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On isometries of spectral triples associated to AF-algebras
and crossed products

Jacopo Bassi and Roberto Conti

Abstract. We examine the structure of two possible candidates of isometry groups for the spectral
triples on AF-algebras introduced by Christensen and Ivan. In particular, we completely determine
the isometry group introduced by Park and observe that these groups coincide in the case of the
Cantor set. We also show that the construction of spectral triples on crossed products given by
Hawkins, Skalski, White, and Zacharias is suitable for the purpose of lifting isometries.

1. Introduction

The reconstruction theorem by Connes is a smooth version of the Gelfand duality; it shows
that both the geodesic distance and the volume form on a compact Riemannian space are
encoded in a particular spectral triple [4]. The non-commutative differential geometry
paradigm is that spectral triples on C �-algebras should allow the investigation of geomet-
ric properties in the non-abelian setting.

Many authors studied the nature of such features in different specific cases; this leads,
for example, to the notion of compact quantum metric space, as defined by Rieffel [18].
Examples of non-commutative manifolds have been studied in the case of the reduced C �-
algebra of a discrete group [4], AF-algebras [3], crossed products [10], and many other
instances.

From the point of view of non-commutative geometry, a natural problem is to under-
stand what is the right notion of isometry for a non-commutative manifold. Such topic was
investigated in [5, 13–16], and at the time being, the two definitions of non-commutative
isometry appearing in these manuscripts are the only natural candidates known to the
authors. More precisely, these are the automorphisms implemented by unitaries commut-
ing with the Dirac operator and the automorphisms leading to preservation of the Connes
distance on the state space, giving rise to the two groups Iso and ISO, respectively.

In the present work, the authors investigate the properties of the Iso- and ISO-group
in some specific cases, namely, the spectral triples constructed by Christensen and Ivan
on AF-algebras and the spectral triples on the crossed product of a C �-algebra with a

2020 Mathematics Subject Classification. Primary 58B34; Secondary 46L05, 46L40.
Keywords. AF-algebra, Dirac operator, non-commutative geometry, isometry group, Cantor set, crossed
product.

https://creativecommons.org/licenses/by/4.0/


J. Bassi and R. Conti 548

discrete group, as defined in [10]. A concrete description of the Iso-group is provided in
the case of the spectral triples for AF-algebras (under a natural nondegeneracy condition);
namely, its elements are the automorphisms which preserve the filtration and the given
reference faithful state. In the particular case of some natural spectral triple on the Can-
tor set, this group actually coincides with the ISO-group. Moreover, it is proved that, in
the case of UHF-algebras of type n1, if the eigenvalues of the Dirac operator grow fast
enough, the ISO-group cannot contain all the switches of the tensor factors. In the case
of the CAR-algebra, we explicitly compute the Connes distance between certain states; as
a consequence, none of the switch automorphisms can appear in the ISO-group at all. In
Section 4 it is shown a procedure to lift the elements of the Iso-group of a spectral triple
for a C �-algebra endowed with an action of a countable discrete group to the Iso-group
of the spectral triple of the crossed product given in [10].

2. Preliminaries

2.1. The definition of a spectral triple

The geometric properties of a compact Riemannian spin manifold can be reconstructed
from the algebraic data contained in the way the Dirac operator and the measurable
bounded functions interact when acting on the Hilbert space of L2-spinors [4]. These
data are encoded in the notion of spectral triple, which we recall in the setting of arbitrary
unital C �-algebras.

Definition 2.1. Let A be a unital C �-algebra represented on a Hilbert space H and D be
an unbounded self-adjoint operator on H . Denote

AD D ¹a 2 A j a dom.D/ � dom.D/º:

We say that .A;H;D/ is a spectral triple if the following conditions are satisfied:

(i) the set ¹a 2 AD j ŒD; a� extends to a bounded operator on H º is norm-dense
in A;

(ii) the operator .1CD2/�1 is compact.

In this case, the operator D is a Dirac operator.

As observed by Connes, given a spectral triple .A; H; D/, it is possible to define a
pseudo-metric dD on �.A/, the state space of A, by the formula

dD.�;  / D sup
a2AW kŒD;a�k�1

j�.a/ �  .a/j:

In the case where the spectral triple is the natural one associated to a compact Riemannian
spin manifold, this formula gives back the geodesic distance [4, Chapter 6, Paragraph 1];
there are also examples of non-commutative C �-algebras admitting spectral triples for
which dD is a metric on the state space inducing the w�-topology (cf. [18]).
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2.2. Spectral triples on AF-algebras

We briefly recall the construction of spectral triples on AF-algebras given in [3]. Let A D
limnAn be a unital AF-algebra associated to a filtration of finite-dimensional C �-algebras
An, and assume that A0 D C1. Let � be a faithful state on A, H� the associated GNS -
Hilbert space, and � the corresponding cyclic vector. For every n 2 N, let Hn D An� and
Pn W H� ! Hn be the associated orthogonal projection; we define Kn D Hn 	 Hn�1,
Qn D Pn � Pn�1. Given a sequence of positive real numbers �n !1, with �0 D 0, we
let D¹�nº be the unbounded self-adjoint operator on H� given by D D

P
n �nQn with

its natural domain; this is a Dirac operator for a spectral triple .A;H� ; D¹�nº/ on A. The
elements of the dense subalgebra

S
n An � AD¹�nº have bounded commutators with this

Dirac operator. Following [10], spectral triples constructed in this way will be referred
to as Christensen–Ivan spectral triples, and we will drop the suffix ¹�nº appearing in the
Dirac operator where no confusion is likely to arise. As shown in [3, Theorem 2.1], if the
sequence of eigenvalues ¹�nº grows rapidly enough, the pseudo-metric induced by D¹�nº
on the state space of A is actually a metric, and it induces the w�-topology. We will see
an application of this fact in Lemma 3.6.

2.3. Isometries of non-commutative spaces

Park introduced in [14] the concept of isometry in the non-commutative setting (see
also [13]). He showed that in the case of the spectral triple given by the continuous func-
tions on a compact Riemannian oriented manifold, the Hilbert space of complexL2-forms,
and the de Rham operator as Dirac, this concept coincides with the ordinary notion of
isometry. He also studied the group of such isometries in some non-commutative cases.

Definition 2.2 ([14]). Let .A;H;D/ be a spectral triple. An element ˛ 2 Aut.A/ belongs
to the group Iso.A;H;D/ if ˛ is implemented on H by a unitary operator which leaves
the domain of the Dirac operator D invariant and commutes with D.

In view of the possibility to characterize the distance between two points in a compact
Riemannian spin manifold M in terms of the metric dD on the state space of C.M/,
another possible non-commutative generalization of isometry which is worth studying is
given by the following.

Definition 2.3 ([5]). Let .A;H;D/ be a spectral triple. An element ˛ 2 Aut.A/ belongs
to the group ISO.A;H;D/ if dD.� ı ˛; ı ˛/ D dD.�;  / for every �; 2 �.A/.

While it is always the case that Iso.A;H;D/� ISO.A;H;D/, there are simple exam-
ples in which these two groups do not coincide.

Proposition 2.4. Let A DM2.C/ and let D be a diagonal self-adjoint element of A with
two distinct eigenvalues. Then, Iso.A;C2;D/ ¤ ISO.A;C2;D/.

Proof. The “flip” unitary U D .1 � ıi;j /
2
i;jD1 does not commute with D, from which

it follows that ad.U / … Iso.A;C2; D/; we will see that U implements an element of
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ISO.A;C2;D/. Indeed, let �,  2 �.A/, and note that

dD.� ı ad.U /;  ı ad.U // D sup
a2AW kŒD;a�k�1

j�.UaU �/ �  .UaU �/j

D sup
a2AW kŒD;U �aU �k�1

j�.a/ �  .a/j:

Hence, it is enough to show that kŒD; UaU ��k D kŒD; a�k for every a 2 A. This follows
from the equality ŒD;U �aU � D �U �ŒD; a�U for every a 2 A.

Remark 2.5. The fact that the automorphism induced by the flip unitary of Proposi-
tion 2.4 preserves the Connes distance between pure states already follows from the
computation in [11, Proposition 2].

Other comparison results concerning the two isometry groups for the case of Cuntz
algebras have been obtained in [5].

3. Isometries of Christensen–Ivan spectral triples

This section contains information about the isometry groups associated to spectral triples
on AF-algebras. We completely characterize the Iso-groups for the cases at hand and col-
lect some results concerning the “size” of the ISO-group.

Let AD
S
nAn be an AF algebra, � a faithful state on A and .�� ;H� ; ��/ the associ-

ated GNS triple. From now on, we identify A with its image under �� and write � for the
cyclic and separating vector �� . Let .A; H� ; D/ be the Christensen–Ivan spectral triple
associated to the given generating family of finite-dimensional subalgebras An and the
diverging sequence of non-negative real numbers ¹�nº (here, A0 D CI and �0 D 0).

Theorem 3.1. Let .A;H� ; D/ be as above and suppose that the sequence ¹�nº satisfies
�i ¤ �j for every i ¤ j . Then,

Iso.A;H� ;D/ D ¹˛ 2 Aut.A/ j ˛.Ai / D Ai 8i; � ı ˛ D �º:

In particular, if A D
N1
iD0Mni , with Mn0 D C, is a UHF-algebra, then

Iso.A;H� ;D/ D
²
˛ 2 Aut.A/ j ˛ D

1O
iD1

˛i ; ˛i 2 Aut.Mni /; � ı ˛ D �

³
;

and if � D
N
i �i is a product state, then

Iso.A;H� ;D/

D

²
˛ 2 Aut.A/ j ˛ D

1O
iD1

˛i ; ˛i 2 Aut.Mni /; �i ı ˛i D �i for every i 2 N

³
'

1Y
iD1

¹ui 2 Uni j �i ı adui D �i for every i 2 Nº=S1:
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Proof. Let ˛ 2 Iso.A;H� ;D/ and U 2 U.H�/ be such that ˛ D ad.U /. Since the coeffi-
cients �n are pairwise different, the condition that ŒD;U �D 0 is equivalent, forU 2U.H/,
to the condition thatUHi �Hi for every i 2N, whereHi is the finite-dimensional Hilbert
space Ai�, and thus, UHi D Hi for every i . In particular, U� 2 C� and, without loss of
generality, we may even assume that U� D � . Anyway, it readily follows that � ı ˛ D �.
Moreover, note that if U 2 B.H/ leaves every Hi invariant, then for every i 2 N and
a 2 Ai we have UaU �� 2 Hi . Since � is separating, it follows that UaU � 2 Ai ; hence,
ad.U / respects the specified filtration of A. Hence,

Iso.A;H� ;D/ � ¹˛ 2 Aut.A/ j ˛.Ai / D Ai 8i; � ı ˛ D �º:

Let now ˛ be an automorphism of A which leaves every Ai invariant and preserves the
faithful state � under precomposition. Then, the linear map a� ! ˛.a/� defines a unitary
operator onH ; hence, ˛ is unitarily implemented, and since the unitaries realizing ˛ leave
every Hi invariant, they commute with D.

Let nowAD
N1
iD0Mni be a UHF-algebra, and let ˛ 2 Iso.A;H� ;D/ be implemented

by U 2B.H�/. Since for every i 2N ad.U / leaves bothMni andMni ˝MniC1 invariant,
it also leavesMniC1 invariant, being the commutant ofMni inMni ˝MniC1 . Hence, every
˛ 2 Iso.A; H� ; D/ decomposes as ˛ D

N1
nD1 ˛i , where ˛i 2 Aut.Mni /. On the other

hand, every automorphism of the form ˛ D
N1
iD1 ˛i with ˛i 2 Aut.Mni / which satisfies

� ı ˛ D � belongs to Iso.A;H� ;D/. Now, the last statement easily follows.

The above argument can be used to obtain similar results in the more general case of
spectral triples associated to non-decreasing sequences of real numbers.

Corollary 3.2. Let A D limi Ai be an AF-algebra, � a faithful state on A, and �i a
monotone non-decreasing sequence associated to a Dirac operator on H� implementing
a Christensen–Ivan spectral triple. For every i 2 N, let ni WD max¹k � i j �k D �iº and
ki WD min¹k � i j �k D �iº. Then,

Iso.A;H� ;D/ D ¹˛ 2 Aut.A/ j ˛.Ani / D Ani 8i 2 N; � ı ˛ D �º:

If A D
N1
iD0Mni is UHF, then

Iso.A;H� ;D/ D
²
˛ 2 Aut.A/ j ˛ D

O
�i

˛�i ; ˛�i 2 Aut
� niO
jDki

Mj

�
; � ı ˛�i D �

³
:

Proof. The Dirac operator reads D D
P
�i2¹�i ºi2N

�i .Pni � Pki /, where for j 2 N,
Pj D PHj . Hence, Iso.A; H� ; D/ can be computed using Theorem 3.1 applied to the
AF-structure of A given by the filtration A D limi Ani . The second statement follows
from the second part of the proof of Theorem 3.1.

Remark 3.3. In the particular case of a UHF-algebra A D
N1
iD0Mni represented on the

GNS-Hilbert space associated to the unique trace � , Corollary 3.2 gives, for a monotone
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non-decreasing sequence ¹�iº,

Iso.A;H� ;D¹�i º/ D
Y
�i

UQ
¹j W�jD�i º

nj =S
1:

Remark 3.4. It is unlikely that Iso.A;H� ;D/ be normal in Aut.A/. It is certainly not for
A D

N1
iD0Mni with ni D mk for some 2 � min¹m;kº, for all i 2 N and � D tr. In fact,

suppose that A D
N1
iD0M2k and consider ˛ D id˝j ˝y̨ ˝ id1 for some j � 1, where

y̨.a1 ˝ a2 ˝ � � � ˝ ak/ D a2 ˝ a1 ˝ a3 ˝ � � � ˝ ak :

Then, ˇ ı ˛ ı ˇ�1 … Iso.A;H� ;D/ for ˇ D id˝.j�1/˝ y̌˝ id˝1, with

y̌..a1˝ � � � ˝ ak/˝ .b1˝ � � � ˝ bk//D .a1˝ � � � ˝ ak�1˝ b1/˝ .ak ˝ b2˝ � � � ˝ bk/:

It was observed in [3] that, in the case of Christensen–Ivan spectral triples associated
to rapidly diverging sequences of real numbers, all the information about the w�-topology
on the state space of the AF-algebra is carried by the Dirac operator, namely, the topology
induced by the metric associated to D (see the discussion after Definition 2.1) on the
state space of A coincides with the w�-topology [3, Theorem 2.1 (i)]. The following is an
application of this fact.

Proposition 3.5. Let A be a UHF-algebra, tr the trace on A, and ¹�nºn2N a diverging
sequence of positive real numbers such that the topology induced by the metric associated
toD¹�nº on �.A/ coincides with the w�-topology. Let .A;Htr;D¹�nº/ be the Christensen–
Ivan spectral triple associated to this data. Then,

ISO.A;Htr;D¹�nº/ ¨ Aut.A/:

Moreover, Aut.A/n ISO.A;Htr;D¹�nº/ contains ISO.A;Htr;D¹�nº/ �N as a subset.

Proof. In virtue of [3, Theorem 2.1 (i)], the pseudo-metric dD¹�nº induced byD¹�nº on the
state space of A is actually a metric, and it induces the w�-topology. By [17, Corollary
3.8], the action of Aut.A/ on the pure states of A is transitive, and by [8, Theorem 2.8],
the set of pure states is w�-dense in the set of states. Hence, for every pure state  ,
there is a sequence ¹ˇnº � Aut.A/ such that dD¹�nº. ı ˇn; tr/! 0. In particular, there
is a sequence of positive real numbers rn ! 0, rn ¤ rm for n ¤ m such that the sets
�n WD ¹� 2 �.A/ j dD¹�nº.tr; �/ D rnº ¤ ; for every n 2 N, and from the above, given
n ¤ m 2 N, there is always an element ˛n;m 2 Aut.A/ such that ˛n;m.�n/ \�m ¤ ;.
We claim that given n;m 2 N there is l 2 N such that ˛n;m ¤ ˛n;h ı ˇ for every h � l ,
ˇ 2 ISO.A;Htr;D¹�nº/; indeed, if this is not the case, then it is possible to find a sequence
�k 2 �n such that ˛n;m.�k/! tr; by compactness, we can suppose that �k converges
to a state �, which satisfies ˛n;m.�/ D tr, which is impossible. It follows that for every
n 2 N there is a sequence mi such that the elements ˛n;mi ı ˇ1 ¤ ˛n;mj ı ˇ2 for every
.i; ˇ1/ ¤ .j; ˇ2/ 2 N � ISO.A;Htr;D¹�nº/.
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Let n 2 N and A D
N1

Mn be a UHF-algebra. For i; j 2 N, let �i;j be the auto-
morphism of A given by the permutation of the i -th and j -th tensor components. It
follows from Theorem 3.1 that, for every i ¤ j , �i;j does not belong to the Iso-group
of a Christensen–Ivan spectral triple for A with pairwise different eigenvalues.

Lemma 3.6. Let A D
N
i Mni be a UHF-algebra with ni D nj D n for every i , j , and

consider the setting as in the statement of Proposition 3.5. There exists i 2 N such that
�i;iC1 … ISO.A;Htr;D¹˛nº/.

Proof. Let a 2 Mn be such that tr.a�a/ D 1, !a the associated (vector) state, namely,
!a.x/ D tr..a� ˝ 1/x.a ˝ 1//, and suppose that !a ¤ tr; let � W A ! A be the shift
endomorphism: �.x/D 1˝ x. Then, !�ka! tr in the w�-topology when k!1. Since
this topology coincides with the topology induced by the metric dD¹�nº , we have

dD¹�nº.tr; !�ka/! 0; k !1:

Hence, there is k 2 N such that dD¹�nº.tr; !�ka/ < dD¹�nº.tr; !a/. Since !�ka D !a ı

�1;kC1 and

�1;kC1 D �1;2 ı �2;3 ı � � � ı �k�1;k ı �k;kC1 ı �k�1;k ı � � � ı �2;3 ı �1;2;

the result follows.

Remark 3.7. Let A D
N1

Mn for some n 2 N and let ¹�iº be a strictly increasing
sequence of positive real numbers, with D¹�i º the associated Dirac operator. Then,
Iso.A;Htr;D¹�i º/ satisfies the following:

(i) �i;j … Iso.A;Htr;D¹�i º/ for every i; j ;

(ii) �i;j is in the normalizer of Iso.A;Htr;D¹�i º/ in Aut.A/ for every i; j ;

(iii) if ˛ 2 Aut.A/, then ˛ 2 Iso.A;Htr;D¹�i º/ if and only if

idMn ˝˛ 2 Iso.A;Htr;D¹�i º/:

We will see below how a stronger version of Lemma 3.6 can be deduced in the concrete
case of the CAR-algebra. Before specializing, we prove a result for the case of more
general UHF-algebras.

Let A D
N1

Mk with connecting morphisms a 7! a ˝ 1 be a UHF-algebra of type
k1, and let Htr be the GNS-Hilbert space associated to the unique trace tr; Htr is an
inductive limit of finite-dimensional Hilbert spaces Hn associated to Mkn , n 2 N. Let
.A;Htr; D/ be the Christensen–Ivan spectral triple associated to an increasing sequence
of real numbers ¹�nº. If v 2 Htr is a unit vector, we denote by �v the associated vector
state on A. Denote An DMkn 'M

˝n
k

.

Lemma 3.8. Keep the above notation, and let n 2 N, v 2 Hn with tr.v�v/ D 1. Then,

dD.�v; tr/ D sup
x2An; kŒD;x�k�1

jtr.x/ � �v.x/j:
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Proof. It is enough to show that for every Qx 2
S
h Ah with kŒD; Qx�k � 1 there is x 2 An

such that kŒD; x�k � 1 and jtr.x/� �v.x/j D jtr. Qx/� �v. Qx/j. Hence, let Qx 2
S
hAh, and

consider the conditional expectation En W
S
hAh ! An given by

En

�X
x1 ˝ x2 ˝ � � � ˝ xn ˝ xnC1 ˝ � � �

�
D

X
x1 ˝ x2 ˝ � � � ˝ xn ˝ tr.xnC1/˝ tr.xnC2/˝ � � � :

We claim that En. Qx/ 2 An is the desired element. Note that for every v1; v2 2 Hn, we
have

hv1; En. Qx/v2i D hv1; Qxv2i (3.1)

and so, denoting by Pn the orthogonal projection from Htr onto Hn, we have

Pn QxPn D PnEn. Qx/Pn:

Moreover, En. Qx/ leaves every Hk invariant for k � n. Hence,

ŒD;En. Qx/�D
X
k

˛k.QkEn. Qx/�En. Qx/Qk/D

nX
kD1

˛kPnŒQk ;En. Qx/�Pn D PnŒD; Qx�Pn;

from which we obtain kŒD;En. Qx/�k � kŒD; Qx�k. Furthermore, it follows again from (3.1)
that

jtr. Qx/ � �v. Qx/j D jtr.En. Qx// � �v.En. Qx//j:

The above proposition is the key observation for the explicit computation of the dis-
tance between the trace and certain states in the case of the CAR-algebra. This com-
putation reveals the impossibility for the automorphisms �i;j (see the discussion before
Lemma 3.6) to belong to the ISO-group of a Christensen–Ivan spectral triple. We recall
that M2 is linearly generated by the Pauli matrices

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
; �4 D

�
1 0

0 1

�
:

In order to clarify the next result, we first illustrate a concrete basic example in which
the distance of the trace from a specific vector state in the case A is the CAR-algebra can
be computed. In the following, we fix a Christensen–Ivan spectral triple associated to a
sequence of diverging pairwise different eigenvalues for such algebra. Let

v D

�
0
p
2

0 0

�
2M2 ˝ 1

be considered as a norm one vector in the GNS representation Htr. We have �v.�1/ D
�v.�2/ D 0 and �v.�3/ D �v.�4/ D 1. We want to show that the sup appearing in the
definition of the distance between �v and tr can be computed on multiples of �3; in order
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to do so, we need to show that for every ˛1 D 
 , ˛2 D ı, ˛3 D ˇ, ˛4 D ˛ 2 C we have
kŒD;

P4
iD1 ˛i�i �k � kŒD; ˛3�3�k. Let

x D

 
˛ C ˇ 
 � iı


 C iı ˛ � ˇ

!
2M2:

Using the C �-identity, we see that the norm of the commutator ŒD; x� is given by

kŒD; x�k D �1 max¹kx0;1k; kx1;0kº;

where x0;1 D P0x.P1 � P0/ and x1;0 D .P1 � P0/xP0. A computation shows that for
w 2 C we have

x1;0w D

 
ˇw .
 � iı/w

.
 C iı/w �ˇw

!
;

from which we obtain

kx1;0k
2
D jˇj2 C

1

2
.j
 C iıj2 C j
 � iıj2/ � jˇj2:

Note now that .ˇ�3/0;1 W C�?tr � H1 ! C is given by

.ˇ�3/0;1

�
w1;1 w1;2
w2;1 �w1;1

�
D ˇw1;1;

and so k.ˇ�3/0;1k D jˇj. Similarly, we have k.ˇ�3/1;0k D jˇj. In particular,

kx1;0k � max¹k.ˇ�3/1;0k; k.ˇ�3/0;1kº;

and so kŒD; x�k � kŒD; ˇ�3�k. It follows from Lemma 3.8 that

dD.�v; tr/ D sup
ˇ2CWkŒD;ˇ�3�k�1

jtr.ˇ�3/ � �v.ˇ�3/j D sup
ˇ2CWkŒD;ˇ�3�k�1

jˇj:

In order to obtain this value, we only need the value of kŒD; ˇ�3�k, which we already
computed and is given by jˇj�1, and so

dD.�v; tr/ D ��11 :

This specific example already contains all the ideas needed for the general case.

Proposition 3.9. Let A D
N1

M2; for l 2 ¹1; 2; 3º denote

Bl WD ¹v 2M2 j �v.�l / D �v.�4/ D 1; �v.�j / D 0 for j 2 ¹1; 2; 3ºn¹lºº �M2

(�v is the vector state associated to v: �v.�/ D tr.v�.�/v/), and let v 2 ad.U.M2//.Bl /

for some l . For every n 2 N, we have

d.�1˝n˝v; tr/ D
1

�nC1
:

The supremum for the distance is attained on the element 1˝n ˝ �l=kŒD; 1˝n ˝ �l �k 2
1˝n ˝M2 � AnC1.
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Proof. First of all, note that we can suppose v 2 Bl , since

ad.1˝n ˝ U.M2// � Iso.A;D;Htr/

in virtue of Theorem 3.1. Let �i , i D 1; : : : ; 4 be the Pauli matrices, and let v be as in the
statement. For every

x D

4X
i1;i2;:::;inC1D1

˛i1;i2;:::;inC1�i1 ˝ �i2 ˝ � � � ˝ �inC1 2 AnC1;

we denote

Qx D x �

4X
i1;i2;��� ;inD1

˛i1;i2;:::;in;4�i1 ˝ �i2 ˝ � � � ˝ �in ˝ 1 2 AnC1:

We want to show that

d.�1˝n˝v; tr/ D sup
x2AnC1;kŒD;x�k�1

j�1˝n˝v.x/ � tr.x/j D sup
x2AnC1;kŒD; Qx�k�1

j�1˝n˝v. Qx/j

D sup
x2AnC1;kŒD; Qx�k�1

j˛4;4;:::;4;l j:

Note that

�1˝n˝v.�i1 ˝ �i2 ˝ � � � ˝ �inC1/ D

nY
kD1

ıik ;4.ıinC1;l C ıinC1;4/

and

tr.�i1 ˝ �i2 ˝ � � � ˝ �inC1/ D
nC1Y
kD1

ıik ;4:

Hence, for every x D
P4
i1;i2;:::;inC1D1

˛i1;i2;:::;inC1�i1 ˝ �i2 ˝ � � � ˝ �inC1 , we have

j�1˝n˝v.x/ � tr.x/j D j˛4;4;:::;4;l j:

We are then left to show that for every x 2 AnC1, kŒD; x�k � kŒD; Qx�k. In order to do so,
let .i1; i2; : : : ; inC1/ 2 ¹1; 2; 3; 4º�n � ¹1; 2; 3º and w 2 Hn. Then,

Pn�i1 ˝ �i2 ˝ � � � ˝ �inC1w D �i1 ˝ �i2 ˝ � � � ˝ �inw ˝ tr.�inC1/ D 0;

and so Pn�i1 ˝ �i2 ˝ � � � ˝ �inC1Pn D 0, which gives PnŒD;�i1 ˝ �i2 ˝ � � � ˝ �inC1 �Pn D
0 so that PnŒD; Qx�Pn D 0. On the other hand, x � Qx 2 An commutes with Qk for every
k > n; it follows that ŒD; x � Qx�Qk D Qk ŒD; x � Qx� D 0 for each such k. Also, a direct
computation shows that

QnC1ŒD; Qx�QnC1 D QnC1

�X
i

˛iQi Qx �
X
i

˛i QxQi

�
QnC1

D ˛nC1QnC1 QxQnC1 � ˛nC1QnC1 QxQnC1 D 0:
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Thus, ŒD; Qx� and ŒD; x � Qx� satisfy the following properties:

PnŒD; Qx�Pn D 0; PnC1ŒD; Qx�PnC1 D ŒD; Qx�; QnC1ŒD; Qx�QnC1 D 0;

ŒD; x � Qx�Qk D Qk ŒD; x � Qx� D 0 8k > n:

Hence, we want to check that for every y;z 2 B.Htr/with PnC1yPnC1 D y, PnyPn D
QnC1yQnC1 D 0, and zQk DQkz D 0, for every k > n, we have kyk � ky C zk. Under
these assumptions, we have kyjKi k � k.y C z/jKi k for every i D 0; 1; : : : ; nC 1. Now,
y D PnyQnC1 CQnC1yPn, and so

y�y D .QnC1y
�Pn C Pny

�QnC1/.PnyQnC1 CQnC1yPn/

D QnC1y
�PnyQnC1 C Pny

�QnC1yPn

so that kyk D max¹kPnyQnC1k; kQnC1yPnkº. We have PnyQnC1 D yjKnC1 , and so
kPnyQnC1k � ky C zk. Now note that the above conditions for y and z are preserved
under taking adjoints and so ky�jKnC1k � k.yC z/

�jKnC1k � k.yC z/
�k D kyC zk. But

again, y�jKnC1 D Pny
�QnC1 D .QnC1yPn/

�, which entails ky�jKnC1k D kQnC1yPnk.
The next step is to show that for every x 2 AnC1 as above we have

j˛4;4;:::;4;l j � kP0 QxQnC1k � �
�1
nC1:

The first inequality is obtained by evaluating P0 QxQnC1 on the unit vector 1˝n ˝ �l 2
KnC1, which gives, using the orthogonality relations for the Pauli matrices,

P0 Qx.1
˝n
˝ �l / D ˛4;4;:::;4;l :

For what concerns the second inequality, note that

ŒD; Qx� D �nC1QnC1 QxP0 C .�nC1 � �1/QnC1 QxQ1 C � � � C .�nC1 � �n/QnC1 QxQn

� �nC1P0 QxQnC1 � .�nC1 � �1/Q1 QxQnC1 � � � � � .�nC1 � �n/Qn QxQnC1:

Since kŒD; Qx�k � 1, we get kP0 QxQnC1k � ��1nC1.
We are left to prove that

j�1˝n˝v.1
˝n
˝ �l=kŒD; 1

˝n
˝ �l �k/ � tr.1˝n ˝ �l=kŒD; 1˝n ˝ �l �k/j D ��1nC1:

This follows from the fact that kŒD; 1˝n ˝ �l �k D �nC1. Note that

kŒD; 1˝n ˝ �l �k

D max
®
k�nC1P0.1

˝n
˝ �l /QnC1 C .�nC1 � �n/Q1.1

˝n
˝ �l /QnC1 C � � �

C .�nC1 � �n/Qn.1
˝n
˝ �l /QnC1k; k�nC1QnC1.1

˝n
˝ �l /P0

C .�nC1 � �1/QnC1.1
˝n
˝ �l /Q1 C � � � C .�nC1 � �n/QnC1.1

˝n
˝ �l /Qnk

¯
D


�nC1P0.1˝n ˝ �l /QnC1 C .�nC1 � �n/Q1.1˝n ˝ �l /QnC1 C � � �
C .�nC1 � �n/Qn.1

˝n
˝ �l /QnC1




D


�nC1QnC1.1˝n ˝ �l /P0 C .�nC1 � �1/QnC1.1˝n ˝ �l /Q1 C � � �
C .�nC1 � �n/QnC1.1

˝n
˝ �l /Qn



:
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Let ˛ ˚ v1 ˚ v2 ˚ � � � ˚ vn 2 H0 ˚ K1 ˚ � � � ˚ Kn with j˛j2 C
Pn
iD1 kvik

2 D 1. We
have 

.�nC1QnC1.1˝n ˝ �l /P0 C .�nC1 � �1/QnC1.1˝n ˝ �l /Q1 C � � �

C .�nC1 � �n/QnC1.1
˝n
˝ �l /Qn/.˛ ˚ v1 ˚ � � � ˚ vn/



2
D �2nC1j˛j

2
C .�nC1 � �1/

2
kv1k

2
C � � � C .�nC1 � �n/

2
kvnk

2

� �2nC1

 
j˛j2 C

nX
iD1

kvik
2

!
D �2nC1;

which gives

�nC1QnC1.1˝n ˝ �l /P0 C .�nC1 � �1/QnC1.1˝n ˝ �l /Q1 C � � �
C .�nC1 � �n/QnC1.1

˝n
˝ �l /Qn



 D �nC1:
Corollary 3.10. Let A D

N1
M2, and suppose that the eigenvalues �n of the Dirac

operator are pairwise distinct. Let ˛ 2 Aut.A/ be given with the following property: there
exist k ¤ m 2 N, l; i 2 ¹1; 2; 3º, v 2 ad.U.M2//.Bl / such that ˛.1˝m ˝ v/ 2 1˝k ˝
ad.U.M2//.Bi /. Then, ˛ does not belong to ISO.A;Htr;D/. In particular, this applies to
the automorphisms �i;j given by permutation of the i -th and j -th tensor factors.

In the end of this section, we include a related result which, according to the authors,
is of independent interest.

Proposition 3.11. Denote by ' W
S
n An !

S
n An the endomorphism given by '.y/ D

1˝ y. For every n 2 N, c.n/ > 0 such that .c.n/C 1/�n � �nC1, we have

kŒD; x�k � c.n/�1��1n �1kŒD; '
n.x/�k

for every x 2 A1. In particular, if 2�1 < �2, then kŒD; '.x/�k � �2��1
�1
kŒD; x�k for every

x 2 A1, with �2��1
�1

> 1.

Proof. Let x 2 A1 and � be the cyclic vector. First, we show that kŒD;x�k � �1kQ1x�k2.
Note that the C �-identity gives kŒD;x�k D �1max¹kP0xQ1k;kQ1xP0kº. Now, for every
v 2 Q1H , we have

P0xv D tr.xa/� D tr..x � tr.x//a/�;

where a� D v; hence,
kP0xQ1k � kQ1x�k2:

Similarly, for ˛ 2 C, Q1x˛� D ˛.x � tr.x//�, and so again kQ1xP0k � kQ1x�k2.
A direct computation gives PnŒD; 'n.x/�Pn D 0; hence,

PnŒD; '
n.x/��ŒD; 'n.x/�Pn D PnŒD; '

n.x/��QnC1ŒD; '
n.x/�Pn;

and we only need to show that

kPnŒD; '
n.x/��QnC1ŒD; '

n.x/�Pnk � c.n/
2�2nkQ1x�k

2
2:
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The operator PnŒD; 'n.x/��QnC1ŒD; 'n.x/�Pn is explicitly given by

PnŒD; '
n.x/��QnC1ŒD; '

n.x/�Pn

D

nX
i;jD0

.�nC1 � �i /.�nC1 � �j /Qi .1
˝n
˝ x�/QnC1.1

˝n
˝ x/Qj

D

nX
iD0

.�nC1 � �i /
2Qi .1

˝n
˝ x�/QnC1.1

˝n
˝ x/Qi

C

X
i<j

.�nC1 � �i /.�nC1 � �j /
�
Qi .1

˝n
˝ x�/QnC1.1

˝n
˝ x/Qj

CQj .1
˝n
˝ x�/QnC1.1

˝n
˝ x/Qi

�
� c.n/2�2n.Pn.1

˝n
˝ x�/QnC1.1

˝n
˝ x/Pn/:

Explicit computations give, for v D a� 2 Hn,

Pn.1
˝n
˝ x�/QnC1.1

˝n
˝ x/Pn.v/ D a˝ tr.x�.x � tr.x///� D a˝ kQ1x�k22;

from which we obtain kPn.1˝n ˝ x/�QnC1.1˝n ˝ x/Pnk � c.n/2�2nkQ1x�k
2
2 and

kŒD; 'n.x/�k2 � kPnŒD; '
n.x/��ŒD; 'n.x/�Pnk

� c.n/2�2nkQ1x�k
2
2 � c.n/

2�2n�
�2
1 kŒD; x�k

2:

3.1. The case of the Cantor set

Let X be a (compact) Cantor set. There is a nested partition P D ¹Piº with

Pi D ¹Ui;j ; j 2 Zi2º

of X consisting of clopen sets such that for every i 2 N, j 2 Zi2 we have

Ui;j D UiC1;j˚0 t UiC1;j˚1

and every continuous function on X is the uniform limit of P -simple functions. If we
identify X with

Q1
jD1¹0; 1º (with the product topology), an explicit description of such a

nested partition can be given in the following way: for every l 2N, let �l be the projection
on the factor Xl D

Ql
jD0¹0; 1º of

Q1
jD0¹0; 1º; given a finite word w 2 Xl , denote by Uw

the clopen set given by Uw WD ¹x 2 X j �l .x/D wº and define Pi D ¹Uw j w 2 Xiº. The
C �-algebra of continuous functions on X is the inductive limit of the sequence of finite-
dimensional C �-algebras C2i consisting of Pi -simple functions, where the connecting
morphism C2i ! C2iC1 is given by considering a Pi -simple function as a PiC1-simple
function. This gives a concrete realization of C.X/ as the AF-algebra limi C2i with con-
necting morphisms

�i;iC1

 
2iM
kD1

ak

!
D

2iM
kD1

.ak ˚ ak/:

Fix such a nested partition P .
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Proposition 3.12. Let X be a (compact) Cantor set, and let � be the uniform measure
on X , viewed as a faithful state on C.X/. Let .C.X/; H�; D/ be the Christensen–Ivan
spectral triple associated to a non-degenerate sequence ¹�nº and to the AF-structure
induced by P . Then, denoting by S2 ' Z2 the group of permutations of the set ¹0; 1º, we
have

Iso.C.X/;H�;D/ D Ë1iD1S
2i�1

2 :

Proof. Let ˛ 2 Iso.C.X/;H�;D/. Since ˛ respects the filtration of the algebra (by Theo-
rem 3.1), for every i2N, it induces an automorphism on C2i which leaves

L2i�1
.diag.C//

invariant; by Gelfand duality, ˛j
C2i is an element of S2

i�1

2 � Gi , where Gi is the group

of automorphisms of
L2i�1

.diag.C// which respects the filtration up to the .i � 1/-th
step. Hence, ˛j

C2i belongs to
Qi
kD1 S

2k�1

2 . Clearly, every element of
Q1
iD1 S

2i�1

2 induces
an automorphism ˛ of C.X/ which belongs to Iso.C.X/; H�; D/. The group structure
follows at once.

Proposition 3.13. Let X be a (compact) Cantor set, and consider the same setting as in
Proposition 3.12, in the particular case of a Dirac operator associated to a sequence of
real numbers ¹�nº with �n D 
�nC1, where 0 < 
 < .3 �

p
5/=2. Then,

ISO.C.X/;H�;D/ D Iso.C.X/;H�;D/:

Proof. Let ˛ be an automorphism of C.X/ (by an abuse of notation, we will eventually
consider ˛ as a homeomorphism ofX ) which leaves the metric d
 induced byD invariant.
Following [3], for x; y 2 X , let m.x; y/ be the least integer n satisfying x.n/ ¤ y.n/,
where we view x and y as elements of

Q
Z2. By [3, Theorem 4.1 (ii)], under the choice

of 
 as in the statement, if x; y 2 X satisfy m.˛x; ˛y/ ¤ m.x; y/, then d
 .˛x; ˛y/ ¤
d
 .x; y/; hence, if ˛ leaves d
 invariant, then it also leaves m invariant. We will see that
this condition guarantees ˛.An/ � An for every n. First of all, note that, since the image
under ˛ of a clopen set is a clopen set, for every n 2 N the image of a minimal projection
p 2 An under ˛ is a finite sum of minimal projections in

S
i Ai . Suppose now that there

are integers n < k such that the image of ˛jAn contains an element b of Ak which is

not in An. If we write b D
L2n

iD1.
L2k�n

jD1 ai;j /, the condition that b does not belong to
An is equivalent to the existence of i 2 ¹1; : : : ; 2nº and j1; j2 2 ¹1; : : : ; 2k�nº such that
ai;j1 ¤ ai;j2 ; it follows that there are two characters x and y with m.x; y/ > n and such
that xjAn D yjAn and x ı ˛jAn ¤ y ı ˛jAn , which gives m.˛x; ˛y/ � n.

4. Isometries of crossed products

In this section, we show that, under suitable hypothesis, given an action of a discrete
group on a C �-algebra, the crossed product automorphisms given in [6] are elements of
the Iso-group of the crossed product spectral triple introduced in [10].
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Let A be a unital C �-algebra, G a countable discrete group and ˛ W G ! Aut.A/ an
action. As in [6], let

Z1.G;U.A// WD ¹c W G ! U.A/ j c.gh/ D c.g/˛g.c.h//8g; h 2 Gº:

We consider the set

G .A; ˛/ WD
®
.c; ˇ; �/ j c 2 Z1.G;U.A//; ˇ 2 Aut.A/; � 2 Aut.G/;

ˇ ı ˛g D ad c�.g/ ı ˛�.g/ ı ˇ
¯

� Z1.G;U.A// � Aut.A/ � Aut.G/;

endowed with the group structure .c; ˇ; �/.c0; ˇ0; � 0/ D .ˇ.c0 ı ��1/ � c; ˇ ı ˇ0; � ı � 0/,
.c; ˇ; �/�1 D .ˇ�1.c� ı �/; ˇ�1; ��1/ (see [6]). There is a group homomorphism ˆ W

G .A; ˛/! Aut.A Ì˛;r G;A/ explicitly given by

ˆ.c; ˇ; �/
�X
g2G

ag�g

�
D

X
g2G

ˇ.ag/c�.g/��.g/

(the fact that this is actually an automorphism of the reduced crossed product follows
since it is continuous in the L1-norm). As shown in [6], under suitable assumptions,
ˆ.G .A; ˛// D Aut.A Ìr G;A/.

If .A;H;D/ is a spectral triple and A is a dense �-subalgebra of A such that ŒD; a�
extends to a bounded operator on H for every a 2 A, we will say that .A; H; D/ is a
spectral triple forA. This notion coincides with the notion of odd spectral triple considered
in [10, Definition 2.1]. In [10, Theorem 2.7], it is proved that if .A; H;D/ is a spectral
triple for A and G is a discrete countable group acting on A equipped with a proper
translation bounded function l W G ! Z [10, Example 2.4], then, under some additional
hypotheses (see the statement of Theorem 4.1 below), .Cc.G;A/; .H ˝ l2.G//˚2; Dl /
is a spectral triple for A Ìr G, where Dl is given by

Dl D

 
0 D ˝ 1 � i ˝Ml

D ˝ 1C i ˝Ml 0

!
and Ml is the usual self-adjoint extension of the unbounded operator of multiplication by
l on l2.G/.

Theorem 4.1. Let A be a unital C �-algebra endowed with an action ˛ of a countable
discrete group G, equipped with a proper translation bounded function l W G ! Z. Sup-
pose that we are given a spectral triple .A; H; D/ for A which satisfies the hypothesis
of [10, Theorem 2.7], namely, ˛g.A/ � A for every g 2 G, supg2G kŒD; ˛g.a/�k <1
for every a 2 A. Let .c; ˇ; �/ 2 G .A; ˛/ be such that ˇ 2 Iso.A;H;D/, l ı � D l and
cg 2 C � 1A for every g 2 G. Then,

ˆ.c; ˇ; �/ 2 Iso.A Ì˛;r G; .H ˝ `2.G//˚2;Dl /;

where Dl is the above Dirac operator.
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Proof. Let Uˇ 2 U.H/ be a unitary implementing the automorphism ˇ. Let U.cˇ;�/ be
the unitary operator in U.H ˝ `2.G// given, for � 2H and g 2G, by U.c;ˇ;�/.� ˝ ıg/D
.c�
�.g�1/

Uˇ �/˝ ı�.g/. For a 2 A, � 2 H , and g; h 2 G, we compute

ˆ.c; ˇ; �/.a�g/U.c;ˇ;�/� ˝ ıh

D .ˇ.a/c�.g/��.g//..c
�

�.h�1/
Uˇ �/˝ ı�.h//

D .˛�.gh/�1.ˇ.a/c�.g//c
�

�.h�1/
Uˇ �/˝ ı�.gh/

D .c�
�.gh/�1

ˇ.˛.gh/�1.a//c�.gh/�1˛�.gh/�1.c�.g//c
�

�.h/�1
Uˇ �/˝ ı�.gh/

D .c�
�.gh/�1

ˇ.˛.gh/�1.a//c�.h/�1c
�

�.h/�1
Uˇ �/˝ ı�.gh/

D .c�
�.gh/�1

ˇ.˛.gh/�1.a//Uˇ �/˝ ı�.gh/:

On the other hand,

U.c;ˇ;�/a�g.� ˝ ıh/ D U.c;ˇ;�/.˛.gh/�1.a/�/˝ ıgh

D .c�
�.gh/�1

Uˇ˛.gh/�1.a/�/˝ ı�.gh/

D .c�
�.gh/�1

ˇ.˛.gh/�1.a//Uˇ �/˝ ı�.gh/:

Hence, U.c;ˇ;�/ implements the automorphism ˆ.c; ˇ; �/ in H ˝ `2.G/. Note that in the
above computation, we did not use the fact that c is a character. Represent now A Ì˛;r G
diagonally on .H ˝ `2.G//˚2; then ˆ.c; ˇ; �/ is unitarily implemented by U.c;ˇ;�/ ˝ 12
in this representation. Let ¹�kºk2N be the eigenvalues of D and ¹Pkº the corresponding
spectral projections. Under the identification H ˝ `2.G/ ' `2.G;H/, we can write � 2
.H ˝ `2.G//˚2 as .�g/g2G , with �g D .�1; �2/g 2 H ˚ H for every g 2 G, and the
domain of the unbounded operator Dl is given by the set of vectors

� D .�1; �2/ 2 .H ˝ l
2.G//˚2

which satisfy

X
g2G

X
k2N

.�2k C l.g/
2/
1

4









0B@Pk�1 C �k�il.g/p

�2
k
Cl.g/2

Pk�2

�kCil.g/p
�2
k
Cl.g/2

Pk�1 C Pk�2

1CA
g









2

<1:

Under the hypotheses that Uˇ commutes with the spectral projections of D, that c is a
character, and that l ı � D l , this relation is left invariant under U.c;ˇ;�/ ˝ 12. In order
to have that ŒDl ; U.c;ˇ;�/� D 0, it is enough to check that ŒD; c�gUˇ � D 0 for every g 2 G
and that Œ1˝Ml ; U.c;ˇ;�/� D 0; since c is a character, these follow from ŒD;Uˇ � D 0 and
l ı � D l , respectively.

Remark 4.2. LetA be a unitalC �-algebra endowed with an action of a countable discrete
group G, and let l W G ! Z be a proper translation bounded function, and denote

G.l;D;H/.A; ˛/ WD ¹.c; ˇ; �/ 2 G .A; ˛/ j l ı � D l; c 2 CharG; ˇ 2 Iso.A;H;D/º:
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Let .A; H; D/ be a spectral triple for A in the sense of [10, Definition 2.1], and sup-
pose that ˛g.A/ � A for every g 2 G, supg2G kŒD; � .˛g.a//�k <1 for every a 2 A.
Theorem 4.1 states that the map

ˆ W G.l;D;H/.A; ˛/! Aut.A Ì˛;r G;A/

sets up an injective group homomorphism

ˆ W G.l;D;H/.A; ˛/! Iso.A Ì˛;r G; .H ˝ `2.G//˚2;Dl /:

Examples: (i) LetA be a unital C �-algebra endowed with the trivial action of a countable
discrete group G admitting a translation bounded function l W G ! Z, and let .A;H;D/
be a spectral triple. In this case, the crossed product is just the spatial tensor product
A ˝ C �r .G/ and the Dirac operator Dl is the (even) tensor product triple (cf. the para-
graph before Proposition 2.8 in [10]). Denoting by Autl .G/ the subgroup of Aut.G/
given by the automorphisms of G which preserve l , the map ˆ gives a bijection between
CharG � Iso.A;H;D/�Autl .G/ and Iso.A;H;D/� Iso.C �r .G/;Ml ; `

2.G// (see [13]).
This suggests that in general the product of Iso-groups should embed inside the Iso of
some tensor product of spectral triples.

(ii) Let A be a separable unital C �-algebra and .A;H;D/ a spectral triple for A in the
sense of [10, Definition 2.1]. Let also ˛ 2 Iso.A;H;D/ such that ˛.A/�A (this is always
the case if A is AF and the spectral triple is the one considered by Christensen and Ivan),
and let � 2 S1 be a character of Z. Then, ˆ.�;˛;id/ 2 Iso.A Ì˛;r Z; .H ˝ `2.Z//˚2;Dl /,
where l W Z! Z, l.n/D n. An example of this situation is given by the odometer actions
on the (compact) Cantor set, when we consider the spectral triple of Christensen and Ivan
associated to a faithful state. In this case, the associated crossed products are the Bunce–
Deddens algebras (cf. [10, Section 3.1]).

(iii) More generally, let .A;H;D/ be a spectral triple for a unital C �-algebra A in the
sense of [10, Definition 2.1], and consider the subgroup Iso.A; H; D/ of Iso.A; H; D/
which consists of elements ˛ such that ˛.A/ � A. Then, for every countable discrete
subgroup G of Iso.A; H; D/ admitting a translation bounded function l , every ˛ in the
normalizer subgroup of G in Iso.A;H;D/ such that l D l ı ad ˛ and character � of G,
we have

ˆ.�; ˛; ad˛/ 2 Iso.A Ìr G; .H ˝ `2.G//˚2;Dl /:

If ˛ 2 G, then ˆ.�; ˛; ad ˛/ D �.�/ ad �˛ , but in general, �˛ will differ from the uni-
tary U.1;˛;ad˛/ commuting with the Dirac operator Dl . This procedure can be iterated in
different ways.

(iv) Let d 2 N and G D Zd or Fd . Consider the length function on G given by a
choice of generators; this is a translation bounded function. Let � be an automorphism of
G induced by a permutation of the d generators. Let now .A;H;D/ and ˛ be as in exam-
ple (ii). Considering the action z̨ of G on A induced from the “forgetful” homomorphism
G ! Z which sends every generator to the single generator of Z, we have that for every
character � 2 CharG, ˆ.�;z̨;�/ belongs to Iso.A Ìz̨;r G; .H ˝ `2.G//˚2;Dl /.
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5. Postface

As pointed out by a referee, it is not unnatural to equip quantum spaces with some sort
of quantum symmetries. Indeed, in the literature, there is a notion of “quantum isometry
group” for spectral triples (as well as for metric spaces) in the setting of (compact) quan-
tum groups; see, e.g., the monography [9]. Loosely speaking, these quantum isometry
groups should be thought of as some sort of generalization of the Iso.A; H;D/ consid-
ered in this paper, with groups replaced by quantum groups. Even more interestingly, such
quantum groups for the Christensen–Ivan spectral triples have been looked at in [2] (cf.
[9, Remark 5.2.2]). Therein, the authors recognize the existence of some inductive limit
structure on such quantum groups and present further considerations in the commuta-
tive case, notably for the algebra of continuous functions on the middle-third Cantor set.
In general, one would expect that the Iso-groups associated to Christensen–Ivan spectral
triples for AF-algebras considered in this work can be recovered as maximal classical
subgroups (see, e.g., [1, 12]) of the corresponding quantum isometry groups.

We stress out the connection between Proposition 3.12 and the computation of the
quantum isometry groups appearing in [2]. In [2], it is proved that the quantum isometry
group QISOC of a Christensen–Ivan spectral triple associated to the uniform measure on
the Cantor set is an “inductive limit” of certain C �-algebras Sn which are defined induc-
tively by

S1 D C.Z2/; SnC1 D .Sn � Sn/˚ .Sn � Sn/:

Now, for every n 2 N, we let Ison.C.X/; H�; D/ denote the (finite) group of automor-
phisms of Pn-simple functions which respect the filtration of the algebra in the chosen
direct limit decomposition. Then, as observed in the proof of Proposition 3.12,

Ison.C.X/;H�;D/ ' ËnkD1S
2k�1

2

and Iso.C.X/; H�; D/ is the projective limit of such groups. Using the fact that the
abelianization of the free product of two groups is the direct product of the abelianizations,
one can check that for every n 2 N the maximal classical subgroup of Sn corresponds to
Ison.C.X/; H�; D/. The projective structure of Iso.C.X/; H�; D/ is obtained by dual-
izing the inductive structure of QISOC. Hence, Iso is the maximal classical subgroup of
QISOC in the sense of [12] (cf. [7, Section 5]).
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