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Abstract. Let E be a number field and X a smooth geometrically connected variety defined over
a characteristic p finite field. Given an n-dimensional pure E-compatible system of semisimple
�-adic representations of the étale fundamental group of X with connected algebraic monodromy
groups G�, we construct a commonE-form G of all the groups G� and in the absolutely irreducible
case, a common E-form G ,! GLn;E of all the tautological representations G� ,! GLn;E� . Anal-
ogous rationality results in characteristic p assuming the existence of crystalline companions in
F-Isoc�.X/˝ Ev for all v jp and in characteristic zero assuming ordinariness are also obtained.
Applications include the construction of a G-compatible system from some GLn-compatible system
and some results predicted by the Mumford–Tate conjecture.
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1. Introduction

1.1. The Mumford–Tate conjecture

Let A be an abelian variety defined over a number field K � C, V` WD H 1.A xK ;Q`/ the
étale cohomology groups for all primes `, and V1DH 1.A.C/;Q/ the singular cohomol-
ogy group. The famous Mumford–Tate conjecture [47, Section 4] asserts that the `-adic
Galois representations �` WGal. xK=K/!GL.V`/ are independent of `, in the sense that if
G` denotes the algebraic monodromy group of �` (the Zariski closure of the image of �`
in GLV` ) and GMT denotes the Mumford–Tate group of the pure Hodge structure of V1,
then via the comparison isomorphisms V` Š V1 ˝Q` one has

.GMT ,! GLV1/ �Q Q` Š .Gı` ,! GLV`/ for all `: (1)

In particular, the representations �` are semisimple and the identity components Gı
`

are
reductive with the same absolute root datum. This conjectural `-independence of different
algebraic monodromy representations can be formulated almost identically for projective
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smooth varieties Y defined over K, and more generally, for pure motives over K by the
universal cohomology theory envisaged by Grothendieck and some deep conjectures in
algebraic and arithmetic geometry (see [59, Section 3]).

The same Mumford–Tate type question can also be asked for projective smooth vari-
eties Y defined over a global field K of characteristic p > 0. Since V` D Hw.Y xK ;Q`/

are Weil cohomology theories for Y xK only when ` ¤ p,1 one may ask if the algebraic
monodromy representations Gı

`
,! GLV` of the Galois representations V` are indepen-

dent of ` for all ` ¤ p. This expectation is supported by the philosophy of motives
(see [14, Section E]). On the other hand, one can always exploit the fact that the sys-
tem ¹V` D Hw.Y xK ;Q`/º` of `-adic Galois representations is a Q-compatible system (in
the sense of Serre [61, Chapter I-11, Definition]) that is pure of weight w (proven by
Deligne [11,12]) to directly argue `-independence of the algebraic monodromy represen-
tations Gı

`
,! GLV` . This approach holds regardless of the characteristic of the global

field K. By utilizing the compatibility and weight conditions of the compatible system,
Serre developed the method of Frobenius tori [58] to prove the `-independence result
below (Theorem A).

Let us define some notation first. If L is a subfield of xQ, then denote by PL the set
of places of L. Denote by PL;f (resp. PL;1) the set of finite (resp. infinite) places of L.
Then PL D PL;f [PL;1. Denote by P

.p/

L;f
the set of elements of PL;f not extending p.

The residue characteristic of the finite place v 2 PL;f is denoted by pv . Let V and W be
free modules of finite rank over a ring R. Let Gm � � � � � G1 � GLV and Hm � � � � �

H1 �GLW be two chains of closed algebraic subgroups overR. We say that the two chain
representations (or simply representations if it is clear that they are chains of subgroups
of some GLn) are isomorphic if there is an R-module isomorphism V Š W such that the
induced isomorphism GLV Š GLW maps Gi isomorphically onto Hi for 1 � i � m.

Theorem A (Serre [58]; see also [44]). (i) (Component groups) The quotient groups
G`=Gı

`
for all ` are isomorphic.

(ii) (Common Q-form of formal characters) For all v in a positive Dirichlet density sub-
set of PK;f , there exist a subtorus T WD Tv of GLn;Q such that for all ` ¤ pv , the
representation .T ,!GLn;Q/�Q Q` is isomorphic to the representation T` ,!GLV`
for some maximal torus T` of G`.

It follows immediately that the connectedness and the absolute rank of G` are both
independent of `. Later, Larsen–Pink obtained some `-independence results for abstract
semisimple compatible systems on a Dirichlet density 1 set of primes ` [42] and for the
geometric monodromy of ¹V`º` if Char.K/ > 0 [43]. When Char.K/ D 0, the present
author proved that the formal bi-character (Definition 2.2 (ii)) of Gı

`
,! GLV` is indepen-

dent of ` and obtained `-independence of Gı
`

under a type A hypothesis [26,28]. The next
result is by far the best result in positive characteristic, in a setting more general than the
above étale cohomology case.

1When ` D p, one has to consider crystalline cohomology group of Y .
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Let X be a smooth geometrically connected variety defined over a finite field Fq of
characteristic p. Let E be a number field. For any � 2 PE , denote by E� the �-adic
completion of E. Let

�� WD ¹�� W �
ét
1 .X; xx/! GL.V�/º�2P

.p/

E;f

(2)

be an E-compatible system of n-dimensional semisimple �-adic representations of the
étale fundamental group �ét

1 .X; xx/ of X (with base point xx) that is pure of integral
weight w. Denote by G� � GLV� the algebraic monodromy group of the representa-
tion V�. For simplicity, set

�1.X/ D �
ét
1 .X; xx/

and for all � 2 P
.p/

E;f
, choose coordinates for V� so that G� is identified as a subgroup of

GLn;E� . The following theorem was obtained by Chin when X is a curve [8]2 and is true
in general by reducing to the curve case by finding a suitable curve S in some covering
X 0 of X ([2, Section 3:3]; see also [10, Section 4.3]).

Theorem B. Let �� be an E-compatible system of n-dimensional �-adic semisimple rep-
resentations of �1.X/ that is pure of integer weight w. The following assertions hold in
some coordinates of V�:

(i) (Common E-form of formal characters) There exists a subtorus T of GLn;E such
that for all � 2 P

.p/

E;f
, T� WD T �E E� is a maximal torus of G�.

(ii) (�-independence over an extension) There exist a finite extension F of E and a
chain of subgroups Tsp � Gsp � GLn;F such that Gsp is connected split reductive,
Tsp is a split maximal torus of Gsp, and for all � 2 P

.p/

E;f
, if F� is a completion of F

extending � on E, then there exists an isomorphism of chain representations

fF� W .T
sp
� Gsp ,! GLn;F / �F F�

Š
�! .T� � Gı� ,! GLn;E�/ �E� F�:

(iii) (Rigidity) The isomorphisms fF� in (ii) can be chosen such that the restriction iso-
morphisms fF� W Tsp �F F� ! T� �E� F� admit a common F -form fF W Tsp !

T �E F for all � 2 P
.p/

E;f
and F�.

1.2. The results of the paper

1.2.1. Characteristic p.

1.2.1.1. Theorem B (ii) asserts that the algebraic monodromy representations Gı
�
,!

GLn;E� have a common (split) F -model after finite extensions F� ofE�. The main theme
of this article is to remove these extensions. Based on Theorem B and some ideas seeded
in [28], we prove the following E-rationality result (Theorem 1.1). In case the repre-

2[8] used pivotally Serre’s Frobenius tori and Lafforgue’s work [38] on Langlands’ conjectures.
In case X is a curve, Theorem B (i)–(iii) follow, respectively, from Lemma 6.4, Theorem 1.4, The-
orem 6.8 and Corollary 6.9 of [8].
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sentations V� are absolutely irreducible,3 it answers the Mumford–Tate type question in
positive characteristic.

Theorem 1.1. Let �� WD ¹�� W �1.X/ ! GL.V�/º�2P
.p/

E;f

be an E-compatible system

of n-dimensional �-adic semisimple representations of �1.X/ that is pure of integer
weight w. Then the following assertions hold:

(i) There exists a connected reductive group G defined over E such that G�E E� ŠGı
�

for all � 2 P
.p/

E;f
.

(ii) If moreover Gı
�
,! GLV� is absolutely irreducible for some �, then there exists a

connected reductive subgroup G of GLn;E such that for all � 2 P
.p/

E;f
, the following

representations are isomorphic:

.G ,! GLn;E / �E E� Š .Gı� ,! GLV�/:

1.2.1.2. Let O� be the ring of integers of E�, OE be the ring of integers of E, OE;S
be the localization for some finite subset S � PE;f , and A.p/E be the adele ring of E
without factors above p. We construct an adelic representation �G

A in Corollary 1.2, and
in the absolutely irreducible case, a common model G � GLn;OE;S of the group schemes
G� ,! GLn;O� (with respect to some O�-lattice in V�) for all but finitely many �, in
Corollary 1.3.

Corollary 1.2. Let �� be a �-adic compatible system of �1.X/ as above. Suppose G� is
connected for all �. Then the following assertions hold:

(i) There exist a connected reductive group G defined over E and an isomorphism

G �E E�
��
�! G� for each � 2 P

.p/

E;f
such that the direct product representationY

�2P
.p/

E;f

�� W �1.X/!
Y

�2P
.p/

E;f

G�.E�/

factors .via ��/ through a G-valued adelic representation

�G
A W �1.X/! G.A.p/E /:

(ii) If the representations V� are absolutely irreducible, then there exist a connected
reductive subgroup G of GLn;E and an isomorphism of representations .G ,!

GLn;E / �E E�
��
�! .G� ,! GLV� ) for each � 2 P

.p/

E;f
such that the direct product

representationY
�2P

.p/

E;f

�� W �1.X/!
Y

�2P
.p/

E;f

G�.E�/ �
Y

�2P
.p/

E;f

GLn.E�/

factors .via ��/ through a G-valued adelic representation

�G
A W �1.X/! G.A.p/E / � GLn;E .A

.p/
E /:

3In general, we expect that there exists a commonE-form of the faithful representations G� ,!
GLV� for all � 2 P

.p/
E;f

.
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Corollary 1.3. Let �� be a �-adic compatible system of �1.X/ as above. Suppose V� is
absolutely irreducible and G� is connected for all �. Then there exists a smooth reductive
group scheme G �GLn;OE;S defined over OE;S . for some finite S/ whose generic fiber is
G � GLn;E such that for all � 2 P

.p/

E;f
n S , the representations .G ,! GLn;OE;S / � O�

and G� ,! GLn;O� are isomorphic, where G� is the Zariski closure of ��.�1.X// in
GLn;O� after some choice of O�-lattice in V�.

For almost all �, G.O�/ is a hyperspecial maximal compact subgroup of G.E�/ [67,
Section 3:9:1]. Hence, Corollary 1.2 (i) implies that for almost all �, the image ��.�1.X//
is contained in a hyperspecial maximal compact subgroup of G�.E�/ (see Proposition
3.6). The next corollary is about the G-valued compatibility of the system, motivated
by the papers [3, 14] on Langlands conjectures. As shown in [3, Section 6], the results
in [10, Section 4] ([8, Section 6] when X is a curve) imply that the E-compatible sys-
tem �� (assume connectedness of G�), after some finite extension F=E, factors through
an F -compatible system �Gsp

� of Gsp-representations for some connected split reductive
group Gsp defined over F . In some situation, we prove that the extension F=E can be
omitted. This gives evidence to the motivic hope in [14, Section E] that the Tannakian
categories T�.X/ of semisimple (weight 0) E�-representations of �1.X/, at least for all
� not extending p, should come from a canonical category T .X/ over E:

T .X/˝E E�
�
�! T�.X/

in a compatible way (see [14, Theorem 1.4.1]). The definition of an E-compatible system
of G-representations will be recalled in Section 3:2. Let �� W A

.p/
E ! E� be the natural

surjection to the �-component.

Corollary 1.4. Let �� be a �-adic compatible system of �1.X/ as above. Suppose V�
is absolutely irreducible and G� is connected for all �. Let G ,! GLn;E be the E-form
and �G

�
be the adelic representation in Corollary 1.2 (ii). Let NGLn;EG be the normalizer

of G in GLn;E . Then for each � 2 P
.p/

E;f
, there exists .a change of coordinates/ ˇ� 2

.NGLn;EG/.E�/ such that the system

�G
� WD ¹�

G
� W �1.X/

�G
A
��! G.A.p/E /

��
��! G.E�/

ˇ�
�! G.E�/º�2P

.p/

E;f

is an E-compatible system of G-representations when one of the following holds:

(i) The group G� is split for all �.

(ii) The outer automorphism group of the derived group Gder �E xE is trivial .ˇ� D id/.

Hence, for any E-representation ˛ W G ! GLm;E , the system ¹˛ ı �G
�
º
�2P

.p/

E;f

of m-

dimensional �-adic semisimple representations is also E-compatible.

1.2.1.3. Denote by PE;p the set of finite places of E extending p. Let Qpk be a degree k
unramified extension of Qp , v 2 PE;p , and Ev;pk the composite fields Ev �Qpk . Let ��
be as in Theorem 1.1. The semisimple crystalline companion object of �� at v (whose
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existence4 is conjectured by Deligne [12, Conjecture 1.2.10]) is an object Mv in the
Tannakian category F-Isoc�.X/˝Ev;q of overconvergent F -isocrystals ofX with coeffi-
cients in Ev;q (see [35, Section 2] for definition). Any t 2 X.Fqk / induces a fiber functor
to the category of vector spaces over Ev;qk given by the composition

wt W F-Isoc�.X/˝Ev;q ! F-Isoc�.x/˝Ev;qk ! VecE
v;qk

;

where the first one is via the pull-back of i W t ! X and the second one is the forget-
ful functor. The image Vt;v WD wt .Mv/ is an n-dimensional vector space. The Tannakian
group of the subcategory generated byMv with respect to wt can be identified as a reduc-
tive subgroup Gt;v � GLVt;v Š GLn;E

v;qk
and is called the algebraic monodromy group

of .Mv; wt /. For different closed points t and t 0 in X.Fqk /, Gt;v and Gt 0;v differ by
an inner twist [13, Theorem 3.2]. Let � be a finite place of E not extending p. The
absolute root data of Gıt;v and Gı

�
(resp. the component groups of Gt;v and G�) have

been proven to be isomorphic independently by Pal [52] and D’Addezio [10] (relying on
[1,38]). Moreover, given the closed point t one can define the Frobenius tori Tt;v in Gt;v

(see [10, Section 4:2]) and TNt ;� in G� (up to conjugation, see Section 3:3). Assuming the
crystalline companions of �� exist for all v 2 PE;p and certain conditions, we prove an
E-rationality result (existence + uniqueness) for the above algebraic monodromy groups
at all finite places of E.

Theorem 1.5. Let �� WD ¹�� W �1.X/! GL.V�/º�2P
.p/

E;f

be an E-compatible system of

n-dimensional �-adic semisimple representations of �1.X/ that is pure of integer weight
w and t 2 X.Fqk / a closed point of X . Suppose the semisimple crystalline companion
object Mv of �� exists in F-Isoc�.X/˝Ev;q for each v 2 PE;p and the following condi-
tions hold:

(a) The Frobenius torus TNt ;� is a maximal torus of G� for some �.

(b) For all v 2 PE;p , the field Qqk is contained in Ev .

(c) The number field E has at least one real place.5

Then the following assertions hold:

(i) There exists a chain .of a connected reductive group together with a maximal torus/
T � G defined over E that is the unique common E-form of the chains TNt ;� � Gı

�

for all � 2 P
.p/

E;f
and the chains Tt;v � Gıt;v for all v 2 PE;p .

(ii) If moreover Gı
�
,! GLV� is absolutely irreducible for some �, then there exist an

inner form GLm;D . for some division algebraD overE/ of GLn;E overE containing
a chain of subgroups T � G such that T � G ,! GLm;D is the unique common
E-form of the chain representations TNt ;� � G� ,! GLV� for all � 2 P

.p/

E;f
and the

4Recent works of Kedlaya [33, 34] establish the existence of crystalline companion when X is
smooth.

5This condition is needed to ensure that the E-torus in Main Theorem II (d) is anisotropic at
some place v of E.
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chain representations Tt;v � Gt;v ,! GLVt;v for all v 2 PE;p . When E has exactly
one real place, we have GLm;D Š GLn;E .

1.2.2. Characteristic zero.

1.2.2.1. It turns out that the strategy for proving Theorem 1.1 remains the same in
characteristic zero if ordinary representations enter the picture. This part is influenced
by the work of Pink [53]. To keep things simple, we only consider the Q-compatible
system (with exceptional set S ) of n-dimensional `-adic Galois representations V` WD
Hw.Y xK ;Q`/:

�� WD ¹�` W Gal. xK=K/! GL.V`/º`2PQ;f
; (3)

arising from a smooth projective variety Y defined over a number field K. The set S
consists of the finite places of K at which Y does not have good reduction. Let G` be
the algebraic monodromy group at `. The Grothendieck–Serre semisimplicity conjecture
asserts that the representation �` is semisimple (see [65]), which is equivalent to the alge-
braic group Gı

`
being reductive. Choose coordinates for V` and identify G` as a subgroup

of GLn;Q` for all `. Embed Q` into C for all `.
Let v 2 PK;f n S with p WD pv . Let Kv be the completion of K at v, Ov the ring of

integers, and Yv the special fiber of a smooth model of Y over Ov . The local representa-
tion Vp D Hw.Y xK ;Qp/ of Gal. xKv=Kv/ is crystalline and corresponds, via a mysterious
functor of Fontaine [19–21], to the crystalline cohomology Mv WD H

w.Yv=Ov/˝Ov Kv
[17,22]. The local representation Vp is said to be ordinary if the Newton and Hodge poly-
gons of Mv coincide [45]. This notion originates from ordinary abelian varieties defined
over finite fields. It has been conjectured by Serre that ifK is large enough, then the set of
places v in PK;f for which the local representations Vp are ordinary is of Dirichlet den-
sity 1, for abelian varieties of low dimensions, see Serre [61], Ogus [51], Noot [48, 49],
Tankeev [64]; for abelian varieties in general, see Pink [53]; and for K3 surfaces, see
Bogomolov–Zarhin [4].

Theorem 1.6. Let �� be the Q-compatible system (3) arising from the `-adic cohomology
.of degree w/ of a smooth projective variety Y defined over a number field K. Suppose
G` is connected for all ` and the following conditions hold:

(a) (Ordinariness) The set of places v in PK;f for which the local representations Vp of
Gal. xKv=Kv/ are ordinary is of positive Dirichlet density.

(b) (Absolute `-independence) There exists a connected reductive subgroup GC of
GLn;C such that the representations GC ,! GLn;C and .G` ,! GLn;Q`/ �Q` C are
isomorphic for all `.

(c) (Invariance of roots) Let Tss
C be a maximal torus of the derived group Gder

C . Then the
normalizer NGLn;C .T

ss
C/ is invariant on the roots of Gder

C with respect to Tss
C .

Then the following assertions hold:

(i) There exists a connected reductive group G defined over Q such that G�Q Q` Š G`

for all `. In particular, G` is unramified for `� 0.
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(ii) If moreover GC is irreducible on Cn, then there exists a connected reductive sub-
group G of GLn;Q such that G ,! GLn;Q is a common Q-form of the representations
G` ,! GLn;Q` for all `.

Remark 1.7. Conditions (a)–(c) of Theorem 1.6 are to be compared with (i)–(iii) of The-
orem B. Since Theorem A (ii) only gives a common Q-form of formal characters for all
but one `, condition (a) is needed if one aims at a Q-common form for all `. Assuming
1.6 (a) and B (i), conditions 1.6 (b) and B (ii) are easily seen to be equivalent (E DQ). The
rigidity assertion B (iii) is not known to hold in characteristic zero, and is now replaced
with the invariance-of-roots condition 1.6 (c), which holds if the root system of Gder

C is of
a certain type [29, Theorems A1, A2].

Remark 1.8. If �` is abelian at one `, then the rationality of G` ,! GLn;Q` for all ` has
been obtained by Serre via the Serre group Sm [61].

1.2.2.2. Suppose G` is connected reductive for all ` 2 PQ;f .

Hypothesis H. For `� 0, the image of �` is contained in a hyperspecial maximal com-
pact subgroup of G`.Q`/.

This hypothesis follows from a Galois maximality conjecture of Larsen [39] (see The-
orem 3.9), which has been established for type A representations [30], abelian varieties
and hyper-Kähler varieties (degree w D 2) [31]. Further assuming the hypothesis, we
obtain the following corollaries which are analogous to Corollaries 1.2 and 1.3.

Corollary 1.9. Let �� be an `-adic compatible system of Gal. xK=K/ as above. Suppose
G` is connected for all ` and Hypothesis H holds. Then the following assertions hold:

(i) There exist a connected reductive group G defined over Q and an isomorphism

G �Q Q`

�`
�! G` for each ` 2 PQ;f such that the direct product representationY

`2PQ;f

�` W Gal. xK=K/!
Y

`2PQ;f

G`.Q`/

factors .via �`/ through a G-valued adelic representation

�G
A W Gal. xK=K/! G.AQ/:

(ii) If the representations V` are absolutely irreducible, then there exist a connected
reductive subgroup G � GLn;Q and an isomorphism of representations .G ,!

GLn;Q/ �Q Q`

�`
�! .G` ,! GLV` ) for each ` 2 PQ;f such that the direct product

representationY
`2PQ;f

�` W Gal. xK=K/!
Y

`2PQ;f

G`.Q`/ �
Y

`2PQ;f

GLn.Q`/

factors .via �`/ through a G-valued adelic representation

�G
A W Gal. xK=K/! G.AQ/ � GLn;Q.AQ/:
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Corollary 1.10. Let �� be an `-adic compatible system of Gal. xK=K/ as above. Suppose
V` is absolutely irreducible, G` is connected for all `, and Hypothesis H holds. Then
there exists a smooth reductive group scheme G � GLn;ZS defined over ZS . for some
finite S � PQ;f / whose generic fiber is G � GLn;Q such that for all ` 2 PQ;f n S , the
representations .G ,! GLn;ZS / �Z` and G` ,! GLn;Z` are isomorphic, where G` is the
Zariski closure of �`.Gal. xK=K// in GLn;Z` after some choice of Z`-lattice in V`.

1.2.2.3. Suppose Y D A is an abelian variety defined over K of dimension g, and let
w D 1. We say that A has ordinary reduction at v if the local representation Vp of
Gal. xKv=Kv/ is ordinary. The following results are due to Pink.

Theorem C ([53, Theorems 5.13 (a, c, d), 7.1]). Let A be an abelian variety defined over
a number field K with End.A xK/ D Z and suppose G` is connected for all `. There
exists a connected reductive subgroup G of GL2g;Q such that the following assertions
hold.

(i) .G ,! GL2g;Q/ �Q` is isomorphic to G` ,! GLV` for all ` in set L of primes of
Dirichlet density 1.

(ii) The derived group Gder is Q-simple.

(iii) If the root system of G is determined uniquely by its formal character, i.e., if G does
not have an ambiguous factor .in Theorem E below/, then we can take L in (i) to
contain all but finitely many primes.

(iv) If G �Q xQ does not have any type Cr simple factors with r � 3, then the abelian
variety A has ordinary reduction at a Dirichlet density 1 set of places v of K.

By the Tate conjecture for abelian varieties proven by Faltings [16] and
End.A xK/ D Z, the representations V` are absolutely irreducible. The Q`-representation
V` D H

1.A xK ;Q`/ has a natural Z`-model H 1.A xK ;Z`/. Consider the representation

Gal. xK=K/! GL.H 1.A xK ;Z`//

and let G` be the Zariski closure of the image in GLH1.A xK ;Z`/. Combining the previous
results, we obtain Theorem 1.11 below which extends Theorem C (iii) to all ` assuming
ordinariness.

Theorem 1.11. Let A be an abelian variety defined over a number fieldK with End.A xK/
D Z and suppose G` is connected for all ` and the following conditions hold:

(a) The set of places v in PK;f for which the local representations Vp of Gal. xKv=Kv/
are ordinary is of positive Dirichlet density.

(b) The root system of G` is uniquely determined by its formal character.

Then there exists a smooth group subscheme G � GL2g;ZS over ZS . for some finite
S � PQ;f / with generic fiber G � GL2g;Q and an isomorphism of representations

.G ,! GL2g;Q/�Q Q`

�`
�! .G` ,! GLV` ) for each ` 2PQ;f such that the direct product
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representationY
`2PQ;f

�` W Gal. xK=K/!
Y

`2PQ;f

G`.Q`/ �
Y

`2PQ;f

GL2g.Q`/

factors .via �`/ through a G-valued adelic representation

�G
A W Gal. xK=K/! G.AQ/ � GL2g;Q.AQ/:

Moreover, for `� 0, the representations .G ,! GL2g;ZS /�Z` and G` ,! GLH1.A xK ;Z`/
are isomorphic.

Remark 1.12. By Theorem C (iv), Theorem E, and the fact that for every `, every simple
factor of G` �Q`

xQ` is of type A, B, C, or D [53, Corollary 5.11], conditions (a) and (b)
of Theorem 1.11 hold if for some prime `0, every simple factor of G`0 �Q`0

xQ`0 is of
type Ar with r > 1.

1.3. The structure of the paper

The paper is structured around the purely algebraic Main Theorems I and II in the next
section. Roughly speaking, they state that if a family of connected reductive algebraic
subgroups G� ,! GLn;E� indexed by � 2 P

.p/

E;f
(resp. PE;f ) satisfies some conditions,

then there exist a commonE-form of the family of subgroups (resp. representations). The
results in Section 1:2 are established in two big steps. Firstly, we prove the Main Theorems
in Section 2 which require different techniques from representation theory and Galois
cohomology. The notation and diagrams we develop in Section 2 are very much influenced
by [28]. A crucial step towards the existence of a common E-form in the Main Theorems
is based on the local-global aspects of Galois cohomology in Section 2:5. Secondly, we
prove Theorems 1.1, 1.5, and 1.6 in Section 3 by checking that the conditions of the Main
Theorems are satisfied for the corresponding family of algebraic monodromy groups of
theE-compatible systems and applying the Main Theorems. For the characteristic p case,
to deduce Theorem 1.1 (resp. Theorem 1.5) from Main Theorem I (resp. II), the required
conditions are ensured by Theorem B (resp. recent work [10], see Theorem B0). The
characteristic zero case is more involved. It requires the results on formal bi-characters
(Section 2:2) and invariance of roots to compensate for the lack of the rigidity condition
of Theorem B (iii). The information at the real place (Proposition 3.3) and a finite place
(ordinary representation Vp) is also needed. The other results in Section 1:2 will also
be established in Section 3. The statements we quote are named using letters (e.g.,
Theorem A) and the statements we prove are named using numbers (e.g., Theorem 1.1).

2. Main theorems

2.1. Statements

Main Theorem I. Suppose a connected reductive subgroup G� � GLn;E� is given for
each � 2 P

.p/

E;f
such that the following conditions hold:
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(a) (Common E-form of formal characters) There exists a subtorus T of GLn;E such
that for all � 2 P

.p/

E;f
, T� WD T �E E� is a maximal torus of G�.

(b) (Absolute �-independence) There exists a chain of subgroups Tsp � Gsp � GLn;E
such that Gsp is connected split reductive, Tsp is a split maximal torus of Gsp, and
for all � 2 P

.p/

E;f
, if xE� is a completion of xE extending � on E, then there exists an

isomorphism of chain representations

f xE� W .T
sp
� Gsp ,! GLn;E / �E xE�

Š
�! .T� � G� ,! GLn;E�/ �E� xE�:

(c) (Rigidity) The isomorphisms f xE� in (b) can be chosen such that the restriction iso-
morphisms f xE� W T

sp �E xE�! T� �E� xE� admit a common xE-form f xE W T
sp �E xE

! T �E xE for all � 2 P
.p/

E;f
and xE�.

(d) (Quasi-split) The groups G� are quasi-split for all but finitely many � 2 P
.p/

E;f
.

Then the following assertions hold:

(i) There exists a connected reductive group G defined over E such that G�E E� ŠG�

for all � 2 P
.p/

E;f
. In particular, G� is unramified for all but finitely many �.

(ii) If moreover Gsp ,! GLn;E is irreducible, then there exists a connected reductive sub-
group G of GLn;E such that G ,! GLn;E is a common E-form of the representations
G� ,! GLn;E� for all � 2 P

.p/

E;f
.

For any E-algebra B , define GLm;B to be the affine algebraic group over E such that
for any E-algebra C the group of C -points is GLm.B ˝E C/.

Main Theorem II. Suppose a connected reductive subgroup G� � GLn;E� is given for
each � 2 PE;f such that the following conditions hold:

(a) (Common E-form of formal characters) There exists a subtorus T of GLn;E such
that for all � 2 PE;f , T� WD T �E E� is a maximal torus of G�.

(b) (Absolute �-independence) There exists a chain of subgroups Tsp � Gsp � GLn;E
such that Gsp is connected split reductive, Tsp is a split maximal torus of Gsp, and
for all � 2 PE;f , if xE� is a completion of xE extending � on E, then there exists an
isomorphism of chain representations

f xE� W .T
sp
� Gsp ,! GLn;E / �E xE�

Š
�! .T� � G� ,! GLn;E�/ �E� xE�:

(c) (Rigidity) The isomorphisms f xE� in (b) can be chosen such that the restriction iso-
morphisms f xE� W T

sp �E xE�! T� �E� xE� admit a common xE-form f xE W T
sp �E xE

! T �E xE for all � 2 PE;f and xE�.

(d) (Anisotropic torus) The twisted E-torus �.Tsp=C/ is anisotropic at some place of E
and all real places of E, where C is the center of Gsp and � 2 Z1.E;Aut xE Tsp/ the
cocycle defined by f xE in (c).

Then the following assertions hold:
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(i) There exists a unique connected reductive group G defined over E containing T such
that .T � G/ �E E� Š .T� � G�/ for all � 2 PE;f . In particular, G� is unramified
for all but finitely many �.

(ii) If moreover Gsp ,! GLn;E is irreducible, then there exist an inner form GLm;D . for
some division algebra D over E/ of GLn;E over E containing a chain of subgroups
T � G such that T � G ,! GLm;D is a common E-form of the chain representations
T� � G� ,! GLn;E� for all � 2 PE;f . Such a chain of E-groups is unique.

Remark 2.1. There are similarities and differences between the two Main Theorems:

(1) The index set for Main Theorem I is P
.p/

E;f
, and for Main Theorem II it is PE;f .

(2) Conditions (a)–(c) of the two Main Theorems are identical except for the index sets.

(3) If we embed xE� into C for all �, then condition (b) is equivalent to asking that the
C-representation .G� ! GLn;E�/ �E� C is independent of �.

(4) The rigidity condition (c) rigidifies the isomorphisms f xE� in (b) by requiring them to
be extensions of an xE-isomorphism Tsp �E xE ! T �E xE where Tsp (resp. T) is the
torus in (b) (resp. (a)).

(5) An F -torus T is said to be anisotropic if it has no non-trivial F -character. If F is a
number field, T is said to be anisotropic at a place � of F if it is anisotropic over F�.
The twistedE-torus �.Tsp=C/ in Main Theorem II (d) will be defined in Section 2.6.1.

(6) The conclusion of Main Theorem II is stronger than that of Main Theorem I as the
E-torus T in condition (a) can be found in the common E-form G in Main Theo-
rem II. Moreover, if E has only one real place, then the inner form GLm;D in Main
Theorem II is equal to GLn;E by class field theory.

2.2. The rigidity condition

The rigidity condition (c) is important for the construction of the E-form G in the main
theorems. It does not come for free. In this section, we would like to prove that the rigidity
condition follows from conditions (a), (b) and (c0) below.

(c0) Both the following hold:

(c0-bi) (Common E-form of formal bi-characters) There exists a subtorus Tss of T
such that Tss �E E� is a maximal torus of the derived group Gder

�
of G� for

all � 2 PE;f ;

(c0-inv) (Invariance of roots) The normalizer NGLn;E .Tssp/ is invariant on the roots
of the derived group .Gsp/der of Gsp with respect to the maximal torus Tssp WD

Tsp \ .Gsp/der.

2.2.1. Formal character and bi-character. Let F be a field and G a connected reductive
subgroup of GLn;F . If T is a maximal torus of G, then Tss WD T\Gder is a maximal torus
of the derived group Gder of G.
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Definition 2.2 ([28, Definitions 2.2, 2.3]). (i) The inclusion T � GLn;F is said to be a
formal character of G � GLn;F .

(ii) The chain Tss � T � GLn;F is said to be a formal bi-character of G � GLn;F .

Remark 2.3. A chain of subtori Tss � T�GLn;F is a formal bi-character of G�GLn;F
if and only if T�GLn;F is a formal character of G�GLn;F and Tss �GLn;F is a formal
character of Gder � GLn;F . It is clear that (c0-bi) together with (a) in the Main Theorems
means that there exists a chain of subtori, denoted Tss � T � GLn;E , such that

.Tss
� T � GLn;E / �E E�

is a formal bi-character of G� � GLn;E� for all �.

Proposition 2.4. If conditions (a) and (b) in the Main Theorems hold and Gsp is irre-
ducible on En, then (c0-bi) holds.

Proof. Let T � GLn;E be in (a) and let Tss be the identity component of the kernel of

the determinant map T! GLn;E
det
�! Gm. Since G� is connected and the representation

G� � GLn;E� is absolutely irreducible for all � by the assumptions, G� is either Gder
�

or Gder
�
�Gm by Schur’s lemma. Hence by counting dimensions, Tss �E E� is a maximal

torus of Gder
�

for all �.

2.2.2. Invariance of roots. Let F be a field of characteristic zero and G a connected
split semisimple subgroup of GLn;F . Fix a split maximal torus T of G and denote by X
the character group of T. Let R � X be the set of roots of G with respect to T. Let
N WD NGLn;F .T/ be the normalizer of T in GLn;F . Since N acts on T, it also acts on X.
We would like to know when R is invariant under N. It is easy to see that this invariance-
of-roots condition (i.e., N � R D R) is independent of the choice of the maximal torus T
and is invariant under field extension. So, we take F D C for simplicity. If H is an almost
simple factor of G, then by the Cartan–Killing classification the root system of H is one
of the following: Ar .r � 1/, Br .r � 2/, Cr .r � 3/, Dr .r � 4/, E6, E7, E8, F4, G2.
We also use the convention that C2 D B2;D2 D A21, and D3 D A3.

2.2.2.1. Here are some examples for the invariance-of-roots condition.

Theorem D ([28, Theorem 3.10], [29, Theorem A2]). The following C-connected
semisimple groups G satisfy the invariance-of-roots condition for all representations
G � GLn;C:

(a) (Hypothesis A) G has at most one A4 almost simple factor, and if H is an almost
simple factor of G, then H is of type Ar for some r 2 N n ¹1; 2; 3; 5; 7; 8º.

(b) (Almost simple) G is almost simple of type different from ¹A7; A8; B4;D8º.

Suppose G is irreducible on the ambient space Cn. If G1 is a connected normal sub-
group of G, then there exists a unique complementary connected normal subgroup G2

of G such that the natural map G1 �G2 ! G is an isogeny of semisimple groups. More-
over, there exist unique irreducible representations V1 and V2 of respectively G1 and G2
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such that the composition representation G1 � G2 ! G ! GLn;C is equal to the ten-
sor product representation .G1 �G2; V1 ˝ V2/ (see [23]). We say that the representation
.G1; V1/ is a factor of the representation .G;Cn/.

Theorem E (by [41, Theorem 4]). If G;G0 � GLn;C are two connected semisimple
subgroups with the same formal character T � GLn;C and are both irreducible on the
ambient space Cn, then the roots R and R0 of respectively G and G0 .with respect to T/
are identical in X and the two representations are isomorphic unless one of the following
conditions holds:

(a) For r1; : : : ; rm; r 2 N such that r1 C � � � C rm D r , the spin representation of Br is
a factor of .G;Cn/ and the tensor product of the spin representations of Brj for all
1 � j � m is a factor of .G0;Cn/.

(b) For 1 � k � r � 1 and r � 2, the representation of Cr .resp.Dr / with highest weight
.k; k � 1; : : : ; 2; 1; 0; : : : ; 0/ is a factor of .G;Cn/ .resp. .G0;Cn//.

(c) The unique dimension 27 irreducible representation of A2 .resp. G2/ is a factor of
.G;Cn/ .resp. .G0;Cn//.

(d) Pick two out of the three unique dimension 4096 D 212 irreducible representations
of C4, D4, and F4. Then one is a factor of .G;Cn/ and the other one is a factor of
.G0;Cn/.

The following corollary follows directly by taking G0 D gGg�1, where g 2 N.

Corollary 2.5. If G � GLn;C is a connected semisimple subgroup that is irreducible
on the ambient space Cn, then the invariance-of-roots condition holds if the following
conditions are satisfied:

(a) For r1; : : : ; rm; r 2 N such that r1 C � � � C rm D r , the spin representation of Br and
the tensor product of the spin representations of Brj for all 1 � j � m are not both
factors of .G;Cn/.

(b) For 1 � k � r � 1 and r � 2, the representations of Cr and Dr with highest weight
.k; k � 1; : : : ; 2; 1; 0; : : : ; 0/ are not both factors of .G;Cn/.

(c) The unique dimension 27 irreducible representations of A2 and G2 are not both fac-
tors of .G;Cn/.

(d) Any two of the unique dimension 4096 irreducible representations of C4, D4, and F4
are not both factors of .G;Cn/.

2.2.2.2. Inspired by Theorem E, we give more examples for the invariance-of-roots con-
dition.

Theorem 2.6. Suppose G � GLn;C is a connected adjoint semisimple subgroup that sat-
isfies the following Lie type assumptions:

(a) G does not have a factor of type Br .r � 2/.

(b) If G has a factor of type C3, then it has no factor of type A3.

(c) If G has a factor of type Cr , then it has no factor of type Dr .r � 4/.
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(d) If G has a factor of type F4, then it has no factor of type D4.

(e) If G has a factor of type G2, then it has no factor of type A2.

Then the invariance-of-roots condition holds.

Proof. Let G1; : : : ;Gk be the almost simple factors of G. Then Ti DGi \T is a maximal
torus of Gi for all i . Let Xi be the character group of Ti and Ri the roots of Gi with
respect to Ti . Let ˆ � X (resp. ˆi � Xi ) be the subgroup (root lattice) generated by R
(resp. Ri ). One can impose a metric on the real vector space XR WD X˝Z R such that
.R;XR/ is a root system, the normalizer N is isometric on XR, and the decomposition

R D

ka
iD1

Ri �

kM
iD1

ˆi ˝R D
kM
iD1

Xi ˝R D XR (4)

is orthogonal (see, e.g., [29, Appendix A]). The root subsystem .Ri ;Xi;R WD Xi ˝R/ is
irreducible for all i . The lemma below is needed.

Lemma 2.7. Suppose G � GLn;C is a connected semisimple subgroup that satisfies the
assumptions of Theorem 2.6. The following assertions are equivalent:

(i) R is invariant under N.

(ii) If g 2 N, then g �R � ˆ.

(iii) If g 2 N, then g induces an automorphism of ˆ.

Proof. (i))(ii): trivial.
(ii))(iii): (ii) is equivalent to N �ˆ�ˆ. Since g induces an automorphism of X and

X=ˆ is finite, g �ˆ � ˆ implies that g �ˆ D ˆ.
(iii))(i): The set of non-zero elements of ˆi with the smallest length is equal to

the set of short roots Rıi of Ri [41, Section 4, Lemma], which also spans Xi ˝ R. The
decomposition in (4) is orthogonal and ˆ D

Lk
iD1ˆi in XR. Since g is isometric on XR

and induces an automorphism of ˆ by (iii), g permutes the union Rı1 [ � � � [ R
ı
m. Note

that Rıi D Ri if Ri is of type A, D, E, and the following conventions [41, p. 395]:

Bır D A
r
1 .r � 2/; C ı3 D A3; C ır D Dr .r � 4/; F ı4 D D4; Gı2 D A2:

These facts and assumption (a) imply that Rıi remains irreducible for all i . Then the
orthogonality of the decomposition (4) and the fact that g is isometric on XR imply that
g permutes the set ¹Rı1; : : : ; R

ı
mº. Since g is isometric on XR, the Lie type assumptions

(a)–(e) and the above facts about short roots imply thatRi andRj (1� i; j �m) are of the
same type if g �Rıi D R

ı
j . By observing how the Rıi generate Ri [24, Table 1], we obtain

g � Ri D Rj . Hence, g actually permutes the union R1 [ � � � [ Rm. By the orthogonality
of the decomposition (4), the fact that g is isometric on XR, and induction, we conclude
that g permutes R.

Back to the theorem, we have ˆ D X because G is adjoint. Since X is invariant
under N by definition, ˆ is invariant under N. Therefore, R is invariant under N by the
lemma.
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2.2.3. Conditions for rigidity.

Proposition 2.8. If conditions (a), (b) in the Main Theorem(s) and (c0) hold, then condi-
tion (c) in the Main Theorem(s) also holds.

Proof. By (a) and (c0-bi), we have a chain of subtori Tss � T � GLn;E such that for all �,

Tss
� � T� � GLn;E� WD .T

ss
� T � GLn;E / �E E�

is a formal bi-character of G� � GLn;E� . By (b), we have the field extension diagram

xE�

xE E�

E

and a chain Tsp � Gsp (over E) such that for all �, there exists an xE�-isomorphism of
representations f xE� taking Tsp � Gsp to T� � G� (omitting the extension field for sim-
plicity). This implies that f xE� maps Tssp WD Tsp \ .Gsp/der to Tss

�
D T� \Gder

�
for all �.

Hence, we conclude that for all �, the two chains

Tssp
� Tsp

� Gsp and Tss
� � T� � G� (5)

are conjugate in GLn. xE�/. In particular, the two E-chains

Tssp
� Tsp and Tss

� T (6)

are conjugate in GLn. xE/. So we choose M 2 GLn. xE/ such that

Tssp
� Tsp

DM.Tss
� T/M�1: (7)

To finish the proof, it suffices to find, for all �, a matrix B� 2 GLn. xE�/ such that conju-
gation by B� takes MG�M

�1 to Gsp and is the identity on Tsp D MTM�1. Such a B�
exists. Indeed, there exists A� 2 GLn. xE�/ such that

Tssp
� Tsp

� Gsp
D A�M.Tss

� � T� � G�/M
�1A�1� (8)

because the chains in (5) are conjugate in GLn. xE�/. Then (7) and (8) imply that
A� 2 NGLn.Tssp/ and conjugation by A� takes the roots of MGder

�
M�1 to the roots of

.Gsp/der. By (c0-inv), the roots of the two semisimple (derived) groups are identical (in
the character group of Tssp). Hence, [28, Theorem 3.8] implies that the absolute root
data of MG�M

�1 and Gsp are identical with respect to the common maximal torus
MT�M�1 D Tsp. By [62, Theorem 16.3.2], there exists an xE�-isomorphism b� taking
the pair .MG�M

�1;MT�M�1/ to the pair .Gsp;Tsp/ inducing the identity map between
their root data. Let i1 and i2 be the tautological representations of MG�M

�1 and Gsp

into GLn. Then the two representations i1 and i2 ı b� are isomorphic. Therefore, b� is
just conjugation by a matrix B� 2 GLn. xE�/ that is the identity on MT�M�1 D Tsp.
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2.3. Forms of reductive chains

This section is foundational for the proofs of the Main Theorems and is developed from
[28, Section 4].

2.3.1. Galois cohomology. Let F be a field of characteristic zero, and G1 and G01 be
linear algebraic groups defined over F . The Galois group Gal. xF=F / acts (on the left) on
the set of xF -homomorphisms � W G1 �F xF ! G01 �F xF as follows: if � 2 Gal. xF=F /,
then �� is the homomorphism such that

��.x/ D �.�.��1x// 8x 2 G1. xF /:

Let Gk � � � � �G1 be a chain of linear algebraic groups defined over F . An F -form of the
chain Gk � � � � � G1 is a chain of reductive groups G0

k
� � � � � G01 defined over F that is

isomorphic to Gk � � � � �G1 over xF , i.e., there exists an xF -homomorphism � WG1 �F xF

! G01 �F xF such that �.Gi �F xF / � G0i �F xF and the restriction �jGi�F xF is an iso-
morphism for all 1 � i � k. Since the groups are defined over F , the xF -homomorphism
�� is also an xF -isomorphism between the two chains. In particular, the automorphism
group Aut xF .G1; : : : ;Gk/ of the chain (i.e., the subgroup of the automorphism group
Aut xF G1 of G1 �F xF preserving the chain Gk � � � � � G1) is a Gal. xF=F /-group. Let
� W G1 �F xF ! G01 �F xF be an xF -isomorphism from Gk � � � � � G1 to G0

k
� � � � � G01.

Then the assignment

� 7! a� WD �
�1
ı
�� 2 Aut xF .G1; : : : ;Gk/ (9)

for all � 2 Gal. xF=F / satisfies the 1-cocycle condition

a�� 0 D a�
�a� 0 ;

producing a bijective correspondence (see [60, Chapter 3.1, Proposition 5 and its proof])
between the set of isomorphism classes of F -forms of the chain Gk � � � � � G1 and the
Galois cohomology pointed set H 1.F;Aut xF .G1; : : : ;Gk// in which the neutral element
is the trivial class Œa� D id� corresponding to the F -isomorphism class of Gk � � � � �G1.

Let Inn xF G1 be the inner automorphism group of G1 �F xF . It is a (Gal. xF=F /-)
normal subgroup of Aut xF G1. Denote the inner automorphism group of the chain by

Inn xF .G1; : : : ;Gk/ WD Aut xF .G1; : : : ;Gk/ \ Inn xF G1:

and the outer automorphism group of the chain by

Out xF .G1; : : : ;Gk/ WD Aut xF .G1; : : : ;Gk/=Inn xF .G1; : : : ;Gk/:

Then we obtain a short exact sequence of Gal. xF=F /-groups

1! Inn xF .G1; : : : ;Gk/! Aut xF .G1; : : : ;Gk/! Out xF .G1; : : : ;Gk/! 1 (10)
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and an exact sequence of pointed sets [60, Chapter 1.5.5, Proposition 38]

H 1.F; Inn xF .G1; : : : ;Gk//
i
�! H 1.F;Aut xF .G1; : : : ;Gk//

�
�! H 1.F;Out xF .G1; : : : ;Gk//: (11)

The exactness means that the preimage ��1.Œid�/ is equal to the image Im .i/.
An F -form G0

k
� � � � � G01 of Gk � � � � � G1 is called an inner F -form (or inner

form) if there exists an xF -isomorphism � such that in (9), the element a� belongs to
Inn xF .G1; : : : ;Gk/ for all � . In general, the isomorphism classes of inner F -forms do
not form a subset of the isomorphism classes of F -forms since the map i in (11) is not
injective. However, the sequence (11) is a short exact sequence of pointed sets (and thus
i is injective) if (10) splits. We will see in later sections that the splitting of (10) holds
for some chains (e.g., Tsp � Gsp). The following simple lemma is useful to study the
conjugacy class of a subgroup in GLn;F .

Lemma 2.9. LetD be a central division algebra over F . Let UD GLm;D be an F -inner
form of GLn;F , and T�G� GLn;F and T0 �G0 � U be two chains. If the two chains of
xF -representations .T � G ,! GLn;F /�F xF and .T0 � G0 ,! U/�F xF are isomorphic,

then the following hold:

(i) The chain T0 � G0 � U is an inner form of T � G � GLn;F .

(ii) If the cohomology class ŒT0 � G0 � U� 2 H 1.F; Inn xF .GLn;F ;G;T// is the neutral
class, thenD D F and the two F -representations T � G ,! GLn;F and T0 � G0 ,!
U D GLn;F are isomorphic.

Proof. Identify U �F xF with GLn; xF . The condition implies that there exists an xF -inner
automorphism of GLn; xF such that .G�F xF /DG0�F xF and .T�F xF /D T0�F xF .
This defines a 1-cocycle

� 7! a� WD  
�1
ı
� 2 Inn xF .GLn;F ;G;T/;

which proves (i). If the cocycle is neutral, then there exists  2 Inn xF .GLn;F ;G; T/ �
PGLn. xF / such that a� D �1 ı � for all � 2 Gal. xF=F /. This is equivalent to

 ı �1 D �. ı �1/ 8� 2 Gal. xF=F /:

Hence,  ı �1 2 PGLn.F / and GLn;F and GLm;D are F -isomorphic. Therefore,
D D F , U D GLn;F , and  ı �1 is an F -inner automorphism of GLn;F taking G to G0

as well as T to T0, which proves (ii).

2.3.2. Some diagrams. In this section, some diagrams of groups and Galois cohomology
will be presented. Let F be a field. Denote by

� Gsp a connected split reductive group defined over F ,

� Tsp a split maximal torus of Gsp,



On the rationality of algebraic monodromy groups of compatible systems 19

� N the normalizer of Tsp in Gsp,

� W WD N=Tsp the Weyl group,

� B a Borel subgroup of Gsp containing Tsp,

� C the center of Gsp,

� .Gsp/ad WD Gsp=C the adjoint quotient of Gsp,

� ‚ xF WD Out xF Gsp the outer automorphism group of Gsp,

� Zk.F;M/ WD Zk.F;M. xF // the cocycles if M is a linear algebraic group defined
over F ,

� H k.F;M/ WD H k.F;M. xF // the cohomology if M is a linear algebraic group defined
over F .

2.3.2.1. Consider the following diagram of Gal. xF=F /-groups:

1 // N=C. xF /
� _

��

i // Aut xF .G
sp;Tsp/� _

ResGsp

��

� // ‚ xF

D

��

// 1

1 // .Gsp/ad. xF /
i // Aut xF Gsp � // ‚ xF

// 1

(12)

where the top (resp. bottom) row is (10) for Tsp �Gsp by [28, Proposition 4.3] (resp. Gsp)
and the vertical arrows are all natural inclusions induced by restricting automorphisms
to Gsp:

ResGsp W Aut xF .G
sp;Tsp/! Aut xF Gsp: (13)

Since Gsp is split, the Galois group Gal. xF=F ) acts trivially on the outer automorphism
group ‚ xF . The proposition below is well-known.

Proposition F (see, e.g., [28, Proposition 4.1]). The automorphism group Aut xF Gsp con-
tains a Gal. xF=F /-invariant subgroup that preserves Tsp and B and is mapped isomor-
phically onto Out xF Gsp. Hence, the top .resp. bottom/ row in (12) is a split short exact
sequence of Gal. xF=F /-groups

1 // N=C. xF / i // Aut xF .G
sp;Tsp/

� // ‚ xF

j

||
// 1: (14)

Denote
� xF WD Im.ResTsp/;

where ResTsp restricts automorphisms to Tsp:

ResTsp W Aut xF .G
sp;Tsp/! Aut xF Tsp: (15)

Then the first row in (12) also fits into the following diagram of Gal. xF=F /-groups with
exact rows and columns by [28, Proposition 4.3] and j denotes a splitting induced by (14).
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1

��

1

��

1

��

1 // Tsp=C. xF /

��

// Tsp=C. xF /

��

// 1

��

// 1

1 // N=C. xF /

��

i // Aut xF .G
sp;Tsp/

ResTsp

��

� // ‚ xF

j

||

D

��

// 1

1 // W
i //

��

� xF
� //

��

‚ xF

��

// 1

1 1 1

(16)

2.3.2.2. Suppose we are given a faithful (absolutely) irreducible representation
Gsp ,! GLn;F . Then we have the chain Tsp � Gsp � GLn;F . The irreducibility condi-
tion implies that C is contained in the subgroup of scalars in GLn;F and the following
inclusions hold:

N=C. xF /� _

��

� � // Inn xF .GLn;F ;Gsp;Tsp/� _

Res.GLn;F ;G
sp/

��

� � // Aut xF .G
sp;Tsp/� _

ResGsp

��

.Gsp/ad. xF /
� � // Inn xF .GLn;F ;Gsp/

� � // Aut xF Gsp

(17)

In diagram (16), denote

� xF WD �.Inn xF .GLn;F ;Gsp;Tsp// 2 ‚ xF ;

! xF WD ResTsp.Inn xF .GLn;F ;Gsp;Tsp// 2 � xF :

By diagrams (12), (16), (17) and the fact that the squares in (17) are Cartesian, we obtain
the following two diagrams with exact rows and columns. Moreover, (18) injects naturally
into (12), (19) injects naturally into (16), and j denotes the splitting induced by (14).

1 // N=C. xF /� _

��

i // Inn xF .GLn;F ;Gsp;Tsp/� _

Res.GLn;F ;G
sp/

��

� // � xF

j

zz

D

��

// 1

1 // .Gsp/ad. xF /
i // Inn xF .GLn;F ;Gsp/

� // � xF

j

zz
// 1

(18)
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1

��

1

��

1

��

1 // Tsp=C. xF /

��

// Tsp=C. xF /

��

// 1

��

// 1

1 // N=C. xF /

��

i // Inn xF .GLn;F ;Gsp;Tsp/

ResTsp

��

� // � xF

j

zz

D

��

// 1

1 // W
i //

��

! xF
� //

��

� xF

��

// 1

1 1 1

(19)

2.3.2.3. By taking Galois cohomology of diagrams (12), (16), (18), (19), the splitting j ,
and Hilbert’s Theorem 90:H 1.F;Tsp=C/DH 1.F;Gm/

˚k D 0, we obtain the following
diagrams of pointed sets such that the rows and columns are all exact. Moreover, there are
natural maps from (22) to (20), (23) to (21), and j again denotes the splitting.

0 // H 1.F;N=C/

��

i // H 1.F;Aut xF .G
sp;Tsp//

ResGsp

��

� // H 1.F;‚ xF /

j

xx

D

��

// 0

0 // H 1.F; .Gsp/ad/
i // H 1.F;Aut xF Gsp/

� // H 1.F;‚ xF /

j

xx

// 0

(20)

0

��

0

��

0

��

0 // H 1.F;N=C/

��

i // H 1.F;Aut xF .G
sp;Tsp//

ResTsp

��

� // H 1.F;‚ xF /

j

xx

D

��

// 0

0 // H 1.F;W /
i // H 1.F;� xF /

� // H 1.F;‚ xF /
// 0

(21)

0 // H 1.F;N=C/

��

i // H 1.F; Inn xF .GLn;F ;Gsp;Tsp//

Res.GLn;F ;G
sp/

��

� // H 1.F; � xF /

j

ww

D

��

// 0

0 // H 1.F; .Gsp/ad/
i // H 1.F; Inn xF .GLn;F ;Gsp//

� // H 1.F; � xF /

j

ww

// 0

(22)
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0

��

0

��

0

��

0 // H 1.F;N=C/

��

i // H 1.F; Inn xF .GLn;F ;Gsp;Tsp//

ResTsp

��

� // H 1.F; � xF /

j

ww

D

��

// 0

0 // H 1.F;W /
i // H 1.F; ! xF /

� // H 1.F; � xF /
// 0

(23)

2.4. Twisting

Let G be a profinite group and A be a G-group (a discrete group on which G acts contin-
uously). The Galois cohomologyH 1.G;A/ is a pointed set with neutral element given by

the trivial class ŒidA�. Let 1! A
i
�! B

�
�! C ! 1 be a short exact sequence of G-groups.

Then one obtains an exact sequence of pointed sets

H 1.G;A/
i
�! H 1.G;B/

�
�! H 1.G; C /;

meaning that the image of i is equal to ��1.ŒidC �/D ��1.�.ŒidB �//, the fiber of �.ŒidB �/.
Let Œˇ� 2 H 1.G; B/ be a cohomology class. To study the image of � as well as the
fiber of �.Œˇ�/, that is, the set ��1.�.Œˇ�//, one uses the method of twisting in [60,
Chapters 1.5.3–1.5.7]. This technique will be applied to some short exact sequences in
Section 2.4.2.

2.4.1. Definition. Let G be a group,M a (left) G-group, and A (resp. B) anM -group on
which G acts compatibly on the left, i.e., g.m.a//D g.m/.g.a// for g 2 G,m 2M , and
a 2 A. Suppose � WD .mg/ 2 Z1.G;M/ is a 1-cocycle. Then one can define a G-group
�A twisted by �, which can be viewed as A with a new G-action: as a group �A D A and
the G-action is defined by

G � � ! �A; .g; a/ 7! mg.g.a//: (24)

As M acts on itself by inner automorphism (conjugation): .�/ 7! m.�/m�1, denote
by �M the twisted G-group. Then �A is a �M -group under the identification

�M � �A //

D

��

�A

D

��

M � A // A

(25)

on which G acts compatibly on the left. If �; �0 2 Z1.G;M/ are cohomologous, then
�A and �0A are isomorphic. The assignment A 7! �A is functorial: if f W A ! B is a
G-, M -group homomorphism, then �f W �A! �B is a G-, �M -group homomorphism
[60, Chapter 1.5.3]. Since A acts on itself by inner automorphisms A! Inn.A/, it acts
on B via the map A! B ! Inn.B/ such that A! B is an A-group homomorphism.
The following correspondences are crucial.
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Proposition G ([60, Chapter 1.5.3, Proposition 35 bis]). Let f W A! B be a G-group
homomorphism, ˛ D .ag/ 2Z1.G;A/ be a cocycle, and ˇ D .bg/ 2Z1.G;B/ the image
of ˛. Write A0 D ˛A, B 0 D ˇB , and f 0 W A0 ! B 0 the map. To each cocycle .a0g/ 2
Z1.G; A0/ .resp. .b0g/ 2 Z

1.G; B 0//, associate the cocycle .a0gag/ 2 Z
1.G; A/ .resp.

.b0gbg/ 2 Z
1.G; B//. This induces the following commutative diagrams whose vertical

arrows are bijective correspondences taking neutral cocycles .resp. classes/ to ˛;ˇ .resp.
Œ˛�; Œˇ�/:

Z1.G;A0/
f 0
//

t˛

��

Z1.G;B 0/

tˇ

��

H 1.G;A0/
f 0
//

�˛

��

H 1.G;B 0/

�ˇ

��

Z1.G;A/
f
// Z1.G;B/ H 1.G;A/

f
// H 1.G;B/

(26)

Therefore, �˛ W .f 0/�1.f 0.ŒidA0 �// ! f �1.f .Œ˛�// is a bijective correspondence
between the fibers of classes.

2.4.2. Fibers of � . Given a split short exact sequence of G-groups

1 // A
i // B

� // C

j

��
// 1; (27)

we obtain a split short exact sequence of pointed sets

0 // H 1.G;A/
i // H 1.G;B/

� // H 1.G; C /

j

zz

// 0: (28)

Since C acts on itself by inner automorphism, it also acts on B and A by the splitting j .
Let � 2 Z1.G;C / be a cocycle. It can also be seen as a cocycle in B via j . Hence, we let

1 // A0
i 0 // B 0

� 0 // C 0

j 0

��
// 1 (29)

be the split short exact sequence ofG-groups constructed by twisting (27) by �. We obtain
the corollary below by Proposition G.

Corollary 2.10. In the diagram below, the rows are split short exact sequence of pointed
sets and the vertical arrows are bijective with �j.�/.ŒidB0 �/D Œj.�/�, ��.ŒidC 0 �/D Œ��, and
�� ı �

0 D � ı �j.�/:

0 // H 1.G;A0/
i 0 // H 1.G;B 0/

� 0 //

�j.�/

��

H 1.G; C 0/

j 0

zz

//

��

��

0

0 // H 1.G;A/
i // H 1.G;B/

� // H 1.G; C /

j

zz

// 0

(30)
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2.4.2.1. Let Gsp be a connected split reductive group defined over F . By Proposition F,
there is a split short exact sequence of Gal. xF=F /-groups

0 // .Gsp/ad. xF /
i // Aut xF Gsp � // ‚ xF

j

��
// 0;

inducing a split short exact sequence of pointed sets

0 // H 1.F; .Gsp/ad/
i // H 1.F;Aut xF Gsp/

� // H 1.F;‚ xF /

j

xx

// 0: (31)

A reductive group G=F is said to be quasi-split if G has a Borel subgroup defined over F .
The group ‚ xF via j is a group of F -automorphisms of Gsp=F . The image of j in (31)
can be characterized.

Theorem I (see, e.g., [28, Theorem 4.2] and its proof). The set j.H 1.F;‚ xF // in (31) is
equal to the set of isomorphism classes of quasi-split F -forms of Gsp. Moreover, if � 2
Z1.F;‚ xF /, then the Gal. xF=F /-group �Gsp. xF / is the xF -points of a quasi-split connected
reductive group G0 over F corresponding to the xF -isomorphism class ŒG0� D j.Œ��/.

Since the twisted automorphism group �Aut xF Gsp acts on �Gsp. xF / D G0. xF / by The-
orem I, the twisted group �Aut xF Gsp is naturally isomorphic to Aut xF G0. Denote by G0ad

the adjoint quotient of G0. By Corollary 2.10, the following diagram has split short exact
rows of pointed sets and the vertical arrows are bijective with �j.�/.Œid�/ D ŒG0� and
�� ı �

0 D � ı �j.�/:

0 // H 1.F;G0ad/
i 0 // H 1.F;Aut xF G0/ � 0 //

�j.�/

��

H 1.F;‚0
xF
/

j 0

xx

//

��

��

0

0 // H 1.F; .Gsp/ad/
i // H 1.F;Aut xF Gsp/

� // H 1.F;‚ xF /

j

xx

// 0

(32)

Remark 2.11. (1) The middle vertical correspondence �j.�/ in (32) is the identity map
if we identify the set of isomorphism classes of F -forms of G0 with that of Gsp in a
natural way.

(2) The twisted group ‚0
xF

is naturally isomorphic to Out xF G0 and corresponds via j 0 to
the set of isomorphism classes of quasi-split F -forms of G0.

(3) Let G1 and G2 be two F -forms of Gsp. The form G1 is said to be an inner form of
G2 if �.ŒG1�/D �.ŒG2�/. By Theorem I, any F -form G1 is an inner form of a unique
quasi-split F -form G0.

2.4.2.2. Similarly, let � 2 Z1.F; � xF / and twist the second row of (18) by �. Then we
obtain an F -form G0 � GLm0;D0 of the chain Gsp � GLn;F , where G0 is a quasi-split F -
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form of Gsp and GLm0;D0 is an inner form of GLn;F (for some central division algebraD0

over F ). Since G0 is quasi-split and the tautological representation is absolutely irre-
ducible, it follows that GLm0;D0 D GLn;F [66, Theorem 3.3] and the F -form is

G0 � GLn;F (33)

such that the following diagram has split short exact rows of pointed sets and the vertical
arrows are bijective with �j.�/.Œid�/ D ŒG0 � GLn;F � and �� ı � 0 D � ı �j.�/:

0 // H 1.F;G0ad/
i 0 // H 1.F; Inn xF .GLn;F ;G0//

� 0 //

�j.�/

��

H 1.F; � 0
xF
/

j 0

xx

//

��

��

0

0 // H 1.F; .Gsp/ad/
i // H 1.F; Inn xF .GLn;F ;Gsp//

� // H 1.F; � xF /

j

xx

// 0

(34)

Corollary 2.12. The fiber��1.Œ��/ in (32) .resp. (34)/ can be identified withH 1.F;G0ad/.

2.4.3. Image of � . Given a short exact sequence of G-groups with A abelian

1! A
i
�! B

�
�! C ! 1; (35)

C acts on A naturally and there is the twisted group �A for every � 2 Z1.G; C /. One
associates to � a cohomology class �.�/ 2 H 2.G; �A/ as follows. Lift � to a continuous
map g 7! bg of G into B and define

ag;g0 D bgg.bg0/b
�1
gg0 ; (36)

which is a 2-cocycle with values in �A [60, Chapter 1.5.6].

Proposition J ([60, Chapter 1.5.6, Proposition 41]). The cohomology class Œ�� belongs
to the image of � W H 1.G;B/! H 1.G; C / if and only if �.�/ vanishes in H 2.G; �A/.

Since the middle columns of (16) and (19) are short exact sequences of Gal. xF=F /-
groups with Tsp=C abelian, we obtain the following.

Corollary 2.13. Let � 2 Z1.F;� xF / .resp. � 2 Z1.F; ! xF //. The cohomology class Œ��
belongs to the image of ResTsp in (21) .resp. (23)/ if and only if �.�/ vanishes in
H 2.F; �.Tsp=C//.

2.5. Local-global aspects

2.5.1. The localization map. Let E be a number field and PE be the set of places of E.
Let G be a linear algebraic group (or more generally an automorphism group of a reduc-
tive chain in Section 2.3.1) defined overE . For any � 2PE , denote byE� the completion
of E with respect to � and by i� W E ! E� the embedding. Let ix� W xE ! xE� be an
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embedding extending i�. Then it induces homomorphisms Gal. xE�=E�/ ! Gal. xE=E/
and G. xE/! G. xE�/ for which the Gal. xE�=E�/-module G. xE�/ and Gal. xE=E/-module
G. xE/ are compatible. We obtain a map of cocycles (k D 0; 1 if G non-abelian)

locx� W Z
k.E;G/! Zk.E�;G/: (37)

The associated map of Galois cohomology

loc� W H k.E;G/! H k.E�;G/ (38)

is called the localization map at �. It is functorial and does not depend on ix� [60, Chap-
ter 2.1.1].

2.5.2. Some results. We would like to present some results for the mapY
�2PE

loc� W H k.E;G/!
Y
�2PE

H k.E�;G/ (39)

when G is connected reductive and k D 1 and when G is a torus and k D 2. For simplicity,
we use the notation and formulation of [5] although the results were obtained earlier by
Harder [25], Kneser [36], Sansuc [54], Kottwitz [37]. Let Xk.E;G/ be the kernel of the
map (39). The reductive group G is said to satisfy the Hasse principle if the Shafarevich–
Tate group X1.E;G/ of G vanishes.

Denote by xG the group G �E xE, by xGder the derived group of xG, by xGsc the simply-
connected cover of xGder, by � W xGsc ! xG the natural map, by xT a maximal torus of xG,
and by X� the cocharacter functor for a torus. The algebraic fundamental group of xG
[5, Definition 1.3] is a Gal. xE=E/-module defined as

M WD X�.xT/=��.X�.��1.xT///:

For each � 2 PE , one has a map [5, Section 5.15]

�� WH
1.E�;G/

ab1
��!H 1

ab.E�;G/D T �1� .M/
cor�1
�

���! T �1.M/D .MGal. xE=E//tor; (40)

where H 1
ab.E�;G/ is the first abelian Galois cohomology group of G [5, Definition 2.2]

and .MGal. xE=E//tor denotes the torsion subgroup of the Galois coinvariants ofM . The sur-
jectivity of the abelianization map ab1 is by [5, Theorem 5.4]. If E� is non-Archimedean,
then T �1

�
.M/D .MGal. xE�=E�/

/tor [5, Propositions 2.8 and 4.1 (i)] and cor�1
�

is the natural
map [5, Section 4.7].

Theorem K ([5, Theorem 5.16]). When k D 1, the map in (39) factors throughL
�2PE

H 1.E�;G/ and

0!X1.E;G/! H 1.E;G/!
M
�

H 1.E�;G/
˚��
���! .MGal. xE=E//tor

is exact.
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As M is finite for semisimple G, we obtain the following.

Proposition 2.14. If G is semisimple and E� is non-Archimedean, then �� in (40) is
surjective.

We have the following result for the torus G D T by class field theory and [5,
Lemma 5.6.2].

Proposition L. Suppose T is a direct product of a split torus Tsp and a torus T0 such
that T0 is anisotropic over E� for some place � of E. Then X2.E;T/ DX2.E;Tsp/˚

X2.E;T0/ D 0.

2.6. Proofs of Main Theorems

2.6.1. The 1-cocycles � and �. According to conditions (a)–(c) of the Main Theorem(s),
we have a chain Tsp � Gsp � GLn;E , a chain T � GLn;E , and an xE-isomorphism of
representations

f xE W .T
sp
�E xE ,! GLn; xE /

Š
�! .T �E xE ,! GLn; xE /:

This produces a 1-cocycle (as well as a Galois representation since Gal. xE=E/ acts triv-
ially on Aut xE Tsp):

� D .�� / WD .f
�1
xE
ı
�f xE / 2 Z

1.E;Aut xE Tsp/ D Hom.Gal. xE=E/;Aut xE Tsp/: (41)

As� xE (resp. ! xE ) is a subgroup of Aut xE Tsp (Section 2.3.2), we first show the following.

Proposition 2.15. The image of the Galois representation � W Gal. xE=E/ ! Aut xE Tsp

is contained in � xE .resp. ! xE if Gsp is irreducible on En/. Thus, it defines a class � in
Z1.E;� xE / .resp. Z1.E; ! xE //.

Proof. For every ix� W xE ! xE� with � 2 PE;f ,

locx�.�/ D ResTsp ı locx�..f
�1
xE�
ı
�f xE�//

2 Hom.Gal. xE�=E�/;� xE�/ D Hom.Gal. xE�=E�/;� xE /

(resp. Hom.Gal. xE�=E�/; ! xE /) by (37), condition (b), and diagram (16) (resp. diagrams
(17) and (19)) for F D E�. Hence, all the local representations land on � xE (resp. ! xE ).
Since Aut xE Tsp is discrete, the image of� is finite. We are done by the Chebotarev density
theorem.

So it makes sense to define by diagram (16) (resp. (19)) for F D E the twisted torus

�.Tsp=C/ (42)

for Main Theorem II (d) and the ‚ xE -valued (resp. � xE -valued) 1-cocycle

� WD �.�/: (43)
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2.6.2. Proof of Main Theorem I (i). By condition (b) and diagram (21) for F D E�, in
H 1.E�;‚ xE�/ the cohomology class �.ŒT� � G��/ is equal to loc�Œ��. Then by applying

ResGsp in diagram (20), we have �.ŒG��/ D loc�Œ�� for all � 2 P
.p/

E;f
. By Theorem I for

F DE, we obtain a quasi-split connected reductive group G0 overE such that ŒG0�D j Œ��
in (31). On the one hand, for all � 2 P

.p/

E;f
, ŒG0 �E E�� and ŒG�� belong to the same fiber

of � in (31) for F D E�. On the other hand, for almost all � 2 P
.p/

E;f
,

ŒG0 �E E�� D j.loc�Œ��/ D ŒG�� (44)

by Theorem I for F D E� and condition (d). Hence, by Corollary 2.12 for F D E� for
all � 2 P

.p/

E;f
to identify ŒG�� as an element inH 1.E�;G

0ad �E E�/, we obtain ŒG�� D 0

for almost all � 2 P
.p/

E;f
. Let �0 be a place of E extending p. Then �0 … P

.p/

E;f
. Since

G0ad is semisimple, there exists an element ŒG� 2 H 1.E;G0ad/ such that loc�ŒG� D ŒG��

for all � 2 P
.p/

E;f
by Theorem K and Proposition 2.14. Here G is an inner form of G0ad

(Remark 2.11 (3)). Therefore, we conclude that G�E E� Š G� for all � 2 P
.p/

E;f
and G�

is unramified for all but finitely many �.

Remark 2.16. Besides loc�ŒG� D ŒG�� for all � 2 P
.p/

E;f
, we can impose conditions at

other places of E except �0. For example, we can require that loc�ŒG� D ŒG0 �E E�� for
all � 2 PE n .P

.p/

E;f
[ ¹�0º/.

2.6.3. Proof of Main Theorem I (ii). By condition (b) and diagram (23) for F D E�, the
cohomology class �.ŒT� � G� � GLn;E� �/ is equal to loc�Œ�� in H 1.E; � xE�/. Then by
applying Res.GLn;E� ;G

sp/ in diagram (22), we have

�.ŒG� � GLn;E� �/ D loc�Œ�� for all � 2 P
.p/

E;f
.

By (33) for F D E, we obtain an E-form G0 � GLn;E of Gsp � GLn;E where G0 is
quasi-split such that ŒG0 � GLn;E � D j Œ�� in (34). On the one hand, for all � 2 P

.p/

E;f
,

Œ.G0 � GLn;E / �E E�� and ŒG� � GLn;E� � belong to the same fiber of � in (34) for
F D E�. On the other hand, for almost all � 2 P

.p/

E;f
,

Œ.G0 � GLn;E / �E E�� D j.loc�Œ��/ D ŒG� � GLn;E� � (45)

by Theorem I for F D E�, condition (d), and the proposition below.

Proposition 2.17 ([66, Lemma 3.2, Theorem 3.3]). Let F be a field of characteristic zero
andDi .i D 1;2/ be central simple algebras overF . Let H be a connected reductive group
over F and �i W H! GLmi ;Di .i D 1; 2/ be two F -representations that are absolutely
irreducible. If �1 �F xF Š �2 � xF , then �1 Š �2.

Hence, by Corollary 2.12 for F D E� for all � 2 P
.p/

E;f
to identify ŒG� � GLn;E� �

as an element in H 1.E�;G
0ad �E E�/, we find that ŒG� � GLn;E� � D 0 for almost all

� 2 P
.p/

E;f
. Let �0 be a place ofE extending p. Then �0 … P

.p/

E;f
. Since G0ad is semisimple,
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there exists an element ŒG � GLm;D� 2 H 1.E;G0ad/ such that

loc�ŒG � GLm;D� D ŒG� � GLn;E� �; 8� 2 P
.p/

E;f
;

loc�ŒG � GLm;D� D Œ.G0 � GLn;E / �E��; 8� 2 PE n .P
.p/

E;f
[ ¹�0º/;

(46)

by Theorem K and Proposition 2.14. Here G (resp. GLm;D) is an inner form of G0ad (resp.
GLn;E ) and GLm;D D GLn;E by (46) and class field theory. By Lemma 2.9, we conclude
that .G ,! GLn;E / �E E� Š .G� ,! GLn;E�/ as representations for all � 2 P

.p/

E;f
and

G� is unramified for all but finitely many �.

2.6.4. Proof of Main Theorem II. Consider the cocycle � in Z1.E; � xE / (resp.
Z1.E;! xE /). By condition (b), loc�Œ�� equals ResTsp ŒT� �G�� (resp. ResTsp ŒT� �G� �

GLn;E� �) for all �2PE;f . It suffices to show that Œ�� belongs to the image of the injection
ResTsp (ensuring uniqueness) in diagram (21) (resp. (23)) for F D E. By Corollary 2.13,
this is equivalent to �.�/ D 0 in H 2.E; �.Tsp=C//. By condition (d) and Proposition L,
it remains to prove that loc�.�.�// D 0 for all places � of E. For a finite place �, this is
true by the fact that the image of ResTsp in (21) (resp. (23)) contains loc�Œ�� and Corol-
lary 2.13 for F D E�. For a real place, this is true by (d) and H 2.R; SR/ D 0 if SR is
an R-anisotropic torus (see [37, Lemma 10.4]). Therefore, we obtain a common E-form
T � G (resp. T � G ,! GLm;D by Lemma 2.9) of the chain T� � G� (resp. the chain
representation T� � G� ,! GLn;E� ) for all finite places � of E.

3. Rationality of algebraic monodromy groups

This section is devoted to the proofs of the statements in Section 1:2. Fix a number fieldE
and denote by p� the residue characteristic of the finite place � 2 PE;f .

3.1. Profinite group … and Frobenius elements Fr

Consider two cases.

3.1.1. Characteristic zero. In this case, … denotes the absolute Galois group Gal. xK=K/
of a number fieldK and P WDPE;f . Equip…with a subset Fr�… of Frobenius elements
as follows.

For all v 2 PK;f , let qv be the size of the residue field Fqv of Kv and consider the
natural surjection

�v W Gal. xKv=Kv/! Gal.xFqv=Fqv /:

For each v, fix a lift �v 2 ��1v .Fr�1qv /, where Fr�1qv 2 Gal.xFqv=Fqv / is the geometric
Frobenius. Each xv 2 P xK;f determines an embedding �xv W Gal. xKv=Kv/ ! Gal. xK=K/.
For xv 2 P xK;f , define Frxv to be �xv.�v/ where v is the restriction of xv to K. Define

Frv WD
[
xvjv

ŒFrxv� and Fr WD
[

v2PK;f

Frv:
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For any Galois extensionL=K that is unramified except at finitely many v 2PK;f and any
finite subset S �PK;f , the image of

S
v2PK;f nS

Frv in Gal.L=K/ is dense [61, Chapter I,
Section 2:2, Corollary 2]. Assign the number qv to the elements in Frv .

3.1.2. Characteristic p. In this case, … denotes the étale fundamental group �ét
1 .X; Nx/

(with some base point Nx) of a smooth geometrically connected variety X=Fq in char-
acteristic p and P WD P

.p/

E;f
. Equip … with a subset Fr � … of Frobenius elements as

follows.
Let X cl be the set of closed points of X . For any geometric point xx0 over x0 2 X cl, let

Frxx0 be the image of the geometric Frobenius Fr�1qx0 2 Gal.xFqx0=Fqx0 / D �1.x
0; xx0/ under

the natural map

�1.x
0; xx0/! �1.X; xx

0/
�xx0
���! �1.X; xx/;

where qx0 is the size of the residue field of x0. Note that the change of base point iso-
morphism �xx0 is unique up to an inner automorphism of �1.X; xx/. Since the conjugacy
class ŒFrxx0 � depends only on x0, write Frx0 WD ŒFrxx0 � and define

Fr WD
[
x02Xcl

Frx0 :

The subset Fr is dense in … [56]. Assign the number qx0 to the elements in Frx0 .

3.2. E-compatible systems

Let .…; Fr;P / be one of the two cases in Section 3.1. In characteristic zero, denote by S
a finite subset of PK;f . Otherwise, S is the empty set.

3.2.1. GLn-valued compatible systems. A system of n-dimensional �-adic (continuous)
representations

�� WD ¹�� W …! GLn.E�/º�2P

of … is said to be semisimple (resp. irreducible, absolutely irreducible) if for all � 2 P ,
�� is semisimple (resp. irreducible, absolutely irreducible). The system �� is said to be
E-compatible (with exceptional set S ) if

� in characteristic zero, �� is unramified outside S [ ¹t 2PK;f W p� jqtº for each � 2P ;

� for each Frobenius element FrNt 2 Fr satisfying t … S and for each � satisfying p� − qt ,
the characteristic polynomial

Pt .T / WD det.��.FrNt / � T � In/ 2 E�ŒT � (47)

has coefficients in E and depends only on t (independent of � 2 P ).

The compatible system �� is said to be pure of weight w 2 R (resp. of mixed weights)
if for each FrNt 2 Fr with t … S and each root ˛ 2 xE of Pt .T /, the absolute value ji.˛/j
is equal to qw=2t for every complex embedding i W xE ! C (resp. is independent of the
complex embedding i W xE ! C).
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3.2.2. Coefficient extension and the Weil restriction. Let �� be an n-dimensional (semi-
simple) E-compatible system of … that is pure of weight w (resp. of mixed weights).
For a number field E 0, denote P 0 D PE 0;f in characteristic zero and P 0 D P

.p/

E 0;f
in

characteristic p.
If E 0 is an extension of E, then we obtain by coefficient extension a (semisimple)

system �� ˝E E
0 of n-dimensional �0-adic representations

.�� ˝E E
0/�0 WD .…

��
�! GLn.E�/ � GLn.E 0�0//; (48)

where � is the restriction of �0 toE. The system isE 0-compatible (with exceptional set S ),
pure of weight w (resp. of mixed weights), and called the coefficient extension of �� to E 0

(see [2, Definition 3.2]).
IfE 0 is a subfield ofE, then we obtain by the Weil restriction of scalars a (semisimple)

system ResE=E 0�� of nŒE W E 0�-dimensional �0-adic representations

.ResE=E 0��/�0 WD
M
�j�0

�� W …!
Y
�j�0

GLn.E�/

D .ResE=E 0GLn;E /.E 0�0/ � GLnŒE WE 0�.E 0�0/: (49)

The system is E 0-compatible (with exceptional set S ), pure of weight w (resp. of mixed
weights), and called the Weil restriction of �� (see [2, Definition 3.4]).

3.2.3. G-valued compatible systems. Let G be a linear algebraic group defined over E
with affine coordinate ring R. Since G acts on itself by conjugation, G acts on R. The
subring of invariant functions is denoted by RG. For all g 2 G, let gs be the semisimple
part of g. If g is defined over a field extension F=E, then gs is also defined over F .
A system ¹�� W … ! G.E�/º�2P of �-adic G-representations of … is said to be E-
compatible (with exceptional set S ) if

� in characteristic zero, �� is unramified outside S [ ¹t 2PK;f W p� jqtº for each � 2P ;

� for each Frobenius element FrNt 2 Fr satisfying t … S , each � satisfying p� − qt , and
each f 2 RG the number

f .��.FrNt /s/ 2 E� (50)

belongs to E and depends only on t and f [61, Chapter I, Section 2:4] (independent of
� 2 P ).6

It follows that an n-dimensional E-compatible system is the same as an E-compatible
system of GLn;E -representations.

3.2.4. Algebraic monodromy groups and connectedness. For all � 2 P , the algebraic
monodromy group of ��, i.e., the Zariski closure of the image of �� in GLn;E� , is denoted
by G�. It is a closed subgroup of GLn;E� . The image ��.…/ is a compact subgroup of the

6This is equivalent to the conjugacy class of ��.FrNt /s in G being defined over E and depend
only on t … S (independent of �).
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�-adic Lie group G�.E�/. The following result is well-known by using the compatibility
condition [42, Proposition 6.14].

Proposition M. The component groups G�=Gı
�

are isomorphic for all � 2 P . In partic-
ular, the connectedness of G� is independent of �.

3.2.5. Group schemes. Suppose the algebraic monodromy group G� is connected reduc-
tive for all �. Let O� be the ring of integers of E� with residue field k� of characteris-
tic p�. Let ƒ� be an O�-lattice of En

�
that is invariant under the image ��.…/. Let G� be

the Zariski closure of ��.…/ in GLƒ� Š GLn;O� , endowed with the unique structure of
reduced closed subscheme. The generic fiber of G� is G�. The special fiber, denoted by
Gk� , is identified as a subgroup of GLn;k� . When p� � n, the subgroup Gk� � GLn;k� is
said to be saturated if for any unipotent element u2 Gk�.

xk�/, the one-parameter subgroup
¹ua W a 2 xk�º � GLn.xk�/ belongs to Gk�.

xk�/ [59, Section 4:2].

Proposition N ([43, Proposition 1.3], [2, Proposition 5.51, Theorem 5.52]). For all but
finitely many � 2 P , the following assertions hold:

(i) The group scheme G� is smooth with constant absolute rank over O�.

(ii) The identity component of the special fiber Gk� � GLn;k� is saturated.

3.3. Frobenius torus

3.3.1. Frobenius torus and maximal torus. For all � 2 P , let G� be the algebraic mon-
odromy group of ��. The identity component of G� is reductive since �� is semisimple.
Let �� be a member of the system and FrNt 2 Fr be a Frobenius element with t … S . If
p� − qt , then the Frobenius torus TNt ;� of FrNt is defined to be the identity component
of the smallest (diagonalizable) algebraic subgroup SNt ;� in GLn;E� containing the semi-
simple part of ��.FrNt /. It follows that TNt ;� � SNt ;� � G�. The following theorem is due to
Serre.

Theorem O (see [44, Theorem 1.2 and its proof], [8, Theorem 5.7], [28, Theorem 2.6]).
Suppose the algebraic monodromy group G�0 is connected for some �0 2 P . Suppose
there exists a finite subset Q � Q such that for all FrNt 2 Fr with t … S , the following
conditions are satisfied for every root ˛ of the characteristic polynomial Pt .T / in (47):

(a) the absolute values of ˛ in all complex embeddings are equal;

(b) ˛ is a unit at any finite place not extending pt ;

(c) for any finite place w of xQ such that w.pt / > 0, the ratio w.˛/=w.qt / belongs toQ.

Then there exists a proper closed subvariety Y�0 of G�0 such that TNt ;�0 is a maximal torus
of G�0 whenever ��0.FrNt / 2 G�0 n Y�0 .

Remark 3.1. (1) If G� is connected and the Frobenius torus TNt ;� is maximal, then
TNt ;� D SNt ;�.

(2) Conditions O (a, b) hold for our mixed compatible system ��.



On the rationality of algebraic monodromy groups of compatible systems 33

(3) Condition O (c) holds in characteristic p by replacing X with a non-empty open sub-
set U [15, Theorem 1.3.3 (i), Remark 1.3.5].

(4) Condition O (c) holds in characteristic zero if we assume the system is
¹Hw.Y xK ;Q`/º`2PQ;f

for some smooth projective variety Y=K [44, Theorem 1.1].

(5) In characteristic p, the subset of elements FrNt of Fr whose Frobenius tori TNt ;�0 are
maximal in G�0 is dense in ….

(6) In characteristic zero, the subset of places v 2 PK;f such that Txv;�0 is a maximal
torus of G�0 is of Dirichlet density 1 (see [28, Corollary 2.7]).

Let FrNt be a Frobenius element. There is a semisimple matrix Mt 2 GLn.E/
with Pt .T / (47) as characteristic polynomial. For all � 2 P with p� − qt , Mt is con-
jugate to the semisimple part ��.FrNt /s in GLn.E�/ by E-compatibility. Hence, if we
let St be the smallest algebraic subgroup of GLn;E containing Mt , and Tt be the iden-
tity component of St , then the chain representations .Tt � St ,! GLn;E / �E E� and
TNt ;� � SNt ;� ,! GLn;E� are isomorphic for all � 2 P with p� − qt .

Corollary 3.2. Under the conditions of Theorem O, the following assertions hold.

(i) (Common E-form of formal characters) If the Frobenius torus TNt ;�0 is a maximal
torus of G�0 , then the Frobenius torus TNt ;� is also a maximal torus of G� for all
� 2 P with p� − qt . Moreover, the representation .Tt ,! GLn;E / �E E� is isomor-
phic to TNt ;� ,! GLn;E� for all � 2 P with p� − qt .

(ii) (Absolute rank) The absolute rank of G� is independent of �.

Proof. Assertion (i) is straightforward by Theorem O and the above construction of Tt .
Assertion (ii) is obvious by (i) in characteristic p, and follows from (i) and Remark 3.1 (6)
in characteristic zero.

3.3.2. Anisotropic subtorus. In this subsection, G� is connected for all � 2 P . The sub-
torus Tt � GLn;E in Corollary 3.2 (i) is studied under the following hypothesis. Let k be
the order of St=Tt . Then the Zariski closure of M kZ

t in GLn;E is Tt .

Hypothesis R. Assume that for each real embedding E ! R, the set of powers
det.Mt /

Z � R contains some non-zero integral power of the absolute value ji.˛/j for
every root ˛ of Pt .T / and every complex embedding i W xE ! C extending E ! R.

Proposition 3.3. If Hypothesis R holds, then the subtorus .Tt \ SLn;E /ı of Tt is aniso-
tropic at all real places of E.

Proof. Embed E into R and let Tt;R � St;R � GLn;R be the base change to R. If
� W Tt;R ! Gm;R is an R-character, then �.M k

t / 2 Gm.R/ D R� Let i W xE ! C be
an embedding extending E ! R. Then �.M k

t / is the product of some integral powers of
the roots i.˛/ of the polynomial i.Pt .T // 2 RŒT �. Hence, there exist integers h ¤ 0 and
m such that

�2h.M k
t / D det.Mt /

2m
2 R�>0
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by Hypothesis R. This implies

�2hk D det2m on Tt;R

since .M k
t /

Z is Zariski dense in Tt;R. Consequently, �2hk is trivial on the subtorus
.Tt;R \ SLn;R/ı for some 2hk ¤ 0. We conclude that the torus .Tt;R \ SLn;R/ı is
anisotropic.

Corollary 3.4. If Hypothesis R holds and E has a real place, then the subtorus
.Tt \ SLn;E /ı of Tt is anisotropic on a positive Dirichlet density subset P 0 of PE;f .

Proof. Let r be the absolute rank of the E-torus .Tt \ SLn;E /ı. Then it is an E-form
of the split torus Gr

m;E with automorphism group GLr .Z/. The isomorphism class of
.Tt \ SLn;E /ı is represented by an element of H 1.E;GLr .Z//, which is a continuous
group homomorphism � W Gal. xE=E/! GLr .Z/ up to conjugation. Let c 2 Gal. xE=E/
be complex conjugation corresponding to a real place of E. Since .Tt \ SLn;E /ı is
anisotropic over R by Proposition 3.3 and c is of order 2, it follows that �.c/D�Ir . Since
the image of � is finite, there is a positive Dirichlet density set P 0 of finite places � of E
such that �.Fr�/ D �Ir by the Chebotarev density theorem. Therefore, .Tt \ SLn;E /ı is
anisotropic over E� for all � 2 P 0.

Remark 3.5. (1) Hypothesis R holds for every Pt .T / if the E-compatible system is
pure.

(2) If �2P 0 in Corollary 3.4, then theE�-subtorus .TNt ;� \Gder
�
/ı of .TNt ;� \ SLn;E�/

ıŠ

.Tt \ SLn;E /ı �E E� is also anisotropic. If TNt ;� � G� is a maximal torus, then
TNt ;� \Gder

�
� Gder

�
is also a maximal torus.

(3) Corollary 3.4 is not true for general E since .Tt \ SLn;E /ı can be a non-trivial split
torus over E. This is seen by taking a finite extension E 0=E such that Pt ŒT � splits
and replacing the E-compatible system �� with its coefficient extension �� ˝E E 0

(Section 3:2:2).

Let G be a connected reductive group defined over a field F . A torus T � G is said
to be fundamental if it is a maximal torus with minimal F -rank. In characteristic zero, let
� be the subset of elements v 2 PK;f such that for some � 2 PE;f , the Frobenius torus
Txv;� Š Tv �E E� is a fundamental torus of G�. A Frobenius torus Txv;� � G� being fun-
damental is equivalent to Txv;� being a maximal torus and Txv;� \ Gder

�
being anisotropic

[5, Proposition 5.3.2]. When Hypothesis R holds and E has a real place, Remark 3.1 (6),
Corollary 3.4, and Remark 3.5 (2) imply that � is of Dirichlet density 1.

Question Q. Suppose Hypothesis R holds; what is the Dirichlet density of � in PK;f
when E is totally imaginary?

We do not know the answer; we even do not know if � is non-empty. If we
want to apply Main Theorem II to the algebraic monodromy representations ¹G� ,!

GLn;E�º�2PE;f when E is totally imaginary, then positive Dirichlet density of � is nec-
essary.
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3.4. Proofs of characteristic p results

Let P be P
.p/

E;f
.

3.4.1. Proof of Theorem 1.1. By Proposition M and taking a finite Galois covering of X ,
we assume that G� is connected for all � 2 P . It suffices to check conditions (a)–(d) of
Main Theorem I for the system of algebraic monodromy representations

¹G� ,! GLn;E�º�2P :

Conditions (a)–(c) follow directly from assertions (i)–(iii) of Theorem B. Condition (d)
holds by [2, Corollary 7.9], or by Proposition 3.6 below, for almost all �, the existence
of a hyperspecial maximal compact subgroup of G�.E�/ implies that G� is unramified
[46, Section 1]. We are done by Main Theorem I.

Proposition 3.6. If G� is connected for all � 2 P , then the image of �� is contained in a
hyperspecial maximal compact subgroup H� of G�.E�/ for almost all �.

Proof. Since �1.X/ is compact, we may assume ��.�1.X// � GLn.O�/ after some
change of coordinates V�ŠEn� for all �. The geometric étale fundamental group �geo

1 .X/

of X fits into the short exact sequence

1! �
geo
1 .X/! �1.X/! Gal.xFq=Fq/! 1:

Denote the Zariski closure of ��.�
geo
1 .X// in GLn;E� by Ggeo

�
. Let G� (resp. G

geo
�

) be
the Zariski closure of G� (resp. the identity component of Ggeo

�
) in GLn;O� with special

fiber Gk� (resp. G
geo
k�

). It suffices to prove that for almost all �, H� WD G�.O�/ is a hyper-
special maximal compact subgroup of G�.E�/. By Bruhat–Tits theory, this condition
follows if we show that the O�-group scheme G� is reductive [67, Section 3:8:1].

By [2, Theorem 7.3], the O�-group scheme G
geo
�

is semisimple for almost all �. Let
k� be the residue field of E�. Since the O�-group scheme G� is smooth with constant
absolute rank for almost all � by Proposition N (i), and contains G

geo
�

as a closed normal
subgroup scheme, the inequalities

dim G� D dim.Gk�/ D dim.G geo
k�
/C dim.Gk�=G

geo
k�
/

� dim.G geo
k�
/C rk.Gk�=G

geo
k�
/ D dim Ggeo

�
C rk.G�=Ggeo

�
/ D dim G�

imply that the special fiber Gk� has trivial unipotent radical for almost all �. Therefore,
the smooth group scheme G� is reductive over O� for almost all �.

3.4.2. Proof of Corollary 1.2. By Theorem 1.1 (i), there is a connected reductive group
G defined over E and an isomorphism �� W G �E E� ! G� for each � 2 P . For almost
all �, the O�-points G.O�/ is well-defined (by finding some integral model G of G) and
is a hyperspecial maximal compact subgroup of the E�-points G.E�/ [67, Section 3:8:1].
Let Gad

�
be the adjoint group of G�. The subgroup Gad

�
.E�/ of Aut xE� G�.E�/ is transi-

tive on the set of hyperspecial maximal compact subgroups of G�.E�/ [67, Section 2:5].
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Hence, by Proposition 3.6 and adjusting �� for almost all �, we assume ��.G.O�//DH�
� G�.E�/ for almost all �. Then the image of the map

Q
�2P ��1

�
ı �� is contained in

the adelic points G.A.p/E /, which defines the desired G-valued adelic representation �G
A.

This proves assertion (i).
The proof of (ii) is exactly the same except we want to adjust the isomorphism of

representations

�� W .G ,! GLn;E / �E E� ! .G� ,! GLn;E�/

in order to have
��1� .H�/ D G.O�/ � GLn;E .O�/ (51)

for almost � (the inclusion is defined by finding some integral model G � GLn;OE;S
of G � GLn;E ). This can be achieved since Gad

�
.E�/ is a subgroup of the group

Inn xE�.GLn;E� ;G�/.E�/ (see Section 2:3:1) as the representation �� is absolutely irre-
ducible.

3.4.3. Proof of Corollary 1.3. Find a smooth OE;S -model G � GLn;OE;S of G �
GLn;E for some finite S � PE;f . Then by enlarging S we find that the group scheme
GLn;OE;S � O� (resp. G � O�) is the group scheme associated to the hyperspecial max-
imal compact subgroup GLn;OE;S .O�/ of GLn;OE;S .E�/ D GLn.E�/ (resp. G .O�/ of
G.E�/) for all � 2 P n S [67, Section 3:9:1]. We may assume that for all � 2 P n S , the
inclusion

G .O�/ � GLn;OE;S .O�/ D GLn.O�/

gives the construction G.O�/ � GLn;E .O�/ in (51). Since the �-component

.�G
A/� W �1.X/! G .O�/ � GLn;OE;S .O�/ D GLn.O�/ � GLn.E�/

of the adelic representation �G
A is isomorphic to �� by Corollary 1.2 (ii), the representation

.G ,! GLn;OE;S / � O� is isomorphic to G� ,! GLn;O� , where G� is the Zariski closure
of ��.�1.X// in GLn;O� after some choice of O�-lattice in V�.

Remark 3.7. The proofs of Corollaries 1.2 and 1.3 are standard in the sense that they
only require the common E-forms G and G � GLn;E in Theorem 1.1, Proposition 3.6,
and Bruhat–Tits theory [67].

3.4.4. Proof of Corollary 1.4. By Corollary 1.2 (ii), there exists a common E-form � W

G ,! GLn;E . For each � 2 P , choose an embedding xE ! xE�. We claim that the conju-
gacy class of the semisimple part �G

�
.FrNt /s 2 G.E�/ is defined over xE for all Frobenius

elements FrNt and all � 2 P . Indeed, by field extension, we obtain

�G
� .FrNt /s 2 .G � xE/. xE�/

� xE
,! GLn; xE . xE�/:

It suffices to show that for any irreducible representation  of G � xE, the trace of
 .�G

�
.FrNt /s/ is in xE. This is true because the roots ˛ of the characteristic polynomial
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Pt .T / of �G
�
.FrNt / 2 GLn; xE . xE�/ belong to xE by E-compatibility and  is a subrepresen-

tation of
Nr

� xE ˝
Ns

��
xE

for some r; s 2 Z�0.
The next step is to show that for a fixed Frobenius element FrNt , the conjugacy class

of �G
�
.FrNt /s in G is independent of �. By [10, Theorem 4.3.2] ([8, Theorem 6.8, Corol-

lary 6.9] when X is a curve), there is a finite extension F of E and a connected reductive
subgroup Gsp � GLn;F such that for all � 2 P , if F� is a completion of F extending �
on E, then there exists an isomorphism of representations

fF� W .G
sp ,! GLn;F / �F F�

Š
�! .G� ,! GLn;E�/ �E� F�: (52)

Moreover by [10, proof of Theorem 4.3.2] ([8, Theorem 6.12] when X is a curve), the
representations

�Gsp

� W �1.X/
��
�! .G� � F�/.F�/

f �1
F�
���! Gsp.F�/ (53)

for all � form an F -compatible system of Gsp-representations. Hence, the conjugacy class
Œ�Gsp

�
.FrNt /s� in Gsp is independent of �. If ˇ� 2 NGLn;E .G/.E�/, we obtain the isomor-

phisms

.G �E E� ,! GLn;E�/ �E� F�
ˇ�1
�
�F�

������! .G �E E� ,! GLn;E�/ �E� F�

D .G ,!GLn;E /�E F�
���F�
����! .G� ,!GLn;E�/�E� F�

f �1
F�
���! .Gsp ,!GLn;F /�F F�

(54)

by Corollary 1.2 (ii) and (52). Fix �0 2 P , define ˇ�0 D id, and embed F� into C for all
� 2 P . It suffices to find ˇ� for all � 2 P n ¹�0º such that

ˆ� WD Œ.ˇ� �F�/ ı .�� �F�/
�1
ı fF� ı f

�1
F�0
ı .��0 �F�0/��C 2 InnC.G�C/: (55)

Thenˆ�.Œ�G
�0
.FrNt /s�/D Œ�G

�
.FrNt /s� is an equality of conjugacy classes in G for all FrNt 2 Fr.

For (i), since G� is split and is irreducible on the ambient space, NGLn;E .G/.E�/ sur-
jects onto � xE� in (18). Thus, there is ˇ� 2 NGLn;E .G/.E�/ such that ˆ� 2 InnC.G �C/
D Gad.C/. For (ii), take ˇ� D id for all �. Since the outer automorphism group
Out.Gder � C/ is trivial and G � C ,! GLn;C is irreducible, the image of ˆ� in
Out.G �C/ is also trivial. Hence, in both cases (i) and (ii), ˆ� is inner and Œ��0.FrNt /s� D
Œ��.FrNt /s� for all FrNt . For FrNt 2 Fr, it follows that the xE-conjugacy class Œ��.FrNt /s� is
independent of � 2 P .

Let R be the affine coordinate ring of G. For any f 2 RG, ft WD f .Œ�G
�
.FrNt /s�/ 2 xE

is independent of � and also belongs to E� for all � 2 P . Therefore, ft 2 E and we
conclude that ¹�G

�
º�2P is an E-compatible system of G-representations. The last claim

of the corollary is immediate.

Remark 3.8. In general, if for each � there exists ˇ� 2 Inn xE�.GLn;E� ;G�/.E�/ such
that ˆ� (defined in (55)) belongs to InnC.G � C/, then the conclusion of the corollary
also follows.
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3.4.5. Proof of Theorem 1.5. For each � 2 P
.p/

E;f
, we have the chain TNt ;� � Gı

�
� GLV�

Š GLn;E� . For each v 2 PE;p , we have the chain Tt;v � Gıt;v � GLVt;v Š GLn;Ev by
condition (b) of Theorem 1.5. By identifying the algebraic monodromy groups as sub-
groups of GLn, we obtain a chain T� � Gı

�
� GLn;E� for each finite place � of E. Here

we simplify our notation by representing places of E extending p also as �. To prove the
theorem, it suffices to find a torus T � GLn;E and a chain Tsp � Gsp � GLn;E such that
conditions (a)–(d) of Main Theorem II for the system

¹T� � Gı� � GLn;E�º�2PE;f

hold. Note that the last sentence of Theorem 1.5 (ii) follows from Remark 2.1 (6). The
verifications rely on the following result of D’Addezio (enhancing Theorem B) and the
fact that T� is a maximal torus of G� for all � 2 PE;f by condition (a) of Theorem 1.5.

Theorem B0 ([10, Construction 4.2.1 (Frobenius tori), Theorem 4.3.2 and its proof]). Let
�� be the E-compatible system in Theorem 1.5 and T� � Gı

�
� GLn;E� be the chain

defined above for each � 2 PE;f . Then the following assertions hold:

(i) (Common E-form of formal characters) There exists a subtorus T WD Tt of GLn;E
such that for all � 2 PE;f , T� WD T �E E� is a maximal torus of Gı

�
.

(ii) (�-independence over an extension) There exist a finite extension F of E and a
chain of subgroups Tsp � Gsp � GLn;F such that Gsp is connected split reductive,
Tsp is a split maximal torus of Gsp, and for all � 2 PE;f , if F� is a completion of F
extending � on E, then there exists an isomorphism of chain representations

fF� W .T
sp
� Gsp ,! GLn;F / �F F�

Š
�! .T� � Gı� ,! GLn;E�/ �E� F�:

(iii) (Rigidity) The isomorphisms fF� in (ii) can be chosen such that the restriction iso-
morphisms fF� W Tsp �F F� ! T� �E� F� admit a common F -form fF W Tsp !

T �E F for all � 2 PE;f and F�.

Then conditions II (a)–(c) are just Theorem B0 (i)–(iii). For condition II (d), let
Tt � GLn;E be the E-form in Theorem B0 (i). By Section 2:6:1 and conditions II (a)–(c),
there exists an isomorphism of representations

f xE W .T
sp ,! GLn;E / �E xE

Š
�! .Tt ,! GLn;E / �E xE

which produces the cocycle � as in (41). Consider the short exact sequence of E-groups

1! C! Tsp
! Tsp=C! 1: (56)

By Proposition 2.15,� as Galois representation acts on C and hence (56) in an equivariant
way, inducing a short exact sequence of E-groups by twisting (Section 2:4:1):

Tt

D

��

1 //
�C //

�Tsp //
�.Tsp=C/ // 1

(57)
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Since � is constructed from f xE , it has values in Inn xE .GLn;E ;Tsp/. It follows that � as
Galois representation acts on the surjection of E-groups

.Tsp
\ SLn;E /ı� Tsp=C (58)

in an equivariant way. Hence, we obtain a surjection of E-groups

.Tt \ SLn;E /ı D �.Tsp
\ SLn;E /ı� �.Tsp=C/: (59)

By condition (c) of Theorem 1.5, E has a real place. Since .Tt \ SLn;E /ı is anisotropic
over each real place of E by Proposition 3.3, Remark 3.5 (1), and the fact that �� is pure
of weight w, it follows that the twisted torus �.Tsp=C/ is also anisotropic over each real
place of E by the surjection (59).

3.5. Proofs of characteristic zero results

Let P be PQ;f .

3.5.1. Proof of Theorem 1.6. It suffices to check conditions (a)–(d) of Main Theorem II
for the system of algebraic monodromy representations

¹G` ,! GLn;Q`º`2P

and invoke Remark 2.1 (6). Since the conditions remain the same after taking any finite
extension F of K, we are free to do so.

Condition II (a): By condition 1.6 (a) and Remark 3.1 (6), there is a place v 2 PK;f n S

such that the Frobenius torus Txv;` is a maximal torus of G` for all ` ¤ p WD pv , and the
local representation Vp of Gal. xKv=Kv/ is ordinary. It remains to check the condition for
the places over p.

Let Yv be the special fiber of a smooth model of Y over Ov and let Mv WD

Hw.Yv=Ov/ ˝Ov Kv be the crystalline cohomology group, which belongs to the cate-
gory MFfKv of weakly admissible filtered modules overKv . There are algebraic subgroups
.HVp �GLVp /�Qp Kv and HMv �GLMv such that their tautological representations (via
the mysterious functor of Fontaine) are inner forms of each other, in particular isomorphic
over xQp ,

.HVp ,! GLVp / �Qp
xQp

�Š
�! .HMv ,! GLMv / �Kv xQp;

where HVp is the algebraic monodromy group of the local crystalline representation �p W
Gal. xKv=Kv/! GL.Vp/ and HMv is the automorphism group of the fiber functor on the
full Tannakian subcategory of MFfKv generated byMv that assigns to a filteredK-module
the underlying K-vector space (see [53, Section 2]). Let mv be the degree ŒKv W Qp� and
fMv the crystalline Frobenius. By Katz–Messing [32] (see [53, Theorem 3.10]), f mvMv

is
an element of HMv .Kv/ � GL.Mv/ with characteristic polynomial equal to Pv.T /, the
characteristic polynomial of �`.Frv/ (` ¤ p).
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Let ˆVp be the element in HVp .
xQp/ corresponding to f mvMv

2 HMv .
xQp/ via �. The

group HVp is generated by cocharacters (connected) and the smallest algebraic subgroup
containing ˆVp [53, Proposition 2.6]. It is connected because the characteristic polyno-
mial of ˆVp 2 GLVp is Pv.T / and the (maximal) Frobenius torus Txv;` is equal to Sxv;`
by Remark 3.1(1). Let V ss

p be the semisimplification of the representation HVp ,! GLVp .
Since the local representation Vp is ordinary, HVp is solvable [53, Proposition 2.9] and
its image Hred

Vp
in GLV ss

p
is a torus. Since the conjugacy class of ˆVp in HVp is defined

over Qp [53, Proposition 2.2] and Hred
Vp

is abelian, the image of ˆVp in Hred
Vp

, denoted
by ˆred

Vp
, belongs to Hred

Vp
.Qp/. By the splitting of the surjection HVp � Hred

Vp
, there is

a semisimple element ˆxv 2 HVp .Qp/ � GL.Vp/ with characteristic polynomial Pv.T /.
The smallest algebraic subgroup of HVp �Gp containingˆxv is a Qp-maximal torus Txv;p
of Gp because the absolute rank of G` is independent of ` by Corollary 3.2 (ii) and Txv;`
is a maximal Frobenius torus. Since the characteristic polynomials of ˆxv and �`.Frxv/s
for all ` ¤ p are equal to Pv.T /, the tori representations Txv;` ,! GLV` for all ` admit a
common Q-form Tv ,! GLn;Q.

Condition II (b): This is just condition 1.6 (b).

Condition II (c): By Proposition 2.8 and condition 1.6 (c), it suffices to check condition
(c0-bi) of Section 2:2. Identify GLV` as GLn;Q` for all `. We employ the technique in
[26, Proposition 3.18, Theorem 3.19]. Let ¹ `º`2P be an r-dimensional semisimple Q-
compatible system of abelian `-adic representations of Gal. xK=K/. Let S` � GLr;Q` be
the algebraic monodromy group of ` and assume S` is torus and with the largest possible
dimension dK [26, Theorem 3.8] for all `. Consider the semisimple Q-compatible system
¹�` ˚  `º`2P and let G0

`
� GLn;Q` � GLr;Q` be the algebraic monodromy group at `.

Let
p0i;` W G

0
` ! GLn;Q` � GLr;Q` (60)

be the projection to the i th factor, i D 1; 2. By considering p0
1;`

, there is a diagonalizable
subgroup D` of S` with a short exact sequence

1! D` ! G0` ! G` ! 1: (61)

Let k be the number of components of D`0 for some prime `0. By replacing ¹�`˚ `º`2P

with ¹�` ˚  k` º`2P , we assume that D`0 is connected. Since G`0 is connected, G0
`0

is
connected by (61). Hence, G0

`
is connected for all ` by Proposition M. Since the dimension

of the center of G0
`

is dK D dim S` for all ` [26, Proposition 3.8, Theorem 3.19], it follows
that for all `,

ker.p02;`/
ı
D .G0`/

der
D Gder

` : (62)

Proposition P ([16], [61, Chapter II], [55, Chapter 1, Theorem 4.1]). Fix a prime `00.
There exist a finite extension F of K and an abelian variety A over F that is a direct
product of CM abelian varieties with the following properties. Let

¹�` W Gal. xF=F /! GL.W`/º`2P
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be the semisimple compatible system of Galois representations withW` WDH 1.A xF ;Q`/.
Let M` and G00

`
be respectively the algebraic monodromy groups of the Galois represen-

tations �` and �` ˚ �` of Gal. xF=F /. Then the following assertions hold:

(i) For all `, G00
`

is connected and M` is a torus with dimension independent of `.

(ii) The restriction map  `00 W Gal. xF=F / ! GLr .xQ`00/ factors through a morphism
M`00 �

xQ`00 ! GLr; xQ`00 .

Since G0
`

is connected for all `, it is again the algebraic monodromy group of the
restriction of �` ˚  ` to Gal. xF=F /. Again, let p00

i;`
W G00

`
! GLn;Q` �M` be the pro-

jection to the i th factor, i D 1; 2. Since there exists a surjective map G00
`00
! G0

`00
by

Proposition P (ii), it follows from (62) and the connectedness of G00
`00

(Proposition P (i))
that

ker.p002;`00/
ı
D Gder

`00 D .G
00
`00/

der (63)

is the semisimple part of G00
`00

. Since ¹�` ˚ �`º`2P is a compatible system of represen-
tations of Gal. xF=F /, the semisimple rank and the dimension of the center of G00

`
are

independent of ` [26, Theorem 3.19]. This, together with (63) and the `-independence of
dim M` (Proposition P (i)), implies that

ker.p002;`/
ı
D .G00`/

der (64)

for all `. Hence, if T00
`

is a maximal torus of G00
`
, then

ker.p002;` W T
00
` !M`/

ı
� p001;`.T

00
`/ ,! GLn;Q`

is a formal bi-character of G`.
Finally, we follow the strategy in condition II (a). If v is a finite place of F such

that Y �K F and A have good reduction, then write p WD pv and the Frobenius element
Frxv have characteristic polynomials Pv.T / 2 QŒT � on V` and Qv.T / 2 QŒT � on W`
for all ` ¤ p. By condition 1.6 (a), there exists v 2 PF;f such that the Frobenius torus
T00
xv;`
� G00

`
is maximal for all ` ¤ p and the local representation Vp of Gal. xFv=Fv/ is

ordinary. Then we let HVp˚Wp � GLVp � GLWp be the algebraic monodromy group of
the local crystalline representation

�p ˚ �p W Gal. xFv=Fv/! GL.Vp/ � GL.Wp/

and Hred
Vp˚Wp

its image (semisimplification) in the (abelian) diagonalizable subgroup
Hred
Vp
�Mp � GLVp � GLWp , where Hred

Vp
is defined in condition II (a). Since the local

representation Vp ˚Wp is crystalline, we conclude by repeating the arguments in the sec-
ond and third paragraphs of the proof of condition II (a) that there exists an element in
Hred;ı
Vp˚Wp

.Qp/ lifting to a semisimple element ˆ00
xv 2 HıVp˚Wp .Qp/ 2 G00p.Qp/ with char-

acteristic polynomials Pv.T / on Vp and Qv.T / on Wp . The smallest algebraic subgroup
T00
xv;p of G00p containingˆ00

xv is also a maximal torus because the absolute rank of G00
`

is inde-
pendent of `. By using the polynomials Pv.T /;Qv.T / 2 QŒT �, we construct a common
Q-form T00v ,! GLn;Q �GL2 dimA;Q of the formal characters T00

xv;`
,! GLn;Q` �GLW` of
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G00
`
� GLn;Q` � GLW` for all ` such that

ker.p2 W T00v ! GL2 dimA;Q/
ı
� p1.T00v/ ,! GLn;Q (65)

is a common Q-form of formal bi-characters of G` � GLn;Q` for all `, where p1; p2
are the obvious projections. We may replace Tv ,! GLn;Q constructed in the proof of
condition II (a) with p1.T00v/ ,! GLn;Q in (65).

Condition II (d): Let Tv �GLn;Q be the Q-form we found in the proof of condition II (a).
This part is exactly the same as the verification of condition II (d) for Theorem 1.5 once
we replace the field E by Q and the E-torus Tt by the Q-torus Tv .

3.5.2. Proofs of Corollaries 1.9 and 1.10. Since Corollaries 1.9 and 1.10 (of Theo-
rem 1.6) assume Hypothesis H, their proofs follow the lines of the proofs of Corollaries
1.2 and 1.3 by Remark 3.7.

3.5.3. Galois maximality and Hypothesis H. Let K be a number field and ¹�` W
Gal. xK=K/ ! GLn.Q`/º`2P be a Q-compatible system of `-adic representations. Let
�` be the image of �` and G` be the algebraic monodromy group of �`. Then �` is a com-
pact subgroup of G`.Q`/. Suppose for simplicity that G` is connected for all `. Denote
by Gss

`
the quotient of G` by its radical and by Gsc

`
the simply-connected covering of Gss

`
.

Denote by �ss
`

the image of �` in Gss
`
.Q`/ and by �sc

`
the inverse image of �ss

`
in Gsc

`
.Q`/.

When `� 0 compared to the absolute rank of Gsc
`

, a compact subgroupH` of Gsc
`
.Q`/ is

hyperspecial maximal compact if the “mod ` reduction” of H` is “of the same Lie type”
as the semisimple group Gsc

`
(see [30]). In [39], Larsen proved that the set of primes `

for which �sc
`
� Gsc

`
.Q`/ is hyperspecial maximal compact is of Dirichlet density 1 and

conjectured the following.

Conjecture S. For all ` � 0, �sc
`

is a hyperspecial maximal compact subgroup
of Gsc

`
.Q`/.

This conjecture is also related to the conjectures of Serre on maximal motives [59,
Sections 11.4, 11.8]. Suppose the `-adic compatible system is ¹Hw.Y xK ;Q`/º`2P , where
Y is a smooth projective variety defined over a number field K. When Y is an elliptic
curve without complex multiplication and w D 1, a well-known theorem of Serre states
that for `� 0, �`ŠGL2.Z`/ is maximal compact in GL.V`/ [57]. In general, by studying
the mod ` compatible system ¹Hw.Y xK ; F`/º`�0, we proved that �` � G`.Q`/ is large
in the sense that its mod ` reduction has “the same semisimple rank” as the algebraic
group G` for `� 0 [27, Theorem A]. This result is crucial to the following.

Theorem T ([30, 31]). Let �� be the Q-compatible system (3) arising from a smooth
projective variety Y defined over K. Conjecture S holds in the following cases:

(i) For `� 0, Gsc
`

is of type A, i.e., isomorphic to
Q
i SLni over xQ`.

(ii) Y is an abelian variety.

(iii) Y is a hyper-Kähler variety and w D 2.
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Let ƒ` be a Z`-lattice of Qn
`

that is invariant under �` and let G` (resp. G der
`

) be
the Zariski closure of �` (resp. the derived group Œ�`; �`�) in GLn;Z` , endowed with the
unique reduced closed subscheme structure. Write GF` (resp. G der

F`
) for the special fiber.

Theorem 3.9. Suppose G` is connected reductive for all `. Then Conjecture S implies
that G` is a reductive group scheme over Z` for `� 0 and Hypothesis H.

Proof. Let �` W Gsc
`
.Q`/! Gder

`
.Q`/! G`.Q`/ be the natural morphism. Consider the

following natural commutative diagram where each vertical map is the commutator map:

Gsc
`
�Gsc

`

��

// G` �G`

��

// Gss
`
�Gss

`

��

Gsc
`

�` // G`
// Gss
`

Then by the definition of �sc
`

, the inclusion �`.Œ�sc
`
; �sc
`
�/ � Œ�`; �`� holds. Suppose Con-

jecture S holds. Then the hyperspecial maximal compact �sc
`

is perfect for `� 0 (see,
e.g., [30, proof of Corollary 11]). Thus, for `� 0, it follows that �`.�sc

`
/ � Œ�`; �`�. The

closed subscheme G` � GLn;Z` is smooth by Proposition N for ` � 0. Also, the sub-
scheme G der

`
is smooth for `� 0 (see, e.g., [7, Theorem 9.1.1, Section 9:2:1], note that

Gder
`

is connected). Then for `� 0,

�`.�
sc
` / � Œ�`; �`� � G der

` .Z`/ � G`.Z`/ � GLn.Z`/: (66)

If we can prove that G` is a reductive group scheme over Z`, then G`.Z`/ � G`.Q`/

is hyperspecial maximal compact by Bruhat–Tits theory. So it remains to prove that the
special fiber GF` is reductive.

Taking mod ` reduction of (66), we see by Hensel’s lemma that for `� 0,

�`.�
sc
`
/ � G der

`
.Z`/ D G der

F`
.F`/ � GLn.F`/: (67)

For `� n, let S` � GLn;F` be the Nori envelope [50] of the finite subgroup �`.�sc
`
/ �

GLn.F`/. It is the connected algebraic subgroup of GLn;F` generated by the one-parame-
ter unipotent subgroups ¹ut W t 2 xF`º for all order ` elements of �`.�sc

`
/. It is semisimple

by unipotent. Let �`.�sc
`
/
C

be the (normal) subgroup of �`.�sc
`
/ generated by the order `

elements. Then �`.�sc
`
/
C

is a subgroup of S`.F`/ and Œ�`.�sc
`
/ W �`.�

sc
`
/
C
� is prime to `.

The Nori envelope S` approximates the finite subgroup �`.�sc
`
/ � GLn.F`/ in the sense

that the index ŒS`.F`/ W �`.�sc
`
/
C
� is bounded by a constant depending only on n for all

prime ` large enough compared to n [50, Theorems B (1), 3.6 (v)].

Proposition 3.10. For `� 0, the smooth group scheme G der
`

is reductive.

Proof. Suppose ` � n. Since �sc
`

is maximal compact in Gsc
`
.Q`/ for `� 0, the equality

��1
`
.G der
`
.Z`// D �

sc
`

holds for `� 0. Thus, there is a constant c such that

ŒG der
` .Z`/ W �`.�

sc
` /� � c (68)
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for all `� 0 [31, Corollary 2.5]. Hence, after reduction we also have

ŒG der
F`
.F`/ W �`.�

sc
`
/� � c: (69)

If the proposition is false, then the unipotent radical of the special fiber G der
F`

is non-trivial

for infinitely many primes `. Thus, (69) implies that �`.�sc
`
/ contains a non-trivial normal

unipotent subgroup U` (consisting of order ` elements) for infinitely many primes `. Let
S0
`

be the Nori envelope of the semisimplification of �`.�sc
`
/ ,! GLn.F`/ (with image

�`.�
sc
`
/

red
) for `� 0. By the definition of Nori envelope [50, Sections 1; 3], for all `� 0

we have a short exact sequence

1! U` ! S`
�
�! S0` ! 1 (70)

where � is induced by semisimplification. For infinitely many primes `, we have dim U`
� 1 since U` contains a one-parameter subgroup t 7! ut WD exp.t log.u// [50] for some
non-identity element u 2 U`.

Since S0
`

is semisimple, [30, Proposition 4 (iii)] asserts that dim S0
`
D dim` S0

`
.F`/ (the

`-dimension [30, Section 2]). Since �sc
`

is hyperspecial maximal compact in Gsc
`
.Q`/,

there is a reductive group scheme H` over Z` such that the generic fiber is Gsc
`

and
H`.Z`/ D �sc

`
. By the definition of `-dimension and [30, Proposition 4 (iii)] again, we

obtain

dim` S0`.F`/ D dim` S0`.F`/
C
D dim` �`.�

sc
`
/

red
D dim` �

sc
` D dim` H`.F`/

D dim Gsc
` : (71)

It follows from (70) that dim S` > dim Gder
`

for infinitely many `, but this contradicts
[40, Theorem 7].

Let G red
F`

be the quotient of G ıF`
by its unipotent radical. For `� 0, the special fiber

G der
F`

(of G der
`

) is a normal connected semsimple subgroup of G ıF`
(Proposition 3.10), which

injects into G red
F`

. It follows that

dim GF` � dim G red
F`
� dim G der

F`
C rk G red

F`
� rk G der

F`

D dim Gder
` C rk G` � rk Gder

` D dim G`: (72)

Therefore, (72) is an equality and the special fiber GF` is reductive for `� 0.

Remark 3.11. Let F be a finitely generated field of characteristic p and Y be a smooth
projective variety defined over F . Conjecture S holds for the Q-compatible system
¹Hw.Y xF ;Q`/º`¤p [7, Theorem 1.2].

3.5.4. Proof of Theorem 1.11. Embed Q` into C for all `. Since End xK.A/DZ, the repre-
sentations �` are all absolutely irreducible by the Tate conjecture proven by Faltings [16].
Since the formal bi-character of .G` ,! GL.V`// � C is independent of ` [26, Theo-
rem 3.19], condition 1.11 (b) and Theorem E imply that the tautological representation
.G` ! GL.V`// � C is independent of `. Since condition 1.11 (b) and Theorem C (ii)
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hold, the simple factors of G` �Q`
xQ` are of the same type and the invariance-of-roots

condition holds by Corollary 2.5. We conclude that conditions 1.6 (a)–(c) hold. Hence,
Theorems 1.6 (ii) T (ii), and 3.9, and Corollaries 1.9 and 1.10, give Theorem 1.11 except
the last assertion. It suffices to show that for `� 0, the two Z`-representations

VZ` W Gal. xK=K/! G.Z`/ D G .Z`/! GL2g.Z`/;

H 1.A xK ;Z`/ W Gal. xK=K/! G`.Z`/! GL.H 1.A xK ;Z`// (73)

are isomorphic.
Since VZ` ˝Q` ŠH

1.A xK ;Q`/ŠH
1.A xK ;Z`/˝Q`, there is an elementˆ` in the

free Z`-module HomGal. xK=K/.VZ` ; H
1.A xK ;Z`// that is non-zero after mod ` reduction.

Since End xK.A/ D Z, the representation H 1.A xK ;F`/ is absolutely irreducible for `� 0

[18, Theorem 4.2]. Thus, the non-zero Gal. xK=K/-equivariant map

ˆ` � F` W VZ` ˝ F` ! H 1.A xK ;F`/

is surjective for `� 0. By Nakayama’s lemma,ˆ` is surjective for `� 0. Therefore,ˆ` is
bijective and induces an isomorphism of the Galois representations VZ` andH 1.A xK ;Z`/
for `� 0.

Remark 3.12. Embed Q` into C. Let ¹.Hi ; Vi / W 1 � i � kº be the irreducible factors
of the irreducible representation .Gder

`
! GL.V`// � C, i.e., Hi is almost simple and

Vi is irreducible (Section 2:2:2:1). By [53, Theorem 3.18], the irreducible representation
.G` ! GL.V`// �C is a strong Mumford–Tate pair of weight ¹0; 1º. Then [53, Proposi-
tion 4.5] and [53, Table 4.6] imply that k is odd and for the representations .Hi ; Vi / we
have the following possibilities:

Ar :
Vr
.standard/, r � 1 mod 4, r � 1.

Br : Spin, r � 1; 2 mod 4, r � 2.

Cr : Standard, r � 3.

Dr : SpinC, r � 2 mod 4, r � 6.

One observes that each simple Lie algebra has at most one possible representation.

3.6. Final remarks

(1) We construct a common E-form G ,! GLn;E of the algebraic monodromy represen-
tations G� ,! GLn;E� of the system (2) in case it is absolutely irreducible and G� is
connected (for all �) in Theorem 1.1 (ii). The non-absolutely-irreducible case and the
non-connected case remain open.

(2) Let �� be the system in Theorem 1.6 and assume Conjecture S. Then Corollary 1.9 (i)
produces an adelic representation �G

A W Gal. xK=K/! G.AQ/. Let �G
F`

be the mod `
reduction of the `-component �G

`
of �G

A for `� 0. One can deduce by [27, Theorem A,
Corollary B] that there is a constant C > 0 such that the index satisfies

ŒG.F`/ W �G
F`
.Gal. xK=K//� � C; 8`� 0:
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Thus, the composition factors of Lie type in characteristic ` of �G
F`
.Gal. xK=K// can

be described when `� 0; see a similar result [28, Corollary 1.5] for certain type A
compatible systems.

(3) The smooth subgroup scheme G� � GLn;O� in Corollary 1.3 depends on the choice
of an O�-lattice of V�. It is shown in [6] that for almost all �, the subscheme G� �

GLn;O� is unique up to isomorphism.

(4) TheE-forms G and G�GLn;E we constructed in Theorem 1.1 are not unique for the
simple reason that X1.E;Gad/ in Theorem K may not be trivial, where Gad denotes
the adjoint quotient of G.

(5) Let S 0 be a non-empty finite subset of PE;f . Actually, by examining the proof, Main
Theorem I holds if we replace P

.p/

E;f
with PE;f n S

0.

(6) In characteristic zero, Question Q in Section 3:3:2 should be addressed if one wants
to apply Main Theorem II to an E-compatible system when E is totally imaginary.
However, one can always use Main Theorem I by omitting a finite place of E if one
knows that G� is quasi-split for almost all �, or, one can take the Weil restriction
ResE=Q (Section 3:2:2) to obtain a Q-compatible system and see if Main Theorem II
can be applied.
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