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Discrete quantum structures II: Examples

Andre Kornell

Abstract. Part I of this paper established the basic properties of quantum predicate logic as the
internal logic of discrete quantum structures. We now show that a majority of the established quan-
tum generalizations of discrete structures are naturally axiomatizable within this internal logic. In
particular, we axiomatize the quantum graphs of Duan, Severini, and Winter, the quantum met-
ric spaces of Kuperberg and Weaver, the quantum isomorphisms of Atserias, Mančinska, Roberson,
Šámal, Severini, and Varvitsiotis, and the quantum groups of Woronowicz. In each instance, we con-
sider only those structures that are discrete in the sense that the underlying von Neumann algebra is
hereditarily atomic.

1. Introduction

1.1. The internal logic of quantum sets

The category of quantum locally compact Hausdorff spaces and their maps is formally
defined to be the opposite of the category of C �-algebras and Woronowicz morphisms
[11, 50]. Among these quantum locally compact Hausdorff spaces, the discrete quantum
spaces are those that correspond to C �-algebras that are c0-direct sums of full matrix
algebras. The category of discrete quantum spaces and the maps between them is thus a
quantum generalization of the category of sets and functions, and discrete quantum spaces
may also be called quantum sets [16]. Part I of this paper established that the quantum
predicate logic of Weaver [46] is a robust internal logic for quantum sets [17]. We now
recall this internal logic briefly and informally.

For technical simplicity, we work with von Neumann algebras rather thanC �-algebras.
Up to an equivalence of categories, a quantum set is a von Neumann algebra that is an `1-
direct sum of full matrix algebras. Such von Neumann algebras may be called hereditarily
atomic because they are characterized by the property that every von Neumann subalgebra
is atomic [16, Prop. 5.4]. The Cartesian product of quantum sets is then the spacial ten-
sor product of hereditarily atomic von Neumann algebras, which is also their categorical
tensor product [12, Prop. 8.6]. If X and Y are quantum sets, then we write `1.X/ and
`1.Y/ for the corresponding von Neumann algebras, and we may express this definition
of the Cartesian product as `1.X � Y/ Š `1.X/ x̋ `1.Y/.
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In this account, a relation of arity .X1; : : : ;Xn/ is just a projection in the von Neumann
algebra `1.X1/ x̋ � � � x̋ `

1.Xn/, and the internal logic of quantum sets interprets each
formula whose free variables x1; : : : ; xn have sorts X1; : : : ;Xn as such a projection.
Symbolically, if �.x1; : : : ; xn/ is such a formula, then J�.x1; : : : ; xn/K is a projection in
`1.X1/ x̋ � � � x̋ `

1.Xn/. The projections of any von Neumann algebra form a complete
orthomodular lattice, and this structure is used to interpret the Boolean connectives ^,
_, and : in the usual way [4, 39]. Additionally, the Sasaki projection & and the Sasaki
arrow! play an important role; they are defined by p & q D .p _:q/^ q and p! q D

:p _ .p ^ q/ [13, 41].
The standard convention is that the variables x1; : : : ; xn do not need to actually appear

in the formula �.x1; : : : ; xn/ to be counted among its free variables. The notation
�.x1; : : : ; xn/ only indicates that the variables that do appear freely in � are among
x1; : : : ; xn. Formally, the interpretation of a formula � is defined relative to a finite
sequence of distinct variables called a context, as in [14, Secs. D1.1–2]. Thus,
J.x1; : : : ; xn/ j �.x1; : : : ; xn/K is a projection in `1.X1/ x̋ � � � x̋ `

1.Xn/. The relevant
bookkeeping is treated carefully in Part I [17]. If xndoes not appear freely in �.x1; : : : ;xn/,
then J.x1; : : : ; xn/ j �.x1; : : : ; xn/K D J.x1; : : : ; xn�1/ j �.x1; : : : ; xn/K˝ 1. If xn does
appear freely in �.x1; : : : ; xn/, then the expression J.x1; : : : ; xn�1/ j �.x1; : : : ; xn/K is
undefined.

Following Weaver [46, Sec. 2.6], we interpret the quantifier 8 by

J.x1; : : : ; xn�1/ j 8xn �.x1; : : : ; xn/KD sup¹p j p˝ 1 � J.x1; : : : ; xn/ j �.x1; : : : ; xn/Kº;

where p varies over the projections in `1.X1/ x̋ � � � x̋ `
1.Xn�1/. We interpret the quan-

tifier 9 likewise. Each quantum set X has a dual quantum set X� that may be defined by

`1.X�/ Š `1.X/op:

If x is a variable of sort X and x� is a variable of sort X�, then we define J.x;x�/ j xD x�K
to be the largest projection in `1.X �X�/ Š `1.X/ x̋ `1.X/op that is orthogonal to
p ˝ .1 � p/ for all projections p 2 `1.X/. The ubiquitous notation

8.x D x�/  .x; x�; x1; : : : ; xn/

is an abbreviation for 8x 8x� .x D x� !  .x; x�; x1; : : : ; xn//.
In the parlance of symbolic logic, a term is an expression that is built up from variables

using function symbols of various finite arities. The internal logic of quantum sets inter-
prets each term t .x1; : : : ;xn/ that has sort Y and whose free variables x1; : : : ;xn have sorts
X1; : : : ;Xn as a unital normal �-homomorphism `1.Y/! `1.X1/ x̋ � � � x̋ `

1.Xn/.
We notate this map as J.x1; : : : ; xn/ j t .x1; : : : ; xn/K. This interpretation of terms is com-
positional, and in particular,

J.x1; : : : ; xn/ j �.t.x1; : : : ; xn//K D J.x1; : : : ; xn/ j t .x1; : : : ; xn/K.J.y/ j �.y/K/;
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where y is a variable of sort Y, �.y/ is a formula, and �.t.x1; : : : ; xn// is the result of the
substitution of t for y in �. This equality expresses the standard understanding of unital
normal �-homomorphisms as a quantum generalization of functions.

It is convenient to view both the projections that interpret formulas and the homo-
morphisms that interpret terms as morphisms of a single category that admits a graphical
calculus [37]. Up to equivalence, this category is the monoidal category of hereditarily
atomic von Neumann algebras and quantum relations in the sense of Weaver [47]. Each
projection p in a hereditarily atomic von Neumann algebra M � L.H/ is identified with
the quantum relation V from M to C that is defined by

V D ¹v 2 L.H;C/ j vp D vº:

Each unital normal �-homomorphism � fromM � L.H/ toN � L.K/ is identified with
the quantum relation W from N to M that is defined by W D ¹w 2 L.K;H/ j aw D
w�.a/º [15]. Formally, we work in an equivalent monoidal category, which we call the
category of quantum sets and binary relations; it is described in detail in Part I [17] and in
greater detail in [16].

1.2. Examples

Many established classes of discrete quantum structures can be naturally axiomatized
within the internal logic of quantum sets. In this paper, we treat quantum graphs, quantum
metric spaces, quantum posets, quantum graph homomorphisms, quantum graph isomor-
phisms, quantum permutations, and quantum groups that are all discrete in the sense that
the underlying von Neumann algebra is hereditarily atomic.

The quantum graphs and quantum metric spaces that are considered here originate
in the study of quantum error correction. Quantum graphs were introduced in [7] as the
confusability graphs of quantum channels, and they were generalized to arbitrary von
Neumann algebras in [47]. These quantum graphs are not closely related to metric graphs
equipped with Schrödinger operators on each edge, which are also called quantum graphs
[10, 33]. Quantum metric spaces in the sense of von Neumann algebras [21] generalize
quantum graphs in a way that quantifies error. That research led to the notion of a quan-
tum relation [47], which in turn led to the research in the present paper. There are other
quantum generalizations of metric structure [24, 40, 45], which we do not consider here.

There are multiple natural notions of a quantum poset, even in the finite-dimensional
case. A quantum partial order on Mn.C/ may be defined to be an antisymmetric subalge-
bra of Mn.C/ [47], a hereditarily antisymmetric subalgebra of Mn.C/ [49] or a nilpotent
subalgebra of Mn.C/ [49]. We axiomatize both the first and the last of these notions with
almost identical sets of nonduplicating formulas. The difference between them illustrates
two natural generalizations of conjunction to the quantum setting [4, 41]. Discrete quan-
tum posets of the first kind form a well-behaved category [19] that may be used to model
recursion in the quantum setting [18].
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Quantum graph homomorphisms and quantum graph isomorphisms originate in the
study of quantum nonlocality. These terms refer to quantum analogs of relationships
between simple graphs, rather than to relationships between quantum graphs. The notion
of quantum graph homomorphism was defined in [26]. In [28], quantum graph homomor-
phisms were identified with the morphisms of a 2-category, and in [16], quantum graph
homomorphisms were interpreted as quantum families of graph homomorphisms within
the framework of noncommutative mathematics. The notion of quantum graph isomor-
phism was defined in [2], and quantum graph isomorphisms were identified with certain
morphisms in [28]. Both notions also have analogs in the quantum commuting frame-
work [2,32,34,35], which coincides with the usual tensor product framework when all the
measurement operators are taken from a hereditarily atomic von Neumann algebra; see
[12, Prop. 8.6] and [16, Prop. 5.4].

Quantum permutations are just quantum automorphisms of edgeless graphs, but they
predate quantum isomorphisms considerably [44]. A quantum permutation of a finite set
is also called a magic unitary [3, 28]. A subclass of quantum permutations, the quantum
Latin squares, has been used for the construction of unitary error bases [30]. In the lan-
guage of quantum information theory, Wang’s quantum permutation group [44] may be
regarded as a universal quantum permutation of the given finite set, and in the language
of noncommutative mathematics, it may be regarded as the compact quantum group of all
permutations of the given finite set.

As in the case of our other examples, the quantum groups that we consider are the
discrete members of a larger class; discrete quantum groups are discrete locally compact
quantum groups [22,23]. Infinite discrete quantum groups first occurred as the Pontryagin
duals of compact matrix quantum groups [38,51]. The class of all discrete quantum groups
was then implicitly defined along with the class of all compact quantum groups [52].
The first explicit definition of discrete quantum groups appears to have been given by
Effros and Ruan [8], but it falls slightly outside the standard approach of starting with
an operator algebra of complex-valued functions on a putative quantum space. We work
with the definition of Van Daele [43]. The proof given here establishing discrete quantum
groups as an example is essentially due to Vaes [42]; any flaws are the fault of the author.

Not all established classes of discrete quantum structures are claimed to be naturally
definable in quantum predicate logic. Most notably, unital normal complete positive maps,
which formalize quantum channels [20], are not treated in this paper. Additionally, some
structures, such as metric spaces and posets, have more than one proposed quantum gen-
eralization, not all of which have been axiomatized.

1.3. Orthogonality and trace

The category qRel of quantum sets and binary relations is dagger compact, i.e., strongly
compact: it is a symmetric monoidal category with dual objects and a compatible involu-
tion [16, Sec. 3]. Consequently, it admits a convenient graphical calculus [1]. We briefly
recall the trace of a binary relation R on a quantum set X [19, App. C], which is most
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naturally defined within this graphical calculus:

TrX.R/ WD R :

It will be convenient for us that two binary relations R and S from a quantum set X to a
quantum set Y are orthogonal to each other [16, Def. 3.8 (5)] if and only if TrX.S

� ıR/D

? [19, Prop. C.2]. We may express this equivalence graphically as follows:

R ? S ”

R

S�

D ? ” R S� D ?:

1.4. Conventions

Part II follows the conventions established in Part I [17, Sec. 1.8] with the following
exceptions. We write 8x and 9x in place of .8x 2 X/ and .9x 2 X/, respectively, when
x is a variable of sort X. We write 8.x D x�/ and 9.x D x�/ in place of .8.x D x�/ 2
X �X�/ and .9.x D x�/ 2X �X�/, respectively, when x is a variable of sort X and x�
is a variable of sort X�. We write s D t in place ofEX.s; t/when s is a term of sort X and
t is a term of sort X�. This notation takes advantage of the circumstance that we are now
working with concrete formulas, which implicitly determine the sorts of their constituent
terms.

2. Quantum graphs

Quantum graphs are a quantum generalization of simple graphs. Quantum graphs were
first defined in the context of zero-error communication to be operator systems on a finite-
dimensional Hilbert space [7, Sec. II]. More generally, a quantum graph structure on an
arbitrary von Neumann algebra M � L.H/ is an ultraweakly closed operator system V

such that m0v 2 V and vm0 2 V for all m0 2 M 0 and all v 2 V ; see [47, Def. 2.6 (d)]
and [48]. By definition, an operator system contains the scalar operators, and this feature
reflects the convention that each vertex of a simple graph is adjacent to itself, which is
natural to the context of zero-error communication. Hence, in Section 2, a simple graph is
a set A that is equipped with a binary relation �A that is both reflexive and symmetric.

Proposition 2.1. Let X be a quantum set, and let R be a binary relation on X. Then,
IX � R if and only if

J8.x D x�/ �R.x; x�/K D >:
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Proof. We reason that

J8.x D x�/ �R.x; x�/K D > ” J9.x D x�/: �R.x; x�/K D ?

” :R D ? ” :R ? IX ” IX � R:

Lemma 2.2. Let X and Y be quantum sets. Let R be a binary relation from X to Y, and
let S D R�. Then, J.y; x�/ j �R�.x�; y/K D �S .

Proof. We calculate that

J.y; x�/ 2 Y �X� j �R�.x�; y/K D
R�

y x

D

R�

y x

D
R�

y x

D �S:

Lemma 2.3. Let X and Y be quantum sets. Let R and S be binary relations from X to
Y. Then, R � S if and only if

J8.x D x�/8.y D y�/ . �R.x; y�/! �S�.x�; y//K D >: (�)

Proof. Taking advantage of the fact that the formulas �R.x; y�/ and �S�.x�; y/ have no
variables in common, we find that equation (�) is equivalent to each of the following
conditions:

J9.x D x�/ 9.y D y�/:. �R.x; y�/! �S�.x�; y//K D ?

” R :S� D ? ” R :S� D ? ” R ? :S

” R � S:

Proposition 2.4. Let X be a quantum set, and let R be a binary relation on X. Then, the
following are equivalent:

(1) R � R�;

(2) J8x1 8x2� . �R.x1; x2�/! �R�.x2�; x1//K D >;

(3) J8.x1 D x1�/8.x2 D x2�/ . �R.x1; x2�/! �R.x2; x1�//K D >.

Proof. Let S D R�. Applying Lemma 2.2 twice, we find that

J.x1; x2�/ 2 X �X� j �R�.x2�; x1/K D �S
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and
J.x2; x1�/ 2 X �X� j �S�.x1�; x2/K D �R:

Combining the former equality with Proposition 3.2.2 of Part I [17], we conclude that
condition (2) is equivalent to condition (1). Combining the latter equality with Lemma
2.3, we conclude that condition (3) is equivalent to condition (1). Indeed, we have that

J.x2; x1�/ 2 X �X� j �S�.x1�; x2/K D J.x2; x1�/ 2 X �X� j �R.x2; x1�/K:

For each atom X of a quantum set X, let incX 2 L.X;
L

At.X// be the inclusion
isometry of X into the `2-direct sum of the atoms of X.

Theorem 2.5. Let X be a quantum set. Then, there is a one-to-one correspondence
between quantum graph structures V on `1.X/ in the sense of [47, Def. 2.6 (d)] and
binary relations R on X such that

(1) J8.x D x�/ �R.x; x�/K D >;

(2) J8.x1 D x1�/8.x2 D x2�/ . �R.x1; x2�/! �R.x2; x1�//K D >.

The correspondence is given by R.X1; X2/ D inc�X2 � V � incX1 , for X1; X2 2 At.X/.

Proof. This is an immediate consequence of Propositions 2.1 and 2.4 and the equivalence
between binary relations and quantum relations described in Appendix A.2 of Part I [17].

Corollary 2.6. Furthermore, assume that At.X/ D ¹H º for some nonzero finite-dimen-
sional Hilbert space H . Then, there is a one-to-one correspondence between operator
systems V � L.H/ and binary relations R on X satisfying conditions (1) and (2) in the
statement of Theorem 2.5. The correspondence is given by R.H;H/ D V .

Proof. In the special case At.X/D ¹H º, we have that `1.X/DL.H/ and that `1.X/0D
C1H , so every operator system on H is also a quantum graph structure on L.H/. The
isometry incH is simply the identity on H .

3. Quantum preordered sets

A quantum preorder on a von Neumann algebra M � L.H/ is an ultraweakly closed
algebra N � L.H/ that contains M 0 [47, Def. 2.6 (b)]. Quantum preorders have not
attracted much research interest except as a stepping stone to quantum partial orders [47,
Def. 2.6 (c)]; this is the role that they play here too.

Before considering quantum preorders, we tersely recall Corollary 3.3.3 of Part I [17].

Lemma 3.1. Let X, Y, and Z be quantum sets. Let R be a binary relation from X to
Y, let S be a binary relation from Y to Z, and let T be the binary relation from X to Z

defined by T D S ıR. Then,

J.x; z�/ 2 X �Z� j 9.y D y�/ . �R.x; y�/ ^ �S.y; z�//K D �T :



A. Kornell 418

Proof. We calculate that

J.x; y�; y; z�/ 2 X � Y� � Y �Z� j �R.x; y�/ ^ �S.y; z�/K D
R

yx

S

zy

;

J.x; z�/ 2 X �Z� j 9.y D y�/ . �R.x; y�/ ^ �S.y; z�//K

D
R

x

S

z

D
S

R

x z

D �T :

Lemma 3.2. Let X, Y, and Z be quantum sets. Let R be a binary relation from X to Y,
let S be a binary relation from Y to Z, and let T be a binary relation from X to Z. Then,
the following are equivalent:

(1) S ıR � T ;

(2) J8x 8z� .9.y D y�/ . �R.x; y�/ ^ �S.y; z�//! �T .x; z�//K D >;

(3) J8.x D x�/8.y D y�/8.z D z�/ .. �R.x; y�/ ^ �S.y; z�//! �T�.x�; z//K D >.

Proof. Let T0 D S ıR. By Lemma 3.1,

J.x; z�/ 2 X �Z� j 9.y D y�/ . �R.x; y�/ ^ �S.y; z�//K

D �T0 D J.x; z�/ 2 X �Z� j �T0.x; z�/K;

so by Proposition 3.2.2 of Part I [17], condition (2) is equivalent to T0 � T , i.e., to condi-
tion (1).

No two of the formulas �R.x; y�/, �S.y; z�/, and �T�.x�; z/ have variables in common,
which implies that the formula :.. �R.x;y�/^ �S.y; z�//! �T�.x�; z// has the same inter-
pretation as the formula �R.x; y�/ ^ �S.y; z�/ ^ : �T�.x�; z/. Similarly, the formula

:.9.y D y�/ . �R.x; y�/ ^ �S.y; z�//! �T�.x�; z//

has the same interpretation as the formula 9.y D y�/ . �R.x;y�/^ �S.y; z�//^: �T�.x�; z/.
It follows by Theorem 3.3.2 of Part I [17] and the duality between the quantifier expres-
sions 8.y D y�/ and 9.y D y�/ that the formula

8.y D y�/ .. �R.x; y�/ ^ �S.y; z�//! �T�.x�; z//

has the same interpretation as the formula

9.y D y�/ . �R.x; y�/ ^ �S.y; z�//! �T�.x�; z/:

We conclude that condition (3) is equivalent to condition (2) by Proposition 2.4.
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Theorem 3.3. Let X be a quantum set. Then, there is a one-to-one correspondence
between quantum preorders V on `1.X/ in the sense of [47, Def. 2.6 (b)] and binary
relations R on X such that

(1) J8.x D x�/ �R.x; x�/K D >;

(2) J8.x1 D x1�/8.x2 D x2�/8.x3 D x3�/ .. �R.x1; x2�/ ^ �R.x2; x3�//

! �R�.x1�; x3//K D >.

The correspondence is given by R.X1; X2/ D inc�X2 � V � incX1 , for X1; X2 2 At.X/.

Proof. This is an immediate consequence of Proposition 2.1 and Lemma 3.2 and the
equivalence between binary relations and quantum relations described in Appendix A.2
of Part I [17].

Corollary 3.4. Let X be a quantum set. Then, there is a one-to-one correspondence
between von Neumann algebras M � `1.X/ and binary relations R on X such that

(1) J8.x D x�/ �R.x; x�/K D >;

(2) J8.x1 D x1�/8.x2 D x2�/ . �R.x1; x2�/! �R.x2; x1�//K D >;

(3) J8.x1 D x1�/8.x2 D x2�/8.x3 D x3�/ .. �R.x1; x2�/ ^ �R.x2; x3�//

! �R�.x1�; x3//K D >.

The correspondence is given by R.X1; X2/ D inc�X2 �M
0 � incX1 , for X1; X2 2 At.X/.

Proof. As an immediate consequence of Theorems 2.5 and 3.3, we have a one-to-one
correspondence between quantum equivalence relations V on `1.X/ in the sense of [47,
Def. 2.6 (a)] and binary relationsR on X satisfying conditions (1), (2), and (3). A quantum
equivalence relation on `1.X/ is just a von Neumann algebra that contains `1.X/0, and
such von Neumann algebras are in one-to-one correspondence with the von Neumann
algebras contained in `1.X/ via the commutant operation.

The significance of Corollary 3.4 is that, according to the noncommutative dictionary,
the unital ultraweakly closed �-subalgebras of `1.X/ correspond to the quotients of X.

4. Quantum posets

The example of quantum posets is quite similar to the example of quantum preordered sets,
but it is nevertheless significant, both because quantum posets are of inherent interest [18,
49] and because this example touches on a basic feature of quantum logic. This basic
feature is that the notion of inconsistency between two predicates has multiple natural
generalizations to the quantum setting. More generally, the notion of the conjunction of
two predicates has multiple natural generalizations to the quantum setting.

The phenomenon is familiar: a pair of predicates P and Q may be inconsistent in
the sense that P ^Q D ?, or they may be inconsistent in the stronger sense that P ?Q.
Physically, a pair of predicates P andQ that are inconsistent in the former sense but not in
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the latter sense correspond to Boolean observables with the property that no state provides
the certainty of both P and Q, but there are states that provide the certainty of P and the
possibility of Q, and vice versa. This distinction in turn involves the distinction between
the meet connective ^ and the Sasaki projection connective &. Both connectives have a
natural role in quantum predicate logic; see Lemma A.6.1 of Part I [17] and [9].

Proposition 4.1. Let X be a quantum set, and let P and Q be predicates on X. Then,

(1) P ^Q D ?X if and only if J8x :.P.x/ ^Q.x//K D >;

(2) P ? Q if and only if J8x :.P.x/&Q.x//K D >;

(3) P ? Q if and only if J8.x D x�/:.P.x/ ^Q�.x�//K D >.

Proof. Each of the three equivalences may be established via the corresponding condition
depicted graphically below:

P ^Q

�

D ? ;

P &Q

�

D ? ;

P Q�

D ? :

Corollary 4.2. The one-to-one correspondence of Theorem 3.3 restricts to a one-to-one
correspondence between quantum partial orders V on `1.X/ in the sense of [47, Def.
2.6 (c)] and binary relations R on X satisfying conditions (1) and (2) in the statement of
Theorem 3.3 as well as

(3) J8x1 8x2� .. �R.x1; x2�/ ^ �R�.x2�; x1//! x1 D x2�/K D >.

Proof. Let S D R�. By Lemma 2.2, we have that

J.x1; x2�/ 2 X �X� j �R�.x2�; x1/K D �S:

By Proposition 3.2.2 of Part I [17], we conclude that condition (3) is equivalent to �R^ �S �

EX , i.e., to R ^R� � IX , i.e., to V \ V � � `1.X/0.

Lemma 4.3. Let X be a quantum set. There is a one-to-one correspondence between
binary relations R on X such that IX � R, R ı R � R, and R & R� � IX and binary
relations S on X such that S ? IX and S ı S � S . The correspondence is given by
R 7! R ^ :IX and by S 7! S _ IX .

Proof. We gather a couple of basic facts. First, for each binary relation R on X such that
IX � R, we have that

R &R� � IX ” R � R� ! IX ” R � :R� _ IX

” R ^ :IX � :R
�
_ IX ” .R ^ :IX/ ? .R ^ :IX/

�;

with the first equivalence following via the Sasaki adjunction and the third equivalence
following by orthomodularity. Second, for each binary relation S on X, we have that
S ? S�, TrX.S ı S/ D ?, S ı S ? IX [19, App. C].
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Let R be a binary relation on X such that IX � R, R ıR � R and R&R� � IX , and
let S D R ^ :IX . Clearly, S ? IX . Furthermore, S ? S�, which implies that S ı S �
:IX . We now calculate that S ı S � .R ı R/ ^ :IX � R ^ :IX D S . Therefore, S
satisfies both S ? IX and S ı S � S .

Let S be a binary relation on X such that S ? IX and S ı S � S , and letRD S _ IX .
Clearly, IX � R. Furthermore,

R ıR D .S ı S/ _ .S ı IX/ _ .IX ı S/ _ .IX ı IX/ � S _ IX D R:

Finally, we observe that S D R ^ :IX by orthomodularity, and we reason that S ? IX

implies S ı S ? IX , which implies S ? S�, leading to R & R� � IX . Therefore, R
satisfies all three inequalities IX � R, R ıR � R, and R &R� � IX .

We have shown that the construction R 7! R ^ :IX takes binary relations of the
first kind to binary relations of the second kind, and that the construction S 7! S _ IX

takes binary relations of the second kind to binary relations of the first kind. The two
constructions invert each other by orthomodularity.

Theorem 4.4. Let H be a nonzero finite-dimensional Hilbert space, and let X be the
quantum set defined by At.X/D¹H º. Then, there is a one-to-one correspondence between
nilpotent algebras A � L.H/ in the sense of [49, Sec. 6] and binary relations R on X

satisfying conditions (1) and (2) in the statement of Theorem 3.3 as well as

(3) J8x1 8x2� .. �R.x1; x2�/& �R�.x2�; x1//! x1 D x2�/K D >.

This correspondence is given by R.H;H/ D ACC1H .

Proof. Condition (1) is equivalent to the inequality IX � R by Proposition 2.1. Condition
(2) is equivalent to the inequality R ı R � R by Lemma 3.2. Condition (3) is equivalent
to the inequality R & R� � IX , as in the proof of Corollary 4.2. Thus, by Lemma 4.3,
the binary relations R on X satisfying conditions (1), (2), and (3) are in one-to-one corre-
spondence with the binary relations S on X satisfying S ? IX and S ı S � S , which is
given by

R D S _ IX ;

i.e., by R.H;H/ D S.H;H/CC1H .
We also have a one-to-one correspondence between the binary relations S on X and

subspaces A of L.H/, which is given by A D S.H; H/. The binary relations S that
satisfy S ? IX correspond to subspaces of trace-zero operators, and the binary relations
S that satisfy S ı S � S correspond to subalgebras. Thus, the binary relations S on X

that satisfy both inequalities correspond to subalgebras of trace-zero operators. These are
exactly the nilpotent subalgebras because an operator a 2 L.H/ is nilpotent if and only if
TrH .an/ D 0 for each positive integer n.

Combining the one-to-one correspondences, we find that binary relations R on X

satisfying conditions (1), (2), and (3) correspond to nilpotent subalgebras A of L.H/ via
the equation R.H;H/ D ACC1H .
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5. Functions between quantum sets

We have characterized functions between quantum sets as binary relations satisfying a
pair of intelligible formulas, which certainly characterize ordinary functions within the
dagger compact category of ordinary sets and ordinary binary relations; see Definition
2.6.1 and Theorem 3.4.2 of Part I [17]. Now, we give streamlined characterizations of
functions, injective functions and surjective functions between quantum sets, emphasizing
our recovery of the corresponding concepts from noncommutative geometry.

Proposition 5.1. Let X and Y be quantum sets. Then, there is a one-to-one correspon-
dence between unital normal �-homomorphisms � from `1.Y/ to `1.X/ and binary
relations F on X such that

(1) J8x 9y� �F .x; y�/K D >;

(2) J8.x D x�/8.y1 D y1�/8.y2 D y2�/ .. �F .x; y1�/^ �F�.x�; y2//! y1 D y2�/K
D >.

These are exactly the functions F from X to Y [16, Def. 4.1]. This correspondence is
given by � D F ? [16, Thm. 7.4].

Proof. This proposition combines Theorem 3.4.2 of Part I [17] with Lemmas 2.2 and 3.2.
In Lemma 3.2, we set R D F �, S D F , and T D EY to infer that

J8y1 8y2� .9.x D x�/ . �R.y1; x�/ ^ �F .x; y2�//! y1 D y2�/K D >

is equivalent to

J8.y1D y1�/8.xD x�/8.y2D y2�/ .. �R.y1;x�/^ �F .x;y2�//! y1�D y2/KD>: (§)

By Lemma 2.2,

J.y1; x�/ 2 Y �X� j �F�.x�; y1/K D �R D J.y1; x�/ 2 Y �X� j �R.y1; x�/K;

so we can replace �R.y1;x�/ by �F�.x�;y1/ in both formulas. We thus recover the definition
of a function graph (Definition 2.6.1 of Part I [17]). Similarly, appealing to the fact that
IX is self-adjoint, we can replace y1� D y2 by y2 D y1� in formula (§). Exchanging the
variables y1 and y2 and permuting the quantifiers, we recover condition (2).

Proposition 5.2. The one-to-one correspondence in Proposition 5.1 restricts to a one-to-
one correspondence between surjective unital normal �-homomorphisms � from `1.Y/

to `1.X/ and binary relations F from X to Y satisfying conditions (1) and (2) in the
statement of that proposition, together with

(3) J8x 8x� .F.x/ D F�.x�/! x D x�/K D >.

These are exactly the injective functions F from X to Y [16, Def. 4.3 (1)].
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Proof. Appealing to Proposition 3.2.2 and Lemma 3.5.2 of Part I [17], we find that con-
dition (3) is equivalent to the following inequality:

F F�

x x

�

x x

:

Straightening the wire, we conclude that condition (3) is equivalent to the inequality F � ı
F � IX , i.e., to F being injective. A function F is injective if and only if F ? is surjective
[16, Prop. 8.4].

Proposition 5.3. The one-to-one correspondence in Proposition 5.1 restricts to a one-to-
one correspondence between injective unital normal �-homomorphisms � from `1.Y/ to
`1.X/ and binary relations from X to Y satisfying conditions (1) and (2) in the statement
of that proposition, together with

(4) J8y� 9x F.x/ D y�K D >.

These are exactly the surjective functions F from X to Y [16, Def. 4.3 (2)].

Proof. We glean from the proof of Theorem 3.4.2 of Part I [17] that>Y ıF D>X , simply
because F is a function. Similarly, condition (4) is equivalent to the inequality

>X ı F
�
D >Y ;

as we infer from its depiction below:

F

y
�

D

�

y

:

By the definition of a function from X to Y, the function F satisfies the inequality
F ı F � � IY . It is surjective if and only if F ı F � D IY . If F ı F � D IY , then

>X ı F
�
� >Y ı F ı F

�
D >Y ı IX ;

and therefore,>X ıF
�D>Y . Inversely, if F ıF �¤ IY , then the inequality F ıF � � IY

implies that .F ı F �/.W; Y / D 0 for some atom W 2 At.Y/ and all atoms Y 2 At.Y/.
Thus, Y has a nonempty subset W whose inclusion function J satisfies F ı F � ı J D
?

Y
W

, where ?Y
W

denotes the minimum binary relation from W to Y. If we suppose that
>X ı F

� D >Y , then we may calculate that ?W D >Y ı F ı F
� ı J D >X ı F

� ı

J D >Y ı J D >W , contradicting that W is nonempty. Therefore, if F ı F � ¤ IY , then
>X ı F

� ¤ >Y .
We conclude that F satisfies condition (4) if and only if it is surjective. A function F

is surjective if and only if F ? is injective [16, Prop. 8.1].
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Noting the similarity between the proof of Proposition 5.3 and the proof of Theorem
3.4.2 of Part I [17], the reader may well ask whether a binary relation R from X to Y is
surjective in the sense of [16, Def. 4.3 (2)] if and only if F ı >�

X
D >

�
Y or equivalently

J8y� 9x R.x; y�/K D >. The answer is no, by the same simple example that appeared at
the end of [16, Sec. 4], which we now revisit. Thus, the notion of surjectivity for binary
relations has multiple natural generalizations to the quantum setting.

Let X be the quantum set whose only atom is C2, let a 2 L.C2;C2/ be an invertible
matrix that is not a scalar multiple of a unitary matrix, and let R be the binary relation
on X defined by R.C2;C2/ D Ca. By our choice of a, the binary relation R does not
satisfy the inequality R ıR� � IX . However, by our choice of a, the binary relation R is
clearly invertible, so it does satisfy the inequality R ı >�

X
� >

�

Y
, as a simple consequence

of >�
X
� R�1 ı >

�

Y
. We conclude that R does not satisfy R ı R� � IX and that it does

satisfy R ı >�
X
D >

�

Y
.

6. Quantum metric spaces

A quantum metric on a von Neumann algebra M � L.H/ is a family of ultraweakly
closed subspaces .V˛ � L.H/ j ˛ 2 Œ0;1// such that V˛Vˇ � V˛Cˇ for all ˛;ˇ 2 Œ0;1/,
V˛ D

T
ˇ>˛ Vˇ for all ˛ 2 Œ0;1/ and V0DM 0 [21, Defs. 2.1 (a) and 2.3]. Intuitively, each

subspace V˛ consists of those operators which transform the configuration of the system
to a configuration that is at most distance ˛ 2 Œ0;1/ away. In the motivating example of
quantum Hamming distance,M DM2.C/˝ � � � ˝M2.C/ and V˛ is the span of operators
a1 ˝ � � � ˝ an, with ai ¤ 1 for at most ˛ indices i 2 ¹1; : : : ; nº. Thus, V˛ is spanned by
operators that corrupt at most ˛ qubits. Note that these quantum metrics generalize metrics
for which the distance between two points may be infinite [21, Sec. 2.1, Prop. 2.5].

Lemma 6.1. Let X1; : : : ;Xn be quantum sets, and let A1; : : : ; Am be ordinary sets. Let
t1; : : : ; tm be terms of sorts ‘A1; : : : ; ‘Am, whose free variables are among x1; : : : ; xn of
sorts X1; : : : ;Xn and x1�; : : : ; xn� of sorts X�1 ; : : : ;X

�
n . Let r be an ordinary relation of

arity .A1; : : : ; Am/. If ‘r.t1; : : : ; tn/ is nonduplicating, then the following are equivalent:

(1) J8.x1 D x1�/ � � � 8.xn D xn�/ ‘r.t1; : : : ; tm/K D >;

(2) for all .a1; : : : ; am/ 2 A1 � � � � � Am n r ,

J9.x1 D x1�/ � � � 9.xn D xn�/ .t1 D ‘a1 ^ � � � ^ tm D ‘am/K D ?:

The following proof includes formulas that may be infinite conjunctions or infinite
disjunctions of other formulas. Formally, such formulas are not part of our language, but
they pose no special difficulty. Indeed, Definition 2.3.1 of Part I [17] excludes infinitary
conjunction exclusively for the sake of the exposition. In light of Lemma A.6.1 of Part I
[17], we may regard each infinitary conjunction

V
.a1;:::;an/2An

�.‘a1; : : : ; ‘am;y1; : : : ;yn/
as abbreviating

8x1 � � � 8xn �.x1; : : : ; xn; y1; : : : ; yn/;
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and we may do similarly for each infinitary conjunction^
.a1;:::;an/2An

�.‘a1�; : : : ; ‘am�; y1; : : : ; yn/:

Proof of Lemma 6.1. The relation :r D A1 � � � � � Am n r may be regarded as a mor-
phism in the dagger compact category of ordinary sets and binary relations. As a binary
relation from A1 � � � � � Am to the singleton set ¹�º, it is defined by

:r D sup
®
a
�
1 � � � � � a

�
m j .a1; : : : ; am/ 2 A1 � � � � � Am n r

¯
:

For brevity, we will write Na D .a1; : : : ; am/:

J‘.:r/.t1; : : : ; tn/K D Jt1K JtmK� � �

‘.:r/

��� ���

D

_
.a1;:::;am/2:r

0BB@ Jt1K JtmK� � �

‘a�1 ‘a�m� � �

��� ���

1CCA
D

_
.a1;:::;am/2:r

0B@ Jt1K JtmK� � �

��� ���

‘a1� ‘am�

1CA
D

qW
Na2:r .t1 D ‘a1� ^ � � � ^ tm D ‘am�/

y
;

J8.x1 D x1�/ � � � 8.xn D xn�/ ‘r.t1; : : : ; tm/K

D J:9.x1 D x1�/ � � � 9.xn D xn�/:‘r.t1; : : : ; tm/K

D J:9.x1 D x1�/ � � � 9.xn D xn�/ .:‘r/.t1; : : : ; tm/K

D J:9.x1 D x1�/ � � � 9.xn D xn�/ ‘.:r/.t1; : : : ; tm/K

D J:9.x1 D x1�/ � � � 9.xn D xn�/
W
Na2:r .t1 D ‘a1� ^ � � � ^ tm D ‘am�/K

D J:
W
Na2:r 9.x1 D x1�/ � � � 9.xn D xn�/ .t1 D ‘a1� ^ � � � ^ tm D ‘am�/K

D

^
Na2:r

J:9.x1 D x1�/ � � � 9.xn D xn�/ .t1 D ‘a1� ^ � � � ^ tm D ‘am�/K:

For the second equality, we appeal to Lemma 3.5.2 of Part I [17]; [16, Thm. B.8] implies
that for each function from a quantum set X to a quantum set Y and each binary relation
R from Y to 1, we have that :.R ı F / D .:R/ ı F . For the penultimate equality, we
appeal to Theorem 3.3.2 of Part I [17] and either to Proposition 3.2.3 of Part I [17] or to
the fact that the composition of binary relations between quantum sets respects arbitrary
joins in both arguments, according to our gloss of the infinitary disjunction symbol. The
conjunction of binary relations is equal to > if and only if each conjunct is equal to >, so
the statement of the theorem follows.

Proposition 6.2. Let X be a quantum set, let A be an ordinary set, and let F WX �X�!

‘A be a function. For each a 2A, letRa be the binary relation on X defined by �Ra D ‘a� ı
F . Let a0 2A. Then,Ra0 � I‘A if and only if J8.x1 D x1�/ ‘.DA/.F.x1; x1�/; ‘a0/KD>.
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Proof. Applying Lemma 6.1, we find that the following are equivalent:

J8.x1 D x1�/ ‘.DA/.F.x1; x1�/; ‘a0/K D >

” for all distinct a1; a2 2 A, F ‘a0

‘a�1 ‘a�2

D ?

” for all a1 2 A distinct from a0,
�Ra1

D ?

” for all a1 2 A distinct from a0, Ra1 D ?

” for all a1 2 A distinct from a0, Ra1 ? I‘A

” I‘A � Ra0 :

The second equivalence follows from the fact that ‘a�2 ı ‘a0 D > or ‘a�2 ı ‘a0 D ?
according to whether a2 D a0 or a2 ¤ a0. The last equivalence follows from the fact that
¹‘a� ı F j a 2 Aº consists of pairwise-orthogonal relations of arity .X;X�/ whose join is
the maximum relation of arity .X;X�/, and thus, ¹Ra j a 2Aº consists of binary relations
on X whose join is the maximum binary relation on X.

Proposition 6.3. Let X be a quantum set, let A be an ordinary set, and let F WX �X�!

‘A be a function. For each a 2 A, let Ra be the binary relation on X defined by �Ra D

‘a� ı F . Then, R�a D Ra for all a 2 A if and only if

J8.x1 D x1�/8.x2 D x2�/ ‘.DA/.F.x1; x2�/; F .x2; x1�//K D >:

Proof. Applying Lemma 6.1, we find that the following are equivalent:

J8.x1 D x1�/8.x2 D x2�/ ‘.DA/.F.x1; x2�/; F .x2; x1�//K D >

” for all distinct a1; a2 2 A,

‘a�1 ‘a�2

F F D ?

” for all distinct a1; a2 2 A,

�Ra1
�Ra2

D ?
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” for all distinct a1; a2 2 A,
Ra1 Ra2

D ?

” for all distinct a1; a2 2 A, Ra1 R�a2 D ?

” for all distinct a1; a2 2 A, Ra1 ? R
�
a2

” for all a 2 A, Ra � R�a:

The second-to-last equivalence holds because R�a2 D .R
�
a2/�. The last equivalence holds

because ¹Ra j a 2 Aº consists of pairwise-orthogonal relations on X whose join is the
maximum relation on X. The inequalityRa �R

�
a for all a 2A is equivalent to the equality

Ra D R
�
a for all a 2 A because the adjoint operation is an order isomorphism.

Proposition 6.4. Let X be a quantum set, and let F WX �X� ! ‘Œ0;1� be a function.
For each ˛ 2 Œ0;1�, let R˛ be the binary relation on X defined by �R˛ D ‘˛� ı F . Then,
R˛2 ıR˛1 �

W
˛�˛1C˛2

R
�
˛ for all ˛1; ˛2 2 Œ0;1� if and only if

J8.x1Dx1�/8.x2Dx2�/8.x3Dx3�/ ‘.��/.F.x1; x2�/; ‘.C/.F.x2; x3�/; F .x3; x1�///K

D >:

Proof. Refer to [19, App. C] for the basic properties of the trace on binary relations. Let
˛; ˛1; ˛2 2 Œ0;1�. We compute that

F F F

‘˛� ‘˛�1 ‘˛�2

D
�R˛ �R˛1

�R˛2 D R˛ R˛1 R˛2

D

R˛

R˛1

R˛2

D TrX.R˛2 ıR˛1 ıR˛/:

Let r be the ordinary relation of arity .Œ0;1�; Œ0;1�; Œ0;1�/ defined by

r D .��/ ı .idŒ0;1� � .C// D ¹.˛; ˛1; ˛2/ 2 Œ0;1�
3
j ˛ � ˛1 C ˛2º:
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Applying Lemma 6.1, we find that the following are equivalent:

J8.x1Dx1�/8.x2Dx2�/8.x3Dx3�/ ‘.��/.F.x1; x2�/; ‘.C/.F.x2; x3�/; F .x3; x1�///K

D >

” J8.x1Dx1�/8.x2Dx2�/8.x3Dx3�/ ‘r.F.x1; x2�/; F .x2; x3�/; F .x3; x1�//K

D >

” for all ˛; ˛1; ˛2 2 Œ0;1� such that ˛ > ˛1 C ˛2, TrX.R˛2 ıR˛1 ıR˛/ D ?

” for all ˛; ˛1; ˛2 2 Œ0;1� such that ˛ > ˛1 C ˛2, TrX..R
�
˛/
�
ı .R˛2 ıR˛1//D?

” for all ˛; ˛1; ˛2 2 Œ0;1� such that ˛ > ˛1 C ˛2, R˛2 ıR˛1 ? R
�
˛

” for all ˛1; ˛2 2 Œ0;1�, R˛2 ıR˛1 �
_

˛�˛1C˛2

R�˛:

The first equivalence follows by the graphical calculus via Lemma 3.5.2 of Part I [17].

Let A be an ordinary set. The relations ‘.DA/ and E‘A are both, in some sense, equal-
ity relations on ‘A, but they are distinct because they have different arities. The relation
‘.DA/ has arity .‘A; ‘A/, and the relation E‘A has arity .‘A; .‘A/�/. Nevertheless, they are
very closely related because ‘A and .‘A/� are naturally isomorphic via the “conjugation”
function CAW ‘A! .‘A/�, defined by CA.Ca;C�a / D L.Ca;C

�
a / for all a 2 A, with the

other components vanishing. The function CA is intuitively the identity on ‘A, and this
can be arranged to hold formally [16, App. D].

Theorem 6.5. Let X be a quantum set. Let T be the binary relation on ‘Œ0;1� defined by
T D ‘.�/. Then, there is a one-to-one correspondence between quantum pseudometrics
.Vˇ j ˇ 2 Œ0;1// on `1.X/ in the sense of [21, Def. 2.3] and functions F WX �X� !

‘Œ0;1� such that

(1) J8.x1 D x1�/ F.x1; x1�/ D ‘0�K D >;

(2) J8.x1 D x1�/8.x2 D x2�/ F.x1; x2�/ D CŒ0;1�.F.x2; x1�//K D >;

(3) J8.x1 D x1�/8.x2 D x2�/8.x3 D x3�/ �T .F.x1; x2�/; ‘.C/�.F�.x1�; x3/;
F�.x3�; x2///K D >.

This correspondence is given by
P
˛2Œ0;ˇ�R˛.X1;X2/D inc�X2 � Vˇ � incX1 , for ˇ 2 Œ0;1/

and X1; X2 2 At.X/, where �R˛ D ‘˛� ı F for each ˛ 2 Œ0;1�.

Proof. Let A D Œ0;1�, and let a0 D 0. The equation �R˛ D ‘˛� ı F , for ˛ 2 A, defines
a one-to-one correspondence between functions F WX �X� ! ‘A and indexed families
.R˛ j ˛ 2 A/ of pairwise disjoint binary relations on X whose join is >X

X
, the maximum

binary relation on X. In the context of this correspondence, condition (1) is equivalent to
the equation in Proposition 6.2 because

E‘A ı .F � ‘0�/ D E‘A ı .F � .CA ı ‘0// D E‘A ı .I‘A � CA/ ı .F � ‘0/

D ‘.DA/ ı .F � ‘0/:
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Similarly, condition (2) is equivalent to the equation in Proposition 6.3 because

E‘A ı .F � .CA ı F //DE‘A ı .I‘A � CA/ ı .F � F /D ‘.DA/ ı .F � F /:

Thus, F satisfies conditions (1) and (2) if and only if R0 � I‘A and R�˛ D R˛ for all
˛ 2 Œ0;1�.

Assuming conditions (1) and (2), Lemma 2.2 implies that for all ˛ 2 Œ0;1� we have
�R˛� ı BX;X� D

�R˛ , i.e., ‘˛�� ı F� ı BX;X� D ‘˛� ı F , where BX;X� is the braiding of
X and X�. Thus, ‘˛�� ı F� ı BX;X� D ‘˛�� ı CA ı F for all ˛ 2 A; we conclude that
F� ı BX;X� D CA ı F . We now calculate that

‘.��/ ı .F � .‘.C/ ı .F � F /// D ‘.��/ ı .F � .‘.C/ ı B‘Œ0;1�;‘Œ0;1� ı .F � F ///

D ‘.��/ ı .F � .‘.C/ ı .F � F / ı BX�X�;X�X�//

D �T ı .I‘A � CA/ ı .F � .‘.C/ ı .F � F / ı BX�X�;X�X�//

D �T ı .F � .CA ı ‘.C/ ı .F � F / ı BX�X�;X�X�//

D �T ı .F � .‘.C/� ı .CA � CA/ ı .F � F / ı BX�X�;X�X�//

D �T ı .F � .‘.C/� ı .F� � F�/ ı .BX;X� � BX;X�/ ı BX�X�;X�X�//

D �T ı .F � .‘.C/� ı .F� � F�/// ı .IX�X� � ..BX;X� � BX;X�/ ı BX�X�;X�X�//:

We conclude that, modulo conditions (1) and (2), condition (3) is equivalent to the equa-
tion in Proposition 6.4.

Therefore, we have a one-to-one correspondence between functions F WX �X� !

‘Œ0;1�, satisfying conditions (1), (2), and (3), and indexed families .R˛ j ˛ 2 Œ0;1�/ of
pairwise orthogonal binary relations on X, whose join is>X

X
and which satisfy R0 � IX ,

R
�
˛ D R˛ for all ˛ 2 Œ0;1� and R˛2 ıR˛1 �

W
˛�˛1C˛2

R˛ for all ˛1; ˛2 2 Œ0;1�.
The equation

W
˛�ˇ R˛ D Sˇ defines a one-to-one correspondence between indexed

families .R˛ j ˛ 2 Œ0;1�/ such that
W
˛R˛ D>

X
X

andR˛1 ?R˛2 for all distinct ˛1; ˛2 2
Œ0;1� and indexed families .Sˇ j ˇ 2 Œ0;1// such that Sˇ0 D

V
ˇ>ˇ0

Sˇ for all ˇ0 2
Œ0;1/. The existence of this correspondence becomes readily apparent by identifying the
binary relations R˛ and the binary relations Sˇ with projections in the hereditarily atomic
von Neumann algebra `1.X �X�/. In the context of this correspondence, R0 � IX is
equivalent to S0 � IX , R�˛ D R˛ for all ˛ 2 Œ0;1� is equivalent to S�

ˇ
D Sˇ for all ˇ 2

Œ0;1/, andR˛2 ıR˛1 �
W
˛�˛1C˛2

R˛ for all ˛1; ˛2 2 Œ0;1� is equivalent to Sˇ1 ı Sˇ2 �
Sˇ1Cˇ2 for all ˇ1; ˇ2 2 Œ0;1/. Families .Sˇ j ˇ 2 Œ0;1// with these four properties are
in obvious one-to-once correspondence with quantum pseudometrics .Vˇ j ˇ 2 Œ0;1// on
`1.X/ via the expression Sˇ .X1; X2/ D inc�X2 � Vˇ � incX1 , as in Appendix A.2 of Part I
[17].

In summary, the equation �R˛ D ‘˛� ı F , for ˛ 2 Œ0;1�, defines a one-to-one corre-
spondence between functions F WX �X� ! ‘Œ0;1�, satisfying conditions (1), (2), and
(3), and families .R˛ j ˛ 2 Œ0;1�/ of binary relations on X, satisfying

(a) R˛1 ? R˛2 for distinct ˛1; ˛2 2 Œ0;1�;
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(b)
W
˛ R˛ D >

X
X

;

(c) R0 � IX ;

(d) R
�
˛ D R˛ for ˛ 2 Œ0;1�;

(e) R˛2 ıR˛1 �
W
˛�˛1C˛2

R˛ for ˛1; ˛2 2 Œ0;1�.

Furthermore, the equation
P
˛�ˇ R˛.X1;X2/D inc�X2 � Vˇ � incX1 , for ˇ 2 Œ0;1/, defines

a one-to-one correspondence between such families .R˛ j ˛ 2 Œ0;1�/ and quantum pseu-
dometrics .Vˇ j ˇ 2 Œ0;1// on `1.X/. Thus, the theorem is proved.

Corollary 6.6. The one-to-one correspondence of Theorem 6.5 restricts to a one-to-one
correspondence between quantum metrics .Vˇ j ˇ 2 Œ0;1// on `1.X/ in the sense of
[21, Def. 2.3] and functions F WX �X� ! ‘Œ0;1� satisfying conditions (1), (2), and (3)
in the statement of that theorem, together with

(4) J8x1 8x2� .F.x1; x2�/ D 0� ! x1 D x2�/K D >.

Proof. We have that J.x1; x2�/ 2 X �X� j F.x1; x2�/ D 0�K D ‘0� ı F D �R0 by the
graphical calculus, so condition (4) is equivalent to �R0 � EX by Proposition 3.2.2 of
Part I [17]. We now reason that �R0 � EX is equivalent to R0 � IX , which is equivalent
to V0 � `1.X/0 via the correspondence between binary relations and quantum relations
given in Appendix A.2 of Part I [17] because `1.X/0 is the identity quantum relation on
`1.X/.

7. Quantum families of graph isomorphisms

The graph coloring game is played by two cooperating players, traditionally named Alice
and Bob, against a referee. The parameters of the game are a finite simple graph G and
a finite set of colors C , and the rules of the game are such that, classically, Alice and
Bob have a winning strategy if and only if G can be properly colored by C . Alice and
Bob are forbidden from communicating with each other during the course of the game,
and the existence of a proper graph coloring ensures that they are able to successfully
coordinate their responses to the referee. However, if Alice and Bob possess entangled
quantum systems, then they may have a winning strategy even if no proper graph coloring
exists. In this case, one says that a quantum graph coloring exists. Section I.A of [16]
contains a longer discussion of the graph coloring game and its connection to quantum
sets.

The graph coloring game can be generalized to the graph homomorphism game, whose
parameters are two finite simple graphs G and H . Classically, Alice and Bob have a
winning strategy if and only if there exists a graph homomorphism fromG toH . We show
that Alice and Bob have a winning strategy utilizing finite entangled quantum systems
if and only if there exists a nonempty quantum family of graph homomorphisms from
G to H , suitably expressed in the quantum predicate logic of this paper. The family is
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quantum in the sense that it is indexed by a quantum set. This equivalence between the
existence a winning strategy utilizing finite entangled quantum systems and the existence
of a nonempty quantum family of graph homomorphisms is essentially already present
in [16, Prop. 1.2] and even in [5, Sec. II]. Thus, the novelty of Proposition 7.4 consists
primarily in the axiomatization of these quantum families of graph homomorphisms in
quantum predicate logic.

Similarly, we axiomatize quantum families of graph isomorphisms. Naturally, Alice
and Bob have a winning strategy for the graph isomorphism game [2, Sec. 1.1], possi-
bly utilizing finite entangled quantum systems, if and only if there exists a nonempty
quantum family of graph isomorphisms. The example of the quantum families of graph
isomorphisms is particularly significant due to extraordinary progress in understanding
the quantum isomorphism relation [25, 27–29].

Lemma 7.1. Let X be a quantum set, and let A be an ordinary set. Then, there is a one-
to-one correspondence between functions F WX! ‘A and families .Pa 2 Rel.X/ j a 2A/
such that Pa1 ? Pa2 for all a1 ¤ a2 and

W
a2A Pa D >‘A. This correspondence is given

by Pa D ‘a� ı F .

Proof. The equation Pa D ‘a� ı F , for a 2 A, defines a one-to-one correspondence be-
tween binary relations F from X to ‘A and indexed families .Pa 2 Rel.X/ j a 2 A/,
essentially by the definition of a binary relation between quantum sets. It only remains to
show that the inequalities F ı F � � I‘A and F � ı F � IX are together equivalent to the
stated conditions on .Pa j a 2 A/ under this correspondence. Reasoning in terms of the
trace on binary relations [19, App. C],

F ı F � � I‘A ” F ı F � ? :I‘A ” Tr.:I �‘A ı F ı F
�/ D ?

” Tr
�� _

a1¤a2

‘a1 ı ‘a�2
�
ı F ı F �

�
D? ”

_
a1¤a2

Tr.‘a1 ı ‘a�2 ı F ı F
�/D?

” for all distinct a1; a2 2 A, Tr..‘a�2 ı F / ı .a
�
1 ı F /

�/ D ?

” for all distinct a1; a2 2 A, Pa1 ? Pa2 :

Under the assumption F ı F � � I‘A, the inequality F � ı F � IX is equivalent to the
equality >‘A ı F D >X by [16, Lems. 6.4 and B.4]:

F ıF ��I‘A ” >‘A ıFD>X ”

�_
a2A

‘a�
�
ıFD>X ”

_
a2A

PaD>X :

Lemma 7.2. Let A and B be ordinary sets, and let X be a quantum set. We have a one-
to-one correspondence between families .Pab 2 Rel.X/ j a 2 A; b 2 B/ such that

(1) Pab1 ? Pab2 for all a 2 A and distinct b1; b2 2 B;

(2)
W
b2B Pab D >X for all a 2 A,

and functions F WX � ‘A! ‘B . It is given by the equation Pab D ‘b� ı F ı .IX � ‘a/
for a 2 A and b 2 B .
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Proof. The quantum set X � ‘A is a coproduct of copies of X, with one copy for each
element ofA. The inclusions of this coproduct are exactly the functions IX � ‘a for a 2A.
Thus, we have a one-to-one correspondence between families of functions .FaWX! ‘B j
a 2 A/ and functions F WX � ‘A! ‘B , which is given by Fa D F ı .IX � ‘a/ for a 2 A.
The statement of the lemma then follows by Lemma 7.1.

Proposition 7.3. Let A and B be ordinary sets, let X be a quantum set, and let F be a
function X � ‘A! ‘B . For each a 2 A and each b 2 B , let Pab D ‘b� ı F ı .IX � ‘a/.
Then,

W
a2A Pab D >X for all b 2 B if and only if J8x 8b� 9a F.x; a/ D b�K D >.

Proof. First, we compute that for all a 2 A and all b 2 B ,

Pab D
F

x

‘a

‘b�

D
F

x

‘a ‘b�

D Jx 2 X j F.x; ‘a/ D ‘b�K:

Now we apply Lemma A.6.1 of Part I [17] twice to reason that

8b 2 B
_
a2A

Pab D >X ”

^
b2B

_
a2A

Pab D >X

”

^
b2B

_
a2A

Jx 2 X j F.x; ‘a/ D ‘b�K D >X

”

^
b2B

Jx 2 X j 9a F.x; a/ D ‘b�K D >X

” Jx 2 X j 8b� 9a F.x; a/ D b�K D >X

” J8x 8b� 9a F.x; a/ D b�K D >;

where the last equivalence follows from Lemma 3.2.1 of Part I [17].

Proposition 7.4. LetA andB be sets equipped with binary relations r and s, respectively,
and letRD ‘r and S D ‘s. Let X be a quantum set, and let F WX � ‘A! ‘B be a function.
For each a 2 A and each b 2 B , let Pab be the relation of arity .X/ defined by

Pab D ‘b� ı F ı .IX � ‘a/:

Then, Pa1b1 ? Pa2b2 for all .a1; a2/ 2 r and .b1; b2/ 2 :s if and only if

J8.xDx�/8.a1Da1�/8.a2Da2�/ . �R.a1; a2�/! �S�.F�.x�; a1�/; F .x; a2///K D >:

Proof. The equation in the statement of the proposition is equivalent to

J9.xDx�/ 9.a1Da1�/ 9.a2Da2�/ . �R.a1; a2�/ ^ : �S�.F�.x�; a1�/; F .x; a2///K D ?;
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which may be rendered graphically as

F� F

: �S��R

D ?:

Because A and B are ordinary sets, we have

�R D sup¹‘a�1 � ‘a�2� j .a1; a2/ 2 rº

and : �S� D sup¹‘b�1� � ‘b2 j .b1; b2/ 2 :sº. Thus, the equation in the statement of the
proposition is equivalent to

_
.a1;a2/2r
.b1;b2/2:s

F� F

‘a�1 ‘a�2� ‘b�1� ‘b�2

D ?:

Reasoning graphically, we conclude that this latter equation expresses the condition that
‘b�1 ı F ı .IX � ‘a1/ is orthogonal to ‘b�2 ı F ı .IX � ‘a2/ whenever .a1; a2/ 2 r and
.b1; b2/ 2 :s.

Proposition 7.5. Let A and B be ordinary sets. Let H be a nonzero finite-dimensional
Hilbert space, and let X be the quantum set defined by

At.X/ D ¹H º:

Then, there is a one-to-one correspondence between families of projections .pab 2L.H/ j
a 2 A; b 2 B/ such that

P
b2B pab D 1H for all a 2 A and functions F WX � ‘A! ‘B .

This correspondence is obtained by combining the one-to-one correspondence of Lemma
7.2 with the canonical one-to-one correspondence between projection operators on H
and relations of arity .X/. It is given by the equation

F.H ˝Ca;Cb/ D L.H ˝Ca;Cb/ � .pab ˝ 1/;

for a 2 A and b 2 B .

The canonical one-to-one correspondence between projection operators p on H and
relations P of arity .X/ is defined by

P.H;C/ D ¹v 2 L.H;C/ j vp D vº D L.H;C/ � p:

This is an isomorphism of ortholattices [16, App. B].
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Proof of Proposition 7.5. For all a 2 A and b 2 B , we calculate that

F .H ˝Ca;Cb/

D L.C;Cb/ � L.Cb;C/ � F.H ˝Ca;Cb/ � .1H ˝ L.C;Ca// � .1H ˝ L.Ca;C//

D L.C;Cb/ � ‘b�.Cb;C/ � F.H ˝Ca;Cb/ � .1H ˝ ‘a.C;Ca// � .1H ˝ L.Ca;C//

D L.C;Cb/ � .‘b� ı F ı .IX � ‘a//.H ˝C;C/ � .1H ˝ L.Ca;C//

D L.C;Cb/ � Pab.H ˝C;C/ � .1H ˝ L.Ca;C//

D L.C;Cb/ � L.H ˝C;C/ � .pab ˝ 1/ � .1H ˝ L.Ca;C//

D L.H ˝Ca;Cb/ � .pab ˝ 1/:

The unitor H ˝C ! H has been suppressed.

Theorem 7.6. Let A and B be sets equipped with binary relations r and s, respectively,
and let R D ‘r and S D ‘s. Let H be a nonzero finite-dimensional Hilbert space, and let
X be the quantum set defined by At.X/ D ¹H º. Then, the one-to-one correspondence of
Proposition 7.5 restricts to a one-to-one correspondence between families of projections
.pab 2 L.H/ j a 2 A; b 2 B/ such that

(1)
P
b2B pab D 1H for all a 2 A;

(2) pa1b1 ? pa2b2 for all .a1; a2/ 2 r and .b1; b2/ 2 :s,

and functions F WX � ‘A! ‘B such that

J8.xDx�/8.a1Da1�/8.a2Da2�/ . �R.a1; a2�/! �S�.F�.x�; a1�/; F .x; a2///K D >:

Proof. This follows immediately from Proposition 7.4 and Proposition 7.5.

Definition 7.7. Let .A;�A/ and .B;�B/ be finite simple graphs, and let H be a nonzero
finite-dimensional Hilbert space. We say that a family of projections .pab 2 L.H/ j a 2
A; b 2 B/ witnesses A

q
�! B if

(1)
P
b2B pab D 1H for all a 2 A;

(2) pa1b1 � pa2b2 D 0 for all a1; a2 2 A and b1; b2 2 B that satisfy either of the con-
ditions .a1 DA a2/ ^ .b1 ¤B b2/ or .a1 �A a2/ ^ .b1 6�B b2/.

Alice and Bob have a winning strategy for the .A;B/-homomorphism game, possibly
using finite entangled quantum systems, if and only if there exists a family of projections
on some nonzero finite-dimensional Hilbert space that witnesses A

q
�! B [26, Cor. 2.2].

Corollary 7.8. Let .A;�A/ and .B;�B/ be finite simple graphs, and let R D ‘.�A/ and
S D ‘.�B/. Let H be a nonzero finite-dimensional Hilbert space, and let X be the quan-
tum set defined by At.X/D ¹H º. Then, the one-to-one correspondence of Proposition 7.5
restricts to a one-to-one correspondence between families of projections .pab 2 L.H/ j
a 2 A; b 2 B/ witnessing A

q
�! B and functions F WX � ‘A! ‘B satisfying

J8.xDx�/8.a1Da1�/8.a2Da2�/ . �R.a1; a2�/! �S�.F�.x�; a1�/; F .x; a2///K D >:
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Proof. This corollary follows immediately from Theorem 7.6.

Definition 7.9. Let A and B be finite sets, and let H be a nonzero finite-dimensional
Hilbert space. We say that a family of projections .pab 2 L.H/ j a 2 A;b 2 B/ is a magic
unitary if

(1)
P
b2B pab D 1H for all a 2 A;

(2)
P
a2A pab D 1H for all b 2 B .

A magic unitary in this sense is essentially a quantum family of bijections between A
and B indexed by the quantum set whose only atom is H . In particular, if A D B , then it
is a quantum family of bijections. Indeed, the universal C*-algebra generated by projec-
tions pab , for a; b 2 A, satisfying conditions (1) and (2), is a well-established quantum
generalization of the permutation group Aut.A/, introduced in [44, Sec. 3].

Corollary 7.10. Let A and B be sets. Let H be a nonzero finite-dimensional Hilbert
space, and let X be the quantum set defined by At.X/ D ¹H º. Then, the one-to-one
correspondence of Proposition 7.5 restricts to a one-to-one correspondence between fam-
ilies of projections .pab 2 L.H/ j a 2 A; b 2 B/ that are magic unitaries and functions
F WX � ‘A! ‘B such that

(1) J8x 8b� 9a F.x; a/ D b�K D >;

(2) J8.x D x�/8.a1 D a1�/8.a2 D a2�/ .a1 D a2� $ F�.x�; a1�/ D F.x; a2//K
D >.

Proof. Applying Theorem 7.6 with r equal to the identity binary relation onA and s equal
to the identity binary relation on B , we find that

J8.x D x�/8.a1 D a1�/8.a2 D a2�/ .a1 D a2� ! F�.x�; a1�/ D F.x; a2//K D >

for all functions F WX � ‘A! ‘B . Applying Theorem 7.6 with r equal to the negation
of the identity binary relation A and s equal to the negation of the identity binary relation
on B , we find that the one-to-one correspondence of Proposition 7.5 restricts to a one-
to-one correspondence between families of projections .pab/ such that

P
b2B pab D 1H

and pa1b ? pa2b for all distinct a1; a2 2 A and all b 2 B and functions F WX � ‘A! ‘B
such that

J8.x D x�/8.a1 D a1�/8.a2 D a2�/ .a1 ¤ a2� ! F�.x�; a1�/ ¤ F.x; a2//K D >:

Applying Proposition 7.3, we also find that the one-to-one correspondence of Proposi-
tion 7.5 restricts to a one-to-one correspondence between families of projections .pab/
such that

P
b2B pab D 1H for all a 2 A and

W
a2A pab D 1H for all b 2 B and functions

F WX � ‘A! ‘B such that J8x 8b� 9a F.x; a/ D b�K D >.
Combining these three observations and applying Proposition A.2, we conclude the

statement of the corollary, because the atomic formulas a1Da2� and F�.x�; a1�/ D
F.x; a2/ have no variables in common and, thus,

Ja1 ¤ a2� ! F�.x�; a1�/ ¤ F.x; a2/K D JF�.x�; a1�/ D F.x; a2/! a1 D a2�K:
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Definition 7.11. Let .A;�A/ and .B;�B/ be finite simple graphs, and letH be a nonzero
finite-dimensional Hilbert space. We say that a family of projections .pab 2 L.H/ j a 2
A; b 2 B/ witnesses A Šq B if it witnesses both A

q
�! B and B

q
�! A.

Alice and Bob have a winning strategy for the .A; B/-isomorphism game, possibly
using finite entangled quantum systems, if and only if there exists a family of projections
on some nonzero finite-dimensional Hilbert space that witnesses A Šq B [2, Res. 2].

Corollary 7.12. Let .A;�A/ and .B;�B/ be finite simple graphs, and let R D ‘.�A/ and
S D ‘.�B/. Let H be a nonzero finite-dimensional Hilbert space, and let X be the quan-
tum set defined by At.X/D ¹H º. Then, the one-to-one correspondence of Proposition 7.5
restricts to a one-to-one correspondence between families of projections .pab 2 L.H/ j
a 2 A; b 2 B/ witnessing A Šq B and functions F WX � ‘A! ‘B such that

(1) J8x 8b� 9a F.x; a/ D b�K D >;

(2) J8.x D x�/8.a1 D a1�/8.a2 D a2�/ .a1 D a2� $ F�.x�; a1�/ D F.x; a2//K
D >;

(3) J8.xD x�/8.a1D a1�/8.a2D a2�/ . �R.a1;a2�/$ �S�.F�.x�;a1�/;F .x;a2///K
D >.

Proof. We extend the proof of Corollary 7.10, by applying Theorem 7.6 first with rD.�A/
and s D .�B/ and then with r D :.�A/ and s D :.�B/, reasoning similarly.

8. Quantum groups

In their essence, discrete quantum groups are the Pontryagin duals of compact quan-
tum groups, and this is how they first arose; see [38, Sec. 3] and [52]. There are many
equivalent definitions [8, 23, 43]. We could define a discrete quantum group structure on
a quantum set X to be a suitable comultiplication on c0.X/, as in [38], a suitable comul-
tiplication on cc.X/, as in [43], or a suitable comultiplication on `1.X/, as implicitly
in [23]. We work with Van Daele’s definition [43, Def. 2.3], defining

cc.X/ D ¹a 2 `
1.X/ j a.X/ D 0 for cofinitely many X 2 At.X/º

for each quantum set X.
Discrete quantum groups are undoubtedly the most compelling example illustrating

the naturality of quantum logic to noncommutative mathematics. First, discrete quantum
groups are a firmly established quantum generalization, as firmly established as any class
of discrete quantum structures. They were first defined more than thirty years ago, and
their place in the noncommutative dictionary appears to have never been in doubt. Second,
the considerations that motivated their definition are far removed from the considerations
that motivated the definition of the semantics considered here. Only the duality between
operator algebras and quantum spaces is shared in common. Third, the example of dis-
crete quantum groups carries empirical weight. While the semantics considered here can



Discrete quantum structures II: Examples 437

readily be motivated from first principles, the interpretation of equality that is given in
this paper was in fact motivated by many of the examples that we have considered, so the
incorporation of these examples is not so surprising. However, discrete quantum groups
were not among the examples first considered by the author. The correct axiomatization
of discrete quantum groups was naively hypothesized by the author and then established
by Stefaan Vaes [42]. It is essentially his proof that is recorded here.

Let X be a quantum set. For each atomX of X, we write JX for the inclusion function
of the atomic quantum set Q¹Xº into X [16, Def. 2.3], i.e., as an abbreviation for JX

Q¹Xº

[16, Def. 8.2]. Similarly, we write >X and ?X as abbreviations for >Q¹Xº and ?Q¹Xº,
respectively. Let Rep.`1.X// be the category of representations of `1.X/, implicitly of
finite-dimensional nondegenerate normal �-representations. A morphism in Rep.`1.X//
from a representation �W `1.X/! L.H/ to a representation � W `1.X/! L.K/ is an
intertwiner between the two representations, i.e., an operator v 2 L.H; K/ such that
v � �.a/ D �.a/ � v for all a 2 `1.X/. Up to isomorphism, the simple objects, i.e., the
irreducible representations, are just the canonical projections J ?X W `

1.X/ ! L.X/ for
X 2 At.X/ [16, Thm. 7.4], and every representation is a finite direct sum of these. The
category Rep.`1.X// is a C*-category in the obvious way [31, Def. 2.1.1].

Let X be a quantum set, and let F WX �X ! X and C W 1! X be functions such
that F ı .F � IX/ D F ı .IX � F / and F ı .C � IX/ D IX D F ı .IX � C/. Then,
F ? is a comultiplication on `1.X/, and C ? is a counit for this comultiplication [16,
Thm. 7.4]. In the usual way, we obtain a monoidal structure on the category Rep.`1.X//.
For representations �1W `1.X/ ! L.H1/ and �2W `1.X/ ! L.H2/, we define �1 �
�2W `

1.X/ ! L.H1 ˝ H2/ by �1 � �2 D .�1 x̋ �2/ ı F
?. For intertwiners v1, from

�1W `
1.X/ ! L.H1/ to �1W `1.X/ ! L.K1/, and v2, from �2W `

1.X/ ! L.H2/ to
�2W `

1.X/! L.K2/, we define v1 � v2 D v1 ˝ v2. The standard computations show
that Rel.`1.X// is a monoidal C*-category with product � and unitC ?W`1.X/!L.C/
[31, Def. 2.1.1]. We will show that it has conjugates [31, Def. 2.2.1].

We make a number of simplifying assumptions without loss of generality. First, we
represent `1.X/ in a small strict monoidal category of finite-dimensional Hilbert spaces
[31, Sec. 2.1]. Second, we assume that each atom of X is a Hilbert space in this small
category. Third, we assume that C.C;C/ ¤ 0. In other words, we assume that C is an
atom of X and that furthermore it is the unique atom in the range of C [19, Def. 3.2].
Overall, we have that Rep.`1.X// is a small strict monoidal C*-category that contains
J ?X for all X 2 At.X/ and that has unit C ? D J ?C .

Proposition 8.1. Let X, Y, and Z be quantum sets, let P be a binary relation of arity
.X;Y/, and let Q be a binary relation of arity .Y;Z/. Assume that

(1) J8y 9x P.x; y/K D >;

(2) J8y 9z Q.y; z/K D >.

Then, for all Y 2 At.Y/, there exist X 2 At.X/ and Z 2 At.Z/ such that .P � >Z/ ı

.JX � JY � JZ/ is not orthogonal to .>X �Q/ ı .JX � JY � JZ/.
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Proof. We are essentially given that

P

Y
� D

�

Y

and
Q

Y
� D

�

Y

:

We now reason that

_
X2At.X/
Z2At.Z/

P

Q�

�

JX

J
�
X

JY

J
�
Y

JZ

J
�
Z

�

D

P

Q�

�

JY

J
�
Y

�

D

�

JY

J
�
Y

�

D >:

We have applied the equalities
W
X2At.X/ JX ı J

�
X D IX and

W
Z2At.Z/ JZ ı J

�
Z D IZ

[19, Lem. A.4]. The last equality holds because >Y ı JY D >Y ¤ ?Y [16, Thm. B.8].
Hence, at least one term in the join on the left is equal to >. We conclude that there exist
X 2At.X/ andZ 2At.Z/ such that ..P �>Z/ ı .JX � JY � JZ// ı ..>X �Q/ ı .JX �

JY � JZ//
� D >, and therefore, the two relations are not orthogonal.

For each atom X of X, the inclusion function JX WQ¹Xº ! X is injective [16, Prop.
8.4], and therefore, the binary relation J �X WX ! Q¹Xº is a partial function. Because
JX .X; X/ is spanned by the identity operator on X , with all other components of JX
vanishing, it is easy to see that .J �X /

? is equal to ŒX�, the minimal central projection in
`1.X/ corresponding to X . This is also the support projection of J ?X [16, Lem. 8.3].
Thus, the support projection of C ? D J ?CW `

1.X/! C is ŒC� D .C �/?.1/.

Lemma 8.2. Let X be a quantum set, and let F WX �X!X and C W1!X be functions
such that F ı .F � IX/ D F ı .IX � F / and F ı .C � IX/ D IX D F ı .IX � C/.
Assume that

(1) J8x2 9x1 F.x1; x2/ D C�K D >;

(2) J8x2 9x3 F.x2; x3/ D C�K D >.

Then, every simple object of the strict monoidal C*-category Rep.`1.X// has a conju-
gate. In other words, for every atom X 2 At.X/, there exist an atom xX 2 At.X/ and
intertwiners vX WC ? ! J ?X � J ?

xX
and wX WC ? ! J ?

xX
� J ?X such that .v�X � 1X /.1X �

wX / D 1X and .w�X � 1 xX /.1 xX � vX / D 1 xX . Therefore, Rep.`1.X// is rigid.

Proof. Let X2 2 At.X/. Let P D J.x1; x2/ 2 X �X j F.x1; x2/ D C�K D C � ı F , and
similarly, let Q D J.x2; x3/ 2 X �X j F.x2; x3/ D C�K D C � ı F . We apply Proposi-
tion 8.1 to obtain atoms X1 and X3 such that

..C � ı F / � >X/ ı .JX1 � JX2 � JX3/ 6? .>X � .C
�
ı F // ı .JX1 � JX2 � JX3/
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as binary relations from Q¹X1 ˝ X2 ˝ X3º to 1. Writing G12 D C � ı F ı .JX1 � JX2/
and G23 D C � ı F ı .JX2 � JX3/, we have that G12 �>X3 6? >X1 �G23. In other words,

G12.X1 ˝X2;C/˝ L.X3;C/ 6? L.X1;C/˝G23.X2 ˝X3;C/

as subspaces ofL.X1˝X2˝X3;C/. Hence, let v12 2G12.X1˝X2;C/, �3 2L.X3;C/,
�1 2 L.X1;C/, and v23 2 G23.X2 ˝ X3;C/ be such that v12 ˝ �3 is not orthogonal to
�1 ˝ v23 as elements of L.X1 ˝X2 ˝X3;C/. It certainly follows that

.v12 ˝ 1/ � .1˝ v
�
23/ ¤ 0:

We now show that v12 is an intertwiner. To do so, we recall our previous observation
that C �WX ! 1 is a partial function and that ŒC� D .C �/?.1/ is the support projection
ofC ?. Hence,G12WQ¹X1˝X2º! 1 is a partial function, and v12 satisfies v12D 1 � v12D
v12 �G

?
12.1/ D v12 � .J

?
X1
x̋ J ?X2/.F

?.ŒC�// [16, Thm. 6.3]. We now calculate that for all
a 2 `1.X/,

v12 � .J
?
X1

� J ?X2/.a/ D v12 � .J
?
X1
x̋ J ?X2/.F

?.a//

D v12 � .J
?
X1
x̋ J ?X2/.F

?.ŒC�// � .J ?X1 x̋ J
?
X2
/.F ?.a//

D v12 � .J
?
X1
x̋ J ?X2/.F

?.ŒC� � a// D v12 � .J
?
X1
x̋ J ?X2/.F

?.ŒC� � C ?.a///

D v12 � .J
?
X1
x̋ J ?X2/.F

?.ŒC�// � C ?.a/ D v12 � C
?.a/ D C ?.a/ � v12:

Therefore, v12 is an intertwiner from J ?X1 � J ?X2 to C ?. Similarly, v23 is an intertwiner
from J ?X2 � J ?X3 to C ?. Furthermore, by our choice of v12 and v23, we have that

.v12 ˝ 1/.1˝ v
�
23/ ¤ 0:

Altogether, we find that s WD .v12 ˝ 1/ � .1˝ v
�
23/ is a nonzero intertwiner from J ?X1

to J ?X3 . These are irreducible representations of `1.X/, and thus, by Schur’s Lemma, s is

an isomorphism in Rep.`1.X//. Defining v WD .1˝ s�1/v�23 and w WD v�12, we obtain
intertwiners vWC ?! J ?X2 � J ?X1 andwWC ?! J ?X1 � J ?X2 such that .w�˝ 1/ � .1˝ v/D 1
and therefore also .1˝ v�/ � .w ˝ 1/ D 1. We now calculate that

.1˝ ..v� ˝ 1/ � .1˝ w/// � w

D .1˝ v� ˝ 1/ � .1˝ 1˝ w/ � w D .1˝ v� ˝ 1/ � .w ˝ w/

D .1˝ v� ˝ 1/ � .w ˝ 1˝ 1/ � w D ...1˝ v�/ � .w ˝ 1//˝ 1/ � w

D .1˝ 1/ � w D w:

Since w is nonzero, we find that .v� ˝ 1/ � .1 ˝ w/ is a nonzero intertwiner on J ?X2 . It
is therefore a scalar, and it can be no scalar other than 1. We conclude that J ?X1 and J ?X2
are conjugate objects in Rep.`1.X//, and more generally, that every simple object in
Rep.`1.X// has a conjugate. Because every object in Rep.`1.X// is a direct sum of
simple objects, it follows that every object has a conjugate. In other words, Rep.`1.X//
is rigid.
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Lemma 8.3. Let X be a quantum set, and let F WX �X!X and C W1!X be functions
such that F ı .F � IX/ D F ı .IX � F / and F ı .C � IX/ D IX D F ı .IX � C/.
Assume that Rep.`1.X// is rigid. Then, F ?.a/ � .1˝ b/ and .a˝ 1/ � F ?.b/ are both in
the algebraic tensor product cc.X/ˇ cc.X/ for all a; b 2 cc.X/.

Proof. Let a; b 2 cc.X/. Let X0, X1, and X2 be atoms of X, and assume that J ?X0.b/¤ 0
and that Mor.J ?X0 ; J

?
X1

� J ?X2/ ¤ 0. Then, there exists an operator v 2 L.X0; X1 ˝ X2/
such that .J ?X1 � J ?X2/.b/ � vD v � J

?
X0
.b/¤ 0, and hence, .J ?X1 � J ?X2/.b/¤ 0. Therefore,

for all atoms X0, X1, and X2, the conditions J ?
X0
.b/ ¤ 0 and Mor.J ?X0 ; J

?
X1

� J ?X2/ ¤ 0

together imply that
.J ?X1 � J ?X2/.b/ ¤ 0:

Let X0 and X1 be atoms of X. For each atom X 2 At.X/, let xX 2 At.X/ be the
unique atom such that the representations J ?X and J ?

xX
are conjugate. Applying Frobenius

reciprocity [31, Thm. 2.2.6], we compute that for each atom X2,

Mor.J ?X0 ; J
?
X1

� J ?X2/ D Mor.J ?X1 � J ?X2 ; J
?
X0
/� D Mor.J ?X2 ; J

?
xX1

� J ?X0/
�:

Because Rep.`1.X// is a rigid C*-category, there are only finitely many atoms X2 such
that Mor.J ?X2 ; J

?
xX1

� J ?X0/ ¤ 0 [31, Cor. 2.2.9]. Therefore, for all atoms X0 and X1, there
are only finitely many atoms X2 such that Mor.J ?X0 ; J

?
X1

� J ?X2/ ¤ 0.
We now compute that for all atoms X1 and X2,

.J ?X1
x̋ J ?X2/..a˝ 1/ � F

?.b// D .J ?X1
x̋ J ?X2/.a˝ 1/ � .J

?
X1
x̋ J ?X2/.F

?.b//

D .J ?X1.a/˝ 1/ � .J
?
X1

� J ?X2/.b/:

Because a;b 2 cc.X/, we have that J ?X .a/¤ 0 and J ?X .b/¤ 0 for only finitely many atoms
X . Thus, J ?X1.a/˝ 1 ¤ 0 for only finitely many atoms X1, and for each of those atoms,
.J ?X1 � J ?X2/.b/ ¤ 0 for only finitely many atoms X2. We conclude that there are only
finitely many pairs .X1; X2/ 2 At.X/ � At.X/ such that .J ?X1 x̋ J

?
X2
/..a ˝ 1/ � F ?.b//

is nonzero. Therefore, .a ˝ 1/ � F ?.b/ 2 cc.X/ˇ cc.X/ as claimed. Similarly, F ?.a/ �
.1˝ b/ 2 cc.X/ˇ cc.X/.

Lemma 8.4. Let X be a quantum set, and let F WX �X!X and C W1!X be functions
such that F ı .F � IX/ D F ı .IX � F / and F ı .C � IX/ D IX D F ı .IX � C/.
Assume that Rep.`1.X// is rigid. Let T1 and T2 be the functions on the algebraic tensor
product cc.X/ˇ cc.X/ that are defined by the equations T1.a ˝ b/ D F ?.a/ � .1˝ b/
and T2.a˝ b/ D .a˝ 1/ � F ?.b/, respectively. Then, T1 and T2 are both surjective.

Proof. We use the notation of Lemma 8.2. Let c 2 cc.X/, and let X0 2 At.X/. Then,
F ?.c/ � .1˝ Œ xX0�/ is in cc.X/ˇ cc.X/, so it can be written as

F ?.c/ � .1˝ Œ xX0�/ D

nX
iD1

ai ˝ ci



Discrete quantum structures II: Examples 441

for some operators a1; : : : ; an and c1; : : : ; cn in cc.X/. For each index i , let

bi D �
X0..1˝ w

�
X0
/ � .1˝ J ?xX0

.ci /˝ 1/ � .vX0 ˝ 1//;

where �X0 is the canonical inclusion of L.X0/ into `1.X/. We now compute that for all
atoms X1 and X2,

.J ?X1
x̋ J ?X2/

 
T1

 
nX
iD1

ai ˝ bi

!!

D

nX
iD1

.J ?X1
x̋ J ?X2/.F

?.ai / � .1˝ bi //

D

nX
iD1

.J ?X1
x̋ J ?X2/.F

?.ai // � .1˝ J
?
X2
.bi //

D ıX0X2 �

nX
iD1

.J ?X1
x̋ J ?X2/.F

?.ai // � .1˝ 1˝ w
�
X2
/

� .1˝ 1˝ J ?xX2
.ci /˝ 1/ � .1˝ vX2 ˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �

 
nX
iD1

.J ?X1
x̋ J ?X2/.F

?.ai //˝ J
?
xX2
.ci /˝ 1

!
� .1˝ vX2 ˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �

 
nX
iD1

.J ?X1
x̋ J ?X2

x̋ J ?xX2
/..F ? x̋ 1/.ai ˝ ci //˝ 1

!
� .1˝ vX2 ˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �
�
.J ?X1

x̋ J ?X2
x̋ J ?xX2

/..F ? x̋ 1/.F ?.c/ � .1˝ Œ xX2�///˝ 1
�

� .1˝ vX2 ˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �
�
.J ?X1

x̋ J ?X2
x̋ J ?xX2

/..F ? x̋ 1/.F ?.c///˝ 1
�

�
�
.J ?X1

x̋ J ?X2
x̋ J ?xX2

/..F ? x̋ 1/.1˝ Œ xX2�//˝ 1
�
� .1˝ vX2 ˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �
�
.J ?X1

x̋ J ?X2
x̋ J ?xX2

/..F ? x̋ 1/.F ?.c///˝ 1
�
� .1˝vX2˝1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ �
�
.J ?X1 � J ?X2 � J ?xX2

/.c/˝ 1
�
� ..1� vX2/˝ 1/

D ıX0X2 � .1˝ 1˝ w
�
X2
/ � ..1� vX2/˝ 1/ �

�
.J ?X1 � C ?/.c/˝ 1

�
D ıX0X2 � .1˝ 1˝ w

�
X2
/ � .1˝ vX2 ˝ 1/ �

�
J ?X1.c/˝ 1

�
D ıX0X2 �

�
J ?X1.c/˝ 1

�
D J ?X1.c/˝ J

?
X2
.ŒX0�/ D .J

?
X1
x̋ J ?X2/.c ˝ ŒX0�/:
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Therefore, T1.
Pn
iD1 ai ˝ bi / D c ˝ ŒX0�. More generally, for all c; d 2 cc.X/ and all

atoms X0 2 At.X/, we have that

T1

  
nX
iD1

ai ˝ bi

!
� .1˝ d/

!
D .c ˝ ŒX0�/ � .1˝ d/ D c ˝ .d � ŒX0�/;

so c ˝ .d � ŒX0�/ 2 ran.T1/. The expression d � ŒX0� is nonzero for only finitely many
atoms X0, so we conclude that c ˝ d 2 ran.T1/ for all c; d 2 cc.X/. Therefore, T1 is
surjective. Similarly, T2 is surjective.

Theorem 8.5 (Vaes, cf. [42]). Let X be a quantum set, and let F WX � X ! X and
C W 1! X be functions such that F ı .F � IX/ D F ı .IX � F / and F ı .C � IX/ D

IX D F ı .IX � C/. Assume that

(1) J8x1 9x2 F.x1; x2/ D C�K D >;

(2) J8x2 9x1 F.x1; x2/ D C�K D >.

Let �W cc.X/! Mult.cc.X/ˇ cc.X// be defined by � D F ?jcc.X/. Then, .cc.X/; �/
is a discrete quantum group in the sense of [43, Def. 2.3].

Proof. Via the duality between quantum sets and hereditarily atomic von Neumann alge-
bras [16, Thm. 7.4], we obtain unital normal �-homomorphisms F ?W`1.X/ x̋ `1.X/!
`1.X/ and C ?W `1.X/! C that satisfy .F ? x̋ 1/ ı F ? D .1 x̋ F ?/ ı F ?, .C ? x̋ 1/ ı
F ? D 1 and .1 x̋ C ?/ ıF ? D 1. The hereditarily atomic von Neumann algebra `1.X/ x̋
`1.X/may be naturally regarded as an algebra of multipliers on cc.X/ˇ cc.X/, because
cc.X/ˇ cc.X/ is a two-sided ideal in `1.X/ x̋ `1.X/. Thus, we may define unital �-
homomorphisms�Wcc.X/!Mult.cc.X/ˇ cc.X// by�DF ?jcc.X/ and "Wcc.X/!C
by " D C ?jcc.X/.

We now observe that� is a comultiplication on cc.X/. By Lemmas 8.2 and 8.3,�.a/ �
.1˝ b/ and .a˝ 1/ ��.b/ are both in cc.X/ˇ cc.X/ for all a; b 2 cc.X/. Furthermore,
for all a; b; c 2 cc.X/,

.a˝ 1˝ 1/ � .�˝ 1/.�.b/ � .1˝ c// D .a˝ 1˝ 1/ � .F ? x̋ 1/.F ?.b/ � .1˝ c//

D .a˝ 1˝ 1/ � .F ? x̋ 1/.F ?.b// � .F ? x̋ 1/.1˝ c/

D .1 x̋ F ?/.a˝ 1/ � .1 x̋ F ?/.F ?.b// � .1˝ 1˝ c/

D .1 x̋ F ?/..a˝ 1/ � F ?.b// � .1˝ 1˝ c/

D .1˝�/..a˝ 1/ ��.b// � .1˝ 1˝ c/:

Hence, � is indeed a comultiplication on cc.X/.
Let a 2 cc.X/, and assume that �.ŒC�/ � .1˝ a/ D 0. It follows that �.ŒC�/ � .1˝

aa�/ D 0 and thus that �.ŒC�/ � .1 ˝ Œaa��/ D 0, where Œaa�� is of course the support
projection of the self-adjoint operator aa�. We now observe that the projection �.ŒC�/ 2
`1.X/ x̋ `1.X/ corresponds to the relation

JF.x1; x2/ D C�K D C � ı F 2 Rel.X;X/



Discrete quantum structures II: Examples 443

under the canonical correspondence [16, Thm. B.8]. Indeed,

.C � ı F /?.1/ D F ?..C �/?.1// D F ?.ŒC�/ D �.ŒC�/:

Similarly, the projection Œaa�� corresponds to some relation P 2 Rel.X/. The projections
�.ŒC�/ and .1˝ Œaa��/ are orthogonal, and thus, the relations C � ı F and >X � P are
orthogonal. Condition (2) may be rendered as

C � ı F

X
�

D

�

X

;

so we calculate that
�

P �
D

C � ı F

P ��

D ?:

We conclude that P D ?X . Thus, Œaa�� D 0, and therefore, a D 0. We have shown that
for all a 2 cc.X/, the equation �.ŒC�/ � .1˝ a/ D 0 implies that a D 0.

Let T1 and T2 be the linear maps on cc.X/ˇ cc.X/ defined by T1.a˝ b/ D �.a/ �
.1˝ b/ and T2.a ˝ b/ D .a ˝ 1/ ��.b/, respectively. By Lemmas 8.2 and 8.4, both T1
and T2 are surjective. For all a 2 cc.X/, we compute that

�.a/ � .1˝ ŒC�/ D F ?.a/ � .1˝ ŒC�/ D .1 x̋ C ?/.F ?.a//˝ ŒC� D a˝ ŒC�;

because ŒC� is the support projection of the unital normal �-homomorphism

C ?W cc.X/! C:

Furthermore, we have already shown that for all a 2 cc.X/, we have that

�.ŒC�/ � .1˝ a/ D 0

only if a D 0. We conclude by [43, Thm. 3.4] that .cc.X/; �/ is a discrete quantum
group.

Corollary 8.6 (Vaes). Let X be a quantum set. Then, there is a one-to-one correspon-
dence between �-homomorphisms

�W cc.X/! Mult.cc.X/ˇ cc.X//

such that .cc.X/; �/ is a discrete quantum group in the sense of [43, Def. 2.3] and pairs
of functions, F WX �X ! X and C W 1! X, such that

(1) J8.x1Dx1�/8.x2Dx2�/8.x3Dx3�/F.F.x1;x2/;x3/DF�.x1�;F�.x2�;x3�//K
D >;

(2) J8.x D x�/ F.x; C / D x�K D >;
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(3) J8.x D x�/ F.C; x/ D x�K D >;

(4) J8x1 9x2 F.x1; x2/ D C�K D >;

(5) J8x2 9x1 F.x1; x2/ D C�K D >.

This correspondence is given by � D F ?jcc.X/ and " D C ?jcc.X/, where "W cc.X/! C
is the counit of .cc.X/;�/ [43, Sec. 3].

Proof (cf. [6]). Let F be a function X �X ! X, and let C be a function 1! X. By
Lemma 3.5.3 and Proposition 3.5.4 of Part I [17], conditions (1), (2), and (3) are equiv-
alent to F ı .F � IX/ D F ı .IX � F /, F ı .IX � C/ D IX and F ı .C � IX/ D IX ,
respectively. Therefore, by Theorem 8.5, conditions (1)–(5) imply that .cc.X/; F ?jcc.X//
is a discrete quantum group.

Conversely, let�Wcc.X/!Mult.cc.X/ˇcc.X// be a �-homomorphism, and assume
that .cc.X/; �/ is a discrete quantum group. Let a0 2 cc.X/. Let A � cc.X/ be the
�-algebra generated by a0. Because a0.X/ D 0 for all but finitely many atoms X , we
know that A is a finite-dimensional C*-algebra. As observed in [43, Sec. 2], the multiplier
algebra Mult.cc.X/ˇ cc.X// is canonically isomorphic to `.X �X/ [16, Def. 5.1]. For
all atoms X1; X2 2 At.X/, the function A! L.X1 ˝X2/ that is defined by

a 7! �.a/.X1 ˝X2/

is a �-homomorphism between finite-dimensional C*-algebras, and therefore,

k�.a0/.X1 ˝X2/k � ka0k:

We conclude that k�.a0/k � ka0k. Therefore, �.cc.X// � `1.X �X/.
The �-homomorphism �W cc.X/ ! `1.X � X/ is bounded, and thus, it extends

uniquely to a �-homomorphism �0W c0.X/! `1.X �X/. This is a nondegenerate rep-
resentation of the C*-algebra c0.X/ because .cc.X/ˇ 1/ ��.cc.X// D cc.X/ˇ cc.X/
by the definition of a discrete quantum group. The enveloping von Neumann algebra of
c0.X/ is of course `1.X/, and hence, �0 extends to a unital normal �-homomorphism
�1W`

1.X/! `1.X �X/ [36, Thm. 3.7.7]. Thus, we obtain a function F WX �X!X

such that F ? extends �.
Let b 2 cc.X/. Appealing to the definition of a comultiplication [43, Def. 2.1], we

calculate that for all atoms X1 and X2,

.ŒX1�˝ 1˝ 1/ � .F
? x̋ 1/.F ?.b// � .1˝ 1˝ ŒX2�/

D .ŒX1�˝ 1˝ 1/ � .F
? x̋ 1/.F ?.b/ � .1˝ ŒX2�//

D .1 x̋ F ?/..ŒX1�˝ 1/ � F
?.b// � .1˝ 1˝ ŒX2�/

D .ŒX1�˝ 1˝ 1/ � .1 x̋ F
?/.F ?.b// � .1˝ 1˝ ŒX2�/:

Therefore, for all b 2 cc.X/, .F ? x̋ 1/.F ?.b// D .1 x̋ F ?/.F ?.b//. Because cc.X/ is
ultraweakly dense in `1.X/, we conclude that .F � IX/ ı F D .IX � F / ı F , establish-
ing condition (1).
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The discrete quantum group has a counit "W cc.X/! C [43, Sec. 3]. By elementary
algebra, " D J ?X jcc.X/ for some one-dimensional atom X , and without loss of generality,
we may assume that " D J ?Cjcc.X/. Let C D JC so that " D C ?jcc.X/. Appealing to the
definition of a counit, we calculate that for all a 2 cc.X/ and all X 2 At.X/,

.C ? x̋ 1/.F ?.a// � ŒX� D .C ? x̋ 1/.F ?.a/ � .1˝ ŒX�// D a � ŒX�:

Therefore, for all a 2 cc.X/, .C ? x̋ 1/.F ?.a//D a. Because cc.X/ is ultraweakly dense
in `1.X/, we conclude that F ı .C � IX/ D IX . Similarly, F ı .IX � C/ D IX . We
have established conditions (2) and (3).

Let p 2 `1.X/ be a nonzero projection. Hence, there exists an atom X such that
p � ŒX�¤ 0. It certainly follows that ŒC�˝ .p � ŒX�/¤ 0. Appealing directly to the defini-
tion of a discrete quantum group [43, Def. 2.3], we infer that �.ŒC�/.1˝ .p � ŒX�// ¤ 0
and thus that �.ŒC�/ � .1˝ p/ ¤ 0. Therefore, �.ŒC�/ is not orthogonal to 1˝ p for any
projection p ¤ 0. Equivalently, �.ŒC�/ is not below 1˝ r for any projection r ¤ 1.

We have already observed in the proof of Theorem 8.5 that the projection �.ŒC�/ cor-
responds to the relation JF.x1; x2/D C�K in the sense of [16, Thm. B.8], so JF.x1; x2/D
C�K is not below >X � R for any R ¤ >X . Therefore, by Proposition 2.4.2 (2) of Part I
[17],

Jx2 2 X j 9x1 F.x1; x2/ D C�K

D inf
®
R 2 Rel.X/ j >X �R � JF.x1; x2/ D C�K

¯
D >X :

We conclude by Lemma 3.2.1 of Part I [17] that J8x2 9x1F.x1;x2/DC�KD>. Similarly,
J8x1 9x2 F.x1; x2/ D C�K D >. We have established conditions (4) and (5).

The �-algebra cc.X/ is ultraweakly dense in `1.X/, and thus, the equation � D
F ?jcc.X/ defines a bijection between

• �-homomorphisms�W cc.X/!Mult.cc.X/ˇ cc.X// such that .cc.X/;�/ is a dis-
crete quantum group and

• functions F WX �X ! X for which there exists a function C W 1! X such that F
and C together satisfy conditions (1)–(5).

The function C W 1! X is easily seen to be unique because conditions (2) and (3) imply
that F ı .IX � C/ D IX and F ı .C � IX/ D IX . We constructed C to satisfy " D
C ?jcc.X/, where " is the counit of the discrete quantum group .cc.X/; �/. Hence, the
theorem is proved.

A. Appendix. Quantifier laws

We show that the existential quantifier distributes over disjunction, just as it does clas-
sically, and consequently, the universal quantifier distributes over conjunction, just as it
does classically. We also show that the existential quantifier commutes with conjunction
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by a second formula, subject to the restriction that the two formulas have no free variables
in common at all, and consequently, the universal quantifier commutes with disjunction
by a second formula, subject to the same restriction.

Proposition A.1. Let X1; : : : ;Xn and Y1; : : : ;Ym be quantum sets. Let x1; : : : ; xn and
y1; : : : ; ym be distinct variables of sorts X1; : : : ;Xn and Y1; : : : ;Ym, respectively. Let
�.x1; : : : ; xn/ and  .y1; : : : ; ym/ be nonduplicating formulas. If X2 D X�1 , then

J.x3; : : : ; xn; y1; : : : ; ym/ 2 X3 � � � � �Xn � Y1 � � � � � Ym

j .9.x1 D x2/ 2 X1 �X�1 / .�.x1; : : : ; xn/ ^  .y1; : : : ; ym//K

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 / �.x1; : : : ; xn/K

^ J.y1; : : : ; ym/ 2 Y1 � � � � � Ym j  .y1; : : : ; ym/K:

Proof. We reason graphically, applying Theorem 3.3.2 of Part I [17]:

J.9.x1 D x2/ 2 X1 �X�1 / .�.x1; : : : ; xn/ ^  .y1; : : : ; ym//K

D

J�.x1; : : : ; xn/K J .y1; : : : ; ym/K

x3

� � �

xn y1

� � � � � �

ym

D J.9.x1 D x2/ 2 X1 �X�1 / �.x1; : : : ; xn/K ^ J .y1; : : : ; ym/K:

Proposition A.2. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ;xn be distinct variables
of sorts X1; : : : ;Xn, respectively. Let �.x1; : : : ; xn/ and  .x1; : : : ; xn/ be nonduplicating
formulas. If X2 D X�1 , then

J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /

.�.x1; : : : ; xn/ _  .x1; : : : ; xn//K

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 / �.x1; : : : ; xn/K

_ J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /  .x1; : : : ; xn/K:

Proof. We appeal to Theorem 3.3.2 of Part I [17] and to the fact that composition dis-
tributes over the join of binary relations between quantum sets:

J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /

.�.x1; : : : ; xn/ _  .x1; : : : ; xn//K

D .J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K

_ J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K/ ı .E
�

X1
� IX3

� � � � � IXn
/

D .J.x1; : : : ; xn/ 2 X1 � � � � �Xn j �.x1; : : : ; xn/K ı .E
�

X1
� IX3

� � � � � IXn
//

_ .J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x1; : : : ; xn/K ı .E
�

X1
� IX3

� � � � � IXn
//

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 / �.x1; : : : ; xn/K

_ J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /  .x1; : : : ; xn/K:
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Lemma A.3. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ; xn be distinct variables
of sorts X1; : : : ;Xn, respectively. Let  .x3; : : : ; xn/ be a nonduplicating formula. If
X2 D X�1 and X1 ¤ ‘;, then

J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /  .x3; : : : ; xn/K

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j  .x3; : : : ; xn/K:

Proof. We reason graphically:

J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x3; : : : ; xn/K D

J .x3; : : : ; xn/K

X3

� � � � � �

XnX1X1

��

;

J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /  .x3; : : : ; xn/K

D J.x1; : : : ; xn/ 2 X1 � � � � �Xn j  .x3; : : : ; xn/K ı .E
�

X1
� IX3

� � � � � IXn
/

D

J .x3; : : : ; xn/K

X3

� � � � � �

Xn

��

D

J .x3; : : : ; xn/K

X3

� � � � � �

Xn

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j  .x3; : : : ; xn/K:

The assumption that X1 ¤ ‘; is used in the second-to-last equality.

Proposition A.4. Let X1; : : : ;Xn be quantum sets, and let x1; : : : ;xn be distinct variables
of sorts X1; : : : ;Xn, respectively. Let �.x1; : : : ; xn/ and  .x3; : : : ; xn/ be nonduplicating
formulas. If X2 D X�1 and X1 ¤ ‘;, then

J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 /

.�.x1; : : : ; xn/ _  .x3; : : : ; xn//K

D J.x3; : : : ; xn/ 2 X3 � � � � �Xn j .9.x1 D x2/ 2 X1 �X�1 / �.x1; : : : ; xn/K

_ J.x3; : : : ; xn/ 2 X3 � � � � �Xn j  .x3; : : : ; xn/K:

Proof. We combine Proposition A.2 with Lemma A.3.
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[26] L. Mančinska and D. E. Roberson, Quantum homomorphisms. J. Combin. Theory Ser. B 118
(2016), 228–267 Zbl 1332.05098 MR 3471851
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