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Symmetry reduction of states I

Philipp Schmitt and Matthias Schötz

Abstract. In this article, we develop a general theory of symmetry reduction of states on (possibly
non-commutative) �-algebras that are equipped with a Poisson bracket and a Hamiltonian action of
a commutative Lie algebra g. The key idea advocated for in this article is that the “correct” notion
of positivity on a �-algebra A is not necessarily the algebraic one, for which positive elements are
sums of Hermitian squares a�a with a 2 A, but it can be a more general one that depends on the
example at hand, like pointwise positivity on �-algebras of functions or positivity in a representation
as operators. The notion of states (normalized positive Hermitian linear functionals) on A thus
depends on this choice of positivity on A, and the notion of positivity on the reduced algebra A�-red
should be such that states on A�-red are obtained as reductions of certain states on A. We discuss
three examples in detail: reduction of the �-algebra of smooth functions on a Poisson manifold M ,
reduction of the Weyl algebra with respect to translation symmetry, and reduction of the polynomial
algebra with respect to a U.1/-action.

1. Introduction

Symmetry reduction, like Marsden–Weinstein reduction of symplectic manifolds or coiso-
tropic reduction of Poisson manifolds, uses a well-behaved action of a symmetry group to
reduce the number of degrees of freedom of the system at hand. Roughly speaking, there
exist two approaches: the geometric approach considers a symplectic or Poisson manifold
M , and symmetry reduction amounts to restricting to a levelset Z� of fixed momentum �

and dividing out the action of the corresponding symmetry group. This way, one obtains a
reduced symplectic or Poisson manifold M�-red. In general, the ordering of the two steps
is important, but they commute in well-behaved cases. Dual to the geometric approach
is the algebraic approach, which considers the associated Poisson algebra of functions
A D C1.M/, usually referred to as the “algebra of observables” in physics. Here, one
divides out the vanishing ideal of Z� and restricts to the subalgebra of functions that are
invariant under the action of the symmetry group; thus, one obtains a reduced algebra:

A�-red Š C1.M�-red/:

This algebraic approach has the advantage that it allows for a non-commutative gener-
alization applicable to quantum physics by considering more general algebras A. See,
e.g., [1, 6, 14, 15, 18].
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The aim of this article is to examine a “bidual” version, the reduction of states on the
algebra of observables. It seems reasonable to expect that states on the reduced algebra
should correspond to states on the original algebra in some way. This, however, is not
trivially fulfilled in a naive approach: the definition of states requires a notion of positiv-
ity on the algebra of observables; and while there is a canonical notion of positivity on
every �-algebra by declaring Hermitian squares to be positive, this is not enough to obtain
a reasonable theory of reduction of states in general. An example of this is discussed
in Section 6. Ordered �-algebras [8, 21, 22, 28–30, 32, 33], which, from a different point
of view, are also discussed in (non-commutative) real algebraic geometry as “�-algebras
equipped with a quadratic module”, offer the required flexibility, and allow us to make the
correspondence between states on the original and reduced algebra precise.

Ordered �-algebras are unital associative �-algebras over the field of complex num-
bers, for which the real linear subspace

AH WD ¹a 2 A j a D a�º

of Hermitian elements is endowed with a partial order fulfilling some compatibilities. A
state on an ordered �-algebra A is a normalized Hermitian linear functional !WA! C,
positive with respect to the order on AH. Such a state ! associates to any observable
a 2 A its “expectation value” h!; ai. The setting of ordered �-algebras is general enough
to cover a great number of examples, especially the smooth complex-valued functions on
a manifoldM with the pointwise order, A D C1.M/, or the adjointable endomorphisms
on a pre-Hilbert space D , A D L�.D/. Examples of states are evaluation functionals at
points of M or vector functionals a 7! h j a. /i corresponding to normalized vectors
 2D . Despite their generality, ordered �-algebras still allow for the development of some
non-trivial results concerning their structure and representations and therefore might be
seen as a suitable generalization of C �-algebras that also comprises unbounded examples.

We develop our theory of reduction in Section 3 for ordered �-algebras A, endowed
with a Poisson bracket and a Hamiltonian action of a commutative Lie algebra g, i.e., an
action induced by a momentum map JW g! A. Denote the g-invariant elements of A

by Ag. We define the reduction A�-red of A for any “momentum” � 2 g�, � 7! h�; �i
by a universal property and show that the reduction always exists. The construction is
built in such a way that it behaves well with respect to states under some minor technical
assumptions.

Reduction of states. There is a bijective correspondence between states ! on A�-red and
states O! on Ag which satisfy

h O!; .J.�/ � h�; �i1/2i D 0:

Moreover, under the technical assumption of the existence of an averaging operator, all
such states can be obtained by restriction of states on A.

This might be seen as a partial justification of our setting: on the one hand, the assump-
tions that we made are sufficiently strong to obtain a reasonable theory of symmetry
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reduction of states. But on the other hand, there are still plenty of examples, which we
discuss in Sections 4–6, showing that our assumptions are not too strong.

The fact that the interpretation of the reduction of states as the “bidual” of a geo-
metric reduction procedure is not just a mere heuristic can best be seen in the exam-
ple A D C1.M/ of smooth functions on a Poisson manifold M with the pointwise
order, which we discuss in detail in Section 4. Indeed, C1.M/ constitutes an example
of an ordered �-algebra, and assigning to every point x 2 M its evaluation functional
ıx WC

1.M/!C allows one to identify the manifoldM with the unital �-homomorphisms
C1.M/! C, which in turn are just the extreme points of the convex set of states on
C1.M/. Given any smooth Hamiltonian action of a connected commutative Lie group
G on M , the general reduction procedure for ordered �-algebras and states, applied to
this special example of C1.M/ and its evaluation functionals, results in a Poisson alge-
bra W1.M�-red/ of functions on a reduced topological space M�-red and the evaluation
functionals on M�-red. Under the usual additional regularity assumptions, this procedure
is equivalent to Marsden–Weinstein reduction.

As a first non-commutative example, we discuss the Weyl algebra of canonical com-
mutation relations in Section 5. In the Schrödinger representation as differential operators
on the Schwartz space S.R1Cn/, the momentum map for the translation symmetry is sim-
ply given by the usual momentum operators �i @

@xj
. It will be shown that the reduction

with respect to one of the momentum operators yields the Weyl algebra on S.Rn/ with
the operator order. In this example, there are no states on the Weyl algebra satisfying the
above reducibility condition (due to the lack of an averaging operator), yet the reduction
procedure still produces the expected result.

More involved non-commutative examples arise in non-formal deformation quantiza-
tion, but their detailed study will be postponed to future projects. In this article, we discuss,
as our last example in Section 6, the case of the polynomial algebra on C1Cn with the stan-
dard Poisson bracket. By reduction with respect to a U.1/-action, one obtains algebras of
polynomials on, e.g., CPn or the hyperbolic disc Dn. This is the classical limit of some
well-known non-formal star products, which can also be obtained by symmetry reduction
of the Wick star product on C1Cn; see, e.g., [2,4,5,7,9,11,26]. These examples are espe-
cially relevant as the starting point for studying non-formal deformations of �-algebras.
But these examples also demonstrate that it is in general not sufficient to simply consider
�-algebras with the canonical algebraic order given by sums of Hermitian squares. In these
cases, finding a suitable algebraic characterization of the order on the reduced algebras is
well known to be a non-trivial problem already in the commutative case, but one that
has been solved in great generality with the Positivstellensatz of Krivine and Stengle or
similar results [13, 16, 27, 34]. This raises the question whether and how similar algebraic
characterizations can also be obtained in the non-commutative case, where they would be
especially valuable because the idea of a pointwise order on an easy-to-describe reduced
manifold is no longer applicable. For the star product on CPn, this problem will be solved
in [25].
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2. Notation and preliminaries

The notation essentially follows [32]. See also [31] for an introduction to �-algebras and
quadratic modules on them (but be aware of some differences in notation).

The natural numbers are denoted by

N WD ¹1; 2; 3; : : :º and N0 WD ¹0º [N;

and the fields of real and complex numbers are R and C, respectively. A quasi-order on a
setX is a reflexive and transitive relation . onX . Given two setsX and Y , both equipped
with a quasi-order ., and a mapˆWX! Y , thenˆ is said to be increasing (or decreasing)
if ˆ.x/ . ˆ.x0/ (or ˆ.x/ & ˆ.x0/) holds for all x; x0 2 X with x . x0. If ˆ is injective
and increasing, and if additionally x . x0 holds for all x; x0 2 X for which

ˆ.x/ . ˆ.x0/;

then ˆ is called an order embedding.

2.1. Ordered �-algebras

A �-algebra A is a unital associative C-algebra endowed with an antilinear involution
� �WA! A such that .ab/� D b�a� holds for all a; b 2 A. Its unit will be denoted by 1,
or, more explicitly, 1A. It is not required that 1 ¤ 0, which means that ¹0º is a �-algebra.
An element a 2 A is called Hermitian if a D a�, and

AH WD ¹a 2 A j a D a�º

clearly is a real linear subspace of A. A quadratic module on a �-algebra A is a subset Q

of AH that fulfils
aC b 2 Q; d�a d 2 Q; and 1 2 Q

for all a; b 2 Q and all d 2 A. Similarly, a quasi-ordered �-algebra is a �-algebra A

endowed with a reflexive and transitive relation . on AH that additionally fulfils the con-
ditions

aC c . b C c; d�a d . d�b d; and 0 . 1

for all a; b; c 2 AH with a . b and all d 2 A. We simply refer to the relation . as the
order on A. An element a 2 AH is called positive if 0 . a, and the set of all positive
Hermitian elements of A will be denoted by

ACH WD
®
a 2 AH

ˇ̌
0 . a

¯
:

It is easy to check that ACH is a quadratic module on A. Conversely, any quadratic module
Q on any �-algebra A allows one to define a relation . on AH for a; b 2 AH as a . b if
and only if b � a 2 Q, and then A with . is a quasi-ordered �-algebra for which

ACH D Q:
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An ordered �-algebra is a quasi-ordered �-algebra whose order . is also antisymmetric,
hence a partial order. Equivalently, a quasi-ordered �-algebra A is an ordered �-algebra if
and only if

.�ACH / \ACH D ¹0º:

In the case of ordered �-algebras, the order relation is usually written as �.
Ordered �-algebras, or quadratic modules on �-algebras, occur, e.g., in the literature

on representations of �-algebras, sometimes as “�-algebras equipped with an admissi-
ble cone” as in [22]. They can be seen as abstractions of the �-algebras of (possibly
unbounded) adjointable endomorphisms on a pre-Hilbert space, similar to the way C �-
algebras are abstractions of bounded operators on a Hilbert space. In [8], it is shown
that the order gives rise to a C �-seminorm on bounded elements, and in sufficiently
well-behaved cases, one can generalize constructions or representation theorems from
C �-algebras to ordered �-algebras; see, e.g., [32, 33]. Quadratic modules are also stud-
ied in real algebraic geometry, especially in the commutative case where they describe
properties of the cone of sums of squares of real polynomials. However, some ideas of
real algebraic geometry can also be adapted to the non-commutative case; see, e.g., [30]
for an overview.

A linear map ˆWA! B between two �-algebras A and B is called Hermitian if

ˆ.a�/ D ˆ.a/� for all a 2 A;

or equivalently ifˆ.a/2BH for all a 2AH. A unital �-homomorphism is such a Hermitian
linear map ˆWA! B that additionally fulfils

ˆ.1A/ D 1B and ˆ.aa0/ D ˆ.a/ˆ.a0/ for all a; a0 2 A:

If both A and B are quasi-ordered �-algebras, then a Hermitian linear map ˆWA! B

is said to be positive if its restriction to an R-linear map from AH to BH is increasing, or
equivalently if ˆ.a/ 2 BCH for all a 2 ACH . Similarly, ˆ is said to be an order embedding
if its restriction to Hermitian elements is an order embedding. Especially, if B D C (with
the usual order on CH D R), then we write A� for the dual space of A whose elements
are linear functionals !WA! C, and use the bilinear dual pairing h � ; � iWA� �A! C,
.!; a/ 7! h!; ai to denote the evaluation of a linear functional ! 2 A� on an algebra
element a 2 A. Similarly, we write A�H for the real linear subspace of Hermitian linear
functionals on A and A

�;C
H for the convex cone of positive Hermitian linear functionals

therein. Note that clearly �! C �� 2 A
�;C
H for all !; � 2 A

�;C
H and all �;� 2 Œ0;1Œ, and

that the Cauchy–Schwarz inequality for the positive Hermitian sesquilinear form

A �A 3 .a; b/ 7! h!; a�bi 2 C for ! 2 A
�;C
H

shows that
jh!; a�bij2 � h!; a�aih!; b�bi (2.1)
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for all a; b 2 A. A state on A is a positive Hermitian linear functional that fulfils the
normalization h!; 1i D 1, and the set of states on A will be denoted by �.A/. Setting
a WD 1 in (2.1) shows that h!;1i D 0 implies ! D 0, so

.�A
�;C
H / \A

�;C
H D ¹0º;

and every non-zero positive Hermitian linear functional can be rescaled to a state. This
allows one to reformulate most statements for positive Hermitian linear functionals to
equivalent statements for states.

If A is a quasi-ordered �-algebra, then any unital �-subalgebra S of A, i.e., a linear
subspace S � A with 1 2 S which is stable under � � and closed under multiplication, is
again a �-algebra and becomes a quasi-ordered �-algebra with the restriction of the order
of A. We will always endow unital �-subalgebras with this restricted order. Similarly, if
	 is a �-ideal of A, i.e., a linear subspace 	 � A which is stable under � � and which
fulfils ab 2 	 for all a 2 A, b 2 	, then the quotient vector space A=	 becomes a �-
algebra in a unique way by demanding that the canonical projection Œ � �WA! A=	 be a
unital �-homomorphism. This quotient �-algebra even becomes a quasi-ordered �-algebra
with the order whose quadratic module of positive elements is ¹Œa� j a 2 ACH º; this order
will be called the quotient order. This way, Œ � �WA! A=	 becomes a positive unital �-
homomorphism, and it is easy to check that the usual universal property of quotients is
fulfilled: whenever ˆWA! B is a positive unital �-homomorphism (or, more generally,
positive Hermitian linear map) to any quasi-ordered �-algebra B such that

	 � kerˆ WD ˆ�1.¹0º/;

then there exists a unique positive unital �-homomorphism (or positive Hermitian linear
map) �WA=	 ! B that fulfils

ˆ D � ı Œ � �:

2.2. Constructing quadratic modules

There are two canonical classes of examples of ordered �-algebras, namely, ordered �-
algebras of functions, which are unital �-subalgebras of the ordered �-algebra CX of all
complex-valued functions on a set X with the pointwise operations and pointwise order,
and O�-algebras, which are unital �-subalgebras of the ordered �-algebra L�.D/ of all
adjointable endomorphisms aWD!D on a pre-Hilbert space D with inner product h � j � i
(antilinear in the first, linear in the second argument) with the standard operator order.
Here, adjointable is to be understood in the algebraic sense, i.e., aWD !D is adjointable
if there exists a (necessarily unique and linear) a�WD ! D such that

h� j a. /i D ha�.�/ j i

holds for all �;  2 D . The operator order for a; b 2 L�.D/H is determined by a � b if
and only if

h j a. /i � h j b. /i for all  2 D :
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There are essentially two possibilities to endow a �-algebra with a suitable order: either
by demanding that certain Hermitian elements should be positive or by demanding that
certain Hermitian linear functionals should be positive. More precisely, given a �-algebra
A and any subset S of AH, then

hhSiiqm WD

² MX
mD1

a�msmam

ˇ̌̌̌
M 2 N0I a1; : : : ; aM 2 AI s1; : : : ; sM 2 S [ ¹1º

³
(2.2)

is the quadratic module generated by S , which clearly is the smallest (with respect to �)
quadratic module on A that contains S . As a special case, let

ACCH WD hh;iiqm (2.3)

be the quadratic module generated by the empty set, hence the smallest quadratic module
on A. Its elements are, by construction, the sums of Hermitian squares a�a with a 2 A,
and will be referred to as algebraically positive elements. The resulting algebraic order
on A gives a canonical, non-trivial way to turn any �-algebra into a quasi-ordered �-
algebra. However, in many examples, this is not the “correct” one (the meaning of which,
of course, depends on the context). A Hermitian linear functional on a �-algebra A which
is positive with respect to this algebraic order will be called algebraically positive, and
an algebraic state therefore is a normalized algebraically positive Hermitian linear func-
tional. For example, the usual order on the Hermitian elements of a C �-algebra can be
described as the one whose positive elements are those with spectrum contained in Œ0;1Œ,
or equivalently as the one whose positive elements are precisely the algebraically positive
ones.

In the commutative case, quadratic modules that are closed under multiplication are
especially interesting (and referred to as “preordering”). Thus for a commutative �-algebra
A and any subset S of AH, the preordering generated by S is

hhSiipo WD

��² MY
mD1

sm

ˇ̌̌̌
M 2 NI s1; : : : ; sM 2 S

³��
qm
; (2.4)

which is the smallest (with respect to �) quadratic module on A that is closed under
multiplication and contains S .

Moreover, quasi-ordered �-algebras can also be constructed by demanding that certain
algebraic states be positive: let A be a �-algebra, and let � F � WA �A� ! A� be the left
action of the multiplicative monoid of A on A� by conjugation, i.e.,

ha F !; bi WD h!; a�b ai

for all a;b 2A and all ! 2A�. A set of algebraically positive Hermitian linear functionals
on a �-algebra A that is stable under this action gives rise to an order on AH.
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Proposition 2.1. Let A be a �-algebra and S a set of algebraic states on A such that
a F ! 2 S holds for all ! 2 S and a 2 A with h!; a�ai D 1. Then

Q WD
®
a 2 AH

ˇ̌
h!; ai � 0 for all ! 2 S

¯
(2.5)

is a quadratic module on A, so A can be turned into a quasi-ordered �-algebra with
ACH D Q. Similarly,

	 WD
®
a 2 A

ˇ̌
h!; ai D 0 for all ! 2 S

¯
is a �-ideal of A, and the quotient �-algebra A=	 with the quotient order is an ordered
�-algebra. Moreover, for every ! 2 S , there exists a unique state {! on A=	 fulfilling
{! ı Œ � � D ! with Œ � �WA! A=	 the canonical projection onto the quotient, and

.A=	/CH D
®
Œa� 2 .A=	/H

ˇ̌
h {!; Œa�i � 0 for all ! 2 S

¯
: (2.6)

Proof. Note that for ! 2 S and a 2 A, one either has h!; a�ai > 0, hence

h!; a�ai�1.a F !/ D .h!; a�ai�1=2a/ F ! 2 S; or h!; a�ai D 0;

in which case
ha F !;1i D 0;

and therefore, a F ! D 0 as a consequence of the Cauchy–Schwarz inequality. It is now
straightforward to check that Q is a quadratic module. It is also clear that 	 is a linear
subspace of A and stable under � �, and 	 is a right ideal, hence a �-ideal, because for all
a 2 	, b 2 A, and ! 2 S , one has

h!; abi D
1

4

3X
kD0

ikh.b C ik1/ F !; ai D 0:

The quotient order on A=	 is even a partial order: given Œa� 2 .A=	/H with Œ0� �
Œa� � Œ0�, then there exist representatives Oa1; Oa2 2 Œa� \AH such that 0 . Oa1 and Oa2 . 0,
so 0 � h!; Oa1i D h!; Oa2i � 0 for all ! 2 S because Oa1 � Oa2 2 	, which shows that
Œa� D 	 D Œ0�. Moreover, essentially by definition of 	 and the quotient order, every
! 2 S descends to a unique state {! 2 �.A=	/ fulfilling {! ı Œ � � D !.

The inclusion “�” in (2.6) follows from the definitions of the quadratic module Q and
the quotient order. Conversely, let Œa� 2 .A=	/H be given such that h {!; Œa�i � 0 for all
! 2 S , and choose any Hermitian representative Oa 2 Œa� \AH (for example, take the real
part Oa WD . Qa� C Qa/=2 of an arbitrary representative Qa 2 Œa�). Then, h!; Oai D h{!; Œa�i � 0
for all ! 2 S shows that Oa 2 Q D ACH , so Œa� 2 .A=	/CH .

The order on A that was constructed in Proposition 2.1, (2.5) will be called the one
induced by S . If A is a quasi-ordered �-algebra, then we especially say that its order is
induced by its states if the given order on A is the one induced by �.A/, or equivalently,
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if for all a 2 AH nACH there exists ! 2 �.A/ such that h!; ai < 0. It is a standard con-
sequence of the Hahn–Banach theorem; that is, this is the case if and only if ACH is closed
in some locally convex topology on AH, e.g., the strongest one. Identity (2.6) just means
that the order on the quotient A=	 in Proposition 2.1 is induced by its states.

Ordered �-algebras A whose order is induced by their states have some desirable
properties. For example, if a 2 A fulfils h!; ai D 0 for all ! 2 �.A/, then also

h!; aC a�i D 0 and h!; i.a � a�/i D 0

for all ! 2 �.A/, which implies that 0� aC a� � 0 and 0� i.a� a�/� 0; hence, aD 0.
Similarly, one proves the following.

Proposition 2.2. LetˆWA!B be a unital �-homomorphism between two quasi-ordered
�-algebras A and B, and assume that the order on B is induced by its states. Then, ˆ is
positive if and only if � ıˆ 2 �.A/ holds for all � 2 �.B/.

Proof. If ˆ is positive and � a state on B, then � ı ˆ is again positive, hence a state
on A. Conversely, if � ı ˆ 2 �.A/ holds for all � 2 �.B/, then ˆ is positive because
h�;ˆ.a/i D h� ıˆ; ai � 0 shows that ˆ.a/ 2 BCH for every a 2 ACH .

For example, the pointwise order on an ordered �-algebra A � CX of functions on
a set X is the one induced by the set ¹ıx j x 2 Xº of evaluation functionals ıx WA! C,
a 7! hıx ; ai WD a.x/. Similarly, the operator order on an O�-algebra A � L�.D/ on a
pre-Hilbert space D is the one induced by the set®

� 
ˇ̌
 2 D with k k D 1

¯
of vector functionals � WA! C, a 7! h� ; ai WD h j a. /i.

Relating quadratic modules that are constructed “analytically” as in (2.5) to suitable
“algebraically” constructed quadratic modules as in (2.2) or (2.4) is a typical problem of
(possibly non-commutative) real algebraic geometry. The most famous results are Artin’s
solution of Hilbert’s 17th problem and the Positivstellensatz of Krivine and Stengle [13,
34] that give an algebraic description of the pointwise order on polynomial algebras.

2.3. Eigenstates

Especially for those ordered �-algebras that occur as algebras of observables in physics,
the notion of states (which describes the actual state of a physical system) is of major
importance, generalizing the concept of vector states on O�-algebras. There is also an
abstraction of the idea of vector states constructed out of eigenvectors of an operator.

Definition 2.3. Let A be a quasi-ordered �-algebra and a 2 A. An eigenstate of a is a
state ! on A that fulfils

h!; a�ai D jh!; aij2;

and the complex number h!; ai then is called the eigenvalue of ! on a. The set of all
eigenstates of a with eigenvalue � 2 C will be denoted by �a;�.A/.
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It can also happen that one state is an eigenstate of several elements of A, in which
case we call it a common eigenstate of these elements. The notion of eigenstates occurs
once in a while in the literature on C �-algebras [19, 23, 24], but their basic properties are
fulfilled in greater generality.

Proposition 2.4. Let A be a quasi-ordered �-algebra, a 2 A, and ! 2 �.A/. Then, the
following are equivalent:

(i) There exists a complex number � such that

h!; .a � �1/�.a � �1/i D 0:

(ii) The identities

h!; a�bi D h!; aih!; bi and h!; b�ai D h!; bih!; ai

hold for all b 2 A.

(iii) The identity
h!; a�ai D jh!; aij2

holds; i.e., ! is an eigenstate of a.

Moreover, if the first point (i) holds for some � 2 C, then � D h!; ai is the eigenvalue of
! on a.

Proof. The proof is essentially the same as for eigenstates on C �-algebras and is repeated
here for convenience of the reader. First, assume that some�2C fulfils h!;.a��1/�.a�
�1/i D 0. Then, it follows from the Cauchy–Schwarz inequality that

0 � jh!; a � �1ij2 � h!; .a � �1/�.a � �1/i D 0;

so
h!; ai D h!;�1i D �:

Moreover, for any b 2 A, the Cauchy–Schwarz inequality shows thatˇ̌
h!;a�bi � h!; aih!;bi

ˇ̌2
D
ˇ̌
h!;.a��1/�bi

ˇ̌2
�
˝
!;.a��1/�.a��1/

˛
h!;b�bi D 0;

so
h!; a�bi D h!; aih!; bi:

By complex conjugation, it follows that

h!; b�ai D h!; bih!; ai:

We conclude that (i) implies (ii). As (ii) trivially implies (iii) by choosing b WD a and as
(iii) implies (i) with � WD h!; ai because then

h!; .a � �1/�.a � �1/i D h!; a�ai � jh!; aij2 D 0;

these three statements are equivalent.
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Proposition 2.4 above especially shows that the concept of eigenstates on a quasi-
ordered �-algebra A can be seen as a weakening of positive unital �-homomorphisms from
A to C. More precisely, a state ! on A is a positive unital �-homomorphism if and only if
it is a common eigenstate of all elements of A. The next example shows that eigenstates
can also be interpreted as generalizations of vector states associated to eigenvectors.

Example 2.5. Consider the ordered �-algebra of operators L�.D/ on a pre-Hilbert space
D . For every  2 D , the vector functional

� WL
�.D/! C; a 7! h� ; ai WD h j a. /i

is Hermitian and positive, and it is a state if and only if k k D 1. Now, let a 2 L�.D/,
 2 D with k k D 1, and � 2 C be given. Then, the statement ka. / � � k D 0 is
equivalent to a. / D � and also equivalent to

h� ; .a � �1/
�.a � �1/i D 0:

This shows that  is an eigenvector of a with eigenvalue � if and only if � is an eigen-
state of a with eigenvalue �.

Moreover, for a normal element a of a C �-algebra A, one finds that eigenstates exist
precisely to eigenvalues which are elements of the spectrum of a (see [24]) essentially
because all C-valued unital �-homomorphisms of the commutative C �-subalgebra of A

that is generated by a can be extended to states on A by a Hahn–Banach type argument.
However, we will see in Proposition 5.9 that this does not generalize to the unbounded
case.

3. Reduction of representable Poisson �-algebras

3.1. Representable Poisson �-algebras

In applications to classical or quantum physics, ordered �-algebras appear as the algebras
of observables, with their order induced by their states. Such observable algebras are usu-
ally endowed with a Poisson bracket: in quantum physics, this Poisson bracket is derived
from the commutator, but in classical physics, it is an additional structure on the algebra.
This leads to the following definition.

Definition 3.1. A representable Poisson �-algebra is an ordered �-algebra A whose order
is induced by its states and that is equipped with a bilinear and antisymmetric Poisson
bracket ¹ � ; � ºWA �A! A fulfilling the usual Leibniz and Jacobi identity and which is
compatible with the �-involution in the sense that ¹a; bº� D ¹a�; b�º holds for all a; b 2
A. Given two representable Poisson �-algebras A and B and a unital �-homomorphism
ˆWA! B, then ˆ is said to be compatible with Poisson brackets if

ˆ.¹a1; a2º/ D ¹ˆ.a1/; ˆ.a2/º

holds for all a1; a2 2 A.
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Recall that in the general non-commutative case, where the order of the factors is
important, the Leibniz identity for a; b; c 2 A is

¹ab; cº D ¹a; cº b C a ¹b; cº :

The algebras defined above are “representable” in the following sense: since the order is
induced by the states, the underlying ordered �-algebra admits a faithful representation
as an O�-algebra on a pre-Hilbert space, which can be constructed as an orthogonal sum
of GNS-representations [31, Chapter 4.4]. We are especially interested in two types of
representable Poisson �-algebras.

Example 3.2. Let A be an ordered �-algebra whose order is induced by its states, e.g., an
O�-algebra on some pre-Hilbert space D , and let „ 2 R n ¹0º. Then, A with the rescaled
commutator as Poisson bracket,

¹a; bº WD
ab � ba

i„
(3.1)

for all a;b2A, is a representable Poisson �-algebra. All unital �-homomorphisms between
such representable Poisson �-algebras (with the same value of „) are automatically com-
patible with Poisson brackets.

If the underlying �-algebra of a representable Poisson �-algebra A is sufficiently non-
commutative, then there exist some general conditions under which the Poisson bracket
of A necessarily is of the form (3.1); see [10]. For this reason, more general notions of
“non-commutative Poisson algebras” like in [36] have been developed, an approach that
we, however, will not pursue any further.

Example 3.3. Let A be a commutative ordered �-algebra whose order is induced by its
states, e.g., A D C1.M/, the smooth C-valued functions on a smooth manifold M with
the pointwise order. Then, any bilinear and antisymmetric bracket on the real subalgebra
AH of A which fulfils Leibniz and Jacobi identity gives rise to a Poisson bracket ¹ � ; � º
on whole A (by C-linear extension) with which A becomes a representable Poisson �-
algebra. In the case A D C1.M/, such a bracket can always be derived from a (real)
Poisson tensor with which M becomes a Poisson manifold.

One might wonder why Definition 3.1 does not require any form of compatibility
between the Poisson bracket and the order. The reason for this is that in the case of smooth
functions on a Poisson manifold as in Example 3.3 there does not seem to be any such
compatibility.

If A is a representable Poisson �-algebra and B a unital �-subalgebra of A which
is closed under the Poisson bracket, then it is easy to check that B with the operations
and the order inherited from A is again a representable Poisson �-algebra because all
positive Hermitian linear functionals on A can be restricted to B. Quotients, however, are
somewhat less well behaved as we will shortly see.
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Definition 3.4. Let A be a representable Poisson �-algebra. A subset 	 of A is a repre-
sentable Poisson �-ideal if 	 is a �-ideal of A which is also a Poisson ideal, i.e., ¹a;bº 2 	

for all a 2 A and all b 2 	, and if additionally 	 arises as the common kernel of a set
of states on A, i.e., for all a 2 A n 	 there exists ! 2 �.A/ for which h!; ai ¤ 0 and
	 � ker! hold.

For example, ifˆWA!B is a positive unital �-homomorphism between representable
Poisson �-algebras A and B and compatible with Poisson brackets, then

kerˆ D
®
a 2 A

ˇ̌
ˆ.a/ D 0

¯
certainly is a �-ideal and a Poisson ideal of A, and it is the common kernel of a set of
states on A, hence a representable Poisson �-ideal. Given a 2 A n kerˆ, then ˆ.a/ ¤ 0
so that there exists � 2 �.B/ with h�;ˆ.a/i ¤ 0 because the order on B is induced by its
states. Consequently, � ıˆ 2 �.A/ fulfils

h� ıˆ; ai ¤ 0:

Proposition 3.5. Let A be a representable Poisson �-algebra, 	 a representable Poisson
�-ideal of A, and Œ � �WA ! A=	 the canonical projection onto the quotient �-algebra
A=	. Then, the Poisson bracket descends to A=	; i.e., there exists a (necessarily unique)
Poisson bracket ¹ � ; � º on A=	 fulfilling

¹Œa�; Œb�º D Œ¹a; bº� for all a; b 2 A:

The quotient �-algebra A=	, endowed with this Poisson bracket and with the order whose
quadratic module of positive Hermitian elements is

.A=	/CH WD
®
Œa�
ˇ̌
a 2 AH such that h!; ai � 0 for all ! 2 �.A/

for which 	 � ker!
¯
; (3.2)

becomes a representable Poisson �-algebra. This way, the projection Œ � �WA ! A=	

becomes a surjective positive unital �-homomorphism compatible with Poisson brackets.
Moreover, whenever a state ! on A fulfils kerŒ � � � ker!, then the unique algebraic state
{! on A=	 that fulfils ! D {! ı Œ � � is positive, hence a state on A=	.

Proof. The quotient �-algebra A=	 with the order defined by (3.2) is an ordered �-algebra
whose order is induced by its states because it is obtained by the construction of Proposi-
tion 2.1 with

S WD
®
! 2 �.A/

ˇ̌
	 � ker!

¯
I

the condition a F ! 2 S for all ! 2 S and all a 2A with h!;a�ai D 1 holds because 	 is
a �-ideal. The Poisson bracket on A=	 is well defined because 	 is a Poisson ideal, and it
is easy to check that this way A=	 becomes a representable Poisson �-algebra and that the
canonical projection Œ � �WA!A=	 becomes a surjective positive unital �-homomorphism
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compatible with Poisson brackets. Given any state ! on A that fulfils kerŒ � � � ker!, then
	 � ker!, and it is clear that there exists a unique algebraic state {! on A=	 that fulfils

! D {! ı Œ � �:

It is an immediate consequence of (3.2) that {! is also positive, hence a state.

Note that the order from (3.2) in general does not coincide with the quotient order
of �-algebras defined in Section 2.1; it is the smallest order induced by states that con-
tains the quotient order. While the construction of the quotient representable Poisson
�-algebra from the above Proposition 3.5 has all the properties that one would expect from
an abstract point of view, there is a problem within the definition of representable Pois-
son �-ideals: without any compatibility between Poisson bracket and order, it is unclear
how such a representable Poisson �-ideal 	 can be constructed explicitly in the general
case because it simultaneously has to be a Poisson ideal and the common kernel of a
set of states. The solution to this problem depends on the example at hand: in the non-
commutative case of Example 3.2, every �-ideal automatically is a Poisson ideal, while in
the commutative case of Example 3.3, one can often apply geometric arguments, which
will be discussed further in Section 4.

3.2. Symmetry reduction

From the compatibility between Poisson bracket and �-involution, it follows that the real
linear subspace of Hermitian elements of a representable Poisson �-algebra with the re-
striction of the Poisson bracket is especially a Lie algebra. This leads to a notion of well-
behaved actions of real Lie algebras on representable Poisson �-algebras.

Definition 3.6. Let A be a representable Poisson �-algebra and g a real Lie algebra. Then,
a momentum map from g to A is a morphism JWg!AH of real Lie algebras (with respect
to the Poisson bracket on AH). Given such a momentum map, then we define the induced
right action � G � WA � g! A,

.a; �/ 7! a G � WD ¹a;J.�/º:

One can easily check that � G � is indeed a right action of the Lie algebra g on A, i.e.,
that

..a G �/ G �/ � ..a G �/ G �/ D a G Œ�; ��

holds for all a 2 A and all �; � 2 g, where Œ � ; � � denotes the Lie bracket of g. This right
action is also compatible with the Poisson bracket in the sense that

¹a; bº G � D ¹a G �; bº C ¹a; b G �º (3.3)

holds for all a; b 2 A and all � 2 g.
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Definition 3.7. Let V be a vector space endowed with a right action � G � W V � g! V

of a Lie algebra g, then

V g
WD
®
v 2 V

ˇ̌
8�2g W v G � D 0

¯
denotes its linear subspace of g-invariant elements.

While in similar settings there do exist reduction procedures for, e.g., free and proper
actions of arbitrary Lie groups, like Marsden–Weinstein reduction or the reduction of
formal star products via BRST cohomology from [6], we will only consider the simpler
case of abelian Lie groups, in which case the Lie bracket of the associated Lie algebra is
zero (yet we will consider arbitrary momenta).

Proposition 3.8. Let A be a representable Poisson �-algebra and JW g! AH a momen-
tum map for a real Lie algebra g. Then, Ag with the restriction of the relevant operations
of A and the restricted order is again a representable Poisson �-algebra. Moreover, if g

is commutative, then J.�/ 2 Ag for all � 2 g.

Proof. As � 2 g acts on A by an inner derivation ¹ � ; J.�/º with Hermitian J.�/, their
common kernel Ag is a unital �-subalgebra of A. From (3.3), it follows that Ag is also
closed under the Poisson bracket. Since the restricted order on Ag is still induced by its
states, Ag is a representable Poisson �-algebra. If g is commutative, then

J.�/ G � D ¹J.�/;J.�/º D J.Œ�; ��/ D 0

holds for all �; � 2 g, so J.�/ 2 Ag.

Restriction to Ag is the first step in the reduction procedure; the second step is to
divide out a suitable representable Poisson �-ideal 	�, interpreted as the “vanishing ideal
of the levelset Z� of the momentum map J at �”. Of course, the concept of a levelset
or vanishing ideal is not applicable in the general case considered here, especially not for
O�-algebras like in Example 3.2. For the general definition of the reduction, we therefore
fall back to requiring a universal property to be fulfilled, which essentially reduces to
a characterization of 	� as the smallest representable Poisson �-ideal that contains the
image of J � �. An alternative description of the reduction as a quotient by an actual
“non-commutative vanishing ideal” will be given in Theorem 3.19.

Definition 3.9. Let A be a representable Poisson �-algebra and JWg! AH a momentum
map for a commutative real Lie algebra g. Given that � 2 g�, then the J-reduction of A at
� is a tuple .A�-red; Œ � ��/ of a representable Poisson �-algebra A�-red and a positive unital
�-homomorphism Œ � ��WA

g ! A�-red compatible with Poisson brackets and which fulfils
ŒJ.�/�� D h�; �i1 for all � 2 g such that the following universal property is fulfilled.
Whenever ˆWAg! B is another positive unital �-homomorphism compatible with Pois-
son brackets into any representable Poisson �-algebra B that fulfilsˆ

�
J.�/

�
D h�;�i1 for

all � 2 g, then there exists a unique positive unital �-homomorphism ˆ�-redWA�-red ! B

compatible with Poisson brackets for which ˆ D ˆ�-red ı Œ � �� holds.
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Note that the J-reduction at � (once we have shown that it exists) is determined up to
unique isomorphism. The existence of the reduction is indeed guaranteed, which will be
shown in Theorem 3.11.

Definition 3.10. Let A be a representable Poisson �-algebra, JW g! AH a momentum
map for a commutative real Lie algebra g, and � 2 g�. Then, denote by hhJ � �ii�id the
�-ideal of Ag that is generated by all J.�/ � h�; �i1 with � 2 g.

Theorem 3.11. Let A be a representable Poisson �-algebra, JW g! AH a momentum
map for a commutative real Lie algebra g, and � 2 g�. Then, the intersection

	� WD
\®

	
ˇ̌
	 is a representable Poisson �-ideal of Ag

fulfilling hhJ � �ii�id � 	
¯

(3.4)

is a well-defined representable Poisson �-ideal of Ag. Moreover, given a representable
Poisson �-algebra A�-red and a positive unital �-homomorphism Œ � ��WA

g!A�-red com-
patible with Poisson brackets, then .A�-red; Œ � ��/ is the J-reduction of A at � if and only
if the following two conditions are fulfilled:

(i) Œ � �� is surjective and its kernel is ker Œ � �� D 	�.

(ii) Whenever ! 2 �.Ag/ fulfils ker Œ � �� � ker!, then the unique algebraic state {!
on A�-red that fulfils ! D {! ı Œ � �� is positive, hence a state on A�-red.

Finally, the J-reduction of A at � always exists and can, e.g., be realized as the quotient
representable Poisson �-algebra A�-red WDAg=	� as in Proposition 3.5 together with the
canonical projection onto the quotient Œ � ��WAg ! Ag=	�.

Proof. Ag itself is a representable Poisson �-ideal of Ag fulfilling hhJ � �ii�id � Ag, so
	� as in (3.4) is a well-defined subset of Ag, which clearly is a �-ideal and a Poisson
ideal, and also is the common kernel of a set of states, hence a representable Poisson �-
ideal. For all a 2 Ag n 	�, there is some representable Poisson �-ideal 	 of Ag fulfilling
hhJ � �ii�id � 	 and a … 	, and therefore, there is ! 2 �.Ag/ fulfilling h!; ai ¤ 0 and
	 � ker!, and especially also 	� � ker!.

Now, assume that A�-red and Œ � �� fulfil the two properties above, and let ˆWAg ! B

be a positive unital �-homomorphism compatible with Poisson brackets into another rep-
resentable Poisson �-algebra B that fulfils ˆ.J.�// D h�; �i1B for all � 2 g. Then,
kerˆ is a representable Poisson �-ideal of Ag as discussed below Definition 3.4, and
J.�/ � h�; �i1Ag 2 kerˆ holds for all � 2 g; hence, hhJ � �ii�id � kerˆ. It follows
that 	� � kerˆ, and as a consequence of property (i), there exists a unique unital �-
homomorphism ˆ�-redWA�-red ! B compatible with Poisson brackets such that ˆ D
ˆ�-red ı Œ � ��. Moreover, every state � on B can be pulled back to a state � ı ˆ D
� ıˆ�-red ı Œ � �� on Ag, and property (ii) then implies that � ıˆ�-red is a state on A�-red.
By Proposition 2.2, this means that ˆ�-red is positive, and we conclude that .A�-red; Œ � ��/

fulfils the universal property of the J-reduction at �.
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Finally, the quotient representable Poisson �-algebra A�-red WD Ag=	� together with
the canonical projection Œ � ��WAg ! Ag=	� clearly fulfils the first property, and it fulfils
the second one by Proposition 3.5. So, .Ag=	�; Œ � ��/ is the J-reduction of A at �. This
also means that for every other realization .A��-red; Œ � �

�
�/ of the J-reduction at � there

exist two mutually inverse positive unital �-homomorphisms �WA��-red ! Ag=	� and
 WAg=	� ! A��-red fulfilling

� ı Œ � ��� D Œ � �� and  ı Œ � �� D Œ � �
�
� ;

which are compatible with Poisson brackets. Using these, it is easy to check that A��-red
and Œ � ��� also fulfil properties (i) and (ii).

In order to determine the reduction of a representable Poisson �-algebra, it is there-
fore is crucial to determine the representable Poisson �-ideal 	� constructed above. This,
however, might be a rather hard task in general without any compatibility between Poisson
bracket and order available.

Finally, we note that in the non-commutative Example 3.2 the reduction can also be
characterized via its representations.

Example 3.12. Let A be a representable Poisson �-algebra like in Example 3.2; i.e.,
assume that there exists „ 2 R n ¹0º such that the Poisson bracket on A fulfils

¹a; bº D .ab � ba/=.i„/ for all a; b 2 A:

Moreover, let JW g! AH be a momentum map for a commutative real Lie algebra g and
� 2 g�, and let .A�-red; Œ � ��/ be the J-reduction of A at �. Then, the Poisson bracket on
A�-red is again derived from the commutator; more precisely,

¹Œa��; Œb��º D Œ¹a; bº�� D
Œab � ba��

i„
D
Œa��Œb�� � Œb��Œa��

i„
for all a; b 2 Ag:

Consider the quotient �-algebra Ag=hhJ � �ii�id with the quotient order and Œ � �WAg !

Ag=hhJ � �ii�id the canonical projection; then, hhJ � �ii�id � kerŒ � �� so that there exists
a unique positive unital �-homomorphism �WAg=hhJ � �ii�id! A�-red fulfilling � ı Œ � � D
Œ � ��. Now, let D be any pre-Hilbert space andˆWAg=hhJ ��ii�id!L�.D/ any positive
unital �-homomorphism, i.e., any representation of Ag=hhJ ��ii�id on D . Then,ˆ ı Œ � � is
a positive unital �-homomorphism from Ag to L�.D/ which is compatible with Poisson
brackets if L�.D/ is also endowed with the commutator bracket (3.1), and ˆ.ŒJ.�/�/ D
h�; �i1 holds for all � 2 g because J.�/ � h�; �i1 2 hhJ � �ii�id. By definition of the
reduction, there exists a unique positive unital �-homomorphism .ˆ ı Œ � �/�-redWA�-red !

L�.D/ such that .ˆ ı Œ � �/�-red ı Œ � �� D ˆ ı Œ � �; hence,

.ˆ ı Œ � �/�-red ı � D ˆ:

In this sense, every representationˆ of Ag=hhJ ��ii�id factors through A�-red. This prop-
erty even characterizes A�-red completely because A�-red admits a faithful representation
as discussed under Definition 3.1.
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3.3. Non-commutative vanishing ideals

There is an important special case in which the representable Poisson �-ideal 	� of The-
orem 3.11 can be described explicitly as a “non-commutative vanishing ideal”. Before
discussing this, however, we need some definitions.

Definition 3.13. Let A be a representable Poisson �-algebra. Then, we say that Poisson-
commuting elements in A commute if ab D ba holds for all a; b 2A that fulfil ¹a; bº D 0.

It is immediately clear that Poisson-commuting elements commute in Example 3.2,
where the Poisson bracket is induced by the commutator, and in Example 3.3 of commu-
tative ordered �-algebras with an arbitrary Poisson bracket. However, there are also more
pathological examples which do not have this property: take, e.g., any non-commutative
ordered �-algebra whose order is induced by its states and endow it with the zero Poisson
bracket.

Definition 3.14. Let A be a representable Poisson �-algebra and JWg!AH a momentum
map for a commutative real Lie algebra g. Following the notation introduced in Defini-
tion 2.3, the sets of common eigenstates of all J.�/, � 2 g, with eigenvalues h�; �i will
be denoted by

�J;�.A/ WD
\
�2g

�J.�/;h�;�i.A/ and �J;�.A
g/ WD

\
�2g

�J.�/;h�;�i.A
g/:

If Poisson-commuting elements commute, then the �-ideal hhJ � �ii�id is especially
well behaved.

Proposition 3.15. Let A be a representable Poisson �-algebra such that Poisson-commut-
ing elements commute, JWg! AH a momentum map for a commutative real Lie algebra
g, and � 2 g�. Then, the �-ideal hhJ � �ii�id of Ag can explicitly be described as

hhJ � �ii�id D

² MX
mD1

am.J.�m/ � h�; �mi1
� ˇ̌̌̌
M 2 N0I a1; : : : ; aM 2 Ag

I

�1; : : : ; �M 2 g

³
(3.5)

and hhJ ��ii�id automatically is also a Poisson ideal of Ag. Moreover, any state ! on Ag

fulfils hhJ � �ii�id � ker! if and only if ! 2 �J;�.A
g/.

Proof. The inclusion “�” in (3.5) is clear. Conversely, the right-hand side of (3.5) cer-
tainly contains J.�/ � h�; �i1 for all � 2 g and clearly is a linear subspace of Ag and
even a left ideal. Now, let a 2Ag and � 2 g be given; then, ¹a;J.�/º D a G � D 0 implies
that aJ.�/D J.�/a because Poisson-commuting elements in A commute by assumption.
Therefore,

.a.J.�/ � h�; �i1//� D ..J.�/ � h�; �i1/a/� D a�.J.�/ � h�; �i1/;
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from which it follows that the right-hand side of (3.5) is also stable under � �, hence a �-
ideal, and consequently, “�” holds in (3.5). Similarly, for a;b2Ag and �2g, one finds that

¹b; a.J.�/ � h�; �i1/º D ¹b; aº.J.�/ � h�; �i1/„ ƒ‚ …
2hhJ��ii

�id

C a ¹b;J.�/º„ ƒ‚ …
D0

� a ¹b; h�; �i1º„ ƒ‚ …
D0

because ¹b;J.�/º D b G � D 0. It thus follows from (3.5) that hhJ � �ii�id is a Poisson
ideal of Ag.

Now, let a state ! on Ag be given. If hhJ � �ii�id � ker!, then especially .J.�/ �
h�; �i1/2 2 ker ! for all � 2 g, so ! 2 �J;�.A

g/ by Proposition 2.4. Conversely, if
! 2 �J;�.A

g/, then it follows from Proposition 2.4 that

h!; a.J.�/ � h�; �i1/i D h!; aJ.�/i � h!; aih�; �i D h!; ai.h!;J.�/i � h�; �i/ D 0

holds for all a 2 Ag and all � 2 g, and therefore, hhJ � �ii�id � ker! by (3.5).

However, hhJ � �ii�id is not necessarily the common kernel of a set of states, hence in
general not a representable Poisson �-ideal. In those cases where hhJ � �ii�id is a rep-
resentable Poisson �-ideal, it coincides with 	� as an immediate consequence of the
definition of 	� in Theorem 3.11.

As common eigenstates of the momentum map J with eigenvalues � are precisely the
states that vanish on the �-ideal generated by J � � by the above Proposition 3.15, one
might be tempted to interpret these as a generalization of the evaluation functionals on the
levelset Z� of J at � in the geometric approach to symmetry reduction. This idea leads
to the following definition.

Definition 3.16. Let A be a representable Poisson �-algebra in which Poisson-commuting
elements commute, JW g! AH a momentum map for a commutative real Lie algebra g,
and � 2 g�. We write

R� WD
®
a 2 A

g
H

ˇ̌
h!; ai � 0 for all ! 2 �J;�.A

g/
¯

(3.6)

and define the vanishing ideal of J at � as

V� WD
®
a 2 Ag

ˇ̌
h!; ai D 0 for all ! 2 �J;�.A

g/
¯
: (3.7)

We say that � is regular for J if V� is a Poisson ideal of Ag.

Note that
V� D .R� \ .�R�//C i.R� \ .�R�//:

In the special case of regular momenta, the ideal 	�, which is the key to the J-reduction
at �, coincides with this vanishing ideal V�.

Proposition 3.17. Let A be a representable Poisson �-algebra such that Poisson-commut-
ing elements commute, JWg!AH a momentum map for a commutative real Lie algebra g,
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and � 2 g�. Then, R� is a quadratic module of Ag and V� is a �-ideal of Ag. Moreover,
let 	� be the representable Poisson �-ideal defined in Theorem 3.11. Then, hhJ ��ii�id �

V� � 	� holds, and if � additionally is regular for J, then even V� D 	�.

Proof. Given that ! 2 �J;�.A
g/ and a 2 Ag with h!; a�ai D 1, then a F ! clearly is a

state on Ag. Moreover, a�.J.�/ � h�; �i1/2a 2 hhJ � �ii�id holds for all � 2 g, and as
hhJ � �ii�id � ker! by Proposition 3.15, this implies ha F !; .J.�/� h�; �i1/2i D 0 for
all � 2 g, i.e., a F ! 2 �J;�.A

g/. Proposition 2.1 now applies to Ag and S WD �J;�.A
g/

and shows that R� and V� are a quadratic module and a �-ideal of Ag, respectively. From
hhJ � �ii�id � ker! for all ! 2 �J;�.A

g/, it also follows that hhJ � �ii�id � V�.
Now given that a 2 Ag n 	�, then there exists a state ! on Ag with 	� � ker! such

that h!;ai ¤ 0 because 	� is a representable Poisson �-ideal of Ag. As hhJ ��ii�id � 	�
by definition of 	�, this implies that ! 2 �J;�.A

g/ by Proposition 3.15 again. But now,
it follows from h!; ai ¤ 0 that a … V�, and we conclude that V� � 	�.

Finally, V� by definition is the common kernel of a set of states on Ag, and if � is
regular for J, then V� also is a Poisson ideal, hence a representable Poisson �-ideal of
Ag. It then follows from hhJ � �ii�id � V� that 	� � V�; hence, V� D 	�.

The most obvious case of a momentum � that is regular for a momentum map J is the
one of Example 3.2 where the Poisson bracket is derived from the commutator because in
this case, every �-ideal is a Poisson ideal. In Section 4, we will discuss Poisson manifolds,
and we show that all momenta are regular for the momentum map in this case, too.

Corollary 3.18. Let A be a representable Poisson �-algebra in which Poisson-commuting
elements commute, JW g! AH a momentum map for a commutative real Lie algebra g,
and � 2 g� regular for J. Moreover, let ! be a state on Ag; then, the equivalences

	� � ker!” V� � ker!”hhJ � �ii�id � ker!” ! 2 �J;�.A
g/

hold.

Proof. Proposition 3.17 above shows that 	� � ker ! ” V� � ker ! H) hhJ �

�ii�id � ker! holds. The last equivalence holds by Proposition 3.15. If ! 2 �J;�.A
g/,

then V� � ker! by definition of V�.

The key to understanding the reduced algebra is to understand the common eigen-
states of the momentum map, which determine the quadratic module R� and the non-
commutative vanishing ideal V�. This way, we can simplify the characterization of the
reduced algebra from Theorem 3.11.

Theorem 3.19. Let A be a representable Poisson �-algebra in which Poisson-commuting
elements commute, JW g! AH a momentum map for a commutative real Lie algebra g,
and � 2 g� regular for J. Moreover, let A�-red be any representable Poisson �-algebra
and Œ � ��WAg ! A�-red any positive unital �-homomorphism compatible with Poisson
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brackets; then, .A�-red; Œ � ��/ is the J-reduction of A at � if and only if the following two
conditions are fulfilled:

(i) Œ � �� is surjective and kerŒ � �� D V�.

(ii) Whenever an element a 2 A
g
H fulfils Œa�� 2 .A�-red/

C
H , then a 2 R�.

Finally, if .A�-red; Œ � ��/ is the J-reduction of A at �, then

R� D
®
a 2 A

g
H

ˇ̌
Œa�� 2 .A�-red/

C
H

¯
:

Proof. The two conditions given here for .A�-red; Œ � ��/ being the J-reduction of A at �
are equivalent to those from Theorem 3.11.

By Proposition 3.17, 	� D V� holds so that the first condition here and in Theo-
rem 3.11 are equivalent. Now, assume that Œ � ��WAg!A�-red is surjective with kerŒ � �� D
V� D 	�. Given a state ! on Ag, then Corollary 3.18 shows that 	� � ker ! if and
only if ! 2 �J;�.A

g/. In this case, write {!WA�-red ! C for the unique algebraic state
on A�-red that fulfils {! ı Œ � �� D !. On the one hand, if every element a 2 A

g
H with

Œa�� 2 .A�-red/
C
H fulfils a 2 R�, then {! is positive on A�-red for every ! 2 �J;�.A

g/

because h {!; Œa��i D h!; ai � 0 for all a 2 R� and in particular for all a 2 A
g
H with

Œa�� 2 .A�-red/
C
H . On the other hand, if {! for every ! 2 �J;�.A

g/ is positive on A�-red,
then every a 2 A

g
H with Œa�� 2 .A�-red/

C
H fulfils a 2 R� because h!; ai D h{!; Œa��i � 0

for all ! 2 �J;�.A
g/.

Finally, if .A�-red; Œ � ��/ is the J-reduction of A at �, then

R� �
®
a 2 A

g
H

ˇ̌
Œa�� 2 .A�-red/

C
H

¯
by the second condition above. Conversely, as Œ � ��WAg ! A�-red is a positive unital �-
homomorphism, every {! 2 �.A�-red/ can be pulled back to a state ! WD {! ı Œ � �� on Ag,
and even ! 2 �J;�.A

g/ by Corollary 3.18. So, given that a 2 R�, then

h {!; Œa��i D h!; ai � 0 for all {! 2 �.A�-red/;

which shows that
Œa�� 2 .A�-red/

C
H :

If Poisson-commuting elements commute and if � 2 g� is regular for J so that V� D

	� by Proposition 3.17, then Theorems 3.11 and 3.19 especially show that the J-reduction
of a representable Poisson �-algebra A at � can be constructed as the quotient �-algebra
A�-red WD Ag=V� together with the canonical projection Œ � ��WAg ! A�-red onto the
quotient and endowed with the order whose quadratic module of positive Hermitian ele-
ments is

.A�-red/
C
H WD

®
Œa��

ˇ̌
a 2 R�

¯
and with the Poisson bracket on A�-red that is defined as

¹Œa��; Œb��º WD Œ¹a; bº�� for all a; b 2 Ag:
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As an application, we continue the discussion of representations as operators from
Example 3.12.

Example 3.20. Let A be a representable Poisson �-algebra in which Poisson-commuting
elements commute, JW g! AH a momentum map for a commutative real Lie algebra g,
and � 2 g�. Like in Example 3.12, consider again a representation ˆ of the quotient �-
algebra Ag=hhJ ��ii�id on a pre-Hilbert space D , i.e., a positive unital �-homomorphism
ˆWAg=hhJ � �ii�id ! L�.D/. Then, the pullback of any vector state on L�.D/ with ˆ
is a common eigenstate of J with eigenvalues � as a consequence of Proposition 3.15.
Therefore, disregarding Poisson brackets, ˆ factors through the quotient �-algebra Ag=

V�, which coincides with A�-red for regular �.

3.4. Reduction of states

We are finally in the position to discuss the reduction of states.

Definition 3.21. Let A be a representable Poisson �-algebra, JW g! AH a momentum
map for a commutative real Lie algebra g, and � 2 g�. Moreover, let .A�-red; Œ � ��/ be the
J-reduction of A at �. We say that a state ! on A is J-reducible at � if there exists a
(necessarily unique) state !�-red on A�-red fulfilling h!;ai D h!�-red; Œa��i for all a 2Ag.
In this case, !�-red will be called the J-reduction of ! at �.

Note that this definition is independent of the realization of the reduction; i.e., every
construction that fulfils the universal property from Definition 3.9 leads to the same notion
of reducibility of states because all realizations of the reduced algebra are isomorphic.

In Theorem 3.11 we have already seen how states on the reduced representable Poisson
�-algebra A�-red are related to those on Ag. Moreover, there are many cases in which, for
geometric reasons, all states on Ag can be obtained by restricting states on A to Ag.

Definition 3.22. Let A be a representable Poisson �-algebra and JWg!AH a momentum
map for a commutative real Lie algebra g. An averaging operator for the induced action
of g on A is a linear map � avWA! Ag which is a projection onto Ag, Hermitian, and
positive, i.e., aav D a for all a 2 Ag, aav 2 A

g
H for all a 2 AH, and aav 2 .A

g/CH for all
a 2 ACH .

Note that necessarily 1 2 Ag, so 1av D 1. If the action of g is obtained from differ-
entiating the action of a connected Lie group G that is compatible with � � and order-
preserving, then an averaging operator can oftentimes be constructed by averaging over
the action of G. Two examples of this will be discussed in Sections 4 and 6.

Averaging operators, if they exist, are a quite useful tool because they clearly allow
the extension of states on a �-subalgebra of invariant elements to the whole space.

Proposition 3.23. Let A be a representable Poisson �-algebra and JWg!AH a momen-
tum map for a commutative real Lie algebra g. Denote by � jAg WA�! .Ag/� the restric-
tion of linear functionals on A to Ag. Then, !jAg 2 �J;�.A

g/ for all ! 2 �J;�.A/,
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and conversely, if there exists an averaging operator � avWA! Ag, then for every z! 2
�J;�.A

g/ there exists ! 2 �J;�.A/ with !jAg D z!, e.g., ! WD z! ı � av.

Proof. Clear.

So if there exists an averaging operator � avWA! Ag, then in the definitions of the
quadratic module R� in (3.6) and of the non-commutative vanishing ideal V� in (3.7),
the condition “! 2 �J;�.A

g/” can be replaced by “! 2 �J;�.A/”. For the reduction of
states, this yields the following theorem.

Theorem 3.24. Let A be a representable Poisson �-algebra, JW g! AH a momentum
map for a commutative real Lie algebra g, and � 2 g�.

(i) If a state ! 2 �.A/ is J-reducible at �, then ! 2 �J;�.A/.

(ii) If there exists an averaging operator � avWA!Ag, then for every � 2 �.A�-red/

there is a state! 2 �.A/ that is J-reducible at�with!�-redD � (thus especially
! 2 �J;�.A/).

(iii) If Poisson-commuting elements of A commute and if � additionally is regular
for J, then every ! 2 �J;�.A/ is J-reducible at �.

Proof. Let .A�-red; Œ � ��/ be the J-reduction of A at � constructed in Theorem 3.11.
If for some ! 2 �.A/ there exists !�-red 2 �.A�-red/ such that h!;ai D h!�-red; Œa��i

holds for all a 2 Ag, then

h!; .J.�/ � h�; �i1/2i D 0 for all � 2 g

because kerŒ � �� is a �-ideal of Ag that contains J.�/� h�; �i1 for all � 2 g by definition
of Œ � ��. This proves the first point.

Now, let any state � on �.A�-red/ be given. If there exists an averaging operator
� avWA! Ag, then ! WD � ı Œ � �� ı � avWA! C is a state on A that fulfils

h!; ai D h�; Œaav��i D h�; Œa��i for all a 2 Ag;

i.e., ! is J-reducible at � with !�-red D � and especially ! 2 �J;�.A/ by the first part.
This proves the second point.

For the third point, given ! 2 �J;�.A/, then !jAg 2 �J;�.A
g/, and by Theorem 3.11

and Corollary 3.18, there exists a state !�-red on A�-red fulfilling !�-red ı Œ � �� D !jAg .

For a representable Poisson �-algebra A in which Poisson-commuting elements com-
mute, equipped with a momentum map JWg!AH that admits an averaging operator, and
for regular momenta � 2 g�, the states on the reduced algebra A�-red thus are just the
reductions of the common eigenstates of J with eigenvalues given by �. This matches the
heuristic about the reduction of states discussed in the introduction.

Note also how part (ii) above makes use of the notion of ordered �-algebras: this
statement is only true because the reduced algebra is endowed with an order obtained
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from the reduction procedure, but would fail if one considers �-algebras endowed always
with the algebraic order. We will see examples of this in Section 6.

Since many properties of the reduction that were discussed in this section depend on
the correct choice of the order on the reduced algebra, it is always desirable to find a clear
description of this order, or at least of all its states. A description as reductions of common
eigenstates is already given by Theorem 3.24 above, but one might still strive for a descrip-
tion independent of the reduction. This can be seen as a problem of (non-commutative)
real algebraic geometry and will be discussed further in the following examples.

4. Reduction of Poisson manifolds

The first example to discuss is the reduction of Poisson manifolds, i.e., of the representable
Poisson �-algebra C1.M/ of smooth C-valued functions with the pointwise order on a
smooth manifold M , endowed with a Poisson bracket which, in this case, can always be
obtained from a Poisson tensor.

Note that the pointwise order on C1.M/ is in general not the algebraic order: for
example, if f 2 C1.M/H is (in some local coordinates) a homogeneous polynomial
function which cannot be expressed as a sum of squares of polynomial functions, like the
homogeneous Motzkin polynomial, then considering Taylor expansions at 0 shows that
f cannot even be expressed as a sum of squares of smooth functions; see [3] for details.
Nevertheless, all algebraically positive Hermitian linear functionals on C1.M/ are also
positive with respect to the pointwise order because

p
f C "1 is smooth for every smooth

function f WM ! Œ0;1Œ and all " 2 �0;1Œ.
For the rest of this section, we will assume that M is a Poisson manifold so that

C1.M/ with the pointwise order is a representable Poisson �-algebra. Moreover, we
assume the following:

• The Poisson manifold M is endowed with a smooth left action � F � WG �M ! M ,
.g; x/ 7! g F x, of an abelian connected Lie group G, which induces a right action
� G � WC1.M/ �G ! C1.M/ by pullbacks, i.e.,

.f G g/.x/ WD f .g F x/ for all f 2 C1.M/; g 2 G; and all x 2M:

• The right action � G � WC1.M/� g! C1.M/ of the (finite-dimensional) Lie algebra
g of G on C1.M/, which one obtains by differentiating the right action of G, is
induced by a momentum map JW g! C1.M/H as in Definition 3.6; especially, f G
� D ¹f; J.�/º for all f 2 C1.M/, � 2 g. Note that we use the same symbol G to
denote the actions of the Lie group G and of its Lie algebra g.

We also fix a momentum � 2 g� and define the �-levelset of J:

Z� WD
®
x 2M

ˇ̌
J.�/.x/ D h�; �i for all � 2 g

¯
:
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Proposition 4.1. For every � 2 g�, the quadratic module R� and the generalized van-
ishing ideal from Definition 3.16 are

R� D
®
f 2 C1.M/

g
H

ˇ̌
f .x/ � 0 for all x 2 Z�

¯
(4.1)

and
V� D

®
f 2 C1.M/g

ˇ̌
f .x/ D 0 for all x 2 Z�

¯
: (4.2)

Proof. We start with (4.1). Every evaluation functional ıx WC1.M/g!C, f 7!hıx ;f iWD
f .x/ with x 2 Z� is an element of �J;�.C

1.M/g/ by definition of Z�. Therefore,
f .x/ � 0 for all f 2 R�, x 2 Z�, which proves the inclusion “�”.

Conversely, consider any f 2C1.M/
g
H fulfilling f .x/� 0 for all x 2Z�. Let ˛WR!

Œ�2;1Œ be a smooth function that fulfils ˛.y/ D y for all y 2 Œ�1;1Œ and ˛.y/ D �2
for all y 2 ��1;�2�, and define the smooth function ˇWR! R, y 7! ˇ.y/ WD y � ˛.y/.
Note that ˇ.y/D 0 for all y 2 Œ�1;1Œ. Then, for all k 2N the identity kf D .˛ ı kf /C
.ˇ ı kf / holds, and ˛ ı kf � �2 � 1.

Moreover, ˇ ı kf 2 hhJ � �ii�id. Indeed, let �1; : : : ; �` 2 g with ` 2 N0 be a basis of
g (which is finite-dimensional by assumption) and define

h WD
X̀
jD1

.J.�j / � h�; �j i1/
2
2 hhJ � �ii�idI

then any x 2M fulfils x 2 Z� if and only if h.x/ D 0. Consequently,

ˇ ı kf D hgk 2 hhJ � �ii�id with gk 2 C1.M/
g
H

defined by requiring that gk.x/ D .ˇ ı kf /.x/=h.x/ for all x 2 M with f .x/ < 0 and
gk.x/ D 0 for all x 2M with f .x/ > �1=k. Note that gk is indeed g-invariant because
f and h are g-invariant.

For any ! 2 �J;�.C
1.M/g/, we now have h!; ˇ ı kf i D 0 by Proposition 3.15, so

h!; f i D k�1h!; ˛ ı kf i C k�1h!; ˇ ı kf i � �2k�1 for all k 2 NI

hence, h!;f i � 0, and therefore, f 2R�. This shows that (4.1) holds, which also implies
(4.2) because

V� D .R� \ .�R�//C i.R� \ .�R�//:

Corollary 4.2. Every � 2 g� is regular for J in the sense of Definition 3.16.

Proof. We have to check that the �-ideal V� of C1.M/g is a Poisson ideal, i.e., ¹f; gº 2
V� for all f 2 C1.M/g, g 2 V�. This follows from the observation that J.�/ for every
� 2 g is constant on every integrating curve  W ��"; "Œ!M of the Hamiltonian flow of f
so that  remains in Z� if .0/ 2 Z�. See [1, Theorem 1] for details.

We thus recover the universal reduction procedure of [1], adapted to Poisson mani-
folds.
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Theorem 4.3. Retain the assumptions from the beginning of this section, fix � 2 g�, and
define the quotient topological space M�-red WD Z�=G and the �-algebra C.M�-red/ of
continuous C-valued functions on M�-red with the pointwise operations. For every f 2
C1.M/g, define Œf �� 2 C.M�-red/ as

Œf ��.Œx�G/ WD f .x/ (4.3)

for all Œx�G 2M�-red with representative x 2 Z�. Then, the J-reduction of C1.M/ at �
is given by .W1.M�-red/; Œ � ��/, where W1.M�-red/ is the unital �-subalgebra

W1.M�-red/ WD
®
Œf ��

ˇ̌
f 2 C1.M/g

¯
of C.M�-red/ with the pointwise order, equipped with the Poisson bracket that is given by®

Œf ��; Œg��
¯
WD
�
¹f; gº

�
�

(4.4)

for all f; g 2 C1.M/g and where Œ � ��WC1.M/g !W1.M�-red/ is the map from (4.3).

Proof. Poisson-commuting elements of C1.M/ commute trivially, and � is regular for
J by Corollary 4.2 above. Therefore, we only need to check that the conditions of Theo-
rem 3.19 are fulfilled.

As the Lie group G is connected by assumption, every f 2 C1.M/g is G-invariant,
so the function Œf ��WM�-red ! C of (4.3) is well defined, and Œf �� is continuous by def-
inition of the quotient topology on M�-red. It is now easy to check that W1.M�-red/ is a
unital �-subalgebra of C.M�-red/. The Poisson bracket (4.4) is well defined as a conse-
quence of Corollary 4.2 above, and the pointwise order on W1.M�-red/ is induced by its
states by definition. So, W1.M�-red/ is a representable Poisson �-algebra.

The map Œ � ��WC1.M/g!W1.M�-red/ clearly is a positive unital �-homomorphism
with kernel V�. It is surjective and compatible with Poisson brackets by definition of
W1.M�-red/.

Now, consider an element f 2 C1.M/
g
H such that Œf �� 2 W1.M�-red/

C
H , i.e., Œf ��

is pointwise positive. This means that f .x/D Œf ��.Œx�G/ � 0 for all x 2 Z�, so f 2R�

by Proposition 4.1.

The algebra W1.M�-red/ consists of the Whitney smooth functions on M�-red as
in [1]. Under some additional standard assumptions (proper and free action, � a regular
value), M�-red can even be given the structure of a Poisson manifold and W1.M�-red/ D

C1.M�-red/. Especially in the symplectic case, it was shown in [1] that this construction
then gives back Marsden–Weinstein reduction.

We now turn our attention to the reduction of states on C1.M/. By Theorem 3.24 and
Corollary 4.2, a state ! on C1.M/ is J-reducible at � if and only if ! 2 �J;�.C

1.M//.
Especially for the evaluation functionals ıx W C1.M/g!C, f 7!hıx ; f i WDf .x/ with
x 2M this means that ıx is J-reducible at � if and only if x 2 Z�. It is also easy to see
that in this case, the corresponding reduced state is just .ıx/�-redDıŒx�G 2�.W1.M�-red//,
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the evaluation functional at Œx�G 2 M�-red. Note that the evaluation functionals at points
of M are precisely the multiplicative states on C1.M/ (this result is sometimes referred
to as “Milnor and Stasheff’s exercise”; see, e.g., [12] for a proof in a setting much more
general than just smooth manifolds) and the multiplicative states in turn are precisely the
extreme points of �.C1.M//; see, e.g., [31, Corollary 2.61 and Theorem 2.63] or [33].
The reduced space M�-red therefore is just a geometric manifestation of the reduction of
the reducible extremal states.

Theorem 3.24 also shows that every state on W1.M�-red/ can be obtained as a reduc-
tion of some reducible state on C1.M/ if there exists an averaging operator for the action
of g. We close this section with the observation that this is indeed the case if the action of
G on M is proper.

Proposition 4.4. If the action of G on M is proper, then one can construct an averaging
operator � avWC

1.M/! C1.M/g.

Proof. The averaging operator can be constructed essentially like in the proof of [17,
Proposition 5.3]; see also [20, Chapter 4]. For all f 2 C1.M/, define

fav WD

P
`2N.f �`/cp-av�`P
`2N.�`/cp-av�`

:

Here, � cp-av is the G-average of a compactly supported smooth function; .�`/`2N is a
compactly supported smooth partition of unity onM ; and .�`/`2N is aG-invariant smooth
partition of unity (see [18, Proposition 2.3.8 (v)]) subordinate to the open G-invariant
cover that is given by preimages of �0;1Œ under .�`/cp-av.

5. Reduction of the Weyl algebra

In this section, let S.Rm/ with m 2 N be the Schwartz space of rapidly decreasing func-
tions on Rm with the usual L2 inner product over the Lebesgue measure on Rm. The Weyl
algebra W.Rm/ is the unital �-subalgebra of L�.S.Rm// that is generated by the usual
position and momentum operators qj ; pj 2 L�.S.Rm//, which are defined as

qjf WD xjf and pjf WD �i
@f

@xj
for all f 2 S.Rm/;

where xj denotes the j th standard coordinate function on Rm. We endow W.Rm/ with
the usual operator order like in Section 2.2. As discussed in Example 3.2, the Weyl algebra
W.Rm/ together with the Poisson bracket that is defined as

¹a; bº WD �i.ab � ba/ for all a; b 2 W.Rm/

is a representable Poisson �-algebra. A basis of W.Rm/ is given by ¹pkq` j k; ` 2 Nm
0 º

where
pkq` WD .p1/

k1 � � � .pm/
km.q1/

`1 � � � .qm/
`m

for all k; ` 2 Nm
0 .
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As noted in [35], the order on W.Rm/ is not the algebraic order, even if m D 1:
consider the number operator N WD 1

2
.q C ip/�.q C ip/ 2W.R/CH ; then, it follows from

N being essentially self-adjoint with spectrum N0 that .N � 1/.N � 21/ 2 W.R/CH , but
one can check that .N � 1/.N � 21/ … W.R/CCH because

.N � 1/.N � 21/
Š
D

KX
kD1

b�kbk with K 2 N and b1; : : : ; bK 2 W.R/

would require all bk with k 2 ¹1; : : : ; Kº to be of degree at most 2 in the generators
a WD q C ip and a� and to have the 1- and 2-eigenspaces of N in their kernel. From
[31, Theorems 10.36 and 10.37], it then follows that there even exists an algebraically
positive state on W.R/ which is not positive. An algebraic characterization of the positive
Hermitian linear functionals on W.Rm/ can be obtained from the Positivstellensatz for
the Weyl algebra from [28]. A Hermitian linear functional ! on W.Rm/ is positive if and
only if h!; ai � 0 holds for all those a 2 W.Rm/H for which there exists b 2 N such
that bab 2W.Rm/CCH , where N is the set of all finite products of elements N � �1 with
� 2 R nN0 and with

N WD
1

2

mX
jD1

.qj C ipj /�.qj C ipj / 2 W.Rm/CH

being the m-dimensional number operator.
Throughout the rest of this section, we make the following assumptions:

• n 2 N is a fixed dimension, the coordinate functions on R1Cn will be numbered
x0; : : : ; xn, and those on Rn will be numbered x1; : : : ; xn;

• gŠR is the 1-dimensional Lie algebra, and we choose any momentum � 2 g�, which
we will identify by abuse of notation with � WD �.1/ 2 R;

• the momentum map is JW g! W.R1Cn/H, � 7! J.�/ WD �p0 and therefore is com-
pletely described by p0 D J.1/.

Note that the corresponding action of the Lie algebra g can be obtained by differentiating
the action of the Lie group R by translation of the 0-component. The space of invariant
elements under this action can of course be described more explicitly.

Lemma 5.1. W.R1Cn/g is the unital �-subalgebra of W.R1Cn/ that is generated by
q1; : : : ; qn and p0; p1; : : : ; pn, which is the linear subspace spanned by the basis elements
pkq` with k; ` 2 N1Cn

0 , `0 D 0. Moreover, we have the decomposition

W.R1Cn/g D hhp0 � �ii�id ˚ hhq1; : : : ; qn; p1; : : : ; pnii�alg;

where
hhp0 � �ii�id D hhJ � �ii�id

is the �-ideal of W.R1Cn/g generated by p0 ��1 and where hhq1; : : : ; qn;p1; : : : ;pnii�alg
is the unital �-subalgebra of W.R1Cn/g generated by ¹q1; : : : ; qn; p1; : : : ; pnº.
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Proof. It is clear that W.R1Cn/g is a unital �-subalgebra of L�
�
S.R1Cn/

�
and that qj 2

W.R1Cn/g for all j 2 ¹1; : : : ; nº and pj 2W.R1Cn/g for all j 2 ¹0; : : : ; nº. Conversely,
from ¹q0; p0º D 1, it follows for all k; ` 2 N1Cn

0 that ¹pkq`; p0º q0 D `0pkq`. So, given
any

a D
X

k;`2N1Cn
0

˛k;` p
kq` 2 W.R1Cn/g

with complex coefficients ˛k;`, then ¹a; p0º D 0 implies ¹a; p0º q0 D 0, which implies
˛k;` D 0 for all k; ` 2 N1Cn

0 with `0 ¤ 0.
It is clear that

hhp0 � �ii�id \ hhq1; : : : ; qn; p1; : : : ; pnii�alg D ¹0º

so that the sum of these linear subspaces of W.R1Cn/g is direct, and from

p
k0
0 � �

k01 D .p0 � �1/

k0�1X
mD0

�k0�1�mpm0 2 hhp0 � �ii�id;

it follows that

W.R1Cn/g D hhp0 � �ii�id ˚ hhq1; : : : ; qn; p1; : : : ; pnii�alg:

Definition 5.2. The map Œ � ��WW.R1Cn/g ! W.Rn/ is defined as the unique linear map
that fulfils Œpkq`�� D �k0pk

0

q`
0

2W.Rn/ for all k; ` 2 N1Cn
0 with `0 D 0, where k0 WD

.k1; : : : ; kn/ 2 Nn
0 and `0 WD .`1; : : : ; `n/ 2 Nn

0 .

It is easy to check that the kernel of Œ � �� is hhp0 ��ii�id and that the restriction of Œ � ��
to the complement hhq1; : : : ; qn; p1; : : : ; pnii�alg is the unital �-homomorphism that maps
pkq` 2 W.R1Cn/g with k; ` 2 N1Cn

0 and k0 D `0 D 0 to pk
0

q`
0

2 W.Rn/. Therefore,
Œ � ��WW.R1Cn/g ! W.Rn/ is a unital �-homomorphism, and one might expect that the
p0-reduction of W.R1Cn/ at � is given by

�
W.Rn/; Œ � ��

�
. However, it is not so easy to

show that Œ � �� is positive: as kerŒ � �� D hhp0 � �ii�id, Proposition 2.2 and Corollary 3.18
show that Œ � �� is positive if and only if �� ı Œ � ��, for every vector state �� on W.Rn/with
� 2 S.Rn/, k�k D 1, is an eigenstate of p0 with eigenvalue �. Such eigenstates, however,
could only be obtained as weak-�-limits of vector states because p0 does not admit any
eigenvector.

Definition 5.3. For k 2 N, let �k W S.Rn/! S.R1Cn/, � 7! �k.�/ be defined as

�k.�/.x0; x1; : : : ; xn/ WD k
�1=2ei�x0e��x

2
0=.2k

2/�.x1; : : : ; xn/

for all x 2 R1Cn.

Lemma 5.4. For every k 2 N, the map �k W S.R
n/ ! S.R1Cn/ is an isometry and

adjointable, with adjoint ��
k
W S.R1Cn/! S.Rn/,  7! ��

k
. / given explicitly as

��k. /.x1; : : : ; xn/ D k
�1=2

Z
R
 .x0; x1; : : : ; xn/e�i�x0e��x

2
0=.2k

2/ dx0: (5.1)
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Proof. For all � 2 S.Rn/ and all x1; : : : ; xn 2 R, one has

��k�k.�/.x1; : : : ; xn/ D
1

k

Z
R

e��x
2
0=k

2

�.x1; : : : ; xn/ dx0 D �.x1; : : : ; xn/;

and it is also easy to check that h��
k
. / j �i D h j �k.�/i for all  2 S.R1Cn/ and all

� 2 S.Rn/ with ��
k

as in (5.1).

The isometries �k can be used for mapping vector functionals from L�.S.Rn// to
L�.S.R1Cn//. We will eventually be interested in their limit for k !1.

Lemma 5.5. For every k 2 N, the identities qj �k D �kqj and pj �k D �kpj hold for all
j 2 ¹1; : : : ; nº, where qj and pj denote the position and momentum operators on both
S.Rn/ and S.R1Cn/. Moreover, for every ` 2 N, there exist sequences .˛`;mIk/k2N in C
for all m 2 ¹0; : : : ; `º such that

.p0 � �1/
`�k D

X̀
mD0

˛`;mIkq
m
0 �k (5.2)

holds for all k 2 N, and limk!1 k
m˛`;mIk D 0 for all ` 2 N and all m 2 ¹0; : : : ; `º.

Proof. The identities for qj and pj with j 2 ¹1; : : : ; nº are immediately clear. Now, con-
sider the case ` D 1 in (5.2); then, for all � 2 S.Rn/, one has

.p0�k�/.x0; x1; : : : ; xn/ D �i
@

@x0
k�1=2ei�x0e��x

2
0=.2k

2/�.x1; : : : ; xn/

D .�C i�x0=k2/k�1=2ei�x0e��x
2
0=.2k

2/�.x1; : : : ; xn/

D .�C i�x0=k2/.�k�/.x0; x1; : : : ; xn/;

and therefore, .p0 � �1/�k D i�k�2q0�k . So, (5.2) is fulfilled for ` D 1 with complex
coefficients ˛1;0Ik D 0 and ˛1;1Ik D i�k�2, and clearly, limk!1 k

m˛1;mIk D 0 for both
m 2 ¹0; 1º. The general case of (5.2) is proven inductively.

Assume that for some L 2 N, there exist complex sequences .˛`;mIk/k2N such that
(5.2) holds for both ` 2 ¹L;L� 1º and all k 2N. This is especially true forLD 1 because
the case ` D 1 has just been discussed, and in the somewhat exceptional case ` D 0, one
has ˛0;0;k D 1 for all k 2 N. Using the commutator formula

.p0 � �1/
Lq0 � q0.p0 � �1/

L
D i¹.p0 � �1/L; q0º D �iL.p0 � �1/L�1;

one then finds

.p0 � �1/
LC1�k D .p0 � �1/

Li�k�2q0�k

D i�k�2
�
q0.p0 � �1/

L
� iL.p0 � �1/L�1

�
�k

D

LX
mD0

i�k�2˛L;mIkqmC10 �k C

L�1X
mD0

�k�2L˛L�1;mIkq
m
0 �k :
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This shows that (5.2) is again fulfilled for ` D LC 1 with suitably chosen complex coef-
ficients ˛LC1;mIk , and if the sequences .km˛`;mIk/k2N for all m 2 ¹0; : : : ; `º and both
` 2 ¹L;L � 1º are bounded, then

lim
k!1

km˛LC1;mIk D 0 for all m 2 ¹0; : : : ; LC 1º:

Proposition 5.6. The unital �-homomorphism Œ � ��WW.R1Cn/g ! W.Rn/ is positive.

Proof. Given a Hermitian and positive element a of W.R1Cn/g, then in order to show
that Œa�� 2W.Rn/CH , it is sufficient to show that limk!1

�
��
k
a�k
�
.�/ D Œa��.�/ holds for

all � 2 S.Rn/ with respect to the topology on S.Rn/ that is induced by the inner product,
because then

h� j Œa��.�/i D lim
k!1
h�k.�/ j a.�k.�//i � 0 for all � 2 S.Rn/:

As qj �k D �kqj and pj �k D �kpj for all j 2 ¹1; : : : ; nº and all k 2 N by Lemma 5.5
above, and as ��

k
�k D idS.Rn/ by Lemma 5.4, one has

�
��
k
a�k
�
.�/ D Œa��.�/ for all a 2

hhq1; : : : ; qn; p1; : : : ; pnii�alg and all k 2 N, and this clearly also holds in the limit k !
1. Using the fact that p0 is central in W.R1Cn/g and starting with the highest power
of p0, every a 2 W.R1Cn/g admits a decomposition as a D

PL
`D0.p0 � �1/

`a` with
some L 2 N0 and with a` 2 hhq1; : : : ; qn; p1; : : : ; pnii�alg for all ` 2 ¹0; : : : ; Lº. Then,
a`�k D �k Œa`�� for all k 2 N, ` 2 ¹0; : : : ; Lº, and Lemma 5.5 shows that

��ka�k D

LX
`D0

��k.p0 � �1/
`�k Œa`�� D Œa0�� C

LX
`D1

X̀
mD0

˛`;mIk�
�
kq
m
0 �k Œa`��

for all k 2 N. It is easy to see that ��
k
qm0 �k D cm;k idS.Rn/ for all m 2 N0 and all k 2 N,

with prefactors cm;k 2 C given explicitly by

cm;k D
1

k

Z
R
xm0 e��x

2
0=k

2

dx0 D km
Z

R
yme��y

2

dy;

which is proportional to km (for fixed m 2 N0). So, ˛`;mIk��kq
m
0 �k Œa`��

k!1
����! 0 for all

` 2 ¹1; : : : ; Lº and all m 2 ¹0; : : : ; `º as a consequence of the estimates from Lemma 5.5.
It follows that

lim
k!1

.��ka�k/.�/ D Œa0��.�/ D Œa��.�/ for all � 2 S.Rn/:

As the Weyl algebra W.R1Cn/ is an instance of Example 3.2, i.e., its Poisson bracket is
just the rescaled commutator, the assumptions of Theorem 3.19 are automatically fulfilled
(Poisson commuting elements commute and the momentum � is regular). Because of this,
it makes sense to determine the quadratic module R� and the non-commutative vanishing
ideal V� from Definition 3.16.
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Proposition 5.7. We have V� D hhp0 � �ii�id and

.hhp0 � �ii�id/H C .W.R1Cn/g/CH D R� D
®
a 2 W.R1Cn/gH

ˇ̌
Œa�� 2 W.Rn/CH

¯
;

where
.hhp0 � �ii�id/H WD hhp0 � �ii�id \W.R1Cn/gH:

Proof. As kerŒ � �� D hhp0 � �ii�id, Proposition 5.6 above especially shows that every
linear functional �� ı Œ � ��WW.R1Cn/g ! C, for any vector state �� 2 �.W.Rn// with
� 2 S.Rn/, k�k D 1, is a state on W.R1Cn/g, and �� ı Œ � �� even is an eigenstate of p0
with eigenvalue � by Proposition 3.15. From this, it follows that ŒV��� � ¹0º, so

V� � kerŒ � �� D hhp0 � �ii�id and ŒR��� � W.Rn/CH :

Conversely, V� � hhp0 � �ii�id holds in general; see Theorem 3.19, so

V� D hhp0 � �ii�id:

The inclusion .hhp0 � �ii�id/H �R� holds as a consequence of Proposition 3.15; it is
clear that

.W.R1Cn/g/CH � R� and R� � ¹a 2 W.R1Cn/gH j Œa�� 2 W.Rn/CH º

holds because ŒR��� � W.Rn/CH . Finally, let any a 2 W.R1Cn/gH with Œa�� 2 W.Rn/CH
be given. By Lemma 5.1, there exist unique b 2 hhp0 � �ii�id and c 2 hhq1; : : : ; qn;
p1; : : : ; pnii�alg such that a D b C c, and from a D a�, it follows that b D b� and c D c�

because hhp0 ��ii�id and hhq1; : : : ; qn;p1; : : : ;pnii�alg are stable under ��. It only remains
to show that c 2 .W.R1Cn/g/CH .

Note that Œc�� D Œa�� 2 W.Rn/CH . For all  2 S.R1Cn/ and all x0 2 R, the function

 x0 WR
n
! C; .x1; : : : ; xn/ 7!  x0.x1; : : : ; xn/ WD  .x0; x1; : : : ; xn/

is an element of S.Rn/, and .c. //x0 D Œc��. x0/ holds because this can easily be
checked for products of the generators qj ; pj with j 2 ¹1; : : : ; nº. Therefore,

h j c. /i D

Z
R
h x0 j .c. //x0i dx0 D

Z
R
h x0 j Œc��. x0/i dx0 � 0

holds for all  2 S.R1Cn/, so indeed, c 2 .W.R1Cn/g/CH .

Theorem 5.8. The tuple .W.Rn/; Œ � ��/ is the p0-reduction at � of the Weyl algebra
W.R1Cn/.

Proof. As Œ � ��WW.R1Cn/g ! W.Rn/ is a positive unital �-homomorphism by Proposi-
tion 5.6 and automatically is compatible with Poisson brackets, we only have to check that
the two conditions of Theorem 3.19 for the p0-reduction at � are fulfilled.
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Surjectivity of Œ � ��WW.R1Cn/g ! W.Rn/ is clear, and Proposition 5.7 above shows
that

kerŒ � �� D hhp0 � �ii�id D V�

and that every a 2 W.R1Cn/gH which fulfils Œa�� 2 W.Rn/CH is an element of R�.

While this result for the reduction of the Weyl algebra is the naively expected one,
which might be seen as further justification for the general definition of the reduction in
Section 3, it should be noted that this example is ill behaved with respect to the reduction
of states discussed in Section 3.4, so the reduction of representable Poisson �-algebras
behaves better than the reduction of their states.

Proposition 5.9. There is no eigenstate of p0 on W.R1Cn/.

Proof. By Proposition 2.4, any eigenstate ! of p0 on W.R1Cn/ would have to fulfil

0 D h!; q0ih!; p0i � h!; p0ih!; q0i D h!; q0p0 � p0q0i D ih!;1i D i:

Corollary 5.10. There is no averaging operator � avWW.R1Cn/! W.R1Cn/g.

Proof. The existence of an averaging operator would lead to a contradiction between
Proposition 5.9 and Theorem 3.24, part (ii).

The non-existence of an averaging operator in this case is surprising in so far as in
the analogous commutative case there does exist an averaging operator for the translation
in the 0-coordinate. Consider the polynomial algebra with pointwise order on the cotan-
gent space T�R1Cn with standard coordinates q0; : : : ; qn; p0; : : : ; pn and Poisson bracket
obtained from the canonical symplectic form. An averaging operator is given by restrict-
ing polynomials to the hyperplane of T�R1Cn where q0 vanishes and extending the result
to polynomials constant in q0-direction. This, however, does no longer work for the Weyl
algebra because q20 C p

2
0 � 1 2 W.R1Cn/CH , but p20 � 1 … W.R1Cn/CH .

6. Reduction of the polynomial algebra

Fix some n 2 N for the rest of this section. It is well known that the complex projective
space CPn can be obtained as the quotient of the .1C 2n/-sphere S1C2n � C1Cn by the
action of U.1/ via multiplication. A similar construction for different signatures yields
the hyperbolic disc as a quotient; see, e.g., [26]. This procedure can be understood as
Marsden–Weinstein reduction, and in this section, we discuss its algebraic analogue in
terms of representable Poisson �-algebras. One has a choice of the class of functions that
one wants to consider: taking the smooth functions C1.C1Cn/ results in a special case of
the reduction of Poisson manifolds as described in Section 4. Another choice is to work
with the polynomial functions P.C1Cn/, which allows a non-formal deformation to the
non-commutative setting. This deformation is the main topic of Part II of this article, and
here we lay the foundations by describing the reduction in the commutative case.
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For i 2 ¹0; : : : ; nº, let zi ; zi WC1Cn ! C, zi .w/ D wi , zi .w/ D wi be the standard
coordinates and their complex conjugates on C1Cn. The algebra of polynomials in zi and
zi will be denoted by P.C1Cn/. It is .Z � Z/-graded by the holomorphic and antiholo-
morphic degree, i.e.,

P.C1Cn/ D
M
K;L2Z

P.C1Cn/K;L

with P.C1Cn/K;L spanned by zk00 � � � z
kn
n z

`0
0 � � � z

`n
n with k0; : : : ; kn; `0; : : : ; `n 2 N0 sat-

isfying k0 C � � � C kn D K and `0 C � � � C `n D L if K;L � 0, and P.C1Cn/K;L D ¹0º

otherwise.
Various objects in this section will depend on the choice of a signature s 2 ¹1; : : : ; 1C

nº. One of them is a tuple of coefficients �.s/ 2 ¹�1;1º1Cn, which is defined as �.s/i WD 1 if
i 2 ¹0; : : : ; s � 1º and �.s/i WD �1 if i 2 ¹s; : : : ; nº. We will usually omit the superscript .s/

from our notation; e.g., we will write �i instead of �.s/i . It is easy to check that for any
signature s,

¹f; gº WD ¹f; gº.s/ WD
1

i

nX
jD0

�j

�
@f

@zj

@g

@zj
�
@f

@zj

@g

@zj

�
defines a Poisson bracket on P.C1Cn/. Let u1 D ¹i˛1 j ˛ 2 Rº be the abelian Lie alge-
bra of the Lie group U.1/, and consider the momentum map JWu1 ! P.C1Cn/, i˛1 7!
˛
Pn
iD0 �izizi . Since u1 is 1-dimensional, J is uniquely determined by the image of i1,

and we abuse notation and write

J WD J.s/ WD J.i1/ D
nX
iD0

�izizi

also for this image. The momentum map J induces a right action � G � WP.C1Cn/� u1!

P.C1Cn/ by derivations, which is, on monomials, given explicitly by

zk G .i˛1/ D ˛¹zk ;Jº D i˛zk and z` G .i˛1/ D ˛¹z`;Jº D �i˛z`

for all k; ` 2 ¹0; : : : ; nº. In particular, this action integrates to the usual action of the
Lie group U.1/ on P.C1Cn/ by automorphisms, zk G ei˛ D ei˛zk and z` G ei˛ D e�i˛z`.
Again, we use the same symbol for the actions of the Lie group U.1/ and of its Lie
algebra u1. Since U.1/ is connected, f 2 P.C1Cn/ is u1-invariant if and only if it is
U.1/-invariant, which is the case if and only if

f 2
M
k2N0

P.C1Cn/k;k :

We endow P.C1Cn/ with the pointwise order, i.e., the order induced by the evaluation
functionals ıw W P.C1Cn/ ! C, f 7! hıw ; f i WD f .w/ with w 2 C1Cn like in Propo-
sition 2.1. This order is, by construction, induced by its states, and therefore, P.C1Cn/

becomes a representable Poisson �-algebra. It is well known that the pointwise order on



Symmetry reduction of states I 535

the polynomial algebra does not coincide with the algebraic order, and, contrary to the case
of smooth functions, there even exist algebraically positive Hermitian linear functionals
on P.C1Cn/ that are not positive with respect to the pointwise order; see, e.g., [31, Theo-
rems 10.36 and 10.37].

Since the U.1/-action on P.C1Cn/ preserves the degree, it follows for fixed f 2
P.C1Cn/ that all polynomials f G u for u 2 U.1/ lie in a finite-dimensional subspace
of P.C1Cn/. This makes it easy to check that � avWP.C1Cn/! P.C1Cn/u1 ,

f 7! fav WD
1

2�

Z 2�

0

.f G ei˛/ d˛;

defines an averaging operator in the sense of Definition 3.22.

6.1. The reduction

For a momentum � 2 u�1 , we again abuse notation and write � WD �.i1/ 2 R also for the
image of i1. In this sense, we will always assume that � > 0. The goal of this section is to
determine the J-reduction of P.C1Cn/ at �, so we first determine an explicit description
of the quadratic module R� WD R

.s/
� and of the �-ideal V� WD V

.s/
� from Definition 3.16.

We denote the �-levelset of J by

Z� WD Z.s/� WD
®
w 2 C1Cn

ˇ̌
J.w/ D �

¯
:

Lemma 6.1. Using the notation

.hhJ � �ii�id/H WD hhJ � �ii�id \ P.C1Cn/
u1
H ;

we have

hhJ � �ii�id D V� D
®
f 2 P.C1Cn/u1

ˇ̌
f .w/ D 0 for all w 2 Z�

¯
and

.hhJ � �ii�id/H C .P.C
1Cn/u1/CH

D R� D
®
f 2 P.C1Cn/

u1
H

ˇ̌
f .w/ � 0 for all w 2 Z�

¯
: (6.1)

Proof. From Proposition 3.15, it follows that hhJ ��ii�id �V� and that .hhJ ��ii�id/H �

R�. The inclusion .P.C1Cn/u1/CH � R� is clear. Moreover, as all evaluation functionals
ıw W P.C1Cn/u1 ! C, f 7! hıw ; f i WD f .w/ with w 2 Z� are eigenstates of J with
eigenvalue �, every f 2 V� fulfils f .w/ D 0 for all w 2 Z�, and every f 2 R� fulfils
f .w/ � 0 for all w 2 Z�. It only remains to show that every f 2 P.C1Cn/u1 that fulfils
f .w/ D 0 for all w 2 Z� is an element of hhJ � �ii�id and that every f 2 P.C1Cn/

u1
H

that fulfils f .w/ � 0 for all w 2 Z� is an element of .hhJ � �ii�id/H C .P.C
1Cn/u1/CH .

For any f 2 P.C1Cn/u1 , define its homogenization:

fh WD

dX
`D0

.J=�/d�`f` 2 P.C1Cn/d;d ;
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where f` 2 P.C1Cn/`;`, ` 2 N0, are the homogeneous components of f so that f DP1
`D0 f` and where d 2 N0 is minimal such that f` D 0 for all ` 2 N0 with ` > d . Then,

fh.w/ D f .w/ for all w 2 Z� and

f � fh D

dX
`D0

�d�`1 � Jd�`

�d�`
f`

D .�1 � J/

d�1X
`D0

f`

�d�`

d�X̀
kD1

�d�`�kJk�1 2 hhJ � �ii�id: (6.2)

Note also that fh is Hermitian if f is Hermitian.
Now, consider the case of a polynomial f 2 P.C1Cn/u1 that fulfils f .w/ D 0 for all

w 2 Z�. Then

fh.w/ D J.w/d=2fh.J.w/
�1=2w/ D J.w/d=2f .J.w/�1=2w/ D 0

for all w 2 C1Cn with J.w/ > 0, which form an open and non-empty subset of C1Cn.
Therefore,

fh D 0 and f D f � fh 2 hhJ � �ii�id

by (6.2).
Similarly, if a polynomial f 2 P.C1Cn/

u1
H fulfils f .w/ � 0 for all w 2 Z�, then also

fh.w/ � 0 for all w 2 C1Cn with J.w/ > 0. Consequently,

f � WD .2�2/�1.J � �1/2..fh/
2
C 1/C fh

fulfils f �.w/ � 0 for all w 2 C1Cn with J.w/ > 0, and for w 2 C1Cn with J.w/ � 0,
one also finds that f �.w/ � 0 because then

.2�2/�1.J.w/ � �/2 � 1=2 and fh.w/
2
C 1 � 2jfh.w/j:

We therefore have f � 2 .P.C1Cn/u1/CH , and as f � fh 2 .hhJ � �ii�id/H by (6.2) and
clearly also fh � f

� 2 .hhJ � �ii�id/H, it follows that

f 2 .hhJ � �ii�id/H C .P.C
1Cn/u1/CH :

Recall that the complex projective space CPn is the quotient manifold

.C1Cn
n ¹0º/=C�;

where the multiplicative group C� D C n ¹0º acts on C1Cn n ¹0º by scalar multiplication.

Definition 6.2. Let

M�-red WDM
.s/
�-red WD

®
Œw� 2 CPn

ˇ̌
J.w/ > 0

¯
:
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For f 2 P.C1Cn/u1 , we define Œf ��WM�-red ! C by Œf ��.Œw�/ WD f jZ�.w/ where w 2
Z� is a representative of Œw� 2M�-red. We call

P.M�-red/ WD
®
Œf ��

ˇ̌
f 2 P.C1Cn/u1

¯
the space of polynomials on M�-red.

Note thatM�-red is well defined since the choice of representative w 2 C1Cn n ¹0º for
Œw� 2CPn has no influence on the sign of J.w/, that Z� andM�-red depend on the choice
of signature s since J does, and that every Œw� 2M�-red has a (non-unique) representative
w 2 Z�. It is easy to check that P.M�-red/ with the usual pointwise multiplication of
functions, the pointwise complex conjugation as �-involution, and the pointwise order
becomes an ordered �-algebra whose order is induced by its states and Œ � ��WP.C1Cn/u1!

P.M�-red/ is a positive unital �-homomorphism.

Theorem 6.3. The momentum � > 0 is regular for J, and kerŒ � �� D hhJ � �ii�id. More-
over, ®

Œf ��; Œg��
¯
WD
�
¹f; gº

�
�

(6.3)

for all f;g 2P.C1Cn/u1 defines a Poisson bracket on P.M�-red/ and the tuple .P.M�-red/;

Œ � ��/ is the J-reduction of P.C1Cn/ at �.

Proof. The kernel of Œ � �� clearly consists of precisely those elements of P.C1Cn/u1 that
vanish on Z�, so hhJ � �ii�id D V� D kerŒ � �� by Lemma 6.1, which is a Poisson ideal
of P.C1Cn/u1 by Proposition 3.15. So, � is regular for J, and the Poisson bracket of
P.C1Cn/u1 descends to a well-defined Poisson bracket (6.3) on P.M�-red/. With this Pois-
son bracket and with the pointwise order, P.M�-red/ is a representable Poisson �-algebra
and Œ � �� is a positive unital �-homomorphism compatible with Poisson brackets. More-
over, Theorem 3.19 applies, and as Lemma 6.1 also shows that R� coincides with the set
of Hermitian elements in the preimage of P.M�-red/

C
H under Œ � ��, it is easy to check that�

P.M�-red/; Œ � ��
�

is the J-reduction of P.C1Cn/ at �.

Note that this Poisson bracket on M�-red coincides with the one of the Fubini–Study
symplectic form (with signature), which is obtained by Marsden–Weinstein reduction of
C1Cn with respect to the U.1/-action. In particular, if s D 1C n, then M .1Cn/

�-red Š CPn

as Poisson manifolds, and if s D 1, then M .1/
�-red and the complex hyperbolic disc Dn are

isomorphic. See [26] for details. Moreover, only the Poisson bracket of P.M�-red/ actually
depends on �, but not the underlying ordered �-algebra.

6.2. Comparing pointwise and algebraic order

One key point why the reduction of representable Poisson �-algebras works well is that
we have certain freedom in choosing the order on the reduction, in the sense that we do
not always endow �-algebras with their canonical algebraic order (the one whose posi-
tive elements are sums of Hermitian squares). It is a priori unclear how the order on the
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reduced algebra P.M�-red/, i.e., the pointwise order, relates to the algebraic order. In this
last section, we want to discuss this relation, which can be described using the methods of
real algebraic geometry.

The first step is to identify the unital �-homomorphisms from P.M�-red/ to C. As we
show below, they are in bijection with

yM�-red WD yM
.s/
�-red WD

®
Œw� 2 CPn

ˇ̌
J.w/ ¤ 0

¯
:

If sD 1C n, then J.w/ > 0 for allw 2C1Cn n ¹0º, and therefore,M .1Cn/
�-red D

yM
.1Cn/
�-red . For

s ¤ 1C n, however, M .s/
�-red ¨ yM

.s/
�-red. In the special case s D 1, it was already observed

in [11] that there are more C-valued unital �-homomorphisms on P.M
.1/
�-red/ than one

would naively expect, i.e., not only evaluation functionals at points of M .1/
�-red.

Lemma 6.4. For every Œw� 2 yM�-red, the matrix

X D .J.w/�1wiwj /i;j2¹0;:::;nº 2 C.1Cn/�.1Cn/

is well defined and fulfils

. O�X/2 D O�X; X� D X; and tr. O�X/ D 1; (6.4)

where O� WD diag.�0; : : : ; �n/ is the diagonal matrix with entries �0; : : : ; �n along the
diagonal. Conversely, for any X 2 C.1Cn/�.1Cn/ satisfying the conditions (6.4), there
exists a unique Œw� 2 yM�-red such that

X D .J.w/�1wiwj /i;j2¹0;:::;nº:

Proof. It is clear that the matrixX WD
�
J.w/�1wiwj

�
i;j2¹0;:::;nº

is well defined and fulfils
X D X�. Moreover,

.. O�X/2/ij D

nX
kD0

J.w/�2�iwiwk�kwkwj D J.w/�1�iwiwj D . O�X/ij

holds for all i; j 2 ¹0; : : : ; nº, and

tr. O�X/ D J.w/�1
nX
iD0

�iwiwi D 1:

Conversely, assume that X 2 C.1Cn/�.1Cn/ satisfies (6.4). Then, O�X is diagonalizable
with eigenvalues contained in ¹0; 1º because O�X is idempotent. Since tr. O�X/ D 1 it fol-
lows that the eigenvalue 1 occurs precisely once so that the image of O�X has dimension
1. Consequently, there exist non-zero v;w 2 C1Cn such that . O�X/ij D viwj for all i; j 2
¹0; : : : ; nº, or equivalently Xij D �iviwj . Next, X� D X implies that wivj �j D �iviwj
holds for all i; j 2 ¹0; : : : ; nº, and it is an easy algebraic manipulation to show that this
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is enough to guarantee that O�v D �w for some � 2 C n ¹0º, even � 2 R n ¹0º. Conse-
quently, Xij D �wiwj for all i; j 2 ¹0; : : : ; nº, and tr. O�X/ D 1 implies that 1 D �J.w/,
so Xij D J.w/�1wiwj . Since the 1-dimensional range of X is spanned by w, w is deter-
mined uniquely up to multiplication with a non-zero complex constant, so Œw� 2 yM�-red is
determined uniquely.

For every Œw� 2 yM�-red, we define the unital �-homomorphism ıŒw�WP.M�-red/! C,

Œf �� 7! hıŒw�; Œf ��i WD

1X
`D0

f`.w/

�
�

J.w/

�`
; (6.5)

where f D
P1
`D0 f` 2 P.C

1Cn/u1 is any representative of Œf �� 2 P.M�-red/ with homo-
geneous components f` 2 P.C1Cn/`;` and where w 2 C1Cn n ¹0º is any representative
of Œw� 2 yM�-red. It is easy to check that ıŒw� is well defined. For Œw� 2 M�-red, this unital
�-homomorphism ıŒw� is just the usual evaluation functional at Œw�.

Proposition 6.5. For every unital �-homomorphism 'W P.M�-red/ ! C, there exists a
unique point Œw� 2 yM�-red such that ' D ıŒw�.

Proof. Consider the matrix X 2 C.1Cn/�.1Cn/ with entries Xij D ��1h'; Œzizj ��i. Then

.. O�X/2/ij D �
�2

nX
kD0

�i�kh'; Œzizkzkzj ��i

D ��2�i h'; ŒzizjJ��i D �
�1�i h'; Œzizj ��i D . O�X/ij ;

and the other two assumptions of Lemma 6.4 above are easily checked. So, there exists a
unique Œw� 2 yM�-red such that Xij D J.w/�1wiwj for all i; j 2 ¹0; : : : ; nº. This means
that ıŒw� and ' coincide on the generators Œzizj ��, or equivalently on all of P.M�-red/.

Proposition 6.5 above shows that yM�-red is a real algebraic set, while M�-red is not if
s ¤ 1C n. However, M�-red is a subset of yM�-red that can be described by a polynomial
inequality: for a commutative �-algebra A and a subset G � AH, we write

ZC.A;G /

WD
®
'WA! C

ˇ̌
' a unital �-homomorphism fulfilling h'; gi � 0 for all g 2 G

¯
:

Proposition 6.6. The identity

ZC
�
P.M�-red/;

² nX
iDs

Œzizi ��

³�
D ¹ıŒw� j Œw� 2M�-redº

holds.
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Proof. By Proposition 6.5 above, all unital �-homomorphisms from P.M�-red/ to C are
of the form ıŒw� with Œw� 2 yM�-red. The identity�

ıŒw�;

nX
iDs

Œzizi ��

�
D J.w/�1�

nX
iDs

jwi j
2

holds for all Œw� 2 yM�-red with representative w 2 C1Cn n ¹0º. Therefore,�
ıŒw�;

nX
iDs

Œzizi ��

�
� 0

holds if and only if J.w/ > 0: on the one hand, J.w/ > 0 clearly implies that�
ıŒw�;

nX
iDs

Œzizi ��

�
� 0:

On the other hand, assume that hıŒw�;
Pn
iDsŒzizi ��i � 0. Then, either

Pn
iDsjwi j

2 > 0 so
that J.w/ > 0 by the above identity or

Pn
iDsjwi j

2 D 0 so that

J.w/ D

s�1X
iD0

jwi j
2
�

nX
iDs

jwi j
2 > 0

because w ¤ 0.

Corollary 6.7. For unital �-homomorphisms 'WP.M�-red/! C, the following are equiv-
alent:

(i) ' is positive with respect to the pointwise order;

(ii) h';
Pn
iDsŒzizi ��i � 0;

(iii) there exists Œw� 2M�-red such that ' D ıŒw�.

Proof. Using Proposition 6.6 above, it is easy to see that (i)) (ii)) (iii)) (i).

In particular, if s ¤ 1C n, then there are multiplicative algebraic states on P.M�-red/

which are not positive. This shows that it is not possible in general to describe the order
on the reduced algebra in the commutative case as the one induced by all multiplicative
algebraic states, even if the order on the original algebra is of this type. From the point of
view of real algebraic geometry, this is not surprising: the type of structures that enjoy a
reasonable stability under many constructions are not the real algebraic sets but the semi-
algebraic sets, i.e., sets that can be defined by a finite number of polynomial inequalities.

One problem arising in real algebraic geometry is to give an algebraic description of
quadratic modules or preorderings that are defined via their (multiplicative) states. If one
succeeds, such a result also yields an algebraic description of the states, and in some cases,
these two results are even equivalent. Recall the definition of the preordering generated
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by a subset of Hermitian elements of a commutative �-algebra from (2.4). The following
theorem is an adaption of the Positivstellensätze of Marshall [16] and Schmüdgen [27] to
our setting.

Theorem 6.8. Let A be a finitely generated commutative �-algebra and ¹x1; : : : ; x`º a
finite set of Hermitian generators of A. Moreover, let G be any finite subset of AH. Given
p 2 1C hhG iipo for which there exists � 2 Œ0;1Œ such that jh';xj ij � �h';pi holds for all
' 2ZC.A;G / and all j 2 ¹1; : : : ; `º, then for every a 2AH, the following are equivalent:

(i) h'; ai � 0 for all ' 2 ZC.A;G /;

(ii) there ism1 2N0 such that for all "2 �0;1Œ there ism2 2N0 for which pm2.aC
"pm1/ 2 hhG iipo.

Moreover, such an element p 2 1C hhG iipo with the property required above exists: for
example,

p WD 1C
X̀
jD1

x2j

would always be a valid choice, and if ZC.A; G / is weak-�-compact, then one can even
take p WD 1.

Proof. As A is commutative and finitely generated, its Hermitian elements form a finitely
generated real commutative unital algebra

AH Š RŒx1; : : : ; x`�=	;

where 	 is an ideal of the polynomial algebra RŒx1; : : : ; x`� and finitely generated because
RŒx1; : : : ; x`� is Noetherian. Let h1; : : : ; hm 2 	 be generators of 	 and consider the
preordering

T WD hh¹g01; : : : ; g
0
k ; h1; : : : ; hm;�h1; : : : ;�hmºiipo

of RŒx1; : : : ; x`�, where g01; : : : ; g
0
k
2 RŒx1; : : : ; x`� denote any representatives of the

elements g1; : : : ; gk of G . Then [16, Corollary 3.1] applies and gives a characterization of
those elements a0 2 RŒx1; : : : ; x`� which fulfil a0.y/ � 0 for all those y 2 R` for which
g0i .y/� 0 and hj .y/D 0 hold for all i 2 ¹1; : : : ; kº and all j 2 ¹1; : : : ;mº. After projecting
down onto AH, one obtains the above statement. The special case of weak-�-compact
ZC.A;G / and p WD 1 has appeared earlier in [27, Corollary 3].

This Positivstellensatz especially applies to the quadratic module R�, which gives
some insight into what types of orderings can be obtained as a result of the reduction
procedure.

Corollary 6.9. Write

G WD

² nX
iDs

zizi

³
� P.C1Cn/

u1
H ;
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and let p 2 1C hhG iiqm be an element for which there exists � 2 Œ0;1Œ such that �p.w/�
jwi j

2 holds for allw 2Z� and all i 2 ¹0; : : : ;nº. Given that f 2P.C1Cn/
u1
H , then f 2R�

if and only if there is m1 2 N0 such that for all " 2 �0;1Œ there is m2 2 N0 for which

pm2.f C "pm1/ 2
�
hhJ � �ii�id

�
H C hhG iiqm:

Here, �
hhJ � �ii�id

�
H WD hhJ � �ii�id \ P.C1Cn/

u1
H :

Proof. Note first that hhG iiqm D hhG iipo because G contains only one element. The finite
subset [

i;j2¹0;:::;nº

®
Œzizj C zj zi ��; iŒzizj � zj zi ��

¯
� P.M�-red/H

generates the �-algebra P.M�-red/. Moreover, the estimate

2�hıŒw�; Œp��i D 2�p.w/ � jwi j
2
C jwj j

2
� jwiwj C wjwi j D jhıŒw�; Œzizj C zj zi ��ij

holds for all i; j 2 ¹0; : : : ; nº and Œw� 2M�-red with representative w 2 Z�, and similarly
also

2�hıŒw�; Œp��i � jhıŒw�; iŒzizj � zj zi ��ij:

Using Proposition 6.6, this means that Theorem 6.8 can be applied to P.M�-red/, ŒG ��,
and Œp��.

It follows from Lemma 6.1 that f 2 R� if and only if Œf �� 2 P.M�-red/ is pointwise
positive. Using Proposition 6.6, this is equivalent to

h'; Œf ��i � 0 for all ' 2 ZC.P.M�-red/; ŒG ��/:

By Theorem 6.8, this is the case if and only if there exists m1 2 N0 such that for all
" 2 �0;1Œ there is m2 2 N0 for which Œpm2.f C "pm1/�� 2 hhŒG ��iipo, or equivalently,

pm2.f C "pm1/ 2 .hhJ � �ii�id/H C hhG iipo;

because kerŒ � �� D hhJ � �ii�id and ŒhhG iipo�� D hhŒG ��iipo.

In contrast to (6.1) of Lemma 6.1, Corollary 6.9 above gives a purely algebraic char-
acterization of the quadratic module R�. For the special case of CPn, we even obtain the
following corollary.

Corollary 6.10. For signature s D 1C n, i.e., M .1Cn/
�-red Š CPn, the identity

R.1Cn/
� D

®
f 2 P.C1Cn/

u1
H

ˇ̌
f C "1 2 .hhJ � �ii�id/H

C .P.C1Cn/u1/CCH for all " 2 �0;1Œ
¯

(6.6)

holds, where
.hhJ � �ii�id/H WD hhJ � �ii�id \ P.C1Cn/

u1
H
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and where .P.C1Cn/u1/CCH denotes the algebraically positive elements of P.C1Cn/u1

like in (2.3), i.e., the sums of Hermitian squares. Moreover, every algebraic state ! on
P.CPn/ is positive, hence a state.

Proof. Equation (6.6) is just Corollary 6.9 for s D 1C n and p WD 1. Given any algebraic
state ! on P.CPn/, then this shows that h!; Œf ��i D h!; Œf C "1��i � " � �" for all
" 2 �0;1Œ and all f 2 R

.1Cn/
� because ŒhhJ � �ii�id�� D ¹0º and Œ.P.C1Cn/u1/CCH �� �

P.CPn/CCH . So, ! is positive with respect to the pointwise order on P.CPn/.

However, for other signatures s 2 ¹1; : : : ; nº, it is necessary to add an additional gen-
erator, like

Pn
iDs zizi , to the description of R

.s/
� , and there do exist algebraic states on

P.M
.s/
�-red/which are not positive because they yield negative results on

Pn
iDsŒzizi ��, e.g.,

the functionals ıŒw� defined in (6.5) with Œw� 2 yM .s/
�-red nM

.s/
�-red. From a purely algebraic

point of view, this might be rather unexpected.
These algebraic characterizations of the quadratic module R�, hence of the order

on P.M�-red/, are especially interesting with respect to a possible generalization to the
non-commutative case described in [26]. If one treats the reduction of non-formal star
products from C1Cn toM�-red in the context of representable Poisson �-algebras, can one
give similar characterizations of the corresponding quadratic module R�? In the special
case s D 1C n, i.e., for the deformation quantization of CPn, such a characterization will
be obtained in Part II of this article; see [25].
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