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2-LC triangulated manifolds are exponentially many

Bruno Benedetti and Marta Pavelka

Abstract. We introduce “¢-LC triangulated manifolds” as those triangulations obtainable from
a tree of d-simplices by recursively identifying two boundary (d — 1)-faces whose intersection
has dimension at least d — ¢t — 1. The #-LC notion interpolates between the class of LC mani-
folds introduced by Durhuus and Jonsson (corresponding to the case ¢ = 1), and the class of all
manifolds (case t = d). Benedetti and Ziegler proved that there are at most 2d*N triangulated
1-LC d-manifolds with N facets. Here we prove that there are at most 2 2 s ;N triangulated 2-L.C
d-manifolds with N facets. This extends an intuition by Mogami for d = 3 to all dimensions.
We also introduce “¢-constructible complexes”, interpolating between constructible complexes
(the case t = 1) and all complexes (case t = d). We show that all z-constructible pseudoman-
ifolds are #-LC, and that all 7-constructible complexes have (homotopical) depth larger than
d — t. This extends the famous result by Hochster that constructible complexes are (homotopy)
Cohen—Macaulay.

1. Introduction

Since the 1960s, Regge [19-21] and many other physicists and mathematicians, cf.,
e.g., [1,2,17], have worked to develop a discrete version of quantum gravity. In Wein-
garten’s dynamical triangulations (or “DT”’) setup [25], smooth manifolds are approx-
imated by equilateral triangulations. This allows to translate all metric aspects, such as
curvature and volume, into simpler combinatorial calculations; for example, the par-
tition function for gravity, which is a path integral over all possible metrics, becomes
an infinite sum over all triangulations. The downside of this powerful simplification
method is a convergence issue. For example, the partition function diverges to infin-
ity, unless one restricts the sum to triangulations into a certain class, and such class
happens to have exponential size. In fact, for any fixed d > 2, there are more than
exponentially many triangulated d-manifolds with N facets. Here two triangulations
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are considered equal if they are “combinatorially isomorphic”: That is, if up to rela-
beling the vertices they have the same face poset.

In an important step for this program, Durhuus and Jonsson [11] defined “locally
constructible” (LC) manifolds as those triangulated manifolds obtainable from a tree
of d-simplices by recursively identifying two boundary facets whose intersection has
codimension one. They proved that LC 3-manifolds are exponentially many [11]; and
also in higher dimensions, LC d-manifolds are less than 2d?N [7]. Since all polytope
boundaries are LC, this idea lead to a first proof that polytopes with N facets, in fixed
dimension, are exponentially many [7].

Here we define 2-LC manifolds as those obtainable from a tree of d-simplices by
recursively identifying two boundary facets that intersect in codimension one or two.
We prove that this broader class has also exponential size.

Theorem I (Theorem 3.6). For fixed d > 3, the number of combinatorially distinct
2-LC d-manifolds with N facets is smaller than 2 > 2

The bound can be extended also to 2-LC gquasimanifolds, which are pseudo-
manifolds with particularly nice face links (Theorem 3.9), but not to arbitrary 2-LC
pseudomanifolds, which are more than exponentially many (Remark 3.7). Theorem I
gives a precise mathematical formulation and extends to all dimensions an intuition
by Mogami [18], who worked on 2-LC 3-spheres. The crucial ingredient for this novel
exponential upper bound is the planarity of the links of all (d — 3)-faces. In general,
the link of a k-dimensional face in a triangulated d-dimensional manifold (without
boundary) is a homology sphere of dimension (d — k — 1). However, since homology
spheres that are not spheres exist only in dimension 3 and higher, when k = d — 3 all
links of (d — 3)-faces are indeed homeomorphic to S2.

This brings topology into the picture. Durhuus and Jonsson conjectured in 1995
that all 3-spheres and 3-balls are LC [11]. The conjecture was disproved in 2011 by the
first author and Ziegler [7]. The weaker conjecture by Mogami [18] that all 3-balls are
2-L.C was also recently disproved by the first author [4]. Thus there is little hope that
these combinatorial cutoffs may encompass entire topologies. But there are two other
reasons why the LC notion is of mathematical importance, beyond the enumerative
aspect mentioned above:

(a) All LC-triangulable manifolds are simply connected, and conversely, all sim-
ply connected “piecewise linear” (PL) manifolds of dimension # 4 admit an
LC subdivision [3].

(b) All shellable and all constructible manifolds are LC [7].

Both results above are still valid if one replaces “LC” with “2-LC”. This triggers
a natural curiosity, namely, whether for the result (b) above, for the 2-L.C case, one
could say more. Perhaps the “constructible” assumption can be weakened?
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To answer this curiosity, we define more generally “¢-LC triangulated manifolds”
as those obtainable from a tree of d-simplices by recursively identifying two bound-
ary (d — 1)-faces whose intersection has dimension at least d — ¢ — 1. This notion
interpolates between LC manifolds (which are the same as 1-LC) and all manifolds
(the same as d-LC); the case t = d — 1 was also previously studied [4]. In parallel,
we introduce “f-constructible complexes” as a generalization of constructible com-
plexes, which correspond to the ¢ = 1 case. Intuitively, #-constructible d-complexes
are defined recursively as those obtained by gluing two ¢-constructible d-complexes
at a codimension-one subcomplex whose (d — ¢)-skeleton is constructible.

With these two new properties, we will prove the following generalization of the
well-known result by Hochster [15] that all constructible d-complexes are Cohen—
Macaulay.

Theorem II (Propositions 2.6 and 2.10). All t-constructible d -complexes have homo-
topical depth larger than d — t. Moreover, all t-constructible pseudomanifolds are
t-LC.

The converse of Theorem II is false, even if we restrict ourselves to 3-manifolds.
In fact, in [5] there are two explicit examples (with 13 and 16 vertices, respectively) of
two 3-spheres containing a non-trivial knot that is realized by just three edges in their
1-skeleton; the knots are the trefoil and the square knot, respectively. These examples
have homotopical depth 3 because they are spheres, and are 1-LC by computation [5],
but they are not 1-constructible because of the knot [13].

2. t-Constructible versus 7-LC

As in [7], to which we refer for all definitions, we shall work with simplicial reg-
ular CW-complexes: These are finite regular CW-complexes where for every proper
face F, the interval [0, F] in the face poset of the complex is Boolean. The facets (i.e.,
the inclusion-maximal faces) of any simplicial regular CW-complex K are therefore
simplices; K is pure if all facets have the same dimension. Let o be a face of K. The
star of o in K is the subcomplex St(0, K) ={s € K |Ir € Ks.t.oc Crands C t}.
The link of o in K is the subcomplex link(o, K) = {t € St(0, K) | t N0 = 0}. The
boundary of K is the subcomplex 0K = {s € K | 3!t € K s.t. s € 7}. The faces of K
that do not belong to dK are called interior. If K is a simplicial complex, link and
boundary commute, in the sense that link(o, dK) = dlink(o, K) for all o. Moreover,
if the dimension of o is k, for a (d — 1)-face t € St(o, K) and the corresponding
(d —k — 2)-face t/ € link(o, K), we know 7’ is a boundary face of the link(o, K) if
and only if 7 is a boundary face of K.
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By a d-pseudomanifold, we mean a finite regular CW-complex P that is pure d -
dimensional, simplicial, and such that each (d — 1)-dimensional cell belongs to at
most two d-cells. The boundary of the pseudomanifold P, denoted by 9P, is the
smallest subcomplex of P containing all the (d — 1)-cells of P that belong to exactly
one d-cell of P. According to this convention, adopted in [7], a pseudomanifold needs
not be a simplicial complex; it might be disconnected; and its boundary might not be
a pseudomanifold, as shown by a cone over disjoint segments. A free of d-simplices
is a triangulation of the d -dimensional ball whose dual graph is a tree. From now on,
we use the word “faces” as synonymous of “cells”. We also adopt the convention that
the empty set is a face of dimension —1.

Definition 2.1 (¢-LC). Let d > 1 be an integer. Let ¢ € {1,...,d}. We call t-LC
pseudomanifolds the d-dimensional pseudomanifolds obtainable from a tree of d-
simplices by recursively identifying two boundary (d — 1)-faces whose intersection
has dimension at leastd — 1 — ¢.

A t-LC gluing in the boundary of a pseudomanifold is the identification of two
boundary facets A and A’ whose intersection is at least (d — ¢t — 1)-dimensional. The
glued facets become interior, so they are not available for further gluings. A ¢-local
construction for a pseudomanifold M is a sequence of #-LC gluings that obtains M
from some tree of d-simplices 7. From Definition 2.1, it is clear that all ¢-LC pseu-
domanifolds are also (¢t 4+ 1)-LC. Three values of ¢ have already been studied in the
literature:

e Fort = 1, the “1-LC” notion is the same as the “LC” notion in [7, 11].

e Fort=d —1,“(d —1)-LC pseudomanifolds” are the same as the “Mogami pseu-
domanifolds” introduced in [4] and named after [18].

* Fort = d, all d-dimensional strongly connected pseudomanifolds are d-LC.

Note that there is a “big jump” from ¢ = d — 1 to ¢ = d: Any non-simply connected
manifold is an example of a d-LC pseudomanifold that is not (d — 1)-LC.
Recall that constructible complexes are defined inductively in the following way:

» every simplex, and every 0-complex, is constructible;

* ad-dimensional pure simplicial complex C that is not a simplex is constructible
if and only if it can be written as C = Cy U C,, where C; and C, are constructible
d-complexes, and C; N C; is a (pure) constructible (d — 1)-complex.

Note that when d = 1, “constructible” is synonymous with “connected”.
Definition 2.2 (z-constructible). Let ¢ < d be positive integers. We define t-con-
structibility for d-dimensional simplicial complexes recursively, as follows:

* every simplex is f-constructible;
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* a l-dimensional complex is #-constructible if and only if it is connected;

* ad-dimensional pure simplicial complex C that is not a simplex is ¢-constructible
if and only if it can be written as C = C; UC,, where C; and C; are ¢-constructible
d-complexes, and C; N C; is a pure (d — 1)-complex whose (d — ¢)-skeleton is
constructible.

Note that when ¢ = 1, “I-constructible” is synonymous with “constructible”.

Example 2.3. Inside the boundary of some shellable 3-ball B, pick two triangles
that belong to different tetrahedra in B and that share exactly one vertex v. Let X
be the subcomplex of dB formed by these two triangles. Glue together two identical
copies B’, B” of B by identifying the corresponding subcomplexes X' = X”. Let P
be the resulting 3-dimensional pseudomanifold. The link of v in P is topologically
an annulus, so it cannot be constructible: in fact, it is easy to see from the recursive
definition that the only constructible 2-manifolds with non-empty boundary are tri-
angulated 2-disks. Hence, P is not constructible, because constructibility is closed
under taking links, cf. [8, Section 11.2]. Yet P is 2-constructible, because by taking
C1 = B’ and C, = B” in the definition above, their intersection is a pure 2-complex X
whose 1-skeleton is a connected graph.

Remark 2.4. It is an open question whether all k-skeleta of constructible complexes
are themselves constructible. Should the answer to this problem be positive, then it
is easy to see, by induction, that if < d all t-constructible d-complexes are also
(t + 1)-constructible.

Recall that a (pure) d -dimensional complex C is called

*  homotopy Cohen—Macaulay if for any face F, for all i < dimlink(F, C),
;i (link(F,C)) = 0;

*  Cohen—Macaulay, if for any face F, for all i < dimlink(F, C),
H;(link(F,C)) = 0.

By Hurewicz theorem, the first notion is stronger. By choosing FF = @, one sees
immediately that all the homotopy groups from the O-th to the (d — 1)-st of any
homotopy Cohen—Macaulay complex must be trivial. (And analogously, all homol-
ogy groups from the O-th to the (d — 1)-st of Cohen—Macaulay complexes are trivial.)
Thus any homology sphere that is not simply connected, like the 16-vertex trian-
gulation in [9], is an example of a Cohen—Macaulay complex that is not homotopy
Cohen—Macaulay. Recall also that the homotopical depth of a simplicial complex C
is defined as the maximum k such that the k-skeleton of C is homotopic Cohen—
Macaulay [16, Chapter 3.6.1]. The (homological) depth of C is defined algebraically,
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but it can be characterized as the maximum k such that the k-skeleton of C is Cohen—
Macaulay [23, Theorem 4.8].

Hence, the next proposition generalizes Hochster’s result that all constructible
complexes are (homotopy) Cohen—Macaulay [15].

Definition 2.5 (z-homotopy-CM, ¢-CM). Let t < d be positive integers. A (pure)
d-complex C is called

o t-homotopy-CM if it has homotopical depth > d —¢;
* ¢-CM ifithas depth > d —¢.

Note that “1-homotopy-CM” and “1-CM” are synonymous with “homotopy Cohen—
Macaulay” and “Cohen—Macaulay”, respectively.

Proposition 2.6. Let t < d be positive integers. For d-dimensional simplicial com-
plexes, we have the following hierarchy:

{t-constructible} C {¢t-homotopy-CM} C {t-CM}.

Proof. The claim for ¢t = 1 (and arbitrary d) is a well-known result by Hochster [15],
so we shall focus on the case 2 <t < d. Also, the second inclusion is straightfor-
ward, so we shall focus on the first one. Let C be a t-constructible d -complex with N
facets. If C is a simplex, then it has homotopical depth d, andd > d —t + 1. If C is
not a simplex, then C = C; U C,, where C; and C; are ¢-constructible d -complexes,
and C; N C; is a pure (d — 1)-dimensional complex whose (d — t)-skeleton is con-
structible. By the inductive assumption with respect to N, the (d — ¢ + 1)-skeleta
of Cy and of C, are homotopy Cohen—Macaulay. Since we are in the case ¢ > 2, it is
easy to see that their intersection is

def

U= (d—-t+1)-skel(C; N Cy)

(see, e.g., Jonsson [16, Lemma 3.32] for the homotopical statement and Hibi [14,
p. 98] for the homological one) that the union of the (d — ¢ + 1)-skeleta of C; and C;
is homotopy Cohen—Macaulay. In other words, both the homotopical depth and the
homological depth of C; U C; are atleastd —¢ + 1. [

Lemma 2.7. Lett < d be positive integers.

(i) If a d-complex is t-constructible, for all 0 < k < d its k-skeleton is strongly
connected.

(ii) If a d-pseudomanifold is t-LC, for all 0 < k < d its k-skeleton is strongly
connected.

Proof. (i) We proceed by induction on the number of d-faces. If C is a simplex, the
k-skeleton of C is even shellable [10]. If not, then C = C; U C,, where C; and C,
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are z-constructible d-complexes, and C; N C; is a pure (d —1)-dimensional complex
whose (d — t)-skeleton is constructible. By inductive assumption, the k-skeleta of C;
and of C, both have connected dual graphs. Moreover, any (k — 1)-face 0 of C; N C;
is contained in some d-face of C;, and in particular in some k-faces of C; fori = 1, 2.
Therefore, there is an edge “across ¢ in the dual graph of C that connects the dual
graphs of the k-skeleta of C; and of Cs.

(ii) The k-skeleton of a tree of simplices is strongly connected. Any subsequent
boundary gluing does not destroy this property. ]

Lemma 2.8. Let t < d be positive integers. Let C be a d-dimensional pseudoman-
ifold. If C can be split in the form C = Cy U Cy, where Cy and C, are t-LC d-
pseudomanifolds and C1 N Cy is a pure (d — 1)-complex with strongly connected
(d — t)-skeleton, then C is t-LC.

Proof. The proof is a direct generalization of that of [7, Lemma 2.23]. Fix a ¢-local
construction for C; and C,, and call T; the tree along which C; is constructed. Pick
a (d — 1)-face 0 in C; N C,, which thus specifies a (d — 1)-face in the boundary of Cy
and of C;. Let C’ be the pseudomanifold obtained by identifying the two copies of o.
Clearly, C' has a t-local construction along the tree obtained by joining 7 and 75 by
an edge across o Just redo the same ¢-L.C gluings of the C;’s. Now if C; N C; consists
of only one simplex, then C = C’ and we are done. Otherwise, by the assumption,
we can label the facets of C; N C; by 0y, . .., 0, so that 09 = o and for each k > 1
the facet oy intersects the union o¢ U - - - U 0 _; in a subcomplex of doy of dimension
> d —t — 1. Now for each i, identify the two copies of the facet o; inside C’. All
these gluings are 7-LC, and eventually yield C. |

Corollary 2.9. Let C be a d-pseudomanifold. If C = C1 U C,, where Cy and Cy are
t-LC d-pseudomanifolds and C; N Cy is a pure (d — 1)-complex of depth > d —t,
then C is t-LC.

Proof. The (d — t)-skeleton of C; N C, is Cohen—Macaulay, hence strongly con-
nected. ]

Proposition 2.10. Let t < d be positive integers. For d-dimensional pseudomani-
folds, we have the following hierarchy:

{t-constructible} C {¢t-LC} C {all},
and for d >t + 2 all inclusions are strict.

Proof. By Lemma 2.7, the (d — t)-skeleton of any ¢-constructible (d — 1)-complex
is strongly connected. So Lemma 2.8 (or Corollary 2.9, together with Proposition 2.6)
immediately implies by induction that all 7-constructible complexes are -LC. To show
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the strictness of this inclusion, take (d — ¢ — 2) consecutive cones over the example
constructed in Proposition 2.11, part (ii), and apply Proposition 2.11, part (i), and
Proposition 2.12 below. Finally, the second inclusion is obvious, and its strictness
(already for d > t + 1) will be shown in Corollary 2.14 below. ]

Proposition 2.11. Let t be any positive integer.

(i) For any d > t, the link of any vertex in a t-constructible d-complex is t-
constructible.

(ii) There exists a (t + 2)-dimensional pseudomanifold M that is t-LC, but has
a vertex link that is neither t-LC nor t-constructible.

Proof. (i) We proceed by induction on the number of d-faces. Let C be a t-con-
structible d-complex and let v be a vertex of C. If C is a simplex, the claim is clear.
If not, then C = C; U C;, where Cy and C; are t-constructible d -complexes, C; N C;
isapure (d — 1)-complex, and S := (d —t)-skel(Cy N C3) is constructible. If v is not
in Cy, then link(v, C) = link(v, C3), so the claim follows by inductive assumption,
since C» has fewer facets. The case v ¢ C; is symmetric. So without loss of generality,
we may assume v € C; N Cy. Set L := link(v, C) and L; := link(v, C;) (i = 1,2).
Clearly, L = L; U L,. By induction assumption, both L; and L, are ¢-constructible.
It is easy to see that L; N L, = link(v, C; N C3) is pure (d — 2)-dimensional. Thus
to conclude that L is 7-constructible, we need to show that the (d — 1 — ¢)-skeleton
of L1 N L, is constructible. Since constructibility is closed under taking links, and
since S is constructible, it suffices to show that

(d —1—1)-skel(L; N L,) = link(v, S). 2.1)

Let us prove relation (2.1). If o is in the left-hand side, then there is a (d — 2)-face F
of Ly N L, containing o. The (d — 1)-face v * F is thus a facet of C; N C,. Since
v * F contains v * o, it follows that v * ¢ is in S, so o is in link(v, S). Conversely,
if o is in link(v, S), then v * ¢ is contained in some (d — 1)-face F of C; N C,.
But then the (d — 2)-face F/ = F \ {v} contains ¢ and belongs to L; N L,. So ¢ is
contained in the (d — 1 — t)-skeleton of L1 N L5.

(ii) Let H; be the (¢t + 1)-simplex of consecutive vertices [i,i + 1,...,i +1 + 1].
Let m > ¢ + 3. Consider the “tree of m d-simplices”

H19H27"'?Hm

and let P be the simplicial complex obtained from it by gluing together the first and
the last vertex, i.e., vertices 1 and m + ¢ + 1. Clearly, P is strongly connected, but
the link of 1 in P consists of two disjoint #-simplices. Now choose any shellable
(t + 2)-ball B that contains in its boundary a copy of P. Glue together two copies
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of B by identifying the corresponding copies of P, and call M the resulting (¢ + 2)-
dimensional pseudomanifold. By Lemma 2.8, M is t-LC, because the -skeleton of P
is strongly connected. However, the link of 1 inside M consists of two (¢ + 1)-balls
glued together at a disjoint union of two #-simplices: In other words, the link of 1
inside M is homeomorphic to S! x I, and thus homotopy equivalent to a 1-sphere.
Since it is not simply connected, the link of 1 inside M is not ¢-LC, and in particular
not f-constructible. In fact, by Proposition 2.6, any triangulation of the link of 1, being
homeomorphic to S! x I, is not ¢-constructible. In particular, M (and any subdivision
of it) cannot be ¢-constructible by part (i) above. [ ]

Proposition 2.12. Lett < d be positive integers. Let C be a d -pseudomanifold. Let v
be a new point. Then C is t-LC if and only if v * C is t-LC.

Proof. The “only if” direction is easy: Suppose C is obtained from a tree of d-
simplices T with a sequence of #-L.C gluings, where the i-th gluing identifies faces F;
and Flf with intersection of dimension > d — 1 — ¢. Then v * C is obtained from the
tree v * T of (d + 1)-simplices with the sequence of gluings that at the step i glues
together v x F; and v % Fl/ ; and the intersection

wxF)N@=*F)=v=*(FNF)

has dimension > d — ¢, so all these steps are legitimate #-LC gluings.

The “if” direction is perhaps more surprising because, as we saw in Proposi-
tion 2.11, the #-LC property is not maintained by links. Yet a similar argument of
[7, Proposition 3.25] works. Suppose v * C is ¢-LC and let 7; — T;4; be any step
in some #-local construction of v * C. This step glues two d-faces F and G of 97T;
sharing a (d — t)-face 0. Since F and G will end up in the interior of v * C, both
contain a copy of v, since C C d(v * C). If o contains v’, a copy of v, then by glu-
ing F =v' % F' with G = v’ % G/, we glue (d — 1)-faces F’' and G’ sharing the
(d —t — 1)-face 7, where 0 = v’ * 7. But if o does not contain a copy a v, then
o € C. Gluing F and G corresponds to possibly many gluings of (d — 1)-faces F’
and G’, where F’, G’ share o and do not contain any copy of v. Hence performing
these gluings one by one, following the 7-local construction of v * C, we eventually
obtain a 7-local construction for C. |

Corollary 2.13. Let t < d be positive integers. If a d-pseudomanifold is t-LC, its
suspension is t-LC.

Proof. Let A be a t-LC d-pseudomanifold. Let vy, v, be two new vertices. Let C; =
v; * A. By Proposition 2.12, each C; is t-LC. Glue C; and C; together by identifying
the two copies of A. By Lemma 2.7, A has strongly connected (d + 1 — ¢)-skeleton.
By Lemma 2.8, C; U C,, which is the suspension of 4, is t-LC. [
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Corollary 2.14. Foranyd > 2, forany 1 <t < d — 1, there exists a d -pseudomani-
fold that is (t + 1)-LC, but not t-LC.

Proof. By induction on d. For d = 2, any surface different from the sphere is 2-L.C,
but not 1-LC [11]. For d > 3, if t = d — 1, any non-simply connected d-manifold
is (t + 1)-LC, but not ¢-LC. If instead t < d — 2, by the inductive assumption there
is a (d — 1)-pseudomanifold that is (¢ + 1)-LC, but not #-LC; coning over it, by
Proposition 2.12 we conclude. ]

Remark 2.15. The pseudomanifold constructed in the previous corollary is not a man-
ifold. At the moment, we do not know an explicit example of a d-manifold that is
2-LC but not 1-LC. (See also Example 3.10 below.) A good candidate for d = 5
might be the double suspension S of the 16-vertex Poincaré homology sphere by
Bjorner and Lutz [9]. This S is not 1-constructible, because it is not PL; some exper-
iments with the random discrete Morse algorithm [6] seem to suggest that S is likely
not 1-LC either. On the positive side, we do know that S is (at most) 3-LC, in view of
Corollary 2.13, part (ii), applied twice.

Corollary 2.16. For any d > 3, not all triangulated d -balls are 2-LC.

Proof. In view of Proposition 2.12, we only need to construct a 3-ball that is not 2-L.C
(or equivalently, not Mogami), a task that was already carried out in [4]. |

Remark 2.17. For any ¢ < d, being ¢-LC is a property that is algorithmically recog-
nizable, simply by trying all possible “spanning trees of d-simplices” and all possible
boundary matchings. Moreover, for any ¢ < d — 1, being ¢-LC implies being simply
connected. Thus in view of the Poincaré conjecture (proven for d > 5 by Smale [22]
and for d = 4 by Freedman [12]), if M is a d-manifold with the homology of a sphere,
the fact that M — A is ¢-LC for some facet A implies that M is a d-sphere. So were
all d-balls ¢-LC for some t < d — 1, then for any manifold M we could decide if M
is a d-sphere or not just, first by checking whether M has the homology of a sphere,
and then by checking whether M minus some facet is -LC. In conclusion, Novikov’s
theorem on the algorithmic unrecognizability of d -spheres for d > 5 [24] implies that
for every d > 5 and every t < d — 1, there must exist d-balls that are not z-LC. It is
conjectured that also 4-balls are not algorithmically recognizable, which would imply
in the same non-constructive way that some 4-balls are not 3-LC.

3. An exponential bound for 2-L.C manifolds

Since 1-LC d-manifolds are exponentially many, while d-LC d-manifolds (which is
the same as saying “all d-manifolds”) are more than exponentially many, a natural
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question is whether one can give exponential bounds for ¢-LC d-manifolds also for
some ¢ larger than 1. In this section, we realize a first step in this direction: For fixed
d > 3, we prove that there are less than 25N combinatorially distinct simplicial 2-LC
d-manifolds with N facets (Theorem 3.6).

3.1. Excluding some gluings

First we establish which 2-LC gluings can actually lead to a manifold without bound-
ary.

Lemma 3.1. Only the 2-LC gluings satisfying all the conditions below can lead to
a triangulated manifold without boundary:
(i)  preserving orientability of links of (d — 3)-faces (Figure 1 (a));
(i1)  planar with respect to the involved links of (d — 3)-faces (Figure 1 (b)),
(iii) impacting only on the boundaries of the links of (d — 3)-faces.

Moreover, the number of ways we can glue the boundary facets to one another is
completely determined by taking into account only gluings corresponding to edges of

the boundaries of links of (d — 3)-faces.

Proof. Let T be a tree of d-simplices. The link of a (d — 3)-face ¢ in T is a trian-
gulated disk, whose boundary circle is the boundary link of o. Consider two bound-
ary facets E; and E, sharing o, and corresponding to edges [ag, a1] ~ [bg, b1] in

aiy

by

bo
(a) (b)

Figure 1. Ways of gluing that do not lead to a manifold without boundary. (a) This gluing makes
the link non-orientable, so the link will never be homeomorphic to S2. (b) A non-planar gluing,
by the Jordan—Schoenflies theorem, makes the final link not homeomorphic to S2.
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link(o, T'). There are two options for such an identification: ag ~ by and a; ~ by, or
ao ~ bg and a; ~ by. As displayed in Figure 1 (a), the first option makes the link non-
orientable, which cannot be fixed by any gluing. Also, if we further glue other two
boundary facets E'3 and E4 with respect to o, it is clear that any “non-planar match-
ing” creates a contradiction with the Jordan—Schoenflies theorem, cf. Figure 1 (b).
So (i) and (ii) are clear. Now, any gluing E; ~ E, can affect the link of some other
(d — 3)-face § in two possible ways:

(1) If é is contained in E; for some i = 1,2, then there is a (d — 3)-face §’ such
that § ~ 6" as a consequence of £y ~ E5. Suppose by contradiction that link(8, 7') and
link(8’, T') are, or become, connected by an edge [ag, a1] which is an interior edge of
one of these links, say of link(8, 7). Then [ag, a;] corresponds to an interior (d — 1)-
face Fy of T in St(8, T') and it also corresponds to a (d — 1)-face F> of T in St(8', T').
After the identification, Fy and F, share the (d — 3)-face § ~ &’ and the edge [ag, a1].
In order to end up with a simplicial complex, we need to identify F; and F, at some
point, which is not possible since F; is an interior (d — 1)-face. En passant, note that
link(8, T') and link(8’, T') become connected with at least one boundary edge, since
they are contained in E;. Suppose the links are, or become, connected by a vertex v
that is an interior vertex of one of the original links, say of link(, T'). In that case, we
create an S just around v (containing no other vertex) in the interior of link(8, T').
In the link of § ~ §' in the new complex, v appears on both sides of the S, because
now the two original links are connected by a boundary edge and at the same time no
interior triangle or interior edge is identified. Which is a contradiction.

(2) If § is contained in any E;, it is not identified with another (d — 3)-face. Here,
it may happen that an edge or a vertex gets identified within the link itself. We can use
the same reasoning as for the first case to conclude that no identifications can happen
in the interior of the link.

The arguments above work not only for a tree of d-simplices T, but also for any pseu-
domanifold obtained from 7" by performing 2-L.C gluings that satisfy the conditions
of this lemma. After connecting links or after an identification within one link, an
interior edge of the link of a (d — 3)-face can only correspond to

» either one interior (d — 1)-face (if it was an interior edge of the link already);

* or two boundary facets (if it is a glued boundary edge of the link).

All other options cannot lead to a manifold. So the only possible issue is an interior
edge [ag, a1] in the link of a (d — 3)-face that corresponds to two distinct boundary
facets. Assume FE, E, are the two boundary facets in a pseudomanifold M obtained
from T after some number of allowed 2-LC gluings; assume also that £, and E;
are in St(§, dM), where § is a (d — 3)-face of M, and that E;, E, share an edge
[ao, a1] € link(§, M). Now suppose we need to identify [ag, 1] with another edge
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[bo, b1] € link(8, M). The edge [byg, b1] corresponds to (at least one) (d — 1)-face of
St(8, dM ). Now we have three (d — 1)-faces sharing § and [ag, a1] ~ [bo, b1]. So to
get a simplicial complex at the end, we need to identify all three of them, which is not
possible. In conclusion, no identification can be performed within interiors of links of
(d — 3)-faces. Which proves part (iii).

As for the final claim: If there is an interior edge [ag, a;] of link(§, M) that
corresponds to two distinct boundary facets £ and E5 in St(8, dM ) for some (d — 3)-
face § of M, then E; and E, share the face § and [ag, a1]. Hence, they have to be
identified at some point, in order to get a simplicial complex at the end of the 2-local
construction. So the edge [ag, a1] does not add to the number of ways in which one
can glue boundary facets. Note that E;, E» can be identified with respect to § by
a 2-LC gluing. |

The link of any (d — 3)-face during a 2-local construction consists topologically
of possibly punctured disks, connected by boundary edges and vertices to one another,
or even to themselves.

Lemma 3.2. The 2-LC gluings that force an identification between two distinct con-
nected components of the boundary of the link of a (d — 3)-face do not lead to
a manifold.

Proof. Denote M a pseudomanifold obtained from a tree of d-simplices by perform-
ing 2-L.C gluings that satisfy the conditions of Lemma 3.1 and this lemma. Assume
for a contradiction that we identify vertices vy and v; from two distinct connected
components of dlink(§, M), where § is a (d — 3)-face of M. We then create an S
in the interior of the link with the connected component containing vy fully inside
this S!, and the connected component containing v; fully outside. In the link of § in
the new complex, vy ~ vy appears on both sides of the S!, which is a contradiction
using Jordan—Schoenflies theorem as we need this link to eventually become S?. =

3.2. Bounding the 2-LC gluings

Lemma 3.3. Let 0 be a (d — 3)-face in a tree T of N d-simplices. Let m be the
number of facets of 0T containing o. Let M(m) be the number of ways we can glue
those boundary facets among each other. Then we have the inequality

M(m) < Cp, < 4™, 3.1)

2m
m

where C,, = #(

P ) is the m-th Catalan number.

Proof. When we glue with respect to the (d — 3)-face o, we choose a boundary facet
containing o and
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(a) either we leave it unidentified (Figure 2 (a)), which corresponds to choosing
an edge of dlink(o, T') and “leaving it alone”;

(b) or we glue it with another boundary facet containing o (Figure 2 (b)), which
corresponds to choosing two edges of dlink(o, 7') and matching them.

When an edge in the link is “left alone”, this has no impact on how the remaining
edges should be matched. Therefore, the number of gluing configurations with the
first gluing of the type (a) is M(m — 1). Instead, when we glue a pair of edges, we
divide the boundary of the link of o into two parts (Figure 2 (b)): the first contains m1;
edges (dashed lines in the figure), the second m, edges (dotted lines in the figure),
with m; + m, = m — 2. Since only planar gluings are allowed, the number of gluings
with a first gluing of type (b) is thus M (my) - M(m5). So

M(m)y=Mm—-1)+ > Mm)Mmy). (3.2)

m|+my=m—2

Set M(0) = M(1) = 1. By definition, M (m) < M(m + 1). Moreover,

Y Mm)M(my) < Y M@m)M(my)—M@m—1).  (3.3)

mi+moy=m-—2 mi+moy=m—1

Putting inequalities (3.2) and (3.3) together, we get by induction

Mm)< Y M@m)M(mz) < Cp < 4",

m|+my=m—1

This completes the proof. u

link(o,

bo by

(a) (b)

Figure 2. Two options for gluing in the very first step.
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Lemma 3.4. Consider an intermediate complex K in a 2-local construction. The
number M (m) bounds the number of possible gluing configurations among the bound-
ary facets containing a given (d — 3)-face of K.

Proof. Let m be the number of boundary edges of link(o, K). By Lemma 3.2, we can
partition the edges into sets Sy, S, ..., Sg such that each S; contains m; edges that
can be glued among themselves but cannot be glued to any edge outside S;. Since

> m; =m,by (3.1)

M(m)M(my)--- M(my) < gmitmatetmg _ o gm .

3.3. Proof of the main theorem

Lemma 3.5. Let N and d be positive integers, d > 3. Let T be a tree of N d-
simplices. Let N; be the number of boundary i-faces in T. Set D := 1 + N(d D
Then

d
Ng_1=2D, Ngp,=dD, Nyg_3= E(Na’2 +2N —3Nd +3d —-3). (3.4)

Proof. Note that all the i-faces with i < d — 2 are on the boundary of T'. It is easy
to see that Ny_; = 2 + N(d — 1), or in other words Ny_; = 2D. By counting, or
by [7], we get

d
Ng_p = E(N(d —1)+2)=dD.
Now, any d-simplex contains

d+1\  (d+d(d—1)
(d—z)_ 6

(d — 3)-faces, and any (d — 1)-simplex contains

d \ _dd-1)
(d—z)_ 2

(d — 3)-faces. So

Nys = y@+ndd—1 N — l)d(d -1)
6 2
d
=€(Nd2+2N—3Nd+3d—3). "

Theorem 3.6. For any d > 3, the number of comblnatorlally distinct 2-LC d -mani-
folds with N facets, for N large, is smaller than 2 2 s
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Proof. By [7, Corollary 4.3], the number of trees with N facets is at most

d—1\ N
(d (%) ) < (de)N. (3.5)
So we want to obtain an exponential upper bound for all manifolds obtainable from
a given, fixed tree. Any tree 7 of N d-simplices has 2D = 2 + N(d — 1) bound-
ary facets. Hence D disjoint couples need to be glued together. Following [11], we
partition any such a perfect matching into rounds. The first round consists of couples
that share a (d — 3)-face in the boundary of the initial tree. Recursively, the (i + 1)-st
round consists of all couples that get to have common (d — 3)-faces only after a gluing
in the i-th round. Denote by m; (respectively, by m; ) the number of the boundary
facets glued in the first round (respectively, glued in the first round with respect to o).
Choose a set ¥ of ny (d — 3)-faces, the ones with respect to which we shall perform
the first round of gluings. We have

E mijec = mj.
oER

Therefore, the number of possible gluing configurations in the initial tree, while fixing
the n1 (d — 3)-faces in &, is bounded by

[ M0mio) < [ 4mo =am.

oEF oEF
There are (Ng*) ways to choose the n; (d — 3)-faces in &. As n; < Ny_3, the
number of possibilities in the first round is therefore at most

mp

- Ng—3
Z (Nd—3)4ml < Z (Nd—3)4m1 — 2Nd_34In1.
ni=1 1 n1=0 nl

Now for each couple in the first round, at most (@ — 1) distinct (d — 3)-faces
become identified. So the total number of identified (d — 3)-faces in the first round is
at most

L ::m(m_l)_

2 2

We select n, out of these L, (d — 3)-faces for the second round. The number of
possible gluing configurations in the second round of gluings, while fixing the n,
(d — 3)-faces, is bounded by

I1 4mro = 4m2,

o is one the ny (d — 3)-faces
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The number of options for the second round is therefore at most

Ly I3 L> I3
> (4 )am < 3 (4 = 2toa
na na

ny=1 n>=0
The same way, the number of possibilities in the i-th round, i > 2, is at most

L;

L.
> ( ’)4’”1‘ < 2Ligmi,
nj

ni=1
where
E(d(d -1 B 1)‘
2 2
The following is therefore an upper bound on the total number of 2-L.C d-mani-
folds without boundary that can be constructed from a given tree:

Ll’ =

D Ng—3 Ly Ly
> o (2 () (2 (o)) (2 ()
— ni — nyp — nf
f=1 mip,my,...,mys n1=0 n>=0 n/—O
> m;=2D
m; even, m; >2
D

SZ Z 2Nd 3 22, 2 42 —1Mi

f=1Mm1,m2,...myg
> m;j=2D
m; even, m; >2

IA

D
Z 4 (Na>+2N-3Nd+3d—3) HD(4%1—1) 42D Z 1 3.6)
f=1 mi,my,....mys
> m;=2D
m; even, m; >2

D
_ 54 (Nd>+2N-3Nd+3d-3)+D (LD 1) 44D Z D—1 3.7

P A

_ 2N%(5d2—7d+24)+d(d—1)+3. (3.8)

Some explanation: Inequality (3.6) follows from relations (3.4) and from

Zm,_2D and ZL Z (%-1)5%20(@—1),

i=1 i=2

which hold because at the end, we glue all the 2D boundary faces. Inequality (3.7)
follows from the fact that the number of compositions of 2D with f parts all even, is
the same as the number of compositions of D with f parts, which is ( y ) Equal-
ity (3.8) is by Newton’s binomial formula 32 1 (D 1) =2P~1, and the definition
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of D. Consequently, via inequality (3.5), the number of 2-LC d-manifolds without
boundary with N facets is at most

(de)N - IN 451 (5d2—7d+24)  Hd(d—1D+3 _ HN 5 &> 2d(d—1)+3<2N§.

The same proof works also for d-manifolds with boundary: we simply stop the match-
ing process earlier. |

Remark 3.7. The exponential bound of Theorem 3.6 cannot be extended from man-
ifolds to pseudomanifolds. In fact, already for d = 3, the family of the cones v * S,
where S is any triangulated surface and v is a new vertex, shows that 2-LC 3-pseu-
domanifolds are more than exponentially many. Nevertheless, it is possible to expand
Theorem 3.6 by only allowing those 2-LC pseudomanifolds that are obtained with
gluings that satisfy all the conditions from Lemmas 3.1 and 3.2. This can be formally
rephrased as follows.

Definition 3.8. A 2-LC quasimanifold is any pseudomanifold obtainable from a tree
of d-simplices by performing only 2-L.C gluings that are

» orientable with respect to the involved links of (d — 3)-faces;
* planar with respect to the involved links of (d — 3)-faces;
e with an impact only on the boundaries of the links of (d — 3)-faces;

* not forcing any identification between two distinct connected components of the
boundary of the link of a (d — 3)-face.

Moreover, we require any two (d — 1)-faces that share an interior edge of the link of
a (d — 3)-face to be glued together. With the same proof of Theorem 3.6, we conclude
the following assertion.

Theorem 3.9. For any d > 3, the number of combmatonally distinct 2-LC d -quasi-
manifolds with N facets, for N large, is smaller than 2 &

Example 3.10. In the boundary of a tree of tetrahedra, choose two triangles o; and 0,
that intersect at a vertex and that do not belong to the same tetrahedron or to adjacent
tetrahedra. Let P be the 3-dimensional pseudomanifold obtained by gluing o and o5.
Then P is a 2-L.C quasimanifold. However, P cannot be LC, because it is not homeo-
morphic to any of the possible topologies of LC 3-pseudomanifolds, as characterized
by Durhuus and Jonsson [11, Theorem 2]. This example highlights how the class of
2-LC d-quasimanifolds, bounded by Theorem 3.9, is much larger than the class of
LC d-quasimanifolds, already for d = 3.

Remark 3.11. We conjecture that 3-LC d-manifolds are more than exponentially
many for every d > 3. Note that a much stronger statement, “3-LC d-spheres are
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more than exponentially many for every d > 3”, would be immediately implied, via

suspensions, by a positive solution to Gromov’s problem of whether there are more

than exponentially many 3-spheres.

Funding. Bruno Benedetti was supported by NSF Grant 1855165, “Geometric Com-
binatorics and Discrete Morse Theory”.
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