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Sobolev algebras on Lie groups and
noncommutative geometry

Cédric Arhancet

Abstract. We show that there exists a quantum compact metric space which underlies the setting of
each Sobolev algebra associated to a subelliptic Laplacian � D �.X21 C � � � C X

2
m/ on a compact

connected Lie group G if p is large enough, more precisely under the (sharp) condition p > d
˛ ,

where d is the local dimension of .G; X/ and where 0 < ˛ 6 1. We also provide locally com-
pact variants of this result and generalizations for real second-order subelliptic operators. We also
introduce a compact spectral triple (= noncommutative manifold) canonically associated to each
subelliptic Laplacian on a compact group. In addition, we show that its spectral dimension is equal
to the local dimension of .G; X/. Finally, we prove that the Connes spectral pseudo-metric allows
us to recover the Carnot–Carathéodory distance.

1. Introduction

Suppose that 1 < p <1. If�pWdom�p � Lp.Rn/! Lp.Rn/ is the (positive) Laplacian

and if ˛ 2 R, we can consider the fractional powers �
˛
2
p and .IdC�p/

˛
2 . If ˛ < 0, these

operators are the Riesz potential and the Bessel potential of order �˛. The last one was
independently introduced by Aronszajn and Smith [9] and Calderón [17], which is nowa-
days a classical notion in harmonic analysis, see [78, p. 131] and [44, Definition 1.2.4,
p. 13].

Strichartz proved in [79, Theorem 2.1, Chapter 2] that the Bessel potential space

Lp˛ .R
n/

def
D
®
f 2 Lp.Rn/ W there exists g 2 Lp.Rn/ such that f D .IdC�p/�

˛
2 g
¯

is an algebra for the pointwise product for any 1 < p <1 and any ˛ > 0 such that ˛p > n.
Note that by [64, Theorem 12.3.4, p. 301], we have

Lp˛ .R
n/ D dom�

˛
2
p :

Indeed, for any 1 < p <1 and any ˛ > 0, Kato and Ponce showed in their work [54,
Lemma X.4, p. 906] on Navier–Stokes equations that

Lp˛ .R
n/ \ L1.Rn/
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is an algebra for the pointwise product (see also [47, Theorem 2.2.12, p. 81]). This is a
stronger result since by the Sobolev embedding theorem [2, Theorem 1.2.4 (c), p. 14] we
have a continuous inclusion

Lp˛ .R
n/ � L1.Rn/ if ˛p > n:

The proof is a simple consequence of the inequality

kfgkLp˛ .Rn/ .˛;p kf kLp˛ .Rn/kgkL1.Rn/ C kf kL1.Rn/kgkLp˛ .Rn/ (1.1)

for any f; g 2 Lp˛ .Rn/ \ L1.Rn/, where we use the graph norm of the closed operator
�

˛
2
p

kf kLp˛ .Rn/

def
D kf kLp.Rn/ C

� ˛
2
p .f /


Lp.Rn/

�
.IdC�p/ ˛2 .f /Lp.Rn/

:

The motivation of this result was the estimate of

k.IdC�p/
˛
2 .fg/ � f .IdC�p/

˛
2 .g/kLp.Rn/

for any Schwartz functions f and g. This commutator estimate is needed in the study of
some nonlinear partial differential equations. We refer to [61] and references therein for a
comprehensive view of the state of the art of this kind of inequalities and to [64, Section
12.3] for several equivalent definitions of the Banach space Lp˛ .Rn/.

In 1996, in their study of Schrödinger semigroups, Gulisashvili and Kon considered
in [46] the homogeneous Sobolev space PLp˛ .Rn/, which is the completion of the space
dom�

˛
2
p with respect to the norm

kf k PLp˛ .Rn/

def
D
� ˛

2
p .f /


Lp.Rn/

:

Note that there exist several definitions of this abstract space. We refer to [66] for more
information. In this paper, we only use functions of this space belonging to dom�

˛
2
p . If ˛ >

0, Gulisashvili and Kon observed that PLp˛ .Rn/\ L1.Rn/ is also an algebra for the point-
wise product. This result is again a consequence of the Leibniz’s rule [46, Theorem 1.4]

kfgk PLp˛ .Rn/ .˛;p kf k PLp˛ .Rn/kgkL1.Rn/ C kf kL1.Rn/kgk PLp˛ .Rn/: (1.2)

Coulhon, Russ, and Tardivel–Nachef [27] extended this result to the case of a unimod-
ular connected Lie group G with polynomial volume growth by replacing the Laplacian
by a subelliptic Laplacian �X21 � � � � � X

2
m, where X def

D .X1; : : : ; Xm/ is a family of
left-invariant Hörmander vector fields. Replacing Rn by G, they obtained generalizations

kfgkLp˛ .G/ .˛;p kf kLp˛ .G/kgkL1.G/ C kf kL1.G/kgkLp˛ .G/; ˛ > 0 (1.3)

for any f; g 2 Lp˛ .G/ \ L1.G/ and

kfgk PLp˛ .G/ .˛;p kf k PLp˛ .G/kgkL1.G/ C kf kL1.G/kgk PLp˛ .G/; 0 < ˛ 6 1 (1.4)
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(˛ > 0 if G is nilpotent) of the Leibniz’s rules (1.1) and (1.2). Furthermore, they obtained
algebras Lp˛ .G/\L1.G/ and PLp˛ .G/\L1.G/ called Sobolev algebras. Note that Bohnke
has previously proved in [13, Theorem 1] that Lp˛ .G/ is an algebra for the pointwise prod-
uct if G is a stratified Lie group and if ˛p > d where d is the local dimension of the
group. With the help of Sobolev embedding theorem Lp˛ .G/ � L1.G/ under the condi-
tion ˛p > d , we can see that this is a particular case of the results of [27]. See [16,72] for
the more complicated case of non-unimodular Lie groups.

The concept of quantum compact metric space has its origins in Connes’ paper [22]
in 1989, in which he showed that we can recover the geodesic distance dist of a compact
oriented Riemannian spin manifold M using the Dirac operator D by the formula

dist.x; y/ D sup
f 2C.M/;kŒD;f �k61

jf .x/ � f .y/j; x; y 2M; (1.5)

where the supremum is taken on all the continuous functions such that the commutator

ŒD; f �
def
D Df � fD

extends to a contractive operator. Recall that D is an unbounded operator acting on the
Hilbert space of L2-spinors and that the functions of C.M/ act on the same Hilbert space
by multiplication operators. Indeed, it is well known that the commutator ŒD; f � induces
a bounded operator if and only if f is a Lipschitz function, and in this case, the Lipschitz
constant of f is equal to the norm kŒD; f �k. Moreover, this space of functions is norm
dense in the space C.M/ of continuous functions. See [23, Chapter 6] for more informa-
tion, and we refer to [86] for a complete proof. If we identify the points x; y as pure states
!x and !y on the unital C �-algebra C.M/, we can see this formula as

dist.!x ; !y/ D sup
f 2C.M/;kŒD;f �k61

j!x.f / � !y.f /j; x; y 2M:

After many years, Rieffel [75] axiomatized this formula replacing the algebra C.M/

by a unital C �-algebra A, f 7! kŒD; f �k by a seminorm k�k defined on a dense subspace
of A and !x ; !y by arbitrary states of A obtaining essentially the formula (4.2) below and
giving rise to a theory of quantum compact metric spaces. With this notion, Rieffel was
able to define a quantum analogue of Gromov–Hausdorff distance and to give a meaning
to many approximations found in the physics literature, as the case of matrix algebras
converging to a sphere. Moreover, as research in noncommutative metric geometry pro-
gressed, some additional conditions are often added as Leibniz’s rules

kabk . kakkbkA C kakAkbk; a; b 2 domk�k;

which look like (1.1) or (1.2).
If G is a compact connected Lie group G and if ˛p > d , we show that�

C.G/; k�k PLp˛ .G/
�
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is a quantum compact metric space which underlies the setting of each Leibniz’s rule (1.4)
associated to a subelliptic Laplacian � on a compact connected Lie group G. Here, C.G/
is the algebra of continuous function on G. We also provide locally compact variants
for non-compact groups in Section 5 with the help of seminorms k�kLp˛ .G/. Finally, our
approach is flexible and should be adaptable to different contexts. The present work gets
its inspiration from the papers [8, 50, 74].

Spectral triples are generalizations of the setting of Hodge–Dirac operators and Dirac
operators on compact oriented Riemannian (spin) manifolds. This notion has emerged as
a mean to encode geometric information of spaces in operator and spectral theory. It is at
the heart of noncommutative geometry and used to describe quantum spaces, providing
efficient tools for such an analysis. Remarkably, this notion also provides a framework for
the study of classical spaces as fractals (e.g., [21]) or orbifolds. We refer to [24] for an
extensive list of examples.

We introduce a spectral triple associated to each subelliptic Laplacian on a compact
connected Lie group G and we show that the spectral dimension is equal to the local
dimension of .G; X/, where X def

D .X1; : : : ; Xm/ is the family of left-invariant Hörman-
der vector fields which defines the subelliptic Laplacian (3.9). In retrospect, our proof of
this computation is quite simple. However, a variant shows a link between what we call
the local Coulhon–Varopoulos dimension of a suitable (symmetric) Markovian semigroup
.Tt /t>0 acting on L1.�/, where � is a finite measure space, and the spectral dimension
of the spectral triple defined by an associated canonical Hodge–Dirac operator. We will
investigate this more general setting in a future publication [7], also providing generaliza-
tions to suitable Markovian semigroups acting on von Neumann algebras.

Recall that this dimension is defined as the infimum of positive real numbers d such
that

kTtkL1.�/!L1.�/ .
1

t
d
2

; 0 < t 6 1I (1.6)

see [25] and [28, p. 187] (see also [19] for a related work). Note that the terminology ultra-
contractivity is equally used in [5, Section 7.3.2] and in [6]. This notion is also referred
to in [89] under the more suitable term local ultracontractivity. We warn the reader that
really different definitions of ultracontractivity coexist in the literature; see, e.g., [26, 29],
[31, p. 89], and [45]. In the case of a connected Lie group G equipped with a family
X of left-invariant Hörmander vector fields, the inequality (1.6) is satisfied for the heat
semigroup whose generator is the opposite �� of the subelliptic Laplacian and the local
dimension d of .G;X/.

Structure of the paper. The paper is organized as follows. Section 2 gives background
on operator theory. The aim of Section 3 is to describe our setting related to Lie groups
and to prove some preliminary useful results. In Section 4, we show the existence of our
quantum compact metric spaces. Section 5 is devoted to give locally compact variants of
these quantum compact metric spaces. In Section 6, we introduce new compact spectral
triples and we describe some properties. In particular, we compute the spectral dimension.
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In Section 7, we investigate the links between the Connes spectral pseudo-distance and
the Carnot–Carathéodory distance but also with the intrinsic pseudo-distance associated
to some Dirichlet form. We prove an analog of formula (1.5) for the Carnot–Carathéodory
distance. Finally, we state in Section 8 two natural conjectures on the functional calculus
of subelliptic Laplacians and their associated Hodge–Dirac operators.

2. Preliminaries on operator theory

Minkowski’s inequality. Suppose that .�1; �1/ and .�2; �2/ are two � -finite measure
spaces and consider a measurable function f W�1 ��2 ! C. We will use the following
classical inequality [78, Section A.1, p. 271]:�Z

�2

ˇ̌̌̌Z
�1

f .x; y/ d�1.x/
ˇ̌̌̌p

d�2.y/
� 1
p

6
Z
�1

�Z
�2

jf .x; y/jp d�2.y/
� 1
p

d�1.x/: (2.1)

Dunford–Pettis theorem. Let � be a � -finite measure space such that L1.�/ is separa-
ble. A particular case of Dunford–Pettis theorem, e.g., [76, p. 528] and [45, Section 3],
says that if T WL1.�/! L1.�/ is a bounded operator, then there exists a function K 2
L1.� ��/ such that for any f 2 L1.�/, we have

.Tf /.x/ D

Z
�

K.x; y/f .y/ dy

for almost all x 2 �. Moreover, we have

kT kL1.�/!L1.�/ D kKkL1.���/: (2.2)

Conversely, such a function K defines a bounded operator T WL1.�/! L1.�/. We also
have a similar result for a bounded operator T WL2.�/! L1.�/. In this case, the equal-
ity (2.2) is replaced by

kT kL2.�/!L1.�/ D kKkL1.�;L2.�//: (2.3)

Operator theory. Recall the characterization of the domain of the closure T of a closable
unbounded operator T W domT � Y ! Z between Banach spaces Y and Z. We have

x 2 domT iff there exists .xn/ � domT such that xn ! x

and T .xn/! y for some y: (2.4)

The following is [84, Corollary 5.6, p. 144].
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Theorem 2.1. Let T be a closed densely defined operator on a Hilbert space H . Then,
the operator T �T on .KerT /? is unitarily equivalent to the operator T T � on .KerT �/?.

If T is densely defined, by [53, Problem 5.27, p. 168], we have

KerT � D .RanT /?: (2.5)

We will also use the following classical equalities [51, Exercise 2.8.45, p. 171]:

RanT �T D RanT � and KerT �T D KerT: (2.6)

If A is sectorial operator on a reflexive Banach space Y , we have by [48, Proposition
2.1.1 (h)] a decomposition

Y D KerA˚ RanA:

Fractional powers. See [48, 56] for more information on fractional powers. Let A be a
sectorial operator on a Banach space Y . If A is densely defined and if ˛ is a complex
number with 0 < Re˛ < n, where n is an integer, then the space domAn is a core of A˛

by [48, p. 62], i.e., domAn is dense in domA˛ for the graph norm of A˛ , and we have

A˛.x/ D
�.n/

�.˛/�.n � ˛/

Z 1
0

t˛�1
�
A.t C A/�1

�n
x dt; x 2 domAn: (2.7)

For any complex numbers ˛;ˇ with Re˛;Reˇ >0, we haveA˛Aˇ DA˛Cˇ . By [48, p. 62]
and [48, Corollary 3.1.11], for any ˛ 2 C with Re˛ > 0, we have

RanA˛ � RanA and KerA˛ D KerA: (2.8)

If A is a sectorial operator on a Banach space Y and if Re˛ > 0, then by [37, p. 137] the
graph norms of the operators A˛ and .IdCA/˛ are equivalent; i.e.,

kA˛xkY C kxkY � k.IdCA/˛xkY ; x 2 domA˛: (2.9)

The proof uses [68, p. 28], the equality dom.IdCA/˛ D domA˛ of [48, Proposition 3.1.9,
p. 65], and the boundedness of the operator .IdCA/�˛ . See [56, Lemma 15.22, p. 294]
and [48, Lemma 6.3.2, p. 148] for the particular case where A is injective.

Compactness of fractional powers. Let � be a finite measure space. Consider a weak*
continuous semigroup .Tt /t>0 of selfadjoint positive unital contractions on L1.�/ with
weak* (negative) generator A1. A classical argument shows that each operator Tt is inte-
gral preserving. Such a semigroup induces a strongly continuous semigroup .Tt;p/t>0 on
Lp.�/, and its generator Ap is sectorial if 1 < p <1.

There exists a weak* continuous conditional expectation EW L1.�/ ! L1.�/ on
the fixed subalgebra ¹f 2 L1.�/ W Tt .f / D f for all t > 0º. This subset is equal to
KerA1. We sketch the argument. By [39, Proposition 3.1.4, p. 120], the induced semi-
group .Tt;1/t>0 on the space L1.�/ is mean ergodic. In particular, we have a bounded
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projection QW L1.�/! L1.�/ onto KerA1 along RanA1, which is clearly contractive,
satisfying Q.1/ D 1. By [1, Corollary 5.52, p. 222], Q is a conditional expectation. We
conclude by duality that the suitable conditional expectation E exists see [38, Exercise 9,
p. 159].

If ¹f 2 L1.�/ W Tt .f /Df for all t > 0ºDC1, the conditional expectation is given by

E.f / D

�Z
�

f

�
1:

We use the notation Lp0 .�/ for the subspace Ker Ep of Lp.�/. It is the space of functions
with mean 0. We have

Lp0 .�/ D RanAp:

Finally, for 1 6 p 6 q 61, consider the property

kTtkLp0 .�/!Lq0.�/
.

1

t
n
2 .

1
p�

1
q /
; 0 < t 6 1; (2.10)

which is a local version of the property [50, .Rpqn /, p. 619]

kTtkLp0 .�/!Lq0.�/
.

1

t
n
2 .

1
p�

1
q /
; t > 0:

By an interpolation argument similar to the one of [50, Lemma 1.1.2], each of these prop-
erties holds for one pair 1 6 p < q 61 if and only if it holds for all 1 6 p 6 q 61.
See also [5, Section 7.3.2, p. 65] for a variant.

Recall the following result [30, Theorem 9] (see also [52, Theorem 5.5]) which allows
one to obtain compactness via complex interpolation.

Theorem 2.2. Suppose that .X0; X1/ and .Y0; Y1/ are Banach couples and that X0 is a
UMD-space. Let T WX0CX1! Y0C Y1 such that its restriction T0WX0! Y0 is compact
and such that T1WX1! Y1 is bounded. Then, for any 0 < � < 1, the map T W .X0;X1/� !
.Y0; Y1/� is compact.

The following is [50, Theorem 1.1.7]. Note that the proof of this result uses [50,
Lemma 1.1.6] whose proof unfortunately seems false in light of the classical problem [52,
Problem 5.4]. However, [50, Lemma 1.1.6] can be replaced by Theorem 2.2.

Proposition 2.3. Let � be a finite measure space. Let .Tt /t>0 be a weak* continuous
semigroup of selfadjoint positive contractions on L1.�/ with ¹x 2 L1.�/ W Tt .x/ D
x for all t > 0º D C1, satisfying

kTtkL10.�/!L1.�/ .
1

t
n
2

for some n and such that A�1 is compact on L20.�/. Then, for all 1 6 p < q 61 such
that 2Re z

n
> 1

p
�
1
q

, the operator

A�z WLp0 .�/! Lq0.�/

is compact.



C. Arhancet 458

3. Background and preliminaries results on Lie groups

Convolution. If G is a unimodular locally compact group equipped with a Haar mea-
sure �G , recall that the convolution product of two functions f and g is given, when it
exists, by

.f � g/.s/
def
D

Z
G

f .r/g.r�1s/ d�G.r/ D
Z
G

f .sr�1/g.r/ d�G.r/: (3.1)

Carnot–Carathéodory distances on connected Lie groups. Let G be a connected Lie
group with neutral element e. We consider a finite sequence X def

D .X1; : : : ; Xm/ of left
invariant vector fields which generate the Lie algebra g of the group G such that the
vectors X1.e/; : : : ; Xm.e/ are linearly independent. We say that it is a family of left-
invariant Hörmander vector fields.

Let  W Œc; d � ! G be an absolutely continuous path such that P.t/ belongs to the
subspace span¹X1j.t/; : : : ;Xmj.t/º for almost all t 2 Œc;d �. If P.t/D

Pm
kD1 Pk.t/Xkj.t/

for almost all t 2 Œc; d �, where Pk.t/ 2 R and where each Pk is measurable, we can define
the p-length of  by

p̀./
def
D

Z d

c

� mX
kD1

j Pk.t/j
p

� 1
p

dt; (3.2)

which belongs to Œ0;1�. For any s; s0 2 G, there exists such a path  W Œ0; 1�! G with
finite length with .0/ D s and .1/ D s0. If s; s0 2 G and 1 < p <1, then we define
the real number distpCC.s; s

0/ between s and s0 to be the infimum of the length of all such
paths with .0/ D s and .1/ D s0:

distpCC.s; s
0/

def
D inf

.0/Ds;.1/Ds0
p̀./: (3.3)

See [87, p. 39] and [34, p. 22] if p D 2. In this case, we recover the Carnot–Carathéodory
distance distCC.s; s

0/. We refer also to [67].
If f WG ! C is a smooth function and if  W Œ0; 1�! G is an absolutely continuous

path with tangents in the subspace spanned by X1; : : : ; Xm, then by [83, p. 64], we have

d
dt
f ..t// D

mX
kD1

Pk.t/.Xkf /..t// a.e. t 2 Œ0; 1�; (3.4)

i.e.,
d
dt
f ..t// D

˝
P.t/; .Xf /..t//

˛
a.e. t 2 Œ0; 1�:

We will need the following elementary inequality. In the following statement, each
domXk;p is the domain of Xk on Lp.G/; i.e.,

Xk;pW domXk;p � Lp.G/! Lp.G/:
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Recall that connected Lie groups are � -finite under Haar measure. Let �WG! B.Lp.G//,
s 7! .f 7! f .s�1�// be the left regular representation of G.

The following result is a variant of [87, Lemma VIII.1.1, p. 106].

Lemma 3.1. Suppose that 1 < p <1 and 1
p
C

1
p�
D 1. Then, for any s 2 G and any f

belonging to domX1;p \ � � � \ domXm;p , we have

k.Id��s/f kLp.G/ 6 distp
�

CC.s; e/

� mX
kD1

kXk;pf k
p

Lp.G/

� 1
p

: (3.5)

Proof. Let f 2 C1c .G/. Let s 2G, and let  W Œ0; 1� 7!G be an absolutely continuous path
from e to s�1. For any s0 2 G, we have

..Id��s/f /.s0/ D f .s0/ � .�sf /.s0/ D f .s0/ � f .s�1s0/

D �

Z 1

0

d
dt
f ..t/s0/ dt

(3.4)
D �

Z 1

0

mX
kD1

Pk.t/.Xkf /..t/s
0/ dt:

Consequently, using Hölder’s inequality, we obtain

ˇ̌
..Id��s/f /.s0/

ˇ̌
6
Z 1

0

� mX
kD1

Pk.t/
p

� 1
p
� mX
kD1

�
.Xkf /..t/s

0/
�p�� 1

p�

dt: (3.6)

Using Minkowski’s inequality (2.1) and left invariance in the last equality, we deduce that

k.Id��s/f kp� D
� Z

G

j..Id��s/f /.s0/jp
�

d�G.s0/
� 1
p�

(3.6)
6
� Z

G

�Z 1

0

� mX
kD1

Pk.t/
p

� 1
p
� mX
kD1

�
.Xkf /..t/s

0/
�p�� 1

p�

dt
�p�

d�G.s0/
� 1
p�

(2.1)
6
Z 1

0

� Z
G

� mX
kD1

Pk.t/
p

� p�

p
� mX
kD1

�
.Xkf /..t/s

0/
�p�� d�G.s0/

� 1
p�

dt

D

Z 1

0

� mX
kD1

Pk.t/
p

� 1
p
� mX
kD1

Z
G

�
.Xkf /..t/s

0/
�p� d�G.s0/

� 1
p�

dt

D

Z 1

0

� mX
kD1

Pk.t/
p

� 1
p
� mX
kD1

kXkf k
p�

Lp� .G/

� 1
p�

dt:

Hence, by taking the infimum over all possible paths and observing that

distp
�

CC.e; s
�1/ D distp

�

CC.s; e/;

we obtain (3.5) with (3.3). We conclude by using an approximation argument as in the
proof of Proposition 3.4 for a general f .
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Growth of volume and dimensions. Let G be a connected Lie group equipped with
a family X def

D .X1; : : : ; Xm/ of left-invariant Hörmander vector fields and a left Haar
measure �G . For any r > 0 and any x 2 G, we denote by B.x; r/ the open ball with
respect to the Carnot–Carathéodory metric centered at x and of radius r , and by V.r/ def

D

�G.B.x; r// the Haar measure of any ball of radius r . It is well known, e.g., [87, p. 124],
that there exist d 2 N�, c; C > 0 such that

crd 6 V.r/ 6 Crd ; r 2 �0; 1Œ: (3.7)

The integer d is called the local dimension of .G;X/.
When r > 1, only two situations may occur, independently of the choice of X (see,

e.g., [34, p. 26]): either G has polynomial volume growth, which means that there exist
D 2 N and c0; C 0 > 0 such that

c0rD 6 V.r/ 6 C 0rD; r > 1; (3.8)

orG has exponential volume growth, which means that there exist c1; C1; c2; C2 > 0 such
that

c1ec2r 6 V.r/ 6 C1eC2r ; r > 1:

When G has polynomial volume growth, the integer D in (3.8) is called the dimension
at infinity of G. Note that, contrary to d , it only depends on G and not on X ; see [87,
Chapter 4].

By [34, Proposition II.4.5, p. 26] or [76, p. 381], each connected Lie group of polyno-
mial growth is unimodular. By [76, pp. 256–257] and [34, p. 26], a connected compact Lie
group has polynomial volume growth with D D 0. Recall finally that connected nilpotent
Lie groups have polynomial volume growth by [34, p. 28].

Example 3.2. The local dimension of the abelian compact Lie group Tn is n by [76,
p. 274], and its dimension at infinity is of 0 since Tn is compact.

Example 3.3. The local dimension and the dimension at infinity of a stratified Lie group
are equal by [34, Proposition II.4.15, p. 29]. The three-dimensional Heisenberg group H3

(equipped with its canonical stratification) is a stratified group, and its dimensions are
equal to 4 by [34, Example II.4.16].

Let G be a unimodular connected Lie group endowed with a family .X1; : : : ; Xm/ of
left-invariant Hörmander vector fields, and let �G be a Haar measure. We consider the
subelliptic Laplacian � on G defined by

�
def
D �

mX
kD1

X2k : (3.9)

For 1 6 p <1, let �pW dom�p � Lp.G/! Lp.G/ be the smallest closed extension of

the closable unbounded operator �jC1c .G/ to Lp.G/. Note that the domain dom�
˛
2
p is

closed under the adjoint operation f 7! Nf .
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We denote by .Tt /t>0 the associated weak* continuous semigroup of selfadjoint unital
(i.e., Tt .1/D 1) positive contractive operators on L1.G/; see [87, pp. 20–21], [34, p. 21],
and [76, p. 301]. By [76, Proposition 4.13, p. 323] and [34, Proposition 11.3.1, p. 20],
for any t > 0, the operator Tt W Lp.G/! Lp.G/ is a convolution operator by a positive
function Kt of L1.G/.

Suppose that 1 < p <1 and that the Lie group G has polynomial volume growth.
By [3, Theorem 2] and [27, p. 339], for any f 2 C1c .G/, we have

� 1
2
p .f /


Lp.G/ �p

mX
kD1

Xk.f /Lp.G/: (3.10)

Since dom�p is a core of �
1
2
p , a classical argument [68, p. 29] reveals that the subspace

C1c .G/ is a core of the operator �
1
2
p .

The following observation is a natural complement of the equivalences (3.10). Since
it is always written in the literature without proof, we give an argument. Note that the
subspace domX1;p \ � � � \ domXm;p is considered in the paper [10, p. 194] and in the
book [34, p. 15] and respectively denoted by W01;2.G/ and L02;1.G/.

Proposition 3.4. Let G be a unimodular connected Lie group with polynomial volume
growth. Suppose that 1 < p <1. We have

dom�
1
2
p D domX1;p \ � � � \ domXm;p:

Moreover, for any f 2 dom�
1
2
p , we have (3.10).

Proof. Let f 2 dom�
1
2
p . The subspace C1c .G/ is dense in dom�

1
2
p equipped with the

graph norm. Hence, we can find a sequence .fn/ of C1c .G/ such that

fn ! f and �
1
2
p .fn/! �

1
2
p .f / in Lp.G/:

For any integers n; l and any 1 6 k 6 m, we obtain

kfn � flkLp.G/ C kXk.fn/ �Xk.fl /kLp.G/

(3.10)
.p kfn � flkLp.G/ C

� 1
2
p .fn/ ��

1
2
p .fl /


Lp.G/;

which shows that .fn/ is a Cauchy sequence in domXk;p . By the closedness of Xk;p we
infer that this sequence converges to some g 2 domXk;p equipped with the graph norm.
Since domXk;p equipped with the graph norm is continuously embedded into Lp.G/, we
have fn! g in Lp.G/, and therefore, f D g since fn! f . It follows that f 2 domXk;p .
This proves the inclusion

dom�
1
2
p � domXk;p:
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Moreover, for any integer n, we have

kXk.fn/kLp.G/

(3.10)
.p

� 1
2
p .fn/


Lp.G/:

Since fn ! f in domXk;p and in dom�
1
2
p both equipped with the graph norm, we con-

clude that Xk.f /Lp.G/ .p
� 1

2
p .f /


Lp.G/:

The proofs of the reverse inclusion and estimate are similar.

Suppose that 1 6 p <1 and ˛ > 0. When f 2 dom�
˛
2
p , we let

kf k PLp˛ .G/
def
D
� ˛

2
p .f /


Lp.G/: (3.11)

It is related to Sobolev towers; see [40, Section II.5] and [56, Section 15.E]. Note that
k�k PLp˛ .G/ is a seminorm on the subspace PLp˛ .G/ of Lp.G/ (and even a norm if G is not
compact). In this paper, we have no intention to define or use a Banach space PLp˛ .G/.

Assume that the unimodular connected Lie group G has polynomial volume growth.
For any ˛ 2 Œ0; 1� and any p 2 �1;C1Œ, by [27, Theorem 3], the space PLp˛ .G/ \ L1.G/
is an algebra under pointwise product. In [27, pp. 289–290], the authors give a simple
proof of the case ˛ D 1. More precisely for all f; g 2 PLp˛ .G/ \ L1.G/, we have fg 2
PLp˛ .G/\L1.G/ and (1.4). IfG is in addition nilpotent, the conclusion holds for all ˛ > 0.
See also [46, Theorem 1.4] for the particular case G D Rn with some generalizations.

In the following statement, the seminorm k�k PLp˛ .G/ is defined on

domk�k PLp˛ .G/
def
D C0.G/ \ dom�

˛
2
p ; (3.12)

where C0.G/ is the Banach space of complex-valued continuous functions on G that
vanish at infinity. Recall that C0.G/ is equipped with the restriction of the norm k�kL1.G/.
If the group G is compact, we have of course the equality C0.G/ D C.G/, where C.G/ is
the Banach space of complex-valued continuous functions on G.

Lemma 3.5. Let G be a connected unimodular Lie group. Suppose that 1 < p <1 and
˛ > 0.

(1) The C-subspace domk�k PLp˛ .G/ is dense in the Banach space C0.G/.

(2) The subspace domk�k PLp˛ .G/ is closed under the adjoint operation f 7! Nf .

(3) If G is compact, we have®
f 2 domk�k PLp˛ .G/ W kf k PLp˛ .G/ D 0

¯
D C1C.G/:

If G has polynomial volume growth and is non-compact, we have®
f 2 domk�k PLp˛ .G/ W kf k PLp˛ .G/ D 0

¯
D ¹0º:

(4) If G is compact, the seminorm k�k PLp˛ .G/ is lower semicontinuous.
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Proof. (1) Recall that the space dom�np is a core of the operator �
˛
2
p if ˛

2
< n. Conse-

quently, the domain

domk�k PLp˛ .G/
(3.12)
D C0.G/ \ dom�

˛
2
p

contains the subspace C1c .G/ of C0.G/. Note that this subspace is dense in C0.G/ by
regularization by [63, Theorem 2.11]. We infer that the C-subspace domk�kLp˛ .G/ is dense
in the Banach space C0.G/.

(2) Note that the space C0.G/ is obviously closed under the adjoint operation f 7! Nf .
We will show that domk�k PLp˛ .G/ is equally closed under the same operation.

Let f 2 dom�
˛
2
p . We know that the subspace dom�np is core of �

˛
2
p . Hence, there

exists a sequence .fj / of dom�np such that fj ! f and �
˛
2
p .fj /! �

˛
2
p .f /. We have

fj ! Nf and �
˛
2
p .fj / D �

˛
2
p .fj /! �

˛
2
p .f /;

where the equality can be seen with (2.7). By (2.4), we conclude that Nf 2 dom�
˛
2
p and

that

�
˛
2
p . Nf / D �

˛
2
p .f /:

We conclude that domk�kLp˛ .G/ is closed under the adjoint operation f 7! Nf .
(3) We have

�p.1/
(3.9)
D �

mX
kD1

X2k .1/ D 0:

Hence, the constant function 1 belongs to Ker�p
(2.8)
D Ker�

˛
2
p . We conclude that

k1k PLp˛ .G/ D
� ˛

2
p .1/


p
D 0:

In the other direction, if kf k PLp˛ .G/ D 0, we have� ˛
2
p .f /


p
D 0:

Hence, f belongs to Ker�
˛
2
p . By (2.8), we deduce that

� 1
2
p .f /


p
D 0. Then, according

to Proposition 3.4 and (3.10), we have kXk.f /kp D 0 for any k. By Lemma 3.1, we
infer that �s.f / D f for any s 2 G. If G is compact, we conclude that the function f is
constant; that is, f 2 C1, and that f D 0 if G is not compact.

(4) Let f 2 C.G/ and .fn/ be a sequence of elements of C.G/ \ dom�
˛
2
p such that

.fn/ converges to f for the norm topology of C.G/ and kfnk PLp˛ .G/ 6 1 for any n; that is,� ˛
2
p .fn/


Lp.G/ 6 1

by (3.11). We have to prove that f belongs to dom�
˛
2
p and that kf k PLp˛ .G/ 6 1.
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Since k�kLp.G/ 6 k�kC.G/, the sequence .fn/ converges to f for the norm topology

of Lp.G/, hence for the weak topology of Lp.G/. Note that the sequence �
˛
2
p .fn/ is

bounded in the Banach space Lp.G/. Since bounded sets are weakly relatively com-
pact by [65, Theorem 2.8.2], there exists a weakly convergent subnet .�

˛
2
p fnj /. Then,

.fnj ;�
˛
2
p fnj / is a weakly convergent net in the graph of the closed operator�

˛
2
p . Note that

this graph is closed and convex, hence weakly closed by [65, Theorem 2.5.16]. Thus, the
limit of .fnj ; �

˛
2
p fnj / belongs again to the graph and is of the form .g; �

˛
2
p g/ for some

g 2 dom�
˛
2
p . In particular, .fnj / converges weakly to g and �

˛
2
p .fnj / converges weakly

to�
˛
2
p .g/. We infer that f D g. We conclude that f belongs to dom�

˛
2
p . Moreover, using

the weakly lower semicontinuity of the norm [65, Theorem 2.5.21], we obtain

kf k PLp˛ .G/
(3.11)
D

� ˛
2
p .f /


Lp.G/ 6 lim inf

j

� ˛
2
p .fnj /


Lp.G/ 6 1:

4. Quantum compact metric spaces

Lipschitz pairs and quantum compact metric spaces. Following [59, Definition 2.3],
a Lipschitz pair .A; k�k/ is a C�-algebra A equipped with a seminorm k�k defined on a
dense subspace domk�k of the selfadjoint part .uA/sa such that®

a 2 domk�k W kak D 0
¯
D R1uA; (4.1)

where uA is the unitization of the algebra A. If A is in addition unital, we say that .A;k�k/
is a unital Lipschitz pair.

Recall that a state of a C�-algebra A is a positive linear form ' on A with k'k D 1. If
X is a compact topological space and if A D C.X/, a state is the integral associated to a
regular Borel measure of probability on X .

A pair .A; k�k/ is a quantum compact metric space when

(1) .A; k�k/ is a unital Lipschitz pair;

(2) the Monge–Kantorovich metric on the set S.A/ of the states of A, defined for any
two states '; 2 S.A/ by

distMK.';  /
def
D sup

®
j'.a/ �  .a/j W a 2 domk�k and kak 6 1

¯
; (4.2)

induces the weak* topology on S.A/.

In this case, we say that k�k is a Lip-norm. We refer to the nice surveys [59, 75] and
references therein for more information.

Example 4.1. If .X; dist/ is a compact metric space, a fundamental example [59, Exam-
ple 2.6] and [58, Example 2.9] is given by .C.X/;Lip/, where C.X/ is the commutative
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C �-algebra of continuous functions on X and where Lip is the Lipschitz seminorm,
defined for any Lipschitz function f WX ! C by

Lip.f / def
D sup

²
jf .x/ � f .y/j

dist.x; y/
W x; y 2 X; x 6D y

³
:

The set of real Lipschitz functions is norm-dense in C.X/sa by the Stone–Weierstrass
theorem. Indeed, Lip.X/ contains the constant functions. Moreover, Lip.X/ separates
points in X . If x0; y0 2 X with x0 6D y0, we can use the Lipschitz function f WX ! R,
x 7! dist.x; y0/ since we have f .x0/ > 0 D f .y0/. Moreover, it is immediate that a
function f has zero Lipschitz constant if and only if it is constant on X ; i.e., (4.1) is
satisfied.

In the case of .C.X/;Lip/, the equality (4.2) gives the dual formulation of the classical
Kantorovich–Rubinstein metric [88, Remark 6.5] for Borel probability measures � and �
on X

dist.�; �/ def
D sup

²ˇ̌̌̌ Z
X

f d� �
Z
X

f d�
ˇ̌̌̌
W f 2 C.X/sa;Lip.f / 6 1

³
; (4.3)

which is a basic concept in optimal transport theory [88]. Considering the Dirac measures
ıx and ıy at points x; y 2 X instead of � and �, we recover the distance dist.x; y/ with
the formula (4.3).

Characterizations of quantum compact metric spaces. The compatibility of Monge–
Kantorovich metric with the weak* topology is hard to check directly in general. Fortu-
nately, there exists a condition which is more practical. This condition is inspired by the
fact that Arzéla–Ascoli’s theorem shows that for any x 2 X the set®

f 2 C.X/sa W Lip.f / 6 1; f .x/ D 0
¯

is norm relatively compact, and it is known that this property implies that (4.3) metrizes the
weak* topology on the space of Borel probability measures on X . Now, we give sufficient
conditions in order to obtain quantum compact metric spaces [59, Theorem 2.43]. See
also [69, Proposition 1.3].

Proposition 4.2. Let .A; k�k/ be a unital Lipschitz pair. The following assertions are
equivalent:

(a) .A; k�k/ is a quantum compact metric space;

(b) there exists a state � 2 S.A/ such that the set®
a 2 Asa W kak 6 1; �.a/ D 0

¯
is relatively compact in A for the topology of the norm of A;

(c) for all states � 2 S.A/, the set®
a 2 Asa W kak 6 1; �.a/ D 0

¯
is relatively compact in A for the topology of the norm of A.
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Quasi-Leibniz quantum compact metric space. The Lipschitz seminorm Lip of Exam-
ple 4.1 associated to a compact metric space .X; dist/ enjoys a natural property with
respect to the multiplication of functions in C.X/, called the Leibniz property for any
Lipschitz functions f; gWX ! C:

Lip.fg/ 6 kf kC.X/ Lip.g/C Lip.f /kgkC.X/: (4.4)

Moreover, the Lipschitz seminorm is lower-semicontinuous with respect to the norm
of the algebra C.X/, i.e., the uniform convergence norm on X .

We want to have these additional properties for a quantum compact metric space
.A;k�k/. Unfortunately, because of the difficulties with Lipschitz seminorms, Latrémolière
has not chosen a direct generalization of (4.4) in this work on quantum compact metric
spaces. He introduced the following definition by considering the Jordan–Lie algebra of
selfadjoint elements. We say that a quantum compact metric space .A; k�k/ is a .C; 0/-
quasi-Leibniz quantum compact metric space if k�k is Jordan–Lie subalgebra of A and if
for any a; b 2 domk�k, we have

ka ı bk6 C
�
kakkbkACkakAkbk

�
and k¹a;bºk6 C

�
kakkbkACkakAkbk

�
(4.5)

for some constant C > 0, where we use the Jordan product

a ı b
def
D
1

2
.ab C ba/

and the Lie product

¹a; bº
def
D
1

2i
.ab � ba/

and if k�k is lower semicontinuous, i.e.,®
x 2 domk�k W kxk 6 1

¯
(4.6)

is closed for the topology of the norm of A.
The following is essentially [58, Proposition 2.17] and Proposition 4.2. It is our main

tool for checking the definition of quasi-Leibniz quantum compact metric spaces.

Proposition 4.3. Let A be a unital C �-algebra, and let k�k be a seminorm defined on a
dense C -subspace domk�k of A such that

(1) domk�k is closed under the adjoint operation;

(2) ¹a 2 domk�k W kak D 0º D C1A;

(3) there exists a constant C > 0 such that for all a; b 2 domk�k, we have

kabk 6 C
�
kakAkbk C kakkbkA

�
I

(4) there exists a state � 2 S.A/ such that the set ¹a 2 domk�k W kak 6 1; �.a/ D 0º

is relatively compact in A for the topology of the norm of A;

(5) k�k is lower semicontinuous.
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If k�ksa is the restriction of k�k to Asa \ domk�k, then .Asa; k�ksa/ is a .C; 0/-quasi-Leibniz
quantum compact metric space.

New quantum compact metric spaces. Let G be a connected Lie group equipped with
a family X D .X1; : : : ; Xm/ of left-invariant Hörmander vector fields and a left Haar
measure �G . In this section, we suppose that G is compact. For the introduction of new
quantum compact metric spaces, we need some preliminary results related to some esti-
mates of the heat kernel. For any s 2 G, a particular case of [87, Theorem V.4.3] gives

0 6 Kt .s/ .
1

t
d
2

; 0 < t 6 1; (4.7)

where the local dimension d is defined in (3.7).
The following is essentially [76, pp. 339–341]. Since a point of [76, pp. 339–341] is

misleading and since it is fundamental for us, we give an argument relying on the same
nice ideas.

Lemma 4.4. The operator �2W dom.�2/ � L2.G/! L2.G/ has compact resolvent, and
we have the estimate

kTtkL1.G/!L1.G/ .
1

t
d
2

; 0 < t 6 1: (4.8)

Proof. Note that for any 0 < t 6 1, we have

kKtkL2.G/ . kKtkL1.G/

(4.7)
.

1

t
d
2

: (4.9)

By translation invariance of the normalized Haar measure of G, we deduce thatZ
G�G

jKt .sr
�1/j2 ds dr D

Z
G

�Z
G

jKt .sr
�1/j2 ds

�
dr

D

Z
G

�Z
G

jKt .s/j
2 ds

�
dr

(4.9)
6

1

td
:

For any t > 0, we deduce by [51, Exercise 2.8.38, p. 170] and (3.1) that Tt W L2.G/!
L2.G/ is a Hilbert–Schmidt operator. By [40, Theorem 4.29, p. 119], we conclude that
the operator �2 has compact resolvent. Finally, for any t > 0, we have

kTtkL1.G/!L1.G/
(2.2)
D esssup

s;r2G

jKt .sr
�1/j

(4.7)
.

1

t
d
2

:

Lemma 4.5. The operator ��12 WL
2
0.G/! L20.G/ is compact.

Proof. By Lemma 4.4, the operator �2W dom�2 � L2.G/! L2.G/ has compact resol-
vent. Note that Ker�2 is an eigenspace, hence a reducing subspace for the selfadjoint
operator �2. So, for any � in the resolvent subset �.�2/, we have a well-defined operator
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.� � �2/
�1W .Ker�2/? ! .Ker�2/? which is compact by composition. By the resol-

vent identity [48, p. 273], we deduce that ��12 W .Ker�2/? ! .Ker�2/? is also compact
by [36, p. 3]. Recall that .Ker�2/? D L20.G/. We conclude that��12 WL

2
0.G/! L20.G/ is

compact.

For the next statement, the domain of k�k PLp˛ .G/ is defined as in (3.12).

Theorem 4.6. Let G be a compact connected Lie group equipped with a family .X1; : : : ;
Xm/ of left-invariant Hörmander vector fields. Suppose that 0 < ˛ 6 1 (or 0 < ˛ if G is
nilpotent) and d

˛
< p <1, where d is the local dimension defined in (3.7). Then, .C.G/;

k�k PLp˛ .G// defines a .C˛;p; 0/-quasi-Leibniz quantum compact metric space for some con-
stant C˛;p > 0.

Proof. We will prove the assumptions of Proposition 4.3. The third point of Proposi-
tion 4.3 is satisfied by (1.4) and the first two points by Lemma 3.5.

Since the normalized integral
R
G
WC.G/! C is a state of the unital C �-algebra C.G/,

it suffices to show that²
f 2 domk�k PLp˛ .G/ W kf k PLp˛ .G/ 6 1;

Z
G

f D 0

³
(4.10)

is relatively compact in C.G/.
Note that [34, p. 38] contains a proof of the existence of ! > 0 such that

kTtkL10.G/!L1.G/ . e�!t ; t > 1: (4.11)

Combined with (4.8), we deduce the estimate

kTtkL10.G/!L1.G/ .
1

t
d
2

; t > 0:

With Lemma 4.5, we conclude that the assumptions of Proposition 2.3 are satisfied. Using
this result with z D ˛

2
and q D 1, the operator ��

˛
2 W Lp0 .G/! L10 .G/ is compact if

p > d
˛

. So, the image 	 by ��
˛
2 of the closed unit ball ¹g 2 Ran�p W kgkLp.G/ 6 1º of

Lp0 .G/D Ran�p is relatively compact. Note that Ran�
˛
2
p � Ran�p by (2.8). Hence, the

subset (write f D ��
˛
2�

˛
2
p f )®

f 2 C.G/0 \ dom�
˛
2
p W

� ˛
2
p .f /


Lp.G/ 6 1

¯
of 	 is relatively compact in C.G/, where C.G/0 is the subspace of continuous functions
with null integral. Since we have®

f 2 C.G/0 \ dom�
˛
2
p W

� ˛
2
p .f /


Lp.G/ 6 1

¯
(3.11)(3.12)
D

²
f 2 domk�k PLp˛ .G/ W kf k PLp˛ .G/ 6 1;

Z
G

f D 0

³
;

we deduce that the subset (4.10) is also relatively compact in C.G/. The proof is complete.
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Remark 4.7. The result is sharp. Consider the abelian compact group G D T2 and the
Laplacian

�2W dom�2 � L2.T2/! L2.T2/;

eni�
˝ emi�

7! �.n2 Cm2/eni�
˝ emi�

and ˛ D 1. By Example 3.2, the local dimension d of T2 is 2. In [8, Remark 5.3] and its
proof, it is showed that the set®

f 2 C.T2/0 \ dom�
1
2
2 W

� 1
2
2 .f /


L2.T2/

6 1
¯

is not bounded, in particular, not relatively compact. With the notation (3.11), this set can
be written as ²

f 2 domk�k PL21.T2/ W kf k PL21.T2/ 6 1;

Z
T2

f D 0

³
:

By Proposition 4.2, we conclude that we do not have in general a quantum compact metric
space under the critical condition p D d

˛
.

Remark 4.8. The inequality (1.4) is open if ˛ > 1. It would be interesting to find a
counter-example.

Remark 4.9. We can replace the subelliptic Laplacian � of (3.9) by a real second-order
subelliptic operator

H
def
D �

mX
i;jD1

cijXiXj ; where cij 2 R;

satisfying the condition

1

2
.C C C T / > �I for some � > 0 and C D Œcij �:

The Lp-realization Hp of this operator is a closed operator with domain domHp D L0p;2.
See [34, Chapter II] for more information. In the case of a compact connected Lie groupG,
the boundedness of Riesz transforms is proved in [34, p. 39]. Moreover, for any f 2 L02;1,
we have by [34, pp. 16–17]

Rehf;H2f iL2.G/ > �

mX
kD1

kXkf k
2
L2.G/:

In particular,H2f D 0 if and only if for any k 2 ¹1; : : : ;mº, we haveXkf D 0. This obser-
vation is useful for obtaining a suitable generalization of the third point of Lemma 3.5
(unfortunately, this argument only works in the case p > 2).

The generalization of the Leibniz’s rule (1.4) for these operators for ˛ 2 �0; 1Œ is an
open question.



C. Arhancet 470

Remark 4.10. It may be worthy to study the family of the quantum compact metric spaces
.C.G/; k�k PLp˛ .G// when p ! d

˛
from the perspective of the quantum Gromov–Hausdorff

distance. What can be said about the “limit”?

Remark 4.11. It is unclear if there exists a formula for the restriction of the Monge–
Kantorovich metric (4.2) on the subset of pure states of C.G/, i.e., the map

.s; s0/ 7! sup
®
jf .s/ � f .s0/j W f 2 C.G;R/; kf k PLp˛ .G/ 6 1

¯
onG �G. It would be interesting to understand this quantity to equivalence with respect to
a constant. The question is natural when we compare to the next situation of Theorem 7.4.

5. Quantum locally compact metric spaces

Quantum locally compact metric spaces. The basic reference is [57]. A topography on
a C �-algebra A is an abelian C �-subalgebra M of A containing an approximate identity
for A. A topographic quantum space .A;M/ is an ordered pair of a C �-algebra A and a
topography M on A. Let .A;M/ be a topographic quantum space. A state ' 2 S.A/ is
local when there exists a compact K of the Gelfand spectrum of M such that '.1K/ D 1.
A Lipschitz triple .A; k�k;M/ is a triple where .A; k�k/ is a Lipschitz pair and M is a
topography on A.

Let .A; k�k;M/ be a Lipschitz triple. The definition of quantum locally compact
quantum metric spaces of [57] is equivalent to saying that .A; k�k;M/ is a quantum
locally compact quantum metric space if and only if for any compactly supported ele-
ment g; h 2M and for some local state � of A, the set®

gah W a 2 .uA/sa; kak 6 1; �.a/ D 0
¯

is relatively compact for the topology associated to k�kA. Here we identify � with its
unique extension aC �1 7! �.a/C � as a state of the unital C �-algebra uA.

Quasi-Leibniz quantum locally compact metric space. Unfortunately, Latrémolière
did not generalize the notion of definition of quasi-Leibniz quantum compact metric
spaces of Section 4 to the locally compact case. We make an attempt by saying that a quan-
tum locally compact quantum metric space .A;k�k;M/ is a quasi-Leibniz quantum locally
compact metric space if the restriction of k�k on Asa satisfies the points (4.5) and (4.6),
which is slightly less general than [8, Section 5.5].

Criterion of relative compactness. The following is a locally compact group generaliza-
tion [15, Exercise 26, p. VIII.72] [32, Problem 4, p. 283] (see also [34, Theorem A.4.1] for
a particular case) of the classical Fréchet–Kolmogorov theorem on relative compactness.

Theorem 5.1. Let G be a locally compact group equipped with a left Haar measure.
Suppose that 1 6 p < 1. Let F be a subset of the Banach space Lp.G/. Then, F is
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relatively compact if and only if there exists M > 0 such that

lim
s!e

sup
f 2F

k�sf � f kLp.G/ D 0;

sup
f 2F

kf kLp.G/ 6 M and lim
r!1

sup
f 2F

Z
G�B.e;r/

jf .s/jp d�G.s/ D 0:

Now, consider a connected Lie group G equipped with a family X of left-invariant
Hörmander vector fields with polynomial volume growth and local dimension d . We sup-
pose that G is not compact. Let K be a compact subset of G. We denote by CK.G/ the
space of continuous functions on G with support in K.

Suppose that 1 < p <1 and ˛ > 0. Following essentially [27, p. 287], we define the
subspace

Lp˛ .G/
def
D dom�

˛
2
p

of Lp.G/. If f 2 Lp˛ .G/, we will use the notation

kf kLp˛ .G/
def
D
� ˛

2
p .f /


Lp.G/ C kf kLp.G/

(2.9)
�
.IdC�p/ ˛2 .f /Lp.G/: (5.1)

We refer to [40, Section II.5] and [56, Section 15.E] for the link with Sobolev towers. If
˛p > d , we have by [27, p. 287] and [16, Theorem 4.4 (c)] a Sobolev embedding Lp˛ .G/�
L1.G/:

kf kL1.G/ . kf kLp˛ .G/; f 2 dom�
˛
2
p : (5.2)

Note that by [48, Proposition 3.2.3], the Bessel potential .IdC�/�˛ is a bounded operator
on the Banach space Lp.G/ for any ˛ 2 C with Re˛ > 0. Consequently, if 0 < ˛ 6 ˇ, it
is obvious to check with (2.9) that

kf kLp˛ .G/ . kf kLp
ˇ
.G/: (5.3)

A contractive inclusion for the case G D Rn is proved in [78, p. 135] with a different
argument. A contractive version of (5.3) is stated without proof in the inequality follow-
ing [16, equation (3.1)], but it is a mistake confirmed by the authors of this paper.

Proposition 5.2. Let G be a non-compact connected Lie group equipped with a family
.X1; : : : ; Xm/ of left-invariant Hörmander vector fields. Suppose that G has polynomial
volume growth. Let ˛ > 1 and max¹1; d

˛
º<p <1. If gWG!C is a compactly supported

continuous function, then the subset

g
®
f 2 C0.G/ \ dom�

˛
2
p W kf kLp˛ .G/ 6 1; f .e/ D 0

¯
(5.4)

is relatively compact in L1.G/.

Proof. Let K be a compact subset of G. For any M > 0, consider the subset

EK;p;M
def
D
®
f 2 CK.G/ \ dom�

˛
2
p W kf kLp˛ .G/ 6 M

¯
(5.5)
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of the Banach space Lp.G/. If f 2 EK;p;M , using the Sobolev embedding Lp˛ .G/ �
L1.G/, we obtain

kf kLp.G/ .K;p kf kL1.G/

(5.2)
. kf kLp˛ .G/ 6 M:

Consequently, the subset EK;p;M is bounded in Lp.G/. Moreover, using Lemma 3.1, we
have for any function f 2 EK;p;M and any s 2 G

k.Id��s/f kLp.G/
(3.5)
6 distp

�

CC.s; e/

� mX
kD1

kXk;p.f /k
p

Lp.G/

� 1
p

�p distp
�

CC.s; e/

mX
kD1

Xk;p.f /Lp.G/

(3.10)
.p distp

�

CC.s; e/
� 1

2
p .f /


Lp.G/

(5.1)
6 distp

�

CC.s; e/kf kLp1 .G/

(5.3)
. distp

�

CC.s; e/kf kLp˛ .G/

(5.5)
6 M distp

�

CC.s; e/:

With Theorem 5.1, we obtain the relative compactness of the subset EK;p;M in Lp.G/
and of its subset

FK;p;M
def
D
®
f 2 CK.G/ \ dom�

˛
2
p W kf kLp˛ .G/ 6 M;f .e/ D 0

¯
:

The operator .IdC�/�
˛
2 W Lp.G/! Ran�1 is bounded by (5.2) and (5.1) (hence uni-

formly continuous). Applying this operator to the previous subset by writing

f D .IdC�/�
˛
2 .IdC�p/

˛
2 f;

we obtain that the set FK;p;M is relatively compact in L1.G/, hence in C0.G/. Note that

if f belongs to C0.G/ \ dom�
˛
2
p and satisfies kf kLp˛ .G/ 6 1 and if g 2 Cc.G/, we have

kgf kLp˛ .G/

(1.3)
.p kgkLp˛ .G/kf kL1.G/ C kgkL1.G/kf kLp˛ .G/

(5.2)
. kf kLp˛ .G/ŒkgkL1.G/ C kgkLp˛ .G/� 6 kgkL1.G/ C kgkLp˛ .G/:

Consequently, if supp g � K, we obtain that the subset (5.4) is included in some subset
FK;p;M with M def

D kgkL1.G/ C kgkLp˛ .G/.

Remark 5.3. In [78, Proposition 3, p. 138], it is proved that a measurable function f
belongs to the space Lp1 .R

n/ if and only if

k.Id��s/f kLp.Rn/ D O.jsj/:

So, we are not confident in a possible generalization of Proposition 5.2 to the case 0 <
˛ < 1. Note also that in [78, Exercise 6.1, p. 159], it is stated that a measurable function
f belongs to the space Lp1 .R

n/ if and only if f belongs to Lp.Rn/, f is absolutely
continuous, and the partial derivatives @f

@x1
; : : : ; @f

@xn
belong to Lp.Rn/.
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Remark 5.4. It is transparent for the author that some form of local ultracontractivity [45,
Definition 2.11] can be used to give some variants or generalizations of the previous proof
to other contexts.

We also define the seminorm k�kLp˛ .G/ on the space .C0.G/ \ dom�
˛
2
p / ˚ C1 by

letting kf kLp˛ .G/
def
D kf0kLp˛ .G/ for any element f D f0 C �1 of the space .C0.G/ \

dom�
˛
2
p /˚C1. Note that the latter space is a subspace of the unitization C0.G/˚C1 of

the non-unital algebra C0.G/.

Lemma 5.5. The restriction of the seminorm k�kLp˛ .G/ on the subspace .C0.G/\dom�
˛
2
p /

is lower semicontinuous.

Proof. Let f 2 C0.G/ and .fn/ be a sequence of elements of C0.G/\ dom�
˛
2
p such that

.fn/ converges to f for the norm topology of C0.G/ and kfnkLp˛ .G/ 6 1 for any n; that is,� ˛
2
p .fn/


Lp.G/ C kfnkLp.G/ 6 1

by (5.1). Note that in particular that the sequences .fn/ and .�
˛
2
p .fn// are bounded in the

Banach space Lp.G/. We have to prove that the function f belongs to dom�
˛
2
p and that

kf kLp˛ .G/ 6 1.
First, we show that the sequence .fn/ converges to f for the weak topology of the

Banach space Lp.G/. Indeed, for any function g 2 Cc.G/, we haveˇ̌̌̌ Z
G

.fn � f /g d�G

ˇ̌̌̌
6 kfn � f kL1.G/

Z
G

jgj d�G �����!
n!C1

0:

Using the boundedness of the sequence .fn/ in Lp.G/, we obtain the claim with [65,
Exercise 2.71, p. 234] since we have the convergence with any function g of the dense
subspace Cc.G/ of the Banach space Lp

�

.G/.
Since the sequence .�

˛
2
p fn/ is bounded in the Banach space Lp.G/ and since bounded

sets are weakly relatively compact by [65, Theorem 2.8.2], there exists a weakly conver-
gent subnet .�

˛
2
p fnj /. Then, .fnj ; �

˛
2
p fnj / is a weakly convergent net in the graph of

the closed operator �
˛
2
p . Note that this graph is closed and convex, hence weakly closed

by [65, Theorem 2.5.16]. Thus, the limit of .fnj ; �
˛
2
p fnj / belongs again to the graph and

is of the form .g; �
˛
2
p g/ for some g 2 dom�

˛
2
p . In particular, the net .fnj / converges

weakly to g and �
˛
2
p .fnj / converges weakly to �

˛
2
p .g/. We infer that f D g. We con-

clude that f belongs to dom�
˛
2
p . Moreover, using the weakly lower semicontinuity of the

norm [65, Theorem 2.5.21], we obtain

kf kLp˛ .G/
(5.1)
D
� ˛

2
p .f /


Lp.G/ C kf kLp.G/

6 lim inf
j

�� ˛
2
p .fnj /


Lp.G/ C lim inf

j
kfnj kLp.G/

�
6 1:



C. Arhancet 474

Corollary 5.6. Let G be a non-compact connected Lie group equipped with a family
.X1; : : : ; Xm/ of left-invariant Hörmander vector fields. Suppose that G has polynomial
volume growth. Let ˛ > 1 and max¹1; d

˛
º<p <1, where d is the local dimension defined

in (3.7). Then �
C0.G/; k�kLp˛ .G/;C0.G/

�
defines a .C˛;p; 0/-quasi-Leibniz quantum locally compact metric space for some constant
C˛;p > 0.

Proof. Parts (1) and (2) of Lemma 3.5 say that

domk�k PLp˛ .G/
(3.12)
D C0.G/ \ dom�

˛
2
p

is closed under the adjoint operation and dense in the space C0.G/. Consequently,

.C0.G/ \ dom�
˛
2
p /˚C1

is also closed under the adjoint operation of the algebra C0.G/˚C1 and dense in C0.G/˚
C1.

Let f D f0 C �1 be an element of the direct sum .C0.G/\ dom�
˛
2
p /˚C1. Suppose

that kf kLp˛ .G/ D 0. Then, by definition,� ˛
2
p .f0/


Lp.G/ C kf0kLp.G/

(5.1)
D kf0kLp˛ .G/ D 0:

Hence, kf0kLp.G/ D 0 and finally f0 D 0. We conclude that f D �1. So, (4.1) is satisfied.
So, we have a Lipschitz pair �

C0.G/; k�kLp˛ .G/

�
:

This Dirac measure ıe is clearly a local state since it is supported by the compact ¹eº.
The Leibniz rule is given by (1.3). The lower semicontinuity is given by Lemma 5.5. We
conclude with Proposition 5.2.

In the end of this section, we will investigate what happens when we replace the
operator IdC�p by the subelliptic Laplacian �p in one case. The obtained result of
Proposition 5.7 is a bit different. Indeed, it is obvious that the addition of the identity
to the operator � removes global phenomenons.

Suppose that the connected Lie group G is equipped with a family .X1; : : : ; Xm/
of left-invariant Hörmander vector fields and has polynomial growth with d < D. Such
group is not compact. For example, by [76, p. 273], this condition is satisfied if G is
simply connected, nilpotent with G 6� Rd . Consider some 1 < p <1 and some ˛ > 0.
If d < ˛p < D, it is stated in [27, p. 288] and [28, p. 197] that

kf kL1.G/ . kf k PLp˛ .G/; f 2 C1c .G/: (5.6)

Now, we prove an analog of Proposition 5.2.
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Proposition 5.7. Let G be a connected Lie group equipped with a family .X1; : : : ; Xm/
of left-invariant Hörmander vector fields. Suppose that G has polynomial growth with
d < D. Assume that d < p < D. If gWG ! C is a compactly supported continuous
function, then the subset

g
®
f 2 C0.G/ \ dom�

1
2
p W kf k PLp1 .G/

6 1; f .e/ D 0
¯

(5.7)

is relatively compact in L1.G/.

Proof. Let K be a compact subset of G. For any M > 0, consider the subset

EK;p;M
def
D
®
f 2 CK.G/ \ dom�

1
2
p W kf k PLp1 .G/

6 M
¯

(5.8)

of the space Lp.G/. If f 2 EK;p;M , using the Sobolev embedding PLp1 .G/ � L1.G/
of (5.6), we obtain

kf kLp.G/ .K;p kf kL1.G/

(5.6)
. kf k PLp1 .G/ 6 M:

We infer that the subset EK;p;M is bounded in Lp.G/. Furthermore, using Lemma 3.1,
we have for any function f 2 EK;p;M

k.Id��s/f kLp.G/
(3.5)
6 distp

�

CC.s; e/

� mX
kD1

kXk;p.f /k
p

Lp.G/

� 1
p

�p distp
�

CC.s; e/

mX
kD1

Xk;p.f /Lp.G/

(3.10)
.p distp

�

CC.s; e/
� 1

2
p .f /


Lp.G/

(3.11)
D distp

�

CC.s; e/kf k PLp1 .G/
(5.8)
6 M distp

�

CC.s; e/:

By Theorem 5.1, the subset EK;p;M is relatively compact in Lp.G/. Hence, its subset

FK;p;M
def
D
®
f 2 CK.G/ \ dom�

1
2
p W kf k PLp1 .G/

6 M;f .e/ D 0
¯

is also relatively compact in Lp.G/. The operator ��
1
2 W Lp.G/! Ran�1 is bounded

by (5.6), hence uniformly continuous. Applying this operator to the previous subset by

writing f D ��
1
2�

1
2
p f , we obtain that the set FK;p;M is relatively compact in L1.G/,

hence in the space C0.G/. Note that we have

kgf k PLp1 .G/

(1.4)
.p kgk PLp1 .G/kf kL1.G/ C kgkL1.G/kf k PLp1 .G/

(5.6)
. kf kLp1 .G/

�
kgkL1.G/ C kgk PLp1 .G/

� (5.8)
. kgkL1.G/ C kgk PLp1 .G/

:

Consequently, if supp g � K, we obtain that the subset (5.7) is included in some subset
FK;p;M with M def

D kgkL1.G/ C kgk PLp1 .G/
.
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Similarly to Corollary 5.6, we can obtain the following result where the seminorm
k�k PLp˛ .G/ is defined on

domk�k PLp1 .G/
(3.12)
D C0.G/ \ dom�

1
2
p :

Unfortunately, we are not able to demonstrate the lower semicontinuity of the seminorm
k�k PLp1 .G/

. So, we cannot make the statement that we have a quasi-Leibniz quantum locally
compact metric space.

Corollary 5.8. Let G be a connected Lie group equipped with a family .X1; : : : ; Xm/
of left-invariant Hörmander vector fields. Suppose that G has polynomial growth with
d < D. Then, the triple .C0.G/; k�k PLp1 .G/; C0.G// defines a quantum locally compact
metric space.

6. Compact spectral triples and spectral dimension
Possibly kernel-degenerate compact spectral triples. Consider a triple .A; Y; =D/ con-
stituted of the following data: a Banach space Y , a closed unbounded operator =D on
Y with dense domain dom =D � Y , and an algebra A equipped with a homomorphism
� WA! B.Y /. In this case, we define the Lipschitz algebra

Lip =D.A/
def
D
®
a 2 A W �.a/ � dom =D � dom =D and the unbounded operator

Œ =D; �.a/�W dom =D � Y ! Y extends to an element of B.Y /
¯
: (6.1)

We say that .A; Y; =D/ is a (possibly kernel-degenerate) compact spectral triple if in addi-
tion Y is a Hilbert space H , A is a C �-algebra, D is a selfadjoint operator on Y , and if
we have the following:

(1) =D
�1 is a compact operator on Ran =D

(2.5)
D .Ker =D/?;

(2) the subset Lip =D.A/ is dense in A.

We essentially follow [21, Definition 2.1] and [8, Definition 5.10]. Note that there
exist different variations of this definition in the literature, see; e.g., [36, Definition 1.1].
Moreover, we can replace =D

�1 by j =Dj�1 in the first point by an elementary functional
calculus argument.

We equally refer to [8, Definition 5.10] for the notion of compact Banach spectral
triple which is a generalization for the case of an operator =D acting on a Banach space Y
instead of a Hilbert space H .

Example 6.1. If M is a compact oriented Riemannian manifold M , we can associate the
spectral triple .C.M/;L2.^T �M/;D/, where L2.^T �M/ is the Hilbert space of square-
integrable complex-valued forms on M and where D is the Hodge–Dirac operator (also
called Hodge–de Rham operator). IfM is in addition a spin manifold, we can also consider
the spectral triple .C.M/; L2.M; S/;D/ obtained by using the Hilbert space L2.M; S/,
the space of square-integrable spinors on M , and the Dirac operator D. In both cases, the
functions of C.M/ act on the Hilbert space by multiplication operators.
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Spectral dimension. Let .A; H; =D/ be a compact spectral triple. By [71, Proposition
5.3.38], we have Ker j =Dj D Ker =D. Moreover, the operator j =Dj�1 is well defined on

Ran =D
(2.5)
D .Ker =D/?:

Furthermore, we can extend it by letting j =Dj�1 D 0 on Ker =D. Following [36, p. 4], we say
that a compact spectral triple .A;H; =D/ is ˛-summable for some ˛ > 0 if Tr j =Dj�˛ <1,
that is if the operator j =Dj�1 belongs to the Schatten class S˛.H/. In this case, the spectral
dimension of the spectral triple is defined by

dim.A;H; =D/ def
D inf

®
˛ > 0 W Tr j =Dj�˛ <1

¯
: (6.2)

See also [43, p. 450] and [18, p. 38 and Definition 6.2, p. 47] for a variation of this
definition.

We will use the following lemma which is a slight variation of [43, Lemma 10.8,
p. 450].

Lemma 6.2. If j =Dj�˛ is trace-class then for any t > 0 the operator e�t =D
2

is trace-class
and we have

Tr e�t =D
2

.
1

t
˛
2

; t > 0:

Proof. Note that here the operator j =Dj�˛ is defined and bounded on Ran =D. However, we
can extend it by letting j =Dj�˛ D 0 on Ker =D. For any t > 0, we have

e�t =D
2

D j =Dj˛e�t =D
2

j =Dj�˛:

An elementary study of the function f W� 7! �˛e�t�
2

on RC shows that

f 0.�/ D �˛�1e�t�
2

.˛ � 2�2t / for any � > 0

and consequently that f is bounded and that its maximum is . ˛
2t
/
˛
2 e�

˛
2 in � D

q
˛
2t

. We

conclude by functional calculus that the operator j =Dj˛e�t =D
2

is bounded and that

Tr e�t =D
2

D
e�t =D

2
S1.H/

6
j =Dj˛e�t =D

2
B.H/kj

=Dj�˛kS1.H/ .
1

t
˛
2

:

Hodge–Dirac operator. Let G be a unimodular connected Lie group equipped with a
family .X1; : : : ; Xm/ of left-invariant Hörmander vector fields and consider a Haar mea-
sure�G onG. Suppose 16p61. Recall that we have a canonical isometry `pm.Lp.G//D
Lp.G; `pm/. We define the unbounded closed operator rp from Lp.G/ into the space
Lp.G; `pm/ by

domrp D domX1;p \ � � � \ domXm;p

and
rpf

def
D .X1;pf; : : : ; Xm;pf /; f 2 domrp: (6.3)
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If 1 < p <1, note that domrp D dom�
1
2
p by Proposition 3.4. For any functions f , g

of domrp \ L1.G/, then fg belongs to domrp \ L1.G/, and we have

rp.fg/ D g � rp.f /C f � rp.g/; (6.4)

where
f � .h1; : : : ; hm/

def
D .f h1; : : : ; f hm/:

See [27, p. 289] for a generalization.
If 1 < p <1, we introduce the unbounded closed operator

=Dp
def
D

"
0 .rp�/

�

rp 0

#
(6.5)

on the Banach space Lp.G/ p̊ Lp.G; `pm/ defined by

=Dp.f; g/
def
D
�
.rp�/

�.g/;rp.f /
�
; f 2 domrp; g 2 dom.rp�/�: (6.6)

We call it the Hodge–Dirac operator of the subelliptic Laplacian�D�.X21 C � � � CX
2
m/.

These operators are related by the computation

=D
2
p

(6.5)
D

"
0 .rp�/

�

rp 0

#2
D

"
.rp�/

�rp 0

0 rp.rp�/
�

#
D

"
�p 0

0 rp.rp�/
�

#
: (6.7)

The operator =D2 is identical to the operator… of [10, proof of Theorem 1.2] with b D Id.
We will use just the following lemma which describes a tractable subspace for the

adjoint operator .rp�/�. If .'j / is a Dirac net of functions of C1c .G/ and if h D .h1; : : : ;
hm/, we will use the notation

Regj h
def
D .h1 � 'j ; : : : ; hm � 'j /

as soon as it makes sense.

Lemma 6.3. Suppose that 1 < p < 1. The subspace C1c .G/ ˝ `
p
m is a core of the

unbounded operator .rp�/�.

Proof. It is easy to check (use [53, Problem 5.24, p. 168]) that C1c .G/˝ `
p
m is a subset of

dom.rp�/�. We consider a Dirac net .'j / of functions of C1c .G/. Let h D .h1; : : : ; hm/
be an element of dom.rp�/�. Then

Regj h D .h1 � 'j ; : : : ; hm � 'j /

belongs to C1c .G/ ˝ `
p
m. It remains to show that .Regj h/ converges to h in the graph

norm of .rp�/�. By [15, Proposition 20, p. VIII.44], the net .Regj h/ converges to h in
Lp.G; `pm/. For any 1 6 k 6 m, we put

ak
def
D Xk.e/:
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If f 2 C1c .G/, using [77, equation (9.19)] and the equalities Xk D d�.ak/ [34, p. 14] in
the second equality and [63, Proposition 3.14] in the third equality, we have

r Regj f
(6.3)
D .X1.f � 'j /; : : : ; Xm.f � 'j //

D .d�.a1/.�f .'j //; : : : ; d�.am/.�f .'j ///

D .�X1f .'j /; : : : ; �Xmf .'j // D ..X1f / � 'j ; : : : ; .Xmf / � 'j /

D Regj .X1f; : : : ; Xmf / D Regj .rf /; (6.8)

where �f .g/
def
D f � g and where d� is the derived representation [63, Definition 3.12]

of the left regular representation �. Moreover, for any g 2 C1c .G/, we have used [32,
Theorem (14.10.9)] in the second and the last inequalities

h.rp�/
� Regj h; giLp.G/;Lp� .G/ D hRegj h;rp�giLp.G;`pm/;Lp� .G;`p

�

m /
D hh;Regj .rp�g/i

(6.8)
D hh;rp�.Regj g/i D h.rp�/

�.h/;Regj gi D hRegj .rp�/
�.h/; giLp.G/;Lp� .G/;

where here we use the bracket

hf; giLp.G/;Lp� .G/ D

Z
G

f .s/g.s�1/ ds:

Note that the use of the inversion map G ! G, s 7! s�1 in the bracket simplifies [32,
Theorem (14.10.9)]. By density and duality, we infer that .rp�/�Regj hDRegj ..rp�/

�h/

which converges to .rp�/�.h/ in Lp.G/.

If f 2 L1.G/, we define the bounded operator

�.f /WLp.G/ p̊ Lp.G; `pm/! Lp.G/ p̊ Lp.G; `pm/

by

�.f /
def
D

�
Mf 0

0 zMf

�
; f 2 L1.G/; (6.9)

where the linear map Mf WLp.G/! Lp.G/, g 7! fg is the multiplication operator by the
function f and where

zMf
def
D Id`pm ˝Mf W `

p
m.L

p.G//! `pm.L
p.G//; .h1; : : : ; hm/ 7! .f h1; : : : ; f hm/

is also a multiplication operator (by the function .f; : : : ; f / of `1m .L
1.G//). Using [40,

Proposition 4.10, p. 31], it is (really) easy to check that � W L1.G/ ! B.Lp.G/ p̊

Lp.G;`pm// is an isometric homomorphism. Moreover, it is obviously continuous when the
algebra L1.G/ is equipped with the weak* topology and when the space B.Lp.G// p̊

Lp.G; `pm/ is equipped with the weak operator topology. Note B.Lp.G/ p̊Lp.G; `pm// is
a dual Banach space whose predual is the projective tensor product

.Lp.G/ p̊ Lp.G; `pm// Ő .L
p�.G/ p̊� Lp

�

.G; `p
�

m //:

Using [12, Theorem A.2.5 (2)], it is not difficult to prove that � is even weak* continuous
when we equip the space B.Lp.G/ p̊ Lp.G; `pm// with the weak* topology.
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Proposition 6.4. Let G be a unimodular connected Lie group equipped with a family X
of left-invariant Hörmander vector fields. Consider a Haar measure �G on G. Suppose
that 1 < p <1.

(1) We have . =Dp/� D =Dp� . In particular, the unbounded operator =D2 is selfadjoint.

(2) We have
domr1 � Lip =Dp .L

1.G//: (6.10)

(3) For any f 2 domr1, we have

kŒ =Dp; �.f /�kLp.G/ p̊Lp.G;`pm/!Lp.G/ p̊Lp.G;`pm/ D kr1.f /kL1.G;`pm/: (6.11)

Proof. (1) By definition, an element .z; t/ of the Banach space Lp
�

.G/ p̊� Lp
�

.G; `
p�

m /

belongs to dom. =Dp/� if and only if there exists .h; k/ 2 Lp
�

.G/ p̊� Lp
�

.G; `
p�

m / such
that for any .f; g/ 2 domrp ˚ dom.rp�/�, we have*"

0 .rp�/
�

rp 0

#�
f

g

�
;

�
z

t

� +
D

* �
f

g

�
;

�
h

k

� +
I

that is,
h.rp�/

�.g/; zi C hrp.f /; ti D hg; ki C hf; hi: (6.12)

If z 2 domrp� and if t 2 dom.rp/�, the latter holds with k D rp�.z/ and h D .rp/�.t/.
This proves that domrp� ˚ dom.rp/� � dom. =Dp/� and that

. =Dp/
�.z; t/ D ..rp/

�.t/;rp�.z// D

"
0 .rp/

�

rp� 0

#�
z

t

�
(6.6)
D =Dp�.z; t/:

Conversely, if .z; t/ 2 dom. =Dp/�, choosing g D 0 in (6.12), we obtain t 2 dom.rp/�, and
taking f D 0, we obtain z 2 domrp� .

(2) Let f 2 C1c .G/. A standard calculation shows that

Œ =Dp; �.f /�
(6.5) (6.9)
D

"
0 .rp�/

�

rp 0

#"
Mf 0

0 zMf

#
�

"
Mf 0

0 zMf

#"
0 .rp�/

�

rp 0

#

D

"
0 .rp�/

� zMf

rpMf 0

#
�

"
0 Mf .rp�/

�

zMf rp 0

#

D

"
0 .rp�/

� zMf �Mf .rp�/
�

rpMf � zMf rp 0

#
:

We calculate the two non-zero entries of the commutator. For the lower left corner, if
g 2 C1c .G/, we have

.rpMf � zMf rp/.g/ D rpMf .g/ � zMf rp.g/ D rp.fg/ � f � rp.g/

(6.4)
D g � rp.f / D .gX1;m.f /; : : : ; gXm;p.f // D Mrf J.g/;
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where J WLp.G/! `
p
m.Lp.G//, g 7! .g; : : : ; g/ and where Mr.f / is the multiplication

operator on the Lp-space `pm.Lp.G// by r.f /. For the upper right corner, note that for
any h 2 C1c .G/˝ `

p
m and any g 2 C1c .G/, we have

h..rp�/
� zMf �Mf .rp�/

�/.h/; gi

D h.rp�/
� zMf .h/; gi � hMf .rp�/

�.h/; gi

D h zMf .h/;rp�.g/i � h.rp�/
�.h/;Mf .g/i D hh; zMf rp�.g/i � hh;rp�Mf .g/i

D hh; zMf rp�.g/ � rp�Mf .g/i D hh; f � rp�.g/ � rp�.fg/i

(6.4)
D �hh; g � r.f /i D hh;�Mrf J.g/i D hh;Mrf J.g/i

D hMrf .h/; J.g/i D hJ �Mrf .h/; giLp.G/;Lp� .G/:

We conclude that�
.rp�/

� zMf �Mf .rp�/
�
�
.h/ D J �Mrf .h/; h 2 C1c .G/˝ `

p
m:

The two non-zero components of the commutator are bounded linear operators on C1c .G/
and on C1c .G/ ˝ `

p
m. We deduce that Œ =Dp; �.f /� is bounded on the core .C1c .G/ ˚

`
p
m/˝ C1c .G/ of the unbounded operator =Dp (here we use Lemma 6.3). By [8, Propo-

sition 26.5], this operator extends to a bounded operator on the Banach space Lp.G/ p̊

Lp.G; `pm/. Hence, C1c .G/ is a subset of Lip =Dp .L
1.G//.

If .g; h/ 2 dom =Dp and f 2 C1c .G/, we have in addition

kMrf J kLp.G/!`pm.Lp.G// D sup
kgkLp.G/D1

kMr.f /J.g/k`pm.Lp.G//

D sup
kgkLp.G/D1

k
�
X1;p.f /g; : : : ; Xm;p.f /g

�
k`
p
m.Lp.G//

D sup
kgkLp.G/D1

k
�
X1;p.f /g; : : : ; Xm;p.f /g

�
kLp.G;`pm/

D sup
kgkLp.G/D1

�Z
G

j.X1;pf /.s/g.s/j
p
C � � � C j.Xm;pf /.s/g.s/j

p d�G.s/
� 1
p

D sup
kgkLp.G/D1

�Z
G

�
j.X1;pf /.s/j

p
C � � � C j.Xm;pf /.s/j

p
�
jg.s/jp d�G.s/

� 1
p

D sup
khkL1.G/D1;h>0

�Z
G

�
j.X1;pf /.s/j

p
C � � � C j.Xm;pf /.s/j

p
�
h.s/ d�G.s/

� 1
p

D

�
sup

khkL1.G/D1;h>0

˝
krf k

p

`
p
m
; h
˛
L1.G/;L1.G/

� 1
p

D
krf kp

`
p
m

 1p
L1.G/ D krf kL1.G;`pm/:
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By duality, the second non-null entry of the commutator has the same norm. So we have
proved (6.11) in the case where f 2 C1c .G/.

Let f 2 domr1. Since C1c .G/ is a weak* core of the operatorr1, we can consider a
net .fj / in C1c .G/ such that fj ! f and r1.fj /!r1.f / both for the weak* topology
of L1.G/. By [8, Lemma 1.6], we can suppose that the nets .fj / and .r1.fj // are
bounded. By [8, Proposition 5.11 (4)], we deduce that f 2 Lip =Dp .L

1.G//. By continuity
of � , note that �.fj /! �.f / for the weak operator topology. For any � 2 dom =Dp and
any � 2 dom. =Dp/�, we have

hŒ =Dp; �.fj /��; �iLp.G/ p̊Lp.G;`pm/;Lp
�
.G/ p̊�Lp� .G;`p

�

m /
D h. =Dp�.fj / � �.fj / =Dp/�; �i

D h =Dp�.fj /�; �i � h�.fj / =Dp�; �i D h�.fj /�; . =Dp/
��i � h�.fj / =Dp�; �i

�!
j
h�.f /�; . =Dp/

��i � h�.f / =Dp�; �i D hŒ =Dp; �.f /��; �i:

The net .Œ =Dp; �.fj /�/ is bounded since

k
�
=Dp; �.fj /

�
kp!p

(6.11)
D

r1.fj /L1.G;`pm/
.m;p

r1.fj /L1.G;`1m /
. 1:

We deduce that the net .Œ =Dp; �.fj /�/ converges to Œ =Dp; �.f /� for the weak operator
topology by a “net version” of [53, Lemma 3.6, p. 151]. Furthermore, it is (really) easy
to check that Mr1.fj /J !Mr1.f /J and �EMr1.fj / ! �EMr1.f / both for the weak
operator topology. Indeed, recall that the composition of operators is separately continuous
for the weak operator topology. By uniqueness of the limit, we deduce that the commutator
is given by the same formula that in the case of elements of C1c .G/. From here, we
obtain (6.11) as before.

Remark 6.5. The inclusion (6.10) is probably an equality. We leave this intriguing ques-
tion open. We sketch an incomplete proof. Let f an element of Lip =Dp .L

1.G//. We

consider a Dirac net .'j / of functions of C1.G/. For any j , we let fj
def
D Regj f . By an

obvious “net version” of [32, Theorem (14.11.1)], the net .fj / converges to f in L1.G/
for the weak* topology. The point is to prove that .r1fj / is a bounded net. If it is true,
using Banach–Alaoglu theorem, we can suppose that r1.fj /! g for the weak* topol-
ogy for some function g 2 L1.G/. Since the graph of the unbounded operator r1 is
weak* closed, we would conclude that f belongs to the subspace domr1.

For the proof of the boundedness of the net, the writing

kr1fj kL1.G;`1m / �m;p kr1fj kL1.G;`pm/
(6.11)
D sup
k�k61;k�k61

ˇ̌˝
Œ =Dp; �.fj /��; �

˛ˇ̌
and maybe [32, Theorem (14.10.9)] could be useful.

Theorem 6.6. Let G be a compact connected Lie group equipped with a family .X1; : : : ;
Xm/ of left-invariant Hörmander vector fields and consider the normalized Haar measure
�G on G. The triple .C.G/;L2.G/˚2 L2.G; `2m/; =D2/ is a compact spectral triple.
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Proof. Here, we use the notation r def
D r2. On the Hilbert space .Ker r�r/? ˚2

.Kerrr�/?, we have

j =D2j
�1
D
�
=D
2
2

�� 12 (6.7)
D

�
r�r 0

0 rr�

�� 12
D

"
.r�r/�

1
2 0

0 .rr�/�
1
2

#
:

By Theorem 2.1, we know that the operators r�rj.Kerr/? and rr�j.Kerr�/? are unitarily
equivalent. Moreover, we have

.Kerr/?
(2.5)
D Ranr�

(2.6)
D Ranr�r

(2.5)
D .Kerr�r/?

and
.Kerrr�/?

(2.6)
D .Kerr�/?:

Consequently,
.r�r/�

1
2 j.Kerr�r/? and .rr�/�

1
2 j.Kerrr�/?

are also unitarily equivalent. By Lemma 4.5, the operator

.r�r/�
1
2 D �

� 12
2 WRan�2 ! Ran�2

is compact (the square root does not change the compactness by [85, Lemma 9.3]) on

Ran�2
(2.5)
D .Kerr�r/?. Hence, the operator .rr�/�

1
2 j.Kerrr�/? is also compact. We

conclude that the operator j =D2j
�1 is compact.

Remark 6.7. Recall that a compact spectral triple .A; H; =D/ is even if there exists a
selfadjoint unitary operator  WH ! H such that  =D D � =D and �.a/ D �.a/ for
any a 2 A. Note that the spectral triple .C.G/;L2.G/˚2 L2.G; `2m/; =D/ is even. Indeed,
the Hodge–Dirac operator =Dp anti-commutes with the involution

p
def
D

"
� IdLp.G/ 0

0 IdLp.G;`pm/

#
WLp.G/ p̊ Lp.G; `pm/! Lp.G/ p̊ Lp.G; `pm/

(which is selfadjoint if p D 2), since

=Dpp C p =Dp
(6.5)
D

"
0 .rp�/

�

rp 0

#"
� Id 0

0 Id

#
C

"
� Id 0

0 Id

#"
0 .rp�/

�

rp 0

#

D

"
0 .rp�/

�

�rp 0

#
C

"
0 �.rp�/

�

rp 0

#
D 0:

Moreover, for any f 2 L1.G/, we have

p�.f /
(6.9)
D

"
� Id 0

0 Id

#"
Mf 0

0 zMf

#
D

"
�Mf 0

0 zMf

#

D

"
Mf 0

0 zMf

#"
� Id 0

0 Id

#
(6.9)
D �.f /p:
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In the sequel, if 1 6 p <1 and if H is a Hilbert space, we use the notation Sp.H/
for the space of the compact operators T WH ! H such that

kT kSp.H/
def
D .Tr jT jp/

1
p <1:

Moreover, recall that the local dimension d of .G;X/ is defined in (3.7).

Proposition 6.8. Assume that G is compact. If ˛ > d , the operator j =Dj�˛ is trace-class.

Proof. We consider the canonical projectionQWL2.G/!L2.G/ on L20.G/. We haveQD
Id�E, where the conditional expectation E is defined in Section 2 by E.f / D .

R
G
f /1.

For any t > 0 and any function f 2 L2.G/, we have

TtQf D Tt .Id�E/f D Ttf � TtEf D Kt � f �

Z
G

f: (6.13)

For almost all s 2 G, we infer that using the translation invariance of the Haar measure

TtQf.s/
(6.13)
D .Kt � f /.s/ �

Z
G

f
(3.1)
D

Z
G

Kt .r/f .r
�1s/ d�G.r/ �

Z
G

f .r/ d�G.r/

D

Z
G

ŒKt .r/ � 1�f .r
�1s/ d�G.r/:

We conclude that TtQWL2.G/! L2.G/ is a convolution operator by the functionKt � 1.
For any t > 0, we have used [51, Exercise 2.8.38 (ii), p. 170]

kTtkS1.L20.G//
D
T 2t

2


S1.L20.G//

D
T t

2

2
S2.L20.G//

D
T t

2
Q
2
S2.L2.G//

D
K t

2
� 1

2
L2.G/ D

Z
G

j.K t
2
� 1/.r/j2 d�G.r/ (6.14)

for the third equality, consider an orthonormal basis .ei /i2I of the Hilbert space L2.G/
adapted to the closed subspace L20.G/ and use the equality

kT kS2.L2.G// D

�X
i2I

kT .ei /k
2
L2.G/

� 1
2

:

Now, by translation invariance of the Haar measure and Dunford–Pettis theorem, we
obtain

kTtkS1.L20.G//
D esssup

s2G

Z
G

j.K t
2
� 1/.sr�1/j2 d�G.r/

(2.3)
D
T t

2
Q
2

L2.G/!L1.G/ D
T t

2

2
L20.G/!L1.G/:

By interpolation, we have by (2.10) combinated with (4.8) the estimateT t
2


L20.G/!L1.G/ .

1

t
d
4

; 0 < t 6 1:
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We infer that
kTtkS1.L20.G//

.
1

t
d
2

; 0 < t 6 1: (6.15)

Now, if t > 1, we have since G is compact

kTtkS1.L20.G//
(6.14)
D

K t
2
� 1

2
L2.G/ 6

K t
2
� 1

2
L1.G/

(2.2)
D
T t

2
Q
2

L1.G/!L1.G/ D
T t

2

2
L10.G/!L1.G/:

With the estimate (4.11), we conclude that

kTtkS1.L20.G//
. e�2!t ; t > 1: (6.16)

Observe that the map is RC 7! B.L2.G//, t 7! Tt is strong operator continuous hence,
weak operator continuous. Moreover, if ˛ > d , we haveZ 1

0

t
˛
2�1kTtkS1.L20.G//

dt D
Z 1

0

t
˛
2�1kTtkS1.L20.G//

dt C
Z 1
1

t
˛
2�1kTtkS1.L20.G//

dt

(6.15)
D

Z 1

0

t
˛
2�1�

d
2 dt C

Z 1
1

t
˛
2�1e�2!t dt <1:

By [82, Lemma 2.3.2], we deduce that the operatorZ 1
0

t
˛
2�1Tt dt

acting on the Hilbert space L20.G/ is well defined and trace-class. Furthermore, we have

kTtkL20.G/!L20.G/

(6.16)
. e�2!t if t > 1;

that means that .Tt /t>0 is an exponentially stable semigroup on L20.G/. Consequently, we
know by [48, Corollary 3.3.6] that

��
˛
2 D

1

�.˛
2
/

Z 1
0

t
˛
2�1Tt dt:

We obtain that if ˛ > d , then the operator ��
˛
2 is trace-class. The operator .rr�/�˛

is also trace-class since it is unitarily equivalent to ��
˛
2 , as observed in the proof of

Theorem 6.6. Finally, note that

j =D2j
�˛ (6.7)
D

"
�
� ˛2
2 0

0 .rr�/�
˛
2

#
:

We conclude that the operator j =D2j
�˛ is trace-class if ˛ > d .

Theorem 6.9. Assume that G is compact. The spectral dimension (6.2) of the spectral
triple .C.G/;L2.G/˚2 L2.G; `2m/; =D2/ is equal to the local dimension d of .G;X/.
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Proof. Note Proposition 6.8. Now, suppose that the operator j =Dj�˛ is trace-class. By
Lemma 6.2, we have

Tr e�t =D
2

.
1

t
˛
2

for any t > 0:

Using [34, Proposition II.3.1, p. 20], the relation Kt D {Kt in the second equality, [51,
Exercise 2.8.38 (ii), p. 170] in the fourth equality, the selfadjointness of Tt , and finally
(6.7) in the last inequality, we deduce that

Kt .e/ D

Z
G

K t
2
.r/K t

2
.r�1/ d�G.r/ D

Z
G

K2t
2
D
K t

2

2
L2.G/ D

T t
2

2
S2.L2.G//

D
T 2t

2


S1.L2.G// D kTtkS1.L2.G// D TrTt D Tr e�t�2 6

1

t
˛
2

:

By [87, (3), p. 113] (see also [34, p. 174] for a more general statement for selfadjoint
subelliptic operators), we have

1

t
d
2

(3.7)
�

1

V.
p
t /

. Kt .e/; 0 < t 6 1:

We conclude that 1

t
d
2

. 1

t
˛
2

for any 0 < t 6 1 and consequently ˛ > d .

7. Some remarks on Carnot–Carathéodory distances

Let G be a connected unimodular Lie group equipped with a family .X1; : : : ; Xm/ of
left-invariant Hörmander vector fields. In this section, we will show in Theorem 7.4 that
the Connes spectral pseudo-distance associated to our Hodge–Dirac operator allows us to
recover the Carnot–Carathéodory distance. If .A; Y; =D/ is a triple as that precedes (6.1),
recall that it is defined by

dist =D.';  /
def
D sup

®
j'.a/ �  .a/j W a 2 Lip =D.A/ and kŒ =D; �.a/�k 6 1

¯
; (7.1)

where ' and  are two states of the algebra A and where Lip =D.A/ is defined in (6.1). The
term pseudo-metric is used since dist.';  / is not necessarily finite. In general, Lip =D.A/
is unknown, and we replace this space by a dense subset of A (or a weak* dense subset if
A is a dual space) which is contained in Lip =D.A/. See [60, 70, 73] for more information.

In [76, Lemma 2.3, p. 265] and [34, p. 24], the following formula is stated for the
Carnot–Carathéodory distance, i.e., the case p D 2 of (3.3). For any s; s0 2 G, it is written
that

distCC.s; s
0/

def
D sup

®
jf .s/ � f .s0/j W f 2 C1c .G/; krf kL1.G;`2m/ 6 1

¯
: (7.2)

We will see that this formula is strongly related to the distance (7.1) in our setting. Unfor-
tunately, we are unable to understand the sketched proof. The writings “Therefore” and
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“by a slight modification of the  n one can arrange” of [76, Lemma 2.3, p. 265] are
obscure to us. Moreover, the same reference [34, p. 24] says without proof that we can
replace the space C1c .G/ by the subspace C1c .G;R/ of real-valued compactly supported
continuous functions in this formula.

Indeed, we can use the following elementary argument. We fix s; s0 2 G. We write

f .s/ � f .s0/ D jf .s/ � f .s0/jei� for some � 2 R:

We consider the real-valued function Qf def
D

1
2
Œf e�i� C Nf ei� �. We have

kr Qf kL1.G;`2m/ D
1

2

e�i�
r.f /C e�i�

r.f /


L1.G;`2m/
6 krf kL1.G;`2m/

and

j Qf .s/ � Qf .s0/j D
1

2

ˇ̌
f .s/e�i�

C Nf .s/ei�
� f .s0/e�i�

� Nf .s0/ei�
ˇ̌

D
1

2

ˇ̌
e�i� Œf .s/ � f .s0/�C ei� Œ Nf .s/ � Nf .s0/�

ˇ̌
D
1

2

ˇ̌
jf .s/ � f .s0/j C jf .s/ � f .s0/j

ˇ̌
D jf .s/ � f .s0/j:

Now, we introduce the following definition.

Definition 7.1. Suppose that 1 < p <1. Let f WG ! C be a function. The number

LippCC.f /
def
D sup

²
jf .s/ � f .s0/j

distpCC.s; s
0/
W s; s0 2 G; s ¤ s0

³
(7.3)

of Œ0;1� is called the p-Carnot–Carathéodory–Lipschitz constant of f . If LippCC.f / is
finite, we call f a p-Carnot–Carathéodory–Lipschitz function.

In [10, Proposition 2.5 (i)], it is stated that the domain domr1 is the space of the
equivalence classes of bounded 2-Carnot–Carathéodory-Lipschitz function on G. Here,
we complete this fact, and we give a variant of [10, Proposition 2.5].

Lemma 7.2. Suppose that 1 < p <1. Then, an essentially bounded function f WG! C
is a p-Carnot–Carathéodory-Lipschitz function if and only if its equivalence class belongs
to the space domr1. In this case, we have

LippCC.f / D krf kL1.G;`p
�

m /
:

Proof. Suppose that f 2 C1c .G/. Let s; s0 2 G, and let  W Œ0; 1� 7! G be an absolutely
continuous path from s to s0. We have

f .s/ � f .s0/ D f ..0// � f ..1//

D �

Z 1

0

d
dt
f ..t// dt

(3.4)
D �

Z 1

0

mX
kD1

Pk.t/.Xkf /..t// dt:
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Consequently, using Hölder’s inequality, we obtain

jf .s/ � f .s0/j 6
Z 1

0

ˇ̌̌̌ mX
kD1

Pk.t/.Xkf /..t//

ˇ̌̌̌
dt

6
Z 1

0

� mX
kD1

j Pk.t/j
p

� 1
p
� mX
kD1

j.Xkf /..t//j
p�
� 1
p�

dt:

We deduce that

jf .s/ � f .s0/j 6
Z 1

0

� mX
kD1

j Pk.t/j
p

� 1
p

dt
.X1f; : : : ; Xmf /L1.G;`p

�

m /

(3.2)
D
rf 

L1.G;`p
�

m / p̀
./:

Passing to the infimum, we obtain

jf .s/ � f .s0/j 6 krf k
L1.G;`p

�

m /
distpCC.s; s

0/

by (3.3). Consequently, we have the inequality

LippCC.f / 6 krf k
L1.G;`p

�

m /
:

We conclude with a regularization argument for the general case of a function f of
domr1.

Now, we prove the reverse inequality. Suppose that the function f WG ! C is a p-
Carnot–Carathéodory–Lipschitz function. Let � 2 `pm with k�k`pm D 1. For any 16 k 6m,

we put ak
def
D Xk.e/. Consider some s0 2 G and the path

.t/
def
D s0 exp

�
t

mX
kD1

�kak

�
; t 2 R: (7.4)

By [33, Remark 19.8.11], for any t 2 R, we have

P.t/ D

mX
kD1

�kXk..t//: (7.5)

We infer that P.t/ belongs to the subspace span¹X1j.t/; : : : ;Xmj.t/º for all t 2R. More-
over, the p-length of the restriction  jŒc; d � is given by

p̀. jŒc; d �/
(3.2)
D

Z d

c

� mX
kD1

j Pk.t/j
p

� 1
p

dt
(7.5)
D

Z d

c

k�k`pm dt D jc � d jk�k`pm D jc � d j:

By (3.3), we deduce that
distpCC..c/; .d// 6 jd � cj: (7.6)
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We consider the function gWR! R, t 7! f ..t//. Since f is a p-Carnot–Carathéodory–
Lipschitz function, we have

jg.c/ � g.d/j D jf ..c// � f ..d//j

6 LippCC.f / distpCC..c/; .d//
(7.6)
6 LippCC.f /jd � cj:

Hence, the function g is a Lipschitz function on R, hence differentiable almost every-
where. It is left to the reader to show that Xjf exists almost everywhere on G.

If t > 0, using the notation

st
def
D exp

�
t

mX
kD1

�kak

�
;

we deduce that

LippCC.f /
(7.3)
>
jf ..t// � f .s0/j

distpCC..t/; s0/

(7.6)
>
jf ..t// � f .s0/j

t
D

ˇ̌̌̌
1

t

�
.�st � Id/f

�
.s0/

ˇ̌̌̌
;

where � is the right regular representation of G. Consequently, for any t > 0, we obtain1t .�st � Id/f


L1.G/
6 LippCC.f /: (7.7)

Now, ˇ̌̌̌
1

t
..�st � Id/f /.s0/

ˇ̌̌̌
D
jf ..t// � f .s0/j

t

converges almost everywhere when t ! 0. Using dominated convergence theorem, we
conclude that 1

t
.�st � Id/f converges in L1.G/ for the weak* topology.

Using [34, p. 14], we infer that the class of f belongs to domr1 and that

1

t
.�st � Id/f !

mX
kD1

�kYk;1f when t ! 0

for the weak* topology of L1.G/, where Yk is the right invariant vector field associ-
ated to the element ak . Passing to the limit in (7.7) when t ! 0, using the weak* lower
semicontinuity of the norm [65, Theorem 2.6.14, p. 227], we obtain mX

kD1

�kYk;1f


L1.G/

6 LippCC.f /:

Since G is unimodular, we have mX
kD1

�kXk;1f


L1.G/

D

 mX
kD1

�kYk;1f


L1.G/

(if I WG ! G, s 7! s�1 is the inversion map and I� is its associated push-forward map on
vector fields, we have I�Xk D �Yk). We conclude by duality that

krf k
L1.G;`p

�

m /
D k.X1f; : : : ; Xmf /kL1.G;`p

�

m /
6 LippCC.f /:
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Lemma 7.3. Suppose that 1 < p <1. For any s; s0 2 G, we have

distpCC.s; s
0/ D sup

®
jf .s/ � f .s0/j W f 2 domr1;LippCC.f / 6 1

¯
:

Moreover, we can replace domr1 by the space C1c .G/.

Proof. Let f 2 domr1 with LippCC.f / 6 1. For any s; s0 2 G, we have by definition

jf .s/ � f .s0/j 6 LippCC.f / � distpCC.s; s
0/ 6 distpCC.s; s

0/:

We deduce that

sup
®
jf .s/ � f .s0/j W f 2 domr1;LippCC.f / 6 1

¯
6 distpCC.s; s

0/:

Now, we prove the reverse inequality. We fix s 2 G. We consider the function hWG ! R,
s0 7! distpCC.s; s

0/. Since distpCC is a distance on G, we have for any s00 2 G

jh.s0/ � h.s00/j D j distpCC.s; s
0/ � distpCC.s; s

00/j 6 distpCC.s
0; s00/:

We infer that h is p-Carnot–Carathéodory–Lipschitz function (hence its class belongs to
domr1 by Lemma 7.2) with LippCC.h/ 6 1. Since

jh.s/ � h.s0/j D distpCC.s; s
0/;

we obtain

distpCC.s; s
0/ 6 sup

®
jf .s/ � f .s0/j W f 2 domr1;LippCC.f / 6 1

¯
:

For the last assertion, we use a regularization argument. We consider a Dirac net .'j / of
functions of C1.G/, satisfying in particularZ

G

'j d�G D 1:

For any j , we let fj
def
D 'j � f . Using the left invariance of the distance distpCC in the third

equality, we have

LippCC.fj /
(7.3)
D sup

s 6Ds0

ˇ̌̌̌
fj .s/ � fj .s

0/

distpCC.s; s
0/

ˇ̌̌̌
(3.1)
D sup

s 6Ds0

ˇ̌̌̌ Z
G

f .t�1s/'j .t/ � f .t
�1s0/'j .t/

distpCC.s; s
0/

d�G.t/
ˇ̌̌̌

D sup
s 6Ds0

ˇ̌̌̌ Z
G

f .t�1s/ � f .t�1s0/

distpCC.t
�1s; t�1s0/

'j .t/ d�G.t/
ˇ̌̌̌

6
Z
G

LippCC.f /'j .t/ d�G.t/

D LippCC.f /

Z
G

'j .t/ d�G.t/ 6 LippCC.f /:

Since f is left uniformly continuous, the net .fj / converges uniformly by [41, Proposi-
tion 2.44, p. 58] to f . The conclusion is obvious.
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With the terminology of [60, Definition 1.8], we can interpret the end of the following
result by saying that .C.G/;L2.G/˚2 L2.G; `2m/; =D2/ is a metric spectral triple.

Theorem 7.4. Let G be a connected unimodular Lie group equipped with a finite family
.X1; : : : ; Xm/ of left-invariant Hörmander vector fields. Suppose that 1 < p < 1. For
any s; s0 2 G, we have

distpCC.s; s
0/ D sup

®
jf .s/ � f .s0/j W f 2 domr1; krf kL1.G;`p

�

m /
6 1

¯
D sup

®
jf .s/ � f .s0/j W f 2 domr1; kŒ =Dp� ; �.f /�kp�!p� 6 1

¯
: (7.8)

Moreover, we can replace domr1 by the space C1c .G/.
Finally, if G is in addition compact, letting

kf k =Dp
def
D kŒ =Dp; �.f /�kp!p for any f 2 domr1;

then the pair .C.G/; k�k =Dp / is a Leibniz quantum compact metric space.

Proof. Combining Lemma 7.2 and Lemma 7.3, we obtain the first equality. The second
equality is a consequence of (6.11).

Now, we prove the last sentence. By [8, Proposition 5.11 (2)], note that k�k =Dp is a
seminorm on Lip =Dp .L

1.G//, hence on the subspace domr1. We put

domk�k =Dp
def
D domr1 and A

def
D C.G/:

We check the properties of Proposition 4.3. Note that with a positive answer to the question
raised in Remark 6.5, we could use [8, Proposition 5.11 (3) and Remark 5.7] for some
assertions.

(1) The domain domk�k =Dp D domr1 is clearly closed under f 7! Nf .
(2) Let f 2 domr1 with r1f D 0. For any s 2 G, we have

k.Id��s/f kLp.G/
(3.5)
6 distp

�

CC.s; e/

� mX
kD1

kXkf k
p

Lp.G/

� 1
p

.m;p distp
�

CC.s; e/kr1f kL1.G;`pm/ D 0:

We deduce that the function f is constant on G. The converse is obvious. Hence, we have
the equality ®

f 2 domk�k =Dp W kf k =Dp D 0
¯
D C1C.G/:

(3) By [8, Proposition 5.11 (1)], for any f; g 2 Lip =Dp .L
1.G//, we have

fg 2 Lip =Dp .L
1.G//

and
kfgk =Dp 6 kf kC.G/kgk =Dp C kf k =DpkgkC.G/:
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(4) Let s0 2 G be any point. The Dirac probability measure ıs0 is supported on the
compact ¹s0º. So, it is a local state. We consider the subset ¹f 2 domk�k =Dp W kf k =Dp 6
1; f .s0/ D 0º. By (7.8) and Lemma 7.2, this subset is equicontinuous. Furthermore, it is
pointwise bounded since

jf .s/j D jf .s/ � f .s0/j 6 distp
�

CC.s0; s/ . 1; s 2 G

by continuity of the function s 7! distp
�

CC.s0; s/ on the compact G. By Arzèla–Ascoli the-
orem, we conclude that it is relatively compact in the space C.G/.

(5) Suppose that the net .fj / converges to f in the space L1.G/ and that kfj k =Dp 6 1;
that is,

krfj kL1.G;`p
�

m /
6 1:

This net converges for the weak* topology. Consequently, .r1fj / is a bounded net of
L1.G; `p

�

m /. Using the Banach–Alaoglu theorem, we can suppose that r1fj ! g for the
weak* topology for some function g 2 L1.G; `p

�

m /. Since the graph of the unbounded
operator r1 is weak* closed, we conclude that f belongs to the subspace domr1 and
that gDr1f . The weak* lower semicontinuity of the norm [65, Theorem 2.6.14, p. 227]
reveals that

kr1f kL1.G;`p
�

m /
6 lim inf

j

r1fjL1.G;`p
�

m /
6 1:

Remark 7.5. If G is a unimodular Lie group, it seems apparent that the seminorm k�k =Dp
can be used to define quantum locally compact metric spaces in the spirit of the ones of
Section 5. The proof is left to the reader as an exercise.

We finish the paper by connecting our setting to the vast topic of Dirichlet forms. We
refer to the books [14, 42, 62] for more information on Dirichlet forms and also to the
papers [11,20,55,80,81] which are connected to our setting. Let� be a connected second
countable Hausdorff locally compact space, and let � be a positive Radon measure with
support �. We denote by M.�/ the collection of all signed Radon measures on �.

Recall that a Dirichlet form E on L2.�/ is a closed positive definite symmetric bilinear
form defined on dom E � dom E , where dom E is a dense linear subspace of the Hilbert
space L2.�/.

Beurling and Deny showed that if E has no killing measure and no jumping measure,
it can be written as

E.f; g/ D

Z
�

d�.f; g/; f; g 2 dom E

for an M.�/-valued positive definite symmetric bilinear form � defined by the formulaZ
�

h d�.f; g/ def
D
1

2
ŒE.f; hg/C E.g; hf / � E.fg; h/� (7.9)

for all f; g 2 dom E \ L1.�/ and h 2 dom E \ Cc.�/. The form � is called the carré du
champ associated to E . The Radon–Nikodym derivative d�.f;f /

d� .x/ plays (if it exists) the
role of the square of the length of the gradient of f 2 dom E at x 2 �.
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An intrinsic pseudo-distance on X associated to E is defined in [80, (4.1)] by

distE.x; y/
def
D sup

²
jf .x/ � f .y/j W f 2 dom E \ Cc.�/;

d�.f; f /
d�

6 1

³
: (7.10)

Here d�.f;f /
d� 6 1 means that �.f; f / is absolutely continuous with respect to � and that

d�.f;f /
d� 6 1 almost everywhere. We warn the reader that there exist several variants of this

distance; see [80] and [81, p. 236].
Returning to the setting of Lie groups, we can consider the symmetric bilinear form

E.f; g/ D

Z
G

hrf .s/;rg.s/i`2m d�G.s/ (7.11)

whose domain is the subspace

dom E D domX1;2 \ � � � \ domXm;2 D domr2

of the Hilbert space L2.G/. This subspace is considered in the paper [10] and the book [34]
and denoted respectively by W01;2.G/ and L02;1.G/ (and equipped with a suitable norm).
A simple computation for any f; g 2 dom E \ L1.G/ and any h 2 dom E \ Cc.G/ gives

1

2
ŒE.f; hg/C E.g; hf / � E.uv; h/�

(7.11)
D

1

2

Z
G

Œhrf .s/;r.hg/.s/i C hrg.s/;r.hf /.s/i � hr.fg/.s/;rh.s/i� d�G.s/

(6.4)
D

1

2

Z
G

�
h.s/hrf .s/;rg.s/i C g.s/hrf .s/;rh.s/i C h.s/hrg.s/;rf .s/i

C f .s/hrg.s/;rh.s/i � f .s/hrg.s/;rh.s/i � g.s/hrf .s/;rh.s/i
�

d�G.s/

D

Z
G

h.s/hrf .s/;rg.s/i d�G.s/:

By (7.9), we conclude (with no surprise) that

d�.f; g/
d�G

.s/ D hrf .s/;rg.s/i

almost everywhere on G. In particular, we have the equality

d�.f; f /
d�G

.s/ D krf .s/k2
`2m

almost everywhere. In this case, the intrinsic pseudo-distance (7.10) is given by

distE.s; s0/
(7.10)
D sup

®
jf .s/ � f .s0/j W f 2W01;2.G/ \ Cc.G/; krf .s/k`2m 6 1 a.e.

¯
D sup

®
jf .s/ � f .s0/j W f 2W01;2.G/ \ Cc.G/; krf kL1.G;`2m/ 6 1

¯
;
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where s; s0 2 G. Using an approximation procedure similar to the one of the proof of
Lemma 7.3 left to the reader, we can conclude that

distE.s; s0/ D sup
®
jf .s/ � f .s0/j W f 2 C1c .G/; krf kL1.G;`2m/ 6 1

¯ (7.2)
D distCC.s; s

0/I

i.e., we obtain the Carnot–Carathéodory distance.

Remark 7.6. It is possible that the result [55, Corollary 2.1] can be used to recover a part
of the case p D 2 of Lemma 7.2 with a very different argument.

8. Some open problems on functional calculus

Let G be a connected Lie group of polynomial growth (hence unimodular) equipped with
a family .X1; : : : ; Xm/ of left-invariant Hörmander vector fields, and consider a Haar
measure �G on G. We refer to [48,49] for more information on functional calculus. Here
we use the bisector

†˙�
def
D †� [

�
�†�

�
; where †C

�

def
D
®
z 2 Cn¹0º W j arg zj < �

¯
for any angle � 2 .0; �

2
/. We will explain why the following conjecture is very natural.

Conjecture 8.1. Suppose that 1 < p <1 with p 6D 2. The unbounded operator =Dp is
bisectorial and admits a bounded H1.†˙

�
/ functional calculus on a bisector †˙

�
for some

0 < � < �
2

on the Banach space Lp.G/ p̊ Lp.G; `pm/.

The case p D 2 is of course obvious since =D2 is selfadjoint. The boundedness of the
H1.†˙

�
/ functional calculus of the unbounded operator =Dp implies the boundedness of

the Riesz transforms, and this result may be thought of as a strengthening of the equiva-
lence (3.10). Indeed, consider the function sgn 2 H1.†˙

�
/ defined by

sgn.z/ def
D 1†C

�
.z/ � 1†�

�
.z/:

If the operator =Dp has a bounded H1.†˙
�
/ functional calculus on Lp.G/ p̊ Lp.G; `pm/,

the operator sgn. =Dp/ is bounded. Moreover, we have

j =Dpj D sgn. =Dp/ =Dp and =Dp D sgn. =Dp/j =Dpj: (8.1)

For any element � of the space dom =Dp D dom j =Dpj, we deduce that =Dp.�/Lp.G/ p̊Lp.G;`pm/
(8.1)
D
 sgn. =Dp/j =Dpj.�/


Lp.G/ p̊Lp.G;`pm/

.p
j =Dpj.�/Lp.G/ p̊Lp.G;`pm/

;

and similarly,j =Dpj.�/Lp.G/ p̊Lp.G;`pm/
(8.1)
D
 sgn. =Dp/ =Dp.�/


Lp.G/ p̊Lp.G;`pm/

.p
 =Dp.�/Lp.G/ p̊Lp.G;`pm/

:



Sobolev algebras on Lie groups and noncommutative geometry 495

Recall that on Lp.G/ p̊ Lp.G; `pm/, we have

j =Dpj
(6.7)
D

"
�

1
2
p 0

0 �

#
:

Using (6.5) and by restricting to elements � of the form .f; 0/ with f 2 dom�
1
2
p , we

obtain the desired equivalence (3.10).

Remark 8.2. With a positive answer to Conjecture 8.1, it is not difficult to show in the
case where G is compact that the triples

�
C.G/; Lp.G/ p̊ Lp.G; `pm/; =Dp

�
give new

examples of compact Banach spectral triples in the sense of [8, Definition 5.10].

We finish with another related conjecture.

Conjecture 8.3. Suppose that 1 < p <1. If Y is an UMD Banach space, the unbounded
operator �p ˝ IdY is sectorial and admits a bounded H1.†� / functional calculus with
0 < � < �

2
on the Bochner space Lp.G; Y /.

This is true for the classical Laplacian on Rd by [49, Theorem 10.2.25, p. 391]. The
scalar case Y D C seems true by [35, Theorem 3.4]. The very interesting case where
Y D Sp is a Schatten class could have applications in quantum information theory. It is
apparent that [4] is related to this problem.
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