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Vanishing first cohomology and strong 1-boundedness
for von Neumann algebras

Ben Hayes, David Jekel, and Srivatsav Kunnawalkam Elayavalli

Abstract. We obtain a new proof of Shlyakhtenko’s result which states that if G is a sofic, finitely
presented group with vanishing first `2-Betti number, then L.G/ is strongly 1-bounded. Our proof
of this result adapts and simplifies Jung’s technical arguments which showed strong 1-boundedness
under certain conditions on the Fuglede–Kadison determinant of the matrix capturing the relations.
Our proof also features a key idea due to Jung which involves an iterative estimate for the covering
numbers of microstate spaces. We also use the works of Shlyakhtenko and Shalom to give a short
proof that the von Neumann algebras of sofic groups with Property (T) are strongly 1 bounded,
which is a special case of another result by the authors.

1. Introduction

A tracial von Neumann algebra is a pair .M; �/ of a finite von Neumann algebra and a
faithful normal tracial state. For every groupG, there is an associated tracial von Neumann
algebra, the von Neumann algebra L.G/ generated by the left regular representation of G
on `2.G/ with the trace given by hıe; .�/ıei, and a major theme of operator algebraic
research has been how the properties of a group (algebraic, analytic, geometric, etc.) are
reflected by its von Neumann algebra.

In particular, one may consider finitary approximations of the group in several senses:
A group is sofic if the group trace can be approximated by almost representations in per-
mutation groups; on the other hand,L.G/ is Connes embeddable if the same holds for rep-
resentations in unitary groups, or if the group can be approximated by �-representations
in matrices. Voiculescu’s free entropy dimension was introduced to quantify the amount
of approximations by matrices for a given tuple x in a von Neumann algebra [28, 29].
The standard generators for a free group Fn for n � 2 have many approximations, and
Voiculescu used this fact to deduce that the von Neumann algebra has no Cartan subalge-
bras [29]. The free entropy approach has had several other applications to free group von
Neumann algebras (and more generally free products) [10,13,15,18,25]. A related notion
of strong 1-boundedness was introduced by Jung (see [20]); this is a strengthening of the
condition of having free entropy dimension 1, with the useful property that it is indepen-
dent of the choice of generating set. The first author reformulated strong 1-boundedness
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through a numerical invariant h, called the 1-bounded entropy, which is finite if and only
if M is strongly 1-bounded (see [15]).

The work of Jung [19] and Shlyakhtenko [25] investigated strong 1-boundedness in
the context of polynomial relations in a �-algebra. In particular, Shlyakhtenko explicitly
connected this to `2-Betti numbers of groups. In this paper, we present an alternative
proof of Shlyakhtenko’s result [25] that finitely presented sofic groups with vanishing first
`2-Betti number are strongly 1-bounded (results in this direction are in Jung’s paper but
under somewhat restrictive hypotheses). Shlyakhtenko’s result generalized Jung’s earlier
work [19] but with a different proof strategy using non-microstates free entropy rather
than microstates free entropy. We give a purely microstates proof that streamlines Jung’s
original ideas and clarifies the essential ingredients and limitations of this approach. The
statement of the theorem is as follows.

Theorem 1.1 ([25]). If G is a sofic finitely presented group with vanishing first `2-Betti
number, then L.G/ is strongly 1-bounded.

Shlyakhtenko proved Theorem 1.1 by obtaining a key technical free probabilistic fact
involving non-microstates theory and Fisher’s information. Using this in combination with
an inequality between the microstates and non-microstates free entropy dimensions, he
obtains, as a corollary, the following generalization of Jung’s result [19, Theorem 6.9].

Theorem 1.2. Let .M; �/ be a tracial W�-algebra generated by some x 2M d
sa . Suppose

that kxk1 < R. Let m 2 N [ ¹1º. Let f .t1; : : : ; td / 2 Cht1; : : : ; td i
˚m be a tuple of

non-commutative polynomials such that f .x/ D 0. Let

Df .x/ D

�
x1 ˝ 1 � 1˝ x1 � � � xd ˝ 1 � 1˝ xd

@x1f .x/ � � � @xdf .x/

�
2Mm;d .M ˝M

op/;

and let �jDf j be the spectral measure of jDf j D .D�fDf /
1=2 with respect to � ˝ � . IfZ

Œ0;1/

jlog t j d�jDf j.t/ <1; (1.1)

(with the convention that log.0/ D �1), then M is strongly 1-bounded.

Strictly speaking, both Jung and Shlyakhtenko’s results are about ˛-boundedness for
general ˛ � 1, whereas the above theorem just covers ˛ D 1. However, the case of ˛ D 1
is of the most interest in applications, and the case of ˛ > 1 will not be relevant in our
paper.

One deduces Theorem 1.1 from Theorem 1.2 through the well-known relationship
between group cocycles and derivations on the group algebra. One then parameterizes the
derivations in terms of their action on a self-adjoint generating set, hence obtaining a bijec-
tion between derivations and vectors z in the kernel of @f .x/. Looking at cocycles that are
orthogonal to the inner cocycles results in the additional condition of

Pd
jD1Œxj ; zj � D 0,

or that z is in the kernel of the commutator operator in the first row of the matrix Df .x/.
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Hence, the first `2-Betti number with respect to � of the �-algebra generated by x is the
Murray–von Neumann dimension of the kernel of Df .

The condition (1.1) is needed for the microstates argument to go through in the case
of [19], or the more general non-microstates estimate used in [25] (the arguments are
substantially different). This hypothesis is non-trivial to check in the group case, and this
is where one uses the assumption of soficity. The bound (1.1) expresses positivity of a
certain Fuglede–Kadison determinant, which is known for sofic groups [11]. We remark
that Shlyakhtenko’s results about vanishing L2-Betti numbers have been generalized to
�-algebras that are not group algebras [5], but this still requires some way of controlling
the Fuglede–Kadison determinant.

Our proof of Theorem 1.2 is longer than Shlyakhtenko’s argument, but it is more self-
contained. Indeed, Shlyakhtenko’s argument used the external fact that � � �� from [4]
and the result about strong 1-boundedness and non-amenability sets from [15, Proposition
A.16]. In this paper, we generalize and streamline Jung’s strategy from [19], which uses
iteration to bound covering numbers for smaller and smaller "with errors controlled by the
integral (1.1). Much of the technical challenge in Jung’s work had to do with converting
between covering numbers with respect to different non-commutative Lp-norms on the
von Neumann algebra (and in fact Lp quasinorms for p 2 .0; 1/). Our argument works
mostly with L2 norms but requires conversion between L1 and L2 norms at one point,
and this is the main time we use a significant external ingredient, Szarek’s estimates for
the covering numbers of Grassmannians [26].

Another notable feature of the proof is the way in which the condition
P
j Œxj ; zj �D 0

(which corresponded in cohomology to looking at cocycles orthogonal to inner cocycles)
arises naturally in the microstate setting by considering the element in a unitary orbit
closest to a given point x.

We also remark that polynomials in Theorem 1.2 can be replaced more generally
by power series and even non-commutative trace C 2 functions in the sense of [17]; see
Remark 3.10.

2. Background

2.1. Tracial von Neumann algebras and non-commutative laws

A tracial von Neumann algebra is a pair .M; �/ where M is a von Neumann algebra and
� WM ! C is a faithful, normal, tracial state. The classical example is Mn.C/ as a tracial
von Neumann algebra with the tracial state trn given by

trn.A/ D
1

n

nX
iD1

Ai i :

We will primarily be interested in cases where M is diffuse, i.e., it has no non-zero min-
imal projections. The above algebra is finite-dimensional, and is thus not diffuse. One
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interesting class of diffuse tracial von Neumann algebras are the group von Neumann alge-
bras. For a discrete group, we define the left regular representation �WG !U.`2.G// by

.�.g/�/.h/ D �.g�1h/ for all g; h 2 G:

The group von Neumann algebra of G is then

L.G/ D span¹�.g/ W g 2 Gº
SOT
:

The linear functional � WL.G/! C given by �.x/D hxı1; ı1i is a faithful, normal, tracial
state (see, e.g., [21, Remark 6.7.3]). So, .L.G/; �/ is a tracial von Neumann algebra.
Moreover, it can be shown that L.G/ is diffuse if and only if G is infinite.

For a von Neumann algebra M , we use Msa for the self-adjoint elements of M and
U.M/ for the unitary elements of M .

Abelian tracial von Neumann algebras correspond exactly to probability spaces, and
so we may think of tracial von Neumann algebras as an instance of non-commutative
probability spaces. Mimicking the Abelian case, for a tracial von Neumann algebra .M;�/
and 1 � p � 1, we define k � kp on M by

kxkp D �.jxj
p/1=p; where jxj D .x�x/1=2:

It can be shown [9] that this is indeed a norm on M . We use the notation kxk1 for the
operator norm. More generally, for x 2M d , we set

k.x1; : : : ; xd /kp D

´ �Pd
jD1 �.jxj j

p/
�1=p

; p 2 Œ1;1/;

maxjD1;:::;dkxj k; p D1:

If .M; �/ is viewed as a non-commutative probability space, then its elements may be
viewed as non-commutative random variables. In fact, a d -tuple x D .x1; : : : ; xd / 2M d

sa
is the non-commutative analog of an Rd -valued random variable. In the commutative
setting, an Rd -valued random variable naturally gives rise to a probability distribution
as a classical measure on Rd . It is not possible to define such a measure in the non-
commutative setting. However, as probability measures of compactly supported measures
may be uniquely characterized by their moments, we define an analog of the notion of
probability distribution as a linear functional on non-commutative polynomials.

For d 2 N, we let Cht1; : : : ; td i be the algebra of non-commutative polynomials
in d formal variables t1; : : : ; td , i.e., the free C-algebra with d -generators. We give
Cht1; : : : ; td i the unique �-algebra structure which makes the tj self-adjoint. By universal-
ity, if A is any �-algebra and x D .x1; : : : ; xd / 2 Ad is a self-adjoint tuple, then there is a
unique �-homomorphism Cht1; : : : ; td i ! A which sends tj to xj . For p 2 Cht1; : : : ; td i.
We use p.x/ for the image of p under this �-homomorphism. Given a tracial von Neu-
mann algebra .M; �/ and x 2M d

sa , we define the law of x, denoted by `x , to be the linear
functional `x WCht1; : : : ; td i ! C given by

`x.f / D �.f .x//:

Non-commutative laws can be characterized as follows.
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Proposition 2.1 (see [1, Proposition 5.2.14]). The following are equivalent.

(i) There exists a tracial von Neumann algebra .M;�/ and x 2M d
sa such that `D `x

and kxk1 � R.

(ii) ` satisfies the following conditions:

• `.1/ D 1,

• `.f �f / � 0 for f 2 Cht1; : : : ; td i,

• `.fg/ D `.gf / for f; g 2 Cht1; : : : ; td i,

• j`.ti1 � � � tik /j � R
k for all k 2 N and i1; : : : ; ik 2 ¹1; : : : ; dº.

For R > 0, d 2 N, we let †d;R be the space of laws, satisfying either of the above
equivalent conditions (for this specific) R. We also denote

†d D
[
R>0

†d;R:

Since †d is a space of linear functionals on Cht1; : : : ; td i, we can give it the weak�-
topology.

Remark. The proof of ((ii) implies (i)) uses the GNS construction (see [1, Proposition
5.2.14]). Namely, let H D L2.`/ be separation-completion of Cht1; : : : ; td i with respect
to the semi-inner product hf; gi` D `.f �g/. It can be shown that multiplication by tj
is bounded with respect to this semi-inner product and induces a well-defined bounded,
self-adjoint operator xj on L2.`/. Let M D W �.x1; : : : ; xd / be the algebra generated
by x1; : : : ; xd , and we define � WM ! C by �.x/ D hx1; 1i, where 1 2 Cht1; : : : ; td i is
viewed as a vector inL2.`/. We will denoteM DW �.`/, and �l WCht1; : : : ; td i!W �.`/

the unique �-homomorphism, satisfying �`.tj / D xj .

2.2. Microstate spaces and 1-bounded entropy

Let .M; �/ be a diffuse tracial von Neumann algebra, and x 2 M d
sa for some d 2 N with

W �.x/ DM . Suppose that kxk1 � R. Following [28], for each open set O of †d;R and
N 2 N, we define

�
.n/
R .O/ D

®
X 2Mn.C/

d
sa W `X 2 O

¯
:

When O is a neighborhood of `x , we call �.n/R .O/ a microstate space for x.
Given d; n 2 N, p 2 Œ1;1�, " > 0, and �;„ �Mn.C/d , then „ is said to ."; k�kp/-

cover� if, for every A 2�, there is a B 2„ with kA�Bkp < ". We define the covering
number of� �Mn.C/d , denoted byK".�; k � kp/, to be the minimal cardinality of a set
that .";k � kp/-covers�. For subsets of Mn.C/d which are invariant under the conjugation
action of U.n/ on Mn.C/d , it is natural to take the orbital numbers modulo unitary conju-
gation. Given n 2N, " > 0 and�;„�Mn.C/d , we say that„ orbitally .";k�kp/-covers
� if, for every A 2 �, there is a B 2 „ and an n � n unitary matrix V so that

kA � VBV �k2 < ":
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We define the orbital covering numberKorb
" .�;k�kp/ as the minimal cardinality of a set of

�0 that orbitally .";k�kp/-covers�. Since we will usually be concerned with k � k2-norms,
we will frequently drop k � k2 from the notation and useKorb

" .�/ instead ofKorb
" .�;k � k2/.

Let R 2 Œ0;1/ be such that kxk1 < R.
For a weak�-neighborhood O of `x , we define

hR;".O/ WD lim sup
n!1

1

n2
logKorb

" .�
.n/
R .O//;

hR;".x/ WD inf
O3`x

hR;".O/;

where the infimum is over all weak�-neighborhoods O of `x . We then define

hR.x/ WD sup
">0

hR;".x/:

By [15], it follows that hR.x/ is independent of R as soon as kxk1 � R, so we use h.x/
instead of hR.x/ as soon as kxk1 � R. Moreover, if x; y are two self-adjoint tuples in
M with W �.x/ D M D W �.y/, then h.x/ D h.y/. So, we may define h.M/ D h.x/ if
W �.x/DM . IfM is not a factor, then the 1-bounded entropy depends upon the choice of
M . We will use h.M;�/ if we wish to emphasize the dependence of the 1-bounded entropy
of � . Usually, the choice of � will be clear from the context and use h.M/. In [15], it is
shown how to extend this definition to infinitely many variables, but we will not need this.
The 1-bounded entropy characterizes strong 1-boundedness by the following result.

Theorem 2.2 (see [15, Proposition A.16]). A tracial von Neumann algebraM is strongly
1-bounded in the sense of Jung [18] if and only if h.M/ <1.

Because of this, we will not use Jung’s original definition of strong 1-boundedness [18]
and will prove that algebras are strongly 1-bounded by showing that they have finite 1-
bounded entropy.

3. Proof of Theorem 1.2

3.1. Sketch of the proof

In order to prove strong 1-boundedness, or equivalently that hR.x/ <1, we will estimate
hR;".x/ iteratively for smaller and smaller values of " in a similar manner to Jung [18]. In
particular, if � � ", then we want to estimate hR;�.x/ in terms of hR;".x/ by covering a
."; k�k2/-ball in the microstate space by an .�; k�k2/-balls.

Consider the .";k�k2/-ball centered at some microstateX 2Mn.C/dsa with kXk1 �R.
Let Df .X/ denote the matrix of tensors as in the theorem statement with x replaced by
X . If Y is a microstate in the ."; k�k2/-ball of X , then, by Taylor expansion f .Y /� f .X/
is approximately @f .X/#.Y � X/. By taking a high degree of approximation for our
microstate space, we can make f .Y / � f .X/ arbitrarily small, and thus arrange that
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Y � X is in the approximate kernel of @f .X/. Furthermore, because we are only con-
sidering microstates up to unitary orbits, we can assume without loss of generality that
Y is the closest point in its unitary orbit to X , which implies that

Pm
jD1ŒXj ; Yj � D

0 (see Lemma 3.3). Hence, Y � X is in the approximate kernel of Df .X/. BecauseR
jlog t j d�jDf .x/j.t/ <1 and jDf .X/j converges in distribution to jDf .x/j, the dimen-

sion of the kernel of Df .X/ vanishes in comparison to n2, and we can use standard
estimates on covering numbers of approximate kernels to get a bound on the �-covering
number.

3.2. Background on non-commutative derivatives and Taylor expansion

First, we recall Voiculescu’s free difference quotient [28,30]. Consider the d -variable non-
commutative polynomial algebra Cht1; : : : ; td i. Let @j W Cht1; : : : ; td i ! Cht1; : : : ; td i ˝
Cht1; : : : ; td i be the unique linear map, satisfying

@j Œti1 � � � tik � D

kX
˛D1

ıi˛Dj ti1 � � � ti˛�1 ˝ ti˛C1 � � � tik :

The map @j can also be characterized as the unique derivation

Cht1; : : : ; td i ! Cht1; : : : ; td i ˝Cht1; : : : ; td i;

satisfying
@j .ti / D ıiDj .1˝ 1/:

Here, when we describe @j as a “derivation”, we are viewing Cht1; : : : ; td i˝Cht1; : : : ; td i
as a bimodule over Cht1; : : : ; td i using the multiplication operations

p.f ˝ g/ D pf ˝ g; .f ˝ g/p D f ˝ gp:

If f D .f1; : : : ; fm/ 2 Cht1; : : : ; td i
m, then

@f 2Mm;d .Cht1; : : : ; td i ˝Cht1; : : : ; td i/

will denote the matrix whose .i; j / entry is @jfi . This matrix plays a similar role to
the derivative of a function Rd ! Cm, in that it furnishes the first-order term in a non-
commutative Taylor expansion for the evaluation of f on elements of a tracial von Neu-
mann algebra.

Recall that if .M; �/ is a tracial von Neumann algebra and f 2 Cht1; : : : ; td i and
x D .x1; : : : ; xd / 2M

d
sa , then the evaluation of f .x/ is the image of f under the unique

unital �-homomorphism Cht1; : : : ; td i ! M given by tj 7! xj . The evaluation of f D
.f1; : : : ; fm/ on x D .x1; : : : ; xd / is defined by .f1.x/; : : : ; fm.x//. Moreover, f; g 2
Cht1; : : : ; td i; we set

.f ˝ g/.x/ D f .x/˝ g.x/op
2M ˝M op;
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whereM op denotes the opposite algebra ofM 1, and˝ is the algebraic tensor product. By
extending this operation linearly, we can define

F.x/ 2Mm;d .M ˝M
op/ for F 2Mm;d .Cht1; : : : ; td i ˝Cht1; : : : ; td i/:

For a; b; x 2M , we define

.a˝ bop/#x D axb:

This extends to a bilinear map .M ˝M op/ �M ! M . If A 2 Mm;d .M ˝M
op/ and

x 2M d
sa , we define A#x 2Mm as the vector with entries

.A#x/i D
dX
jD1

Ai;j #xj :

The first-order Taylor approximation is as follows. Note that in contrast with the classical
Taylor approximation where the error estimates are typically given in the Euclidean norm
or 2-norm on Rm, we have to mix different non-commutative p-norms of y � x in the
estimates.

Lemma 3.1. Let f 2 Cht1; : : : ; td i
m and let R > 0. Then, there exist constants Af , Bf ,

Cf depending only on f and R such that for every tracial von Neumann algebra .M; �/
and x; y 2M d

sa with kxk1; kyk1 � R, we have

kf .x/k1 � Af ; (3.1)

kf .y/ � f .x/k2 � Bf ky � xk2; (3.2)

kf .y/ � f .x/ � @f .x/#.y � x/k1 � Cf ky � xk22: (3.3)

Proof. The case of general m will follow from applying the m D 1 case componentwise.
For the m D 1 case, to verify the claims for every non-commutative polynomial f , it
suffices to check them for f .t1; : : : ; td / D tj and show that they are preserved under
linear combinations and products.

(1) For f .t1; : : : ; td / D tj , the claims hold with Af D R, Bf D 1, Cf D 0 since
@if D ıiDj .1˝ 1/.

(2) If f and g satisfy the claims and ˛, ˇ 2 C, then f̨ C ˇg satisfies the claims with
A f̨Cˇg D j˛jAf C jˇjAg and the same for the B’s and C ’s.

(3) Suppose that f; g 2 Cht1; : : : ; td i satisfy the conclusions of the lemma. Then, fg
satisfies (3.1) with Afg D Af Ag . Moreover, by writing

.fg/.y/ � .fg/.y/ D .f .y/ � f .x//g.y/C f .x/.g.y/ � g.x//

1M op is an algebra with the same addition and �-operation but the order of multiplication is reversed;
note that M op is a tracial von Neumann algebra.
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and using the L2-L1-Hölder inequality, fg satisfies (3.2) with Bfg D Bf Ag C Af Bg .
Similarly, using algebraic manipulations and the fact that @j is a derivation,

.fg/.y/ � .fg/.x/ � @.fg/.x/#.y � x/ D Œf .y/�f .x/�@f .x/#.y�x/�g.x/

C f .x/Œg.y/�g.x/�@g.x/#.y�x/�

C .f .y/ � f .x//.g.y/ � g.x//:

We estimate the first two terms by the L1-L1 Hölder inequality and the third term by
the L2-L2 Hölder inequality and thus obtain that fg satisfies (3.3) with Cfg D Cf Ag C
CgAf C Bf Bg .

The following lemma will be needed to show that the spectral measures of certain oper-
ators on Mn.C/d associated with matricial microstates for x 2M d

sa converge as n!1
to the spectral measures of corresponding operators from a tracial von Neumann algebra.
In the following, for a tracial von Neumann algebra M , we denote by M˝M op the tra-
cial von Neumann algebraic tensor product of M , equipped with the trace �M ˝ �M op . If
M˝M op is represented on the Hilbert spaceH , then Mm;d .M˝M

op/ are represented as
operators Hd ! Hm. Also, Md .M˝M

op/ is a tracial von Neumann algebra and can be
equipped with the normalized trace trd ˝�M ˝ �M op , where trd is the normalized trace on
Md .C/. Moreover, P .R/ denotes the space of probability measures on R equipped with
the weak� topology as linear functionals on C0.R/.

Lemma 3.2. Let d;m 2 N, f 2 Cht1; : : : ; td i
m, and R > 0. For ` 2 †d;R, let

�`WCht1; : : : ; td i ! W �.`/

be the GNS construction corresponding to ` as in Remark after Proposition 2.1. Let

F 2Mm;d .Cht1; : : : ; td i ˝Cht1; : : : ; td i/;

consider F.�`.t1; : : : ; td // 2 Mm;d .W�.`/ ˝W�.`/op/, and let �jF.�`.t1;:::;td //j be the
spectral measure of

jF.�`.t1/; : : : ; �`.td //j D .F.�`.t1/; : : : ; �`.td //
�F.�`.t1/; : : : ; �`.td ///

1=2

as an element of Md .W�.`/˝W�.`/op/. Then, the map

†d;R ! P .R/ W ` 7! �jF.�`.t1;:::;td //j

is weak�-weak� continuous.

Proof. Because F.x/ is a linear combination of simple tensors of polynomials, there is
some universal constant C depending on F and R such that kF.x/kMm;d .M˝M

op/ � K

for every tuple of operators with kxk1 � R. In particular, the spectral measure of jF.x/j
is supported on Œ0;K�. Hence, it suffices to show that, for every � 2 C.Œ0;K�/, the map

` 7! .trd ˝�W�.`/ ˝ �
op
W�.`//.�.jF.�`.t1/; : : : ; �`.td //j//
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is continuous. By the Stone–Weierstrass theorem, it suffices to consider the case when
�.s/ D  .s2/ where  is a polynomial. In this case,

�.jF.�`.t1/; : : : ; �`.td //j/ D  .F.�`.t1/; : : : ; �`.td //
�F.�`.t1/; : : : ; �`.td ///

The right-hand side is just an element of Md .Cht1; : : : ; td i ˝ Cht1; : : : ; td i/ applied to
the operators �`.t1/; : : : ; �`.td /. Hence,

.trd ˝�W�.`/ ˝ �
op
W�.`//.�.jF.�`.t1/; : : : ; �`.td //j//

D .�W�.`/ ˝ �
op
W�.`//.G.�`.t1/; : : : ; �`.td ///;

where G 2 Cht1; : : : ; td i ˝Cht1; : : : ; td i is 1=d times the sum of the diagonal entries of
this matrix of tensors of polynomials. Since G is a linear combination of simple tensors,
it suffices to show the continuity of the map

` 7! .�W�.`/ ˝ �
op
W�.`//..f ˝ g/.�`.t1/; : : : ; �`.td ///;

where f;g 2Cht1; : : : ; td i. But the right-hand side is equal to `.f /`.g/, and ` 7!`.f /`.g/
is continuous by definition of the weak� topology.

3.3. Covering the microstate space

We now give the details of the argument sketched in Section 3.1. We begin with the orbital
optimization trick. This lemma also appears in [12, Lemma 1.14], where it is related to
non-commutative optimal transport theory.

Lemma 3.3. Let X , Y 2Mn.C/dsa. There exists a unitary matrix U that minimizes kX �
UY U �k2, and any such unitary satisfies

dX
jD1

ŒXj ; U YjU
�� D 0:

Proof. A minimizer exists because the unitary group is compact and the function U 7!
kX �UY U �k2 is continuous. Suppose that U is a minimizer and let A 2Mn.C/sa. Then

0 � kX � eitAUY U �e�itAk22 � kX � UY U k
2
2

D 2hX; eitAUY U �e�itA � UY U �i:

Differentiating at t D 0, we get

0 D

dX
jD1

trn.Xj i ŒA; UYjU ��/ D
dX
jD1

trn.i ŒUYjU �; Xj �A/:

Because A was arbitrary, we have

dX
jD1

ŒU YjU
�; Xj � D 0:
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Next, we will give an initial form of the iterative estimate in terms of an auxiliary
quantity‰R;�;ı;".x;f /measuring the size of approximate kernels ofDf .X/. For a neigh-
borhood O of `x in †d;R, define

‰R;�;ı;".O; f /

D lim sup
n!1

1

n2
sup

X2�
.n/
R .O/

logK�
�®
Z W kZk � 2R; kZk2<ı; kDf .X/#Zk1<"

¯
; k�k2

�
:

Note that ‰R;�;ı;".O; f / is monotone in O. We define

‰R;�;ı;".x; f / D inf
O
‰R;�;ı;".O; f /:

At this point, the reader may be wondering why we use kDf .X/#Zk1 < " instead of
kDf .X/#Zk2 < ". The reason is that the error estimate in the non-commutative Taylor
expansion requires the 1-norm rather than the 2-norm; that is,

kf .Y / � f .X/ � @f .X/#.Y �X/k1 � CkY �Xk22:

Later, we will work to estimate this in terms of the approximate kernel with the error
measured in 2-norm.

Lemma 3.4. With the setup of Theorem 1.2, there is a constant C > 0 (depending only
upon f and R) so that for all "; � > 0 we have that

hR;�.x/ � hR;".x/C‰2R;�=2;2";C"2.x; f /:

Proof. Fix the neighborhood

U D

²
` W

mX
jD1

`.f �j fj /
1=2 < "2

³
� †d;R:

In order to estimate hR;�.x; k�k2/, pick a neighborhood O of `x , and then we will cover
the microstate space �.n/.O \U/ by orbital .�; k�k2/-balls. Recall that if a set can be
covered by a certain number of "-balls with centers not necessarily in that set, then it
can be covered with the same number of 2"-balls with centers in the set. Hence, there
exists a set� � �.n/R .O \U/ of cardinality at most K".�

.n/
R .O \U/; k�k2/ such that the

.2"; k�k2/-balls centered at X in � cover �.n/R .O \U/.
We want to cover each of the orbital ."; k�k2/-balls by orbital .�; k�k2/-balls. If Y is in

the orbital .2"; k�k2/-ball around X , then because we only need to cover Y up to unitary
equivalence, we can assume without loss of generality that Y is the element of its orbit
that is closest toX in k�k2, and thus

P
j ŒXj ;Yj �D 0 by Lemma 3.3. Recall by Lemma 3.1,

f .Y / � f .X/ D @f .X/#.Y �X/C�f .X; Y /;
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where the error term �f .X; Y / satisfies

k�f .X; Y /k1 � Cf kY �Xk
2
2 � 4Cf "

2

for a constant Cf depending only on f and R. By our choice of U, we have

kf .X/k1 �

1X
jD1

trn.fj .X/�fj .X//1=2 < "2;

and similarly kf .Y /k1 < "2. It follows that

k@f .X/#.Y �X/k1 < .2C 4Cf /"2:

Let Z D Y �X . Note that
dX
jD1

ŒXj ; Zj � D

dX
jD1

ŒXj ; Yj � D 0:

Since
dX
jD1

ŒXj ; Zj � D 0;

we have

kDf .X/#.Y �X/k1 D k.@f /.X/#.Y �X/k1 < .2C 4Cf /"2:

Also, kZk1 � 2R. Of course, the number of .�;k�k2/-balls needed to cover the set ofZ’s
obtained in this way is at most

sup
X2�

.n/
R .O/

K�
�®
Z W kZk � 2R; kZk2 < 2"; kDf .X/#Zk1 < .2C 4Cf /"2

¯
; k�k2

�
:

It follows that

Korb
�

�
�
.n/
R .O \U/; k�k2

�
�

1

N 2
Korb
"

�
�
.n/
R .O \U/; k�k2

�
� sup
X2�

.n/
R .O/

K�=2

�²
Z W kZk � 2R;

dX
jD1

ŒZj ; Xj � D 0; kZk2 < 2";

k@f .X/#Zk1 < .2C Cf /"2
³
; k�k2

�
:

Apply lim supn!1.1=n
2/ log to obtain

hR;�.O \U; k�k2/ � hR;".O \U/C‰2R;�=2;2";.2CCf /"2.O \U; f /:

Because all the covering numbers are monotone in the “O” variable, taking the infimum
over all O yields the same result whether or not we intersect with U first. Thus, upon
taking the infimum with respect to O, we obtain the asserted result.
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3.4. Covering the approximate kernel

In order to convert our estimate with the k�k1-approximate kernel to an estimate with the
k�k2-approximate kernel, we will estimate in Lemma 3.6 the k�k2-covering number of the
intersection of a k�k1-ball and a k�k1 ball. We employ Szarek’s covering estimate [26] in
a similar way to [16]. For convenience of the reader, we state the lemma explicitly here.

Lemma 3.5 ([16]). There exists a universal constant C such that for t � 0,

K"
�®
P 2Mn.C/ projection; trn.P / � t

¯
; k � k1

�
D K"

�®
P 2Mn.C/ projection; trn.P / � 1 � t

¯
; k�k1

�
� .1C nt/

�
C

"

�2n2t
:

Lemma 3.6. There is a universal constant C such that for t > 0 and " � 3R,

lim sup
n!1

1

n2
logK".BMn.C/;k�k1.0; R/ \ BMn.C/;k�k1.0; t "/; k�k1/ � 12t log

CR

"
:

Proof. By Lemma 3.5, there exists a set „ of projections of rank at least n.1 � 3t/ such
that every projection P of rank at least n.1 � 3t/ satisfies kP �Qk1 < "=3R for some
Q 2 „ and such that

j„j � .1C nt/

�
6C1R

"

�6n2t
:

Next, for each Q 2 „, observe that .1�Q/Mn.C/sa is a Hilbert space of real dimension
at most 6n2t , and hence for some constant C2,

K"=3..1 �Q/BMn.C/;k�k1.0; R/; k�k1/ �

�
3C2R

"

�6n2t
:

Therefore, we may choose a set �Q with

j�Qj �

�
3C2R

"

�2n2t
that ."=3; k�k1/-covers .1 �Q/BMn.C/;k�k1.0; R/.

We claim � D
S
Q2„�Q is an ."; k�k1/-covering of

BMn.C/;k�k1.0; R/ \ BMn.C/;k�k1.0; ı"=3/:

Let A 2 BMn.C/;k�k1.0; R/ \ BMn.C/;k�k1.0; t "/, and let �jAj be the spectral measure of
jAj, which is supported on Œ0; R�. Let P D 1Œ0;"=3/.jAj/. Note that

�jAj.Œ"=3;1// �
3

"

Z 1
"

x d�jAj.x/ �
3kAk1

"
� 3t:
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Therefore,
rank.P / D n�jAj.Œ0; "=3// � n.1 � 3t/:

Choose Q 2 „ such that kP �Qk1 < "=3R. There is some B 2 �Q such that kB �
QAk1 < "=3. Observe that

kA � Bk � kPAk1 C k.P �Q/Ak1 C kQA � Bk1

<
"

3
C

"

3R
RC

"

3

D ":

It follows that

K".BMn.C/;k�k1.0; R/ \ BMn.C/;k�k1.0; t "/; k�k1/

� .1C 3nt/

�
6C1R

"

�6n2t�
3C2R

"

�6n2t
:

Let C D max.6C1; 3C2/. Then

1

n2
logK".BMn.C/;k�k1.0; R/ \ BMn.C/;k�k1.0; t "/; k�k1/

�
1

n2
log.1C 3nt/C 12t log

CR

"
:

Taking n!1, we obtain the desired estimate.

The second ingredient for estimating‰R;�;ı;".x;f / is the following standard estimate
for covering numbers of approximate kernels of operators on a Hilbert space. Of course,
we will apply this lemma to the operator Df .X/# from the Hilbert space Mn.C/d with
the normalized Hilbert–Schmidt norm k�k2 to the Hilbert space Mn.C/m with k�k2. We
remark that B.Mn.C/d / is isomorphic to Md .Mn.C/˝Mn.C/op/ acting on Mn.C/d

with the # operation, and the normalized trace on B.Mn.C/d / corresponds to

trd ˝�Mn.C/ ˝ �M.C/op :

Lemma 3.7. There is a universal constant C > 0 with the following property. Let H ;K

be (complex) Hilbert spaces with H finite-dimensional, and let T 2 B.H ;K/. Fix R > 0.
For any ı; "; � > 0 with � < 3, we have that

K�.¹� 2 H W k�k < ı; kT �k < "º/ �

�
Cı

�

�2 dim.H/�jT j.Œ0;
2"
� �/

;

where �jT j is the spectral measure of jT j with respect to the normalized trace on B.H /.

Proof. Let P D 1Œ0; 2"� �
.jT j/. Suppose that � 2 H and kT �k < ". Then, by functional

calculus,
k� � P�k D k1. 2"� ;1/

.jT j/�k �
�

2"
kT �k <

�

2
:
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Thus, ¹� 2H W k�k < ı;kT �k < "º is contained in the �=2-neighborhood of BP.H/.0; ı/.
Thus,

K�.¹� 2 H W k�k < ı; kT �k < "º/ � K�=2.BP.H/.0; ı// �

�
Cı

�

�2 dim.PH/

;

since the real dimension of PH is twice the complex dimension. Then, note that

dim.PH / D trdim.H/.P / dim.H / D �jT j.Œ0; 2"=��/ dim.H /:

Lemma 3.8. Let t 2 .0; 1=3� and suppose that Rt � ". Then for some constants C2 and
C3 depending on f , we have

‰R;�;ı;".x; f / � �jDf .x/j.Œ0; 2"=t��/ log
C2ı

�
C 12mt log

C3Rmt

"
:

Proof. Let O be a neighborhood of `x andX 2 �.n/.O/. We want to estimate the .�;k�k2/
covering number of

BMn.C/dsa;k�k1
.0; R/ \ BMn.C/dsa;k�k2

.0; ı/ \Df .X/
�1.BMn.C/m;k�k1.0; "//:

There exists a constant C1 depending on f such that

kDf .X/#Zk1 � C1kZk1;

and in particular, this is bounded by 2C1R when kZk1 � 2R. Hence, it suffices to esti-
mate the .�; k�k2/-covering number of

BMn.C/d ;k�k2.0; ı/ \Df .X/
�1.BMn.C/m;k�k1.0; 2C1R/ \ BMn.C/m;k�k1.0; "//;

where we useDf .X/ to denote the linear transformationDf .X/# WMn.C/d!Mn.C/m.
Fix a set � �Mn.C/m that . "

2t
; k�k2/-covers

BMn.C/m;k�k1.0; 2C1R/ \ BMn.C/m;k�k1.0; "/

and satisfies

j�j � K"=2t .BMn.C/m;k�k1.0; 2C1R/ \ BMn.C/m;k�k1.0; "/; k�k2/

� K"=2mt .BMn.C/;k�k1.0; 2C1R/ \ BMn.C/;k�k1.0; "/; k�k1/
m;

where for the last several steps we used that k�k2 � mk�k1 on Mn.C/msa and that

BMn.C/m;k�k1.0; 2C1R/ \ BMn.C/m;k�k1.0; "/

is contained in the product of m copies of BMn.C/;k�k1.0; 2C1R/ \ BMn.C/;k�k1.0; "/.
Then

BMn.C/d ;k�k2.0; ı/ \Df .X/
�1.BMn.C/m;k�k1.0; C1R/ \ BMn.C/m;k�k1.0; "//

�

[
Y2�

BMn.C/d ;k�k2.0; ı/ \Df .X/
�1.BMn.C/m;k�k2.Y;

"
2t
//:
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For each Y 2 �, if BMn.C/d ;k�k2.0; ı/ \Df .X/
�1.BMn.C/m;k�k2.Y; "=2t// is non-empty,

then pick some ZY in this set so that

BMn.C/d ;k�k2.0; ı/ \Df .X/
�1

�
BMn.C/m;k�k2

�
Y;

"

2t

��
� BMn.C/d ;k�k2.0; ı/ \Df .X/

�1

�
BMn.C/m;k�k2

�
Df .X/#ZY ;

"

2t

��
� ZY C

�
BMn.C/d ;k�k2.0; 2ı/ \Df .X/

�1

�
BMn.C/m;k�k2

�
0;
"

t

���
:

By Lemma 3.7,

K�

�
BMn.C/d ;k�k2.0; 2ı/ \Df .X/

�1

�
BMn.C/m;k�k2

�
0;
"

t

��
; k�k2

�
�

�
C2ı

�

�2dn2�jDf .X/j.Œ0;2"=t��/
:

In particular,

1

n2
logK�

�
BMn.C/dsa;k�k1

.0; R/ \ BMn.C/dsa;k�k2
.0; ı/

\Df .X/
�1.BMn.C/m;k�k1.0; "//; k�k2

�
� 2d

�
sup

X2�.n/.U/

�jDf .X/j.Œ0; 2"=t��/

�
log

C2ı

�

C
m

n2
logK"=2mt .BMn.C/;k�k1.0; 2C1R/ \ BMn.C/;k�k1.0; "/; k�k1/:

By Lemma 3.6,

lim sup
n!1

1

n2
logK"=2mt .BMn.C/;k�k1.0; 2C1R/ \ BMn.C/;k�k1.0; "/; k�k1/

� 12t log
C3Rmt

"
:

Now observe that as O shrinks to ¹`xº, the measures �jDf .X/j for X 2 �.n/.O/ converge
uniformly in distribution to �jDf .x/j using Lemma 3.2. Thus, we have

lim sup
n!1

sup
X2�.n/.U/

�jDf .X/j.Œ0; 2"=t��/ � �Df .x/.Œ0; 2"=t��/:

Thus, when we take the lim sup as n!1, we obtain the assertion of the theorem.

3.5. Iteration of the estimates

By combining Lemmas 3.4 and 3.8, we obtain the following bounds.
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Corollary 3.9. Let t 2 .0; 1=3� and � � " and Rt � ". Then

hR;�.x/ � hR;".x/C �jDf .x/j

��
0;
C1"

2

t�

��
log

C2"

�
C 12mt log

C3Rmt

"2
: (3.4)

In particular, if " is sufficiently small (depending on R and f ), we can take � D "4=3 and
t D "1=3 to get

hR;"4=3.x; k�k2/ � hR;".x; k�k2/C �jDf .x/j.Œ0; C1"
1=3�/ log.C2"�1=3/

C 12m"1=3 log.C3Rm"�5=3/: (3.5)

Proof of Theorem 1.2. Fix some " sufficiently small that we can apply (3.5). By repeated
application of that estimate,

h
R;"4

k=3k .x/ � hR;".x/C

k�1X
jD0

�
�jDf .x/j.Œ0; C1"

4j =3jC1 �/ log.C2"�4
j =3jC1/

C 12m"4
j =3jC1 log.C3Rm"�5�4

j =3jC1/
�
:

Recall that hR;�.x; k�k2/ decreases to h.x/ as �! 0. Thus,

h.M/ D hR.x/ � hR;".x/C

1X
jD0

�
�jDf .x/j.Œ0; C1"

4j =3jC1 �/ log.C2"�4
j =3jC1/

C 12m"4
j =3jC1 log.C3Rm"�5�4

j =3jC1/
�
:

Of course, because �.n/R .O/ is always contained in BMn.C/d ;k�k2.0; R/, the first term
hR;".x/ is automatically finite. The summability in j of the term

12m"4
j =3jC1 log.C3Rm"�5�4

j =3jC1/

in the series is straightforward: t log.1=t5/ is bounded by a constant times t3=2; hence, we
can estimate the terms by a constant times "4

j =3j which is in turn bounded by a geometric
series. Thus, to complete the argument, it suffices to show the summability of the first
term. We rewrite

1X
jD0

�jDf .x/j.Œ0; C1"
4j =3jC1 �/ log.C2"�4

j =3jC1/ D

Z 1
0

�.t/ d�jDf .x/j.t/;

where

�.t/ D

1X
jD0

log.C2"�4
j =3jC1/1

Œ0;C1"4
j =3jC1 �

.t/:

We claim that �.t/�ACB log.1=t/ for some constantsA and B (depending on " and all
the parameters in the theorem), and this claim is sufficient to complete the proof because
�jDf .x/j is a compactly supported probability measure, and we assumed thatZ 1

0

log.1=t/ d�jDf .x/j.t/ <1:
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For every t 2 Œ0; C1"/, there exists a unique k 2 N such that

C1"
4k=3kC1 < t � C1"

4k�1=3k :

Then

�.t/ D

k�1X
jD0

log.C2"�4
j =3jC1/

D

k�1X
jD0

�
logC2 C

4j

3jC1
log

1

"

�

�

�
logC2 C

1

3
log

1

"

� k�1X
jD0

�
4

3

�j
� 12

�
logC2 C

1

3
log

1

"

�
4k�1

3k

� 12

�
logC2 C

1

3
log

1

"

�
log.1=t/C logC1

log.1="/

D AC B log
1

t
;

for some constants A and B .

Remark. Given the apparent freedom to choose parameters in (3.4), one might won-
der whether it is possible to improve the argument to allow a weaker hypothesis on
�jDf .x/j than integrability of the logarithm. But, in fact, this hypothesis is necessary for
any argument based on (3.4) to bound h.x/. Indeed, suppose that we choose a sequence
"k decreasing to zero and tk 2 ."k=R; 1=3/, and suppose that

1X
kD0

�jDf .x/j

��
0;

C1"
2
n

tk"kC1

��
log

C2"k

"kC1
<1:

Since "k is decreasing and tk � 1=3, we have C1"2k=tk"nC1 � 3C2"k . Since "k < 1, we
have log.C2"k="kC1/ � log.C2="kC1/. Hence,

�jDf .x/j

��
0;

C1"
2
k

tk"kC1

��
log

C2"k

"kC1
� �jDf .x/j..3C1"kC1; 3C1"k �/ log.C2="kC1/

�

Z
.3C1"kC1;3C1"k �

log.3C1C2=t/ d�jDf .x/j.t/:

Hence, if the sum converges, thenZ 1

0

log.1=t/ �jDf .x/j.t/ <1:
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Remark 3.10. Although we have stated Theorem 1.2 only for polynomial f for sim-
plicity, the same argument works for more general non-commutative functions. Indeed,
it only requires that f has a Taylor expansion and error estimate as in Lemma 3.1 and
that the spectral measure of j@f j is the large-n limit of the spectral measures of corre-
sponding operators on Mn.C/d as in Lemma 3.2. This holds for instance if f is given
by a non-commutative power series with radius of convergence R0 > R as in [28, Section
3.3]. More generally, it applies to the non-commutative C 2 functions of [17] (as well as
those of [7]). Roughly speaking, [17, Section 3.2] defines a space C ktr .R

�d / consisting of
functions f that can be evaluated on self-adjoint d -tuples .x1; : : : ; xd / from every tracial
von Neumann algebra .M; �/ such that f is a Fréchet C k mapM d

sa !M , and the Fréchet
derivatives of order j � k, viewed as multilinear maps .M d

sa /
j !M , satisfy

k@jf .x/Œy1; : : : ; yj �kp � constant.f; j; R/ky1kp1 � � � kyj kpj

whenever 1=pD 1=p1C � � � C 1=pj and kxk1�R such that trace polynomials are dense.
In particular, the space is cooked up so that Taylor expansions with error estimates inspired
by the non-commutative Hölder’s inequality, such as Lemma 3.1, will hold. Furthermore,
[17, Section 4.4] describes a trace (as well as a log-determinant for invertible elements)
on the algebra C k�1tr .R�d ;M1/ in which the first derivatives @jf of a trace C k function
f live. Extending this trace to d � d matrices over C k�1tr .R�d ;M1/ enables us to make
sense of the spectral measure of @f .x/�@f .x/. This also applies to the operator Df f .x/
in Theorem 1.2 since the tj ˝ 1� 1˝ tj defines an element of C k�1tr .R�d ;M1.R�1// for
each j . Furthermore, thanks to the way that the trace on C k�1tr .R�d ;M1/ describes the
asymptotic behavior of traces on matrices (see [17, Section 4.5]), Lemma 3.2 generalizes
to this setting. Hence, mutatis mutandis Theorem 1.2 generalizes to f 2 C 2tr .R

�d /m.

We have now completed the proof of Theorem 1.2. We refer the reader to Section 4.2
for a proof that Theorem 1.2 implies Theorem 1.1.

4. Connections to `2-invariants of sofic groups

In this section, we recall the connection between `2-cohomology and the non-commutative
difference quotient (Section 4.1) exploited by Shlyakhtenko [25] as well as his argument
why Theorem 1.2 implies Theorem 1.1 (Section 4.2). Then, we show how the argument for
Theorem 1.1, together with Shalom’s result [24], furnishes an alternative proof of strong
1-boundedness for the von Neumann algebras of sofic Property (T) groups (Section 4.3).

4.1. Cocycles, derivations, and the free difference quotient

This subsection describes how to translate from group cohomology to derivations on the
group algebra to the kernel of the free difference quotient @f for a function f associated
with a group presentation, following [6, 23, 25, 27].

For a �-algebraA and anA-A bimodule H , let Der.A;H / denote the set of derivations
ıWA ! H . If .M; �/ is a tracial von Neumann algebra and A � M is a weak�-dense
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�-subalgebra, then one bimodule of interest is L2.M/ ˝ L2.M/, where A acts on the
left by left multiplying by a˝ 1 and on the right by right multiplying by 1˝ a. We have
a commuting action of M˝M op on L2.M/˝ L2.M/ where a ˝ bop acts on c ˝ d by
sending it to cb ˝ ad . We use #in for this action, so

.a˝ bop/#in.�/ D .1˝ a/�.b ˝ 1/I

it is straightforward to verify that this action extends to a normal representation of M˝
M op on L2.M/ ˝ L2.M/. Moreover, for all x 2 M˝M op, all a; b 2 M , and all � 2
L2.M/˝ L2.M/,

x#in..a˝ 1/�.1˝ b// D .a˝ 1/.x#in�/.1˝ b/:

This produces an action of M˝M op on Der.A;L2.M/˝ L2.M// by

.xı/.a/ D x#in.ı.a// for all x 2M˝M op; a 2 A:

So, we may regard Der.A;L2.M/˝L2.M// as a module overM˝M op, and so it makes
sense by [22] to consider

dimM˝M op.Der.A;L2.M/˝ L2.M///:

We have a special class of derivatives called the inner derivations. We say that ı is inner
if there is a � 2 L2.M/˝ L2.M/ with ı.a/ D Œa; ��. We let Inn.A; L2.M/˝ L2.M//

be the inner derivations, and let

H 1.A; �/ D
Der.A;L2.M/˝ L2.M//

Inn.A;L2.M/˝ L2.M//
:

We define the first `2-Betti number of A by

ˇ1.2/.A; �/ D dimM˝M op.H
1.A; �//:

This definition is due to Connes–Shlyakhtenko [6].

Proposition 4.1. Let G be a countable, discrete group, let � be the canonical trace, and
set M D L.G/. Then

(i) ˇ1
.2/
.G/ D ˇ1

.2/
.CŒG�; �/. In particular, if G is infinite, then

ˇ1.2/.G/C 1 D dimM˝M op.Der.CŒG�; L2.M/˝ L2.M///:

(ii) Suppose that G is finitely generated, and suppose that g1; : : : ; gr is a finite
generating set. Set

x D .Re.g1/; Im.g1/;Re.g2/; Im.g2/; : : : ;Re.gk/; Im.gk// 2 .CŒG�sa/
2r ;
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where

Re.a/ D
aC a�

2
; Im.a/ D

a � a�

2i
for all a 2 CŒG�:

Let J be the kernel of the homomorphism

evx WCht1; : : : ; t2ri ! CŒG�:

Then, G is finitely presented if and only if J is finitely generated as a two-sided
ideal.

Proof. (i) This is [6, Proposition 2.3], [23, Corollary 3.6], [27, Section 4].
(ii) Let Fr be the free group on letters a1; : : : ; ar . Consider the surjective homomor-

phism qWFr ! G so that q.aj / D gj ; we continue to use q to denote the linear extension
qWCŒFr �! CŒG�. Let

y D .Re.a1/; Im.a1/;Re.a2/; Im.a2/; : : : ;Re.ak/; Im.ak// 2 .CŒFr �/2rsa ;

so evx D q ı evy . Let B be the ideal in Cht1; : : : ; t2ki generated by®
Œt2j�1; t2j � W j D 1; : : : ; k

¯
[
®
t22j�1 C t

2
2j � 1 W j D 1; : : : ; k

¯
;

and let
� WCht1; : : : ; tki ! Cht1; : : : ; tki=B

be the quotient map. Then, the kernel of evy contains � , and so evy descends to a map

evy WCht1; : : : ; t2ki=B ! CŒFr �

with evy D evy ı � . For every 1 � j � k, the element

uj D t2j�1 C i t2j C B 2 Cht1; : : : ; t2ki=B

is unitary, and so there is a unique map �WCŒFr � ! Cht1; : : : ; t2ki=B which satisfies
�.aj / D uj . Routine calculations verify that �; evy are mutual inverses to each other, and
so � ı evy D � .

First, suppose that G is finitely presented, and let F be a finite subset of the kernel
of q W Fr ! G so that ker.q/ is the smallest normal subgroup containing F . It is direct
to verify that the kernel of q W CŒFr �! CŒG� is the smallest ideal in CŒFr � containing
¹w � 1 W w 2 F º. For w 2 F , let Qw 2 Cht1; : : : ; t2ki be any element so that �.Qw/ D
�.w/. We leave it as an exercise to show that J is generated as a two-sided ideal by®

Qw � 1 W w 2 F
¯
[
®
Œt2j�1; t2j � W j D 1; : : : ; k

¯
[
®
t22j�1 C t

2
2j � 1 W j D 1

¯
:

This shows that J is finitely generated as a two-sided ideal.
Now suppose that J is finitely generated as a two-sided ideal, say by F1; : : : ; Fk . Set

N D ker.qWG! Fr /, andQj D evy.Fj /. Then, �.F1/; : : : ; �.Fk/ generate ker.q ı evy/
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as a two-sided ideal. Since evy is an isomorphism, it follows that Q1; : : : ; Qk gener-
ate ker.qWCŒFr �! CŒG�/ as a two-sided ideal. Observe that ker.qWCŒFr �! CŒG�/ is
generated as a two-sided ideal by ¹x � 1 W x 2 N º. So, for j D 1; : : : ; k, we can find a
finite Fj � N so that Qj is in the two-sided ideal generated by ¹x � 1 W x 2 Fj º. Let
F D

Sk
jD1 Fj , and let I be the two-sided in CŒFr � generated by ¹x � 1 W x 2 F º. Then,

Qj 2 I for all j , and so I D ker.qWCŒFr �! CŒG�/. If eN is the normal subgroup of G
generated by R, then I is the kernel of the natural quotient map

CŒFr �! CŒFr=eN�:
But eN � N , and we saw above that I is the kernel of the natural quotient map

CŒFr �! CŒFr=N �:

So, N D eN , and this establishes that G is finitely presented.

The following may be argued exactly as in [25, Lemma 3.1].

Proposition 4.2. Let .M; �/ be a tracial von Neumann algebra and let x 2 M k
sa be such

that W �.x/ D M . Let A be the �-algebra generated by x, and let J be the kernel of
evx WCht1; : : : ; tki ! A. Suppose that .Fj /1jD1 is a sequence which generates J as a
two-sided ideal in Cht1; : : : ; tki. Then, the map

ı 7! .ı.xj //
k
jD1

is an M -M bimodular isomorphism

Der.A;L2.M/˝ L2.M//!

1\
jD1

ker..@Fj /.x/#/:

4.2. Strong 1-boundedness from vanishing `2-Betti numbers

In this section, we need the following notation. Given a group G, we view C.G/ �
L.G/ by sending

P
g agg!

P
g ag�.g/. This induces natural inclusion Mm;n.C.G//�

Mm;n.L.G//. Given A 2Mm;n.C.G//, we let �jAj be the spectral measure of .A�A/1=2

with respect to the trace Tr˝� , with � defined as in Section 2. We define

C

det
L.G/

.A/ D exp
�Z

.0;1/

log.t/ d�jAj.t/
�
:

We have explained how to get from `2-Betti number conditions as in Theorem 1.1 to
conditions on @f for some tuple f of non-commutative polynomials as in Theorem 1.2.
The other main ingredient needed to prove Theorem 1.1 is the positivity of Fuglede–
Kadison determinant. The following theorem of Elek and Szabo is the main way we know
of to guarantee the positivity of Fuglede–Kadison determinants.
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Theorem 4.3 ([11, Theorem 5]). Let G be a countable, discrete, sofic group, and m; n 2
N. Fix A 2Mm;n.Z.G//. Then

C

det
L.G/

.A/ � 1:

Note that if G is as in the statement of the above theorem and A 2Mm;n.Q.G// for
some m; n 2 N, then there is a q 2 N so that qA 2Mm;n.Z.G//. Thus

C

det
L.G/

.A/ D
1

q

C

det
L.G/

.qA/ �
1

q
> 0:

Having collected the appropriate background material on derivations and L2-Betti num-
bers, we now discuss why Theorem 1.2 implies Theorem 1.1.

Proof of Theorem 1.1 from Theorem 1.2. LetGDhg1; : : : ; gsjw1; : : : ; wli be a finite pre-
sentation of G. For 1 � j � s, set

x2j�1 D
gj C g

�1
j

2
; x2j D

gj � g
�1
j

2i
;

and set x D .x1; x2; : : : ; x2s/ 2 .CŒG�sa/
2k . Let qWCŒFr �! CŒG� and y 2 CŒFr �2ksa be as

in the proof of Proposition 4.1 (ii). For j D 1; : : : ; l C 2s, define fj 2 Cht1; : : : ; t2ki by

fj D

8̂̂<̂
:̂
wj .t1 C i t2; t3 C i t4; : : : ; t2s�1 C i t2s/; if 1 � j � l

t2j�1t2j � t2j t2j�1; if l C 1 � j � l C s

t22j�1 C t
2
2j � 1; if l C s C 1 � j � l C 2s:

By the proof of Proposition 4.1 (ii), we see that the kernel of evx WCht1; : : : ; t2si ! CŒG�
is generated (as an ideal) by ®

f1; f2; : : : ; flC2s
¯
:

Set f D .f1; : : : ; flC2s/. Let Df be as in the statement of Theorem 1.2. We leave it as
an exercise to verify that Df 2 MlC2sC1;2s.Q.G � G//. By Theorem 4.3, we have that
detC

L.G/
.Df / > 0, i.e. Z

.0;1/

log.t/ d�jDf j.t/ > �1:

All that remains is to verify that Df is injective. Recall that the .1; j / entry of Df is
xj ˝ 1 � 1 ˝ xj and the remaining rows are given by the matrix of partial derivatives
@f discussed in Section 3.2. Suppose that � 2 ŒL2.M/˝L2.M/�2s and Df #� D 0. This
implies that .@f /.x/#�D 0. By Proposition 4.2, we see that there is a derivation ıWCŒG�!
L2.M/˝ L2.M/ so that �j D ı.xj / for j D 1; : : : ; 2s. By Proposition 4.1 and the fact
that ˇ1

.2/
.G/ D 0, we find that ı is approximately inner. Thus, we may choose a sequence

�n 2 L
2.M/˝ L2.M/ so that for all j D 1; : : : ; 2s

�j D lim
n!1

Œxj ; �n� D lim
n!1

.xj ˝ 1 � 1˝ x
op
j /#�n:
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Since Df #� D 0, we have that

.xj ˝ 1 � 1˝ x
op
j /#�j D 0 for all j D 1; : : : ; 2s:

Thus, for all j D 1; : : : ; 2s,

k�j k
2
2 D lim

n!1
h�j ; .xj ˝ 1 � 1˝ x

op
j /#�ni D lim

n!1
h.xj ˝ 1 � 1˝ x

op
j /#�j ; �ni D 0:

So, we have shown that � D 0. Thus, Df is injective, and this completes the proof.

More generally, the same proof shows that if .A; �/ is any tracial �-algebra and

• ˇ1
.2/
.A; �/ D 0,

• there exists a generating tuple x 2 Adsa and f 2 Cht1; : : : ; td i
˚m so that ¹f1; : : : ; fmº

generates evx as an ideal, and with detA..@f /.x// > 0,

then W �.A; �/ is strongly 1-bounded. This recovers the case n D rank..@F /.x// of [25,
Theorem 2.5].

4.3. Strong 1-boundedness of Property (T) sofic groups from Theorem 1.1

The vanishing of first `2-Betti numbers for Property (T) groups was obtained in [3, Corol-
lary 6]. We will need a little more than the above result to give a short proof that sofic group
with Property (T) are strongly 1-bounded. Specifically, we will need the full strength of
the Delorme–Guichardet Theorem [8,14], which is about cohomology of groups with val-
ues in a unitary representation. This is because we will need not just the cohomology with
values in the left regular representation of a group, but in the quasi-regular representation
on `2 of a coset spaces. LetG be a countable, discrete group and � WG!U.H / a unitary
representation. A cocycle for � is a map ˇWG ! H which satisfies

ˇ.gh/ D �.g/ˇ.h/C ˇ.g/ for all g; h 2 G:

We say that ˇ is inner if there is a � 2 H so that ˇ.g/ D �.g/� � � . The Delorme–
Guichardet theorem says that G has (T) if and only if for every cocycle on G with values
in a unitary representation is inner. See [2, Section 2.12] for a proof.

Lemma 4.4. Let eG;G be Property (T) groups and let qW eG ! G be a surjective homo-
morphism. Let H be an L.G/ � L.G/ bimodule, and view H as a bimodule over CŒeG�
via q. Then, every derivation ıWCŒeG�! H is inner.

Proof. Suppose that ıWCŒeG�!H is a derivation. Define ˇWeG!H by ˇ.x/D ı.x/u�1
q.x/

.
The fact that ı is a derivation implies, by a direct calculation, that ˇ is a cocycle for � .
By the Delorme–Guichardet theorem and the fact that eG has Property (T), we know that
ˇ is inner; i.e., there is a � 2 H so that ˇ.x/ D uq.x/�u�1q.x/ � � for all x 2 eG. So for all
x 2 eG,

ı.x/ D ˇ.x/uq.x/ D uq.x/� � �uq.x/;

and this verifies that ı is inner.
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We will be primarily interested in the following special case of the above lemma.

Corollary 4.5. Let eG;G be infinite Property (T) groups, and let qWeG!G be a surjective
homomorphism. Set M D L.G/. Then, every derivation

ıWCŒeG�! L2.M/˝ L2.M/

is inner.

We now show that Property (T) sofic groups are strongly 1-bounded. We argue directly
from [25] using Shalom’s theorem on the structure of Property (T) groups.

Corollary 4.6. Let G be an infinite Property (T) sofic group. Then, L.G/ is strongly 1-
bounded.

Proof. Since G has Property (T), it is finitely generated. By a theorem of Shalom [24,
Theorem 6.7], there is a finitely presented Property (T) group eG and a surjective homo-
morphism qWeG ! G. It may be that eG is not sofic. However, we will still be able to use
the soficity of G to apply Shlyakhtenko’s results to our setting.

Let eS be a finite generating set of eG and set S D q.eS/. Then, there is a finite set R
of words in S so that eG has a presentation hS jRi. Use S to build self-adjoint generators
x D .x1; : : : ; xm/ of CŒG� which have lifts ex D .ex1; : : : ;exr / to generators of eG. Now
use the relations R to produce F1; : : : ; Fr 2QŒi �ht1; : : : ; tmi with the property that if J is
the ideal generated by F1; : : : ; Fr , then the natural map Cht1; : : : ; tri ! CŒeG� given by
F 7! F.ex/ has kernel J . Let F D .F1; : : : ; Fr /. By the proof of Proposition 4.2, we have
that

ker..@F /.x/#/ Š Der.CŒeG�;L2.M/˝ L2.M//

with M D L.G/. By the preceding corollary, it follows that ker..@F /.x// corresponds
under this isomorphism to the inner derivations CŒeG�! L2.M/˝L2.M/, and since M
is diffuse,

dimM˝M op.ker..@F /.x/#// D dimM˝M op.Inn.CŒeG�;L2.M/˝ L2.M/// D 1:

Further, since F1; : : : ; Fr 2 QŒi �ht1; : : : ; tri, we know from the soficity of G and Theo-
rem 4.3 that detCM ..@F /.x// > 0. Thus, Shlyakhtenko’s theorem [25] implies that M is
strongly 1-bounded (this also follows from our proof of Theorem 1.1 from Theorem 1.2;
see the discussion at the end of the previous section).
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