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Non-commutative ambits and equivariant
compactifications

Alexandru Chirvasitu

Abstract. We prove that an action p : A — M(Co(G) ® A) of a locally compact quantum group
on a C *-algebra has a universal equivariant compactification and prove a number of other category-
theoretic results on G-equivariant compactifications: that the categories compactifications of p and
A, respectively, are locally presentable (hence complete and cocomplete), that the forgetful functor
between them is a colimit-creating left adjoint, and that epimorphisms therein are surjective and
injections are regular monomorphisms.

When G is regular, coamenable we also show that the forgetful functor from unital G-C *-
algebras to unital C *-algebras creates finite limits and is comonadic and that the monomorphisms
in the former category are injective.

1. Introduction

Consider a continuous action
7:GxX—->X

of a topological group on a topological space. While there is always a universal, functorial
map X — BX into a compact Hausdorff space (the Stone—Cech compactification of X
[30, Section 38]), it is only very rarely that the induced action G x X — BX is contin-
uous. The original motivation for the present paper was the fact that, nevertheless, there
is always a universal G-equivariant compactification of X. In short (and more precisely),
the inclusion functor

CH® — Top®

from compact Hausdorff G-spaces into topological G-spaces has a left adjoint; see [15,
Section 2.8] or the much more extensive discussion in [14, Section 4.3]. That left adjoint
then specializes back to X + BX when G is trivial. The (greatest) ambit of G [11, Intro-
duction], featuring in the title of this paper, is the result of applying that left adjoint to the
translation self-action G x G — G.
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The aim here is to examine the same types of questions in the context of non-commuta-
tive topology (i.e., C *-algebras). Topological groups, in particular, are now locally com-
pact quantum groups (LCQGs) in the sense of [23, Definition 4.1].

Definition 1.1. A locally compact quantum group G consists of a C *-algebra C = Cy(G)
equipped with a non-degenerate morphism

such that
+ wehave (A ® id)A = (id ® A)A as maps C — M(C®3);
e the sets

{(w ®id)A(@) |w € C*, a€ A} and {(idRw)A(a) |w € C*, a € A}

are contained in A and span dense subsets therein;

* C is equipped with left- and right-invariant approximate KMS weights.

The weights in last item are analogs of the left and right Haar measures on a locally
compact group (hence the name: Haar weights); we will have no need to elaborate on
the precise meaning of that part of the definition, as it plays only an indirect role in the
discussion below.

Apart from whatever intrinsic interest generalization for its own sake might hold,
recasting topological results in C*-algebraic terms occasionally has the effect of sharp-
ening the proofs by divorcing them from some of the unnecessary point-set topological
baggage. Additionally, this type of generalization can also raise its own peculiar problems
that might have been difficult to notice or appreciate in the “classical” setup of ordinary
spaces/actions.

With this in mind, the dictionary is as follows:

* in place of an ordinary space X, we have a possibly non-commutative C*-algebra
A = Cyp(X) (of “continuous functions vanishing at infinity” on a non-commutative
space);

e G is alocally compact quantum group as above, reified as its own function algebra
Co(G);

e 7 becomes instead an action
p:A—> M(Co(G)® A), (1.1)

in the sense of Definition 2.8 below, where M (—) denotes the multiplier algebra con-
struction [10, Section I11.7.3];

» (perhaps as expected from perusing the classical machinery), a G-equivariant com-
pactification of p (Definitions 3.1 and 3.3) is a G-action on a unital C*-algebra B
“sandwiched” equivariantly between A and its multiplier algebra M(A) (the latter
being the non-commutative analog of 8X).
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One of the results of this paper, then, is that equivariant compactifications exist in the
non-commutative setup sketched above (Corollary 3.8).

Theorem. Every action by a locally compact quantum group on a C*-algebra admits a
universal equivariant compactification. ]

The proof is essentially category-theoretic and suggests its own separate line of inves-
tigation into the nature of various categories of quantum actions or spaces. Specifically,
given an action (1.1), we focus in Section 3 on the following categories:

* CPCT(p) of equivariant compactifications of A;
*  CPCT(A) of compactifications of (the non-commutative space underlying) A;
* A €S, of C* morphisms from A into unital C *-algebras.

These are progressively poorer in structure, with forgetful functors pointing down the
chain as listed here (see Definitions 3.1 and 3.3 and subsequent discussion). A brief sum-
mary of some of the results (Theorems 3.5, 4.1, 4.4, 5.4, and Corollaries 5.5 and 5.6) reads
as follows.

Theorem. Let (1.1) be an action of an LCQG on a C*-algebra.

(a) The categories CPCT(p), CPCT(A), and A | € are all locally presentable,
hence also complete and cocomplete.

(b) The forgetful functors
CPCT(p) — CPCT(4) — A | €f

are all left adjoints and create colimits.
(c) In any of these categories, the epimorphisms are the surjections.

(d) Injective morphisms are equalizers (i.e., regular monomorphisms). ]

Although on a first encounter local presentability (Definition 5.1) might appear a lit-
tle technical, it reflects fairly reasonable intuition (that the category can be recovered via
colimits from “small” objects) and is extremely valuable in practice in proving the kinds
of universality results we are concerned with here: as the proofs of Corollaries 5.5 and 5.6
make it clear, for instance, local presentability delivers limits and adjoint functors essen-
tially “for free”.

In Section 6, we focus on the forgetful functor €; G €} from actions (1.1) on unital
C *-algebras to (again unital) C *-algebras; it is recoverable from the previous discussion

as
CPCT(p) — CPCT(A),

where A is the zero algebra {0}. Much of Section 6 specializes to coamenable G ([8,
Definition 3.1] and Definition 6.4). On the one hand, this is a non-trivial constraint; on
another though, it is also an instance of the phenomenon noted above, of encountering
purely non-commutative phenomena when generalizing results from classical point-set
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topology: ordinary locally compact groups are all coamenable, so the issue was invisible
in the classical setting.
The main results (in Theorems 6.9 and 6.13 and in Corollary 6.11) are the following.

Theorem. Let G be a regular coamenable locally compact quantum group.
(a) The forgetful functor €f G € creates finite limits and is comonadic.

(b) The monomorphisms in €} G are the injections. [ ]

As explained in Section 6.1, the comonadicity claim formalizes the intuition that a
non-commutative G-space is precisely a non-commutative space equipped with addi-
tional “algebraic operations” and that the forgetful functor forgets that additional algebraic
structure.

2. Preliminaries

We make casual use of operator-algebraic background, as available, say, in [10,32,38] and
numerous other good sources; the references are more precise where appropriate. Refer-
ences for locally compact quantum groups include [5, 23, 29], again with more specific
citations in the text below.

The unadorned tensor-product symbol “®”, placed between C *-algebras, denotes the
minimal or spatial C* tensor product [10, Section I1.9.1.3]. We will, on occasion, also
refer to the maximal C* tensor product ® [10, Section 11.9.2].

2.1. Multipliers and categories of C *-algebras

A morphism between unital C *-algebras can only, reasonably, mean one thing: a continu-
ous, unital, *-preserving, multiplicative, and linear map. We denote the resulting category
by €} to remind the reader of the unitality.
Non-unital C *-algebras form categories in a number of competing ways (all collapsing
back to €} in the unital case):
(a) €*, where morphisms are as in €5, simply dropping the unitality requirement
(which no longer makes sense). This category is not frequently useful as is, so
there are variants to consider.

(b) €*, where the morphisms are those of €* which are additionally proper [17,
Section 2.1]: f : A — B is proper if
f(A)B = B = Bf(A). 2.1

As explained in [17, p. 80], in the classical case (i.e., for commutative C*-
algebras), these dualize precisely to the proper continuous maps between locally
compact Hausdorff spaces.
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(c) €* (the most useful version in quantum-group theory, as it seems), where a mor-
phism A — B is by definition a non-degenerate morphism A — M(B) into the
multiplier algebra of B, where recall [24, p. 15] that non-degeneracy is here the
selfsame condition (2.1).

The set of such morphisms A — B in €* is often denoted by Mor (A4, B): [43,
Section 0], [28, Definition A.4], [13, Section 1.1], etc. Such a morphism extends
uniquely [24, Proposition 2.5] to a unital C*-morphism M(A) — M(B) that is
furthermore strictly continuous on the unit ball of M(A) (or equivalently [39,
Corollary 2.7], just plain strictly continuous). This then allows for composition
of morphisms.

We will usually denote extensions M(A) — M(B) of non-degenerate f : A —
M (B) by the same symbol, relying on context for telling the two apart.

Remark 2.1. Note that the proper morphisms A — B are precisely the non-degenerate
morphisms A — M (B) that actually take values in B. This means that we have an inclu-
sion

et cex
of categories. Neither, though, is comparable with €*.

It will also pay off to introduce a notation that singles out certain subalgebras of mul-
tiplier algebras. In [5, paragraph preceding Définition 0.1], the authors of that paper write

M(A;J) ={xeMA) |xJ+JIxCJ}

for an ideal J <1 A. As noted there, in addition to being a C *-subalgebra of M(A) by
definition, M(A; J) can also be regarded as a C *-subalgebra of M (J) via the multiplier-
restriction morphism

M(A;J) S M(A) - M(J).

The claim here is that this composition is one-to-one; we leave that as an exercise and
henceforth take it for granted.
Of particular interest, in defining actions [5, Définition 0.2], will be algebras of the
form
MMB®AT;BR A) = M(B® A: B ® A),

where A and A are as in [42, Propositions 2.1.3 and 2.1.7]:
+ AT = A @ C with 4 as an ideal and (0, 1) as the unit;

o Ais the smallest unitization of A, i.e., A itself if the latter was already unital and At
otherwise.

There is a tradition (e.g., [25, paragraph following Lemma 1.1] or [34, Section 1]) of
writing
M(A® B)=M(A® B; A® B).
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Since this paper’s conventions demand that the affected tensorand A be placed on the
right (rather than left), we decorate “M” with that tensorand as a subscript instead, to the
notation. Thus,

Ms(AQ B):= M(A® B: A® B) = M(AT ® B; A® B),
MgB®A) :=MB®A BA) =MBRAT; BR A), (2.2)
etc.

Remark 2.2. Naturally, when A is unital, M4 (B ® A) specializes back to the usual mul-
tiplier algebra M(B ® A).

Although, as mentioned above, the C* categories €* and €* tend to be more useful
in practice than €%, the latter does feature in the following observation.

Lemma 2.3. For a fixed C*-algebra C, the construction
A My(C ® A) 2.3)

is an endofunctor on €*.
Furthermore, that functor preserves morphism injectivity.

Proof. We just focus on how the functor applies to morphisms; the fact that it respects
compositions and identities will then be routine.

Consider a C*-morphism f : A — B (in €*; no non-degeneracy assumptions, etc.).
It then extends [10, Section II.1.2.3] uniquely to a unital morphism

def:C®AT - C® B,

which is proper in the sense of (b) in the above discussion on categories. This means that
it extends strictly continuously to a unital morphism

d®f: M(C ® AT) - M(C ® B) (2.4)

and finally to (2.3) because this last extension has the requisite multiplier property: for
x € Mg(C ® AT)and ¢ € C, we have

AR )X)(c®1) =1 ® f)(x(c ® 1))
€ (id® f)(C ® A) because x € My(C @ A™)
cCQ®B.

As this happens for arbitrary ¢ € C, (2.4) indeed restricts to a morphism
My(C ® A) > Mp(C ® B).
As for the injectivity-preservation claim, recall first [38, Proposition 1V.4.22] that

f 1 A— Binjective = id®f : C ® A - C ® B is injective.
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The conclusion then follows from the fact that the latter morphism extends to M4(C ® A),
wherein C ® A is an essential ideal: the kernel of that extension, if non-trivial, would
intersect C ® A non-trivially. |

Remark 2.4. Itis observed in [25, Lemma 1.4] that for C *-algebras A and C and an ideal
I < A the restriction morphism

M(C®A) > MCRI)
identifies the ideal
{meMy(CQA) |mx, x meC®I, VxeCQA} C My(C ® A)

with My (C ® I) € M(C ® I). That identification (or rather its inverse) is easily seen to
be precisely the embedding

Mp(C ®1) — Ms(C ® A)
provided by Lemma 2.3.

A few further remarks on multiplier algebras follow for occasional future reference.

Recall [42, Section 1.4] that an essential ideal in a C *-algebra is one having non-zero
intersection with every non-zero ideal. A well-known result is recorded here for future
reference.

Lemma 2.5. If I < A and J < B are essential C*-ideals, thensois |  J < A® B.
Equivalently, the morphism

A®B > M(I®J) (2.5)
obtained by realizing A ® B as an algebra of multipliers on I ® J is one-to-one.

Proof. The fact that the two claims are equivalent is part of [42, Proposition 2.2.14].
[37, Proposition 5.1] proves the statement for A = M(I) and B = M(J). A - M(I)
and B — M(J) are embeddings by the same [42, Proposition 2.2.14], and minimal C*
tensor products preserve map injectivity [38, Proposition 1V.4.22], so the injectivity of
(2.5) follows from writing as a composition of two injective maps:

ARBCM()®M(J)S MU ®J). n

In particular, applying Lemma 2.5 to the essential ideals A I M(A) and B < B, we
obtain the following corollary.

Corollary 2.6. For C*-algebras A and B, the canonical morphism
M(M(A)® B) > M(A® B) (2.6)

resulting from realizing M(A) ® B as an algebra of multipliers on A ® B is one-to-
one. |
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Remark 2.7. The discussion in [41, Section 3.1, second paragraph] traces the general
failure of an action 4 O G to extend to M(A) O G to the fact that, in general, (2.6) is
a proper embedding. Recall the distinction between the two sides in the “half-classical”
case when B = Cy(X) for some locally compact space X:

* M(A® B) = M(Co(X, A)) is the algebra of bounded, strictly continuous functions
X — M(A) [4, Corollary 3.4];

* whereas by the same result, M(M(A) ® B) = M(Cy(X, M(A))) is the algebra of
bounded norm-continuous functions X — M (A).

Since the latter, norm-continuity requirement is generally stronger than strict continuity,
(2.6) will indeed generally be a proper embedding.

2.2. Actions

Definition 2.8. Let A be a C*-algebra and G a locally compact quantum group. An action
A O G is a non-degenerate morphism p : A — M(Cy(G) ® A) such that

(@) (id®p)p = (Ag ® id)p as morphisms 4 — M(Co(G)®? ® A);
(b) p takes values in M4(Co(G) ® A) (notation as in (2.2)) so that
P(A)(Co(G) ® C) € Co(G) ® 4;

(c) we have

p(A)(Co(G) ® C)
We will occasionally also denote such a gadgetby p: 4 O G.

=Co(G)® A. 2.7

Remark 2.9. The notation A O G is meant to suggest the left-right switch that occurs
every time we pass from a space to its associated function algebra and from an action to a
coaction. Thus,

* aleft coaction p : A — M(Cy(G) ® A) as in Definition 2.8;
* it counts as a right action of G on A4;
» and hence it is a left action of G on the “non-commutative space” dual to A.
Remark 2.10. The non-degeneracy requirement in Definition 2.8 might be needed to
make sense of condition (a) (so as to be able to define the relevant compositions, etc.), but
assuming conditions (b) and (c), non-degeneracy follows:

Co(G) ® A = Co(G) ® A2 by Cohen factorization [18, Theorem 32.22]: A2 = A

C PG BOTC A by 2.7)
CP DG A,

as desired.
For this reason, when checking candidate actions against Definition 2.8, we will not
belabor degeneracy much.
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Example 2.11. The comultiplication
Ag 1 Co(G) = M(Co(G) ® Co(G))

is the regular action Co(G) O G. That it is indeed an action follows, for instance, from
[44, Proposition 5.1] and [23, Proposition 6.10].

Example 2.12. Similarly, the universal function algebra Cj'(G) (4, in [22, Section 5],
where A is our Cy(G)) also comes equipped with a G-action

(1 ®id)AL : CH(G) > M(Co(G) ® CX(G)).

Here,
Aé : C&‘(G) — M(C(’)‘(G) ® C(')‘ (G@))

is the universal version of the comultiplication [22, Proposition 6.1], 7 : C}(G) — Co(G)
is the canonical surjection [22, Notation 5.1], and the fact that once more this is an action
in the sense of Definition 2.8 follows from [22, Proposition 6.1].

We will also have to consider morphisms of C*-algebras equipped with actions by
some fixed G. The notion of equivariance with respect to G-actions makes sense for a
broader class of morphisms than those that make up any of the three categories discussed
above: arbitrary C*-morphisms A — M(B) will do. Cf. [41, Section 4.3], where the con-
cept (of equivariance) is essentially the same: there too, possibly degenerate morphisms
A — M(B) are considered.

Definition 2.13. Let pg : A O G and pp O G be two actions by an LCQG. A C*-
morphism f : A — M(B) is (G-)equivariant if the diagram

M

A M(Co(G) ® B)

B 4

M4 (Co(G) ® A) M(Co(G) ® M(B)

PB

e f

commutes, where

» the bottom arrow id ® f is that provided by the functor of (2.3), having identified
M(Co(G) ® M(B)) = My ()(Co(G) ® M(B))

(because M (B) is unital);
* the bottom right-hand inclusion is that of Corollary 2.6.
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3. Categories of non-commutative structured spaces

As noted in [15, Section 2.8], one approach to proving that for a topological group G
every (classical) G-space admits a universal G-equivariant Hausdorff compactification
is to proceed categorically (via adjoint functor theorems in the style of [26, Section V.6
Theorem 2 or Section V.8 Theorem 2]), for instance. The present section applies the same
category-theoretic approach to the non-commutative setting that is our focus.

Apart from ‘6’1* and its various other flavors discussed above, we will encounter a
number of other categories.

Recall [15, Introduction] that a compactification of a space X is a compact Haus-
dorff space K together with a dense-image continuous map X — K. Casting possibly-
non-unital C*-algebras as non-commutative locally compact spaces, we work with the
following analog.

Definition 3.1. Let 4 be a (possibly non-unital) C *-algebra. A compactification of (the
non-commutative space underlying) A is a triple (B, £, r) fitting into a commutative dia-

gram,
.

B G.1)

A—_ .M
where
* ris a morphism in the category €} of unital C *-algebras;
* {is a morphism in €*;
e and the bottom arrow is the canonical inclusion.

Compactifications of A form a category CPCT(A) in the obvious fashion, with morphisms
(B,L,r)— (B, U1

consisting of those unital C*-morphisms B — B’ that make the appropriate four-vertex
diagram commute.

Remark 3.2. Classically, compactifications entail some restrictions not in evidence in
Definition 3.1: in [30, Definition preceding Theorem 29.2] defines a compactification of
a space X to be a compact Hausdorff space Y, containing X as a dense subspace. The
C *-analog of this would be a diagram (3.1) with r injective.

The reason for not demanding the injectivity of r is that it seemed both unnecessary
and artificial in the context of category-theoretic universality and adjunctions. This is also
visible in the classical setup:

* On the one hand, not every space has a compactification in the restricted sense of
the preceding paragraph; in fact, the ones that do are precisely the completely regular
spaces of [30, Definition preceding Theorem 33.2] (e.g., by [30, Theorem 34.3]).

*  On the other hand, the universal map X — BX into a compact Hausdorff space (men-
tioned in the Introduction) makes sense for arbitrary topological spaces, and in fact,



Non-commutative ambits and equivariant compactifications 577

[26, Section V.8, discussion following Corollary] extends the term “compactification”
to this broader setup. The density of the image of this map is then a consequence of its
universality.

There are also equivariant versions of the various categories.

Definition 3.3. Let G be an LCQG.

(a) ‘GI*G is the category of unital C *-algebras equipped with an action (Definition 2.8)
by a fixed LCQG G, with G-equivariant unital morphisms in the sense of Defini-
tion 2.13.

(b) For an action p : A O G on a (possibly non-unital) C *-algebra A, the category
CPCT(p) of equivariant compactifications of A (or p) consists of quadruples
(B,L,r, pg) where
» the triple (B, £, r) is an object of CPCT(A), as in Definition 3.1;
 the unital C*-algebra B additionally carries a G action pp : B O G;

* and all maps in (3.1) are G-equivariant in the sense of Definition 2.13.

The morphisms are as in CPCT(A), but also G-equivariant.

There are also the comma categories A | €7 of [26, Section I.6]: the objects are C *-
morphisms A — B for unital B, with unital morphisms that make the relevant triangles
commute.

The statement of Theorem 3.5 refers to the following notion, dual to [26, Section V.1,
Definition] (slightly adapted for our use here).

Definition 3.4. A functor F : € — €’ creates colimits if for every functor S : D — €
from a small diagram, a colimiting cocone for F o S : D — €’ is the image of a unique
(up to isomorphism) cocone on S, and that cocone is a colimit for S.

Theorem 3.5. Let p: A O G be an LCQG action on a C*-algebra. The three categories
in the diagram

forget forget
CPCT(p) — " CPCT(A) — Al ¢; 32

L
(B’E’r»pB) N (B,Z,r) _ A— B
are all cocomplete, and the forgetful functors depicted therein all create colimits.

Proof. €] has coequalizers and coproducts, as in [31, Section 2.1]; the latter source dis-
cusses the cokernels of a non-unital morphism ¢ : A — B of non-unital C *-algebras,
i.e., the quotient by the closed ideal generated by ¢(A). Coequalizers of morphisms
¢; : A — B,i = 0,1 can be described similarly, as quotients by ideals generated by

wola) —¢1(a), ac€A.
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The cocompleteness of ‘C’i“ follows, say, from [26, Section V.2, Theorem 1] or [1, Theorem
12.3]. That its comma category

Alef ~at e

is also cocomplete is then a simple exercise: the colimit of a functor S : & — AT | €]
is identifiable with the colimit of

S' D €,

where
e D' is D with an additional initial object *;

e S'restricts to S on O C D’ and sends * — A and the unique morphisms * — d to
the morphisms constituting the objects S(d) € A1 | €.

We prove the colimit-creation claim for the overall forgetful functor
U : CPCT(p) — €7,

i.e., the composition of all of the functors in the diagram (3.2). No additional subtleties
emerge in working with the individual functors, so the relevant ingredients will all feature
in this single proof.

Denote € := CPCT(p) for brevity and consider a functor S : & — € from a small
category 9. The cocompleteness of €} ensures the existence of a colimit

T *
B :=limUS e ¢, (3.3)

i.e., a unital C *-algebra equipped with a colimiting US-cocone in € consisting of unital
C* morphisms
tg : B4 > B, where B; := S(d) ford € D.

We will equip B with all of the desired structure (an action by G, etc.), in the only way
possible, given the various compatibility constraints.

(1) A G-action p : B O G. Denoting by pg : By O G the individual actions on the C*-
algebras B;, we want an action p : B J G that fits into the commutative diagrams

id ®tg

bu M(Co(G) ® By) —4®
— M(Co(G)@ B) (B4
—_

ld o

By

for d € O and is further compatible in the obvious fashion with the morphisms

S(f): By — By ford 5> d’ e D.
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That such a p exists follows immediately from the universality property of the colimit
(3.3). It is of course unital and hence non-degenerate, and its coassociativity

(id®p)op=(A®id)op (3.5)
follows again from the universality property of the colimit (3.3) and the diagrams

M(Co(G) ® Co(G) ® Ba)

(id®Pd)Pd=(A®id)P/ %id ®td

B, M(Co(G) ® Co(G) ® B),
cd\> B——(
where either morphism in (3.5) will do to fill in the arrow marked “e”.
We also need to verify the continuity of the action p : B O G, i.e., condition (c) of
Definition 2.8 with B in place of A. This follows from the commutativity of (3.4) and the
analogous conditions

pd(Ba)(Co(G) ® C) " = Co(G) ® By

for the individual p; and the fact that
tlq(Bg) € B, deD
generate B as a C *-algebra.

(2) An equivariant morphism £ : A — B. We already have equivariant morphisms £ :
A — By, so simply setting

L
=A% B, B

will do: the commutativity of the diagrams

ta By S(f)
/ \
A =By
Ed/

for f :d € d’ ensures that this definition does not depend on d, and the equivariance
follows from that of £4 and ¢4.

(3) An equivariant morphism r : B — M(A). We have equivariant morphisms r; fitting
into commutative diagrams

S By Tal

Bg — M4
T4

so the universality property of the colimit (3.3) provides r : B — M(A), along with its
equivariance.
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(4) Colimit creation. That what we have just constructed is indeed a colimit in
€ = CPCT(p)

is obvious from the construction itself, which at every stage leverages a universality prop-
erty. On the other hand, the uniqueness (up to isomorphism) of the resulting S-cocone
required by Definition 3.4 is also a consequence of the selfsame universality of Defini-
tion 3.4:

* the obligate commutativity of (3.4) (for all d € D) defines p uniquely;

» similarly, the requisite commutativity of

7] B r
B uw
rq

determines r;

e and once more,

returns a unique £.

This finishes the proof. ]

It is perhaps worth spelling out an “absolute” version of Theorem 3.5, involving G
alone (and no action p).

Note, incidentally, that the same arguments also give colimits and colimit creation
absent A; we only record the statement, as the proof essentially recapitulates (in part) that
of Theorem 3.5.

Corollary 3.6. For any LCQG G, the category €f G is cocomplete, and the forgetful

functor
e’ - er

creates colimits.

Proof. Simply set A = {0} in Theorem 3.5. This is a unital C*-algebra (in fact the fer-
minal object of €] [1, Definition 7.4], admitting exactly one morphism from every other
object), and the right-hand forgetful functor in (3.2) becomes an equivalence, while the
left-hand functor specializes to €}¢ — €7 [

Remark 3.7. Corollary 3.6 is very much in the spirit of [ 14, Theorem 3.2.4], to the effect
that the forgetful functor from topological G-spaces to G-spaces creates limits: the cate-
gories of C *-algebras under consideration here are intuitively dual to those of “spaces”.
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Theorem 3.5 will help prove that among all compactifications of an actionp: A O G
there is a “largest” one, analogous to its classical counterpart discussed in [15, Sec-
tion 2.8].

Corollary 3.8. For an LCQG action p, the category CPCT(p) has a terminal object.

Proof. Given the cocompleteness provided by Theorem 3.5, (the dual to) [26, Section V.6,
Theorem 1] reduces the claim to the solution-set condition: there is a set (as opposed to a
proper class) of objects

xi := (Bj,4i,ri, pi) € CPCT(p)

so that every object of CPCT(p) admits a morphism to some x;. We will argue that the x;
can be chosen so that the right-hand morphisms r; : B; — M (A) are embeddings; clearly,
then, they constitute a set, since there is an upper bound on the cardinalities of all of the
structures involved.

Consider an arbitrary object (B, £, r, pg) in CPCT(p). The equivariance (Definition
2.13)of r : B — M(A) provides the commutative diagram

M

B M(Co(G) ® A)

B <

MCo@)®B) __ M(Co(G) ® M(4))
id ®r

pA

whence it follows that the restriction of
pa s M(A) > M(Co(G) ® A)

to the unital C *-subalgebra r(B) € M(A) takes values in M(Cy(G) ® r(B)). That re-
striction, henceforth denoted by p, (), then fits into a commutative diagram

Pr(B)

: r(B) —— "
8 ( M(Co(©) & r(B))
s M(Co(G) ® B) — g,

idQ®r

The requisite coassociativity of p, gy follows immediately from that of pp and the surjec-
tivity of r : B — r(B), as does the action-continuity condition

Pr8)(r(B))(Co(G) ® C) = Co(G) ® r(B).
We thus have a morphism in CPCT(p) from the arbitrary object (B, £, r, pg) to the object
(r(B). rof. (r(B) € M(A)). pr(s)) € CPCT(p).

As explained above, the fact that the third component of this new object is an embedding
into M(A) completes the proof. |
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Remark 3.9. The bulk of the proof of Corollary 3.8 argues, essentially, that a quotient of
a C*-algebra B carrying a G-action by a G-invariant ideal inherits a natural action. For
this latter remark, see also [12, p. 69].

We can now define, in the present quantum context, versions of classical action-
compactifications (see [15, Section 2.8] for arbitrary actions and [11, Introduction] for
compactifications of regular self-actions, i.e., ambits).

Definition 3.10. The greatest (or maximal, or equivariant) compactification of an LCQG
action p : A O G is the terminal object of CPCT(p) provided by Corollary 3.8.

The greatest ambit of a locally compact quantum group G is the maximal compactifi-
cation of its regular action

Ag 1 Co(G) = M(Co(G) ® Co(G))

discussed in Example 2.11.

4. Equivariant epimorphisms and regular monomorphisms

Recall [1, Definitions 7.32 and 7.39] that a morphism f : A — B in a category is

* monic (or amonomorphism) if it is left-cancellable: for every parallel pair f; : A’ — A,
i = 1,2, we have

fh=rfh=fi=fs

* dually, epic (or an epimorphism) if it is right-cancellable: for every parallel pair f; :
B — B',i = 1,2, we have

N =Lhf=h=/

The notions are meant to recast, in purely categorical terms, those of injection and surjec-
tion, respectively.

In concrete categories [1, Definition 5.1], such as those of Theorem 3.5 (i.e., those
consisting of sets with additional structure, where morphisms are structure-respecting
functions), surjections are always epimorphisms, but the converse is occasionally inter-
esting and non-trivial: [36, Theorem 2] and [19, Corollary 4], for instance, prove this
converse (epimorphisms are surjective) for €. We extend the result to the categories
studied in Theorem 3.5, after some preparation.

Theorem 4.1. For any locally compact quantum group G and action p : A O G, the
epimorphisms in any of the categories CPCT(p), CPCT(A), and A |, €] are those whose
underlying C*-morphism is surjective.

Recall first the following well-known characterization of monomorphisms.
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Lemma 4.2. Let f : A — B be a morphism in a category, and assume its self-pullback

’”/>A\f}

2

AXBA

exists. The following are equivalent:
(@) f is monic;
(b) 1y is monic;
(c) both m; are monic;
(d) 7y is an isomorphism;

(e) both m; are isomorphisms.

Proof. That (b)<>(c) and (d) <> (e) follows from the fact that A x g A has an automorphism
interchanging the factors and the ;, the equivalence (a)< (e) is noted in [27, Section 1.2,
discussion on kernel pairs], and given that m; is a retraction [1, Definition 7.24] (i.e., it
has a right inverse, namely, the map A — A xp A with identity components), it is an
isomorphism precisely when it is monic [1, Proposition 7.36]. ]

Naturally, there is a dual version of Lemma 4.2 relating epimorphisms and pushouts,
etc. As a consequence, we have the following lemma.

Lemma 4.3. (a) Pullback-preserving functors defined on categories with pullbacks also
preserve monomorphisms.

(b) Dually, pushout-preserving functors defined on categories with pushouts preserve
epimorphisms.

Proof. Immediate from Lemma 4.2 and its dual version. ]

Proof of Theorem 4.1. Theorem 3.5 and Lemma 4.3 reduce the problem to the rightmost
category in (3.2), i.e., the comma category A | €;. Consider an epimorphism in that
category, consisting of a morphism f : B — C in €] fitting into a commutative triangle

Factoring f = f’ f” through its image, f’ is also epic [, Proposition 7.41]; there is no
loss of generality, then, in assuming that f itself is an embedding. As such, it must be an
equalizer in €} by [19, Theorem 6]. Because for any object ¢ € € in complete category,
the forgetful functor

cl€—->F¢
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is easily seen to create limits, f is also an equalizer in
Al €r~At el
An epic equalizer is an isomorphism [, Proposition 7.54], so we are done. ]

As noted in the proof of Theorem 4.1, [19, Theorem 6] shows that embeddings of
C *-algebras are equalizers. It is not difficult to show that, dually to [36, Theorem 2] or
[19, Corollary 4], in €} the monomorphisms (or monic morphisms [1, Definition 7.32];
the notion dual to that of “epimorphism”) are exactly the embeddings.

Going back to monomorphisms in €7,

* observe that the forgetful functor ‘61* — SET preserves finite limits;

* so the pullback of a €]-morphism f : A — B along itself is simply the set-theoretic
pullback A xp A;

» whence the two projections A xp A — A can be isomorphisms (i.e., f is monic, per
Lemma 4.2) only when A — B is one-to-one.

In view of this, [19, Theorem 6] says that in ‘6{“ monomorphisms are regular [3, Sec-
tion 0.5].

I do not know whether monomorphisms in any of the categories from Theorem 3.5 are
injective (more on this is shown below), but [19, Theorem 6] does generalize: those that
do happen to be injective are equalizers.

Theorem 4.4. Let G be a locally compact group and p : A O G an action. In any of
the categories CPCT(p), CPCT(A), and A | €}, the morphisms whose underlying C*-
algebra maps are injective are equalizers.

Proof. Consider a morphism
L:x—y

in any of the categories in question, mapped to an injection by the forgetful functor to
€. We saw, in the course of the proof of Theorem 4.1, that ¢ is an equalizer in 4 | €}
(by forgetting to €}, etc.). But then, it is also the equalizer (in A | €} again) of its own
self-pushout:

y— ¢

ey
X
\}y—/

2

y 1Ly

this is the observation dual to [1, Proposition 11.33]. Now, since by Theorem 3.5 the
forgetful functors from any of our categories down to A | € all create colimits, the

equalizer

. t
x————y=—=y]l,y

L2

can be reinterpreted as one in CPCT(p) or CPCT(A), as appropriate. |
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5. Local presentability

We recalled in the course of the proof of Theorem 3.5 that the category €} of unital C*-
algebras is cocomplete; it is in fact a great deal more than that: as noted in [16, Remark
6.101, €} is locally R -presentable in the sense of [3, Definition 1.17]. This follows, for
instance, from [3, Theorem 3.28] and the fact that €} is a variety of algebras equipped
with Rg-ary operations [33, Theorem 2.4].

We recall some category-theoretic background from [3], assuming some of the more
basic material (e.g., (co)limits) covered, say, in [26]. Recall [3, paragraph preceding Def-
inition 1.13] that a regular cardinal k is one which cannot be written as a union of fewer
than « sets, each of cardinality < k.

We will often think of posets (/, <) as categories, with one arrow i — j whenever
i < j (asin [26, Section 1.2]). An aggregate of [3, Definitions 1.13 and 1.17] now reads
as follows.

Definition 5.1. Let « be a regular cardinal. A poset is k-directed if every set of < k
elements has an upper bound.
Let € be a category.

(a) A k-directed diagram in € is a functor (I, <) — € for a k-directed poset (I, <).
(b) A k-directed colimit in € is the colimit of a k-directed diagram.

(c) Anobject ¢ € € is k-presentable if hom(c, —) preserves k-directed colimits, and
it is presentable if it is k-presentable for some regular cardinal «.

(d) € is (locally) k-presentable if
* itis cocomplete (i.e., has arbitrary small colimits; dual to [26, Section V.1]);

» it has a set S of k-presentable objects such that every object is a k-directed
colimit of objects in S.

(e) € islocally presentable if it is locally k-presentable for some regular cardinal «.
We might, on occasion, drop the modifier “locally” and speak instead of “presentable
categories”, etc.

Remark 5.2. As observed, €7 is locally X;-presentable; hence, its comma category
A €r ~ At | ef
must also be Ry -presentable [3, Proposition 1.57].

Presentability is of interest here in part because it facilitates existence proofs for
various universal structures: limits, adjoint functors, etc. As per [3, Remark 1.56], a pre-
sentable category is
* complete (in addition to being, by definition, cocomplete),

* well-powered (i.e., every object has only a set of subobjects [26, Section V.8]) and
dually, co-well-powered.
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All of this renders presentable categories well behaved enough to automatically satisfy
the requirements of Freyd’s Special Adjoint Functor Theorem (SAFT) [26, Section V.8,
Theorem 2]: in the present context, the dual of that result reads as follows.

Proposition 5.3. A functor defined on a locally presentable category is a left adjoint if
and only if it is cocontinuous. ]

Theorem 5.4. For an LCQG action p : A O G, the categories CPCT(p), CPCT(A), and
Al ey G are all locally presentable.

We first list some consequences, alluded to above.

Corollary 5.5. Foran LCQG action p: A O G, the categories CPCT(p), CPCT(A), and
Al €y G are complete, well-powered, and co-well-powered.

Proof. Immediate from Theorem 5.4 and [3, Remark 1.56]. |
And again, we get the following.

Corollary 5.6. The forgetful functors in (3.2) are left adjoints.

Proof. This follows from Theorems 3.5 and 5.4 and Proposition 5.3. ]

Rather than attack Theorem 5.4 as is, we make some preparations. These are mostly
intended to avoid extensive work with directed diagrams of non-injective C* morphisms,
which do not play well with minimal C *-algebra tensor products: [10, Section 11.9.6.5],
for instance, notes that the endofunctor C ® — of €* preserves directed colimits of injec-
tions but not arbitrary directed colimits.

To mitigate the problem, we rely on the theory of locally generated categories, as
covered in [3, Section 1.E] and extended in [2, Definition]. The latter source generalizes
the narrower concept of the former in the context of a factorization system, which notion
we recollect.

Definition 5.7. A factorization system on a category € is a pair (&, M) of classes of
morphisms in € such that

(1) & and M are both closed under composition;

(2) the isomorphisms of € are contained in both & and M

(3) € has (essentially) unique (&, M)-factorizations in the sense that every morphism
f factors as
f=moe, meM,ecé,

and this factorization is unique up to unique isomorphism: two such factorizations
on the outside of the diagram

admit a unique vertical isomorphism, making the diagram commute.
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Given morphism properties # and @, a factorization system (&, M) is (P, Q) if &
consists of morphisms having property &, and M consists of morphisms having prop-
erty @. For example, (epi, mono) factorization systems are those in which & consists of
epimorphisms and M of monomorphisms.

Remark 5.8. The apparently stronger notion of factorization system of [, Definition
14.1] is equivalent by [, Proposition 14.7]. On a related note, [, Proposition 14.6] shows
that in fact the class of isomorphisms precisely coincides with & N M (rather than only
being contained therein, as initially assumed).

(Epi, mono) factorization systems in the sense of Definition 5.7 are essentially the
gadgets introduced in [20, Section III] modulo different language and coincide with the
notion defined in passing in [2, discussion preceding Definition]. We will work mostly
with (epi, mono) factorizations.

The alternative take on locally presentable categories, given a factorization system
(&, M), is as follows ([2, Definition] and also [16, Definition 2.5]).

Definition 5.9. Let (&, M) be a factorization system on a category € and « a regular
cardinal.

(a) An object ¢ € € is M-k-generated or k-generated with respect to (wrt) M if
hom(c, —) preserves k-directed colimits with connecting morphisms in M.

(b) c¢ is M-generated or generated with respect to M if it is M-k-generated for some
regular cardinal k.

(¢) € is M-locally k-generated if
* itis cocomplete;

* ithasaset S of M-k-generated objects such that every object is a k-directed
colimit of objects in S with connecting morphisms in M.

(d) €is M-locally generated if it is M-locally k-generated for some regular cardinal
K.

[2, Theorem 1] says that local presentability is equivalent to M-local generation for
any factorization system (&, M). To bring that result in scope, then, we need such factor-
ization systems.

Proposition 5.10. For any locally compact quantum group G, the category €; G has a
factorization system (&, M) where

* & is the class of surjective morphisms in €} G,

o M is the class of injective morphisms.
Proof. The first two conditions in Definition 5.7 are self-evident: composition preserves

both surjectivity and injectivity, and isomorphisms enjoy both properties; it thus remains
to discuss (unique) factorization.
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Letpg : A O G and pp : B O G be two objects in ‘C’fG. A G-equivariant unital-C *-
algebra morphism
f:A—> B

factors as

S ¢ — (5.1)

through its image as a surjection followed by an embedding, so we will have factorization
as soon as we equip C with a G-action, making both 7 and ¢ equivariant.
By Lemma 2.3, we have an embedding

id®: M(Cy(G) ® C) € M(Cy(G) ® B)

(we can drop the subscripts on the multiplier-algebra symbols by Remark 2.2 because C,
B, etc. are unital). The commutativity of the diagram

id®m )
b MC@) &4 T MGE)®C) 12

A\»
——/
n C%/B o8

M(Co(G) ® B),

expressing the equivariance of f, ensures that pp restricts to a (unital, hence non-degen-
erate) morphism
pc :C - M(Co(G)® C)

so that furthermore 7 : A — C is p4-pc-equivariant:

pi_, M(Co(G) ® 4) — 117
Lo - (5.2)
\) M(Cy(G) ® C).
_—
4 c pc
The coassociativity of pc follows from pp being restricted to C, together with the fact
that
id®? @1 : M(Cy(G)®? ® C) = M(Co(G)®? ® B)

is an embedding (Lemma 2.3 again). Finally, the continuity condition (Definition 2.8 (c))

pc(C)(Co(G)®C) " =Co(G)® C

follows from its analog for A, the commutativity of (5.2), and the surjectivity of .
Thus far, we have a factorization

f=moe, meM,ecb
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for an arbitrary morphism (5.1) in €} G Uniqueness is clear: for every such factorization,
the image of e can be identified with the image C € B of f as above, and the G-action
on that image is then uniquely defined by the requirement that

id®¢

b, M(Co(©) ® C) — 12

C M(Co(G) ® B)
\—» B—,

PB
commute. ]

Proof of Theorem 5.4. CPCT(A) is a particular instance of CPCT(p) (for trivial G). On
the other hand, this latter category can be recovered from EI*G through a double iteration
of the comma-category construction:

CPCT(p) =~ (AT | €;€) | (4T — M(A4)),

where A" is regarded as an object in ffG in the obvious fashion. Since local presentabil-
ity transports over to comma categories [3, Proposition 1.57], it will suffice to focus on
erC.

We already know from Corollary 3.6 that €f G is cocomplete, so by [2, Theorem 1],
it will be enough to argue that it is also .M-locally generated for the (surjection, injection)
factorization system (&, M) of Proposition 5.10. The claim is twofold.

(1) For some regular cardinal k depending only on G, every object in ‘C’I*G is the
closed k-directed union of its subobjects generated, as C *-algebras, by fewer than
k elements; we refer to these as «-capped objects.

(2) Every object of €} G is M-generated in the sense of Definition 5.9 (b).

Given (1) and (2), the conclusion follows: for k as in (1), there is, by (2), a regular cardinal
k' > k such that all x-capped objects are k’-presentable (we can always raise the index
of generation by [3, Definition 1.13, last paragraph]). But then, ‘61*G is M-locally «’-
generated by definition, and we are done.

It thus remains to prove (1) and (2). The former is relegated to Lemma 5.11, so the
rest of the proof is devoted to the latter: every ‘€I*G—0bject is generated with respect to the
class of injective morphisms.

Let

A— B:=1lmB (5.3)
i
be a morphism in €} G where the colimit (again in € G) on the right-hand side is k-
directed and its connecting morphisms B; — B;, i < j are injective.

We have already noted that € is locally N;-presentable, so every object therein is
presentable [3, Remark 1.30 (1)]. It follows that, for some i, the morphism (5.3) factors
(uniquely, by the injectivity of B; — B) through B;. We will be done once we show that
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the resulting (C*, thus far) morphism A — B; is G-equivariant. This, though, follows
from the fact that (5.3) itself is equivariant by assumption, and hence

MGG ® A —
M(Co(G) & By)

— M

4

A

commutes after further composition with the injection (Lemma 2.3):
M(Co(G) ® Bi) > M(Co(G) ® B).
This completes the proof of the theorem modulo Lemma 5.11. ]

Lemma 5.11. Let G be a locally compact quantum group. There is a regular cardinal
Kk =k(G)

such that every object

p:A0GeerC
is the closed k-directed union of its subobjects generated, as C*-algebras, by fewer than
Kk elements.
Proof. We want to produce, for each a € A, a unital C *-subalgebraa € B C A generated
by fewer than « elements such that

(a) the action structure map p : A — M4(Co(G) ® A) maps B to
Mp(Co(G) ® B) S M4(Co(G) ® A)

(making implicit use of the embedding claim in Lemma 2.3);

(b) furthermore, the action-continuity condition

P(B)(Co(G) ® C) " = Co(G) ® B

is met.

We will start with the unital C *-subalgebra of A generated by @ and enlarge it recursively.
As it will be apparent from the construction that the procedure produces C *-algebras
generated by < k elements for an appropriately large cardinal ¥ depending only on G, we
henceforth omit any mention of cardinals, referring only to “small” C *-subalgebras; this
means generated by < x elements for some large but fixed cardinal number depending on
nothing but G.

The above-mentioned enlargement procedure is recursive, taking turns in ensuring that
we have (a) and (b) and passing to a colimit. The two conditions are each provided by a
separate recursive construction; we describe these in turn.
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Step 1: enlarging a small B’ C A to a small B C A satisfying (a). This is done recursively,
as follows:

e Start with By := B’.

* Let B; be a small C*-subalgebra of A generated by By and enough elements of 4 so
as to ensure that
P(Bo)(Co(G) ® C) € Co(G) ® By

» Similarly, B; is a small C *-subalgebra of A generated by B; and enough elements of
A to ensure that
P(B1)(Co(G) ® C) € Co(G) ® Bs.

» Continuing the process, we obtain a unital C *-subalgebra

—1l

B:= U B;
i>0
of A.
It is clear by construction that we have
p(B)(Co(G) ® C) € Co(G) ® B,

concluding Step 1.

Step 2: enlarging a small B’ C A to a small B C A satisfying both (a) and (b). Initially,
B() = B/

might have the drawback that

P(Bo)(Co(G) ® €)' & Co(G) ® Bo.

Nevertheless, because we do have (2.7), By can be enlarged to a (still small) C *-algebra
By, with

P(Bi)(CoG) ®C)' 2 Co(G) ® Bo.

Furthermore, Step 1 allows us to further extend B6 to Bj, satisfying both (a) and

P(B1)(Co(G) ® C) " 2 Co(G) ® By.

As before, continue the process recursively: By is to B, as Bj is to Bg. The resulting
(small) C*-algebra

B::UB,-

i>0

will have both desired properties: (a) and (b). [
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6. Limit preservation and (co)monads

To reiterate and slightly amplify Remark 3.7, Theorem 3.5 and Corollary 5.6 are, jointly,
analogous to [14, Theorem 3.2.4]: for any topological group G, the forgetful functor

Tor® — Top 6.1)

from topological G-spaces to plain topological spaces has a left adjoint and creates col-
imits. It is natural to consider the dual problem of whether it creates/preserves limits, has
a right adjoint, etc. As it happens, when G is locally compact (which is the setup we are
generalizing here), all of these questions have affirmative answers: [14, Theorem 3.4.3].
Dualizing from spaces to algebras, the analog for us would be the question of whether
the forgetful functor
e’ > er (6.2)

creates and/or preserves limits. There are several confounding factors making that discus-
sion more involved than that of (6.1).

First, [14, Proposition 3.4.2] says that (6.1) always creates coproducts, whether the
topological group G is locally compact or not. In (6.2), on the other hand, in working with
unital C*-algebras, we are intuitively dualizing the category CH of compact Hausdorff
spaces. While in TOP coproducts are simply disjoint unions, in CH they are formed by
first taking the disjoint union and then applying the Stone—Cech compactification

Top > X+ BX € CH,

i.e., the left adjoint of the inclusion functor CH C TopP ([30, Section 38] and [26, Sec-
tion V.8, following Corollary]). In that setup, even classically (for compact G and com-
mutative unital C *-algebras), the analog of functor (6.2) cannot create coproducts.

Example 6.1. Consider the additive group

. — 1: n
G :=Z, =limZ/2

n

of 2-adic integers, acting on each of its quotient groups X,, := Z/2" by translation.
Consider a continuous {0, 1}-valued function f on

BY. whereY :=][X,
n

defined by extending the function taking the value O at every trivial element 0, € X, and 1
elsewhere on Y. We will make some reference to ultrafilters on a set S (i.e., the elements
of BS), for which the reader will find a very pithy recollection in [9, Introduction]. For
any such ultrafilter

U € BN,
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the U-limit [9, Section 7]
x:=U-1im0, € BY
n
belongs by construction to £ ~1(0). On the other hand, because every subgroup

ZmZZ CZ,, meN,

moves all 0,, for sufficiently large n, the action of any such subgroup on x moves the latter

into £~1(1).
The conclusion is that no neighborhood of 0 € Z,, no matter how small, keeps x in
the neighborhood £ ~1(0) > x. In short, the action

Zy x BY — BY

is not continuous, and hence, (6.2) cannot create arbitrary (infinite) products.

In light of Example 6.1, it is only reasonable to inquire into finite limit preservation by
(6.2). With that caveat, products are unproblematic.

Proposition 6.2. For any locally compact quantum group G, the forgetful functor €} G_
€} creates finite products.

We leave the following simple preliminary remark to the reader.

Lemma 6.3. For any C*-algebra C € €*, the endofunctors C ® — and (2.3) of €* both
preserve finite products. ]

Proof of Proposition 6.2. Let p; : A; O G, i € I be afamily of G-actions on unital C*-
algebras, and write
ersA=]]4
i

for the product, equipped with the product-structure morphisms 7; : A — A;,i € I. By
Lemma 6.3, we have a canonical identification (the finiteness of / is crucial!),

M(Co(G) ® 4) = M(Co(@) ® [T 4:) = [T M(Co(©) & 4y),
so there is a unique morphism p : A - M(Cy(G) ® A) making all squares

b, M(Co(G) ® A) — 17

M(Co(G) ® A;)

i i Pi
commute. Its coassociativity follows from the fact that

(id®p)p and (AQid)p: A — M(Co(G)®? ® A)
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both fit as the unique upper left-hand map rendering all

id ®;

MCo(©)® ® 4) — 1
/\H MCH©)® © 4)
- A

_/
! ! (id ®p;) pi =(A®id) p;

A

commutative, while the continuity condition (2.7) for p follows from the analogous con-
ditions for its individual A;-components (the finiteness of I once more is essential). [

In the presence of finite products (taken care of by Proposition 6.2), finite-limit cre-
ation/preservation amounts to creating, or, respectively preserving, either pullbacks or,
equivalently, equalizers [1, Theorem 12.4 and Proposition 13.3].

Changing perspective slightly, recall that the issue of whether or not monomorphisms
in ‘GI*G are injective was left standing in Section 4; as Lemma 4.2 makes clear, in order
to make that assessment, one would need to understand pullbacks in ‘C’;"G. Pullbacks (or,
what amounts essentially to the same thing, equalizers) are also what mandates local com-
pactness in the aforementioned [ 14, Theorem 3.4.3]: while (6.1) always creates coproducts
[14, Theorem 3.4.2], it does not, in general, preserve pushouts [ 14, Section 3.4.4 and The-
orem 3.4.5].

Here, the nature problem is slightly different: we are already working with locally
compact quantum groups, so one should presumably expect equalizer creation/preser-
vation for ‘GTG — € (recall that this forgetful functor is to be thought of as a bi-opposite
analog of (6.1), hence the passage from colimits to limits, etc.). The quantum setup,
though, has its own peculiar difficulties:

(a) the tensor-product functor Cy(G) ® — does not play well with equalizers;

(b) in general, the structure map
p:A—> M(Co(G)® A)

need not be injective (this issue occasionally comes up in the types of arguments
we carry out below).

In relation to this latter observation, it is not uncommon for some authors to either
require injectivity for the classes of actions of interest (what [5, Définition 0.2] or
[41, Section 3.1] would call Cy(G)-algebras, for instance, require injectivity) or
at least specialize to injective actions in specific results (e.g., [29, Section 6]).

There is a convenient way to address both issues simultaneously, by specializing to a
class of LCQGs still wider than that of classical locally compact groups ([8, Definition
3.1]).

Definition 6.4. A locally compact quantum group G is coamenable if Co(G) has a counit:
a C *-algebra morphism
e=¢g:Co(G)—>C
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such that
(d®e)Ag =id = (e ®id)Ag = id. (6.3)

As explained in the discussion following [8, Definition 3.1], it is enough to require one
of the equalities in (6.3); the other follows.

For coamenable LCQGs, the defining property (6.3) of the counit extends to actions,
familiar from the theory of comodule algebras over bialgebras [35, Section 11.3]. We
will also have to assume henceforth that our locally compact quantum groups are regular
([5, Définition 3.3], [40, Definition 2.8]). We refer to [40, Section 2.1] (and its sources)
for the background necessary for the definition below; the notion will play here only a
technical, black-box role.

Definition 6.5. Let G be an LCQG, and denote by

* L2 = L?(G) the carrier Hilbert space of the GNS representation attached to the left
Haar weight;

e and
W=WgeB(L*®L?%

the multiplicative unitary implementing the comultiplication of G by
Co(G) 3 x> Ag(x) = W*(1 @ x)W € M(Co(G) ® Co(G)) C B(L* ® L?).
G is regular if the norm-closed span of
{(id®w)@ip(W)) | © € K(L*)*}
is precisely the C *-algebra K(L?) of compact operators on L2,

Proposition 6.6. Let G be a coamenable LCOG and ¢ = &g its counit.

(@) Foranyaction p: A O G on a C*-algebra, the map
(e®id)p: M(A) - M(A)

is the identity.

(b) If G is in addition regular, then conversely, a non-degenerate
p:A— M(Co(G)® A)
satisfying conditions (a) and (b) of Definition 2.8 is an action provided that
(e ®id)p = idpr(y) - 6.4)

Proof. (a) Denote
r:=(e®id)p: M(A) - M(A).
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This is a strictly-continuous unital C* morphism, and an application of ¢ ® id to the two
sides of (2.7) shows that r |4 has norm-dense image in A4 so that r has strictly dense image.
Next, composing

(id®p)p = (Ag ® id)p : M(A) — M(Co(G)®? ® A)

with ¢ ® ¢ ® id also shows (via (6.3)) that r : M(A) — M (A) is idempotent. But now, we
are done: being idempotent r is the identity on a strictly dense subset

r(M(A4)) € M(A),

so it must be the identity everywhere by strict continuity.

(b) The assumption (6.4) implies the weak continuity condition of [6, discussion pre-
ceding Proposition 5.8], so under the regularity assumption, the conclusion follows from
[6, Proposition 5.8].

This finishes the proof of the two claims. ]

Remark 6.7. In Proposition 6.6 (b), regularity matters: the quantum E(2) group studied
in[21]1is

e coamenable [21, Theorem 3.2.29];

» semi-regular in the sense of [21, Definition 1.3.3] by [21, Corollary 2.8.25];

* so the example of [6, Proposition 5.8] applies.

That example is of a “not-quite action” that is easily checked to satisfy (6.4) but not

Definition 2.8 (c¢) (hence not an action).

Proposition 6.6 will be particularly useful when attempting to restrict actions to C*-
subalgebras, ensuring that we again obtain actions.

Lemma 6.8. Let G be a regular coamenable LCQG and p : A O G an action. If A’ < A
is a C*-subalgebra for which

p(A") € My (Co(G) ® A') < My(Co(G) ® A)

and p|a is non-degenerate as a map to M(Co(G) ® A’), then the restriction p' := plq is
a G-action.

Proof. By Proposition 6.6 (a), p satisfies (6.4), and hence so does its restriction p’ to A’.
But then, Proposition 6.6 (b) applies, and we are done. ]

‘We can now revisit (and resolve) the two bothersome items (a) and (b) above:

(a*) When G is coamenable, its function algebra Co(G)

* is nuclear by [8, Theorem 3.3], in the sense of [10, Section IV.3.1]: full and
reduced C* tensor products by Co(G) coincide canonically;
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¢ hence also exact [10, Section 11.9.6.6]: Co(G) ® — preserves short exact
sequences;

¢ asaresult, Co(G) ® — preserves pullbacks [31, Theorem 3.9].

(b*) Any action p: A - M(Cy(G) ® A) is indeed injective, by Proposition 6.6 (a).
Theorem 6.9. For a regular coamenable LCQG G, the forgetful functor €; G € cre-
ates finite limits.

We first need the arbitrary-finite-limit version of Lemma 6.3.

Lemma 6.10. For any exact C*-algebra C € €%, the endofunctors C ® — and (2.3) of
€* both preserve finite limits.

Proof. Having disposed of finite products (Lemma 6.3), it will be enough to handle either
pullbacks or equalizers [1, Proposition 13.3] (we will switch between the two freely). For
C ® —, this is precisely what [31, Theorem 3.9] does, so we are left having to show that
assuming C is exact;

C 3 A My(C Q@A) et*

preserves equalizers. To that end, consider a parallel pair ¢; : B — B’, i = 1,2 of mor-
phisms in €* together with their equalizer ¢t : A — B. The fact that M4(C ® A) maps
(injectively: Lemma 2.3) to

X := equalizer of id ®t; : Mp(C ® B) - Mp/(C ® B"), i=1,2,

follows from the universality property of that equalizer; it thus remains to argue that that
canonical map is onto or, equivalently, that every element

x e X C Mp(C ® B)

in fact belongs to M4(C ® A). This, by definition, means that x(c ® 1) € C ® A for
arbitrary ¢ € C. Since x(c ® 1) certainly belongs to the equalizer of

id®y; :C®B—>CQB,
the conclusion follows from the claimon C ® —. [

Proof of Theorem 6.9. Once more, an application of [1, Proposition 13.3] and the fact that
we already have the claim for finite products reduce the discussion to equalizers. We thus
fix actions

pp:BOG and pp :B OG

in €} G and equivariant morphisms
;,:B—-> B, i=1.2,

as well as their equalizer ¢ : A — B in €7.



A. Chirvasitu 598

Write C := Cy(G). First, assuming an action p := pq : A O G making ¢t : A — B
equivariant, that equivariance condition

o MC @)1

A M(C ® B)
\ -
¢ B PB

will determine p uniquely by the injectivity of the upper right-hand arrow map (Lemma
2.3). The creation part of the claim thus follows, assuming that we actually construct such
an action pg4.

Furthermore, the selfsame desired constraint (6.5) shows that p must be the restriction
of pp to A. On the other hand, assuming that pp does indeed map A to M(C ® A), it will
be an action by Lemma 6.8. In conclusion, all we need is

6.5)

pB(A) € M(C ® A) < M(C ® B).

To see that this is indeed the case, note that

* the upper right-hand arrow in (6.5) is the equalizer of
id®t : M(C ® B) - M(C ® B) (6.6)

(Lemma 6.10);
* the lower composition pgt equalizes the two morphisms (6.6).
As remarked, this finishes the proof. ]

As noted before, Theorem 6.9 has a bearing on the description of monomorphisms in
the category ‘6{“@’.

Corollary 6.11. For any regular coamenable locally compact group G, the monomor-
phisms in € G are precisely the injective morphisms.

Proof. As in the discussion preceding Theorem 4.1, that injectivity implies the property of
being monic is immediate. The converse follows from the criterion in Lemma 4.2 together
with the fact that by Theorem 6.9 pullbacks in €€ are computed as in €} (and hence as
in SET). [

6.1. The action comonad

Classically, (6.1) is a good deal more than a limit-creating right adjoint: according to the
proof of [14, Theorem 3.2.4], it is monadic. We recall some of the language; some of
the numerous sources include [26, Chapter VI], [7, Chapter 3], [1, Section V.20], and
[14, Section 0.4].

Definition 6.12. Let € be a category.



(a)

(b)

(©

(@
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A monad or triple on € is an endofunctor 7 : € — € equipped with natural
transformations
n:id—T and p:T*—>T,

making 7 into a unital algebra in the monoidal category of €-endofunctors. In
other words, we require associativity:

and unitality:

For a monad T, a T-algebra is a pair (c, s) consisting of an object ¢ € € and a
morphism s : Tc — ¢ in € satisfying the conditions

Mc Tc s
T?c — \ c
Ts\’ Tec /s

and

e T
c Q c.

id

The T -algebras form a category €7 (the Eilenberg—Moore category of T'), having
as morphisms (¢, s) — (¢’,s’) those maps f : ¢ — ¢’ in € that make

/

/Tc/\s%/
\c/f

Tf
Tc
5

commute.

A functor © — € is monadic or tripleable if it is naturally isomorphic to the
forgetful functor €7 — € for a monad T on €.

We have dual notions: comonads S on €, corresponding categories €gs of S-coalgebras,
comonadic functors, and so on, which we leave it to the reader to unpack. One can dispatch
them all formally by simply noting that a comonad on € is a monad on the opposite
category €.



A. Chirvasitu 600

As explained in [1, discussion preceding Definition 20.1] and further illustrated in
[1, Section 24], monadic functors are meant to capture the intuition of “forgetting some
algebraic structure”. To wit, examples of monadic functors include (by [26, Section V1.8,
Theorem 1]), for instance, the forgetful functors from

e groups,

e or monoids,

* orrings,

* or Lie algebras,

etc. to SET. There is also the motivating (for us, here) example of (6.1), which fits into the
same framework of forgetting algebraic structure (namely, the structure consisting of the
operators on a space induced by a G-action). The following result recasts that monadicity
results in its appropriate non-commutative context, keeping in mind the requisite dualiza-
tion in passing from spaces to C *-algebras.

Theorem 6.13. For any regular coamenable locally compact quantum group G, the for-
getful functor €¥¢ — €} is comonadic.

Proof. This will be a straightforward application of Beck’s monadicity theorem [7, Sec-
tion 3.3, Theorem 10]. We have to check that

» the forgetful functor is a left adjoint, which we know from Corollary 5.6;

* the forgetful functor reflects isomorphisms, which is obvious: in either category iso-
morphisms are bijective morphisms;

. ‘C’I*G has certain equalizers which the forgetful functor then preserves.
We are not concerned here with the precise class of equalizers which one is usually
interested in: we already know they all exist (Corollary 5.5) and (for coamenable G)
are all preserved (Theorem 6.9).

This finishes the proof. ]
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