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Free pre-Lie family algebras
Yuanyuan Zhang and Dominique Manchon

Abstract. In this paper, we first define the pre-Lie family algebra associated to a dendriform
family algebra in the case of a commutative semigroup. Then we construct a pre-Lie family
algebra via typed decorated rooted trees, and we prove the freeness of this pre-Lie family alge-
bra. We also construct pre-Lie family operad in terms of typed labeled rooted trees, and we
obtain that the operad of pre-Lie family algebras is isomorphic to the operad of typed labeled
rooted trees, which generalizes the result of Chapoton and Livernet. In the end, we construct
Zinbiel and pre-Poisson family algebras and generalize results of Aguiar.

1. Introduction

Rota—Baxter family algebras were proposed by Guo in 2009 [18] as a natural gen-
eralization of Rota—Baxter algebras, motivated by an example of such a structure
proposed two years before by Ebrahimi-Fard, Gracia-Bondia and Patras in the study
of momentum renormalization scheme in quantum field theory [11]. This was the first
example of “family algebraic structure”, where an algebraic structure interacts with
a semigroup in a way that remains to be understood in full generality (see Aguiar’s
recent preprint [2] for an important step in this direction). In this paper, we propose
a notion of pre-Lie family algebra compatible with the notion of dendriform family
algebra introduced in [36] and describe the corresponding free objects and operad in
terms of decorated (resp. labeled) typed rooted trees. Interestingly enough, the semi-
group at play must be commutative in this case. In the last section, we propose a family
counterpart of Zinbiel algebras and Aguiar’s pre-Poisson algebras [1].

It is well known that the first direct link between Rota—Baxter algebras and den-
driform algebras was given by Aguiar [1], who showed that a Rota—Baxter algebra
of weight O carries a dendriform algebra structure. This was generalized to weight
A # 0 and tridendriform algebras by Ebrahimi-Fard [10]. In [36], the authors gave
the definition of dendriform family algebras and also studied the similar property
between Rota—Baxter family algebras and dendriform family algebras. Free Rota—
Baxter family algebras were studied in [36, 38] and free dendriform family algebras
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were studied in [37]. L. Foissy recently proposed a unified framework encompassing
both dendriform family algebras indexed by a semigroup and matching dendriform
algebras indexed by a set [35], based upon the new concept of extended diassociative
semigroup [13].

Rooted trees are a useful tool for several areas of mathematics, e.g., in the study of
vector fields [6], numerical analysis [4] and quantum field theory [8]. The work of the
British mathematician Cayley in the 1850s can now be considered as the prehistory of
pre-Lie algebras. Chapoton and Livernet [7] first showed that the free pre-Lie algebra
generated by a set X is obtained by grafting of X -decorated rooted trees (see also [9]
for an approach which does not use operads). Pre-Lie structures on rooted trees lead
to the Butcher—Connes—Kreimer Hopf algebra of rooted forests, the study of which
attracted many scholars, see [8, 17, 20, 31]. The basic setting for Butcher series is
provided by this combinatorial Hopf algebra, which has become an indispensable tool
in the analysis of numerical integration [19]. Lie—Butcher series come with a Hopf
algebra of planar rooted forests closely related to post-Lie algebras [30].

In Section 2, we define the pre-Lie family algebra associated to a dendriform
family algebra in the case of a commutative semigroup. Foissy [12] considered typed
decorated trees to describe multiple free pre-Lie algebras. The decoration is a map
from the set of vertices into a set X, whereas the type is a map from the set of edges
into another set €2. In his approach, no semigroup structure is required on the set 2.
In Section 3, we show that the free pre-Lie family algebra is also given by decorated
rooted trees typed by some commutative semigroup €2, whose multiplication plays an
essential role.

Operads were first named and rigorously defined by May in his 1972 book [28],
which investigated the applications of operads to loop spaces and homotopy analysis.
There has been a renewed interest in this theory after the breakthrough brought along
by the introduction of the Koszul duality for operads by Ginzburg and Kapranov [16].
That renaissance [24] gave rise to research in many areas, from algebraic topology to
theoretical physics [27], which have continued to yield important results to our days.
Chapoton and Livernet defined the underlying operad of pre-Lie algebras in terms of
rooted trees, which sheds light on the relationship between them. In Section 4, we
prove that the operad of pre-Lie family algebras is isomorphic to the operad of typed
decorated rooted trees, which generalizes the result of Chapoton and Livernet [7].

Finally, we give a brief account of some other family algebraic structures which
may be of some interest: we introduce Zinbiel family and pre-Poisson family algebras
in Section 5, and describe the link between them, thus generalizing some results of
Aguiar [1] (Propositions 5.5 and 5.6 in the present paper).

Notation. Throughout this paper, let k be a unitary commutative ring which will
be the base ring of all modules and algebras, as well as linear maps. Algebras are
unitary associative algebras but not necessary commutative.
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2. From dendriform family algebras to pre-Lie family algebras

2.1. Reminder on Rota—Baxter and dendriform family algebras

The first family algebra structures which appeared in the literature are Rota—Baxter
family algebras of weight A = —1, which naturally arose in 2007 in an article by Ebra-
himi-Fard, Gracia Bondia and Patras on momentum renormalization scheme in pertur-
bative quantum field theory [11, Proposition 9.1], see also [32]. The terminology was
proposed to the authors by Guo, who later formalized the concept for any weight [18].

Definition 2.1. Let Q2 be a semigroup and A € k be given. A Rota—Baxter family of
weight A on an algebra R is a collection of linear operators (Py)n,eq on R such that

Py(a)Pg(b) = Pyg(Py(a)b + aPg(b) + Aab) fora,b € Randa,p € Q.

The pair (R, (Py)peq) is called a Rota—Baxter family algebra of weight A.

A well-known simple example of Rota—Baxter family algebra of weight —1, with
Q = (Z, +), is given by the algebra of Laurent series R = K[z ™!, z]], where the
operator P,, is the projection onto the subspace R, generated by {z¥, k < w} parallel
to the supplementary subspace R, generated by {z¥, k > w}.

The concept of dendriform family algebras was proposed in [36], as a generaliza-
tion of dendriform algebras invented by Loday [22] in the study of algebraic K -theory.

Definition 2.2 ([36]). Let Q be a semigroup. A dendriform family algebra is a k-
module D with a family of binary operations (<, > )wegq such that for x, y,z € D
and o, B € Q,

(X <ay)<pz=X=<og (Y <gz+Y >q2),
(X >¢ y) <gz=x>q (y <p 2), 2.1)
(X <y +Xx>q))>qg 2 =X>¢ (y>p2).

Any Rota-Baxter family algebra has an underlying dendriform family algebra
structure, and even two distinct ones if the weight A is different from zero [36,37].

2.2. Pre-Lie family algebras

Pre-Lie algebras were introduced in 1963 independently by Gerstenhaber and Vin-
berg [15,34], see [7] for more references and examples, including an explicit descrip-
tion of the free pre-Lie algebra on a vector space. Now we propose the concept of left
pre-Lie family algebras.
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Definition 2.3. Let Q2 be a commutative semigroup. A left pre-Lie family algebra is
a vector space A together with binary operations I>,: A x A — A for w € Q2 such that

XDq (Ypz)—(xDa ) Pap 2=y D>g (X >gz)— (Y X) >pg 2, (2.2)
where x,y,z € Aand «, B € Q.

Theorem 2.4. Let Q2 be a commutative semigroup and let (A, (<u, >o)weq) be
a dendriform family algebra. Define binary operations

XDV i=X>pV—V <pXx forweQ.
Then (A, (I>o)weg) is a pre-Lie family algebra.

Proof. On the left-hand side, we have

X Do (y>p2) = (X >ay) Doz
=xDog(V>pz—2=<8Y)—(X >y —) <aX)D>eg Z
=x>q (Y >pz—z=<py)—(>gz—2<gYy)<aX
—((Xx>ay =y <aX) >ap 2 =2 <gp (X ¢ ¥y =) <a X))
=x>q (P >p2)—x>q (2 =<Y)—(>g2)<a X+ (z2<gY)<aXx
—(X>a ) >ap 2+ (¥ <a X) >ep 2 +Z <ap (X >a ¥) —Z <ap (¥ <a X)
S < ) map z (¥ e ¥) map 2= X ma (2 <p Y) = (v p 2) <a X
+ 2z <ga (¥ <a X) +2 <ga (y >p X) = (X >¢ y) >op Z
+ (V <a X) =ap 2+ 2 <gp (x >0 ¥) —Z <ap (¥ <a X)
=(x=<gy)=qpz—X>q(z2=<gY)—(y>p2) <ax
+ 2z <ga (¥ =g X) + (y <a X) =ap Z + 2 <ap (x >a y).

On the right-hand side, we have

YD (xD>qz)—(y>gX) D>y Z

=y (X >qz2—2<gX)— (V> X=X =<gY)D>paZ

=y > (X >z =2 < X)— (X >qZ—2<gX)=<gY
—((y»px—x=<gy)>=gaz—2z<ga (y >pxX—x=<gy)

=y > (x> 2) =y > (Z<aX)—(X>¢2)<gy+(z2<ax)=<pgYy
— (V> X)>ga 2+ (X <8 Y) =paZ+2Z <pa (y g X)—2z <ga (X < Y)

S0 5 ) pa 2 (3 <a X) pa 7=y = (2 <a X) = (x =0 2) <p ¥
+2z<ap (x =g y)+2Z<ap (X>ay)—(y>pX)>paz
+ (X <gY) >ga 2+ 2 <ga (¥ >pX)—2z<pg (Xx <g¥)
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= (y <o X) Ba Z—Y > (z <¢ X) = (x >¢ 2) <y
+ 2z <ap (X >a ¥) + (x < ¥) >pa Z + 2 <ga (¥ >4 X).

Now we see, using the commutativity of the semigroup €2, that the i-th term in the
expansion of the left-hand side is equal to the o (i)-th term in the expansion of the
right-hand side, where o is the following permutation of order 6:

i\ (1 23 456
o)) \5 3 2 6 1 4)°

XDg (Y >pz)— (XD Y)Dagz=yD>g (xD>gz)—(y>gX)D>pg Z

Thus

holds. This completes the proof. |

Remark 2.5. Theorem 2.4 justifies the definition given for pre-Lie family algebras,
and shows why the commutativity of the semigroup is necessary. This is a general
phenomenon when one tries to define family algebraic structures in general: when the
operad at hand is non-sigma, no supplementary property on the semigroup is required,
but commutativity becomes necessary when the operad is sigma, i.e., when permuta-
tions of elements is necessary for writing the relations between the given products.
Alternative definitions also exists with richer structure than semigroups on the param-
eter space. For more details on these questions, see [2, 13, 14].

3. Free pre-Lie family algebras

3.1. The construction of pre-Lie family algebras

In this subsection, we apply typed decorated rooted trees to construct free pre-Lie fam-
ily algebras. For this, let us first recall typed decorated rooted trees studied in [5, 12].

For a rooted tree 7', denote by V(T) (resp. E(T)) the set of its vertices (resp.
edges).

Definition 3.1 ([5]). Let X and €2 be two sets. An X -decorated 2-typed (abbreviated
typed decorated) rooted tree is a triple T = (T, dec, type), where

(1) T is arooted tree,

(2) dec: V(T) — X is a map,

(3) type: E(T) — 2 is a map.

In other words, vertices of 7" are decorated by elements of X and edges of T are
decorated by elements of 2.
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Remark 3.2. Let X and Q2 be two sets. The following trees are the same:

For n > 0, let 7,,(X, 2) denote the set of typed decorated rooted trees with n
vertices. Denote by

TX. Q) :=| |7mX. @ and kT (X, Q):=PkTn(X. Q).

n>0 n>0
The degree | T| of a typed decorated rooted tree is by definition its number of vertices.

Definition 3.3. Let X be a set and let 2 be a commutative semigroup. For S, T €
T(X, Q)and w € 2, define

w
SeoT:= Y S —T.
vever(T)
The notation S 2, T means that
v

* the tree S is grafted on T at vertex v by means of adding a new edge typed by w
between the root of S and v,

* each edge below the vertex v has its type multiplied by w,
* the other edges keep their types unchanged.

Example 3.4. Let 2 be a commutative semigroup. Let

Then we have
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Lemma 3.5. Let Q be a commutative semigroup. For v,v' € U and o, € Q, we
have

s s rlony =1l (s ).
v v v v

Proof. Fora, B € Qand v,v’ € U, we have

o B ’ ’ B a
Sﬁ(TjU):W):@w:T_&(S_ZU)'

Both terms are obtained by grafting S on U at vertex v and grafting 7 on U at
vertex v’. They are equivalent because the result does not depend on the order in
which both operations are performed. Indeed,

* the new edge which is below S is of type « and the new edge which is below T is
of type §;

» edges which are below both vertices v and v’ have their types multiplied by
ap(= pa);

» edges which are below v and not below v’ have their types multiplied by «;

e edges which are below v’ and not below v have their types multiplied by f;

» the other edges keep their types unchanged. |
For better understanding Lemma 3.5, we give the following example.

Example 3.6. Let 2 be a commutative semigroup. Let

Then we have

-1l (s 0.
v v
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Lemma 3.7. Let Q be a commutative semigroup. Forv € T, v/ € U and a, B € L,
we have

Sa—:(Tﬂ—U;U):(Sa—;T)O%U. 3.1

Proof. Fora,B e Qandv € T, v’ € U, the equality of both terms can be summarized
as follows:

o B o o ap
st Tl = S Ny,
v v v v

aBly’

Indeed, both terms have the same underlying decorated rooted tree. To determine the
type of each edge of the left-hand side of equation (3.1), we can proceed in two steps:

* the first step consists in grafting 7 on U at vertex v’, so the new edge is of type S.
The edges which are below the vertex v’ of U have their types multiplied by §;

» the second step consists in grafting S onto the result T ﬂ—>/ U at vertex v of T', the
new edge is of type «, and the edges (including the new e(vige produced by the first
step) which are below the vertex v have their types multiplied by «. So combining
the first step and the second step, the new edge between 7" and U should have
its type multiplied by o8, and the edges which are below the vertex v’ of U have
their types multiplied by «f totally.

Similarly for the right-hand side:
* the first step consists in grafting S on T at vertex v, and the new edge is of type .
The edges which are below the vertex v of T have their types multiplied by «;

* the second step consists in grafting S 25 T on the result at vertex v’ of U , the
v
new edge is of type af8, and the edges which are below the vertex v’ of U have
their types multiplied by «8.

So both sides of equation (3.1) coincide. ]

Example 3.8. Let 2 be a commutative semigroup. Let

ba
83
and T = b3.
8 81
b1
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Then

Proposition 3.9. Let X be a set and let Q2 be a commutative semigroup. Then the
expression (KT (X, ), (>>w)weq) is a pre-Lie family algebra.

Proof. For S, T,U € T(X, Q) and o, B € 2, we have

S (T>gU)=(S>aT)>og U
a B a ap
= 3 > S — (T —U)~ > (§=—T)—U

vever(T)Uver(U) v’ ever(U) vever(T) v ever(U)
o B a B
=) 2 S=T=0+ ) ) ST
vever(T) v/ ever(U) vever(U) v/ ever(U)

-y ¥ (S"‘—;T)"%U

vever(T) v/ ever(U)

Lemma 3.7 o B
=0 X ST
vever(U) v’/ ever(U)

Lemma 3.5 B o
=) 2 T
vever(U) v’/ ever(U)

=T>g(S>qU)—(T>pgS)>pe U. m
For better understanding Proposition 3.9, we give the following example.

Example 3.10. Let Q2 be a commutative semigroup. Let

c2
T =e, and U=IV.

€1
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Then

Sq(TglU)—(S>aT)>e U

- Y Y seabu-y Y sentu

vever(T)Uver(U) v’ ever(U) vever(T) v/ ever(U)
a B a B
=2 2 SIS0+ ), ) ST
vever(T) v ever(U) vever(U) v/ ever(U)

D (S"‘—;T)"%U

vever(T) v’ ever(U)

®
'ot @ @

®
5,85 4P iy 0

Cl
C1

®
®© 9o &

,B \02/ @ !
ﬁaVI o @ /
o Itxﬂy

-y Y et

vever(U) v'ever(U)
=Tr>g(S>qU)—(Tr>pgS)>gs U
Let X be a set and let 2 be a commutative semigroup. Denote
T(X,Q):=T (X, Q) QK.

The following result specifies the link between pre-Lie family algebras and ordinary

pre-Lie algebras.
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Theorem 3.11. (k7 (X, Q),>) is a pre-Lie algebra < (kT (X, Q), (>¢)wea) is
a pre-Lie family algebra, where

SR> TP =8> T)Rap (3.2)
for S, T € T(X, Q) anda, B € Q.

Proof. For S,T,U € T(X, Q) and «, B,y € 2, we have

Te)>((SH>URy)-(Tax)> (S®L) > UY)

DT @) (S>pU)RBy)— (T > S)®@af) > (USY)

DT o (Sp U) ®aPy — (T 4 ) >ap U) @ afy

=T o (S>pU)—(T>eS) g U) ®afy

ES >p (T >a U)— (S >p T) gy U) ® Pary

=(S®B) > (T U)®ay)—(S>p T)® o) > (U ®y)

=S (TO)>U®RY)-(S®H>(T®a)>UQY).

as required. Conversely, we obtain
(T >o (S >B U)—(T >4 S) >apB U)®afy

=T (SH>URY))-—(TR®)>(S®P)) > (Uy)

=EH>((TR)>URY)-((S®P) > (T ®a)) > (Uy)

=8> (T U)@ay)—(S>pT)Q fa) > (U ®y)

=S >g(T>eU)@Bay —((S>p T)>pe U) ® Bay

=g (TeU)=(S>pT)>ga U)® Bay.
Since €2 is a commutative semigroup, we have

TogS>pglU)—(TrgS)DepU =S (T > U)—(S>pgT)>pe U m

3.2. Free pre-Lie family algebras

In this subsection, we show the freeness of the pre-Lie family algebras defined in
Section 3.1 above. Let 2 be a commutative semigroup. Let (L, (>4 )weg) be any
pre-Lie family algebra. For x1,x2,y € L and a, 8 € 2, define

(X1X2) g g V= X1 D¢ (X2 D> ¥) — (X1 D¢ X2) Do V. (3.3)

This is symmetric in (x1, &) and (x5, B) by definition of a pre-Lie family algebra.
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Now we define (X1 -+ x,) Dy,
andy € L.

w, Y, Where xq -+ x, is a monomial of 7 (L)

.....

Definition 3.12. For x; ---x,,y € L and wy, ..., w, € 2, we define recursively
multilinear maps

.....

X1 Xy @Y > (X122 Xn) Doy,wn VY
in the following way: 1 >, y := y. We define
(X1 Xn) Dwyp,on V1= X1 Doy (X252 Xn) Das,.on V)

n
- Z(XZ"'xj—l(xl D>y Xj)Xj+1°"" Xn)
j=2

Dwz ..... Wj—1,W1W; ,Wj 4 seees wn Y. (34)

Proposition 3.13. Let Q be a commutative semigroup. Let (L, (I>4)weq) be any pre-
Lie family algebra. The expression (x1-++X,) D>w,,....0, ¥ defined in equation (3.4) is
symmetric in (X1, ®1), ..., (Xn, wy). Therefore, it defines a map:

> S"(LRKQ)® L — L,
(X1 @1+ Xp ®Wy) @ y > (X1 Xn) Doy, V-

Proof. The invariance by permutation of the variables (x1, ®1), ..., (x5, w,) is ob-
tained by induction on n > 2. For the initial step n = 2, it is exactly the pre-Lie family
identity (3.3). Denote by X; and @; the elements that do not appear in the terms. For
the induction on n > 3, we have

(xl xn) >wi,non YV = X1 Do, ((xz"‘xn) >ws,....0n y)
n
- Z(XZ"‘xj—l(xl >, xj)xj-i-l cXp) D> 030y 1,01 @ W 41 5eeesOn Y
j=3

= ((x1 >, X2)X3 -+ Xp) D> wiw2,03,....0n Y

= X1 Dy, <X2 D>w, (X322 Xn) Dws,.on V)

n
- Z(XS c Xj—1(X2 Dy Xj)Xj41 00" Xn) D> w30 —1,020) ....0n y)
j=3

(expand the first term by (3.4))
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= X1 Do, (xz >ws ((X3 . 'xn) >ws,...,0n y))
n
= X1 By (X3 X1 (X2 By X))Xj 417+ Xn)
Jj=3
>w3,...,a)_,-,1,wzw_,-,...,wn y)
n
- Z(Xz et xj—l(xl le xj)xj-l—l o 'xn) >(4)2,...,50_/,1,wla)j,...,wn y
j=3

— ((x1 >w; X2)X3 -+ Xp) D> wiws,03,....0n Y

= X1 Do, (xz > w, ((X3 : "xn) >ws,...,0n y))

n
- le > w; (((x2 > w, Xj)X3 )?] xn) Dwzwj,w3,...,cﬁj,...,wn y)
Jj=3

n
- Z((xl I>a)] xj)x2 e 55] e xn) |>w1a{/,w2,...,c§,-,...,wn y
i=3

- ((Xl I>a)1 x2)x3 e xn) |>a)la)2,a)3,...,wn y (by the indUCtion hypOtheSis)

= X1 Do, (xz >ws ((X3 : "xn) >ws,....0n Y))

n
- Z(xl(XZ [>a)2 xj)x?) o 5C\] o 'xn) Da)],wzwj,a)3,...,a'3j,...,wn y
Jj=3
n

~

— 3 (62 B ) (X1 By X)Xz R o e )

Jk=3
J#k
W20 , W] D W3 5eees D 5erey D 5evesWpy y

n
=3 s X1 (61 By (X2 By X)) )
j=3

>w3,...,wj_1,a)la)za)j,...,a)j,...,wn y

n
- Z(Xz(xl D(x)] xj)x3 o 55] o 'xn) Dwz,wlwj,a)g,...,@j,...,wn y
i=3
— ((x1 >w; X2)X3++ Xp) D> wiws,03,....0n Y-

(expand the second term of the last equation)

In the above equality, the sum of the second term and the fifth term is obviously
symmetric in (x1, w1) and (x2, ®;). The third term is also obviously symmetric in
(x1,w1) and (xz, w,) by itself. We are left to see the remaining three terms, that is,
the first term, the fourth term and the sixth term.
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By the pre-Lie family relation, we have that

first term + fourth term + sixth term
= (x1x2) >wi,0 ((x3++-x,) > ws,...,0n y)
+ (X1 Doy X2) Dwjw, (X3 Xn) Bws,.0, V)
(expand the first term of last equation)

n
- Z(x?’ o '.Xj_l(XI [>601 (xz [>CU2 xj)) o 'xn) >w3,...,wj_1,wlwzwj,...,cﬁj,...,wn y
j=3
— (X1 Do, X2) Bwjw, (X322 Xn) Bos,.0, V)

n
+ Z(x?a e Xj—1 ((xl [>a)1x2) [>a)1a)2 xj) e xn) l>a)3,...,a>j_1,w1w2wj,...,éj,..‘,wny
j=3

(expand the sixth term by (3.4))
= (x1x2) > w1 ,0 ((x3++xn) > w3, ...,w0n y)

n
- Z(x3 e Xj—1 ((X1X2) >wi,00 xj) te xn) [>w3,...,a)j_1 DN D2W] seees@ seeesOp V-
i=3 . . .
! (by the pre-Lie family relation)

Hence the sum is obviously symmetric in (x1, w;) and (x2, w;). By the induction
hypothesis, (X1 Xp) >o,,...,
(X, wy). So we obtain the announced invariance. [

w, ¥ is symmetric in the n — 1 variables (x2, ®3), ...,

Definition 3.14. Let X be a set and let 2 be a commutative semigroup. Let x € X,
Ty---T, e T(X, Q),w1,...,0, € Q. Denote by

w1 wWn
X

Bt (Ty---Tp) =

X,W1 5eees®p

the Q2-typed X -decorated tree obtained by grafting T} --- T,, on a common root dec-
orated by x, the edge between this root and the root of 7; being of type w; for any i.
This defines maps

B} S T((T(X, Q) — T(X, Q).

XyW1 5eees®

Lemma 3.15. Let X be a set and let Q2 be a commutative semigroup. For any x € X

and wy, . ..,w, € 2, we have
B)—ci_,wl,...,wn (Tl T Tn) = (Tl s Tn) >wi..0n ®x-

Proof. Let F =T ---T,. We proceed by inductiononn > 1. If n = 1, then

F=T and T) >, e, = %a) = B ,(Th).

X
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Let us assume that the result holds for n — 1, with n > 2. We can write F = T, F’
with length [(F’) = n — 1. Then

(3.4)
F >wi,.0n ®x = (Tl F/) >wion ®x = T, >, (F/ D> ws,....0n .x)

=T > B;:wl ..... wn (F/)
n
- B)-c‘r,coz,...,wle,...,wn ((T2 U ij—l (Tl [>(1)1 7"]) e Tn)
/=2 (by the induction hypothesis)
=T >y, B (T---Tn)

X W1 5..0,0pn

..........

= = BT (T\F') = B} (F).

w1 w2,...,0, X017 5..,Wn X,W7 5e00,Wn
X

n
_ZB;’&& w10, wn((Tz'“Tj—l(Tl >w, Tj)Tn)
j=2

So the result holds for all n > 0. n
Let j: X — T(X, ), x > e, be the standard embedding map.

Theorem 3.16. Let X be a set and let Q2 be a commutative semigroup. Then, together
with the map j, (T (X, Q), (>0 )weq) is the free pre-Lie family algebra on X.

Proof. Let (A, (>),)weq) be a pre-Lie family algebra. Choose a set map ¢: X — A4,
and use the shorthand notation a, for ¥ (x).

Existence: Define a linear map ¢: 7 (X, 2) — A as follows. We define ¢ (T') by
induction on |T| > 1. For the initial step || = 1, we have T = e, and define

P(ox) 1= ax.
For the induction step |T'| > 2, let
T = B;r,wl,...,wn (Ty---Ty) = 1 wp
x

and define

DBy T T) = $( TN ) = (T T) By, 92)

X

= (@(T1) - (Tn) By, .., - (3.5
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Let T,T' € T (X, Q) and w € Q2. We are left to prove that
P(T o T') = ¢(T) >, ¢(T")

by induction on |T”’| > 1. For the initial step |T'| = 1, we have T’ = e,. Then T >,
T’ = B}, (T), so we have

¢(T >0 T') = ¢(B} (1)) = ¢(T) >, ax = ¢(T) >, ¢(T").

For the induction step |T"| > 2, let

T = B} wn(T{"-T,i): D

Xy 5eeny o on
X
Then
ToT =T>0 B, . 0T T,)
= B orson (TTL - T))
n
+ Z B;wl,...,wmj,...,wn(Tl’ (T >y T)) -+ Ty).
=1
So we have
(T >, T) = ¢(B;w’wl,_“,wn (TT]---T))

n
+ Z B;:wl,...,wa)j,...,wn (Tl/ U (T >w Tj/) e TI’:))
j=1

3.5)

= @MST) D (T) >l .oy G
+ Y @I (T >0 T ST Bl .o O

Jj=1

= BTG S (T)) By o1 o G
+ ) BT BT >l ST (o) Doy o o G

J=1 (by the induction hypothesis)
G4

=¢(T) >, (B(T)) - $(T) >4, .. )
= ¢(T) >, (T").

This completes the proof. |
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4. The pre-Lie family operad

We generalize the description of the pre-Lie operad in terms of labeled rooted trees
by Chapoton and Livernet [7] to a description of the pre-Lie family operad in terms
of typed labeled rooted trees.

4.1. The operad of pre-Lie family algebras

We now describe an operad in the linear species framework. We refer to [3,25,27,29]
for notations and definitions on operads. In fact, a pre-Lie family algebra is an algebra
over a binary quadratic operad, denoted by PLF .

From now on, let € be a symmetric monoidal category with small colimits, which
in particular implies the existence of coproducts indexed by arbitrary sets and with
initial object O¢. For example, the category of vector spaces on some field k with
tensor product, where the coproduct is given by the direct sum [26].

Definition 4.1. A species in the category € is a contravariant functor £ from the
category ¥ of finite sets with bijections to €. Thus, a species E provides an object E4
for any finite set A and an isomorphism Eg: Egp — E4 for any bijection ¢: A — B.
We will stick to species E which vanish on the empty set, i.e., such that Eg = Oe.

Definition 4.2. A morphism of species between F and G is a natural transformation
¥: F — G. So for any finite sets A and B of the same cardinal and any bijection ¢
from A to B, the following diagram commutes:

Fy
Fp——Fy4

) 2

GB qu) GA.
Recall [29, Section 3.2.4] that the monoidal structure o on species vanishing on
the empty set is given by

Po@a= P P as. 4.1)

srpartition of A Ben

Definition 4.3. Anoperad # = (£, y,n) is a species A — $4 endowed with a monoid
structure, i.e., an associative composition map y: o  — f and a unit map n:1 - P
where I is the species defined by Iy = 0 for |[A| # 1 and L4y = le.

Partial compositions give an equivalent and simpler way to define operads be-
cause it reduces the operad multiple substitution to binary operations that frequently
are easier to define.
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Definition 4.4. Let J be an operad and let u € P4, v € P be two operations,
where A and B are two finite sets. Define the partial compositions

0q: P4 ® Pp — <(PAI_|B\{a} fora € A,

og v :i=y(u; (ctx)xea)

with ¢, = v and @, = id for x # a. There are two different cases for two-stage partial
compositions, depending on the relative positions of the two insertions. Associativ-
ity of the composition in an operad leads to two associativity axioms for the partial
compositions, one for each case (sequential or parallel):

D (Aogu)opv=Ao,(nwopv) foraec A,be B,
(I (Aog u)ogv=_(Aoyv)o, u fora,a’ € A

for any A € P4, u € Pp, v € Pc. Relation (1) is called the sequential composition
axiom and relation (II) is called the parallel composition axiom. The unit element
id € £ (1) satisfies

(II) idogyu=p and popid=p

for any b € B. Conversely, given a family of partial compositions verifying the three
axioms above, we can recover the global composition by choosing any enumeration
b1, ..., by, of the finite set B and setting

y(usor, ... on) = (- ((L op; 1) 0p, €2) -++) Op, Cp.

This does not depend on the choice of the enumeration by virtue of the iterated
axiom (II).

Denote by |A| the cardinality of the finite set A. Let g be the free operad gener-
ated by the regular representation of S, on the species £ defined as follows:

0 if |A] # 2.
Eq=
kQ ® kS, if 4| = 2.

We choose a basis (ty)weq Of K2. The space (Fgq)4 is the linear span of planar
binary trees where each internal vertex v is decorated by an element of Ef,(,) and
leaves are labelled by the elements of the set A. Here In(v) stands for the set of
incoming edges of vertex v. A basis of ¥ (A), as a vector space, is given by |A| —2
formal partial compositions of the binary elements >, and 7 >,. Let R be the S3-
submodule of Fq (A) generated by the relations

r =g 0p >g — >ap % o —T12(> 0p Ba — P>ga 0a >p).  (42)
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Choose an enumeration {a, b} of the set A, and an enumeration {1, 2} of a second
disjoint copy of the set A. Note that > op >g and >g op >4 belong to PLF (4 1,2}
whereas >4 04 I>g and I> g4 04 > belong to PLF (; 5 1. We identify both three-
element sets by means of the bijection

a 1 2
1 2 b

in order to make equation (4.2) consistent. Then PL£F = Fqo/(R), where (R) de-
notes the operadic ideal of Fq generated by R.

4.2. The operad of typed labeled rooted trees

Let TAQ be the set of typed labeled rooted trees, whose vertices are labelled by the
elements of set A and the edges are decorated by elements of 2. We denote by 7;9
the free k-vector space generated by the Q2-typed A-labeled rooted trees TAQ. We can
endow the species 7 with a linear operad structure as follows. Recall that In(v)
stands for the set of incoming edges at the vertex v of 7.

Definition 4.5. Let A, B be two sets. We define the composition of 7" and U along

the vertex v of T by 0,: T ® T — T2 g\ (- for T € T8 and U € T,

T oy, U := > T ol U, 4.3)
fiIn(v)—ver(U)
where T o,{ U is the typed labeled rooted tree of TAQI_I B\{v} obtained by
» replacing the vertex v of 7' by the tree U,
* connecting each edge a in In(v) at the vertex f(a) of U,

* multiplying by w, the type of any edge below the vertex f(a), where w, is the
type of the edge a.

For better understanding, we give an example.
Example 4.6. Let 2 be a commutative semigroup. Let

Y1 Y4 Y5 Ve

X1 X2 X3 X4

and U =
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We are ready to compute T o, U, first we replace the vertex v of T with the
tree U, then we graft the edges which contain vertices x; and x, of T on the vertices

of U, there are many cases. Here we just write one case, we graft the two edges of T
mentioned above onto the left vertex y; and right vertex yg of U respectively, that is,

f(xfal) —y and f<in2> = 7.

Denote by T oy, ; U this particular component of the composition. Then we have

Proposition 4.7. The species T together with the partial compositions o, defined
by equation (4.3) is an operad.

Proof. We adapt the proof from [33, Theorem 10], where the associativity is proved in
the slightly different context of a “current-preserving" version of the pre-Lie operad.
Let T € TAQ, U e ng and W e Téz , where A, B, C are three finite sets. First, we
prove sequential associativity: let v € T and v’ € U. Then we have

(Toy U)oy W= Y (To] Uyoy W
f:In(v)—>ver(U)

= Z Z (Tovf U) 05/ W,

fiIn(w)—>ver(U) g:fn(v’)—>ver(W)

where ffl(v’ ) stands for the set of incoming edges of v’ inside the tree T o{ U. Simi-
larly, we have

Toy(Uoy W)= 3 Toy(Uoj W)
g:In(v)—>ver(W)

- 3 Y Tol UEW).

]7: In(v)—»ver(Uof/ W) Z:In(v")—ver(W)
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In order to show (T o, U) oy W =T o, (U o,y W), we have to prove that there exists
a natural bijection ( f, g) — (f, ) such that

(T o U)ol W =T of (UE W), (4.4)

Let f:In(v) — ver(U) and g: ﬁl(g’) — ver(W) be two maps. We look for g:In(v') —
ver(W) and f: In(v) — ver(U of, W) = ver(U) U ver(W)\{v’} such that the above
equation holds.

Let a be an edge of U arriving at v’, thus « is an edge of T ovf U arriving at v’.
We get g(a) = g(a), hence g is the restriction of g to In(v’). Similarly, we define f
in a unique way:

f: In(v) — ver(U o‘g, W) = ver(U) U ver(W)\{v'},

= o Jfl@) if fla) # V',
a— f(a)=
gla) if f(a) =v'.
Conversely, we assume that we have the pair ( f , &) and look for the pair ( f, g) such
that equation (4.4) holds. We have

f:In(v) — ver(U) Uver(W)\{v'} and g: In(v') — ver(W).

We can define

fla) if f(a) ¢ ver(W),

SfiIn() = ver(U), ar> f(a) = {v’ if f(a) € ver(W)

and

~ g(a) ifaisanedgeofU,
g: In(v') = ver(W), awr> ga) = gf ) g
f(a) ifaisanedgeofT.

The two subjacent trees of (T’ o{ U) of:, Wand T o{ v of, W) are the same. In both
cases, an edge in U has its type multiplied by the types of the edges of T arriving
above it along the plugging map f. For the left-hand side, an edge in W has its type
multiplied by the types of the edges of T’ o,{ U arriving above it along the plugging
map g. For the right-hand side, an edge in W has its type multiplied by the types
of the edges of U arriving above it along the plugging map g, and also multiplied
by the types of the edges of T arriving above it along the plugging map ]7 . The
results of both sides are the same, due to commutativity of the semigroup €2, which

proves (4.4).
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Second, we prove the parallel associativity: let v and v” be two disjoint vertices
of T, then

(Toy U)oy W= > (To] U)oy W
f:In(v)—>ver(U)

= Z Z (Tol{ U)of,W

fiIn(v)—>ver(U) g:In(v")—ver(W)
Similarly, we have

(Toy Wyo, U= > (To5W)o, U
g:In(v)—>ver(W)

> Y (T W)yol U

g:In(v)—>ver(W) f:In(v)—>ver(U)

The equality (T oy, U) o,y W = (T oy W) o, U comes from the fact that both sides
have the same subjacent tree, which are identically typed by virtue of the commuta-
tivity of €2. [

For a more intuitive understanding of Proposition 4.7, we give the next example.

Example 4.8. Let 2 be a commutative semigroup. Let

Y14 Vs Ve

Here we just illustrate the sequential associativity (T o, U) o,y W =T oy (U oy W)
as the parallel associativity is simpler to understand. But there are many cases when
we compute the composition, here we just illustrate a particular case. Let

f:In(v) = ver(U) and g: In(v") — ver(W).

Choose
X1 X2
f(IO(]):ylv f(IOlz):yG
and

Ya Y5 Yo
g(Iﬂ4)=21, g(Iﬁ5)=Z3’ g(Iﬂ6)=22-
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We need two steps to prove the left-hand side. In the first step, we replace the vertex v
of T with U, we denote by T ovf’ 1 U the particular component of the composition.
The process of this step is similar to Example 4.6. So we have

X7

In the second step, we replace the vertex v’ of T ovf’ ; U by W and denote the partic-

ular component of the composition by (7' o{i 1 U) of, , W, where the map g is given
above. Then we have

X2
Ya V5y6 [fon

Boaz

X1

V1 Bayi A
“31BaBsy3feaz.

X7

Let
g: In(v') —> ver(W) and f:In(v) — ver(U o‘g, W) = ver(U) U ver(W)\{v'}.
Choose
4 s Yo
g( Iﬁ4) =z, &( 1,35) =z3. &( Iﬂ6) =1
and
~ X1 ~ X2
f(IO[]):yl’ f(IOlz):y6-

Similarly, we also need two steps to prove the right-hand side. In the first step, we
replace the vertex v’ of U with W and denote by U of/ W the particular composition.
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So we have

Uo§

v/,1

In the second step, we replace the vertex v of T by U o‘g,’l W and denote the particular
component of the composition by T ovf’ (U 05’,1 W), where f is given above. Then

we have
X2

y2Be02

2 yaBaBsPeasz .
z4

X7

The two subjacent trees of (7' 01{,1 U) o‘f/ ,Wand T 05’2 w og, | W) are the same,
and the types of all edges as well, due to the commutativity of the semigroup €2.

Theorem 4.9. The operad PLF of pre-Lie family algebras is isomorphic to the

operad of typed labeled rooted trees T, via the isomorphism

@
O: PLF - T9, o> ,

where the edge is of type w,w € 2.

Proof. First, we define an operad morphism ®: P£F — 7. Recall that the operad
of pre-Lie family algebras is generated by the binary elements >, @ € Q2 with rela-
tions (4.2). A basis of the vector space (¥g)4 with |A| = 2is given by {>4, 0 € Q} L
{t >, € 2}, where 7 is the nontrivial permutation of two elements. Now set

@
D(>q) = » D(1 >y) = -
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Since PLF = Fqo/(R), we check that ®(r) = 0. Hence

D(r) = P(>g 0p g — D>gp % Do —T12(D>g 0 Do — >ga % >p))

§45-4-0-589

12
0

@ @
@Q O ¢ « o @ A B
= + Ol- @-t2| + O- ©

* 9 p af af 9 p P Ba

@ ® @ @
Q. 0 a 0
_“ﬂ_“ﬂ_'

So the morphism @ is defined on the quotient operad  LF .

Let us prove that it is bijective. Let T € T, we show that it belongs to Im(®) by
induction on |T'|. If |T| = 1 or |T| = 2, it is obvious. Let us assume that the result
holds for the degree < |T'|. Let a be the root of typed decorated rooted trees. Up to
a permutation, we can write uniquely

where T;, 1 <i <k, is a typed decorated rooted tree of degree strictly less than |T'|.
By the induction hypothesis on |T'|, T; € Im(®) for all i, we proceed by induction
onk.If k =1, then

T = op T1 € Im(@)
@

Let us assume that the result holds for £ — 1, we put

T' =B} T Tie—1) = N
- a,a)l,...,wk_l( [ k_l)_ w1l @ Wk —1 )

By the induction hypothesis on |T'|, T’ € Im(®). Then

OaT/:T+T//,
@

where T” is a sum of trees with |T'| vertices, such that the number of incoming edges
of the root is k — 1. Hence 7" € Im(®). So T € Im(®).

Now suppose there is a nontrivial element in the kernel of ®: PE£F — T, That
would induce a relation among Q2-typed rooted trees which is not a pre-Lie family
relation, which would contradict Theorem 3.16, and hence ® is an isomorphism. m
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5. Zinbiel and pre-Poisson family algebras

In this section, we mainly generalize Aguiar’s results [1], that is, the relationships
between pre-Lie family algebras, Zinbiel family algebras and pre-Poisson family alge-
bras. Zinbiel algebras were introduced by Loday [23], see also [21]. We propose here
the following definition of a left Zinbiel family algebra.

Definition 5.1. Let 2 be a commutative semigroup. A left Zinbiel family algebra is
a vector space A together with binary operations

¥, AXA— A
for w € Q such that
X kg (y *p 2) = (X *a ¥) *ap Z + (¥ *p X) *ap 2.
where x,y,z € Aand «, B € Q.

Proposition 5.2. Let Q be a commutative semigroup. Let (A, (<y, >o)weq) be a
commutative dendriform family algebra, i.e., a dendriform family algebra satisfying

X>p Y =Y <p X.
Define the Zinbiel family product
Xkp VI=X>g V=Y <4 X.
Then (A, (xo)weq) is a Zinbiel family algebra.
Proof. Since (A, (<y, >w)weq) is a dendriform family algebra, we have
X>q (Y >p2) =X >ay+ Y=g X) >qp Z.

Hence
X kg (Y *p2) = (X % Y + Y *p X) *qp 2,

as required. ]

Definition 5.3. A Poisson algebra is a triple (4, -, {, }), where (4, -) is a commutative
algebra, (4, {,}) is a Lie algebra, and the following condition holds:

x.y-zp ={xp}-z+y-{x.z}. (6.D

Combining Zinbiel family algebra and pre-Lie family algebra, we propose the
following definition.
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Definition 5.4. A left pre-Poisson family algebra is a triple (A4, (*4, >0 )weq), Where
(A, (*w)wen) is a left Zinbiel family algebra and (A4, (>>4)weq) is a left pre-Lie fam-
ily algebra. The following conditions hold:

(XD>gy—YDpgX)kggZ =XDg (y*p2) =y *xg (X D¢ 2), 5.2)
(X kg Y+ Y *gX) Dgp 2 =X *q (y D>p 2) +y *p (X g 2), (5.3)

where x,y,z € Aand a, B € Q2.

Proposition 5.5. Let 2 be a commutative semigroup.

(1) Let (A, {, }, (Py)weq) be a Rota—Baxter family Lie algebra of weight 0. Define
new operations on A by

XDy y = {Py(x),y}.

Then (A, (> o) weq) is a left pre-Lie family algebra.

(2) Let (A,-, (Py)weq) be a commutative Rota—Baxter family algebra of weight 0.
Define new operations on A by

X xpy = Py(x)-y.
Then (A, (xo)weg) is a left Zinbiel family algebra.

Proof. (1) Since (A, {, }, (Py)weg) is a Rota—Baxter family Lie algebra of weight 0,
we have

{Pa(x).{Pp(y). 2}} +{Pp(y).{z, Pu(x)}} + {z. {Pa(x). Pg(¥)}}
= {Pa(x). {P(¥). 2}} + {Pp(¥). 2. Pu(x)}} + {2, PapiPulx). y}}
+{z. Papix. Pp(y)}} = 0.

We get

{Pa(x),{Ps(y),z}} = —{Pg(¥). 4z, Pa(x)}} — {z, PupiPu(x), y}}
—{z, Papix, Pg(y)}}. (5.4)

Then

XDo(y>pz)—(xDay)apz =x Do {Pg(¥),2} —{Pau(X),y} Dop Z
= {Pa(x). {P5 (1), 2}} — { Pap{ Pa(x). y}. 2}
) (Pp(3). Az, Pa(0)}} — {2, PuplPu(x), ¥}
— {2, Pag{x, Pg(0)}) — {Pap{ Pa(x), 7). 2)

= —{Pp(y).{z, Pu(x)}} = {z, Papix, Pg(y)}}
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= {Pg(»).{Pu(x).2}} — {PgalPp(y). x}. 2}
(by €2 being a commutative semigroup)

=y (x>gz)—(y>gx)>ga Z.
(2) Since (A4, -, (Py)weg) is a commutative Rota—Baxter family algebra, we have

X kg (¥ #g2) = x %q (Pg(y)-2) = Po(x) - (Pg(y)-2)
= (Pa(x) - Pp(y)) -z = Pop(Pu(x) -y + x- Pp(y)) -2
= Pop(Pa(x)-y) -z + Pop(Pg(y)-x)-z
= (X *g ¥) *g8 Z + (¥ *8 X) *qp Z.

This completes the proof. |

In view of the above results, one expects that a Rota—Baxter family (Py)yeq on
a Poisson algebra will alow us to construct a pre-Poisson family algebra structure
on it.

Proposition 5.6. Let Q2 be a commutative semigroup. Let (A,-,{,}) be a Poisson alge-
bra and let P,: A — A be a Rota—Baxter family of weight 0. Define new operations
on A by

X*koV=Pyu(x)-y and x>y y={Py(x),y} forweQ. (5.5)
Then (A, (x¢,>0)weq) Iis a left pre-Poisson family algebra.

Proof. We first prove equation (5.2), then

(X Do ¥ =y Bp X) %ap 2 = ({Pal(x), ¥} — {P(1). X}) ¥ap 2
Py (x), ¥} #ap 2 = {P(1), X} *ap 2
2 Pap{ Pa(x), ) - 2 — Pag{Pp(y).x} - 2
= Pop{Pu(x),y} -z + Pogix, Pg(y)} -z
= {Po(x), Pg(»)} -z + Pg(y) - {Pa(x). 2}
— Pp(y) - {Pa(x). 2}
U Py(x). Ps (1) - 2} — Pg(y) - {Pa(x). 2}

=X Do (y#g2) =y *g (X Dg 2).
Second, we prove equation (5.3), we have

5.5

(X %) + ¥ %4%) Dapz = (Pa(x) -y + Pp(y) - X) Bop 2
(5.5)
= Pop(Pa(x) -y + Pg(y) - x), 2}

= {Pu(x) - Pg(y). 2} = —{z, Pa(x) - Pp(¥)}
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({2, Pa(x)} - Pg(3) + Pu(x) - {z. Ps(»)})

= Po(x) - {Pg(y). 2} + Pp(y) - { Pu(x), 2}
Ex sq {Pp(y), 2} + y % {Pu(x), 2}
=X *q (y >p 2) +y*g (x >y 2).

This completes the proof. |
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