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Quantum inverse semigroups
Marcelo Muniz Alves, Eliezer Batista, and Francielle Kuerten Boeing

Abstract. In this work, the notion of a quantum inverse semigroup is introduced as a linearized gen-
eralization of inverse semigroups. Beyond the algebra of an inverse semigroup, which is the natural
example of a quantum inverse semigroup, several other examples of this new structure are presented
in different contexts; those are related to Hopf algebras, weak Hopf algebras, partial actions and
Hopf categories. Finally, a generalized notion of local bisections is defined for commutative Hopf
algebroids over a commutative base algebra giving rise to new examples of quantum inverse semi-
groups associated with Hopf algebroids in the same sense that inverse semigroups are related to
groupoids.

1. Introduction

The very basic notion of a group has undergone several generalizations in different con-
texts, giving rise to a myriad of new mathematical structures. Since groups are inherently
related to symmetries, one can consider these new structures arising from groups as new
tools to understand the deep and subtle aspects of symmetries. In one direction, it is
possible to extend groups by weakening their operations. For example, when someone
weakens the group inversion, also giving up the uniqueness of units, one ends up with
regular semigroups and inverse semigroups. By the widely known theorem due to Wagner
and Preston [26, 31], every inverse semigroup can be viewed as a semigroup of partially
defined bijections in a set, with the operation given by the composition. These partially
defined bijections also evoke another mathematical structure which generalizes the notion
of a group, namely, the groupoid structure. For the case of groupoids, what is modified is
the definition of the binary operation, which is not globally defined anymore. It is easier to
understand why groupoids are a generalization of groups if we consider a group as a one-
object category, taking the elements of the group as the endomorphisms of that object and
the group product as the composition. In this case, a groupoid is a “multi-object group”,
more precisely, a small category in which every morphism is an isomorphism.

The relationship between inverse semigroups and groupoids has been elucidated in
the literature in several ways. For example, starting from an inverse semigroup S, one
can naturally associate a groupoid whose unit space is the set of units £(S) and whose
operation is the restriction of the operation in S. This groupoid has a partial order induced
by the partial order of the semigroup itself; in fact, it is an inductive groupoid, meaning that
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its set of units is a meet semilattice. On the other hand, given an inductive groupoid, one
can associate with it a new inverse semigroup. This exchange between inverse semigroups
and groupoids composes the content of the Ehresmann—Schein—-Nambooripad theorem,
which establishes a categorical isomorphism between the category of inverse semigroups
with prehomomorphisms and the category of inductive groupoids and ordered functors
[16,24,29].

One can also observe the interchange between inverse semigroups and groupoids con-
sidering the case of étale groupoids. This connection was first explored in the context of
operator algebras [25]. An étale groupoid is a topological groupoid in which the source
and target maps are local homeomorphisms [23]. Given an étale groupoid §, the set of
its local bisections B(¥) constitutes an inverse semigroup [18]. In turn, given an inverse
semigroup S, one can define an action of this semigroup on the set of characters of its unit
space and, from this action, associate its germ groupoid Gr(S), which is an étale groupoid
[23]. More precisely, considering the category of inverse semigroups with semigroup mor-
phisms and the category of étale groupoids with algebraic morphisms', the functor which
associates with each inverse semigroup the germ groupoid of the canonical action on the
characters of its unit space is left adjoint to the functor which associates with each étale
groupoid its semigroup of bisections [12].

Another completely different direction in which it is possible to generalize groups is
via Hopf algebras, which can be considered as a kind of “linearized version of groups”.
Hopf algebras have nice properties relative to duality and representation theory and, due
to the emergence of quantum groups [15], became more popular in the nineties, even
among physicists, when quantum groups started to be considered seriously as symmetries
of quantum systems, for example, as symmetries of the spectrum of diatomic molecules
[13] or symmetries of Landau states in the quantum Hall effect [28]. There are several
different generalizations of Hopf algebras in the literature. Here, we mention only three
structures which generalize both Hopf algebras and groupoids: weak Hopf algebras [8],
Hopf algebroids [7, 9] and Hopf categories [6]. Among the aforementioned structures,
Hopf algebroids are, in a certain sense, the richest and most promising option to gener-
alize groupoids in the Hopf context. However, there is not so far in the literature a good
generalization of inverse semigroups and Hopf algebras which can play the same role with
respect to Hopf algebroids as inverse semigroups do to groupoids.

Our aim in this work is exactly to start filling this gap that has existed so far by intro-
ducing the quantum inverse semigroups. As characters in search of an author, this subject
appeared as the story of examples in search of a theory. The lessons coming from the
study of partial actions of Hopf algebras [5] and some aspects of the theory of Hopf
algebroids motivated examples of what should be a quantum inverse semigroup. After
some mathematical preliminaries concerning Hopf algebroids in Section 2, we introduce
quantum inverse semigroups in Section 3, giving examples relative to inverse semigroups,

! An algebraic morphism between the groupoids & and J¢ is a left action of § over the arrows of J
commuting with the right action of J€ over itself by the multiplication in J€ [11].
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Hopf algebras, weak Hopf algebras, partial representations of Hopf algebras and Hopf
categories and an example inspired in a quantum version of Hadamard’s matrices [4].
In Section 4, we introduce the notion of a local biretraction of a Hopf algebroid, as a
dual version of local bisections in groupoids. First, we concentrate on commutative Hopf
algebroids and, after, we extend to not necessarily commutative Hopf algebroids over a
commutative base algebra whose left and right bialgebroid structures are tied in a spe-
cific way. The set of local biretractions of a Hopf algebroid is a regular semigroup, rarely
being an inverse semigroup, but the algebra generated by the set of local biretractions
defines a quantum inverse semigroup after all. We construct many explicit examples of
biretractions in Hopf algebroids and characterize their semigroups, making connections,
in various aspects, with some very interesting constructions.

2. Mathematical preliminaries

Throughout this text, k will denote a field of characteristic 0 and unadorned tensor prod-
ucts will denote tensor products over the base field k.

2.1. Hopf algebroids
Definition 2.1 ([7, Definition 3.3]). Let A be a k-algebra. A left A-bialgebroid is a quin-
tuple (F#,s7, 17, A7, £7) in which

(LB1) s;: A— J¢ is an algebra morphism and #; : A — J is an algebra antimorphism
such that s;(a)t; (b) = t;(b)s;(a), for every a,b € A, making ¢ an A-bimodule
with the structure

avh<b =si(a);(b)h.

(LB2) (J, A;,€p) is an A-coring with the above-mentioned A-bimodule structure.

(LB3) Aj(H)CSH X, H =Y hi®@ki e HR@4H | Y hiti(@)Rk; =) h; ®k;s;(a),
Va € A} and the co-restriction map is an algebra morphism.

(LB4) &(hk) = &1 (hsi(e1(k))) = &1(ht;(e1(k))).

Definition 2.2 ([7, Definition 3.1]). Let A be a k-algebra. A right A-bialgebroid is a quin-
tuple (K, sy, tr, Ay, &) in which

(RB1) # is a k-algebra, s, : A — J is an algebra morphism and ¢, : A — J is an
algebra antimorphism such that s, (a)t,(b) = t,(b)s,(a), for every a,b € A
making # an A-bimodule with the structure

aw h ab=ht(a)s D).

(RB2) (H#, A, &) is an A-coring with the above-mentioned A-bimodule structure.

(RB3) Ap(H)CSHX,H ={D_hi@kicHRaH | )_sr(a)h; ®k; =) _h; &t (a)k;,
Va € A} and the co-restriction map is an algebra morphism.

(RB4) &,(hk) = &, (sr(er(h))k) = er(t-(er(h))k).
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Definition 2.3 ([7]). Let A and A be k algebras. A Hopf algebroid over the base algebras
Aand Aisa triple # = (K, #H,, S) such that

(HA1) J; =J is a left bialgebroid over A and J, = J is a right bialgebroid over A.
(HA2) sjogjot, =ty ,tjogj 08, =Sp,S,0& 0t =tjandt, og, 057 = 55.
(HA3) (Aj@z1H) oAy =(H@aAr)0Ajand (A, Q@4 H)oAj=(H @5 A1)oA,.
(HA4) S : J — H is a k-linear map such that foralla € A, b € A,and h € J,

S(t1(@ht; (b)) = 5+ () S(h)s1(a).

(HAS) Denoting by p; and p,, respectively, the multiplication in J as left and right
bialgebroid, we have

Hio(S®4H)oAj=s,06, and p, o (H ®5S)o A, =s70¢.
Remark 2.4. As consequences of the axioms for a Hopf algebroid, we have the following
properties:
* S is antimultiplicative [7];

* S maps unity to unity because
lyge =sroer(lge) = S(lge) Lge = S(13e);
* S is anticomultiplicative [7]. More precisely, the following identities are satisfied:
AjoS=(SQ®48)c A}, A, oS =(S ®gS)oA;°p.

Let us consider in more detail the case of a commutative Hopf algebroid J# over a
commutative base algebra A = A. In this case, the source and target maps sy, §;, #; and
t, are all morphisms of algebras; moreover, the commutativity of # implies that s; = ¢,
and s, = t; and therefore one can choose arbitrarily one laterality for the bialgebroid
structure. Throughout this work, we shall denote by s the right source map and by ¢ the
right target map. Also in the commutative case, the left and right Takeuchi tensor products,
H xf4 H and H x7 H, are identified with the tensor product # ®4 #, so the left and
right comultiplications and counits coincide; the counit also turns out to be an algebra
morphism. Finally, we can rewrite axiom (HAS) in a more suitable way: for any & € #,
we have

S(h(l))h(z) = S(&‘(h)) and /’l(l)S(h(z)) = t(e(h))

In particular, we can deduce the following very useful identities:
hayS(th)hey =h and  S(hay))he)Sha) = S(h).
Example 2.5. Let A be a commutative algebra and consider # = A ® A. This algebra is
endowed with a Hopf algebroid structure by
s(a) =14 ®a, ta)=a® ly,
A@a®b)=a®14 Q414 ®b,
ela®b)=ab, S@®b)=>bRa.
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Example 2.6. A slight generalization of the previous example is the algebra of Laurent
polynomials, # = (4 ® A)[x, x~!], for A being a commutative algebra. This algebra is
also a Hopf algebroid with

s(@)=14®a, t@) =aQ® ly,
A(a ® b)x") = (a ® 14)x" ®4 (14 ® b)x",
e((@a®b)x") =ab, S((a®b)x")=(ba)x".

2.2. The Hopf algebroid of the representative functions of a discrete groupoid

Let g be a discrete groupoid. An n-dimensional §-representation consists of [17]:

* & =||,cem Ex disjoint union of n-dimensional k-vector spaces E and linear iso-
morphisms ¢, : k" — E, for every x € §(©.

* A family of linear isomorphisms pg : Egq) = Ei(g) for every g € § such that for
every x € € and composable g, 1 € &,

& : & & &
Pitxy =1dE,,  Pgp = Py P -

For example, I = | |, cg© {x, where I, = k for every x € €© and pg = idk for
every g € § is a §-representation.

A morphism A between §-representations (&, p€) and (¥, p¥) is a family of linear
maps {)&x}xegw) with Ay : Ex — F such that forevery g € G,

F &
Py As(g) = Ae(g)Py -

Denote by Repy (§) the category of the §-representations in k-vector spaces, where
tensor product and duals for §-representations (&, p€) and (¥, p*) are given by

€0 ®(F.p7) = (€8 F 0 ®p") = ( || Ex®u Fr.{of ®x 0] Jees).
xeg©

€057 = (L) B 16f hees).
xeg©
where p€” : Ese)" — Eig)* with pg* (p)=9¢o P§—1 forevery g € § and ¢ € Egq)™.
Now, setting A = Fun(ﬁ(o), k), we have that

@) ={p:99 - ¢€|pkx) e Ey, Vx € 80}

is a finitely generated and projective A-module [17]. Also, for any §-representation (&, p%),
let Tg := Endgep, (9 (€, 0%), Tg,7 := Homgep, () ((€, 06). (%, p¥)) and consider the
direct sum of tensor products

r:= &y (&%) ®r, ['(8),

(8.08)eRepy (9)
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being the sum over the isomorphism classes of representations of §. It is important to take
care in this point to assure that the direct sum is done upon a set of indexes, not a proper
class. For each n € N, a representation is given by the data {(¢x),cg®. (0y)yeg}. The
tuple (¢x) g is an element of the product

l_[ Homy (k", E) = 1_[ Homy (k”, k™)
xeg0) xeg©
and the tuple (py ), eg can be seen as an element of
[] Homu(E« Ey)= [] Homi(®k". k"),
x,y€§© x,yeg©)

putting the null linear transformation in the components Homy (£, E, ) for which there
isno y € § such that s(y) = x and ¢(y) = y. Therefore, the set of isomorphism classes
of representations of § can be seen as a subset of

]_[( [T HomxG" k") x [] Homk(]k”,]k”)>.

neN xeg( x’yeg(o)

Once established that it is well defined, the direct sum I' is a commutative (A ®xk A)-
algebra with the product

(¢ ®re PV O1y q) = (¢ Q4 V) BTy (P ®4q)
for every ¢ € T'(6*), ¥ € T'(¥), p € T'(8) and ¢ € I'(¥). Finally, take the quotient

D (6,08 eRep, () L (ET) BT T'(E)
S Rep (9)

Rk (§) :=

of I by the ideal

I Rep () = (¢ ®1y A — A @1 p | 9 €T(F*), p € T(E), A € T 7)

is a (A ®y A)-algebra with the inherited product from I' and is called the algebra of the
representative functions on the groupoid §. The elements of the algebra are denoted by
¢ QT p- Also, R (¥) has a commutative Hopf algebroid structure over the commutative
base algebra A : forevery a € A, 9 ®7, p € Rk(¥) and x € §©,

n
§a)=Ta®7,a. (@) =a®7;,la. A@®rcp) =) ¢ D¢ €& ®ui* O P

i=1

£@ ®1p P)(X) = () (p(x)), S(@®1¢ p) = P ®O1r 9o with () : & = (%)%,

where {e; *, e; } is the dual basis of the A-module I"(&) and I is the trivial §-representation
I = yego k, with pf = 1dy.
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Example 2.7. A group G can be seen as a groupoid § = G with §© = {15}. A G-
representation is a finite-dimensional vector space V' together with linear isomorphisms
p; : V' — V such that pg p}l/ = pgh for every g, h € G. Hence, the representations of the
groupoid G are the same as the representations of the group. Also, A = Fun(§© k) = k,

T(V)={p:{lg)> V)=V

and T'(V*) = V*. Moreover, an endomorphism for the representation (V, p¥') is a linear
map « : V — V such that
oo pg = p; oa

for every g € G. Thus, ¢ = Aldy for some A € k and Ty = k. Consequently, the ideal
I Repy. (¢)(G) = 0. Then, the algebra of representative functions of G is the algebra

Ri(G) == &y V*Qk V
(V,pV)eRepy (9)

and an element of Ry (G) can be written as a triple (¢, v, p¥) with ¢ € V*, v € V and
p" being a G -representation, which can be identified as the representative function for the
group G:

f:G=k g o (W)

Therefore, Rk (G) is exactly the commutative Hopf k-algebra R(G) of the representative
functions on the group G.

Example 2.8. Let § be a groupoid consisting only of its units. In this case, for each
x € O the isotropy group G, = {g € § | s(g) = t(g) = x} contains only one element.
This groupoid is known as the unit groupoid because we have § = ¢ and source and
target s = ¢ = Idg (. Then, a §-representation is given by a disjoint union

e= || Ex= || W

xeg© xeg©

where V is an n-dimensional vector space and the linear isomorphisms ,of Exy — Ey
are the identity map for every x € (. Hence, the §-representation is simply the set
V x €©®_ Also, observe that

rvxg0) = {p: €0 5V xg® | pix) eV x {x}} = A",

where A=Fun(§® k). Similarly, ['((V x€®)*)2 4" and morphisms between §-repre-
sentations are Ty, g© wxg® = My m(A), where W is an m-dimensional vector space.
Therefore, the Hopf algebroid of the representative functions of § is given by the quotient

Dren 4" Ou, () A"
(u ®n, 4y Aij)v — u(Xif) @, (a) v)ueAn,UeAm,(M/.)eMm(A)

Rk (9) =
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This quotient indeed coincides with the algebra A. Consider, for example, the following
element of R (9):

g
(floos ™M) ®my(ay |
gn
The vector (fl, ..., f) € A" can be viewed as the product l(fl, ..., f™), in which
1:8©® — K is the constant unit function, and (fl, coos f) € Mixn(A); then,
g' g'
Sl M ®uu | | =1@um S| r | =1@4 ) figh
i

n

4 4
Therefore, R (§) = A.

Remark 2.9 ([17, Proposition 2.2]). For a groupoid ¥ and A = Fun(¢®, k), one can
construct a (4 ®k A)-algebra morphism from Ry (§) to the commutative algebra B :=
Fun(¥9, k) given by

¢ %) > B
¢ Q1 p = L9 ®1¢ P)s

with {(¢ ®71¢ p)(g) = (p(t(g))(pg (p(s(g)))) for each g € §, which is a well-defined
map because of the definitions of the ideal _Zgp, (g) and of the morphisms between §-
representations. One can also prove that { is injective and satisfies

(1) i*o¢ =g, withi : §© — ¢ being the inclusion map;

2) Lo S(p®1¢ P)(&) = L9 ®1¢ P&
(3) forevery g,h € G such that s(g) = t(h) and every F € % (§), we have that
§(F)(gh) = E(Fu)) (@) (F2))(h),
where A(F) = Fay ®4 F(y).

Example 2.10 ([17]). Consider the groupoid § = X x G x X, where X is a set, G is a
group, (x,g,y)”" = (y,g~", x) and

(X,g,y)'(y,h,Z) = (X,g]’l,Z)

forevery x,y,z € X and g,h € G. Also, consider §® = X and the source and target maps
being the projections on the third and first coordinates, respectively. Let A = Fun(X, k)
be the set of all maps from X to k.

Using the ¢ map from Remark 2.9, a representative function ¢ ®7, p of § can be
seen as a map from § onto k given by

(@ ®1¢ PI(x.8.7) = () (0 4.5y (P(1))) ()
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forevery x,y € X and g € §. Then, fixing xo € X, for an n-dimensional §-representation
(&, pf), we have that

& _ & & &
Px,g,9) = P(x,16.%0)P(x0.8,%0)P(x0,16.7)

for every (x, g, y) € §. Also, letting (a,-gj)lsi,jsm the n-square matrix representing the
k-linear isomorphism pfx() 2.%0)’ expression (1) can be written as

n

Le @, p(x.g.y) = Y. ei(xadpi(y)
i k=1

with ¢;, p; € Aforalli,l =1,...,n.
In addition, if a,b € A and f is in the Hopf algebra R(G) of the representative func-
tions on the group G, then f : G — k can be written as

f(g) =F(p(g)(v)) VgeG

with v being an element of an n-dimensional vector space V, F : V — k and p: G —
GL(V) arepresentation of the group G. Thus, & =| |,y V and ,ofx 2y) = p(g): V-V
form a §-representation, and defining

p: X->V* p:X—>V
X o(x):we b(x)F(w), X = a(x)v,
we have that
§(p ®1¢ p)(x.8.y) = alx) f(g)b(y) 2

for every (x, g, y) € §. Consequently, the image of % (§) in Fun(X x G x X, k) by ¢
coincides with the image of the canonical map

A ®k R(G) ®k A — Fun(X x G x X, k).
Moreover, since the two maps are injective, we have an isomorphism of A-bimodules:
%k(g) ~ A QK R(G) Rk A,

which is also an isomorphism of A-Hopf algebroids with the Hopf algebroid structure on
ARk R(G) ®k A:
s'(a) =14 ® 1re) ® a.
t'(a) =a ® 1r) ® la,
ANa® feb)=(@a® fu)®la) ®14 (14 ® fo) ®D), 3)
g(a® f ®b)(x) =a(x)b(x)f(lg),
S'a® f@b)(x®g®y)=a(bx) /(g
foreverya,b € A,x,y € X and f € R(G).
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Remark 2.11. A transitive groupoid ¥ with source s and target t is a groupoid such that
for every pair x, y € X there exists an element g € § that satisfies x = s(g) and y =1(g).
Then, fixing x¢ € 9(0), we have

6260 xG,, x8©
(G, s the isotropy group for xo) with the isomorphism

Y (2) = (1(2). b7 (g) & Ps(2)- 5(2)),

where for every y € (), ¢y gives the element of § that satisfies x = 5(¢y) and y =1(¢y)
and source and target given by the projections on the third and first coordinates, respec-
tively.

Therefore, we have from Example 2.10 that the Hopf algebroid of the representative
functions of a transitive groupoid is

R]k(g) ~ A QK R(G) Rk A,

where A = Fun(¢®, k) and R(G) is the Hopf algebra of the representative functions on
the isotropy group G = Gy, for some fixed x¢ € g0,

Example 2.12. Consider a set X and the groupoid § = X x X with

) (y.2) = (x.2), ()= .x).

Observe that this groupoid can be seen as a particular case from Example 2.10 with the
isotropy group G being a unitary group {e}. Since the Hopf algebra R({e}) is isomorphic
to k, consequently,

i (§) = AQk A

with the same Hopf algebroid structure seen in Example 2.5.

3. Quantum inverse semigroups

The basic motivation for quantum inverse semigroups is the theory of inverse semigroups
and its role played in describing partial symmetries [21]. A semigroup S is said to be an
inverse semigroup if every element s € S admits a unique pseudo-inverse, that is, a unique
element s* € S such that ss*s = s and s*ss* = s*. Let S be an inverse semigroup, and
denote by E(S) the set of idempotent elements of S. One can prove that the uniqueness
of the pseudo-inverse is equivalent to £(S) being a commutative subsemigroup of S.

For an example of an inverse semigroup, take Z(X) as the set of bijections between
the subsets of X ; that is,

I(X)={f:Dom(f) S X —Im(f) C X | f bijective}.
The semigroup operation is given by the composition:

fg= fog:g '(Dom(f)NIm(g)) — f(Dom(f)NIm(g)).
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This inverse semigroup is a monoid because it contains the identity map Idy : X — X.
Also, I(X) has a zero element, given by the empty map @ : @ C X — @ C X. In fact, this
example is paradigmatic because the Wagner—Preston theorem states that every inverse
semigroup can be embedded into I (X) for some set X [26,31].

We want the definition of quantum inverse semigroups to be a generalization of inverse
semigroups in the same sense that Hopf algebras can be thought of as a generalization of
groups.

Definition 3.1. A quantum inverse semigroup (QISG) is a triple (H, A, §) in which

(QISG1) H is a (not necessarily unital) k-ring.

(QISG2) A: H — H ® H is multiplicative and coassociative.

(QISG3) § : H — H is a k-linear map, called pseudo-antipode, satisfying

i) S(hk)=S8(k)S(h),forallh,k € H.
(i) IxSxI=17Iand$ I xS =S inthe convolution algebra Endy (H ).

(QISG4) The sub-k-rings generated by the images of / * § and § % / mutually com-
mute; that is, for every h,k € H,

hayS (h@2)S(kayke) = Ska)kayhnyS(he)-

A QISG is unital if H is a unital k-algebra and § (1) = 1g. A QISG is co-unital if H is
ak-coalgebraand e o § = ¢y

Remark 3.2. There are some natural questions about the previous definition which are
worth to consider.

(i)  The denomination “k-ring” in axiom (QISG1) was chosen only to refer to the
structure of algebra without units even though it is common in the literature
to use the denomination “algebra without unit”, or “non-unital algebra”. Then,
one can also say that a non-unital quantum inverse semigroup is a non-unital
k-algebra.

(ii))  Contrary to inverse semigroups, in general, it is not possible to assure the unique-
ness of the pseudo-antipode in QISG. In the case where the idempotents in the
convolution algebra Endg (H) commute, then the pseudo-antipode is unique.
Indeed, supposing § and § are two linear endomorphisms in H such that

IEREVEVE I*f*l:l; SxI*xS=S8, SxI*xS=3§,
then

S=8xI*8S=8xI%xSxIxS§
=SxIxS*x[+S=8%1%S$
=Skl *S*xIxS=8SxI+S%[x§
=SxIx§=38.



M. M. Alves, E. Batista, and F. K. Boeing 692

(iii)) Axiom (QISG4) also follows automatically if the QISG H is counital and the
idempotents in the convolution algebra Homy (H ®2, H) commute. Let e, & :
H ® H — H be defined as

e(h®@k)=huS(hwp)etk) and e(h k) =¢e(h)S(kuy)ke).

It is easy to see that both e and e are idempotents with respect to the convolution
product. The commutation relation e % e = é * e is equivalent to

hay$ (h@2)$ (kayke) = Ska)kayha)S (he).

@iv) In axiom (QISG3), it is imposed that the pseudo-antipode is anti-multiplicative
even though in most examples of QISG it is possible to show this property
directly from other intrinsic characteristics of those particular examples. On the
other hand, it is not required that the pseudo-antipode is anticomultiplicative;
thatis, Ao § = (5 ® §) o A°P. Although this is true in most examples, there
are cases where this property is not valid.

(v)  In [22], the author introduced a notion somewhat related to our QISG, called
“weak Hopf algebras”. This notion of a weak Hopf algebra does not correspond
to the usual notion of weak Hopf algebra in the literature [8] basically because
they were bialgebras, while usual weak Hopf algebras do not satisfy the unitality
of the comultiplication nor the multiplicativity of the counit. Despite the fact that
the notion of pseudo-antipode was introduced there, we must highlight some
essential differences between a QISG and the so-called “weak Hopf algebras”
(WHA for short). First, a QISG need not be unital nor counital, while the WHA
are bialgebras; then, they are unital and counital, and therefore, even the algebra
of an inverse semigroup could not be, in general, an example of a WHA. In
axiom (QISG3), we demanded the antimultiplicativity of the pseudo-antipode,
while for WHA, this condition was not postulated, but it is assumed in many
points in order to obtain relevant results. Finally, for a WHA, there is nothing
similar to axiom (QISG4).

(vi) We also acknowledge another similar construction in [3] (although it was not
so far published elsewhere), also called quantum inverse semigroups. The dif-
ference is that the notion of a quantum inverse semigroup given there is a
C *-algebra with a dense bialgebra with a pseudo-antipode satisfying (QISG3).
Here, we do not demand a QISG to be unital or counital. Also, the author does
not demand any condition similar to our axiom (QISG4).

Example 3.3. Let S be an inverse semigroup. The inverse semigroup algebra

kS = { Y ab | a; ek}

seS

can be endowed with a structure of a counital QISG with

A(Gs) =8s ® s, e(ds) =1, S(8s) = ds.
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When S is an inverse monoid, then kS is a unital and counital QISG with 1xs = §;. The
axiom (QISG4) is automatically satisfied because the algebras generated by the images
I % § and § * I both coincide with k £(S), which is a commutative algebra.

Example 3.4. An affine inverse semigroup scheme is a functor X from the category of
commutative k-algebras to the category of inverse semigroups whose composition with
the forgetful functor U : InvSgrp — Set becomes an affine scheme, that is, a representable

functor from the category of algebras to the category of sets. Let ¥ be an inverse semi-
group scheme and H the commutative algebra which represents it; that is,

by (_) = HomCOmAlg (H, _) .

The assumption that X (A) is an inverse semigroup and that for any algebra morphism
¢ : A — B induces a semigroup morphism X (¢) : £(A4) — X (B) leads to the conclusion
that the multiplications in each semigroup S = X (A) define a natural transformation,
m : X X X = X. As the functor S is representable, one can write the multiplication as

m : Homcomalg (H, _) x Homeomalg (H, ) = Homcomalg (H, ),
or yet, via the canonical natural isomorphism
Homcomalg (H, ) X Homcomalg(H, _) = Homeomalg(H ® H, ),
write it as the associated natural transformation
1 : Homeomale(H ® H, ) = Homeomaig(H, ).
By Yoneda’s lemma, this natural transformation induces a morphism of algebras
A:H—HQ®H

such that, for each algebra A and each pair of algebra morphisms x, y : H — A, we have
x-y =my(x,y) =(x®y)oA.

In the same way, the pseudo-inverse operation can be viewed as a natural transforma-
tion (1)* : ¥°° = X. Again, by Yoneda’s lemma, this natural transformation induces a
morphism of algebras (as the algebras are commutative, also an anti-morphism of alge-
bras) S : H - H.

Given a commutative algebra A, the identities ss*s = s and s*ss* = s* for each
s € Homcomale (H, A) are equivalent to the expressions / * S x / =/ and S x [ *§ = §.
Indeed, for any 4 € H and for any algebra morphism s : H — A,

s(h) = ss*s(h) = s(hq))s™ (h@))s(h@a)
s(h)s(S(h@))s(h@) = s(hayS(h@)ha)-

As this equality is valid for every algebra morphism s : H — A and for every commutative
algebra A, we have

h = h(])S(h(z))h(g,), Vh e H.
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Finally, axiom (QISG4) is trivially verified because all algebras are commutative.
Then, for every h,k € H, the elements [ x §(h) and § * (k) do commute. Therefore,
the algebra H representing the affine inverse semigroup scheme is a QISG.

Example 3.5. Given an inverse semigroup S, let Hg be the polynomial algebra generated
by all the matrix coordinate functions of isomorphism classes of finite-dimensional k-
linear representations 7 of S; that is,

Hs =k[mi; | 7:S - My(k), 1 <i,j <n],

in which 7 (s) = (7;,;(5)); j=1- Define the comultiplication on the generators by

n
A(]Ti,j) = Z T ® Tk, )
k=1
and extend to an algebra morphism A : Hg — Hgs ® Hg by the universal property of
the polynomial algebra. Considering the natural embedding of Hs ® Hg as a subalgebra
of the algebra of functions from S x S to k, the comultiplication can be written in the
following way:

A(mi ) (s.0) = mij(s1) = > e (8)m 5 (0).

k=1
Also, one can define the pseudo-antipode on the generators as

S(mi,j)(s) = mi j(s*), VseS,

and extend it by the universal property of the polynomial algebra to an algebra morphism
S : H — H (which is also an anti-algebra morphism because of the commutativity).

It is easy to verify that (Hs, A, §) is a unital quantum inverse semigroup. The unit
of the polynomial algebra can be seen as the constant function 1g¢ : § — k = M (k)
which sends every element of the semigroup S into 1y, and the pseudo-antipode §, as
algebra morphism, naturally sends 1 g, to 1g¢. Axiom (QISG3) can be checked only on
generators; then, taking a generator m; ; with 1 <i, j <n and any element s € S, we have

n

IS I(mi)(s) = Y mix($)S(mes)(s)m,;(s)
k=1

n

= Z i (S)T[k’l(s*)ﬂl,j (s)

k=1
= 7;,;(s5™5)
= ni,j(s).

Therefore, I * § x [ = I.By similar reasoning, § * [ * § = §. Axiom (QISG4) is satisfied
because the algebra Hg is commutative.
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Example 3.6. Every Hopf algebra (H, i, 1, A, &, S) is a unital and counital QISG. The
axiom (QISG4) follows from the antipode axiom in the Hopf algebra. Then, the images of
I xS =8 x I = noe¢are contained in the commutative subalgebra k - 1.

Example 3.7. Every weak Hopf algebra is a QISG. A weak Hopf algebra [8] is a sextuple
(H,u,n, A, e, S) such that (H, i, n) is a unital algebra and (H, A, ¢) is a coalgebra. The
comultiplication A : H — H ® H satisfies
A(hk) = A(h)A(k),
(A 1)(1®AD) =(1®AD)(A)®1) =(A®I)oA).
The counit ¢ : H — k satisfies
S(hkl) = S(hk(l))s(k(z)l) = E(hk(z))é‘(k(l)l).

The antipode S : H — H in a weak Hopf algebra satisfies the following axioms:

hayS(he) = ei(h) = e(layh)12),

S(hayh) = &s(h) = 1e(hl2)),

Shayha)S(ha) = S(h).

With these axioms, one can prove that S is an algebra antimorphism and a coalgebra
antimorphism. Moreover, for any & € H,

hayS(h@)he) = e(lmhm)lehe) = e(hay)he) = h.
Finally, for every h,k € H,
h)S(h@)Skwke) = (w1 laekl@))
= 8(1(1)}1)1(1/)1(2)8(k1(2/))
= S(ka)kahwS(he)-
Therefore, the axiom (QISG4) is satisfied, turning the weak Hopf algebra H into a QISG.
Example 3.8. A nontrivial example of a quantum inverse semigroup was inspired in the
work of Banica and Skalski [4] on a quantum version of Hadamard’s matrices. Consider
the polynomial k-algebra generated by the set {u;; | 1 <i, j, < n} and then consider the

quotient
H=Kklu;|1=<i,j<n]/I,
in which I is the ideal generated by elements of the type
(D) wijuix — 8 puij,
(2) ujjug; — 6;xuij.
Defining the function

n
Ujj = Zuik ® Ugj,
k=1
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one can lift it to a morphism of algebras A : klu;; |1 <i,j <n] - H ® H doing the
same on generators. We need to check that

AD) S IQK[uy | 1<i,j<n]l+k[u;|1<i.j<n&lI.
Indeed,

n n
Auijuix — 8 xuij) = Z UipUig @ UpjUgk — ZSj,kuip ® Up;
p.q=1 p=1

n n
= E : UipUig @ UpjUgk — § : Sp.qUip ® Upjlgk

p.g=1 p.g=1
n n

+ E Sp.gttip ® UpjUgk — § :Sj,k”ip ® Upj
p,q=1 p=1

n
= E (Uipliq — 8p,qUip) ® Upjligk
p.q=1

n
+ Z Uip @ (Upjtpk — 8 icUpj).
p=1

analogous for A (u; juk; — 0; xu;j). Therefore, there is a well-defined algebra map A :
H — H ® H defined on generators as A(u;;) = Zzzl Ui & Uk -
Also, one can define a function

<. _ o]
St {wijh<ij<n — H=H®
Uij = uji,

also lifting to an algebra morphism S : klu;j | 1 <i,j <n]— H°P.Itis easy to see that
S(Z) C I. Therefore, we have a well-defined algebra morphism S : H — H = H®P.
Let us verify that (H, A, S) defined as above is indeed a QISG. First note that

n n n
I SQuij) = Y uigeSui) = > uitje = 8ij Y ik
k=1

k=1 k=1
n n n
SxI(uiy) =Y Suiur; = Y ukitl; = 8ij Y U;-
k=1 k=1 k=1
Then, we have

I*S*I(uiljl---uiNjN)

n n
= Z Z Wirky == Uinky S(Uky1y == Wiy Iy ULy jy - Uiy jiy
ki,li=1  ky,Iy=1

n
= Z Z Uirky = UinkyUlyky " Ulik Ul jy o Uy jiy
ki,li=1  ky,Iy=1
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n n
= Z Z Uirky ** Uinky Oir 0y == Sig Iy Ul jy Uiy jy
ki,i=1  ky,In=1

n

uilkl e MiNkNuiljl T uiNjN
=1

ki=1 kn
n n
= ) Y Skt - Sk iy Uiy
ki=1 ky=1

= Uiyjy = Uiy jy-

This leads to / * S % [ = I and, analogously, S * I * S = S. The elements of the form
I * S(h) naturally commute with elements of the form S * /(k) due to the commutativity
of H, satisfying (QISG4). Therefore, (H, A, S) is a QISG.

Moreover, this QISG is unital and counital: first, it is unital because H is a unital
algebra and, by construction, S(1g) = 1g. Also, it is counital because one can define
a function & : {u;; }1<i, j<n — k given by &(u;;) = §; ;; this can be lifted to an algebra
morphism € : k[u;; | 1 <i,j <n] — k doing the same. It is straightforward to verify that
£(I) = 0; therefore, there exists an algebra morphism ¢ : H — H, making, in particular, H
a commutative bialgebra. It is also easy to check that S o ¢ = &. Note that H is an example
of a QISG which is neither a Hopf algebra because / * S(u;;) # & j 1y = e(uij) 1y
nor a weak Hopf algebra because A(lg) = 1y ® 1g. One can see also that H is not a
QISG coming from the structure of an inverse semigroup algebra, as in Example 3.3. Even
though the set of monomials u;, j, ... u;,;, form an inverse monoid, with the pseudo-
inverse (u;, j, ... ui,j,)" equal to u;, j, ...u;,;, itself, the comultiplication map for an
inverse semigroup algebra to be a QISG is done making all the elements of the semigroup
group-like, which is not the case of the comultiplication defined in H .

3.1. QISG and partial representations

Partial representations of Hopf algebras were introduced in [2] as an extension of the
concept of the partial representation of a group.

Definition 3.9 ([1, 2]). Let H be a Hopf k-algebra, and let B be a unital k-algebra. A
partial representation of H in B is a linear map = : H — B such that

(PR1) (1) = 1p.

(PR2) m(h)m(kay)m(S(k))) = m(hkqy)m(S(kew))), forevery h,k € H.

(PR3) mw(h))m(S(hey))m(k) = mw(hay)mw(S(h))k), forevery h,k € H.

The original definition of partial representation in [2] included two more axioms, but
later it was proved that these follow from the previous ones.

Proposition 3.10. Let H be a Hopf k-algebra, and let B be a unital k-algebra. Every
partial representation w : H — B satisfies the following properties:
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(PR4) JT(h)JT(S(k(l)))n’(k(z)) = JT(hS(k(l)))T[(k(z)), for every /’l, k e H.

(PRS) w(S(hay))m(he))m(k) = n(S(hq)))m(heyk), for every h,k € H.
Moreover, every linear map i : H — B that satisfies (PR1), (PR4) and (PRS) also satisfies
(PR2) and (PR3).

Definition 3.11 ([2]). Let H be a Hopf algebra, and let T (H) be the tensor algebra of
the vector space H . The partial Hopf algebra H,,; is the quotient of 7'(H ) by the ideal /
generated by elements of the form

D) 1g — 1ry:

2 h® k(l) ® S(k(z)) - hk(l) ® S(k(z)), forall h,k € H;

3) h(l) Y S(/’l(z)) ®k —ha) ® S(h))k,forallh,k € H.

Denoting the class of 1 € H in Hy, by [h], it is easy to see that the map

[]: H— Hpy
h — [h]

is a partial representation of the Hopf algebra H on Hp,,.

The partial Hopf algebra H,, has the following universal property: for every partial
representation 7 : H — B, there is a unique morphism of algebras 7 : Hpr — B such
that w = 7 o [_]. In [2], it was shown that Hp,, has the structure of a Hopf algebroid over
the base algebra

Apu(H) = (en = [h)][S(h)] | h € H).
When H is a co-commutative Hopf algebra, things become much simpler. For instance,
the base algebra Ap, is commutative. In this case, the following result is valid for the
universal algebra H,,;. For H being a group algebra, kG, the partial algebra Hp,, is just
the partial group algebra k., G [14], which is the inverse semigroup algebra k.S(G). For
H being the universal enveloping algebra U(g) of a Lie algebra g, the partial algebra Hp,,
coincides with the algebra H itself since every partial representation of H is global [2].

Theorem 3.12. Let H be a co-commutative Hopf algebra over a field k. Then, the partial
Hopf algebra Hp,: has the structure of a unital QISG.

Proof. First, one needs to define a comultiplication A : Hpy — Hpor ® Hper Which is
multiplicative. For this, define the linear map

8 . H — Hpar ® Hpar, h = [h(l)] ® [h(z)]

One can prove that the map § is a partial representation of H. For example, let us verify
axiom (PR2):
§(h)8(k@)8(S(k@2))) = ha)llkwy][Ska))] ® lh)llk@)][Stka)]
= [h)llk][S k)] ® [hayke)][S (k)]
= [h)llk][Ske)] ® ke[S k)]
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= [hkm][Ske)] ® [hayke)[Skw)]
= [haykm][Stk@)] ® hayke)][Skae)]
= 8(hk(1))8(S(k2)))-

Therefore, there exists a unique algebra morphism A : Hyye — Hpye ® Hpy, given by

A([hl] ") = [h(ll)] o [hpl @ [h%z)] Ryl
In order to define the pseudo-antipode, consider the linear map

S:H—HD2 h[Sh)]

par’

For every h,k € H, we have

S(h) op Skty) op S(Sk2)) = [SI)] op [Sk1))] o [S (S (k)]
= [S(SK)w)][SE) ) ][St)]
= [SS®w)][SE) @S]
= [S(Stk@)][S(hkay)]
= [S(hk)] o [S(SGk2))]
= S(hka)) o S (S k).
and the other axioms of partial representations are easily verified in the same way. There-

fore, S is a partial representation of H in Hpofr, inducing a morphism of algebras § :
Hpyor — H;fr, or equivalently, an anti-morphism of algebras § : Hy,r — Hp,r given by

S(Y...[1") = [SBM]...[SGH].

In order to verify the identities / % § x I =1 and § * I * §, first note that, forany h,k € H,

[hlex = [hlkw)][S (k@) ] = lhkw)[S(ke)]

= [hkm[Shayka)]h@ka][Ska)]
WkI[Shke)[hake S kw)]
WkmI[Sh@ke)]lh@)]
hayk[h2)]-

=[h
=[h
=¢

This implies, in particular, that the elements ¢, do commute [2]. Indeed,

engr = [h)l[S(h@) lex = [hwleshak[Sh)]
= ehy Stk @[S (h3)] = engy stk h@)[S ()]
= ex[h][S(h@)] = exen.

Let us prove the identity 7 * § x I([h']...[h"]) = [h']...[h"] by induction on n > 1. For
n = 1, we have

I %8« I([h]) = [ha][She)]ha)] = [hayShe)]lh@E)] = [h].
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Assume the claim valid for #; then,

I8 xI([h"]...[A""Y)

=[] S [SGIED] - [S(hly) ]Ik . (15
=[] Wy leps [SUriy)] . [SChi)]lhis)) - iy IR

= e g i i) - B[S [SUily)ihiy) - Uy 1]

[¢Y]
= shzl)h?l)h?{;l [h%z)] e [h?z)][h?gl]
= (1] e B
=[r"]... [hn][h'gl"')'l [S(h?;)'l)][h?;)'l

= [A']...[A"T1).
For the identity § * [ x § = §, consider [1']...[h"] € Hpy, and then

S« 1 xS8([h']...[h"])
= [Sth{yy)] - [Shap]ly) - iyl [Shis)] - [Sthe)]
= [S(z)] .- [Shi][SSUip))] - .. [S(SBEp))[ShE)]- . [Shi;)]
=[St @] [SEHWOI[SSED )] .. [S(SE)[SE @] .- - [St) )]
=[S(™)]...[SthY]
= S((h']...[h")).

Finally, in order to verify axiom (QISG4), note that

I S([R. .. [0") = [hip]. - (i [S (W] - - [S(hiy)]
= [hly]. - 1 Tew [S(hi5 )] .. [S(hly)]

= ghzl)___hglhn[h(lz)]...[h?z_)l [S(h{’;)1 ]...[S(h%3))]

_ 1 —2 —2 1

= Sh(ll)mhztl—)lhn[/’l(z)]...[h?z) ]Ehzuz—)l[S(h?:,’) ]...[S(h(3))]

_ 1 -2 -2 1

= 8h(11)...h;’1—)1hn8hgz)...h;12—)2h72—)1[h(s)]~~[h'(13) [S(h’&) ]'--[S(h(4))]
= Ehgl),..hg)lhn Ehgz).,.hgzhgl e 5hgn)’

while, on the other hand,

S I(IR")... ") = [SU)]. .. [SGi]ihky] . )]
= [Sh)] - [Ship][S(Shin))]- - [S(Shiyy))]
=[St @] [SEHD][S(ShH@)] - [S(St™) )]
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= ES(M)(1y-.S(h2) (1) S(B) ES (") (2)...8 (h2) 2 -+ + ES (W) ()
=¢ & -~ .
S-Sy )S()E S, ). S, ) NG

As both expressions can be written in terms of combinations of products of elements ¢,
for x € H, then they commute among themselves. Therefore, for a cocommutative Hopf
algebra H, the universal Hopf algebra H, is a QISG. |
3.2. QISG and Hopf categories

Hopf categories were introduced in [6] in the context of categories enriched over the
monoidal category of coalgebras of a strict braided monoidal category V. In this section,
we will consider the case 'V = k.M, the symmetric monoidal category of left k-modules
over a commutative ring k, and we will introduce Hopf categories as categories enriched
over the monoidal category Coalg(k) of k-coalgebras, or simply “Coalg(k)-categories”
for short.

Unraveling the definition, a (small) Coalg(k)-category H over the set X consists of a
family {Hx y}x,yex of k-coalgebras, with structure morphisms

Ax,y i Hyy = Hxy @ Hy,y, €xy:Hxy—k,

for every x, y € X, plus k-linear mappings ftx,y,- : Hxy ® Hy; — Hy;and ny : k —
Hy x, forevery x, y,z € X, such that

Mx,y,t © (Hx,y ® I/Ly,z,t) = Mx,z,t © (H«x,y,z & Hz,t)v @
Mxx,y © (Mx ® Hyy) = Hyy = jix,y,y o (Hxy ®@1y). ©)

The coalgebra structure is required to be compatible with the multiplications ft,, , and
unit mappings 7, in the following sense: first, A satisfies the equalities

Ax,z © x,y,z = (Kx,y,z ®hx,y,z) © (Hx,y ®TH, ,,Hy., ®Hy,z) o (Ax,y®Ay,z)’ (6)
Ax,x onNx = Nx  Nx, @)
where g, , g, . is the twist map
THx,JHHy,z : Hx!y ® Hy,z - Hy,z ® Hx,y, h &® k—k ® ]’l;
the equalities respective to the counit mappings are
Ex,y ® Eyz = Ex,z O Ux,y,z» (8)
ex.xonx = k. )

Thus, let H be a Coalg(k)-category and consider the k-module

alg(H) = P Hx,.

x,y€Ho
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in which Hy denotes the set of objects in the category H. Since alg(H) is a direct sum
of coalgebras, it has a canonical coalgebra structure as follows: denoting by “ay ,” an
element of the component H, ), the map A : alg(H) — alg(H) ® alg(H) is defined
component-wise by

A(ax,y) = Ax,y(ax,y)»
and ¢ : alg(H) ® k is defined by

&(ax,y) = &x,y(ax,y).

We can also define a product u : alg(H) ® alg(H) — alg(H) by
w(ax,y ® by ;) = lxyz(axy ®by;) and p(ax,y ® by,;) =0 whenever y # w.

It can be verified that the triple alg(H) = (alg(H), u, A) satisfies conditions (QISG1)
and (QISG2). In fact, it follows from equalities (4)—(9) that A and & are multiplicative,
and also that alg(H) is an algebra, which is unital if and only if X is finite. Moreover, in
any case alg(H ) has, at least, a system of local units: the idempotents 1, (1) are mutually
orthogonal and the set of the finite sums 7y, (1) + --- 4 7y, (1), where n > 1 and the
elements xq, X2, ..., X, are distinct, is a system of local units for alg(H ).

A Hopf'k-category is a Coalg(k)-category H with an antipode which, in this context,
is a family of k-linear maps Sy y : Hy y — H) x such that

Mx,yx ©(Hyy @ Sx,y) o Axy =nx0éx,y: Hyy — Hyx,
Kyxy © (Sx,y @ Hyy) o Axy =1y oexy: Hey > Hyy,

forall x, y € X. This family induces a k-linear map S : alg(H ) — alg(H ) which satisfies,
in Sweedler notation, the equalities

(hx,y)(l)S((hx,y)(Z)) = 8x,y(hx,y)77y(1)v (10)
S((hx,y)(l))(hx,y)(Z) = sx,y(hx,y)nx(l)v (11

for every hy,, € Hx y andforall x,y € X.

We claim that alg(H) is a quantum inverse semigroup with S as its pseudo-antipode.
Axiom (QISG3) (ii) follows easily from (10) and (11). Axiom (QISG3) (i) follows from
[6, Lemma 3.6], where it is proved that

Sx,z O Ux,y,z = Hz,y,x © (Sy,z ® Sx,y) ©TH.,.Hy>

Ayx 0 Sxy = THy x,Hyx © (Sx,y ® Sx,y) 0 Ax,y.

Hence, for hx,, € Hy .k, . € Hy ;, we have

S(hx,yky,z) = S(ky,z)S(hx,y)s
S(hx,y)(l) ® S(hx,y)(Z) = S((hx,y)(z)) ® S((hx,y)(l)),

and it follows that S is antimultiplicative and anticomultiplicative.
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Finally, axiom (QISG4) also follows from (10) and (11):

(hxy)()S ((hx.y) @) S ((kzw) 1)) (kzw)2)
= &x,y(hx,y)ezw(kzw)Nx (DNw (1)
= &z,w(kzw)ex,y (hx,y)Nw (Dnx (1)
= 8 ((kz,w) (1)) kz,w) @) (hx,y)1)S ((hx,y) 2))-

Therefore, if H is a Hopf k-category, then alg(H) is a counital quantum inverse semi-
group with anticomultiplicative pseudo-antipode.

We mention that if a Hopf category H has a finite set of objects, then we can obtain
this same QISG structure on alg(H) by other means: in [6, Proposition 7.1], it is proved
that, in this case, alg(H ) is a weak Hopf algebra, and we know by Example 3.7 that every
weak Hopf algebra has a structure of quantum inverse semigroup; this structure of QISG
coincides with the one introduced above.

Example 3.13. Consider a Hopf category H whose set of objects is Hy = N and for
i,j € N, H; ; =k with the trivial coalgebra structure (A(A) =A ® 1 =1® A, for A #0,
A(0) =0 ® 0, & = Idyk). The multiplication maps u; jx : H; x ® Hy, ; — H; ; are given
by the multiplication on the field k and the unit map 7; : k — H;; is the identity map on
the field k. Finally, the antipode map S; ; : H; ; — H;; is simply the identity linear map
on k.

The algebra alg(H) is the algebra My (k)oo, which is the algebra of row and column
finite N x N matrices. The QISG structure on this specific Hopf category can be written
as

A((@i)i,j) = (@ij )i ® (@ij (2)i,»
in which @ij (1) ® Qij (1) = dij ® 1 foraij = 0 and aij (1) ® Qijq) = 0, for ajj = 0,
e((aip)i,;) = (aij)i,j
and
S((@ij)i,j) = (@ji)i;-
It is easy to see that this satisfies (QISG1), (QISG2), (QISG3) and (QISG4) of Defini-
tion 3.1.

If the set of objects Hy is a finite set, Hy = {1, ..., n}, then the algebra alg(H)
coincides with the standard weak Hopf algebra M, (k) of n x n matrices.

4. Generalized bisections on Hopf algebroids

The interplay between groupoids and inverse semigroups has been vastly explored in the
literature [16, 21, 24, 25,29]. One of the most important sources of inverse semigroups
associated with groupoids are the bisections of étale topological groupoids [12,18,23]. A
topological groupoid is a groupoid which is a topological space and whose structural maps
(source, target, multiplication, unit map and inversion) are topological maps. A topological
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groupoid is étale if the source and target maps are local homeomorphisms. Given an étale
groupoid §, a local bisection of § is an open subset U C § such that the restriction of the
source map to it is injective (this implies automatically that the target map restricted to U
is also injective). Denoting by B(¥) the set of all bisections of &, one can prove that this
set has the following structure of an inverse semigroup:

(1) Given U,V € B(9), define their multiplication as
UV ={yS€$|(y.§) €U xVands(y) =1(5)}.
(2) For U € B(9), define its pseudo-inverse as
U*={yleg|yeU).

Etale groupoids have nice properties relative to their bisections. For example, the set
of bisections form a basis for the topology of the entire groupoid, being the idempotents
of the inverse semigroup of bisections correspondent to the open subsets of the unit space
€ of the groupoid, which is, in its turn, a clopen subset of the entire groupoid.

For what comes next, one needs a more algebraic characterization of bisections of
groupoids.

Definition 4.1. A local bisection of a groupoid ¥ is a pair (u, X) in which X is a subset
of €@ and u : X — ¥ is a function such that

(i) sou =Idy.
(i) tou:X — t(u(X)) is abijection.

The set X is called the domain of the bisection (1, X'). A global bisection is a local bisec-
tion whose domain is X = §©.

Note that item (ii) implies that the function u : X — § is injective. Denote again by
B(F) the set of the local bisections of the groupoid § and by G1B(§) the set of its global
bisections.

Remark 4.2. Some considerations worth mentioning about the above definition:

(i)  Those two notions of a bisection, the first one of a bisection as a subset of the
groupoid where the restriction of the source map is injective, and the second
one, as an pair consisting of a section of the source map and its domain, are in
fact related. On the one hand, given a subset U € § for which s|y : U — €
is injective, define X = s(U) € @ and u : X — ¢ as the inverse of s|yy. On
the other hand, given a pair (1, X), as in Definition 4.1, define U = u(X), as
u is already injective, and the corestriction u : X — U is bijective. As the left
inverse of u is s, by definition, then it is the inverse of that corestriction, making
s|U injective.

(i) A topological version of Definition 4.1 can be seen in [27]. There, the subset
X € 9O is an open subset and the map u : X — ¢ is a continuous function.
When we consider only sets with the discrete topology, the two definitions coin-
cide.
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Several instances of the following result have already appeared in the literature (see
[19, Example 17] for a version closer to our approach), but we present a full proof here
in order to introduce some notations and techniques which will be useful throughout this
work.

Proposition 4.3. Let § be a groupoid; then, the set B(§), of its local bisections, defines
an inverse semigroup and the set G1B(§), of its global bisections, is a group.

Proof. Consider (u, X) and (v, Y) to be two local bisections of ¥, and define their product
as (u, X)-(v,Y) = (uv, Z), in which
Z=(ov) tov(¥)NX) and (uv)(y)=u(tov(y))v(y).
This product is associative. Indeed, for (u, X), (v,Y), (w, Z) € B(F), we have
(. X) - (0. 1) - (. Z) = (v, (t 0v) (1 0 v(¥) N X)) - (w. Z)
= (wv)w, (t ow) ' (tow(Z) N (t ov) ™ (t o v(Y) N X))).
while
. X) ((v.Y)- (w,2))
=, X) (vw,tow) (tow(Z)NY))
= (u(vw), (t o vw) (1 cvw((t ow) ! (r ow(Z) N Y)) N X)).
In order to show that these bisections are equal, first note that, for any z € Z,
tovw(z) = t(v(t o w(z))w(z)) = t(v(t o w(z))) =tovotow(z).

Now, take z € (fovw) L (fovw((fow) ! (tow(Z)NY))N X), and then z = (fovw)~!(x)
for an element
XEto vw((t o w)_l(t ow(Z)N Y)) nx,

orx =tovw(z) =tovotow(z). Denote by y =1t o w(z) that this element belongs to
tow(Z)NY.Then, x =tov(y) €tov(Y)N X. Finally,
y=(ov) !(x)=tow(@)etow(Z)N(to v)_l(t ov(Y)N X).

Therefore, z € (t ow) ™' (t cw(Z) N (t ov)~1(t o v(Y) N X)). Reciprocally, one can see
that
ze(ow) Hrow(Z)N(tov) ' (tov(Y)NX))
is implied in z € (t o vw) ™1 (¢ c vw((t o w)~L(f ow(Z) N Y)) N X), proving the equality
between the domains of these two bisections, henceforth denoted by 7', only for sake of
simplicity.
Now, forz € T,
u(ww)(z) = u(r o vw(z))vw(z) = u(t ovorow(z))v(t ow(z))w(z),
(uv)w(z) = uv(t o w(z))w(z) = u(t ovotow(z))v(t ow(z))w(z).

Therefore, (u, X) - (v,Y)) - (w,Z2) = u, X)-((v,Y) - (w, Z2)).
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For any bisection (u, X) € B(§), define (u, X)* = (i, o u(X)), in which, for any
x € X, it ou(x)) = u(x)~'. Then, for any x € X,

uu(x) = ﬁ(t o u(x))u(x) =u(x) u(x) = i(s(u(x))) =i(x),
in which i : ©© — € is the unit map of the groupoid. We conclude that

unu(x) = u(t ) L'tu(x))fm(x) = u(t ) i(x))i(x) = u(x)

and
ﬁuﬁ(t o u(x)) = L_tu(l ) L_l(l ) u(x)))ﬁ(t ) u(x))

= dtu (¢ (u(x)""))a(t ou(x)) = wu(x)i(r ou(x))
=i(x)u(t ou(x)) = ﬁ(l ) u(x)).

Therefore,

. X) - (u, X)* - (u, X) = u,X)- (@t ou(X)) - (u,X)
=wX) - (uu,X)=w,X) - (,X)=w,X)
and

. X)* - (u, X) - (u, X)* = (i, X)) (#.t ou(X)) = (.t ou(X)) = (u, X)*.

It remains to prove that the idempotents in B5(¥) commute among themselves. If (u, X)
is an idempotent element, then

. X) =, X) (u, X) = (uu, (t ou)~" (r ou(X) N X)),

implying that o u(X) = X and u(z o u(x))u(x) = u(x). Multiplying the last equality
on the right by u(x)~!, we end up with u (¢ o u(x)) = i(t ou(x)). Ast ou(X) = X, for
any x € X, there exists y € X such that x = ¢ ou(y). Then, u =i and (u, X) = (i, X).
Multiplying two of such idempotents, we have

(.,X)-G.Y)=(GXNY)=(@Y) G X).

Therefore, B(¥) is an inverse semigroup.

The global bisections are of the form (1, €(?)) and clearly, global bisections Gl B(£)
form a subsemigroup of B(¥). However, the only idempotent possible in Gl B(§) is
the unit (i, ®). An inverse semigroup with only one idempotent is a group; therefore,
G1B(¥) is a group. |

4.1. Biretractions on commutative Hopf algebroids

In what follows, unless stated otherwise, we shall consider commutative Hopf algebroids
over a commutative base algebra.
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Definition 4.4. Let # be a commutative Hopf algebroid over the base algebra A. A local
biretraction in J is a linear and multiplicative map « : J{ — A such that

(BRT1) aos(a) = ax(ly) foreverya € A.
(BRT2) There exists e* € A such that o o #(e*) = a(1g) and

@ot|ger: Ae® —> Aa(ly)

is a bijection.
A local biretraction « is global if ®(1%) = 14. Denote the set of local biretractions of #
by Brt(H, A) and the set of global biretractions of # by GIBrt(H, A).

Proposition 4.5. Let (#,s,t, A, ¢) be a commutative Hopf algebroid over A, and let
o . H — A be alocal biretraction.

(1) a(lg) is an idempotent in A and o (H) coincides with the ideal A a(1g).
(2) The element e* is idempotent.

(3) The element e* is unique.

Proof. (1) (1) is an idempotent because « is multiplicative. Moreover, for every i € #
anda € A,

ath) =ah)a(ly) € Aa(ly) and aa(ly) =aos(a) € a(H).

Hence, we have that the image «(#) coincides with the ideal A «(15) < A. Also, note
that o(15) is the unity of the ideal A ar(1g).
(2) From (BRT?2), it follows that

aot(e®) =a(ly) =a(lyp)a(ly) =aoct(e®)aot(e”) =aot(e” ).

Since « o t|4¢e is bijective and e* e“ € A e*, we have that

(3) Suppose that there exist e* and f* in A such that
aot(e”) =a(ly) =aot(f)

and the maps
@ot|ger: Ae® — Aa(ly)

and
Otol‘|Afa CAfY > Aa(ly)

are both bijections. Then,

aot(e®f¥) =aot(Ee)aot(f*) =a(ly) = aor(e”).
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Also, we have
aot(e”f*) =aor(f%).
Since the element e® ' lies in both ideals A ¢* and Af %, and « o ¢ is injective, we obtain
eDt — eOt f(X — fﬂt'
Therefore, the element e* from (BRT?2) is unique. [
Remark 4.6. The next remarks are direct consequences of Definition 4.4 and Proposi-
tion 4.5:

(i)  Observe that a local biretraction «, being multiplicative and satisfying (BRT1),
is automatically a morphism of right A-modules between # and A. Indeed, for
hedlanda € A,

ah<a) = a(hs(a)) = ot(h)a(s(a))
=oa(h)aa(ly) = a(h)a.
Therefore, Brt(H, A) € Homy(H, A).

(i)  For a local biretraction o« : H — A, the map o o t|gee : Ae* — Aa(ly) is
an element of the inverse semigroup I (A) of the partial bijections between the
unital ideals of A.

(iii) For a commutative Hopf algebroid over a domain A, we only have global bire-
tractions since the only idempotent element in A4 is 14.

As we have seen before, the set of local bisections of a groupoid § is an inverse
semigroup. Let us explore deeply the algebraic structure of the set of biretractions of a
commutative Hopf algebroid.

Theorem 4.7. Let (H#,s,t,A, ¢, S) be a commutative Hopf algebroid over a commutative
algebra A. Then, the set Brt(H, A) of local biretractions of K is a regular monoid.

Proof. First, let us construct a convolution multiplication in the set of local biretractions
of J¢. As the local biretractions are morphisms of right A-modules, we use the following
convolution product: for «, B € Brt(H, A), define for any h € H

(@ * B)(h) = B(altha) > h) = Botoalhny) Blhw).

In what follows, in order to make the reading more fluid, we are omitting the sign of the
composition of maps whenever it is clear since the maps are already applied to elements.
The convolution product « * B is a local biretraction because « * 8 is multiplicative and
satisfies (BRT1) and (BRT2).

(BRT1) Foreacha € A,
(o * B) o s(a) = Bra(lz) B(s(a))
=a Bra(lg)B(lw)
=a (o *B)(1s).
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(BRT2) Since ¢ represents the left action, we can use the fact that
A(t(a)) =1t(a) ®4 1y foreverya € A,

which implies that
(xxfB)ot =Botoaot. (12)

Therefore, the domain of (¢ * ) o ¢ must be the preimage by « o ¢ of the
intersection of the ideal Ac (1) with the ideal Ae®, and then the idempotent
associated with « * 8 must be (a 0 1)~ (ePa(14)). Indeed,

(@xB)ot((@or)  (Pa(lz))) = (Bot)aor)(@ot)  (ePa(ly))
= Bot(a(ly)e?) = Bra(ls)B(1x)
= (e * f)(1x).

Here, we are simplifying the notation by using (o 0 #)™' = (@ 0 1)|ge«) .
We need to check that the map

(@ % B) 0t qory 1 (P a1 Al o)™ (P (1) > A @ B)(1s)
is a bijection. In fact,
o (a*xB)otly (o)1 (B ) 1S Surjective: foreacha € A,
a(a * f)(1y)
= a(p o 1)(e(15)) (1)
=a(Bo t)(a(lgg)e’g)
= (Bon)Bon"(a(Bon(alm)e’)B(15)
= (Bon)((Bo) (aBla))a(ly)e)
= (Bot)@on)(wor) ((Bor) ™ (aB(ls))a(lze)e’)
= (Bor)(@on)((@or) ™ ((Bor)™ (ap(130))a(10)) (@or) ™ (e(13)eP))
= (& * B)ot((@ot) ™ ((Bot) (ap(1)) (1)) (@ot) ™! (a(15)eP)).
o (a*B)ot]gqor)y1(eBa(iy) 1S Injective: suppose that, for some a € A,
(@ p)ot(a@or)™ (e? a(ly))) = 0.
Since o 0 |4 4(1,) and B o t|4p(1,) are injective, we have
0= (Bot)aot)(al@ot)  (Pa(ly)))
= (Bot)ot)(ae*(@ot) (Pa(ly)))
= (Bot)((aor)ae®ePa(ly))
= 0= (aot)(aeePa(ly) = aot(ae(@ot) (Pu(ly)))
=>0=ae% o t)_l(e’ga(lgg)) =a(xo l)_l(eﬂa(lgg)).

Therefore, o * B is a local biretraction with e®*# = (« o 1)~ (P a(1)).
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The associativity of the convolution product of biretractions of J# can be viewed
directly once we know that local biretractions are right A module morphisms and the
convolution product on Homy (¥, A), given by

a* B(h) = B(a(ha)) > hew)).

is associative [10]. Nevertheless, for the sake of completeness, we are going to check di-
rectly the associativity here using the notations and conventions for biretractions. Consider

a, B,y € Bri(H, A).
Then, for any h € ¥,

(@ B) x y)(h) = yt(a* B)(ha)y(he)
= yt(Bra(hm)B(h))y(ha)
= ytpra(ha))yiB(he)y(ha)
= (Bxy)talhay)(B *y)(hw)
= (a* (B*y)h).

The counit ¢ : H — A is a global biretraction because it is linear and multiplicative,
and e(ly)=14 and ¢ o t =& o s =1d4. The counit ¢ is the unit for the convolution product.
Indeed, for any local biretraction @ and any & € J#, we have

exa(h) = ate(hqy)a(hz))
= a(t(e(h))h)
= a(h)

and

a x e(h) = eta(hq))e(he))
= a(h))e(h(z)
= a(h(l))as(s(h(z)))
= a(hws(e(h@))
= a(h).

Therefore, the set Brt(H, A) is a monoid relative to the above defined convolution

product.
Now, we have to define a pseudo-inverse for any biretraction « € Brt(H, A). Define

o =(@ot) lowos,

where S : H — J is the Hopf algebroid map from Definition 2.3. Then, «* is well defined
because (a o t)~! is applied to an element belonging to a(#) = Aa(1g) and it is mul-
tiplicative. Observe that

a*(1x) = (@on) ™ oaoS(y) =(@or)  oa(ly) = e
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Therefore, o™ is a biretraction because

a*os(a) = (xot) la(S os)(a)
=(@ot) Naor)(a)
=ae®
= aa”* (1)
and

-1
A" o t|ga(iy) = (@ot)" caoSot|guiy
—1
= (xot) oaos|ga(y)

= (@ o) Maaliy)

This implies that & o t|44(1,) : Aa(lg) — Ae® is a bijection and e = a(lp).

711

Finally, we need to prove that every biretraction « : J — A satisfies o« * ¢* x o = «

and o* * o x a* = o*. First, observe that

(a x a®)(h) = a*ta(ha))a™ (h))
= (@ot)lao(Sona(h)(@or)  a(S(hy))
= (or)! (@ o s)(a(h@y))a(S(he)))
=(ao Z)_l (Ot(h(l))a(S(h(Z))))
=(ao t)_lot(/’l(1)S(h(2)))
= (@ot) Naor)(e(h))
= g(h)e”

and

(@ x a)(h) = (a o t)a™ (hay)a(hz))
=(xot)(xo t)_lOt(S(h(l)))Ot(/’l(z))
= a(S(hqy))e(he)
= a(S(hayhe)
= (a0 s)e(h)
= e(h)a(ly)

for every h € J. Then, for any h € ¥,
axa” xah) = (aot)(a*a®)(haya(hy)
(Ol o t)(e(h(l))e“)a(h(z))

a(t(e(hay))h)
— a(h)

13)

(14)

5)
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and
o xo ko™ (h) = (axa™)ra*(ha)) (@ *a®)(h@z)
= e(t(a" (hqy)))elh))e”
= a*(hay)e(he)a™ (1)
= a"(ha)s(e(h)))
= a*(h). (16)
Therefore, Brt(H, A) is a regular monoid. [

Remark 4.8. We cannot prove, in general, that Brt(J, A) is an inverse semigroup since
its idempotents may not always commute. Consider an idempotent E € Brt(H, A) and
denote its associated idempotent in A by eE; then, for anya € A,

Eot(a) = (E * E)(t(a)) = EtE(t(a))E(13%) = EtEt(a).

Then, E ot : A — A is a linear and multiplicative map in A which is idempotent with
respect to the composition. Moreover,

Eot(ef) = E(1y),

which leads to
EtEt(eP)Et(eF) = EQg)E(1x) = E(1y).

Applying (E o t)~! on both sides, we obtain
E(t(eF))ef = (Eot) (E(1p));

that is,
E(1g)ef = eF,

which implies that Aef € AE(1z). However, the map (E ot) : Aef — AE(1g) is
bijective. Then, there exists an element @ € A such that ef = E o t(ae®), and

E(lg) =Eot(ef)y=EotoEot(aef) = Eot(aef) = eF.

Therefore, E ot is also bijective restricted to the ideal A.E(15) = A.E o t(1y).

Denote by P Aut(A) the set of all linear and multiplicative maps ¢ : A — A which are
idempotent with relation to composition and bijective when restricted to the unital ideal
A@p(1l4). Let us call such maps partial automorphisms of A. Observe that for each partial
automorphism ¢ € P Aut(A) we have that ¢(a) = a@(1,4) for every a € A because

p(pa) —ap(14)) = ¢(p(a)) — p(@)p(e(14)) = p(a) — p(a)p(l4) = p(a) — p(a) = 0.
Then,
p(a) —ap(ly) = p(@)p(l4) —ap(ls) = (¢(a) —a)p(l4) € Ap(ly)

and ¢ being bijective in Ap(14) imply that ¢(a) —ap(l4) = 0.
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Lastly, observe that for two idempotents E, F' € Brt(H, A), we have
ExF(h)=Fo t(E(h(l)))F(h(z))
= E(h@y) F ot(14)F(h(2))
= E(h@y) F(lg) F(h@2))
= E(ha)) F(h).
Similarly, F * E(h) = F(hq))E(h(2)). Therefore, unless for the case of the Hopf alge-

broid # being cocommutative, there is no a priori reason to suppose that the idempotents
of Brt(H, A) should commute in general.

Remark 4.9. Let o, 8 € Brt(JH, A). Then,

((@xB)ot)lges) " = ((@0D)lace) " o ((BoN)lger)

or simplifying the notation as before,

(@xp)yot) =(@on™o(Bon".
In fact, we have

(@ot) o (Bot) Vo(axp)ot(aerh)
=(axot) 'o(Bor)y T oBotoact(aleo l)_l(eﬂ a(lx)))
=(@ot) o (Bon)T o Bot((@or) (@)l a(ly))
= (@ot)  ((@or)(a)e? a(lz))
= (@on) o (@on)(al@or)™ (e a(ly)))

=a(aot) " (e? a(ln))
— ae(x*ﬂ

and

((@xB)ot)o(aot)y  o(Bor)y  ala*B)(1x))
=potoaocto(aot)y  o(Bot)y HaBotoa(ly)B(le))
=Botoacto(@or) ((Bor) (aBlx))e’ a(ln))
=pot((Bon (aB(lse))a(lze)e’)
= Boto(Bon) " (apor(w(in)ef)B(1e)
=aBot(a(lzx)e)
=apotoa(ly)p(ly)
=a(ax*p)(1x)

foreverya € A.
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Remark 4.10. Theorem 4.7 shows that Brt(#, A) is a regular monoid, and it was already
noted that, from (BRT?2), each biretraction o : # — A yields the isomorphism of ideals
oot |gee: Ae® — Aa(1lg), which is an element of the inverse semigroup I (A4) of the
partial bijections between unital ideals of A. This is in fact a surjective antimorphism of
semigroups.

Let Endajg(A4) denote the k-algebra of multiplicative (not necessarily unital) k-linear
endomorphisms of A. Since (¢ * f)ot = fotowaot forall a, f € Brt(H, A) (see
equation (12)), there exists an antimultiplicative map § : Brt(#, A) — Endaig(A) given
bya > aot.

Now, consider the subset J(A4) C Endajg(A) of the multiplicative endomorphisms ¢ :
A — A such that there exists an idempotent e € A satisfying

@D ¢(4) = Agp(e);

(1)  @lae : Ae — Ap(e) is an isomorphism of algebras.
By (BRT2), if o € Brt(H, A), then £(«) € J(A). Notice that it follows from (i) that
(a) = p(a)p(e) = ¢(ae) forany a € A and any ¢ € J(A).

J(A) is a multiplicative subsemigroup of Endaj,(A4). Let ¢, ¥ € J(A) and a € A, with
corresponding idempotents ¢ and f'; we claim that ¢ o (A) = A. ¥ (p(e))¥ (f). In fact,

V(e@) = ¥ (pae)) = ¥ (plae) f) = v o p(a)y(p(e) ¥ (f).

so that ¥ o (A) C A. ¥ (p(e))y¥(f). Conversely, given b € A, it follows from (ii) that
there exist ', b” € A such that by (f) = (b’ f) and b’ fp(e) = (b”e); hence,

by (p@) v (f) =v® v (ee) =y fele) = v(p(d"e).

and therefore, ¥ o p(A) = A. ¥ (p(e))¥(f).

Let g = (¢ l1e) "' (p(e) /). Then, ¥ 0 ¢ |4g: Ag — A (¢(e))¥(f) is an isomor-
phism of algebras. This map is injective since it can be written as a composition of
injective maps, and it is surjective, given that

V(pag)) = ¥ (p@)v(e(g) = ¥(e@)v(¢(e) f)
=Y (plae) f) = ¥ (e(@)f)
= ¥ (¢(a))
and that ¥ (¢(A)) = A. ¥ (¢(e))¥(f). Therefore, J(A) is a multiplicative subsemigroup
of EndAlg(A).

The map & : Brt(H#, A) — J(A) has a section and therefore is surjective. Indeed, for
each ¢ € J(A) with associated idempotent e, we define a biretraction oy, : # — A by

ay(h) = e(h@)e(e(ha)e).

Then,
agpot(a) =e(lx)p(eot(a)e) = plae) = p(a),
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which implies that £ («ty,) = ¢. Also, o, is a biretraction because

agpos(a) =eos(a)p(e(lyp)e) =aple)

and
ay ot(a) = ¢(ae),
leading to gy ot [4e= @ |42 Ae — Agp(e).
Finally, let I (A) be the inverse semigroup of isomorphisms between the unital ideals
of A. We have a morphism of semigroups

F:J(A) > I(A), @t ¢ |ge: Ae — Ag(e),

where e is, as before, the idempotent associated with ¢. This morphism is actually an
isomorphism: its inverse takes an isomorphism of ideals 6 : Ae — Af(e) to the map
@g : A — A given by @g(a) = 0(ae). Therefore, we obtain a surjective antimorphism of
semigroups

Fof:Brti(H,A) > I(A)

defined by
(Fofé)(a) =aot |gea: Ae* — Aa(lg).

Consider now the free vector space generated by the biretractions of # and extend
linearly the convolution product to this space. Then, we have an algebra structure on the
space kBrt(H, A), henceforth denoted by B(H).

Theorem 4.11. Let J be a commutative Hopf algebroid over a commutative algebra A.
Then, the algebra B(H) generated by the set of biretractions of J with the convolution
product is a unital quantum inverse semigroup.

Proof. As we have already proven in the last theorem, Brt(J, A) is a regular monoid;
then, the algebra B(J) is a unital algebra.

Define first the comultiplication A : B(H) — B(H) ® B(H) on the basis elements
aeBrt(H, A)as A(e)=a ® «. Then, extend linearly for the whole algebra B(H). Then,
it is obvious that the comultiplication A is multiplicative since for any «, f € Brt(H, A),
the convolution product o * § also belongs to Brt(J, A).

Define also the pseudo-antipode on the basis elements as § (o) =o* = (xzot) loaoS.
Then, extend linearly to ®B(#). Again, to prove that § is antimultiplicative, it is enough
to check on biretractions.

Then, for h € # and «, B € Brt(H, A), we have

S(a* B)(h) = (@ B)ot) " o(axp)oS(h)
= (@*pB)ot) ' (BotoaoS(hw) B oShay))

Q@or o (Bor)y T (BotoaoS(hay)p o Shuy)Bot(e?))
=(@ot) o S(hay) ef (Bot)™ oBoS(hyy))
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=(aot) ' oaoSha)aor) o(Bor) oBoShyy)
= a*(ha)(@ot)~' o B*(h)),

in which we used the result ((a * 8) ot)™! = (wot)"! o (B o¢)~! from Remark 4.9.
On the other hand,

(S(B) * S(@)(h) = a* ot 0 B*(ha))a*(h(z)
=(aot) loaoSoro B* (hay)a™(he))
= (@ot) " oaosof*(ha)a*(hw)
= (@ot)™ o B (hy)a* (h(z).
Consequently, § (« * B) = S(B) * S(«) and § is antimultiplicative.
Equations (15) and (16) imply item (ii) of axiom (QISG3) of quantum inverse semi-
groups.

Finally, for checking axiom (QISG4), we use equations (13) and (14). Then, fora, 8 €
Bri(H,A)and h € H,

aq) * S(a)) * S(By) * Py(h) = (a0 * o™) x (B * B)(h)
= (B xB)oto(a*a®)(ha)(B* * f)(hw)
= (B* * B) ot(e(hy)e®)(B* * B)(h2)
=got(e(h))e®)elhz)B ()
= e(h())e® e(h2)B(15)
= e(h)e” B(1g).

The same result holds for §(B(1)) * B2 * a1y * S(a2)) (h).
Also, the pseudo-antipode is unital. Indeed, for i € F,

S =(on ocoSh)
=¢oS(h)
=c¢co S(l‘ (8(h(1)))h(2))
= &(S(h))s(ethay)))
= e(ha)S(hey))
=¢gotoe(h)
= ¢(h).

Therefore, the algebra B(H) is a unital quantum inverse semigroup. |

Example 4.12. Let H be a commutative Hopf algebra, considered as a Hopf algebroid
over the field k. The set of biretractions of H, which are global, coincides with the group
of algebra morphisms between H and k, that is, the group G (H °) of group-like elements
of the finite dual Hopf algebra H°.
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Example 4.13. Let A be a commutative Hopf algebra and consider the Hopf algebroid
H =AR® A, from Example 2.5. Let M (A) be the set of multiplicative functions ¢ : A — A,
E(A) C A the set of idempotent elements of A and

M(A) x® E(A) = {(¢,e) € M(A) x E(A) such that ¢|4. : Ae — Agp(e) is a bijection}.
Consider the equivalence relation

(p.e) ~ (. f) & e= fandglse = Vlse.

Representing the class of an element (¢, e) € M(A) x? E(A) by [, e], then the bire-
tractions of J are classified by the set

M(A) x E(A) == {[p.e] : (p.€) € M(A) x" E(4)},
which is a regular monoid with the multiplication

[p. ey, f1=[pov. vy ey ()]

unity [Id, 14] and [, e]*=[p~!, ¢ (e)], in which we are denoting by ¥ ! the map (|4 )~
and by ¢! the map (¢|4c) "
This multiplication is well defined because considering the function

9o Vlay-1epiry - AV (ev (f)) = Ap(ev (1)),
we have that

* ¢o I;[f|A1//—1(ew(f)) is injective:

0=goy(ay~ (ew (/)
0=g(Y(@ey(f))
= 0=y @y (fe=y(ay(ev () = v(afy " (ev (/)
= 0=afy " (ey(f)) = ay~ (¥ (/).
* Qo Ylay-1(ew(y)) iS surjective: given ap(ey (f)) € Ap(ey(f)), we have
ap(ey (1)) = ¢(¢™ (ap(@) ¥ (1))
=goy oy (o (ap(@)V ()
= oy (¥ (¢ (ap(@))y T (ew (1)) € p o ¥ (AY T (e (1))
Given the element [p, ¢] € M(A) x E(A), define

Ape]: ARA—A
a®br gae)b,

which is a biretraction with e¥v.¢l = e and [, ] © t[4e = @|4e-
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The convolution product between two local biretractions
Qgp,e]> Oy, f] € Bri(A Q@ A, A)
is given by
Up,e] * Ay, £1(a ® D) = apy, r101 0 g e1(a ® La)apy, (14 ® b)
= apy, r1(¢(ae) ® La) ¥ (/)b
= ¥ (plae) f)Y ()b
= ¥ (plae) f)b
=y og(ap™! (fe(e)))b
= Alyop.e~! (fo(e)] (@ ® D)
= Ay, f1lp.el(@ ® b)
for every a,b € A. Then, there is an isomorphism of semigroups
a: (M(A)x E(A)? - Brt(AQ® A, A)
[0, e] = e,
whose inverse is
g: Bri(A® A, A) — (M(A) x E(4))”
a+— [aot,e”].
Moreover, this is an isomorphism of regular monoids:
* o maps unity to unity: for every a, b € A,
g, 141(a ® b) =id(a)b = ab = s(a ® b).

* « maps pseudo-inverse to pseudo-inverse: for every a, b € A,

Upe(@®D) = (Ape) © ) oape o Sa®b)

= ([g,e] © ) lo Q] (b ® a)

= ¢~ (p(be)a)

=beg (ap(e))

= Ayt @) (@ ® b)

= g e]*(a ® D).
Example 4.14. Generalizing slightly the previous example, we can create local biretrac-
tions for the Hopf algebroid # = (A ® A)[x, x~!] from Example 2.6, with 4 commuta-
tive. Consider the set
(M(A) xb E(A)) x'A = {(go, e,p) € M(A) x E(A) x A such that

¢lae 1 Ae — Ag(e) is a bijection and Ip" € A : pp’ = p(e)}.
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Observe that if p’, p” € A both satisfy pp’ = ¢(e) = pp”, then

p'ole) = p'pp" = p"pp’ = p"le). (17)

Now, considering the equivalence relation

(p.e.p)~W. f.q) & e=f @lae = V¥lae and pp(e) = qp(e)
and representing by [¢, e, p] the class of equivalent elements by this relation, we have that
(M(A) x E(A)) x A:={[p.e, p] : (p,e. p) € M(A) x* E(4) x' A}
is a semigroup with the product

[p.e. plV. f.q] = [p o v, ¥ eV (f)). pe(q)].

unity [Id4, 14, 14] and [@, e, p]* = [¢™ ', @(e). 91 (p'@(e))]. The product is well defined
because for a class [, e, p] in (M(A) x E(A)) x A, we can take (pp(q)) = p'e(q’):

po(@)p'e(q’) = pp'e(qq’)
= g(e)o(v(f))
=goy (v (ev()))).

Then, given [p, e, p] € (M(A) x E(A)) x A, we can define forn € N,

Qpepl: (A® Ax.x 11— 4
(a ® b)x" — p(ae)bp™
(@ ®b)x™" > g(ae)b(p")",
which is also well defined because of (17).
This map is a biretraction in J just like in the previous example and the convolution

product between two local biretractions o[y ¢ ). &y, 7.4] € Brt((A ® A)[x, x71], A) is
given by

Up,e,p] * Ay, f.q1((@ ® D)x")
= Uy, 7ig1© 1 © Ag.e,p1((@ ® 10)X" )y, 11((14 ® b)x")
=Y (plae)p” )V (f)bq"
= Y og(ap™ (f(p(e)))by (p™)q"
= U[yop,p-1 (fo(enqu(m (@ ® b)x")
= [y, £qllp.e.p) (@ ® b)x")

for every (a ® b)x™ € (A ® A)[x, x™!]. Analogously, we have that

Up.e.p] * Uy, £1((@ @ D)XT") = py, rglip.e.p1((@ @ D)xT").
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Therefore, the map
a: ((M(A)x E(4)) x A)” — Brt((A ® A)[x,x7"], 4)
[p.e. p] = afg.e,p
is an isomorphism of semigroups, whose inverse is given by

g: Bri((A® A)[x,x7'], A) > ((M(4) x E(4)) x 4)”

ar[aor e a(x)].
In fact, for every [p, e, p] € (M(A) x E(A)) x Aand (a ® b)x" € (A ® A)[x,x71],

Aot ,e,a(x)] ((a ® b)x”) =aot(ae®)ba(x")
=aot(a)xos)a(x")
a((a ® b)x™)

and
[fg.e.p1 0 1, €0 gy 0 p1(x)] = [@. €, 0(e) ]
= [p.e. p].
Moreover, this is an isomorphism of regular monoids because & maps unity to unity
Adg,14,14((@ ® b)x™) =1d4(a) b (14)" = ab = &((a ® b)x")
and also maps pseudo-inverse to pseudo-inverse

Otf;,’e’p]((a ® b)x") = (Ufg,e,p) © 1) 0 Uge,p] © S((a ® b)x")
= (e © )" 0 e p)((b ® a)x™")
= ¢ (pbe)a(p)")
= be g~ (a(p)"p(e))
= ¢ (ag(@)b(p~ (Vo))"
= U1 (o)1 (poien] (@ ® D)x")
= Up,e,pp((@ ® D)x").

4.2. Biretractions on the Hopf algebroid of representative functions of a discrete
groupoid

Proposition 4.15. Let G be a groupoid and JH the Hopf algebroid of representative func-
tions of § from Section 2.2. The map o : B(§) — Bri(H, A), (u, X)— o, x) given by

2u,3) (@ ®T¢ P)x = @t 0 u(x)) (05 (P()))[x € X]. (18)

forevery ¢ @, p € # and x € €O s a well-defined morphism of regular monoids.
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Before starting the proof of the proposition above, let us make two important remarks:

* Here, the brackets [_], appearing in expression (18), denote the Boolean value func-
tion, which is equal to O if the sentence inside the brackets is false and equal to 1 if the
sentence is true.

* Note here that the definition of the map o was inspired by the definition of the map ¢
from Remark 2.9.

Proof. First, o can be written as

w,x)(@ ®1¢ P)x = (9 &1 p)(u(x))[x € X];
hence, each a(y, x) is well defined and multiplicative. Also, (BRT1) is valid because
(2,x) ©5(a)), = o@,x) (14 ®1; a)x = a(x)[x € X] = a(x)aq,x)(15)x

for every x € ¢ and g € A. To prove that o, x) satisfies (BRT2) for every bisection
(u, X) of §, remember that (u, X)* = (i, o u(X)), with #1(t o u(x)) = u(x)~!. Then,

@a.x) © H(@ax)*(150)), = @.x) (@w.x)(13e) @7, 1a),
= aq,x)* (1) rou) [x € X]
=[tou(x) etou(X)][x € X]
=[x € X]
= a,x)(1se)x

for every x € ). Moreover, the map

A, X) © Ao xye (150 + Aax)*(Lae) > Ace,x) (1)

is injective. In fact, for any a € A such that

Ou,X) © f_(a Ol(u,X)*(lye)) =0,
then
a(tou(y))y € X] =a(tou(y))[t ou(y) €t ou(X)][y € X]
= (a0 x)* (150)) 1oy [V € X1
=0 (19)
for every y € €. Thus,
(acqu,xy* (1)), = a(x)[x € 1 ou(X)]
=a(tou((tou) " (x)))[(t ou)"(x) € X][x € t ou(X)]
()
=0

for every x € €, where we used equation (19) in (%) with y = (¢ o u)~!(x). Therefore,

®(u,X) © Fldag, yy (1) 1 injective.
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Now observe that

A, x) © S(@ ®T¢ P)x
= {0 S(p ®1¢ p)(u(x))[x € X]
= (@ &1 P)((u(0) )lx € X]
= 0 ((()) ™) (oG (P (5 (40) 7)) [ € X]
=g(tou(to u(x)))(ps(tou(x))(p(t ou(x)))) [t ou(x) €t ou(X)]
= @, x)* (¢ ®Tg P)roux)-

Thus, o, x) © t_|A0t(u,X)*(IJe) s Aoy x)= (1) = Ao, x)(1g) is surjective because for
every a € A and every x € §©,

(acq,x) (1)), = (@@.x) 0 5()),
= (¢@,x)o So t_(a))x
= Q(u,X)* (t_(a))tou(x)
= aqx) o [ (ew.x) (@),
Therefore, X = o, x)* (1) satisfies (BRT2) and oy, x) is a local biretraction.
Now, for (4, X) and (v, Y') local bisections of § with (1, X) - (v,Y) = (uv, Z),

A, x) * ,y) (¢ ®Tg P)x

n
=Y oy ol 0w x) (@ ®7¢ €)x dw.y)(€] ®T¢ P)x

i=1

n
= Za(v,Y)(a(u,X)(‘p ®Te €) O 14) @,y (e] OT¢ P)x

i=1

n
=D w.x) @ B¢ € ovo) (P (14(0))) [x € Y] awx)(e] ®T¢ p)x

i=1

= Z g(touoto v(x))(pfotov(x) (ei(t o v(x))))ef (z o v(x))

i=1
X (0 (@) Ix € Y]t 0 v(x) € X]
= Z(p(t o uv(x)) (e;k(pZ)ei)(f ° U(X)) (Pf(x) (p(x))) [x € Z]
i=1
= (p(l‘ o uv(x))pso,ov(x)/)f(x)(P(x))[[x €Z]

= (p(t o uv(x))(pfv(x)(p(x)))[[x e 7]

= a(uv,Z)(@ OTe D)x
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forevery ¢ @1, p € #H andevery x € §©)_ Consequently, & is a morphism of semigroups.
Finally, with i : §(® — § being the inclusion map of the groupoid, we have that

.o (@ ®T, P)x = ¢(t 0i1(x)) () (P(1)))[x € ]
= ¢(x)(p(x))
=e(p T, P)x

and

@G x) (@ 81, P)x = (q,x) 0 1) 0 aqx) © S(@ BT, P)x
= (u,x) 1) ~" 0, x)* (@ ®T¢ P)roucx)
= o, x)* (¢ ®Tg P)x

forevery ¢ ®1, p€ H andx € € Therefore, « is a morphism of regular monoids. m

Proposition 4.16. Let § be a finite and transitive groupoid and H = Rk (§) the Hopf
algebroid of representative functions of §. Then, there exists an isomorphism of regular
monoids between the bisections B(§) of § and the set of the biretractions B(H) of K.

Proof. We saw on Remark 2.11 that the groupoid € can be seen as the groupoid €© x
G x 8O where G is a group, and that # =~ A Qi R(G) ®x A, with R(G) being the
Hopf algebra of representative functions of the group G. Recall from Example 2.10 the
Hopf algebroid structure of A ®k R(G) ® A given by expressions (3). Besides that, if
(u, X) € B(¥), we can write
u: X >89 xGxg®
X > (/\(x),d)(x),x)
withg : X - Fand A : X — A(X) € ¢ abijection because x = s o u(x) forall x € X

andf ou = A : X — A(X) is a bijection. Again from Example 2.10, equation (2), the
morphism « from Proposition 4.15 can be written for ¥ as

2wx)(@® f ®b)x = a(A(x))f(¢(x)b(x)[x € X]

foreverya ® f ® b € A ®k R(G) ®k A and x € €. We want to prove that the mor-
phism

a: B(8) - Brt(A @k R(G) @k A, A)

(u, X) = aw,x)

is bijective.
First, suppose that (1, X) and (v, Y) are both bisections of & with

u(x) = (A(x).¢(x).x).  v(y) =X ().¢'(»).)
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and o, x) = 0(y,y)- Then,

[x € X] = a@,x)(1s)(x) = a@,y)(1s)(x) = [x € Y],

which implies that X = Y. Also, since AQRN finite, we can take a € A such that a |A(X)
is bijective. Thus, for x € X,

a(M(x)) = a@.x)(@ ® 1re) ® la)x = d@,v)(@ ® 1r@) ® 10)x = a(V(x))

implies that A = A’. Similarly, we have that ¢ = ¢’ and, consequently, (u, X) = (v,Y).
Therefore, « is injective.

On the other hand, let 8 : A ®x R(G) ®x A — A be a local biretraction. Then, by
definition,

B(la ® 1) ®a) = Bos(a) =apB(lx),
Bot(a) =pla®lgc) ®1a)

for every a € A, and there exists ef € A such that B o 7(e?) = B(14) with
Botlys : AeP — AB(15)

being a bijection. Since B(14) and e? are idempotents, we have that (1) = yx and
ef = yy forsome X, Y < . Denoting y, := X{x}» we have that

Bla® lr@) ® a)x = a(x)B(15)x = a(x)[x € X]. (20
Also,

ax=B0x)= Y Bx®lre)®1a) = Y Poilxx).
xeg0) xeg 0
ax =Bg) =Boi(xy) =Y Blix ® lr) ®14) = »_ Bol(xx).

xeY xeY

and if x # y, then B ot (yx)Bot(xy) = Bot(xxxy) =0.Thus, B ot(yy) = 0 for all
x € €\ Y, and there exists a bijection A : X — Y, x > A(x) such that

Bot(xax) = Xx-

Hence, for everya € A and x € g

Bla® lre) ®la)x = Y aB(ty ® 1r@) ® la)x
yeg©

=Y a(Boil(xy)x
yeY

=a(A(x))[x € X]. 1)
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Finally, since ¢ is transitive and finite, R(G) = Fun(G, k) [30, Theorem III.1.5];
hence, every f € R(G) can be written as

f(@) =" f(h)pa.

heG

where py(g) = [g = h] forall g € G. Then,
xx =Bx) =) Bla® pe ® 1)

geG
with B(14 ® pe ® 14)B(14 ® pr ® 14) = 0 whenever g # h. Thus, we can define a map
¢ : X — G that takes each x € X to the unique g = ¢(x) € G such that

Ba® psx) ® 14)x = 1.

Therefore,

Bla® f®1a)x = Z F(@BUA® pg ® 1a)x = f(Pp(x))[x € X].  (22)

geG

Also, using expressions (20), (21) and (22), B can be written for every a ® f ® b in
A QK R(G) ®K A, as

Bla® fR®Db)x =pa®lrc) ®14)xBla® f ®14)x B(la ® 1r©) ® b)x
= a(A(x) f(p(0))b(x)[x € X]
= O5(14,X)(a ® f ®b)x

withu: X > Y € €@ x> (A(x),¢(x),x). Hence, B = oy, x) and o is surjective. m

Remark 4.17. As a particular case from the finite and transitive groupoids, take the
groupoid § = X x X, with X being a finite set. Thus, a bisection u# : ¥ € X — X of
G can be written for an element y € Y as

u(y) = (A(»).y),

where A : Y — A(Y) is a bijection; that is, any bisection of § is determined by a subset
Y € X and a bijection A : Y — A(Y) € X. From Proposition 4.16, the pair (A, Y) also
determines the biretractions for the Hopf algebroid of the representative functions of §.

On the other hand, from Example 2.12, the representative functions of ¥ are given by
Rk (9) =~ A ®k A, where A = Fun(X, k). From Example 4.13, a biretraction for A ® A
with A = Fun(X, k) is determined by a pair [¢, e] such that ¢ : A — A is multiplicative,
e? =ec Aand ¢|4. : Ae — Ag(e) is a bijection.

These two characterizations of the biretractions are the same because since ¢ and ¢(e)
are idempotents in A, there exist Z,Y C X such thate = yz and ¢(e) = yy. Moreover,
since X is finite and ¢ is multiplicative, there exists a bijection A : ¥ — Z such that for
eachy € Y, ¢(xa¢y)) = xy- Therefore, [p, e] is also determined by a subset y € X and a
bijection A : Y — Z C X.
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Remark 4.18. A natural question would be about the relationship between bisections
of algebraic groupoids (groupoid schemes) and biretractions of commutative Hopf alge-
broids. Given a commutative Hopf algebroid (#, A), consider the associated groupoid
scheme

(¢ = Homa, (¥, ), §© = Homp(4, ).

A local bisection on this groupoid scheme is a pair (v, X) in which X € ¢ is an affine
scheme and v : X = § is a natural transformation. The functor X : Alg — Set would
be represented by a quotient algebra A/ for a given ideal / < A and, assomated with
the natural transformation v, there is a morphism of algebras o, : K — A/I satisfying
some conditions corresponding to the axioms (i) and (ii) of Definition 4.1. In order to
deal with this problem, we need another approach for biretractions on a commutative
Hopf algebroid #¢, associating them with the ideals of the base algebra A instead of the
idempotent elements of A, which is an approach slightly more general than that used here.
Another deeper question is whether one can define an inverse semigroup scheme
¥ associated with the set of bisections of a groupoid scheme (§,§®) and verify the
structure of QISG of the commutative algebra Hy which represents it. These and other
questions related to commutative Hopf algebroids are treated in a work in progress.

4.3. Biretractions over noncommutative Hopf algebroids with commutative base
algebras

We can go one step further and work with a noncommutative Hopf algebroid over a com-
mutative algebra. In this case, we have only one base algebra, which is commutative, but
we still have two different structures of a left bialgebroid and of a right bialgebroid. The
definition of a biretraction for this structure should be a generalization of the definition for
commutative Hopf algebroids.

Let us consider a Hopf algebroid # over a commutative algebra A such that s; =
tr =t and s, = t; = s. In this case, we can use the exact same definition of biretraction
that we used in the commutative case: a biretraction for J is a multiplicative linear map
o : H — A satisfying the following:

(BRT1) aos(a) =aa(ly) forevery a € A.
(BRT2) There exists e® € A such that o o £(e*) = a (1) and
Qo t|gen : Ae®* — Aa(lyg)
is a bijection.
Denote the set of local biretractions of # by Brt(H, A).

Remark 4.19. Exactly like in the commutative case, we have that for a biretraction « :
H — A, a(lg) and e* are idempotent elements of A and e“ satisfying (BRT2) is also
unique.

Remark 4.20. Because A4 is commutative and « is multiplicative, we have that «(hk) =
a(kh) forevery h,k € H.
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Remark 4.21. Having J# as a Hopf algebroid over two algebras 4 and A, we have
g1 o S(h) =g 0 S(ll o El(h(z))h(l))
= &1(S(h@y)si o e1(h)))
= &1(S(ha)he)
=&/ 05, 08,(h)
for all 4 € J£. Similarly, we have &, o S = &, o 57 0 g;. Therefore, if # is a Hopf algebroid

withA = Aands; =1, =tands, =1; = s, thenwe have g, 0§ = ¢, and &, 0 § = ¢.

Remark 4.22. The counits €; and ¢, are not always biretractions because they are not
necessarily multiplicative functions, but given a biretraction « and using the notation

Ar(h) = jASY) ®4 h(2),
we have that
e®ei(h) = (@ot) 'a(tog)(h) = (@ot) 'a(hVSHh?))

for every h € J. Then, e%¢; is a biretraction with e®*¢ = e®. Also, using the identity
& = g o S, we have that e® ¢, is also a biretraction. More than that, for every i € J,

a(lge)er(h) = ao(soe)(h) = a(S(hay)h()).
which is also multiplicative. Then, (1 )¢, is a biretraction with e®(1#)¢r = (14 and
using &7 = &, 0 S, s0is a(1g)e;.

Theorem 4.23. Let # be a Hopf algebroid over a commutative algebra A such that s; =
tr =t, s, =t; = 5. Then, the set Brt(H, A) of local biretractions of H is a regular
semigroup.

Proof. Define the convolution product between two biretractions « and 8 by the expres-
sion
(@ * B)(h) = B(a(ha)) > hey) = Braha)Blhe).
Like in the commutative case, this product is associative and well defined. Now, define
the pseudo-inverse for any biretraction o € Brt(H, A) and h € H as

a*(h) = (@ot) o (S (e(hV) > h?))
= (@ot) L oa(S((toe)(h)n®@))
= (@ot)  oa(SHhP)(soe)(hM))
= (@ot) (e (hV)(a 0 S)(h™®)).

Observe that all maps @ o ¢, S, A, and ¢ o & are multiplicative or antimultiplicative;
thus, * is multiplicative. Moreover, we have for every a € A that

a* os(a) = (aot)™ (er(Lae)ee((S 0 5)(a)))

=(@ot) Naot)(a) = ae® = aa*(1g)
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and
a*ot(aa(ly)) = (@or) " ((s; o t)(aa(ls))a(S(1x)))
— (@o )™ (aa(l));

that is, @* o t]4q(1,,) = (@ © 1) 4e@1,)- Then, a* is a biretraction with e = a(ly).
Also,

axa*(h) = a*ta(hmy)a™(hw))
= (@ o) (e 0 alhay)a(S))) (@ o 1) (e1(ha) V) 0 S(hz)®))
= (@on) a(hay(s 0 &) (hyP)S(hy®))
= (@ot)a(hM (s 0 &) (M ) S(h®))
= (@on)a(hMs(h?))
=(aot) Haot)e(h)
= e%e;(h) (23)
and
a* *xa(h) = ata*(hay)a(he)
= (@ot)@ot) M es(hayM)a o S(hy®))a(h(z)
= &1 (h")a(S(hP 1)h? )
= &/ (h) (@0 5) (e, (h?))
= &;(h)e, (NP)a (1)
= e1(s 0 & (K®)hDV)a(14)
Q6 (hD (s 0 6) (h))ar(10)
= a(lg)e (h) (24)
for every h € J. Recall that for a biretraction ¢, we have
a(hk) = a(kh) forevery h.k € X,

which was used in () for the biretraction (1 g)e;.
Now, using the identities (23) and (24), we get
axo” xa(h) = at(a*xa™)(ha)a(hz)
= (aor)(e®er(h)))a(he)
= a(t o gl(h(l))h(z))
= a(h) (25)
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and
o ko xa(h) =a*t(@® *a)(hq)) o (he))
= (@o 1) ! ((er 0 )(@* x ) (hay)a(1ge)er (hzy V) 0 S(h)®))
= (@o ) (a(lp)er(hay)er(hay) D) o S(hey®))
= (@ o) (e (WP 1)1 (hV @) 0 S(h?))
= (@ot)  (er(t 0 &1 (hV 1))h M 2)) 0 S(hP))
= (@ot) M (e1(hM)a 0 S(hP)) = a*(h) (26)
for all h € J#. Therefore, Brt(H, A) is a regular semigroup. L]

Remark 4.24. Observe that given a biretraction @ : # — A,

((e%er) * a)(h) = a ot(e®er(hr)))a(h)) = a(t o g1(ha)ha) = a(h)

and

(a % (@(1g0)en))(h) = a(lge)(er o a(hy)(1g)er(hzy)
= a(hw) e1(h@) = a((s o e)(h@)hqy)
= a(h)
for every h € #. Also note that
(e“er)*(h) = (e“er o 1) (e1(h)e%es 0 S(K)) = €1 (hD)e, (hP) = &1 (),
and analogously, (a(1g)e;)* = a(lx)e;.

Now, consider the free vector space generated by the biretractions of # and extend
linearly the convolution product to this space. Then, we have an algebra structure on the
space kBrt(H, A), henceforth denoted by B(H).

Theorem 4.25. Let H be a Hopf algebroid over a commutative algebra A such that s; =
tr =t, s, =t; =s. Then, the algebra B(H) generated by the set of biretractions of H
with the convolution product is a quantum inverse semigroup.

Proof. With the comultiplication A : B(H) — B(H) defined as A(v) = ¢ ® « for every
o € Brt(H, A), we have that A is multiplicative, just like in the commutative case. Also,
defining § (o) = o™, we have from expressions (25) and (26) from Theorem 4.23 that

I«8x]=171and§ xIx8 =S§. Moreover, § is antimultiplicative: for every o, § €
Brt(H,A)and h € K,

S(a* B)(h) = (% B)*(h)

= (@ % B) o t) (s1(h V(e % B) 0 S(h?®))
=(@on o (Bony (e ot oa((SH™)))B((SH™))y))



M. M. Alves, E. Batista, and F. K. Boeing 730

2 @on((Bony (&1(hV)B o SHPD))a 0 SHPD))
=(xot)! (ﬂ*(h(l))a o S(h(z))),

where in (%) we used the property A; 0 S = (S ®; S) o Ay, which holds for any Hopf
algebroid. Conversely,

(S(B) * S())(h)
= (B* xa*)(h)
=a*otof*(ha))a*(hw)
= (xot) (e ot o B (haya(l))a*(he)
= (@o ) ((Bon) (er(hy™)B o S(hy®))er(hey M 0 S(h2y?))
= (@o ) ((Bon) e (W) S)B o S P)B ot o) (hV ) 0 S(h@))
= (@ot) ((Bon) (et (hPD)B(SHVP 1yt 0 (VP ) ) 0 S())
= (@ot) ((Bon) (et (W M)B o Sh VD)) 0 S(?P))
= (@ot) 1 (B*(h)a 0 S(h®)).
Consequently, $(« * ) = $(B) * S(«) and the axiom (QISG3) is verified.

Finally, for checking axiom (QISG4) for any «, 8 € Brt(H, A), expressions (23) and
(24) imply that

aq) * S(e2)) * S(By) * Py(h) = (o * &™) x (B* * B)(h)
= (B* x P)t(a * ™) (h)) (B* * B)(h(2)
= Bg)(er o t) (e x a*)(hy)er(h(z)
= B(lze)e®er(hqy)ei(h(z))
= B(lze)e e (h).

The same result holds for $(B(1)) * B2 * o) * S(a2)) (h).
Therefore, B(J) is a quantum inverse semigroup. |

Remark 4.26. Consider a Hopf algebroid # over a commutative algebra A with s = s5; =
t; = s, = t,. Alocal biretraction for J is a linear and multiplicative map o : J{ — A that
satisfies « o s(a) = aa(1g) for every a € A and there exists e* € A such that @ o s(e%*) =
a(lg)andaos|ger : Ae* — Aa(1yg) is abijection. Combining both conditions, we have
aos(a(lg)e®) =aos(a(ly))aos(e®)

= a(lg)a(le)a(lze)

= a(lg).
Since a(1g)e® € Ae®, then a(1g)e® = e“. Therefore,

a(ly) =aos(e®) =e%a(ly) = e*.
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Moreover, for every a € A,
aos(aa(ly)) =aa(lpg)a(lye) =aa(ly).
Consequently, we can describe a local biretraction for # as a linear and multiplicative

map a : H — A such that o 0 5|44(14) = Idaa@ )-

Example 4.27. Recall the definition of a weak Hopf algebra from Example 3.7. A weak
Hopf algebra (H, i, n, A, &, S) has a structure of Hopf algebroid over the algebras H; =
&;(H) and Hy = &5;(H) given by
sp(x) =x, f(x)= S(X1(l))1(2)v Ar =mg oA, & =g,
for every x € Hy, where g, : H Qx H — H ®pu, H, and
six)=x, t(x)=e(leyx)lq)y, A =mg, oA, & =g,
forevery x € H;, where 7y, : H ®x H — H Qp, H.
Observe that for every x € Hy, x can be written as x = &,(h) = 1(1)e(hl(2)) for some
h € H. Then,
es(x) = lye(xl(z))
= lwe(lanehle))lw)
= 1(1)8(/’11(2/))8(1(1/)1(2))
= 1(1)8(h1(2)) = X.
Similarly, we have that &;(x) = e(1(1)x)1(2) = x forevery x € H,.
Now, suppose that H; = Hy and that A := H; = H is commutative. Then, for every
x € A, we have that
Ie(xlp) = x = e(1(x)1(2),
which implies that
tr(x) = e(xl)) )
= e(e(lan )l 1m)le
=e(lenlaye(lanx) 1)
= 8(1(1/)1(2))8(1(1)36)1(2/)
= 8(1(1)X)1(2) =X

and

11(x) = e(l)x) 1)

= e(l lane(xley))
= e(xl@2y)e(lylan) 1y
= e(xl)e(lmyleylay

=e(xl))la) = x.
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Therefore, we have that s; = ¢, = s, = t; are all the inclusion map A — H#. We also have
that

X = s(xl(l))l(z) = S(XI(Z))I(l) = 8(1(2))()1(1) = 8(1(1)x)1(2)
forevery x € Aandifh € H.

Then, by Remark 4.26, a local biretraction for a weak Hopf algebra with A := H; =
H; commutative is a linear and multiplicative map o : J — A such that a|44(1,) =

IdAC{(IJ()'

Example 4.28. As a particular case from the previous example, consider a finite groupoid
§ and its groupoid algebra kg given by

kﬁz{Zag8g|geﬁ, agek}
geyg
with product 848, = 8,4y, if g, h € § are composable and 86, = 0, otherwise. k¥ is an
algebra with unity
lkg = Z 81,

xeg©
and a coalgebra with structure given in its base elements by A(8g) =8, ®6¢ and £(8g) =1.
From Example 3.7, k¥ is a weak Hopf algebra with

e1(8g) = e(ldg)le) = Z £(81,8g)d1, = £(1,(,)0g)d1,(p) = 1,5y
x€g©

&s(8g) = 1e(gl(2) = Z 81,8(8g81,) = 81,4,,6(Bg1,4)) = 1,
xeg©)

and S(8g) = 8,1 for every g € §. Finally, k¢ also has a Hopf algebroid structure over
the algebra A = (8;, | x € §©) given by 5; = t; = 5, = ¢, being the inclusion maps
A — kG,

A=A, =mmgo0A, g =¢& & =&

and the same antipode S of the weak Hopf algebra structure above.

Observe that 4 is a commutative algebra. Hence, by Remark 4.26, a biretraction for
kg is a linear and multiplicative map o : k§ — A such that o|4q(1;, 5) = Id4a(1,.4)- Now,
we have the following for any « : k§ — A biretraction:

*  «(lkg) is an idempotent. Then, ¢ (1xg) can be written as

a(lg) = ) 81,

xeX
for some X € €@ If X = ¢, we have a global biretraction.

e IfyelX,

81, = 61,0(Ing) = a(S1,0(lxg)) = > (61,61,) = a(81,).
xeX
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Then,

Yobi=allkg) = Y a@) =) 8.+ Y. a@),

xeX yeg©) xeX ZegO\X

which implies that }, c g x @(81,) = 0; hence,

a6r) =a@)( Y «@)) =0

zegO\X

forevery y € §(@\ X.

Now, for any g € ¥, we can write

a(be) = Z aféy,.

yeg©

If s(g) ¢ X, then

a(dg) = a(8g81s(g)) = a(Sg)a(Sls(g)) =0.
Ift(g) ¢ X, then

a(8g) = a(81,,,0¢) = a(81,,))x(dg) = 0.
If s(g) and #(g) are in X,

a(8g) = a(8g81,,)) = a(g)a(B1,,)) = Z a§ 1,81y, = asg(g)‘slx(g)

733

yeg©)
and
@(8g) = (81,4, 0g) = (81, ) (Se) = Z a§ 81,01, = a7 (501,
yeg©
with af(g), af(g) € k. Hence, for a(d¢) to be nonzero, we need s(g) = t(g) € X.

Moreover, we have thatif s(g) =#(g) =x € X, then a(§,) = ag 61, withag €k \ {0}.

In fact, if @(8g) = 0, then
0=0a(bg)a(dg-1) = a(b,,) = a@1,) =d,,

which is a contradiction.

Brt(kg, A) is commutative: for any «, B € Brt(kg, A), we have

aghi,. ifs(g)=1(g) =xeX <O

0, otherwise

a(dg) = {
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and

bg b1, ifs(g) =t(g)=yeY <§®
0, otherwise

p(8g) = {

with ag € k \ {0}, by € k \ {0}, a;, = 1 and by, = 1 forevery x € X and y € Y.
Then,

(@ % B)(Sg) = Botoa(Sy)B(Sg) = B oal(dy)B(Se)
= Blag 81,)B(g) [s(g) = 1(8) = x € X]
= aghgéi, [s(g) =t(gg=xeXnN Yﬂ
= (B * a)(8g)

for every g € §. Observe that this means that Brt(k§, A) is an inverse semigroup,
with a* given by

a*(g) = (o t)_l(sl(Sg)a ) S(Sg))
= 81t(g)a(8871) = a(51t(g)8g71)
=a(8g-1) = aoS(0g)
forevery g € §. Brt(k9, A) also has aunity 1 : k§ — A given by

1(8) = 81, [s(2) = t(g) = x]

forevery g € §.

With these remarks, we can represent the biretractions using the characters from the
isotropy groups

Gy ={g€¥|s(g) =1(g) = x}.
With €@ = {x1,...,X,}, consider the algebra

n
F = l_[ {¢i : Gx; — k \ {0} morphism of groups} U{0 = ¢; : Gy, — k}
i=1

with the pointwise product. The elements of & are n—tuple of characters from the isotropy
groups of G or zero maps. ¥ is also a commutative inverse semigroup with (¢1,...,¢,)*
= (¢f....,@;), where

pi(g™h), ifei #0

* —_—
v (8) {0, if i = 0.

For each (¢1,...,¢,) € ¥ and g € §, we can define

9i(8)81,,. ifs(g) =1(8) = xi

gy ,.ooipon) () = {0, if s(g) # t(g).
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Then, for every (¢1,...,¢n), (V1,...,¥n) € F and g € §,

= 0y yn) (00 (8)8 1, ) (..., 1) (Bg) [s(g) = t(g) = xi]
= 0i(@Vi(@)Vi(1x)61,, [s(8) =1(g) = xi]
= @i (QVi(8)d1,, [s(g) = 1(g) = xi]
= (g1 Y1) ()
= Q1) W1, tn) (Og)
and the map
o F — Bir(kg, A)
(@152, On) = Ugy,..0n)

is an isomorphism of inverse semigroups because

g, (8g) = 97 (2)81,, [5(g) = 1(g) = xi]
= §0i(g_1)51xl. [se™) =1t(g™") = x]
= A(py,...om) (8g—1)
= Upy,...pn) © S(8g)
= Ay, om 8g)

for every g € §. The map « also takes unity to unity because

ay,...1,)8g) = 1:(61,,)81,, [s(8) = 1(g) = xi]
=81, [s(8) = 1(8) = xi] = 1(5)
forevery g € §, with1; : G,; — k \ {0} givenby g 1 foreveryi =1,...,n.
Observe that Brt(k§, A) is a commutative inverse semigroup with unity but is not

necessarily a group. In fact, for a biretraction «(y, ,...o,) With ¢; # 0 for every i such that
xie€XC g(O)’

.....

= ¢i(1x)81,, [s(8) = 1(g) = xi € X]
=81, [s(e) = 1(8) = xi € X]

for every g € €, which is not the unity of Brt(kg, A) unless X = §©, that is, unless
Q(g;,....0n) 15 @ global biretraction. In particular, G1Brt(k¥, A) is an abelian group.

Example 4.29 (The algebraic quantum torus). Consider an algebra T, over C, generated
by two invertible elements U and V satisfying UV = ¢ VU, with ¢ € C*. The algebra
T, has a structure of Hopf algebroid over the commutative C-algebra A = C[U]:

e s=s;=1 =58 =1t : A— T, is the inclusion map;
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o AUV =U"V"™ Q4 V™ and g, (U"V™) = U™,
o A(VTU") =V"U" @4 V™ and g, (VTU") = U™,
s SUMVMy =VTUM
Observe that the only idempotent of A is 1. Then, we can only have global biretractions
for T,. By Remark 4.26, a global biretraction for T, can be described as a linear and

multiplicative map & : 7, — A such that |4 = Idy.
Moreover, since « is multiplicative, we have that

a(V)a(V™h) =a(V Ha(V) =a(V'V) =a(lc) = Ic = (V) =a(V 7,
which implies that a(V') is invertible in 4, and consequently,
Uax(V)=aUV)=qa(VU)=qUa(V) = g = I¢.

Thus, we only have global biretractions for the commutative torus 77. In this case, we
have that a global biretraction for 77 is a multiplicative and linear map « : 77 — A such
thata(U) = U and a(V) = g4 U™, with g, € C and 1, € Z.

Moreover, since the zero map is not a global biretraction, any global biretraction « :
Ty — A is in fact a morphism of algebras (since «(17,) = 14). 71 and A are algebras
of Laurent polynomials, 71 = C[U, U, V,V~!1and A = C[U, U™!]. As algebra, T}
is isomorphic to A ®c A, but its structure as a Hopf algebroid does not coincide with
that given in Example 2.5. General arguments from algebraic geometry show that algebra
morphisms « : 71 — A correspond to maps f : C* — C* x C* whose entries are Laurent
polynomials in z; that is, f(z) = (p1(2), p2(z)) with p; (U) € A. Given such a map, the
associated morphism of algebras is «(U) = p1(U), a(V) = p2(V).

In particular, given a real number 6 and an integer 7, the biretraction o : 71 — A given
by a(V) = 2™ U™ corresponds to the map f : C* — C* x C*, f(z) = (z,e*9z").
The restriction of f to the unit circle S! yields the map

g: Sl N Sl % Sl, e2nlt — (e2rut762nt(9+tn))‘

Hence, the biretractions of the Hopf algebroid 77 include immersions of 77 in T2. Also,
we can say that o rolls up the unit circle S! around the torus 72. Indeed, observe that
axa(V)=aoca(V)a(V) = a(e™9Um) 20y
— eZniea(U)n eZniGUn — eZni29 U2n
and, analogously,
odF =k a(V) = 2RO,
~———
k times

Consequently, we can associate o with the restriction

gk Sl N Sl < Sl, ezmz > (ezmt,e2:rrik(9+tn))'
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Figure 1. Representation of the curve g.

We remark that g is a closed curve that starts and ends at (1, e27??) for ¢ = 0 and for
t = 1 and runs along the torus as shown in Figure 1.

Observe that the curve g, acts similarly to g but rolls up twice as fast (vertically)
along the torus, starting and ending at (1, e*7??). In general, the map g rolls up the torus
k-times faster than g vertically, starting and ending at (1, e2%79).

5. Conclusions and outlook

In this work, we introduced local biretractions over a Hopf algebroid with commutative
base algebra. It is not clear, at this point, how to extend this approach to cover Hopf
algebroids with noncommutative bases; the balance between the noncommutativity of the
Hopf algebroid and the locality of the bisections is, so far, the most difficult problem
to solve. It is worth noting that the noncommutativity of a Hopf algebroid and of its base
algebra was adequately addressed at the level of global biretractions by Xiao Han and Gio-
vanni Landi in their work on the Ehresmann—Schauenburg bialgebroid associated with a
noncommutative principal bundle [20]. The group of gauge transformations of a quantum
principal bundle (a Hopf—Galois extension) was proved to be isomorphic to the group of
global bisections of the Ehresmann—Schauenburg bialgebroid (see [20, Proposition 4.6]).

The next steps in this research program are to develop a general theory of local bire-
tractions of Hopf algebroids and try to establish some categorical equivalence between
Hopf algebroids and Quantum inverse semigroups following the ideas introduced in [12]
using on one side the quantum inverse semigroup of local biretractions of a Hopf alge-
broid and on the other side the “germ” Hopf algebroid of action defined by a quantum
inverse semigroup.
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