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MV polytopes and reduced double Bruhat cells

Kathlyn Dykes

Abstract. When G is a complex reductive algebraic group, MV polytopes are in bijection with
the non-negative tropical points of the unipotent group of G. By fixing w from the Weyl group,
we can define MV polytopes whose highest vertex is labelled by w. We show that these poly-
topes are in bijection with the non-negative tropical points of the reduced double Bruhat cell
labelled by w�1. To do this, we define a collection of generalized minor functions �new


 which
tropicalize on the reduced Bruhat cell to the BZ data of an MV polytope of highest vertex w.

We also describe the combinatorial structure of MV polytopes of highest vertex w. We
explicitly describe the map from the Weyl group to the subset of elements bounded by w in the
Bruhat order which sends u 7! v if the vertex labelled by u coincides with the vertex labelled
by v for every MV polytope of highest vertex w. As a consequence of this map, we prove that
these polytopes have vertices labelled by Weyl group elements less than w in the Bruhat order.

1. Introduction

ForG a complex reductive algebraic group, the irreducible representations are highest
weight representations. To understand the tensor products of these irreducible repre-
sentations, Lusztig defined a canonical basis for each V.!i /, which behaves nicely
with the decomposition of these tensor products into their irreducible subrepresenta-
tions [24]. In [27], Mirković and Vilonen provide another basis using the geometric
Satake correspondence, which relates the representation theory of the Langlands dual
group G_ with the intersection homology of the affine Grassmannian, Gr .

Under this correspondence, the bases of the representations correspond to certain
subvarieties of Gr , called Mirković–Vilonen (MV) cycles. These MV cycles are the
irreducible components of the intersection of infinite cells and as such, are difficult
to understand as geometric objects. Anderson first conjectured that MV cycles could
be analyzed by studying their moment polytopes [1] and in [21], Kamnitzer gives a
combinatorial description of MV cycles using these moment polytopes, called MV
polytopes. Goncharov and Shen [17] take this one step further by explicitly show-
ing that the set of MV polytopes are the tropical points of the unipotent subgroup
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of G. The benefit to this point of view is that the tropical Plücker relations come from
the Plücker relations on N , which arise naturally by studying the transition maps of
Lusztig’s positive atlas [7].

In this paper, for w 2 W , we investigate a subset of MV polytopes called MV
polytopes of highest vertex w, denoted by Pw . These polytopes are MV polytopes
whose vertex labelled by w is equal to the vertex labelled by w0.

The original motivation to study these polytopes was to develop a better under-
standing of affine MV polytopes, although these MV polytopes are also of interest
due to their connection to preprojective algebra modules and MV cycles. In [5], the
authors define a class of preprojective algebra modules of interest, Tw and in [26],
Ménard proves that Pw is exactly set of MV polytopes associated to these modules.

For any MV polytope, there is a canonical labelling of the vertices by the Weyl
group, so that the vertex data of P 2 Pw can be labelled .�v/v2W . The main result
of this paper is that the vertex data is only dependent on the Weyl group elements
bounded by w.

Theorem A (Theorem 4.34, Corollary 4.35). For every P 2 Pw with vertex data
.�v/v2W , we have P D conv¹�v W v 2 W; v � wº.

This theorem is proven by explicitly describing the map W ! ¹v � wº.
We would also like to realize Pw as the non-negative tropical points on some

subvariety of N such that the tropicalized generalized minors functions send a non-
negative tropical point to the BZ data of an MV polytope of highest vertex w. The
candidate for this subvariety is the reduced double Bruhat cell,

Lw
�1

D N \ B�w
�1B�:

On this subvariety, some of these generalized minor functions vanish. Instead, we
redefine these minors�new

v!i
to be the smallest weight 
 such that�
;v!i ¤ 0 onLw

�1
.

Consider the collection of tropical functionsM
 D .�
new

 ı �

�1
w�1

/trop for 
 2 � , where
�w�1 is a necessary change of coordinates.

Theorem B (Proposition 5.17). On Lw
�1
.Ztrop/�, the collection .M
 /
2� satisfies

the following conditions:

(i) the edge inequalities;

(ii) the tropical Plücker relations on the subcollection .M
 /
2�w .

Conjecture C. On Lw
�1
.Ztrop/�, the collection .M
 /
2� satisfy the edge equalities

on the subcollection .M
 /
2�n�w .

Using this new collection of tropical functions .M
 /
2� , we obtain an identical
result to the case of N .
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Theorem D (Theorem 5.18). There is a bijection Lw
�1
.Ztrop/� ! Pw defined by

`! .M
 .`//
2� .

This paper is organized as follows. In Section 3, we give a brief background of
the theory of MV polytopes. In Section 4, we describe the Lusztig and vertex data
of Pw and prove Theorem A. In Section 5, we outline the theory which relation MV
polytopes of highest vertexw to the tropical points of the reduced double Bruhat cells.

2. Notation

Let G be a semisimple, simply connected, complex group. Let T be a maximal torus
of G. We define the weight and coweight lattice as X� D Hom.T;C�/ and X� D
Hom.T;C�/, respectively. Let W D NG.T /=T be the Weyl group.

FixB be a Borel subgroup ofG such that T �B . LetN be the unipotent subgroup
of B . Let I be the index set of the simple roots and denote ˛i as the simple root
associated to the index i while ˛_i is the simple coroot. Let � be the set of roots
and �C the set of positive roots while �_ is set of coroots and �_C the set of positive
coroots. Let h�; �iWX� �X�! C be the pairing of the weight and the coweight lattice
and set aij D h˛_i ; j̨ i. Denote by Q D N� the root lattice so QC D N�C is the
positive root cone. Similarly, let Q_ D N�_ be the coroot lattice and QC D N�_C
the positive coroot cone. Let !i be the fundamental weights, which form a basis of
the weight lattice X� such that h˛_i ; !j i D ıi;j .

Consider the space tR D X�˝R and t�R D X
�˝R. Define a partial order on X�

by � � � ” ��� 2Q_C and a partial order onX� by � � � ” ��� 2QC.
Define the twisted partial order �w on tR by ˇ �w ˛ ” hˇ � ˛; w!i i � 0 for
all i 2 I .

Let si be the simple reflection associated to the simple root ˛i , that is, si .˛/ D
˛ � h˛_i ; ˛i˛i and set S D ¹si W i 2 I º. Then W is also the Coxeter group generated
by S , and W acts on the weight lattice by si .ˇ/ D ˇ � h˛_i ; ˇi ˛i for ˇ 2 X�. Sim-
ilarly, W acts on the coroots and the coweight lattice by si .ˇ/ D ˇ � hˇ; ˛i i ˛_i for
ˇ 2 X�.

For w 2 W , let `.w/ denote the length of w. We say the product si1 � � � sik is
reduced if kD `.w/. The tuple of indices i D .i1; : : : ; ik/ a word ofw ifwD si1 � � �sik .
A reduced word of w is i such that w D si1 � � � sik is reduced.

Let � denote the Bruhat order and let �R;�L denote the right and left weak
Bruhat orders respectively. We will denote intervals in the strong Bruhat order by
Œv;w�D ¹x W v � x �wº. Similarly, the weak Bruhat intervals are given by Œv;w�R D
¹x W v �R x �R wº and Œv; w�L D ¹x W v �L x �L wº.
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3. MV polytopes

MV polytopes were originally defined by Anderson [1] as the moment polytopes of
certain subvarieties of the affine Grassmannian called MV cycles. In [21], Kamnitzer
gave a completely combinatorial description of MV polytopes using their hyperplane
data. In particular, a GGMS polytope is an MV polytope exactly when the hyperplane
data are a BZ datum. In this section, we review MV polytopes as combinatorial objects
and outline their relation to preprojective algebra modules. We describe the crystal
structure on the set of MV polytopes and define the Saito crystal reflection.

To define MV polytopes, we first consider GGMS polytopes.

Definition 3.1. Consider a collection �� D .�w/w2W in the coroot lattice Q_ such
that �v �w �w for all v; w 2 W . A Gelfand–Goresky–MacPherson–Serganova, or
GGMS, polytope is a convex polytope P.��/ of the form P.��/ D

T
w2W C

�w
w ,

where
C�ww D ¹x 2 tR W hx;w � !i i � h�w ; w � !i i;8iº:

By [21, Proposition 2.2], P.��/ D conv¹�w W w 2 W º. We call .��/ the vertex
data of the polytope.

We can also define a GGMS polytope using the hyperplane data. The hyperplanes
are indexed by weights of the form w!i . Define the set of chamber weights � D
¹w!i W w 2 W; i 2 I º. Let M� D .M
 /
2� be a collection of integers that satisfy the
edge inequalities for each w 2 W and i 2 I :

Mwsi!i CMw!i C

X
j¤i

aj iMw!j � 0; (3.1)

where aj i D h˛_j ; ˛i i. Then the polytope P.M�/ defined by the hyperplane data is

P.M�/ D ¹x 2 tR W hx; 
i �M
 ;8
 2 �º:

By [21, Proposition 2.2], these two definitions are equivalent in the following way.
If P DP.��/, then P DP.M�/, where we setMw!i D h�w ;w �!i i. If P DP.M�/,
then P D P.��/, where we set �w D

P
i2IMw!iw � ˛

_
i . From now on, for a GGMS

polytope P , we will denote .��/ as the vertex data and .M�/ as the hyperplane data.
For w 2 W and si such that `.siw/ > `.w/, there is an edge in P.��/ connecting

�w and �wsi , where
�wsi � �w D cw � ˛

_
i (3.2)

and
c D �Mw!i �Mwsi!i �

X
j¤i

aj iMw!j :

Note that from the edge inequalities (3.1) c � 0. We call c the length of the edge
from �w to �wsi . The next lemma follows directly from (3.2).
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Figure 1. An A2 MV polytope.

Lemma 3.2. For P , a GGMS polytope with vertex data .��/ and hyperplane data
.M�/, we have

�wsi � �w D 0 ” Mw!i CMwsi!i D �

X
j¤i

aj iMw!j :

Example 3.3. For G D SL3, the simple coroots are given by ˛_1 D .1;�1; 0/ and
˛_2 D .0; 1;�1/, so these GGMS polytopes are actually polygons. For example, see
Figure 1.

The fundamental weights are !1 D .1; 0; 0/, !2 D .1; 1; 0/, and the chamber
weights are

� D ¹!1; !2; s1!1; s2!2; s2s1!1; s1s2!2º:

These chamber weights index the hyperplanes .M�/ as in Figure 1.

When a GGMS polytope is an MV polytope, the hyperplane data satisfy certain
relations. First, we recall the tropical Plücker relations, which come from the tropi-
calization of the Plücker relations of [7].

Definition 3.4. The collection .M
 /
2� satisfies the tropical Plücker relations if for
eachw 2W and every i; j 2 I such that i ¤ j and si ; sj 62DR.w/, then either aij D 0
or the following holds:

(1) if aij D aj i D �1, then

Mwsi!i CMwsj!j D min
®
Mw!i CMwsi sj!j ;Mwsj si!i CMw!j

¯
I

(2) if aij D �1; aj i D �2, then

Mwsj!j CMwsi sj!j CMwsi!i D min
®
2Mwsi sj!j CMw!i ;

2Mw!j CMwsi sj si!i ;M!j CMwsj si sj!j CMwsi!i

¯
;
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Mwsj si!i C 2Mwsi sj!j CMwsi!i D min
®
2Mw!j C 2Mwsi sj si!i ;

2Mwsj si sj!j CMwsi!i ;Mwsi sj si!i C 2Mwsi sj!j CMw!i

¯
I

(3) if aij D �2; aj i D �1, then

Mwsj si!i CMwsi!i CMwsi sj!j D min
®
2Mwsi!i CMwsj si sj!j ;

2Mwsi sj si!i CMw!j ;Mwsi sj si!i CMw!i CMwsi sj!j

¯
;

Mwsj!j C 2Mwsi!i CMwsi sj!j D min
®
2Mwsi sj si!i C 2Mw!j ;

2Mw!i C 2Mwsi sj!j ;Mw!j C 2Mwsi!i CMwsj si sj!j

¯
:

If aij D�3 or aj i D�3, the tropical Plücker relations are given in [7, Proposition 4.2].
We omit them here due to length.

Note that the tropical Plücker relations impose conditions on each 2-face of P .

Definition 3.5. The collection .M
 /
2� is a Berenstein–Zelevinsky (BZ) datum of
coweight � if

(i) .M�/ satisfies the tropical Plücker relations;

(ii) .M�/ satisfies the edge inequalities (3.1);

(iii) M!i D 0 and Mw0�!i D h�;w0 � !i i.

We define an MV polytope as GGMS polytopeP whose hyperplane data .M�/ are
a BZ datum. This definition is equivalent to the original definition of MV polytopes
as the moment polytopes of MV cycles.

Theorem 3.6 ([21, Theorem 3.1]). A GGMS polytope P.M�/ is an MV polytope if
and only if it is the moment polytope of a stable MV cycle.

Denote by P the set of MV polytopes. For any P 2P , the polytope is determined
by its vertex data .��/, which are a collection of points in Q_, or its BZ data .M�/,
which are a collection of integers. There is one more set of combinatorial data which
determines P , closely related to the vertex data.

For a reduced word i D .i1; : : : ; im/ of w0, define the Weyl group elements wi
k
D

si1 � � � sik for 1 � k � m and set wi0 D e. The reduced word i gives a path

�e; �
w
i

1

; �
w
i

2

; : : : ; �
w
i

m�1

; �w0

in the 1-skeleton of P . From (3.2),

�
w
i

k

� �
w
i

k�1

D

�
�M

w
i

k�1
!ik

�M
w
i

k
!ik

�

X
j¤ik

aj ikMw
i

k�1
!j

�
w
i

k�1
˛_ik :
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Definition 3.7. Let P 2 P with vertex data .��/ and BZ data .M�/. For a reduced
word i D .i1; : : : ; im/ of w0, the Lusztig data of P with respect to i is defined by

n
i

k
D �M

w
i

k�1
!ik

�M
w
i

k
!ik

�

X
j¤ik

aj ikMw
i

k�1
!j
:

By the edge inequalities (3.1), ni
k
� 0 for 1� k �m. The Lusztig data corresponds

to the lengths of the edges along the path determined by i above. Note that for any
P 2 P and any i , we have ni�.P / 2 Nm.

For convenience, we will call the path �e; �si1 ; : : : ; �si1 ���sim�1 ; �w0 determined
by a reduced word i of w0 a minimal path from �e to �w0 in P . We will also use the
shorthand ni� WD n

i
�.P / when it is clear what P is.

Example 3.8. For the A2 polytope in Figure 1, the reduced word i D .1; 2; 1/ gives
the Lusztig data n121� D .1; 2; 2/, which are the lengths of the edges on the right side
of the polytope. For i D .2; 1; 2/, n212� D .3; 1; 2/ which are the lengths of the edges
on the left side of the polytope.

Any MV polytope is completely determined by its Lusztig data along one minimal
path.

Theorem 3.9 ([21, Theorem 7.1]). Let i be any reduced word ofw0. The Lusztig data
with respect to i gives a bijection P ! Nm.

3.1. Crystal structure of P

The set of MV polytopes has a bicrystal structure and hence a reflection of the crystal
will result in an action on the set of MV polytopes. First, we define a crystal structure
as in [23, Section 7.2].

Definition 3.10. A crystal is a set B along with the maps

wtWB ! X�; zei WB ! B t ¹0º; zfi WB ! B t ¹0º;

"i WB ! Z [ ¹�1º; 'i WB ! Z [ ¹�1º

for each i 2 I with the following axioms:

(1) for all b 2 B; i 2 I , we have

'i .b/ D "i .b/C hwt.b/; ˛i iI

(2) if b 2 B; i 2 I and zei .b/ ¤ 0, then

wt.zei .b//D wt.b/C ˛_i ; "i .zei .b//D "i .b/� 1; 'i .ei .b//D 'i .b/C 1I
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(3) if b 2 B; i 2 I and zfi .b/ ¤ 0, then

wt. zfi .b// D wt.b/� ˛_i ; "i . zfi .b// D "i .b/C 1; 'i .fi .b// D '.b/� 1:

(4) b0 D zei .b/ ” fi .b
0/ D b.

A highest weight crystal has a unique element b0 such that b0 can be obtained by any
element b 2 B by applying a sequence of zei for different i 2 I .

In particular, we are interested in the crystal B.1/. This is the highest weight
crystal determined by the relations wt.b0/ D 0 and "i .b/ D max¹n W zeni b ¤ 0º.

Let � denote Kashiwara’s involution on B.1/ [22]. Define the maps

ze�i D � ı zei ı �;
zf �i D � ı

zfi ı �; "�i .b/ D ".�b/; and '�i D 'i .�b/

for every i 2 I; b 2 B.1/. Then .B.1/;wt; "�i ; '
�
i ; ze
�
i ;
zf �i / is also a crystal. We

call B.1/ a bicrystal with these two crystal structures where the weight functions
agree and wt.b/ 2 �QC for every b 2 B.1/. In [20], Kamnitzer defines the bicrystal
structure on the set of MV polytopes and proves that this structure is isomorphic to
the B.1/ bicrystal.

Theorem 3.11 ([20, Theorem 6.2, Corollary 6.3]). Let P be an MV polytope with
vertex data .��/. Then

(1) zfj .P / is the unique MV polytope with vertex data .�0�/, where

�0e D �e and �0w D �w C ˛
_
j if sjw < wI

(2) zej .P /D 0” �e D�sj . Otherwise, zej .P / is the unique MV polytope with
vertex data .�0�/, where

�0e D �e and �0w D �w � ˛
_
j if sjw < wI

(3) zf �j .P / is the unique MV polytope with vertex data .�0�/, where

�0w0 D �w0 C ˛
_
j and �0w D �w for sjw > wI

(4) ze�j .P /D 0 ” �w0sj D �w0 . Otherwise, ze�j .P / is the unique MV polytope
with vertex data .�0�/, where

�0w0 D �w0 � ˛
_
j and �0w D �w for sjw > w:

Example 3.12. When G D SL3, consider the polytope P given by the Lusztig data

n.1;2;1/� .P / D .1; 0; 2/ and n.2;1;2/� .P / D .1; 1; 0/:
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Then the crystal operators act as follows:

n.1;2;1/� . zf1.P // D .2; 0; 2/; n.1;2;1/� .ze1.P // D .0; 0; 2/;

n.1;2;1/� . zf �2 .P // D .1; 0; 3/; n.1;2;1/� .ze�2 .P // D .1; 0; 1/

n.2;1;2/� . zf2.P // D .2; 1; 0/; n.2;1;2/� .ze2.P // D .0; 1; 0/;

n.2;1;2/� . zf �1 .P // D .1; 1; 1/; n.2;1;2/� .ze�1 .P // D 0:

Note that zf2.P / D zf �2 .P / and ze2.P / D ze�2 .P /.

For each j , define j � to be the index such that sj�w0 D w0sj . Note that for the
reduced word i D .i1; : : : ; im/ of w0, si1 � � � sim�1˛im D ˛i�m so that f �

i�m
and e�

i�m
will

change the last component of the Lusztig data with respect to i .
We can explicitly see how these operators act on the Lusztig data of a polytope.

Suppose ni�.P / is the Lusztig data with respect to i for a polytope P 2 P . Then

n
i
�. zfi1.P // D .n1 C 1; n2; : : : ; nm/; n

i
�.zei1.P // D .n1 � 1; n2; : : : ; nm/;

n
i
�. zf
�

i�m
.P // D .n1; : : : ; nm�1; nm C 1/; n

i
�.ze
�

i�m
.P // D .n1; : : : ; nm�1; nm � 1/:

The value of the crystal operators "i can be easily determined by the Lusztig data.

Corollary 3.13. For a reduced word i D .i1; : : : ; im/ of w0 and P 2 P , if P has
Lusztig data ni�, then "i1.P / D n

i

1 and "�
i�m
.P / D n

i
m.

Theorem 3.11 associates a unique MV polytope Pol.b/ to each b 2 B.1/, where
Pol.b0/ is the polytope consisting of the point �e . We can also use the Saito reflection
on the bicrystal B.1/ to describe the polytope Pol.b/. For the rest of the subsection,
we follow [4, Section 3.3].

Definition 3.14. Define the map

z�i W ¹b 2 B.1/ W "i .b/ D 0º ! ¹b 2 B.1/ W "
�
i .b/ D 0º

by z�i .b/ D . zfi /'
�
i
.b/.ze�i /

"�
i
.b/.b/. The Saito reflection is the map

�i WB.1/! ¹b 2 B.1/ W "
�
i .b/ D 0º

defined by �i .b/ D z�i ..zei /"i .b/b/.
Similarly, define

z��i W ¹b 2 B.1/ W "
�
i .b/ D 0º ! ¹b 2 B.1/ W "i .b/ D 0º

by z�i
�.b/ D . zf �i /

'i .b/.zei /
"i .b/.b/. Define the �-Saito reflection as the map

��i WB.1/! ¹b 2 B.1/ W "i .b/ D 0º

defined by ��i .b/ D z�
�
i ..ze

�
i /
"�
i
.b/b/.
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Note that, by definition, "�i .�i .b//D 0 and "i .��i .b//D 0. Also, z��i D z�
�1
i by [29,

Corollary 3.4.8]. The operators �i ; ��i satisfy the same braid relations as the simple
reflections si , thus for any w 2 W , it is well defined to set �w WD �i1 � � � �im , where i
is a reduced word of w.

Lemma 3.15 ([29, Proposition 3.4.7], [3, Property (L3)]). Let b 2B.1/ and let ni� be
the Lusztig data of Pol.b/with respect to iD.i1; : : : ; im/. Consider jD.i2; : : : ; im; i�1 /.
Then

n
j

�

�
Pol.�i1.b//

�
D .n2; n3; : : : ; nm; 0/:

Consider k D .i�m; i1; i2; : : : ; im�1/. Then

n
k
�

�
Pol.��

i�m
.b//

�
D .0; n1; : : : ; nm�1/:

Using this lemma, the Lusztig data can be computed by composing crystal opera-
tors with certain Saito reflections.

Corollary 3.16. For b 2 B.1/, suppose Pol.b/ has vertex data .��/. Then for every
w 2 W and j 2 I such that wsj > w,

�wsj � �w D "j .�w�1.b//w˛
_
j :

Proof. Consider Pol.b/with vertex data .��/. Forw2W and j 2I such thatwsj >w,
there is a reduced word i such that si1 � � � si`.w/ D w and si`wC1 D sj . By definition,

�wsj � �w D n`.w/C1.Pol.b// � w˛_j ;

where ni�.P / D .n1; : : : ; nm/.
Recall that �w�1 D �si`.w/

�si`.w/�1
� � � �si2

�si1
. By Lemma 3.15, Pol.�w�1.b//

has the Lusztig data .n`.w/C1; : : : ; nm; 0; : : : ; 0/ with respect to the reduced word
.j; i`.w/C2; : : : ; im; i

�
1 ; : : : ; i

�
`.w/

/. By Corollary 3.13,

"j .�w�1.b// D "j
�
Pol.�w�1.b//

�
D n`.w/C1.Pol.b//:

This corollary allows us to write �w.b/ in a closed form. Note that z�i has the
property that wt.z�i .b// D si wt.b/, so it follows that

wt.�i .b// D si
�
wt.e�i

"�
i
.b/
.b//

�
D si

�
wt.b/C "i .b/˛_i

�
:

For non-trivial w D si1 � � � sim , by inductively applying this equality we have

wt.�w�1.b// D
mX
kD1

"ik .�sim ���sik
.b//sik � � � sim˛

_
ik
:
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As �e D 0, it follows from Corollary 3.16 that

�si1 ���sim
.b/ D

mX
kD1

�si1 ���sik
� �si1 ���sik�1

D

mX
kD1

"ik .�sim ���sik�1
.b//si1 � � � sik�1˛

_
ik
D w � wt.�w�1.b//:

Thus the vertex data .��.b// of Pol.b/ can be explicitly determined by the Saito
reflection where

�w.b/ D w � wt.�w�1.b// � wt.b/:

Note that we shift by wt.b/ so that �e.b/ D wt.b/ � wt.b/ D 0.

3.2. Preprojective algebra modules

We give a very brief background on preprojective algebra modules and the associated
MV polytope. This section is needed to prove the generalized diagonal relations of
Section 4.2.

In this section, we restrict to the case that G is a simply-laced algebraic group.
First, we start with some general definitions.

Definition 3.17. A quiver Q D .I;E; s; t/ consists of a vertex set I , an arrow set E,
a source map sWE ! I and a target map t WE ! I . We write the arrow ˛ 2 E as
˛W i ! j , where i D s.˛/ and j D t .˛/. Define E� D ¹˛� W ˛ 2 Eº, where s.˛�/ D
t .˛/ and t .˛�/ D s.˛/. Let xQ D .I; E tE�; s; t/ be the double quiver.

The path algebra of xQ over C is the algebra C xQ. Consider the ideal J generated
by X

˛2E

.˛˛� � ˛�˛/:

Definition 3.18. The preprojective algebra of xQ over C, denoted by ƒ.Q/, is the
quotient of C xQ by the ideal J .

A ƒ.Q/-module M is an I -graded vector space
L
i2I Mi along with maps

M˛WMs.˛/ !Mt.˛/

for each ˛ 2 E tE�, which satisfyX
˛2E; t.˛/Di

M˛M˛� �M˛�M˛ D 0

for each i 2 I .
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We consider a few special ƒ.Q/-modules. For i 2 I , let Si be the 1-dimensional
module concentrated at the vertex i , where all arrows act as zero. Let Ii be the anni-
hilator of Si . For any w 2 W we define Iw WD Ii1 � � � Iim , where i is a reduced word
of w. Note that this is independent of the choice of i , and thus is well defined.

For a module M , the i -socle is the largest submodule of M which is isomor-
phic to S˚ki for some k 2 N, while the i -head is the largest quotient of M which is
isomorphic to S˚ki for some k 2 N. In fact,

sociM Š Homƒ.Q/.ƒ.Q/=Ii ;M/ and hdiM Š .ƒ.Q/=Ii /˝ƒ.Q/M:

Let G be a simply-laced complex algebraic group. Fix Q to be an orientation of
the Dynkin diagram associated to the simple coroots ofG and setƒ WDƒ.Q/. ForM
a ƒ-module, we can define dimension vector as

dimM D
X
i2I

dimMi˛
_
i ;

which is contained in the coroot latticeQ_. By [3], we can associated a GGMS poly-
tope to a ƒ-module M by

Pol.M/ WD conv¹dimM � dimN W N �M is a submoduleº:

By [5, Theorem 5.4], for any w 2 W we define the submodules Mw � M as the
image of the map Iw ˝ƒ Homƒ.Iw ;M/!M . By [5, Remark 5.19 (i)], Pol.M/ will
have vertex data .�w/w2W , where �w D dimM � dimMw . For certain modulesM ,
Mw and M siw are closely related.

Lemma 3.19 ([2, Lemma 2]). For w 2W , consider i 2 I such that siw > w. ForM
a finite-dimensional ƒ-module, if Ext1ƒ.Si ;M/ D 0, then

M siw Š Ii ˝ƒM
w :

Finally, a result of Crawley-Boevey tells us that we can switch the roles of Si
and M in the previous lemma.

Lemma 3.20 ([13, Lemma 1]). For any ƒ-modules X and Y , we have

dim Ext1ƒ.X; Y / D dim Ext1ƒ.Y;X/:

Finally, we define the subset of ƒ-modules Tw .

Definition 3.21. Let Tw to be the set of ƒ-modules M such that Mw DM .

By [5, Remark 5.5 (ii)], this is the same category Tw defined in [5] and is also the
category of modules Cw�1w0 defined in [26, Definition 2.5]. Note that for M 2 Tw ,
the vertex data of Pol.M/ will satisfy �w D �e .
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�e

�s1

�s1s2

�s2

�s2s1

�s1s2s1

�s2s1s2

�w0

�e

�s1
�s2

�s2s1

�s2s1s2 D �w0

�s1s2 D �s1s2s1

�w0

Figure 2. A standard B2 polytope (left) and a B2 polytope of highest vertex s2s1s2 (right).

4. Combinatorial data of MV polytopes of highest vertex w

In this section, we define a subset of MV polytopes, called MV polytopes of highest
vertexw, and show that these polytopes only have vertices labelled by elements which
are bounded by w in the Bruhat order. First, we introduce the definition of an MV
polytope of highest vertex w.

Definition 4.1. Fix w 2 W . Let P be an MV polytope with vertex data .��/. We
say P is an MV polytope of highest vertex w if �w D �w0 . Denote by Pw the set of
MV polytopes of highest vertex w.

Remark 4.2. Recall in Section 3.2 we define the set of MV polytopes associated
to Tw as the set of ƒ-modules M such that Mw D M . By [26, Proposition 5.33],
Pw�1w0 is the set of MV polytopes associated to the modules in Tw (under a reflection
and a shift to make �e D 0).

Example 4.3. Consider MV polytopes associated to the group of type B2. For w D
s2s1s2, Ps2s1s2 is the set of polytopes such that �s2s1s2 D �w0 , see Figure 2 for an
example. This condition will also imply that �s1s2 D �s1s2s1 . In Section 4.2 we will
explore how the condition �w D �w0 affects the vertex data of a rank 2 polytope.

A reduced word i for w0 gives a minimal path in the polytope of P beginning
at �e and ending at �w0 . If this path passes through �w , then the condition �w D�w0
forces the Lusztig data ni�.P / to be zero in the coordinates after `.w/. More precisely,
we can show that every vertex which appears after �w in such a minimal path will
necessarily be equal to �w .

Lemma 4.4. Let P be an MV polytope with vertex data .�w/w2W . For v;w 2 W , if
w �R v, then �v � �w 2 Q_C.
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Proof. If w �R v, then there exists a reduced word .i1; : : : ; i`.v/�`.w// such that the
product wsi1 : : : si`.v/�`.w/ D v. By (3.2) in Section 3,

�v � �w D

`.v/�`.w/X
kD1

ckwsi1 : : : sik�1˛
_
ik

for coefficients ck � 0. Since each wsi1 : : : sik�1 is reduced, wsi1 : : : sik�1˛
_
ik

is a
positive coroot. Thus �v � �w is a non-negative sum of positive coroots, and so
�v � �w 2 Q

_
C.

Lemma 4.5. Fixw 2W and suppose P 2Pw . For v 2W , ifw �R v, then �w D�v .

Proof. Suppose v is such that w �R v. By Lemma 4.4,

�v � �w 2 Q
_
C and �w0 � �v 2 Q

_
C:

Thus,
0 D �w0 � �w D .�w0 � �v/C .�v � �w/:

But the sum of non-zero points in Q_C is still a non-zero point in Q_C and hence the
only possible values of �w0 � �v and �v � �w are zero. Thus, �w D �v D �w0 .

By the definition of the Lusztig data and its relation to the vertices (see (3.2)), this
lemma allows us to characterize Pw in terms of its Lusztig data with respect to certain
reduced words.

Corollary 4.6. Fix w 2 W . The following conditions are equivalent:

(i) P 2 Pw ;

(ii) there exists a reduced word i of w0 with .i1; : : : ; i`.w// a reduced word for w
such that the Lusztig data ni�.P / have nk D 0 for k � `.w/;

(iii) for every reduced word i of w0 with .i1; : : : ; i`.w// a reduced word for w, the
Lusztig data ni�.P / have nk D 0 for k � `.w/.

Recall that an MV polytope P is determined by its BZ data .M
 /
2� . We charac-
terize the BZ data for P 2 Pw .

Lemma 4.7. The collection .M
 /
2� is the BZ datum of an MV polytope with highest
vertex w exactly when

(i) .M
 /
2� is the BZ datum of an MV polytope;

(ii) there exists a reduced word j D .j1; : : : ; jk/ of w�1w0 such that for ` D
0; : : : ; k � 1,

M
w �w

j

`
si`C1!i`C1

CM
w �w

j

`
!i`C1

D �

X
j¤i`C1

aj;i`C1M
w �w

j

`C1
!j
: (4.1)
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Proof. Consider P 2 P with vertex data .��/ and BZ data .M�/. The only thing we
need to show is that (ii) is equivalent to �w D �w0 .

Suppose that �w D �w0 . For any reduced word j of w�1w0, w �R w � w
j

`
for

0 � ` � k. By Lemma 4.5 it follows that

�w D �
ww

j

1

D � � � D �
ww

j

k�1

D �w0 :

Thus,
�
ww

j

`

D �
ww

j

`C1

for 0 � ` � k � 1, which is equivalent to (4.1) by Lemma 3.2.
Suppose j D .j1; : : : ; jk/ is a reduced word for w�1w0 such that (ii) holds.

As (4.1) is equivalent to �
ww

j

`

D �
ww

j

`C1

and this holds for 0 � ` � k � 1, then

�w D �
ww

j

1

D � � � D �
ww

j

k

D �w0 ;

and so P 2 Pw .

Lemma 4.7 and Corollary 4.6 both only give information about the structure of
the polytope P 2 Pw along the minimal paths from �e to �w0 that pass through the
vertex �w . To understand the whole structure of P , we need to understand the Lusztig
data along any minimal path from �e to �w0 .

We will prove that for every P 2 Pw with vertex data .��/, �v D �vw for some
well defined element vw . The proof is organized as follows. In Section 4.1, we define
this element vw for v; w 2 W . In Section 4.2, we outline the generalized diagonal
relations and see how these relations completely determine the vertex data for rank 2
polytopes. In Section 4.3, we show that the Saito reflection acts on Pw in a useful
way and finally, in Section 4.4 we will show exactly where the Lusztig data are zero
for an arbitrary reduced word of w0.

4.1. Intersections of Bruhat intervals

In this section, we will investigate the intersections of intervals in the Bruhat order
with intersections in the weak Bruhat order.

We first recall some definitions and properties of Coxeter groups. Using the length,
we can define the left descent set and right descent set respectively as

DL.w/ D ¹si 2 S W `.siw/ < `.w/º; DR.w/ D ¹si 2 S W `.wsi / < `.w/º:

Note that the left and right descent sets can be defined via the weak orders:

si 2 DL.w/ ” si �R w; si 2 DR.w/ ” si �L w:

We can relate the weak Bruhat orders to the length function in the following way.
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Proposition 4.8 ([10, Proposition 3.1.2]). For any u;w 2 W , we have

u �R w ” `.u/C `.u�1w/D `.w/; u �L w ” `.wu�1/C `.u/D `.w/:

For convenience, if u �R w, we will say that u is an initial word of w, while we
will say that u is a terminal word of w if u �L w. We will also say for v; w 2 W ,
v � w is a reduced product if `.vw/ D `.v/ C `.w/ (note that this is equivalent to
v �L v � w and w �R v � w).

As W is finite, there is a unique longest element w0. This element has a special
property for any reduced decomposition into two elements.

Lemma 4.9. For any x; y 2 W such that w0 D x � y is a reduced product, then
DR.x/ \DL.y/ D ; and DR.x/ [DL.y/ D S .

Proof. By the conditions of `.x/C `.y/ D `.w0/ and w0 D x � y, then

DR.x/ \DL.y/ D ;:

Suppose there exists s 62 DR.x/ [DL.y/. Then x � s � y is an element of length
`.w0/C 1, which contradicts the maximality of w0.

Finally, Coxeter groups have three important properties that we will make use of
multiple times throughout this section:

Theorem 4.10 ([10, Proposition 2.2.7, Theorem 1.5.1, Theorem 3.3.1]). For W a
Coxeter group, we have the following properties:

• Lifting Property. Suppose u < w and si 2 DL.w/ nDL.u/. Then u � siw and
siu � w.

• Exchange Property. Let w D si1si2 � � � sik be a reduced expression. If `.siw/ �
`.w/ for si 2 S , then siw D si1si2 � � � �sij � � � sik , where �sij means that this term is
deleted.

• Word Property. Every two reduced words for w can be connected via a sequence
of braid relations.

In Section 4.4, we will prove that for P 2 Pw with vertex data .�v/v2W , P D
conv¹�v W v 2 W; v � wº. The main result will be to explicitly describe the map
W ! Œe; w� which arises by sending v 7! u if for every P 2 Pw , �v D �u. By
Lemma 4.5, we know that for v �R w, v 7! w. When v 6�R w, this map is slightly
more complicated.

Example 4.11. Consider G of type A3. The simple coroots are ˛_1 ; ˛
_
2 ; ˛

_
3 and the

Weyl group is given by the presentation

W D hs1; s2; s3 W .s1s3/
2
D 1; .s1s2/

3
D 1; .s2s3/

3
D 1; s21 D s

2
2 D s

2
3 D 1i:
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Let w D s1s2s3 and consider P 2 Pw with Lusztig data .1; 1; 1; 0; 0; 0/ associated to
the reduced word i D .1; 2; 3; 1; 2; 1/. This polytope has the following form:

�e

�s3

�s2

�s2s3111

�s1

�s1s3

�s1s2

�s1s2s3

Note that the vertices are indeed labelled by the set ¹v 2 W W v � wº. For v 2 W
larger than w, the relations on the vertices �v are:

�s2s3s1s2s1 D �s2s3 ; �s1s3s2s1 D �s1s3 ;

�s3s2s1 D �s3 ; �s1s2s1 D �s1s2 ; �s2s1 D �s2 :

Notice that if �v D �u, then u �R v.

Suppose for v 2 W , u is the Weyl group element such that u � w and �v D �u
for every P 2 Pw . By examining the previous example, we expect two conditions
on u: first, we expect that u �R v; equivalently, this says there must be a minimal
path from �e to �w0 in the polytope that passes through both the vertices �u and �v .
Second, we expect that u is the longest element such that u � w and u �R v. First
we prove that this element is well defined. To do this, we will need a result of Björner
and Wachs.

For x; y 2W , we will say z is a minimal upper bound for x and y if x; y � z and
for any z0 2 W such that x; y � z0 � z, then z D z0.

Theorem 4.12 ([11, Theorem 3.7, Theorem 4.4]). Fix v 2 W . Let x; y 2 Œe; v�R and
suppose z is a minimal upper bound of x and y. Then z 2 Œe; v�R.

Lemma 4.13. For every v; w 2 W , the set Œe; v�R \ Œe; w� has a unique element of
longest length.

Proof. As Œe; v�R \ Œe; w� is a finite set, there exists an element of longest length.
Suppose there exists two distinct elements x; y of longest length.

Consider the set Œx;w�\ Œy;w�. As this set is finite, there exists an element z (not
necessarily unique) of minimal length. This element z has the property that for any
z0 2W such that z0 � z, x � z0 and y � z0, then `.z/D `.z0/ by the minimality of z,
and hence z D z0. We apply [11, Theorem 3.7] (see Theorem 4.12), so z �R v as well.
Thus z 2 Œe; v�R \ Œe; w�, but `.z/ > `.x/ D `.y/, which contradicts that x; y are of
longest length.
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Since x �R v ” x�1 �L v
�1 and x � w ” x�1 � w�1, then there is a

bijection
Œe; v�1�R \ Œe; w

�1�! Œe; v�L \ Œe; w�

by x 7! x�1. As `.x�1/ D `.x/, this lemma also holds for the left Bruhat order.

Corollary 4.14. For every v;w 2 W , the set Œe; v�L \ Œe; w� has a unique element of
longest length.

Lemma 4.13 ensures the following definition is well defined.

Definition 4.15. For any v; w 2 W , denote vw to be the unique element of maximal
length in Œe; v�R \ Œe; w�.

This element is closely related to the Demazure product. For w 2 W and si 2 S ,
let si � w WD max¹w; siwº, where the maximum is the element in the set of maximal
length. The Demazure product can be defined recursively by

si1 � � � � � sik WD si1 � .si2 � � � � � sik /:

This product is associative and well defined by [12, Proposition 3.1].

Proposition 4.16 ([9, Proposition 6.4]). For v;w 2 W , v � w D max¹xw W x � vº.

Using the same proof technique as [9, Proposition 6.4] we can relate the Demazure
product to the weak orders.

Proposition 4.17. For v;w 2 W , we have

v � w D max¹xw W x � v and `.xw/ D `.x/C `.w/º (4.2)

D max¹vy W y � w and `.vy/ D `.v/C `.y/º: (4.3)

Moreover, v �w D xw D vy where x is the maximal length element such that x � v
and xw is reduced and y is the maximal length element such that y � w and vy is
reduced.

Proof. If v D e, then e � w D w and clearly (4.2) holds. We proceed by induction.
For v ¤ e, there exists si 2 DL.v/. As `.siv/ D `.v/ � 1, then by induction

.siv/ � w D xw

for some x � siv and `.xw/ D `.x/C `.w/. Since si � .siv/ D v, then

v � w D si � .siv/ � w D si � .xw/

because � is associative.
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If `.xw/ > `.sixw/, then v �wD xw for x � siv � v and `.xw/D `.x/C `.w/.
Otherwise, `.sixw/ D `.xw/C 1, so v � w D sixw. Note that

`.sixw/ D 1C `.xw/ D `.x/C `.w/C 1;

so si 62DL.x/ and `.six/D `.x/C 1. This implies `.sixw/D `.six/C `.w/. Finally,
by the Lifting Property, six � v and (4.2) holds. A similar proof works for (4.3).

The maximal length element in the set

¹xw W x � v and `.xw/ D `.x/C `.w/º

must occur when `.x/ is of maximal length. Thus v � w D xw, where x is the max-
imal length element such that x � v and xw is reduced. By an identical argument,
v �w D vy for y the maximal length element such that y � w and vy is reduced.

It immediately follows that w �L v � w and v �R v � w by Proposition 4.8.
To relate vw to the Demazure product, we first need the following lemma.

Lemma 4.18. For u; v 2 W , the following conditions are equivalent:

(1) u � v is a reduced product;

(2) v �R u�1w0;

(3) u �L w0v�1.

Proof. By definition, u � v is reduced if and only if `.uv/ D `.u/C `.v/. Then

`.v/C `.v�1u�1w0/ D `.v/C `.w0/ � `.v
�1u�1/

D `.v/C `.w0/ � `.uv/

D `.w0/ � `.u/ D `.u
�1w0/;

so by Proposition 4.8, v �R u�1w0. A similar proof works for u �L w0v�1.

This lemma is applying the fact that for the longest element, w0 D w � .w�1w0/ is
a reduced product for any w, so w�1w0 multiplied on the left with any terminal word
of w will also be reduced.

Proposition 4.19. Fix w 2 W . For any v 2 W , vw D .vw0/..w0v�1/ �w/, where �
is the Demazure product.

Proof. By Proposition 4.17,

.w0v
�1/ � w D .w0v

�1/ � x;

where x is the maximal length element such that x � w and .w0v�1/ � x is reduced.
By Lemma 4.18, w0v�1 � x is reduced if and only if x �R v. Thus x is the maximal
length element such that x � w and x �R v so by definition, x D vw .
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We could alternatively take .vw0/..w0v�1/ � w/ as the definition of vw and the
uniqueness of vw will be automatic as this product is well defined. For our purposes,
it is useful to use the Bruhat orders to define vw but this connection to the Demazure
product simplifies some of the proofs.

As vw is an initial word of v, then v D vw � .v�1w v/ is a reduced product. The next
lemma shows how the terminal word v�1w v of v relates to w�1w0.

Lemma 4.20. Fix w 2 W . For every v 2 W , we have v�1w v �R w
�1w0.

Proof. Note that

v�1w v �R w
�1w0 ” v�1w vw0 �R w

�1
” .vw0/

�1vw �L w:

But vw D .vw0/..vw0/�1 � w/, so that

.vw0/
�1vw D .vw0/

�1
� w:

A consequence of Proposition 4.17 is that .vw0/�1vw D .vw0/
�1 � w �L w, as

desired.

4.2. Generalized diagonals

In this section we prove two technical lemmas, which state the generalized diagonal
relations on MV polytopes. These relations are inspired by the diagonal relations in
the rank 2 case, see the discussion at the end of [21, Section 3] for more details. These
inequalities are interesting because they relate vertices of the form �w and �sjw
which are vertices that do not necessarily share a face of the polytope (see Figure 3).
On the other hand, the tropical Plücker relations only give relations amongst vertices
with a shared face.

The first lemma requires the use of preprojective algebra modules, see Section 3.2
for more details. We recall a few definitions. For G a simply-laced complex algebraic
group, let ƒ be the preprojective algebra associated to the double quiver of an ori-
entation of the Dynkin diagram of the coroots of g. For a ƒ-module M , define the
submodules Mw as the image of the map Iw ˝ƒ Homƒ.Iw ;M/! M . The associ-
ated MV polytope is given by

Pol.M/ D conv¹�w W w 2 W º; where �w D dimM � dimMw :

The following proof of the simply-laced case is due to Pierre Baumann. We thank
him for allowing its inclusion in this text.

Lemma 4.21. Assume G is simply-laced. Let P be an MV polytope with vertex data
.�w/w2W . For every w 2W , sj 2DL.w/, the inequality h�w ��sjw ; !ki � 0 holds
for every k ¤ j .
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�e

�s3

�s2

�s2s3s2

�s1

�s1s2s3s2

�w0

Figure 3. A generalized diagonal with strict inequality.

Proof. Let M be the ƒ-module associated to the polytope P , i.e.

dimM � dimMw
D �w

for w 2 W . We want to prove that

�w � �sjw D dimM sjw � dimMw
D n˛_j � ˇ

for n 2 N and ˇ 2 Q_C.
First, suppose that Ext1.M; Sj / D 0. By [2, Lemma 2], Mw D Ij ˝ƒ M

sjw .
Consider the short exact sequence

0! Ij ! ƒ! ƒ=Ij ! 0:

As the tensor product is right exact, by applying the functor˝ƒM sjw we get the long
exact sequence

� � � ! Ij ˝ƒM
sjw ! ƒ˝ƒM

sjw ! .ƒ=Ij /˝ƒM
sjw :

Note that .ƒ=Ij /˝ƒM sjw DM sjw=Ij ; by definition,

M sjw=Ij D hdj .M sjw/ D S˚nj

for some n 2 N. Thus, we have the resulting exact sequence

0! ker.�/!Mw �
�!M sjw ! S˚nj ! 0;

with the dimension vectors

dimM sjw C dim ker.�/ D dimMw
C n j̨ :

As dim ker.�/ 2 Q_C, the claim holds for M of this form.
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Suppose M is a general ƒ-module. Let N be the maximal extension of M by Sj ,
i.e. take m 2 N such that

0! S˚mj ! N !M ! 0:

By the proof of [2, Lemma 2],

0! S˚mj ! N sjw !M sjw ! 0

is exact, and thus dimN sjw D dimM sjw Cm˛_j . Also, as the composition

Nw
! N !M !M=Mw

is zero, then dimN=Nw � dimM=Mw . Thus there exists 
 2 Q_C such that

dimN=Nw
� dimM=Mw

D 
:

Then
dimMw

� dimNw
D 
 C dimM � dimN D 
 �m˛_j :

Finally, the difference between the dimension vector of Mw and M sjw is as follows:

dimM sjw � dimMw
D dimN sjw � dimNw

� .dimMw
� dimNw/

� .dimN sjw � dimM sjw/

D n˛_j � ˇ � .
 �m˛
_
j / � .m˛

_
j / D n˛

_
j � ˇ � 
:

Since �w D dimM � dimMw , then �w � �sjw D n˛
_
j � ˇ � 
 , so

h�w � �sjw ; !ki D �hˇ C 
; !ki � 0

for every k ¤ j .

Now, we implement the technique of Dynkin diagram folding to prove the general
case. We will follow the notation used in [19].

Let G be a simply-laced algebraic group. Consider a bijection � W I ! I with
aij D a�.i/�.j /. This induces a Dynkin diagram automorphism on G by � WG ! G

such that �.x˙i .a// D x˙�.i/.a/. Let G� be the fixed point group on G and call the
pair .G;G� / a symmetric pair.

Example 4.22. With the appropriate choice of the map � , we have the symmetric
pairs .A2k�1; Ck/, .DkC1; Bk/, .D4; G2/, and .E6; F4/.

A Dynkin diagram automorphism � induces an action on the weight and coweight
lattices by �.˛i / D ˛�.i/ and �.˛_i / D ˛

_
�.i/

. It also induces a group automorphism
on W by �.si / D s�.i/. We set W � WD ¹w 2 W W �.w/ D wº.
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Denote by xg to be the Lie algebra ofG� . Let xW be the Weyl Group of xg, generated
by simple reflections xsi . There is a group isomorphism ‚W xW ! W � defined by

‚.xsi / D s
�
i WD

ki�1Y
tD0

s� t .i/;

where ki is the number of elements in the � -orbit of i .
Now, we will consider the � -invariant MV polytopes ofG. Denote P to be the set

of MV polytopes for g. The diagram automorphism � induces an action on P by

�.P / WD conv¹��1.��.w// W w 2 W º:

If �.P / D P , we call P � -invariant. Denote the set of � -invariant MV polytopes
by P � and let xP be the set of MV polytopes for xg. There is an identification between
these two sets of polytopes.

Theorem 4.23 ([18, Theorem 3.10], [19, Theorem 6.2]). For P 2 P � with vertex
data .�w/w2W , define

ˆ.P / D conv¹x� xw W xw 2 xW º;

where x� xw WD �‚. xw/. The map ˆWP � ! xP is a bijection.

Now we have the machinery to prove the non-simply-laced case.

Lemma 4.24. Assume G is non-simply-laced. Let P be an MV polytope with vertex
data .�w/w2W . For every w 2 W , sj 2 DL.w/, the inequality h�w � �sjw ; !ki � 0
holds for every k ¤ j .

Proof. Let K a simply-laced algebraic group such that, with the appropriate choice
of Dynkin diagram automorphism � , K� D G. Let P � be the set of � -invariant MV
polytopes of K. Let xP be the set of MV polytopes associated to K� , the fixed point
group of � . Recall by Theorem 4.23, ˆWP � ! xP is a bijection, where P with vertex
data .�w/w2W is sent to xP with vertex data .�‚. xw// D .x� xw/.

Let xP 2 xP . Consider xw 2 xW arbitrary. Let xsj 2DL. xw/ and k 2 xI such that k¤ j .
We want to show that

hx� xw � x�xsj xw ; x!ki � 0:

Since ˆ is a bijection, there exists a P 2 P � such that x� xw D �‚. xw/. Then for the
vertices of xP ,

x� xw � x�xsj xw D �‚. xw/ � �‚.xsj xw/ D �‚. xw/ � �s�j ‚. xw/
:

Note that s�i depends on the number of elements in the � -orbit of i , which can
only equal 1; 2 or 3. We consider the case where there are 3 elements in the orbit.
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Then

�‚. xw/ � �s�
j
‚. xw/ D �‚. xw/ � �s

�2.j/
‚. xw/ C �s

�2.j/
‚. xw/ � �s�.j/s�2.j/‚. xw/

C �s�.j/s�2.j/‚. xw/ � �sj s�.j/s�2.j/‚. xw/

H) h�‚. xw/ � �s�
j
‚. xw/; !ki D h�‚. xw/ � �s

�2.j/
‚. xw/; !ki

C h�s
�2.j/

‚. xw/ � �s�.j/s�2.j/‚. xw/; !ki

C h�s�.j/s�2.j/‚. xw/ � �sj s�.j/s�2.j/‚. xw/; !ki:

Since k 2 xI but ¹j; �.j /; �2.j /º \ xI D ¹j º, then k ¤ �.j / or �2.j /. Thus we can
apply the simply-laced case to each term on the right side of the above equation, and
hence

h�‚. xw/ � �s�
j
‚. xw/; !ki � 0:

As x!k is the restriction of !k to the subspace h� , then

hx� xw � x�xsj xw ; x!ki D h�‚. xw/ � �s�i ‚. xw/
; !ki � 0:

For the cases with 1 or 2 elements in the � -orbit, we will simply have fewer terms on
the right side of the above equation.

Recall we define �W I ! I where i� is the index such that siw0 D w0si� . For
w D si1 � � � sim , we define w� D si�

1
� � � si�m .

Lemma 4.25. Fix w 2 W . For every P 2 Pw , and for every sj 2 DL.w/, we have
�sjw D �w0sj� .

Proof. First, as w �R w0 then sjw �R sjw0 D w0sj� , and so by Lemma 4.4,

�w0sj� � �sjw 2 Q
_
C:

Thus for a reduced word i of w�1w0 ending in j �,

�w0sj� � �sjw D

`.w0/�`.w/�1X
rD1

cr.sjw/si1 : : : sir�1˛
_
ir

(4.4)

for cr � 0 and positive coroots .sjw/si1 � � � sir�1˛
_
ir

. It follows that the inequality
h�w0sj� � �sjw ; !ki � 0 holds for all k 2 I .

By the generalized diagonal relations, h�w ��sjw ; !ki � 0 for k ¤ j , and hence
h�w0 � �sjw ; !ki � 0 as well. As .w0sj�/ � ˛_j� D ˛

_
j , then �w0 � �w0sj� 2 Z˛_j ,

so for all k ¤ j ,

0 D h�w0 � �w0sj� ; !ki D h�w0 � �sjw ; !ki � h�w0sj� � �sjw ; !ki:
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Both of these terms must be zero for all k ¤ j , so �w0sj� � �sjw 2 Z˛_j . As each
.sjw/si1 � � � sir�1˛

_
ir

is a distinct positive coroot for every r and

.sjw/si1 � � � si`.w0/�`.w/˛
_
i`.w0/�`.w/

D .sjw/w
�1w0˛

_
j� D .w0sj�/˛

_
j� D ˛

_
j ;

then it follows that .sjw/si1 � � � sir�1˛
_
ir
¤ ˛_j for every r < `.w0/ � `.w/. If any

cr ¤ 0 in (4.4), then ˛_j is a positive sum of positive coroots, which contradicts
that ˛_j is a simple coroot. Thus, cr D 0 for all 1 � r � `.w0/ � `.w/ � 1 and
�s0sj� D �sjw .

When G is of rank 2, then Lemma 4.25 completely determines the vertex data of
a polytope in Pw . To see this, consider w D si1si2 : : : sim 2 W . As G has two simple
roots, there are only two simple reflections and so w is an alternating product of s1
and s2.

The existence of only two simple roots implies that all MV polytopes are 2-
dimensional polygons. The two simple reflections generate two distinct reduced words
for w0: the alternating product s1s2s1 : : : of length `.w0/ and the alternating prod-
uct s2s1s2 : : : of length `.w0/. These two reduced words give two minimals paths
from �e to �w0 and correspond to the two sides of the polygon.

For P 2 Pw , �w is on one side of the polygon and the vertex data for any vertex
along this minimal path is described by Lemma 4.5, i.e. if v�R w, then�v D�w , oth-
erwise v �R w and�v can be distinct. For v 6�R w and v 6�R w, then�v is necessarily
on the minimal path from �e to �w0 which does not contain �w , and hence either
v �R si1w or v �R si1w. By Lemma 4.25, DL.w/ D si1 , and so �si1w D �w0si�1

.

If v 6� w, then v 6�R w and v 6�R si1w, so it must follow that either v �R w
or v�R si1w. For the first case, we have already shown�v D�w . For the second case,
as �v is between the vertices �si1w and �w0si�

1

, the equality �si1w D �w0si�1
forces

�v D �si1w
. It follows that on the side of the polygon which does not contain �w , the

highest vertex is labelled by �si1w and the only possible distinct vertices are labelled
by v � w. Hence, P D conv¹�v W v 2 W; v � wº.

4.3. Crystal action on Pw

In this section, we will show that the Saito reflection behaves well with Pw . First,
we briefly recall the crystal structure of MV polytopes and the Saito reflection, see
Section 3.1 for more details.

The set of MV polytopes has crystal structureB.1/. The MV polytope associated
to b 2 B.1/, denoted Pol.b/, is given by the vertex data .�w.b//w2W , where

�w.b/ D w � wt.�w�1.b// � wt.b/:
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The action of the Saito reflection on the crystal B.1/ has a known effect on the
Lusztig data of Pol.b/ for b 2 B.1/. If Pol.b/ has Lusztig data .n1; : : : ; nm/ associ-
ated to the reduced word .i1; : : : ; im/, then Pol.�i1.b// has Lusztig data .n2; : : : ;nm;0/
associated to the reduced word .i2; : : : ; im; i�1 / while Pol.��im.b// has Lusztig data
.0; n1; : : : ; nm�1/ associated to the reduced word .i�m; i1; : : : ; im�1/. The crystal oper-
ators are also related to the Lusztig data ni�.P / by "im.b/ D nm and "�

i�
1

.b/ D n1.

Lemma 4.26. Fix w 2 W . Let i D .i1; : : : ; im/ be a reduced word for w�1w0. For
b 2 B.1/, the following are equivalent:

(i) Pol.b/ 2 Pw ;

(ii) "�
i�m
.b/ D 0 and "�

i�
k

.��s
i�
kC1

:::s
i�m

.b// D 0 for 1 � k < m;

(iii) �w�1.b/ D b0.

Proof. Extend i to a reduced word i 0 D .j1; : : : ; j`.w0/�m; i1; : : : ; im/ of w0. Denote
the Lusztig data of Pol.b/ associated to i 0 by .n1; : : : ; n`.w0/�m; N1; : : : ; Nm/. By
Corollary 3.13, we know that "�

i�m
.b/ D Nm. For 1 � k < m, consider the polytope

Pol.��s
i�
kC1

:::s
i�m

.b//:

By Lemma 3.15, the Lusztig data of this polytope associated to

.i�kC1; : : : ; i
�
m; j1; : : : ; j`.w0/�m; i1; : : : ; ik/

is
.0; : : : ; 0; n1; : : : ; n`.w0/�m; N1; : : : ; Nk/:

Then "�
i�
k

.��sikC1 :::sim
.b// D Nk . Thus,

"�
i�
k
.�s

i�
kC1
���s
i�m
.b// D 0 for 1 � k � m

if and only ifNkD0 for 1� k�m. By Corollary 4.6, this is equivalent to Pol.b/2Pw ,
so (i) is equivalent to (ii).

As Pol.b/ has vertex data �v D v � wt.�v�1.b// � wt.b/ then

�w D �w0 ” w �wt.�w�1.b// D w0 �wt.�w�1
0
.b// ” w �wt.�w�1.b// D 0

since �w0.b
0/ D b0 for every b0 2 B.1/. As b0 is the unique element of weight zero,

then the weight
wt.�w�1.b// D 0 ” �w�1.b/ D b0:

Thus (i) is equivalent to (iii).
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In the next two lemmas, we will show how the Saito reflection ��j� acts onP 2Pw .

Corollary 4.27. Fix w 2 W . For b 2 B.1/, if Pol.b/ 2 Pw and sj 2 DR.w�1w0/,
then Pol.��j�.b// 2 Psj�w .

Proof. First, notice that the condition sj 2DR.w�1w0/ ensures there exists a reduced
word of w0 i D .i1; : : : ; i`.w/; k1; : : : ; km�`.w/�1; j / such that .i1; : : : ; i`.w// is a
reduced word of w and .k1; : : : ; km�`.w/�1; j / is a reduced word of w�1w0.

Suppose that Pol.b/ 2 Pw . By Corollary 4.6, the Lusztig data of the polytope
Pol.b/ is .n1; : : : ; n`.w/; 0; : : : ; 0/ with respect to i . By Lemma 3.15, the polytope
Pol.��j�.b// has Lusztig data .0; n1; : : : ; n`.w/; 0; : : : ; 0/ with respect to the reduced
word .j �; i1; : : : ; i`.w/; k1; : : : ; km�`.w/�1/. Hence, Pol.��j�.b// 2 Ps�

j
w by Corol-

lary 4.6.

Lemma 4.28. Fix w 2 W . For b 2 B.1/, if Pol.b/ 2 Pw and sj … DR.w�1w0/,
then Pol.��j�.b// 2 Pw .

Proof. As w0 D w � w�1w0 is reduced, we also have the reduced product w0 D
.w�1w0/ � w

�. By setting x D w�1w0 and y D w�, we can apply Lemma 4.9 so
that

DR.w
�1w0/ \DL.w

�/ D ; and DR.w
�1w0/ [DL.w

�/ D S:

Thus sj 62 DR.w�1w0/ ” sj� 2 DL.w/.
Consider b 2 B.1/ such that Pol.b/ 2 Pw . Let sj� 2 DL.w/. By Lemma 4.26,

to show Pol.��j�.b// 2 Pw , it is enough to show that �w�1.�
�
j�.b// D b0.

Let i D .i1; : : : ; im�1; j / be a reduced word of w0 such that w D sj�si1 � � � sik
for k D `.w/ � 1. Let .n1; : : : ; nm�1; nm/ be the Lusztig data of Pol.b/ with respect
to i . The polytope Pol.��j�.b// has Lusztig data .0; n1; : : : ; nm�1/ for reduced word
.j �; i1; : : : ; im�1/ so that Pol.�j���j�.b// has Lusztig data .n1; : : : ; nm�1; 0/ with
respect to i . Notice that

�w�1.�
�
j�.b// D �.sj�w/�1.�j

���j .b// D �sik ���si2si1
.�j��

�
j .b//

so that Pol.�w�1.�
�
j�.b/// has Lusztig data .nkC1; : : : ; nm�1; 0; : : : ; 0/ with respect

to the reduced word .ikC1; : : : ; im�1; j; i�1 ; : : : ; i
�
k
/.

Since Pol.b/ 2 Pw , then �si1 ���sik D �sj�w D �w0sj by the generalized diagonal
relations of Lemma 4.25. The relation between Lusztig data and vertices (see (3.2))
implies that nkC1 D � � �nm�1 D 0 in this Lusztig data. Thus

Pol
�
�w�1.�

�
j�.b//

�
D Pol.b0/:

By the uniqueness of Pol.b/, �w�1.�
�
j�.b// D b0, as desired.
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4.4. Lusztig and vertex data of Pw

The goal of this section is to show that for any P 2 Pw , �v D �vw for every v 2 W .
First, we need to investigate where the zeros in the Lusztig data are located.

Let i D .i1; : : : ; im/ be a tuple. Consider two subwords of i , aD .ia1 ; : : : ; iak / and
b D .ib1 : : : ; ibk /. We say the subword a comes after b in the reverse-lexicographical
order if for some n, an < bn and aj D bj for every j � n.

Definition 4.29. Let i be a reduced word ofw0. Forw 2W , define the rightmost sub-
word iw as the first subword in the reverse-lexicographical ordering that is a reduced
word of w.

The next two lemmas will show that this rightmost word for w�1w0 will always
start with a reduced word for v�1w v.

Lemma 4.30. Fix w 2 W . Let i D .i1; : : : ; im/ be a reduced word for w0 and let
iw D .ij1 ; : : : ; ij`.w//. For any terminal subword i 0 D .ik; ikC1; : : : ; im/ of i , the
subword of i indexed by the intersection ¹k; k C 1; : : : ; mº \ ¹j1; : : : ; j`.w/º is a
reduced word for the maximal length element in Œe; w�L \ Œe; sik � � � sim �.

Proof. We proceed by induction onmC 1� k, the length of the terminal subword i 0.
Suppose k D m. If Œe; w�L \ Œe; sim � ¤ ¹eº, then the maximal element in this set

is sim . Then sim 2 DR.w/, and hence j`.w/ D m by definition. Thus the intersection
¹mº \ ¹j1; : : : ; j`.w/º D m and the reduced word .im/ is a reduced word for sim . If
Œe; w�L \ Œe; sim � D ¹eº, then sim 62 DR.w/, and so

¹mº \ ¹j1; : : : ; j`.w/º D ;;

which is a reduced word for the maximal element.
Assume the hypothesis holds for the subword .ikC1; : : : ; im/ and let y0 be Weyl

element given by the subword of i indexed by ¹k C 1; : : : ; mº \ ¹j1; : : : ; j`.w/º. By
assumption, this is also the maximal element in Œe; w�L \ Œe; sikC1 � � � sim �.

For i 0 D .ik; : : : ; im/, let y be the Weyl element given by the subword of i indexed
by ¹k;kC 1; : : : ;mº \ ¹j1; : : : ; j`.w/º. Then either y D y0 or y D sik � y

0 is a reduced
product, and so

`.y0/ � `.y/:

By definition of iw , y �L w, and hence y 2 Œe; w�L \ Œe; sik : : : sim �.
For any x 2 Œe; w�L \ Œe; sik : : : sim �, either x 2 Œe; w�L \ Œe; sikC1 : : : sim � or

x D sik � x
0 is a reduced product for some x0 2 Œe; w�L \ Œe; sikC1 : : : sim �. In the first

case,
`.x/ � `.y0/ � `.y/:
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In the second case, if x0 ¤ y0, then

`.x/ D `.x0/C 1 < `.y0/C 1;

so that `.x/ � `.y0/ � `.y/. If x0 D y0, then necessarily x D siky
0 D y by above and

`.x/ D `.y/. Thus the length of every element in this intersection is bounded above
by `.y/, and hence y must be the unique of the maximal length element.

Note that by the definition of iw , the phrase “the subword of i indexed by” in the
previous lemma can be replaced with “the terminal subword of iw indexed by”.

Lemma 4.31. Let v;w 2W . For every reduced word i D .i1; : : : ; im/ ofw0 such that
vw D si1 : : : si`.vw/ and v D si1 : : : si`.v/ ,

iw
�1w0 D .i`.vw/C1; : : : ; i`.v/; ij`.v/C1 : : : ; ijmC`.vw/�`.w//

for some indices `.v/C 1 � j`.v/C1 � � � � � jmC`.vw/�`.w/ � m.

Proof. Let i be a reduced word of w0 as in the statement of the lemma. To show that
the word iw

�1w0 begins with a reduced word for v�1w v, we show that .v�1w v/�1w�1w0

is the longest length element of Œe;w�1w0�L \ Œe; v�1w0�. By Lemma 4.30, this says
that the length `.w�1w0/ � `.v�1w v/ terminal word of iw

�1w0 is a reduced word of
.v�1w v/�1w�1w0. But as w�1w0 D .v�1w v/ � ..v�1w v/�1w�1w0/ is a reduced product,
this will imply the initial word of length `.v�1w v/ of iw

�1w0 must be a reduced word
for v�1w v.

Claim 1. The longest length element of Œe;w�1w0�L\Œe;v�1w0� is .v�1w v/�1w�1w0.

Proof. Note that

x 2 Œe; w�1w0�L \ Œe; v
�1w0� ” x�1 2 Œe; w0w�R \ Œe; w0v�:

The longest element in this intersection is the Demazure product

.w0ww0/..w0w
�1w0/ � .w0v//

by Proposition 4.19. We want to show that this product is equal to w0w.v�1w v/.
By Proposition 4.17,

..w0w
�1w0/ � .w0v// D w0w

�1w0x;

where x is the maximal length element such that x � w0v and .w0w�1w0/ � x is
reduced. Recall that a 7! w0aw0 is an automorphism of the weak and strong Bruhat
orders. Then

x � w0v ” w0xw0 � vw0:
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Also, by Lemma 4.18,

.w0w
�1w0/ � x is reduced ” x �R w0w

” w0xw0 �R ww0

” w�1 � .w0xw0/ is reduced:

Since `.x/D `.w0xw0/, then w�1 � .vw0/D w�1.w0xw0/ by the maximality of x.
Thus

x D w0w.w
�1
� .vw0//w0

D w0w..vw0/
�1
� w/�1w0

D w0w.v
�1
w .vw0//w0 D .w0w/.v

�1
w v/:

Hence, w0w.v�1w v/ is the longest length element in the intersection

Œe; w0w�R \ Œe; w0v�;

and so .v�1w v/�1w�1w0 is the longest length element in

Œe; w�1w0�L \ Œe; v
�1w0�:

Now, by applying Lemma 4.30, the terminal subword of iw
�1w0 indexed by the

intersection of the indices of iw
�1w0 with ¹`.v/ C 1; : : : ; mº is a reduced word of

.v�1w v/�1w�1w0. Thus this intersection is of length

`.w0/C `.vw/ � `.w/ � `.v/;

and is equal to ¹j`.v/C1; j`.v/C2; : : : ; jmC`.vw/�`.w/º for some indices

`.v/C 1 � j`.v/C1 � � � � � jmC`.vw/�`.w/ � m:

As .i`.vw/C1; : : : ; i`.v// is a reduced word of v�1w v, then the word

.i`.vw/C1; : : : ; i`.v/; ij`.v/C1 ; : : : ; ijm�`.w//

is a reduced word for w�1w0 and must be the rightmost such word.

We will show that for any P 2 Pw , the Lusztig data of P with respect to the
reduced word i will have zeros in the position of the subword iw

�1w0 .

Proposition 4.32. Let i D .i1; : : : ; im/ by any reduced word of w0. For any w 2 W
and any P 2Pw , the Lusztig data of P with respect to i will have zeros in the position
of the subword iw

�1w0 .
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Proof. Fix a reduced word i D .i1; : : : ; im/ of w0. We proceed by induction on the
length of w�1w0.

When `.w�1w0/D 1, then iw
�1w0 D ij for some j . If j Dm, then .i1; : : : ; im�1/

is a reduced word for w and by Lemma 4.5, nim D 0. If j ¤ m, then

��s
i�
jC1
���s
i�m

.b/ 2 Pw

by Lemma 4.28, so the reduced word i 0 D .i�jC1; : : : ; i
�
m; i1; : : : ; ij / has i 0w

�1w0 in
the last position, hence nij D 0 by above.

Assume for `.w�1w0/ D k, the zeros of the Lusztig data ni� are in the position
iw
�1w0 . Suppose w is such that `.w�1w0/ D k C 1 and ni� is the Lusztig data with

respect to i . If ij is the final coordinate of iw
�1w0 , then sijC1 ; : : : ; sim 62DR.w

�1w0/,
so we can apply Lemma 4.28 j � 1 times so that the Lusztig data with respect to
.i�jC1; : : : ; i

�
m; i1; : : : ; ij / of the resulting polytope is .0; : : : ; 0;n1; : : : ; nj /. By the base

case, nj D 0, and hence the Lusztig datum in the position of the final term of iw
�1w0 is

zero. Now, apply ��
i�
j

so the Lusztig data with respect to .i�j ; i
�
jC1; : : : ; i

�
m; i1; : : : ; ij�1/

of the resulting polytope is

.0; 0; : : : ; 0; n1; : : : ; nj�1/:

By Corollary 4.27, this polytope is in Ps
i�
j
w , where `.si�

j
w/ D `.w/ � 1. Thus, by

the induction assumption, the Lusztig data corresponding to the rest of the coordinates
of iw

�1w0 will be zero.

Example 4.33. Continuing Example 4.11, we have

w D s1s2s3 and w�1w0 D s1s2s1 D s2s1s2:

For a word i , the zeros in the Lusztig data are given by the rightmost appearance
of a word ofw�1w0. The location of these zeros in various reduced words ofw0 prove
the vertex equalities in Example 4.11, see Table 1.

Finally, we can prove that the Lusztig data will have zeros in the positions between
�vw and �v for every Weyl group element v.

Theorem 4.34. Fix w 2 W . For every P 2 Pw with vertex data .�v/v2W , we have
�v D �vw for every v 2 W .

Proof. Consider P 2 Pw . For v 2 W , take a reduced word i of w0 such that both
vw and v are initial words, i.e. vw D si1 : : : si`.vw/ and v D si1 : : : si`.v/ . Then by
Lemma 4.31 and Lemma 4.32, we know that the Lusztig data associated to i will
have zeros in the subword iw

�1w0 D .i`.vw/C1; : : : ; i`.v/; ij`.v/C1 ; : : : ; ijm�`.v//. Hence,
�vw D �v .
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Reduced word Lusztig data Equality of vertices

.1; 2; 3; 1; 2; 1/ .n1; n2; n3; 0; 0; 0/ �w D �ws1 D �ws1s2 D �w0

.2; 3; 1; 2; 1; 3/ .n1; n2; 0; 0; 0; n6/ �s2s3 D �s2s3s1 D �s2s3s1s2 D �s2s3s1s2s1

.1; 3; 2; 1; 3; 2/ .n1; n2; 0; 0; n5; 0/ �s1s3 D �s1s3s2 D �s1s3s2s1 , �ws2s1 D �w0

.3; 2; 1; 3; 2; 3/ .n1; 0; 0; n4; 0; n6/ �s3 D �s3s1 D �s3s2s1 ,
�s3s2s1s3 D �s3s2s1s3s2

.1; 2; 1; 3; 2; 1/ .n1; n2; 0; n4; 0; 0/ �s1s2 D �s1s2s1 , �ws1 D �ws1s2 D �w0

.2; 1; 3; 2; 1; 3/ .n1; 0; n3; 0; 0; n6/ �s2 D �s2s1 ,
�s2s1s3 D �s2s1s3s2 D �s2s1s3s2s1

Table 1. The zeros in the Lusztig data for A3 MV polytopes.

Corollary 4.35. Fix w 2 W . For every P 2 Pw with vertex data .�v/v2W , we have

P D conv¹�v W v � wº:

Remark 4.36. The description of Pw given by Corollary 4.35 suggests a relationship
between Pw and extremal MV polytopes defined by [28]. Naito and Sagaki prove that
extremal MV polytopes can be explicitly described as

Pw �� D conv¹v � � W v � wº;

where � is a dominant coweight. Using the Lusztig data description of these extremal
MV polytopes in that paper, we can see (up to a reflection by w0 and a shift to make
�e D 0), these polytopes are in Pw .

In [9], Besson, Jeralds and Kiers study the weight polytopes of Demazure modules
and prove they are extremal MV polytopes. These polytopes can be described in the
following ways:

Pw� D conv¹g.v/� W v 2 W º D conv¹v� W v � W º D
\
v2W

C g.v/�v ;

where g.v/ D v.v�1 � w/. By Proposition 4.19 proved above, g.vw0/ D vw . Thus,
under the identification

�v D g.vw0/� � g.w0/�; Pw� 2 Pw :

Another related concept are the polytopes defined in [31]. For w 2 Sn, the Bruhat
interval polytope Qe;w is the polytope with vertex data .�v/v�w , where �v is the
point .v.1/; : : : ; v.n//. By extending the vertex data to .�v/v2W by �v D �vw , we
see this is a polytope of highest vertex w.
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4.5. The dual fan

A GGMS polytope can be characterized by its dual fan in relation to a standard fan,
called the Weyl fan. To describe this relationship, first we define fans and dual fans of
polytopes.

Let V be a real vector space and let V � be the dual space. A polyhedral cone in V
is an finite intersection of closed linear half spaces. A fan F of V � is a collection of
polyhedral cones with the following properties:

(i) every non-empty face of a cone in F is also a cone in F ;

(ii) the intersection of any two cones in F is a face of both;

(iii) the union
S

F D V �.

A fan F1 is a coarsening of F2 if every cone of F1 is a union of cones in F2.
Define the Weyl fan W in t�R as the fan generated by the maximal cones

C �w D ¹˛ 2 t�R W hw � ˛
_
i ; ˛i � 0;8i 2 I º:

For any convex polytope P � V , we can define the support function of P as
 P WV

� ! R by  P .˛/ D minx2P hx; ˛i. Define the dual fan

N .P / D ¹C �F W F is a face of P º

in V �, where
C �F D ¹˛ 2 V

�
W hv; ˛i D  P .˛/; 8v 2 F º

Corollary 4.37 ([21, Corollary A.4]). A GGMS polytope P is a polytope in Q_

whose dual fan N .P / is a coarsening of the Weyl fan W .

The dual fan is a useful tool to study the vertices and hyperplanes of P . Maximal
cones of the dual fan correspond to vertices of the polytope. If N .P / is a coarsening
of W , then there is an surjection from W to the set of vertices of P ; in fact, this
surjection determines the choice of labelling on the vertices �w .

Additionally, the defining rays of the maximal cones of the dual fan correspond
to the codimension 1 faces of P . This correspondence defines a surjection from the
chamber weights � to the defining rays of the maximal cones of N .P /.

Using Theorem 4.34, we would like to study the dual fan of polytopes in Pw .
Recall from Section 4.5 that the Weyl fan W is the fan of t�R with maximal cones C �v
for v 2 W defined by

C �v D ¹ˇ 2 t�R W hv � ˛
_
i ; ˇi � 0; 8iº:

Any GGMS polytope P with vertex data .��/ is given by P D
T
v2W C

�v
v , where

C�vv D ¹x 2 tR W hx; v � !i i � h�v; v � !i i; 8iº:
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�e
�s1

�s1s2

�s2

�s2s1 D �s2s1s2

�s1s2s1 D �w0
C��s1s2s1

C��s2s1

C��s2

C��s1s2

C��e

C��e

!1
!2

Figure 4. The dual fan of a B2 polytope of highest vertex s1s2s1.

The dual fan of a GGMS polytope P is N .P / D ¹C �F;P W F is a face of P º such that

C �F;P D ¹ˇ 2 t�R W hx; ˇi D  P .ˇ/; 8x 2 F º;

where  P .ˇ/ D miny2P hy; ˇi. By [21, Corollary A.4] (see Corollary 4.37), P is a
coarsening of the Weyl fan W and the following corollary is immediate.

Corollary 4.38. For any GGMS polytope P with vertex data .��/, C �v � C
�
�v ;P

for
every v 2 W .

Definition 4.39. Fix w 2 W . Let F w be the fan of t�R defined by the maximal cones
for v 2 W :

D�v WD
[
u2W
uwDv

C �u ;

where D�v is indexed by v 2 W such that v � w. Clearly, F w is a coarsening of the
Weyl fan.

Proposition 4.40. Let w 2W and suppose P is an MV polytope. P 2 Pw if and only
if N .P / is a coarsening of F w .

Proof. Consider a polytope P 2 Pw with vertex data .��/ and v 2 W arbitrary. For
every ˇ 2 t�R, we have

h�v; ˇi D h�vw ; ˇi;

so by definition C ��v ;P D C
�
�vw ;P

. By Corollary 4.38, it follows that C �v � C
�
�vw ;P

for every v 2 W , hence
D�v � C

�
�vw ;P

and N .P / is a coarsening of F w .
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�e

�s1

�s1s2

�s2

�s2s1 D �s2s1s2

�s1s2s1 D �w0

!2

s1!1
!1

s2!2

s1s2!2
s2s1s2!2

Figure 5. The hyperplanes of a B2 polytope of highest vertex s1s2s1.

For the converse, consider an MV polytopeP such that the dual fan is a coarsening
of F w . By Corollary 4.38, C �w � C

�
�w ;P

. As N .P / is a coarsening of F w , then
D�w � C

�
�w ;P

as well, so C �w0 �D
�
w implies C �w0 � C

�
�w ;P

. Thus for every ˇ 2 C �w0 ,
we have

h�w ; ˇi D h�w0 ; ˇi:

But this is only possible when �w D �w0 , so P 2 Pw .

As a result of this correspondence, the cones of the dual fan of P correspond with
the vertices of P while the defining rays of the maximal cones of N .P / will corre-
spond with the codimension 1 faces of P . In the standard case, these codimension 1
faces are exactly the hyperplanes M
 for every 
 2 � . When w ¤ w0, some of the
hyperplanes M
 of Pw may have larger codimension and hence Pw can have fewer
than j�j codimension 1 faces. An interesting question would be to find exactly which
chamber weights label these codimension 1 faces in Pw .

Question 4.41. What are the defining rays of the maximal cones of F w?

These rays will correspond to some subset of the chamber weights �Pw . This
subset will give us the defining hyperplanes of P , i.e.

P D ¹x W hx; 
i �M
 ; 8
 2 �Pwº:

Example 4.42. For B2 polytopes in Ps1s2s1 , the hyperplanes labelled by s2s1!1 and
s1s2s1!1 are not defining hyperplanes of these polytopes. See Figure 4 for the dual
fan of such a polytope and see Figure 5 for the defining hyperplanes.

Remark 4.43. The normal cone of the Bruhat interval polytope Qe;w was described
by [16] in type A as the equivalence class of all the linear extensions of the graphs
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�w.u/ associated to the polytope Qe;w . Using both descriptions of the normal cone,
we expect that the set of linear extensions of the graph �w.u/ will be exactly the set
of v 2 W such that vw D u.

5. Tropical geometry

In this section, we outline the basic theory of tropical geometry to describe the corre-
spondence between MV polytopes and the non-negative tropical points of the unipo-
tent subgroup N � G.

First, we recall the concepts of positive spaces and tropical points as in [14, Sec-
tion 1].

Definition 5.1. LetX be an irreducible variety. A positive atlas onX is a collection of
birational isomorphisms ¹˛º˛2CX over Q, where ˛WT ! X and T is a split algebraic
torus. These coordinate systems satisfy the following conditions:

(i) each ˛ is regular on the complement of a positive divisor in T and is given by
a positive rational function;

(ii) for any pair ˛; ˇ of coordinate systems, ˇ�1 ı ˛ is a positive birational iso-
morphism of T .

If X has a positive atlas, we call X a positive space.

On an algebraic torus T , define the tropical points as the cocharacters of T , i.e.

T .Ztrop/ D X�.T /:

Using a positive atlas, there is a unique way to define the Z-tropical points of the
variety X .

Definition 5.2. The tropical points of a positive space X is defined as

X.Ztrop/ D
G
˛

T .Ztrop/=.identifications .ˇ�1 ı ˛/trop/:

For a subtraction-free function F on T , we can tropicalize it to a function F trop on
the tropical points. To see how a tropical function is related to the original function,
consider the following example:

F.x; y; z/ D
xy

z
C 2z 7! F trop.x; y; z/ D min¹x C y � z; zº:

We will call a function F on X positive if it can be written as a subtraction-free
expression in the coordinates of a positive atlas of X . We will denote the tropical
function by F trop.



MV polytopes and reduced double Bruhat cells 37

5.1. MV polytopes as tropical points

ForG a reductive complex algebraic group, let T be a torus ofG, B a Borel subgroup
containing T andN its unipotent subgroup. Consider the map xi WC!N with image
in the Chevalley subgroup of ˛i by xi .a/ D exp.aEi /. For the tuple i D .i1; : : : ; ik/,
we define

xi .a1; : : : ; ak/ D xi1.a1/ � � � xik .ak/:

We will show that the variety N is a positive space. For a reduced word i of w0,
define the Lusztig parametrization associated to i as the map xi W .C�/m ! N by
.a1; : : : ; am/ 7! xi .a1; : : : ; am/, where m D `.w0/. This map is a birational isomor-
phism by [25] and hence gives a coordinate system onN . In fact, the collection of the
charts .xi / form a positive atlas of N , called Lusztig’s positive atlas [25]. Thus the
tropical points of N are defined and N.Ztrop/ Š Zm.

Example 5.3. LetG D SL3. Sincew0 D s1s2s1 D s2s1s2, we have the following two
coordinates on N :

x1.a1/x2.a2/x1.a3/ D

2641 a1 C a3 a1a2

0 1 a2

0 0 1

375 ;
x2.b1/x1.b2/x2.b3/ D

2641 b2 b2b3

0 1 b1 C b3

0 0 1

375 :
The transition maps are subtraction-free:

x�1212 ı x121.a1; a2; a3/ D

�
a2a3

a1 C a3
; a1 C a3;

a1a2

a1 C a3

�
:

Thus N.Ztrop/ Š C3.Ztrop/ D Z3.

In Section 3, we saw that the set of MV polytopes are in bijection with Nm by
fixing a reduced word i and considering the Lusztig data of P with respect to i .
We would like to show that the set of MV polytopes of G are in bijection with the
non-negative tropical points of N . First, we define a positive function to pick out the
“non-negative” points.

Define the potential function �WN ! C by

�.xi .a1; : : : ; am// D

mX
kD1

ak :

This function is subtraction-free in the Luzstig coordinates xi . In fact, � is indepen-
dent of i and thus positive on Lusztig’s positive atlas. Hence, we have a tropical
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function �trop acting on N.Ztrop/. Define the non-negative points as

N.Ztrop/� D ¹` 2 N.Z
trop/ W �trop.`/ � 0º:

Under the correspondence N.Ztrop/Š Zm, we can write a tropical point ` 2 N.Ztrop/

as ` D .A1; : : : ; Am/ for some Ai 2 Z. Then

�trop.`/ � 0 ” min¹A1; : : : ; Amº � 0 ” Ai � 0

for all i . Thus, N.Ztrop/� Š Nm. By the correspondence between P Š Nm, we can
find a bijection N.Ztrop/� Š P .

Theorem 5.4 ([17, Theorem 5.4], [21, Theorem 4.5]). For G a reductive algebraic
group, there is a bijection between the non-negative tropical pointsN.Ztrop/� and the
set of MV polytopes P .

As Lusztig’s positive atlas consists of xi for all reduced words, this bijection is
independent of the reduced word used for the Lusztig data in the bijection P ! Nm.
This bijection is also compatible with the hyperplane data, in the sense that there
exists positive functions �
 such that following diagram commutes:

N.Ztrop/� MV Poytopes

Zm

�
trop



M


For a generic MV polytope, the highest vertex is labelled by the longest element
of the Weyl group, w0. In the next section, we will prove that Theorem 5.4 is also true
for this MV polytopes of highest vertex w, where N is replaced by a subvariety of N .

5.2. Tropical geometry of reduced double Bruhat cells

We will define functions M
 on the tropical points of the reduced double Bruhat cell
Lw
�1

that will send non-negative tropical points to the BZ data associated to MV
polytopes of highest vertex w. These functions will come from the tropicalization of
the generalized minors functions.

Recall we define the maps xi WC! N by xi .a/ D exp.aEi /. We similarly define
yi WC ! N by yi .a/ D exp.aFi /. For i 2 I , we fix a representative of si 2 G by
si D yi .1/xi .�1/yi .1/, and thus for anyw 2W we can fix a representation forw 2G
by w D si1 � � � sim , where i D .i1; : : : ; im/ is a reduced word for w.

Definition 5.5. For u; v 2 W , the reduced double Bruhat cell is

Lu;v WD NuN \ B�vB�:
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In particular, we are interested in the reduced double Bruhat cell

Lw
�1

WD Le;w
�1

D N \ B�w
�1B�:

Following [17, Section 5], we have a positive structure on Lw
�1

which is described
as follows. Let xi WC� ! Lw

�1
be defined as in Section 5. For the reduced word

i D .i1; : : : ; im/ of w�1, define xi W .C�/m ! Lw
�1

by

xi .a1; : : : ; am/ D xi1.a1/ : : : xim.am/:

From the application of [15, Theorem 1.2], this is a coordinate system on Lw
�1

. Con-
sider the atlas given by the charts .xi /, where i runs over all reduced words of w�1.
This atlas gives a positive structure on Lw

�1
which we will still call Lusztig’s positive

atlas. As in the case of N , define the potential function

�.xi .a1; : : : ; am// D

mX
iD1

ai :

The potential � is still independent of i and is positive on this atlas, so we can define
the non-negative tropical points

Lw
�1

.Ztrop/� D ¹a 2 L
w�1.Ztrop/ W �t .a/ � 0º:

To define the functions M
 on Lw
�1
.Ztrop/, we need to introduce the generalized

minors.

Definition 5.6. Consider the highest weight representation V.�/ ofG. Let 
 and ı be
an extremal weights of V.�/ and let v
 and vı be vectors in V.�/ of weight � and ı
respectively. Let h� ; �i denote the Shapovalov form [30], i.e. hFiv;wi D hv;Eiwi. The
generalized minors are functions �ı;
 WG ! C such that

�ı;
 .g/ D hg � v
 ; vıi:

We use the shorthand �
 when ı D �.

Denote the subset of chamber weights

�w D ¹v!j W j 2 I; v 2 W such that v �R wº � �:

By [6, Proposition 2.8], Lw
�1

can be defined by the vanishing conditions of general-
ized minors:

Lw
�1

D
®
g 2 N W �!i ;!i .g/ D 1; �!i ;w!i .g/ ¤ 0;

�!i ;v!i .g/ D 0 for v!i 62 �w
¯
: (5.1)
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Example 5.7. Let G D SL3. The fundamental weights can be realized as !1 D
.1; 0; 0/ and !2 D .1; 1; 0/. We use the shorthand !1 D 1 and !2 D 12, where each
number indicates which coordinate is equal to 1. The simple reflections act as the
transposition s1 D .12/ and s2 D .23/ on the fundamental weights.

When w D s1s2, the reduced Bruhat cell is given by

Ls2s1 D

²
x2.ˇ/x1.˛/ D

h
1 ˛ 0
0 1 ˇ
0 0 1

i
W ˛; ˇ 2 C�

³
:

Note that �s1s2 D ¹1; 2; 12; 13; 23º. Indeed, �1 D 1, �12 D 1, �2 D ˛, �23 D ˛ˇ,
�13 D ˇ are all non-zero, but �3 D 0 as 3 62 �s1s2 .

Let x 7! xT be the Lie algebra anti-automorphism of g given by ETi D Fi ,
F Ti D Ei and HT

i D Hi for all i 2 I and let x 7! xT denote the corresponding
anti-automorphism of G. Let � be the anti-automorphism sending

xi1.t1/ : : : xim.tm/ 7! xim.tm/ : : : xi1.t1/:

Define the map �w�1 on Lw
�1

by setting �w�1.x/ to be the unique element in
N \ B� xw

�1xT . By [7, Theorem 1.2, Proposition 1.3], �w�1 is a regular automor-
phism of Lw

�1
and ��1

w�1
.z/ D .�w.z

�//�. Define the y-coordinates

yi .b�/ WD �
�1
w�1

.xi .b�// D � ı �w.xi .b�/
�/I

these are the coordinates used in the proof of [21, Theorem 7.1] (see Theorem 3.9).

Remark 5.8. In the diagram following Theorem 5.4, the functions �
 D .�
 ı ��1w�1/.
As the collection .�
 ı ��1w�1/
2� satisfies the Plücker relations, the tropical functions
..�
 ı �

�1
w�1

/trop/
2� automatically satisfy the tropical Plücker relations.

For 
 2 �w , define M
 D .�
 ı �
�1
w�1

/trop. Then .M
 /
2�w is a collection of
functions on the tropical points of Lw

�1
.

Example 5.9. Continuing Example 5.7, the y-coordinates on Ls2s1 are given by

y21.˛
�1; ˇ�1/ D ��1

w�1
.x2.ˇ/x1.˛// D

2641 ˛�1 0

0 1 ˇ�1

0 0 1

375 :
For .a; b/ 2 Ls2s1.Ztrop/, the functions M
 take on the values

M1.a; b/ D 0; M12.a; b/ D 0; M2.a; b/ D �a;

M23.a; b/ D �a � b; M13.a; b/ D �b:

Consider 
 62 �w . By (5.1), �
 D 0. We would like to redefine these generalized
minors so that we have functions which are non-zero on Lw

�1
.
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Definition 5.10. For v 2 W and si 2 DL.v/, define �new
v!i
WD �v�1w v!i ;v!i

.

Example 5.11. Continuing 5.9, we redefine the minor

�new
3 D �s1!1;w0!1 D �2;3 D ˇ:

Note that this is the smallest row set which results is a non-zero minor with the column
set.

For 
 2 � , define M
 D .�
new

 ı �

�1
w�1

/trop. Note that M
 D .�
 ı �
�1
w�1

/trop for


 2 �w . We will show that for each ` 2 Lw
�1
.Ztrop/�, .M
 .`//
2� are the BZ data

of some P 2 Pw . To do this, we need to show that .M
 .`//
2� is a BZ datum and
that the edge equalities in Lemma 4.7 (ii) hold.

First, we will show that this�new

 is the “smallest” non-zero minor; this will imply

the edge equalities. We start with a technical lemma. Recall the partial ordering onX�

where a � b ” b � a 2 QC.

Lemma 5.12. For b 2B , ˛ 2X�, u2W , and � a dominant weight, if hv˛;buv�i¤ 0,
then ˛ D u�C ˇ for ˇ 2 �C \ u��.

Proof. Consider the Lie algebra of G, g. Recall the root space decomposition of g D

h
L
˛2� g˛ , where h is the Cartan subalgebra and

g˛ D ¹x 2 g W Œh; x� D ˛.h/x; 8h 2 hº:

Set b D h
L
˛2�C

g˛ .
For � a dominant weight, consider the representation V.�/. The Demazure mod-

ule is defined as Vu.�/ D U.b/ � vu�, where vu� is a vector of weight u� in the
1-dimensional u�-weight space of V.�/. We will show that the weights of Vu.�/ is
the set u�C�C \ u��.

First, consider

nu D
M

˛2�C\u��

g˛ and n�u D
M

˛2�C\u�C

g˛:

Then b D nu ˚ n�u ˚ h,so we have a PBW basis ACD, where A is a product of
vectors from nu, C is a product of vectors in n�u and D is a product of vectors
from h.

Suppose that ˇ 2�C \ u�C. Then u�1ˇ 2�C as well. Consider Xˇ 2 C . Then

Xˇ � vu� D Xˇu � v� D u.u
�1Xˇu/v�:

Note that u�1XˇuD .adu.Xˇ // � vDXu�1ˇ . But as u�1.ˇ/ 2�C and v� is a highest
weight vector of V.�/, then Xu�1ˇ � v� D 0.
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Thus for every c 2 C with c ¤ 1, we have c � vu� D 0. As D does not affect the
weight of vu�, then CDvu� only has weights u�. Thus U.b/ � vu� D ACD � vu� has
weights u� ��C \ u��, as desired.

Lemma 5.13. Let � be a dominant weight and let g 2 Lw
�1

. Then�u�;�.g/D 0 for
any � 6� wu�.

Proof. Take g 2 Lw
�1

, then g D b1w�1b2 for b1; b2 2 B�. Let � 2 X� be a weight
of V.�/, so �u�;�.g/ D hgv�; uv�i for vectors v�; v� 2 V.�/ of weights � and �
respectively. By the definition of the Shapovalov form,

hgv�; uv�i D hw
�1b2v�; b

t
2uv�i D hv�; g

tuv�i;

where gt D bt2wb
t
1.

Note that gtuv�D
P
˛2Qhv˛;g

tuv�iv˛ for weight vectors v˛2V.�/ of weight ˛.
In fact,

gtuv� D
X
˛2X�

hw�1b2v˛; b
t
1uv�iv˛:

Let w�1b2v˛ D
P
�2X�hw

�1b2v˛; v�iv� . Then

gtuv� D
X

˛;�2X�

hw�1b2v˛; v�ihv�; b
t
1uv�iv˛:

By Lemma 5.12, hv�; bt1uv�i ¤ 0 ” � D u�C ˇ for ˇ 2 �C \ u��. Since B�
always lowers the weights, hw�1b2v˛; v�i ¤ 0 ” w�D ˛ � 
 for some 
 2QC.
Thus

˛ D wu�C wˇ C 
:

By [7, Corollary 2.3], as wu is reduced, then �C \ u�1.��/ � �C \ .wu/�1.��/.
Note that ˛ 2 �C \ xy.��/ ” �x�1ˇ 2 y�C \ x

�1.��/. Thus we also have
the inclusion

�C \ u.��/ � w
�1�C \ u.��/:

Then ˇ 2 w�1�C \ u.��/ as well, so there exists ı 2 �C such that

ˇ D w�1ı ” wˇ D ı:

Thus wˇ 2 �C and ˛ D wu�C ı C 
 2 wu�CQC. Hence,

gtuv� D
X

2QC

hvwu�C
 ; g
tuv�ivwu�C
 ;

and so �u�;�.g/ D 0 for � 6� wu�.
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Corollary 5.14. Fix w 2 W and let u �R w�1w0. For every si 2 S such that wusi
is a reduced product, then �u!i ;wusi!i D 0 on Lw

�1
.

Proof. Since wusi is reduced, then wu˛i 2 �C. As si!i D !i � ˛i , then

wusi!i D wu!i � wu˛i ;

and hence wusi!i � wu!i . By setting � D !i and � D wusi!i , we can apply
Lemma 5.13 to see that �u!i ;wusi!i .g/ D 0 for g 2 Lw

�1
.

Conjecture 5.15. Fix w 2W , let v 2W . Set uD v�1w v and let si 62DR.v/ such that
.vsi /w D vw . Then �u!i ;vsi!i D 0 on Lw

�1
.

Remark 5.16. This conjecture is known for a few special cases. When vw D w,
then u D w�1v is an initial word of w�1w0 and hence the conjecture is equivalent
to Corollary 5.14. On the other hand, when vw D v then u D e so the generalized
minor of interest is of the form �!i ;vsi!i . By assumption, v � w but si is such that
.vsi /w D v and hence vsi 6� w by maximality of .vsi /w . Thus the conjecture follows
from [6, Proposition 2.8] (see (5.1)).

These two results imply the edge equalities are satisfied for large enough 
 .

Proposition 5.17. The collection .M
 /
2� satisfy the edge equalities (ii) of Lem-
ma 4.7. In other words, for every v 2 W and si 62 DR.v/ such that �vsi D �v ,

Mv!i CMvsi!i D �

X
j¤i

aj;iMv!j :

Proof. By [8, Proposition 4.1], for every u;w such that `.usi /D `.u/C 1, `.wusi /D
`.w/C `.u/C 1, we have

�u!i ;wu!i�usi!i ;wusi!i D �usi!i ;wu!i�u!i ;wusi!i C
Y
j¤i

�
�aj;i
u!j ;wu!j :

By Corollary 5.14, �u!i ;wusi!i D 0 on Lw
�1

and by tropicalizing, we obtain

Mwu!i CMwusi!i D

X
j¤i

.�aj;i /Mwu!j ;

which are exactly the edge equalities.
For v 2 W arbitrary, set u D v�1w v. For si such that `.vsi / D `.v/ C 1 and

.vsi /w D vw , then by [8, Proposition 4.1],

�new
v!i
�new
vsi!i

D �usi!i ;v!i�u!i ;vsi!i C
Y
j¤i

.�new
v!j
/�aj;i :
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By Conjecture 5.15, �u!i ;vsi!i D 0 on Lw
�1

, and hence by tropicalizing,

Mv!i CMvsi!i D

X
j¤i

.�aj i /Mv!j :

So we have proved that for every v 2 V such that �vsi D �v D �vw , the edge equal-
ities Mv!i CMvsi!i D

P
j¤i .�aj i /Mv!j are satisfied.

Theorem 5.18. There is a bijection Lw
�1
.Ztrop/� ! Pw by `! .M
 .`//
2� .

Proof. First, we show is that the collection .M
 /
2� is the BZ datum of an MV poly-
tope in Pw . The collection .M
 /
2�w satisfies the tropical Plücker relations as �

satisfies the Plücker relations. The collection .M
 /
2� satisfies the edge equalities (ii)
of Lemma 4.7 by Proposition 5.17 and thus we can recursively define these tropical
functions by the collection .M
 /
2�w using the relation (4.1). It is easy to see that
these .M
 /
2�n�w will also satisfy the tropical Plücker relations, thus .M
 /
2� is the
BZ datum of some MV polytope, P 2 P . Finally, by Lemma 4.7, P 2 Pw and so this
map is well defined.

To show this map is a bijection, fix a reduced word i D .i1; : : : ; im/ of w0 such
that a .i1; : : : ; i`.w// is a reduced word for w. The map

.M
 .`//
2� 7!

�
�M

w
i

k
skC1!kC1

�M
w
i

k
!kC1

C

X
j¤ikC1

aj;ikC1Mw
i

kC1
!j

�m�1
kD0

(5.2)
sends the BZ data of P to the Lusztig data of P with respect to the reduced word of i .
By Proposition 4.32, nk D 0 for k > `.w/ so by Theorem 3.9, (5.2) is a bijection from
Pw ! N`.w/. But Lw

�1
.Ztrop/� Š N`.w/ so by composing these maps, the inverse

.M
 .`//
2� 7! ` is a bijection.

Acknowledgments. I would like to thank my advisor, Joel Kamnitzer, for his guid-
ance and suggestions during this project. I would also like to thank Jiuzu Hong,
Florian Herzig, Marco Gualtieri, Lisa Jeffrey and Peter Tingley for their sugges-
tions and corrections. I thank Pierre Baumann for allowing me to include his proof of
Lemma 4.21.

Funding. This work was partially supported by an NSERC graduate scholarship.

References

[1] J. E. Anderson, A polytope calculus for semisimple groups. Duke Math. J. 116 (2003),
no. 3, 567–588 Zbl 1064.20047 MR 1958098

https://doi.org/10.1215/S0012-7094-03-11636-1
https://zbmath.org/?q=an:1064.20047
https://mathscinet.ams.org/mathscinet-getitem?mr=1958098


MV polytopes and reduced double Bruhat cells 45

[2] P. Baumann, S. Gaussent, and J. Kamnitzer, Réflexions dans un cristal. C. R. Math. Acad.
Sci. Paris 350 (2012), no. 23–24, 999–1002 Zbl 1254.17023 MR 2998813

[3] P. Baumann and J. Kamnitzer, Preprojective algebras and MV polytopes. Represent. The-
ory 16 (2012), 152–188 Zbl 1242.05273 MR 2892443

[4] P. Baumann, J. Kamnitzer, and A. Knutson, The Mirković–Vilonen basis and Duistermaat–
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