matrix of the map ‰.

7.3. Thin meandric systems

In the case of thin meandric systems (corresponding to bottom and top permutations
corresponding to interval partitions, see Section 4), there is a matrix model which
is closely related to the one in the previous section. Actually, one needs to replace
in the statement of Theorem 7.6 the random CP map ˆG (responsible for the gen-
eral non-crossing permutation ˇ) by another copy of the deterministic linear CP map
‰ from (12). Before stating and proving the result, let us define the corresponding
meander polynomial

mthin
n .`/ WD

X
˛;ˇ2Int.n/

`#.˛�1ˇ/ D
X

˛;ˇ2Kr Int.n/

`#.˛�1ˇ/:

Theorem 7.7. Recall the linear, completely positive map ‰ from (12) and define the
matrix Z WD Œ‰ ˝‰�.!`/ 2Md2.C/. Then, for all integers n; ` � 1,

mthin
n .`/ D TrŒ!lZn�1� D `.2C 2`/n�1:

Proof. First, Figure 13 shows how we can interpret the Choi–Jamiołkowski matrix
of ‰.

Then, it is straightforward to see that the diagram corresponding to mthin
n .`/ is the

one from Figure 14, where there are .n � 1/ boxes containing the sum of I`2 and !`
on each of the two rows. Develop now the diagram as a sum indexed by pairs .Q;R/
of subsets of Œn� 1�, where in the top row we replace the i -th box by !` if i 2Q and
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by the identity matrix otherwise, and we use the subsetR in the similar manner for the
bottom row. It is straightforward to see that the diagram obtained has at most n loops
(each contributing a factor `) and that the exact number of loops is n� jQ�Rj, where
� is the symmetric difference operation. In other words, each time the i -th boxes are
different on the two rows, a loop is “lost”. Hence,

TrŒ!lZn�1� D
X

Q;R�Œn�1�
`n�jQ�Rj:

It is now easy to check that, given two permutations ˛; ˇ 2 Kr Int.n/ defined, respec-
tively, by the subsets Q;R � Œn � 1�, we have

#.˛�1ˇ/ D n � jQ�Rj;

establishing the first claim. The final equality is obtained by noting that

Z D .2C `/I C !l D .2C `/
�
I � !l

l

�
C .2C 2l/!l

l
;

which implies in turn that

Zn�1 D .2C `/n�1
�
I � !l

l

�
C .2C 2l/n�1!l

l
;

and thus, TrŒ!lZn�1� D `.2C 2l/n�1; see also Corollary 4.2.
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