
Solved and unsolved problems

Michael Th. Rassias

The present column is devoted to probability theory.

I Six new problems – solutions solicited

Solutions will appear in a subsequent issue.
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Let V be a finite set and ̃V ⊂V. For a finite pathw=(w0,w1,…,wη)
on V, we let n0 = 0, and for i ≥ 1, we let

ni =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

max{ni−1 ≤ n ≤ η ∶ wn = wni−1} + 1,

if wni−1 ∈ ̃V and wni−1 ≠ wη,

ni−1 + 1, if wni−1 ∉ ̃V and ni−1 ≠ η.

We call 𝔏 ̃V(w) ∶= (wn0,wn1,…,wnι), where nι is the last index
found by the algorithm, the partial loop erasure (PLE) of w.

Let (Xn,ℙx) be a discrete-time irreducible Markov chain on
a finite set V, and let σA = min{n ≥ 0 ∶ Xn ∈ A} and X|[0,σA] =
(X0,X1,…,XσA). Prove that

𝔏V(X|[0,σA])
(d)
= 𝔏V ∘ 𝔏 ̃V(X|[0,σA]),

where
(d)
= means that both sides have the same law.

Shiping Cao (Department of Mathematics, University of
Washington, Seattle, USA)

This problem is a simplified version of Theorem 1 of my recent
paper: S. Cao, Scaling limits of loop-erased Markov chains on
resistance spaces via a partial loop-erasing procedure. Adv. Math.
435, part B, article no. 109382 (2023).
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The following democratic process is implemented in a population
of N sheep during a Yes/No referendum. At the initial time t = 0,
m sheep are pro-Yes, and N−m sheep are pro-No. At each time
t = 1, 2,…, a sheep is randomly chosen (independently of what
happened before) and it bleeps its opinion. Instantly, a sheep from

the opposite camp (if at least one remains) switches its opinion.
The process stops when a consensus is reached.

We denote by Pm,N the probability that “Yes” wins when start-
ing with m pro-Yes sheep in the population. Of course, P0,N = 0,
PN,N = 1, and, due to the symmetry of the problem, PN,2N = 1/2.

Question. Find a simple expression for Pm,N. (In particular, this
expression should allow you to estimate very easily the evolution
of this probability when starting from a very small majority, i.e.,
estimate PN+aN,2N for different sequences 1 ≪ aN ≪ N.)

Lucas Gerin (CMAP, École Polytechnique, Palaiseau, France)
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Let α ∈ ℝ and consider the transition probability density P(x; t|y)
from a point y ≥ 0 after a time t > 0 of a Brownian motion on
the non-negative real line with reflecting boundary conditions;
in particular, P(x; t|y) is the weak solution of the following initial
value problem with Robin boundary condition:
(1) ∂tP(x; t|y) = α∂xP(x; t|y) + 1

2∂
2
xP(x; t|y) for all x, y ≥ 0 and

t > 0;
(2) [2αP(x; t|y) + ∂xP(x; t|y)]x=0 = 0 for all t > 0, where the

derivative at the origin is the one-sided right derivative;
(3) limt→0 ∫∞0 f(x)P(x; t|y)dx = f(y) for all bounded continuous

functions f and y ≥ 0.
Prove that the solution is given by

P(x; t|y) = 1
2
∂x(erfc[

y− x− αt
√2t

] − e−2αx erfc[y+ x− αt
√2t

]),

for any x,y≥ 0 and t> 0, where erfc(x)= 2
√π ∫

∞
x e−y2dy is comple-

mentary error function and ∂x is the partial derivative with respect
to x.

Mario Kieburg (School of Mathematics and Statistics,
University of Melbourne, Parkville, Melbourne, Australia)
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We place n different pairs of socks in a tumble dryer. When the
dryer has thoroughly mixed the socks, they are taken out one by
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one. If a sock is the partner of one of the socks on the sorting table,
both are removed, otherwise it is put on the table until its partner
emerges from the dryer. For k ∈ {1,…, 2n}, let Xk be the number
of socks on the table when the kth sock is taken from the dryer.
With X0 = 0, the random path (X0,…,X2n) is a Dyck path. Recall
that a path (x0,…, x2n) is called a Dyck path if |xi − xi+1| = 1,
xi ≥ 0 for 1 ∈ {1,…, 2n− 1} and x0 = x2n = 0.

The number of Dyck paths of a given length is given by the
Catalan numbers, but not all Dyck paths come up with the same
probability in the sock sorting process. For example, for n = 2
there are two Dyck paths, (0, 1, 0, 1, 0) and (0, 1, 2, 1, 0). The
former has probability 1

3 and the latter 2
3 . The problem is now,

given a Dyck path (x0,…,x2n) of arbitrary length, to find a formula
for the probability

ℙ(X0 = x0, X1 = x1, …, X2n = x2n).

Peter Mörters (University of Cologne, Germany)
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In a university hospital, there are 9 major medical departments
performing surgery. The cardiology unit performs 21% of all surg-
eries conducted hospital-wide, with 5% of total cardiac surgeries
occurring at least twice a day. A total of 30 patients are assigned to
surgery. Assuming that surgeries are equally likely on any given day
of the year, if two or more surgeries occur on the same day, what
is the probability that they are assigned to the cardiology unit?

Gaetano Valenza (Bioengineering and Robotics Research
Center “E. Piaggio” & Department of Information Engineering,
School of Engineering, University of Pisa, Italy)
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It is the king’s birthday, and he decides to please the republican
sentiments in the population and release some prisoners who
are held for their republican views. The prisoners all have equally
excellent rational skills and are placed in separate castles, so that
they are unable to speak and communicate with each other. The
king decides to challenge the prisoners and gives each of them
a coin. Within a quarter of an hour, each of them, say n prisoners,
has to decide whether to toss the coin or not. If at least one coin
is tossed and all coins being tossed show head, all n prisoners
are released, otherwise none of them are. The king believes the
prisoners have a slim chance of being released. But is that so? What
is the probability that they all are released? The prisoners are told
the number n.

Carsten Wiuf (Department of Mathematical Sciences,
University of Copenhagen, Denmark)

II Open problems

by Van Vu (Department of Mathematics, Yale University, USA)

Open problems on random matrices
Let Mn be a random matrix of size n whose entries are iid ±1
random variables (with probability 1/2 each). It is known that most
of the eigenvalues of this matrix, with high probability, are complex
and distribute by the circular law [2]. The question here is that how
many are real.

The following conjecture is motivated by my joint work with
T. Tao in [3].

290*. Conjecture (real eigenvalues)
Mn has, with probability 1− o(1), Θ(√n) real eigenvalues.

Edelman, Kostlan, and Shub [1] obtained a precise formula for
the expectation of the number of real eigenvalues for a Gaussian
matrix, which is of order √n. In [3], Tao and Vu proved that the
same formula holds (in the asymptotic sense) for certain random
matrices with entries 0,±1, as a part of a Four Moment Theorem
for non-symmetric matrices. However, we cannot extend the proof
toMn. As a matter of fact, it is not known that with high probability,
Mn has at least 2 real roots.

The next problem bears some resemblance to the famous “rigid-
ity” problem in computer science. Given a±1matrixM, let Res(M)
denote the minimum number of entries we need to switch (from 1
to −1 and vice versa) in order to make M singular. Thus, Res(M)
can be seen as the resilience of M against an effort to reduce
its rank. It is easy to show that Res(Mn) is, with high probability,
at most (1/2+ o(1))n, it typically takes this many switches to
make the first two rows of the matrix equal.

291*. Conjecture (rank resilience)
With probability 1− o(1), Res(Mn) = (1/2+ o(1))n.

For more discussion and related problems, we refer to [4].
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III Solutions
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Consider the tiling of the plane by regular hexagon tiles, with cen-
ters in the lattice L of all ℤ-linear combinations of the vectors (1,0)
and (− 1

2 ,
√3
2 ). Glue all but finitely many tiles into position, remove

the unglued tiles to form a region, discard some of these tiles,
and arrange the remaining n unglued tiles in the region without
rotating them, in arbitrary positions such that none of the tiles
overlap. Is there a way to slide the unglued tiles within the region,
keeping them upright and non-overlapping, so that their centers
all end up in L?

Hannah Alpert (Department of Mathematics and Statistics,
Auburn University, USA)

Solution by the proposer
Yes. We think of tiles as being specified by their centers, so we use
the word “tile” to mean “center of a tile” whenever the meaning
is unambiguous. Our first lemma shows that it suffices to slide the
tiles to L∗, which we define to be the lattice that contains L as
well as all the vertices of the hexagons of the original tiling. This
lattice L∗ is generated by the vectors (0, √3

3 ) and ( 12 ,
√3
6 ), which

are orthogonal to (1, 0) and (− 1
2 ,

√3
2 ), respectively.

Lemma 1. Starting with any arrangement where all tiles are in L∗,
we can slide so that they all end up in L.

Proof. We use induction on the number of tiles not in L. Among
the tiles not in L, find those with the least y-coordinate, and among
these, select the one with the least x-coordinate. Either this tile can
slide down along (0,−√3

3 ) to a point in L, or it can slide down-left
along (− 1

2 ,−
√3
6 ) to a point in L.

We want to slide from an arbitrary tile arrangement to L∗.
In the starting arrangement, sliding is obstructed by tangencies,
which are pairs of tiles that touch. When two tiles touch only at
vertices, we call it a double tangency. We can make a graph of all
tangencies by drawing an edge between the centers of each pair
of tiles that are tangent, whether they are both unglued tiles, or
one unglued and one glued, or both glued; this graph is embedded
in the plane. Any subset of the tangencies determines a linear
subspace of ℝ2n, consisting of the infinitesimal perturbations of
the unglued tiles that preserve those tangencies. If a pair of tiles
is tangent but the tangency is not included in the subset, the
perturbation is allowed to destroy the tangency, either by making
the tiles overlap, or by creating a gap between them. We say that

a tangency graph is rigid if this linear subspace of perturbations
is trivial.

Our strategy for sliding all tiles to L∗ is to find a perturbation
direction that preserves all the tangencies, and slide in that direction
until a new tangency forms. Then we find a perturbation direction
that preserves all the tangencies, including the new one, slide in
that direction, and so on, until the graph of all tangencies becomes
rigid. The next lemma completes the proof.

Lemma 2. If the graph of all tangencies of an arrangement of
tiles is rigid, then all tiles are in L∗.

Proof. First we describe in more detail how a tangency graph
determines a linear subspace of perturbations. For some tangencies,
the vector along that edge of the graph is fixed: this includes
any tangency between two glued tiles, and any double tangency.
Otherwise, the edge vector is determined by a variable offset. There
are three types of tangencies with variable offsets, corresponding
to the three directions of tile sides along which the tangency may
occur. The linear subspace of perturbations is specified by a system
of linear equations, with one variable for each variable offset, and
two equations for each face of the tangency graph, which mandate
that the sum of vectors along the edges of that face is zero as
a vector in ℝ2.

To prove the lemma, we consider subgraphs of the graph of
all tangencies; these subgraphs contain all the tiles and all the
edges with fixed edge vectors, but not necessarily all the edges
with variable offset. We show by induction on the number of edges
with variable offset that if a tangency subgraph is rigid, then all of
its edge vectors are in L∗. This implies that the tiles are also in L∗,
because in a rigid tangency subgraph, every unglued tile has a path
connecting it to a glued tile.

Consider the case where a face has only one edge with variable
offset. Then that edge vector is determined by the others along that
face, so if we remove that edge, the resulting tangency subgraph
is still rigid, and we may apply the inductive hypothesis.

Next, consider the case where a face has (at least) two edges
with variable offsets, of different types. The sum of these two
edge vectors uniquely determines their two offsets, so the two
edge vectors are determined by the others along that face. Thus,
removing both edges gives a rigid tangency graph, to which we
can apply the inductive hypothesis. The fact that the sum of the
two edge vectors is in L∗ implies that each of the two is in L∗.

To address any remaining cases, we draw the dual graph to the
tangency subgraph, with one vertex for each face of the tangency
subgraph, and one edge for each edge with variable offset in the
tangency subgraph, connecting the faces on the two sides of that
edge. If the dual graph has no loops or cycles, then either it has
no edges, so we are in the base case, or it has a vertex with only
one edge, so we are in the first case already addressed. If the dual
graph has a cycle with edges of more than one type, then we are
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in the second case already addressed. The remaining case is where
the dual graph has a loop or cycle with edges of only one type, but
this contradicts rigidity, because we could shift all tiles enclosed by
the cycle. Thus, there are no remaining cases.
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Find two non-homeomorphic topological spaces A and B such
that their products with the interval, A× [0, 1] and B× [0, 1], are
homeomorphic.

Guillem Cazassus (Mathematical Institute,
University of Oxford, UK)

Solution by the proposer
One can take A the 2-sphere with 3 discs removed, and B the 2-
torus with one disc removed. These can both be seen as obtained
from the 2-disc by attaching two 1-handles, as in Figure 1. After
taking their products with [0,1], the extra dimension added allows
to exchange the attaching positions of the handles to go from the
first picture to the second.

Figure 1. Exchanging the attaching positions of the handles.

278
What is the topology of the space of straight lines in the plane?

Guillem Cazassus (Mathematical Institute,
University of Oxford, UK)

Solution by the proposer
Call this space ℳ. It is an open Möbius strip: here are two possible
ways to see this.

Solution 1: Let ℳ0 ⊂ ℳ correspond to the lines passing through
the origin. Then ℳ0 is a circle ℝ/πℤ, and one can consider the
projectionℳ→ℳ0 sending a line to its parallel passing through 0.
This is a fibration, with fiber ℝ, and the inclusion ℳ0 ↪ ℳ gives
a section of it. There are two such fibrations possible: the trivial
one (cylinder) and the Möbius strip. The one we consider can-
not be trivial, otherwise it would mean that one can find an-
other section disjoint from ℳ0. This would mean that one can
take a given line disjoint from the origin, and half-twist it con-

tinuously without hitting the origin. Therefore, it is the Möbius
strip.

Solution 2: We can view ℳ as the quotient of ℳor, the space
of oriented lines. First, ℳor can be identified with the cylinder
(ℝ/2πℤ) ×ℝ, the first coordinate being the angle with the hori-
zontal axis, and the second the “algebraic distance” to the origin
(take the distance, and put a minus sign if the origin is at the left
of the line).

Second, under this identification, the involution reversing the
orientation of a line is the map ι ∶ (θ, d) ↦ (θ + π,−d), and
ℳ ≃ ℳor/ι. It follows that ℳ can be obtained from the strip
[0, π] × ℝ (a fundamental domain for ι) by identifying its two
edges by the twist (0,d) ∼ (π,−d), which gives a Möbius strip.
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In the standard twin paradox, Greg stays at homewhilst John travels
across space. John finds, upon returning, that he has aged less
than Greg. This is an apparent paradox because of the symmetry
in the situation: in John’s rest frame, it seems like Greg is doing
the moving and so should also be experiencing time dilation. The
standard explanation of the paradox is that there is no symmetry:
at some point John needs to turn around (accelerate), so, unlike
Greg, John’s rest frame is not inertial for all times. So let’s modify
the set-up: suppose that space-time is a cylinder (space is a circle).
Now, John eventually comes back to where he started without
needing to decelerate or accelerate. In this fleeting moment of
return, as the twins pass one another, who has aged more?

Jonny Evans (Department of Mathematics and Statistics,
University of Lancaster, UK)

Solution by the proposer
John has aged more. You can just integrate to compute his proper
time and see it is smaller. If the speed of John is v, the size of the
universe is L and the speed of light is c, then the proper time until
return measured by John is

∫
L/v

0
√dt2 − dx2/c2 = L√1/v2 − 1/c2

against Greg’s L/v.
But why is this not a paradox? Again, the problem is that,

despite appearances, there is no symmetry in the situation. In other
words, there is no global isometry of space-times interchanging
their rest frames. Space-time is foliated by a distinguished family of
closed space-like geodesic loops. These are orthogonal to Greg’s
world-line, but not to John’s. This means that, unlike in Minkowski
space-time, John could do an experiment to figure out that he is
moving. For example, suppose that Greg sees John moving to the
right. If John emits a red light ray leftwards and a blue light ray
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rightwards, and waits for them to circle around the universe, he
will see the red light ray return first; see Figure 2.
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•blue light returns

•red light returns

Figure 2. John’s experiment in Greg’s rest frame.

You can read a more leisurely discussion of this version of the
twin paradox in the following paper: J. R. Weeks, The twin paradox
in a closed universe. Amer. Math. Monthly 108, 585–590 (2001).
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The k-dilation of a piecewise smooth map is the degree to which
it stretches k-dimensional area. Formally, for a map f ∶ U → V be-
tween subsets U ⊆ ℝm and V ⊆ ℝn, or more generally between
Riemannian manifolds,

Dilk(f) = sup{|ΛkDfx| ∣ x ∈ U},

where ΛkDfx ∶ ΛkTxU → ΛkTf(x)V is the induced map on the k-th
exterior power and | ⋅ | is the operator norm. A map of rank k− 1
has k-dilation zero, so this can be thought of as a quantitative
refinement of rank.

Consider the rectangular prism Rε = [0, 1]2 × [0, ε].
(1) Let f ∶ R1 → Rε be a map of relative degree 1, that is, it restricts

to a degree-1 map between the boundaries of the rectangles.
Show that the 2-dilation of such a map is bounded below by
a C > 0 which does not depend on ε.

(2) Now let cε be the minimum 2-dilation of a surjective map
f ∶ R1 → Rε. Construct examples to show that cε → 0 as ε → 0.

Fedor (Fedya) Manin (Department of Mathematics, University
of California, Santa Barbara, USA)

Solution by the proposer
(1) The statement follows from applying the idea that “2-dilation

is the degree to which the map stretches area of surfaces” to
the boundary. Let f ∶ R1 → Rε be a map of relative degree 1,
and write dA for the area form on ∂Rε. By the definition of
degree,

Area(∂Rε) = ∫
∂R1

f∗dA.

Now, f∗dA(v1 ∧ v2) = dA(Df(v1) ∧ Df(v2)) ≤ Dil2(f)|v1 ∧
v2|, and therefore

Area(∂Rε) ≤ Dil2(f)Area(∂R1).

Therefore, Dil2(f) ≥ 1/3.
(2) Assume that ε = n−3 for some integer n. We will construct

a map f ∶ R1 → Rε with Dil2(f) = 16n−2 = 16ε2/3. The basic
idea is to use the fact that R1 has much larger volume than Rε.
Some portion of that volume will be cut up into chunks, shrunk
down by a factor of around n, and distributed surjectively
over Rε. The rest will be used to make the map continuous;
this may be highly distorted, but does not contribute to the
2-dilation because it maps to a one-dimensional subspace
of Rε.
Split Rε into an n3 × n3 grid of cubes K1,…, Kn6 of side
length n−3. These are in one-to-one correspondence with an
n2 × n2 × n2 grid of cubes L1,…, Ln6 in R1 of side length n−2.
Let L′i be the cube of side length 2

3n
−2 which is concentric

with Li. We define f on each L′i so that it maps ∂L′i to the
center of Ki and the interior of L′i surjectively over Ki, with
Df|∂L′i = 0. Such a map can be made 4n−1-Lipschitz, and there-
fore its 2-dilation is 16n−2. Outside the L′i , we can extend
this map to a smooth map whose image is a tree embedded
in Rε, the vertices of which are the centers of the Ki. Since
the tree is one-dimensional, the 2-dilation of this portion is
zero.

This problem demonstrates a tension frequently encountered
in metric geometry. Suppose you are trying to construct a map
between two spaces with certain properties and geometric bounds.
When you try to do it the obvious way, the geometric complexity
blows up in one direction but stays very small in another. Can the
map bemodified by “trading off” these dimensions while preserving
the desired properties?

Both halves of the problem are inspired by research papers: (2) is
an approximate version of a construction by Kaufman of a rank 1
map from the cube to the square [3], while (1) is a simple case of
a complex and surprising result of Guth [2, Theorem 2]. For other
pairs of rectangles Guth shows, using a very different construction,
that one can trade off between different dimensions to some
degree even while constructing maps of relative degree 1. Both
Kaufman’s and Guth’s constructions have inspired further work.
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For instance, Wenger and Young [4] used a construction similar
to Kaufman’s to show that certain Lipschitz maps from spheres
to Heisenberg groups (unexpectedly!) have Lipschitz extensions to
balls. In contrast, Goldstein, Hajłasz and Pankka [1] used a Kaufman-
style construction to create low-rank maps Sn+1 → Sn which are
actually topologically nontrivial.
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Given a triangle in the (real or complex) plane, show that there
is a natural bijection between the set of smooth conics passing
through the vertices and the set of lines avoiding the vertices.

Jack Smith (St John’s College, University of Cambridge, UK)

Proof by the proposer
Suppose C is a conic through the vertices P, Q, and R of the triangle,
and let ℓP, ℓQ, and ℓR be its respective tangent lines at these
points. By Pascal’s theorem, the intersections ℓP ∩ QR, ℓQ ∩ RP,
and ℓR ∩ PQ are collinear, lying on a line L say. We claim that the
map C ↦ L (is well defined and) gives the desired bijection.

To prove this, take homogeneous coordinates [x ∶ y ∶ z] on
the plane in which P, Q, and R are [1 ∶ 0 ∶ 0], [0 ∶ 1 ∶ 0], and
[0 ∶ 0 ∶ 1], respectively. A general conic through these points is
described by the equation

ayz+ bzx+ cxy = 0

for a unique [a ∶ b ∶ c] in ℙ2. The conic is smooth if and only if a,
b, and c are all non-zero. Meanwhile, a general line in the plane is
described by the equation

αx+ βy+ γz = 0,

and it avoids P, Q, and R if and only if α, β, and γ are all non-
zero. It therefore remains to show that the map C ↦ L induces
a bijection from triples of non-zero scalars (a, b, c) to triples of
non-zero scalars (α,β, γ).

Suppose then that C is the smooth conic

ayz+ bzx+ cxy = 0.

Differentiating, we see that the line ℓP is cy+ bx = 0, so

ℓP ∩ QR = [0 ∶ b ∶ −c].

Similarly ℓQ ∩ RP = [−a ∶ 0 ∶ c] and ℓR ∩ PQ = [a ∶ −b ∶ 0], and
we see that there is a unique line L through these points, with the
equation

bcx+ cay+ abz = 0.

So the map C ↦ L is well defined and corresponds to

(α,β, γ) = (bc, ca,ab).

This is a bijection, with inverse

(a,b, c) = (βγ, γα,αβ),

so we are done.

We wait to receive your solutions to the proposed problems and
ideas on the open problems. Send your solutions to Michael Th.
Rassias by email to mthrassias@yahoo.com.

We also solicit your new problems with their solutions for
the next “Solved and unsolved problems” column, which will be
devoted to discrete mathematics.
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