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Representation of commutators on Schatten p-classes

Lixin Cheng and Zhizheng Yu

Abstract. Let €, be the Schatten p-class of £5 for 1 < p < 0o, and let 7, be the closed subspace of
€, consisting of all lower triangular matrices. In this paper, we show that a bounded linear operator
T on €p is a commutator if and only if 7" is not of the form A/ 4+ K, where 0 # A € C and K is a
Cp-strictly singular operator. It is done by showing that a bounded linear operator 7" on 7 is not a
commutator if and only if 7 has the same form.

1. Introduction

When studying a general algebra, we are sure to meet a mathematical object — commuta-
tors, i.e., elements of the form A B — BA. Functional analysts are more willing to focus it
on a Banach algebra. The following well-known obstruction was proven by Wintner [17]
in 1947.

Theorem 1.1 (Wintner). The identity in a unital Banach algebra is not a commutator.

This immediately implies that no element of the form A/ + K is a commutator in a
Banach algebra +, where K belongs to a norm closed (proper) ideal I of # and A # 0 is
a scalar. Usually, it is difficult to check whether an element of a general Banach algebra is
a commutator.

If we consider the Banach algebra &£ (X)) of all bounded linear operators on a Banach
space X, and provided the space X has some “nice” property, then it allows one to tackle
the problem successfully. Indeed, for example, if X is finite-dimensional, then the answer
is classical and easily stated: a sufficient and necessary condition for 7 € £(X) to be a
commutator is that the trace of 7 is zero. The first profound result was given by Brown
and Pearcy [8] in 1965 for X = {,. They proved that an operator 7 € £({3) is not a
commutator if and only if 7" can be represented as Al + K for some compact operator K
with A(# 0) € C. In 1972-1973, Apostol [2,3] proved the same representation for X = ¢,
(1 < p < 00) and ¢ and also presented some partial results for £1, £, and C ([0, 1]).

Thirty-five years later after Apostol’s results, this topic was resuscitated by Dosev [12].
He developed Apostol’s technique [2] and obtained complete classification of commuta-
tors on £1, which states that the representation of a commutator on £; is the same as that
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of a commutator on £,. He applied the generalized technique to obtain partial results for
commutators on spaces X of the form

o

Xm(@X)

i=1 p

ifeither 1 < p < oo or p = 0. In particular, he gave a characterization of commutators on
£y, ®4Lp, ® - ® Ly, Dosev and Johnson [10] further showed that every noncommutator
onfy @4Ly, & Ly, has the form AI + K, where A # 0 and K belongs to some
proper ideal of £(£,, ® Ly, B -+ D Lp,).

Wintner’s theorem tells us that if one obtained complete representation of commuta-
tors in &£ (X) which is the same as mentioned above, that is, 7 € £(X) is not a commutator
if and only if T = Al + K with A # 0, then there must be a largest nontrivial ideal of
£(X) so that the operator K is in it. For example, the ideal K (X)) of all compact operators
on X is the largest nontrivial ideal in £(X) for X = £, (1 < p < 00) or ¢o. The situation
for X = £ is different. The largest ideal in &£ ({o) is the ideal of all strictly singular oper-
ators S (£o) (incidentally, agrees with the ideal of all weakly compact operators), instead
of K ({s). Dosev and Johnson [10] proved that T’ € £ (£ ) is not commutator if and only
if T has the form A/ 4 S for some strictly singular operator S and A # 0. It seemed that
it is reasonable to consider a converse version of Wintner’s theorem: for a Banach space
X which satisfies that there is a largest nontrivial ideal M in £(X), does the follow-
ing statement hold? 7' € £(X) is not a commutator if and only if 7 = A/ + K for some
K € M and A # 0. Nevertheless, with the help of Tarbard’s example [16], Dosev, Johnson,
and Schechtman [11] found that the statement is not true. Thus, Dosev and Johnson [10]
further proposed the following conjecture (which remains open now).

Conjecture (Dosev—Johnson). Let X be a Banach space such that X ~ (3 X) p, 1< p=<
00, or p = 0. Assume that £(X) has a largest nontrivial ideal M. Then, T € £(X) is not
a commutator if and only if T = Al 4 K for some K € M and A # 0.

In order to obtain a complete classification of commutators in &£ (X)), checking whether
£(X) has a largest nontrivial ideal turns into an important step. Recall that an operator
S € L(X) is said to factor through T € £(X) provided there are A, B € £(X) such that

S = ATB.

The following useful set is defined by Dosev and Johnson [10] in a clever way. For a
Banach space X, let

My = {T € £(X) : Ix does not factor through T}. (1.D

Firstly, note that the set My is closed under left and right multiplication by operators in
£(X). Therefore, the question whether My is an ideal is equivalent to that whether My
is closed under addition. Secondly, note that if My is an ideal, then it is automatically the
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largest ideal in &£(X). Finally, note that T ¢ My if and only if there exists a subspace
Y C X so that the restriction 7’|y of T is an isomorphism from Y onto its image 7Y such
that 7Y is complemented in X and such that Y ~ X.

The next useful notion was used in [9, 11].

Definition 1.2. An infinite-dimensional Banach space X is said to be complementably
homogeneous if every subspace of X isomorphic to X must contain a smaller subspace
isomorphic to X and is complemented in X .

For example, L, ([0, 1]) (1 < p < oo) (see [15]), L1([0, 1]) (see [13]) are comple-
mentably homogeneous spaces. Dosev, Johnson, and Schechtman [11] showed that T e
£(Lp[0,1]) (1 < p < 00) is not commutator if and only if 7" has the form A/ + K, where
K is L0, 1]-strictly singular and A # 0. Chen, Johnson, and Zheng [9] proved that the

same conclusion for
x=(Xu)
ep

with 1 < g <ooand 1 < p < oo, and Zheng [18] further showed that it is again true for

- (x0),

with 1 < g < oo.
The following property immediately follows from Definition 1.2.

Proposition 1.3. Let X be a complementably homogeneous Banach space. Then, My is
equal to the set of all X -strictly singular operators on X ; i.e., those operators T € £(X)
satisfy that T |x, is not an isomorphism for every subspace X of X which is isomorphic
to X.

In this paper, we focus on the Schatten p-class of £, and show the following theorem.

Theorem A. T € £(€,) (1 < p < 00) is a commutator if and only if T is not of the form
Al + K with A # 0, where K is €p-strictly singular.

It is done by showing a more general result below.

Theorem B. Let T, be the closed subspace of €, consisting of all lower triangle matrices;
ie.,
Tp={x€€:x(@i,j)=0forj>i}.

Then, T € £(7,) (1 < p < 00) is not a commutator if and only if T is of the form Al + K
for some T,-strictly singular K and some scalar A # 0.

Since 7, ~ €, forall 1 < p < oo, Theorem A is an immediate consequence of The-
orem B.

This paper is organized as follows. In the second section, we present some notions,
basic properties, and known results which will be used in the sequel. In the third section,
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we will give some properties of operators in Mg, for I < p < 2. In the fourth section,
we will show that, for any fixed 1 < p < 2, every Jj-strictly singular T is a commutator,
which is equivalent to 7" € Mg, . We should mention that results in the third and fourth
sections were motivated by Arazy [4, 5]. In the fifth section (the last section), motivated
by Chen, Johnson, and Zheng [9], and applying the main results established in the third
and the fourth sections, we will show the main theorem of this paper, i.e., Theorem B
mentioned above.

2. Preliminaries

In this section, we recall some notions, basic properties, and known results which will be
used in the sequel.

By a subspace, we will always mean a closed subspace. A sequence {x,}5>, in a
Banach space X is said to be semi-normalized if there exist positive numbers @ and b
such that

a <|xul| <b, neN.

We denote by [x,];2, the closure of span{x, };2, in X. A basic sequence {x,}52, is said
to be A-equivalent to another basic sequence {y, },= provided there exist 1 < A < 00 so

that, for every scalar sequence {#,};>; with finitely many #, # 0,

Zlnyn Ztn-xn Ztnyn
n n n

We say that a subspace Y of X is A-complemented in X if there exists a projection P
from X onto Y with || P|| < A. For two Banach spaces X and Y, their Mazur’s distance is
defined by

A1 < <A

d(X,Y)= inf{||T|| | T7Y : T is an isomorphism from X onto Y}.

We use X ~ Y to denote that X is linearly isomorphic to Y, and X ~ Y means that X is
linearly isometric to Y.

Definition 2.1. Let {X;}?° , be a sequence of nontrivial closed subspaces of a Banach
space X, and let K > 0 be a constant. Then, { Xy }?2, is said to be a Schauder decompo-

sition of the subspace
|: | | x ki|
k

with the decomposition constant K provided that
m

PBED

k=1

for every sequence {xj}72, with x; € X and for all integers m, n € N withm < n.

n

>

k=1

<K
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The next theorem is classical. See, for instance, [1, Theorem 1.3.9].

Theorem 2.2 (Principle of small perturbations). Let {x,}5>, be a basic sequence with a
basis constant K in a Banach space X. If {yn}52, is a sequence in X such that

ZKZ =l _

[l

then there exists T € £(X) such that

and
T —idx || < 6.

Theorem 2.3. Let X and Y be Banach spaces, and let { Xy }72 | be a Schauder decom-
position of X with the decomposition constant K. Assume that T € £(X,Y), G €
L(TXy,Y), k=1,2,..., such that

2K i T |- [idrx, —Ge] < ¢

for some € > 0. Then, there exists Ty € £(X,Y) so that
T0|Xk = GkT|Xk and ||To—T| <e.

Proof. For each k € N, let P be the natural projection from X = ZZOZI X onto Xp.
Then

o )
To=T + Z(Gk —idrx, ) TPy = Z G, TPy
k=1 k=1

is strongly convergent. Clearly, Ty has the property we desired. ]

We often apply the particular case of Theorem 2.3 that X C ¥ and T = 1y, y (the
natural embedding).

Given 1 < p < oo, the Schatten p-class €, of operators on the Hilbert space {5 is
defined as follows.

Let €, be the Banach space of all compact operators x on £ so that

x|, = (trace(x*x)lf/z)l/p < 0.

We use €4 to denote the Banach space of all compact operators on £, with the usual
operator-norm of the space &£ ({3).

Now, we introduce some notations which will be used in the sequel. For two orthonor-
mal bases {¢;}$2, and { f;}72,, we represent every x € £({3) as a matrix:

x =0 jNG=1 X)) = (xfjlei).
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Let
eij = (-1fj)ei, 1=<i,j<oo.
Note that
ejjlk,l) =6ix-6j1.

Clearly, {e;,;}{5_, forms a Schauder basis of €, for every such p, if we arrange it as
follows:

€1,1, €2.1, €22, €12, €31, €32, €33, €23, €13,...,

€n,1s €n,2s--s€nn, €n—1,ns €n—2ns+++5€lnse-. -

For each n € N, we define two projections P, and E, on €, as follows:

.. x(i,j), 1<i,j<n,
(Pa)inj) =5 / @1
0, otherwise,
and
o x(i,j), 1 <min{i,j} <n,
(Enx)(, ) = . (2.2)
0, otherwise.
Let
Pom=Pn—P,, n<m and EW =]—-E, neN. (2.3)
Clearly,

1Pl = E®] =1

for every n. We denote by 7, the subspace of €, consisting of all lower triangular matrices:
Tp={x€€:x(i,j)=000>j>i>1}

Note that the spaces €, and 7, admit the following finite-dimensional Schauder decom-
positions:

WK

o0
€= (Pu=Pu1)C. Tp=Y (Pu—Pr1)Tp. where Py=0.
n=1

1

n

The following property is classical. See, for instance, Gohberg and Krein’s book [14,
pp- 118-120].

Proposition 2.4. For every 1 < p < oo, the triangular projection Pt defined by

x(@, j), =],

(Prx)@.j) = {0, P>

is a bounded projection from €, onto T,.
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The next property can be found in Arazy and Lindenstrauss’s work [7, Proposition 1].
Proposition 2.5. The space €, is isomorphic to its subspace Tp, if and only if 1 < p < oo.

Another important projection, actually a whole class of projections, in €, is defined
as follows.

Definition 2.6. Let {Ax};_, and { By };_, be two sequences of mutually disjoint subsets
of positive integers for n € N i.e.,

AiNAy =0=B;NB; foralll <j #k <n.
We define the projection P(4,},(8,}) by

o [xGj). ifieArjeBuk=1,...,
(P en®) . Jj) = { .
0, otherwise.
Clearly, for all 1 < p < oo and every pair of such sequences {Ay} and {By}, the
projection P({4,},(B,}) is of norm one. It is easy to observe that

1/p
1 Piay sl = (Z ||xk||;:) ,

k

where

xe(i, j) = x(, j),
if (i, j) € Ay x By and = 0, otherwise. If p = oo, the sum in the right-hand side will be
replaced by supy, || xk|lp-

We will also apply the following theorems, which are due to Arazy [4] and Arazy and
Lindenstrauss [7].

Theorem 2.7 ([4, Proposition 2.2]). Assume that X C €, (1 < p < 2) and that X is
isomorphic to a Hilbert space. Then, for every ¢ > 0, there exists n € N such that

IE®|x| <e.

Theorem 2.8 ([4, Lemma 2.4]). Let {x¢}32, be a normalized sequencein€, (1 < p <2)
which is equivalent to the unit vector basis of £,. Then,

(i)  for every 0 < & <1, there exists a subsequence {xi;}72, which is (1 + ¢)-
equivalent to the unit vector basis of £ so that [xg; ]}";2 is (14&)-complemented
inCy;

(i)  given any sequence {a; }2, with 0 < a; < 1, there exist a normalized sequence
{u; }72, in €, and three sequences {a; }19‘;1, {bj };";1, and {c; }$2, in €, with

i1
ui = Z(ei’f ®aj +ej; ®bj)+eii ®ci
j=1
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so that

(a2 + 16,17 < aj1, llejlly < @jr forall j =2,

=1 < (laallf + B IDY7 < 1,

and
lui —xg, llp <o foralli > 2.

Theorem 2.9 ([7, Theorem 1]). Let 1 < p < oo, and let {x,}52, be a semi-normalized
weakly null sequence in Cp. Then, there is a subsequence {xn, }3~ | of {Xn}ney Which is
equivalent to the unit vector basis of {5 or L.

Theorem 2.10 ([4, Theorem 3.2]). For1 < p < oo, let X be a subspace of T, isomorphic
to Tp, and let 0 < 0 < 1. Then, there exists a subspace Y of X so that

dlY,7,) <1+0
so that Y is (2 4+ 0)-complemented in T,.
The following result follows from Proposition 2.5 and Theorem 2.10.

Corollary 2.11. For every 1 < p < oo, €, is complementably homogeneous.

Now, we recall some known results related to tensor products of operators. Let H be
a Hilbert space, let €,(H) be the Schatten p-class of operators on H, and let £, ® {»
be the tensor product of £, by itself. If x, y € B({,), then there exists a unique element
x®y € B, ® L) satisfying

x@yE®N =xEQ yn
for every pair §, n € £,. If x,y € €,({2) (1 < p < 00), then
X®y €€l ®{Ls)
and

lx @ ylp = llxllp - 17]p-

Moreover, €,(£, ® £,) is the closure of the linear hull of all elements x ® y with x, y €
€, (£,). We therefore denote

Cp(l2 ® £2) by Cp(L2) ® Cp(L2)

or simply by
Cp(la®4L) =€, QFC,.
Since we can identity €, with €, ® €,, we call this identification a “tensor product rep-

resentation” of €, with €, ® €,. Obviously, we can identify €, with €, ® €, ® €, and
with €, ® €, ® €, ® €, ..., in an analogous way.
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Let p,g € £({3) be two projection operators. Then, p ® ¢ is again a projection oper-
ator on £({5), and
XEE®E = (pRqx € QTC,
XeC, € »x(pRq) e, QFC,

induce two contractive projections on €, ® €,. Therefore, we have the following property.

Corollary 2.12. Let the projections P, and E™ be defined on €, by (2.1) and (2.3).
Then, I ® P, and I ® E™ induce two contractive projections on €, ® €.

The following property is due to Arazy and Friedman [6].

Proposition 2.13 ([6, Theorem 2.2]). Let x € €, (1 < p < 00), || x|, = 1, and let x; ; =
ej,; ®xforl <i,j<oo. Then, {x; ; }?3'=1 is isometrically equivalent to the standard unit
matrices {e; };’3.:1 in €y, and there is a contractive projection from €, onto [x;, j]fj-:l.

A triangular sequence is a double sequence of the form {x; ;}1<j<i<oo. In short, we
denote it also by {x; ;};<; and call it simply a triangle. A subtriangle of {x; ;};<; is
a triangle of the form {x;,  ; }1<k, where {ix}7- ; and {;;}72, are increasing sequences of
positive integers with i > ji for every k.

In what follows, we will use the phrase “by passing a subtriangle” {x;, , };<x (which
has some nice properties) starting with a triangle {x; ;};<;. The general scheme of a such
procedure is the following. Let j; € N, and let {xilgl),jl }%—, be abe a “nice” subsequence

of {xj,j, };2 ;, - Assume that j; < jo <--+ < jm have been chosen and that we have already
defined increasing sequences

so that

is a “nice” subsequence of
X.(1-1) . (. _.(-1).
{ iV }stz,ﬁ )

Choose j,+1 € N, which is greater than j,,, such that there is a “nice” subsequence
sJm

{xilg’"“),jm“};o:m""l of {xi,?") ' }iji,g”'

If we write iy = i,ik), then {x;, , j, }1<k is clearly a subtriangle of {x; ;};<;, and each column
{Xi ) Vg 18 “nmice”.

3. Properties of operators in Mg,

In this section, we will show that Mg is the largest nontrivial ideal in £(7,) for 1 < p <
oo and present a “local” property of operators in Mg, (Theorem 3.6).
The following property is included in [4, p. 300, lines 19-20].
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Theorem 3.1. For any fixed 1 < p < oo, we have
€ ~ (Ze,,) and Ty ~ (Z%) |
P P

Recall (1.1) that, for a Banach space X,
My = {T € L(X) : Ix does not factor through T}.

The following property follows immediately from Proposition 1.3 and Theorem 2.10.

Proposition 3.2. For every 1 < p < oo, Mg, is the subspace of all Tp-strictly singular
operators on Jp.

Theorem 3.3. For 1 < p < oo, Mg, is the largest ideal of £(Tp).

Proof. Let T € £(7p). If there is a subtriangle {e;,  ;, }1<k of {e;,j};<i such that
}(Teik,jl)(ikv ]l)‘ > ]/2

for all [ < k, then, by [5, Corollary 2.2], we obtain 7 ¢ Mr7,. Otherwise, there exist a
positive integer jo and an increasing sequence of positive integers {ix }7> , with i1 > jo
such that, for all j > jo, there are only finitely many

[(Tei, )ik, I of {|(Tei )ik J)}rey

which are greater than or equal to 1/2. Thus, there is a subtriangle {e;, ;. }u<v Of {€i,j};<i
with j; > jo such that
|(I = Teiy,, ) ik, ju)| = 1/2.

It follows again from [5, Corollary 2.2] that
I —T ¢ Mg,.
By [10, Proposition 5.1], Mg, is the largest ideal of £(7). |

Lemma3.4. LetT € £(7,) (1 < p <2). Then, one of the following conditions is satisfied:

(a) Foranye > 0, there is a subtriangle {e;,  j, }1<k of {ei,;}j<i such that T|[eik,jl]lgk
is compact and

T Ne i< | < &

(b) For any sequence {&1}72 | of positive numbers, there is a subtriangle {e;, j, }1<k
of {ei,j}j<i so that, for any fixed I, {Te;, j }7~,; is equivalent to the unit vector
basis of £, and

1T ey, 102, Il < &1

(c) There exist K > 0 and a subtriangle {e;, j }i1<k of {ei,j}j<i such that, for any

fixed I, {Te;, j, }7=, is K-equivalent to the unit vector basis of {,.
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Proof. (a) We assume that A is an infinite set of natural numbers satisfying that for the
first number j; of A, there is a subsequence {eilil)’jl }22, of {e; ;, 122 . such that

i=j1
Jim ([ Te;m  llp = 0.
Assume that j; < j <--- < j, have been chosen from A and that we have already defined
m increasing sequences {i ,El)},‘?’: I 1 <1 < m satisfying that for each such /, {i ,El)}z‘;l isa
subsequence of {i,&l_l)}z"zl_l with il(l) > j; and that

Jim 1T =0
Then, let j,, 4+ be the first number of A \ {ji,..., jm} which is greater than j,,, and let
{i,£m+l)},‘;°=m+1 be a subsequence of {i,gm)},‘;‘;m with i,(n"_ﬁl) > jm+1 and with

lim ||Te, . =

k00 I i7" mt Iy

We write iy = ilgk). Then, {e;,,j, }1<k is a subtriangle of {e; ;};<;. For any fixed sequence
{ck,1}1<k of positive numbers, we can assume that

”Teik,j] ”P =< Ck,l-

For any fixed ¢ > 0, since {cg ;}1<k is arbitrary, we can claim that T|[eik’jl]
and that ||T|[eik,j;]lsk | <e.

(b) If the process in (a) cannot be continued, then there exist a positive integer jo and
an increasing sequence {i;}52, of positive integers so that, for every j > jo, {Te;,,j}oe 4
does not admit a null subsequence. Therefore, there is a subtriangle {e;, j, }1<x of {e; ; }j<i
such that, for each fixed /,

I<k 1S compact

liminf ||Te;, ;,1l, > 0.
k—o00

By passing a subtriangle of {e;, j };<k, without loss of generality, we can assume that
81 < |ITei.j, lp < 281, where {;}72 | is a sequence of positive integers. Since {e;,,j, } 7o,
is weakly null, by Theorem 2.9 and by passing a subtriangle of {e;,  j, }:<x (if necessary),
we can further claim that {Te;, j, } 32, is equivalent to the unit vector basis of £5 or £,. If it
is Mj-equivalent to the unit vector basis of £,, then for every sequence {7 } 72, of scalars
with finitely many #; # 0,

© 1/p
51M1_1(Z Ilkl”) <
k=1

< |7

o0

ZtkTeik,jl

k=l V4

o0

Ztkeik,jz

k=l p
0 1/2

2

< ||T||(Z|zk| ) |

k=1
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This is a contradiction to the fact that 1 < p < 2 and that {#}2, is arbitrary. Hence,
{Teiy,j }r—; is equivalent to the unit vector basis of {,. By Theorem 2.8, we can claim
that
{Teik,jz/”Teik,jz ”P}IZO=I
is 2-equivalent to the unit vector basis of £5.
Now, we assume that

lim §; = 0.

[—>o00
For any sequence {&;}72 | of positive numbers, up to passing a subtriangle of {e;, j; }i<k»
without loss of generality, we can assume that §; < ¢;/4. For every sequence {fx}72 ; of
scalars with finitely many #; # 0,

o0
(S
k=1

00
Z I ”Teik,j] ”P : Teik,jl /” Teik,jl ”17
k=l

o] 1/2
< 2( > (%l Tei, ||p>2)

k=l

o] 1/2
<aa( L)
k=l
o0
Zlkeikajl
k=1

p p

=¢&

p

Hence, [T, ;122, Il =< €.
(c) Suppose that limsup;_, ., §; > 0 in (b). Again by passing a subtriangle, we can
assume that
M <|Te; jlp <2M forsome M > 0.

By an argument similar to that of (b) and passing a subtriangle of {e;,  ; }i<k, we can
assume that there is a positive number K such that, foreach [, {Te;, , }3>, is K-equivalent
to the unit vector basis of £,. [

The following is the proof line of lemma; it was deeply motivated by the procedure of
the proof of Arazy [4, Theorem 4.6]

Lemma 3.5. For 1 < p <2, let{x; j};<; be a triangle with entries in T,. Assume that

(i)  K.M > 0such that, for any fixed j, {x; ; }fij is K-equivalent to the unit vector
basis of £,, and

(ii)  for every finite sequence {t; };‘=1 of scalars,

i i 1/2
thxi,j EM(Z|[]'|2) .
j=1 V4 j=1
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Then, for all 0 < 0 < 1, there exist

(a) a tensor product representation of €, ® €, as a subspace of €,
(b) a subtriangle {x;, j, i<k of {xi,j}j<i,

(c) an increasing sequence {s;}72, of positive integers,

(d) a sequence {zl}‘l’i1 C €, of nonzero elements of the form z; = P; z1,

which is (K + 1)-equivalent to the unit vector basis of {5,

1551+1

(e) a linearly isomorphic embedding V from span{x;, j }i<k into €, so that,
for every x € span{x;, j, }i<k.

[Vx —xlp < 0llxll, and Vxi,j = ex1 ®z.

Proof. Since for each fixed j, {x;,;}72; is K-equivalent to the unit vector basis of {5,
for any sequence of positive numbers {g; }}";1 satisfying the fact that Z;‘;l gj 1s small
enough, applying Theorem 2.7, we can construct an increasing sequence of positive inte-
gers {n; }]?’il so that

IE®D |, 12, < &5,

where E™ is defined by (2.3). On the other hand, since Ep, x;, j 20 (i — o0), for any
sequence {ck,;}j<k of positive numbers so that ) j<k Ck,j 1s small enough, by a routine
perturbation argument (say, by using Theorems 2.2 and 2.3), there are two increasing
sequences {my}7>, and {ix}p2, of positive integers with my > ny satisfying the fact
that, for every j <k,

<Ck,j,

” Pmksmk+1E”jxiksj - E"jxik’/ |p

where E, is defined by (2.2). For each j € N, we denote by
Xj = Dri jI7Z;-

Without loss of generality, we can assume that for every j there exists T; € £(X;, 7p)
with

1T} —idx|l < ¢ ER))
and with
Tjxiy,j = Pmgmypiy EnjXiy -
Write
k
Vk,j = Pmk,mkHEnjxik,j and pup = an.
j=1
We can claim that
YVk,j = Pmk,mk+l‘«jyk,]" k,] e N. (3.2)

Otherwise, we can substitute a new orthonormal basis for the original basis of the range
space of the operators so that the representation above holds. Indeed, note that, for every
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J =k, En;yk,j = Yk,j- Then, rank(yg, ;) < n;. For x € £({2), we denote by R(x) the
range of x. Let
[AO10, k=123 1< <,

i=1

be orthonormal sequences so that

ROy < [£914,

and so that
o0
(k) 11
U 5582
k=1
is again an orthonormal sequence. Since rank(yx ) < nz, k = 2, 3,4, ..., there exist

orthonormal sequences

k /L/z
{f;( )}l /1 N “/] < “/ < I/LZ,

(A ( U{f,-("’}ﬁ‘il)
k=2

is also an orthonormal sequence. We have finished the proof of the claim (3.2) by induc-
tion. Therefore,

Vi,j = Pmgmp+u; Yk,j = Pogmy En Vig,j. k. j € N

Consequently, for every j <k, we can choose an appropriate tensor product representation
€, as ‘6,51) ® ‘6152) so that

L . . jsnj 2)
Vk,j = e€ka ®akj, ar; €Cp SR

where ‘6’19) are copies of €, fori = 1,2, and ‘6;" " denotes the space of all m x n scalar
matrices with the norm induced from €.

For a sequence {0y, ;}; <k of positive numbers satisfying the fact that Z_i <k Qk,j 18
small enough, by an argument of passing a subtriangle, we can assume that there exist
aj € ‘6152) for 1 < j < k such that

lak,j —ajlly = llex,1 ® ak,j —ex,1 @ ajllp < ok,j. (3.3)

We can further assume that {a; };?'il is semi-normalized, and for every finite sequence

{tx }le of scalars,

k k
leaj leeik,l ®a;
j=1 j=1

i 1/2
<oren(Xie)
y4 j=1

p
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By an argument similar to the proof of Lemma 3.4 (b), there is an increasing sequence
of positive integers {,;}72, so that {a; }72, is (K + 1/2)-equivalent to the unit vector
basis of £,. We can also assume that iy > j for all kK € N. For a sequence {J;}72, of
positive numbers satisfying the fact that ) ;= §; is small enough, again by an argument
of passing a subsequence, we may assume that there is an increasing sequence {s;}72, of
positive integers such that

laj, — P

s1.81+1 41 ”P <,

and { Py, 5,,,a;,}72, is (K + 1)-equivalent to the unit vector basis of £5.
For each fixed / and for every sequence {7 } 2>, of scalars with finitely many 7, # 0,
we have

[ele) oo o] 1/2

kaek,l ® aj, — kaek,l ® Py saj,| < 81(2 |lj|2) . (3.4)
k=1 k=1 P I=1

Denote by

Y, = [ek,l ® PS15S1+1a.il]Iio=l'

Then, due to Definition 2.1 and Corollary 2.12, {¥7}72 , is a 1-Schauder decomposition of

span{ U Y; }
1
By (3.1), (3.3), and (3.4), we may assume that, for every /, there exists S; € £(Xj,,€p)
satisfying
I1S; —idy,, | <&, and Sixi,j = ek ® Py5p,a;-

Putz; = P

S1,8141
morphic embedding V' from span{x;,;, };<x into €, so that, for every x € span{x;, ;, }i<k,

aj,. Then, by Theorem 2.3, for every 0 < 6 < 1, there exists a linear iso-

IV =x|, <0lxll, and Vx; ; =er1®z. L]
Now, we are ready to state and prove the main theorem of this section as follows.

Theorem 3.6. Let 1 < p < 2. Then, T € £(T}) is Tp-strictly singular, or equivalently,
T € Mg, if and only if, for every X C T with X =~ Tp and for all & > 0, there exists a
subspace Y C X suchthatY ~ T, and |T|y| < e.

Proof. Sufficiency. It follows from the definition of J-strictly singular operators.
Necessity. Suppose that T € M7, and that X C 7 with X ~ 7). Let S : 7, — X be
a linear isomorphism, and ¢ > 0. We will apply Lemmas 3.4 and 3.5 to the proof.

Case 1. If TS satisfies (a) of Lemma 3.4, then there is a subtriangle
{ei,ji i<k of {eij}j<i

so that
ITS ey, el < /187
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Let
Y = S(le,jli<k) € X.

Then
e

I1S=1l
Case 2. If TS satisfies (b) of Lemma 3.4, then for every sequence of positive numbers
{er}72, so that Y72, & < oo, there is a subtriangle {e;, ,j, }1<k of {e;,j };<i, satisfying, for
each fixed /, | TS |[eik!fz]i°=1 | < &;. Choose an integer number /¢ so that

ISTH = e

||T|Y|| = ”TSl[eik,jl]]SkS_llY” =<

o0
S e <e/Is7.

1=l
Since Y 72 [e;,, ;152 is a Schauder decomposition of itself,

7S] e/IIS7HI.

eik,jl]loglgk” =
PutY = S([e;,, jlip<i<k) € X. Then, ||T|y| < e.

Case 3. If T'S satisfies (c) of Lemma 3.4, then there exist a positive constant K and a sub-
triangle {e;, j, }1<k of {ei j}j<i such that, for each fixed [, {T'Se;,j, }7~,; is K-equivalent
to the unit vector basis of £,. Meanwhile, for every finite sequence{; };‘:1 of scalars,

k k k 1/2
Ztl TSéik,jl Z[leik,il = ”TS” ( Z |tl |2) :
=1 I=1 p =1

Applying Lemma 3.5 and by an argument of passing a subtriangle of {T'Se;, ;, }i<k, we
can assume that there exist a tensor product representation of €, ® €, as €,, an increas-
ing sequence {s;}72, of positive integers, a sequence {z;};2, of nonzero elements of €,
satisfying

=TSl
p

Z]ZP

18141205

which is (K + 1)-equivalent to the unit vector basis of £,, and a linear isomorphic embed-
ding V from span{T'Se;, j, }1<k into €, so that

VI, IV <2 and VTSe j = ex1 ® 2.

Let {o; }$2, be a sequence of positive numbers with 0 < o; < 1 so that 322, a; is small
enough. By Theorem 2.8, there exist a sequence {u;}72, C €, with

lurllp =M € (K + D7 K +1]
and three sequences {a; }72 , {b;}72, and {cx }72, in €, satisfying

k-1
up =Y (exi ®ai + e ® bi) + ex i ® cx

i=1
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so that fori > 2
(a2 + 167 < @iy eillp < aioa
M —ay < (1] + 1B ID)Y? < M
and there is a subsequence of {z;}7° | (again denoted by {z;}72 ,) satisfying
Izt —uillpy <oz, 1=2.3,....

For each fixed /, and for each sequence {# }22 , of scalars with finitely many #; # 0,

[es) 0 o0 1/2
Zlkek,l ® z; _Ztkek,l ® up <al(Z|1j|2) .
k=1 k=1 p =1

Denote by
Zp = lex1 ® z1lpy,-

Then, {Z;}72, is a 1-Schauder decomposition of span{| J; Z;}. By Theorem 2.3, there
exists a linear isomorphic embedding U from span{| J; Z;} into €, so that

JUI, IUTY <2 and Uex) ® 21 = ex,1 @ uy.

If there is an integer i’ such that b;; # 0, then we can choose a projection operator
g € £(£») sothat qu; = e;r; ® by for | > i’ + 1. By Proposition 2.13, for every sequence
{tk1}i'+1<1<k of scalars with finitely many ;. ; # O,

Z U 1 €iy .y

i'+1<l<k

15i1l,

=| > triexi ®eis @b
p i'+1<l<k

p

= (]®q)-UVTS( > zk,,eik,,-,)

i'+1<l<k p

< UVTS( > zk,,e,»k,,-,)
i'+1<l<k p

anVTSM > tkaei
i'+1<I<k p

This says that T is not J,-strictly singular. Thus, b; = 0 for all i.
Next, we will use average skill to “’kill this theorem”. (Such an idea can be seen in [4].)
Givenm € N and for 1 < u < v < 0o, we write

m
1
hv,u = E Coym+j,1 @ u;,Lm+j/m /p.
Jj=1
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For every sequence {f,,, } <y of scalars with finitely many ¢, ,, # 0, we obtain

m pm4+j—1
Ztvu ol Sm- { Ztv,uz Z evm+1,1®€um+11®az
w<v n<v j=1 i=1
Z tv.u Z vm+j,1 @ €um+jum+j @ Cum+j }
H=v j=1 p
= m_l/p{ Z Z ty,nlvm+j,1 @ €um+j,i Qa;
i=1 M=V p
i—um+1<j<m
m
| 20D towComtsia ® Cumtjum+ ® Cume }
H=v j=1 p
o0
<m l/p{ Z ||a, ||p Z Ztv,uevm+j,l ® eu,m+jl
i=1 w=<vj=1
m o0 o0
+ Z Z Z ty,uvm+j1 ® eum+jum+j @ Cum+j }
j=lu=1v=p p
o] 1/2
1/2 2
<m 2] S il (Zw)
i=1 n=<v
m oo 1/2
2
+33 teumesth e’ |
j=1p=1 v=n
1/2
—1 1
<o LS a2 3 el (3 k)
i=1 j=m+1 n=v
o] 1/2
< ml/z—l/P{M + 220:,-}( 2) . (3.5)
i=1 n=<v
Let
m
1
Wy, = Z eium+j/sjum+j’/m /P.
Jj'=
Then, again by Proposition 2.13, for all m € N satisfying
oo
ml/z_l/p{M + 2Za,~} < &/(4|S7H), (3.6)

i=1
we obtain

thww

u=<v

1/2
- (Z |zw|2) . (37

w=v

E tv,uev,u

U=

E ilv Mev,u

u=<v
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Since
hou =UVTSwy,,

by (3.5), (3.6), and (3.7),

IUVTS|y | <e/(IS™HD).

wv,u]ugv |

Let
Y = S([wy,u]u<o) (€ X).

Then

ITly Il < VU UV TS| HIS™H <. =

Wy, ulp<v

Remark 3.7. In Theorem 3.6, we cannot claim that the restriction 7|y of T is compact.
For example, let T" satisfy T'e; ; = €5i(2j41),1- Then, by [4, Proposition 2.2] and

1
ITEqx|| < (ITEax|* + ITE™x|?)? = || Tx|,

we get that T'|y is not compact for every subspace ¥ C 7, isomorphic to 7.

4. Every T € Mg, is a commutator

In this section, we will show that every 7' € Mg, is a commutator forall 1 < p < 2.

Definition 4.1. A sequence {X;}72, of closed subspaces of a Banach space X is said
to be an £,-decomposition of X for 1 < p < oo or p = 0, provided the following three
conditions are satisfied:

(1) {X;}72, is a Schauder decomposition of X
2) X; (i =0,1,2,...) are uniformly linear isomorphic to X.

(3) There is a positive constant K, such that for every convergent series Y ;o x; € X
with x; € X;,

1 (i 1/p
L ||xi||1’) <
K i=0

The next property follows immediately.

00 1/p
< K(aninl’) .

i=0

0
2
i=0

Proposition 4.2. Let {X;}2, be an £,-decomposition of a Banach space X. Then, for
every strictly increasing sequence {m;}32 , of positive integers, {X;}72, is again an €,-
decomposition of X, where

mo mj
Xo=) X and X;= Y X; forj>0.

i=0 i=mj_1+1
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Assume that {X;}?° ) is an £,-decomposition of X. For each j € {0,1,2,...}, we
denote by Pg,; the natural projection from X = Y ;2 X; onto X;. Obviously, X ~
Q" X)p. Let {y; 192, be a sequence of uniform isomorphisms ¥; : X; — X i.e., both
{92, and {y;1}%  are uniformly bounded. Next, let

U: in € X = (Yo(xo), ¥1(x1),...), Xxi € X;.

i=0

Then, U is an isomorphism from X onto (3~ X),. Let U be the set of all such iso-
morphisms U. We denote by L (resp., R) the left (resp., right) shift operator, i.e., for

y =02 € X X)p,
L(y) = (yl’yZ"") (resp" R(y) = (O»YO,ylw-'))-

Next, let
Lp=U"'LU Rgp=U'RU.

Finally, let
Lop={Lp=UT'RU:UeU}, Rp={Rp=U""RU:U €U}
We denote by Dy the inner derivation determined by S in £(X), i.e.,
DsT =ST -TS.
Keep these notations just mentioned above in mind. Then, we have the following
property.

Proposition 4.3. An operator T € £(X) is a commutator if and only if there exists S €
£(X) such that T € DsL(X).

The following theorem is due to Dosev [12, Corollary 7].

Theorem 4.4 (Dosev). Let D = {X;} be a {,-decomposition of a Banach space X. Then,
forall T € £(X), R € Ry, and for L € L g, we have

TPj),o [S Im(DR) and P;D,OT € Im(DL),

where Pg ¢ is the natural projection from X = Z?io X; onto Xy, and Im(DR) (resp.,
Im(Dy)) denotes the image of Dg (resp., Dr,).

The theorem below follows from a quick observation of the proof of Dosev [12, The-
orem 8].

Theorem 4.5. Let D = {X;} be an {,-decomposition of a Banach space X and P, =
' o Po.i. Assume that T € £(X) such that

(o]

DA =PoT| + > |TU =P+ DY | = P)TU = Py < oo
n=0 n=0

m,n=0
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Then, forall R € Ry and L € L g, we have
T € Im(Dg) NIm(Dp).
The next result is also due to Dosev [12, Lemma 5].
I:emma 4.6 (Dosev). Let D = {X;} be an L,-decomposition of a Banach space X and

P, =Y 7", Po,, where Py ; is the natural projection from X =Y i, X; onto X;.
Suppose that T € £(X) satisfies

lim (I — P,)T|| = lim |T( - P,)| =0.

n—00 n—o0

Then, there exists an increasing sequence {m; 720 of positive integers such that

YT =BT+ D | TU =B + Y- [ = Pu)TU = Py < o0.

Jj=0 Jj=0 i,j=0

We can further show the following result.

Lemma 4.7. Let D = {X;} be an {,-decomposition of a Banach space X and P,
' o Po.i. Suppose that T € £(X) satisfies

lim ||(I — P))T(I — Popy)| = lim |T(I — Py)| =0.
n—>o00 n—>00
Then, T is a commutator.
Proof. Since
lim ||(1—Py)T(I—-Poy)| = lim |T(I — P,)| = lim |T(I — Ppo)(I — Py)| =0,
n—>oo n—o0o n—oo
by Lemma 4.6, there exists an increasing sequence {m; }f.io of positive integers such that

D U = Pu)TU = Poo)| + D |TU = Poo)I — Pwy)|
j=0 Jj=0

+ > | = Pu)TU = Pp,o)I = Pu))|| < 00
i,j=0
Note that
S NI = Pu)TU = P || < |1 = Py | D | (I = P )T(I = P o).
j=0 j=0

Then, we have

2N = Pu)T( = Pog)|[ + 3| TU = P = Py
j=0 Jj=0

+ 20 T = Pu)TU = Pry) I = Py < o0,
i,j=0
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mj

Let D' = {fj}fﬁo, where Xy = Y% Xi and X = Zi=m,~_1+1 X; for j > 0. Then, by
Proposition 4.2, 9’ is an £,-decomposition of X. Due to Theorems 4.4 and 4.5, we can
choose R € Ry such that
T Ppy. T(I — Pp,) € Im(Dp).
Consequently,
T =TPn, +TU — Pm,y) € Im(DR).

Therefore, T is a commutator. [
The next result follows from [1, Theorem 2.2.3].

Lemma 4.8. Given 1 < p < o0, let X be a Banach space satisfying X ~ (O_ X),. If
Y and Z are closed subspaces of X with Y ~ X, and with Y @& Z = X, then for every
complemented subspace W of Z, Y & W ~ X.

Lemma 4.9. Given 1 < p < oo, let {e;, j, }1<k be a subtriangle of {e; j};<i. Then, the
natural projection P from T, onto |e;, ;]i<k satisfies | P| < 2.

Proof. Foreach k € N, put

A =i}z, B =2,
Be={jeN:jr+1=j<jis1}.

Then, (Pa,B — P((i}.(B: )| 7, is just a reformulation of the natural projection P from 7,
onto [e;,  j;li<k- L

Note that a commutator is not invariant under small perturbations. For example, O is
a commutator, but £/ is not a commutator for all € > 0. To show the main result of this
section, we require the next lemma, which was motivated by the proof of [4, Theorem 4.6]
and Arazy’s another important result [5, Lemma 2.1]. It can also be regarded as a further
representation of “small perturbations” of the target operator in Arazy’s lemma.

Lemma 4.10. Let T € Mg, (1 < p < 2). Then, there exist a subtriangle {e;, j, }1<k of
{ei,j}j<i» ascalar a, and two operators Ty € £(Tp) and Ty € £([ei, ,j,li<k, Tp) such that

T=Ty+ TP, “.1)
(Toeiy,j)) Gxrs Jir) = Sk - 81,00 - @, 4.2
and
lim |E™T| = o, (4.3)
n—>oo

where P is the natural projection from T, onto [e;, j,1i<k defined as in Lemma 4.9, and
E® is defined by (2.3).

Proof. By Lemma 3.4, we can assume that there is a subtriangle {e;, ,;, }i<k of {€i ;}j<i
so that either T'|f; 1., is compact, or for each fixed /, {T'e;, ;; }32, is equivalent to the
unit vector basis of £5.



Representation of commutators on Schatten p-classes 763

Case 1. T|; is compact. Let

ey li<k
T() = T(I - P), Tl = T|[eik,j1]lsk’
and o = 0. Then, compactness of 77 entails that

lim |[E®Ty|| = 0.
n—o00

Case 2. For each fixed [, {Te;, ; }z=, is equivalent to the unit vector basis of £,. By the
same procedure in the proof of [4, Theorem 4.6], for every sequence {¢;}72, of positive
numbers with > j2, & < oo, we may assume that there are two increasing sequences
{me ), and {n;}72, of positive integers with my < ix < myyy, n;y < j; < nj41, and
three operators S € £(7,), S1, 52 € £([ei,;,li<k, Tp) so that Sy is compact such that

and such that the following formulas hold:

Seig, i = Enpyy Pmympiy S€ip iy s

S2|[e"k’fz]i°=1 = E(nH])Tl[eisz]Zo:z’

and

| E @07, <e.

"kvjl];o:l” -
By a routine diagonal process of passing subsequence, we can assume that the following
limits exist for all I’ < [:

lim (Seik,jl)(ik,jl/) =y . 4.5)
k—o00

Again by a diagonal process, we may assume that the following equations hold:

o= lim oy, 4.6)
l—>00

oap = limaoyy, I'=1,2,.... 4.7
l—>00

For an arbitrary double sequence {§; ;' };/<; of positive numbers so that 21,51 87,1 is small
enough, up to passing subsequence, we can assume that

lag —ap| <8, 1<,

oy —al < 8.

Now, up to passing a subtriangle and by a perturbation argument, (4.5), (4.6), and (4.7), it
follows from (4.4) that we can simply assume that

T =S80+ 8P+ 8P+ S3P,
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where So = S — S3 P satisfying
(Soeip, i)k, jir) =ap, 1'<l <k,
(Soeiy,j) ik, j1) =a, [ <k,
and S3 € £([e;,, j,11<k) satisfies

k
k.l
Sseig = > ay e, (4.8)
I'=1

and

(k.0
l

la,; | < 1.

Compactness of S entails that
lim | E™S || =o0. 4.9)
On the other hand, since for each positive integer /,
Salter, 12, = E"OT e, 1,

and since [T'e;, 17, is isomorphic to a Hilbert space, by Arazy’s lemma (Theorem 2.8),

n—00

m
lim Y |E® S|, ,2,] =0, meN,
=1

and
o0 o0
> ”E(")Szl[e,-k,,-,],f;;, | =<7l > &. meN.
I=m+1 l=m+1
Therefore,

lim [|[E®™S,| = 0. (4.10)
n—oo

By (4.8), for every sequence {# j7—; of scalars with finitely many #; # 0,

o0
‘ S3(Ztkeik,jl)
k=1

[es) )

(k,1)
Doty ap e
k=1

p = I'=1 p
1 00
(k1)
=D | 2w e
I'=1" k=l p

1 oo 1/2
< 281,1’(Z|lv|2) :
k=1

I'=1
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Therefore,

1
13 1eq, 00,1 < D 81
I'=1

For all positive numbers /o and n > ny,,

00 oo 1
IE@Ss ]| <> S5l i, | < D2 D Suar-

1=l I=lylI'=1

Therefore,
lim |E™S3| = o. (4.11)
n—>o00

Put To = So and T} = S; + S5 + S3. By (4.9), (4.10), and (4.11), we obtain
lim |E™Ty| = o0.
n—>oo

Therefore, (4.1) and (4.3) hold.
In order to show (4.2), it suffices to prove that o;y = 0 for every I’
Fix!/, N e Nandk > N + [’. Then

I'+N U'+N
1/2 ..
ISollN'2 = >~ Soeii| =| Y (Soei.ji) ik jir)| = lew|N.
I=1"+1 14 I=I"+1
Since N is arbitrary, oy = 0. n

Theorem 4.11. Every T € M:rp (1 < p < 2)is a commutator.

Proof. By Lemma 4.10, there exists a subtriangle {e;, ;, }i<k of {e;,j};<i, a scalar &, and
two operators To € £(7,) and Ty € £([esy,j;)i<k. Tp) such that

T =Ty +TiP.

(Toeiy,j) ks, jir) = Sk pr - 8100 - @ty
lim |[E™Ty| =0,

n—>00

where P is the natural projection P from 7, onto [e;, ,;,];<x defined as in Lemma 4.9.
Note that

IT\P — E,TiP| = |[E™T P|| - 0, asv— oo,

and
E, TP € e/%’j},.

Since My, is the largest closed ideal of £(7,) (Theorem 3.3), T P € M7, . Consequently,
To=T—-T,P € MTP. It follows from [5, Corollary 2.2] that o« = 0.
By Lemma 4.8, we can assume that (/ — P)7, ~ J,. Foreach v € N, put

Ay ={izeu+nip=r and By = {joveu+n)pe1-
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Then, P4,},(B,) P is again a projection satisfying for all v € N,

o0
Pgay 18y PTp = (Z[eizv(2s+l)a.f2v(2t+1)]tSS) ,
v=1 p

and

PAv,BvPrj;? = [eizv(2s+1)>j2v(2t+1)]tSS'
For every sequence {8, }52, of positive numbers with Y o2 18y < ooandforeveryv € N,
by Theorems 2.10 and 3.6, we can choose a closed subspace Xy Of (€7, 5, 41,3024 1)) <5
such that X, is 2-isomorphic to 7, with ||T'|x, || < §, and such that X, is 3-complemented
I [€iy0 0041y, javrsnlt<se L€t Qv & [€ip i1y, joviinlt<s = Xv be a projection with
|Qvll < 3. Then

2 (Z0n),~ (38),

the series Y oo, Oy P4, B, P is strongly convergent and induces a projection from 7, onto
> o2 Xy Let

o0
Xo = ker(z QUPA,,,BUP)-

v=1
By Lemma 4.8, X is isomorphic to 7,. Thus,
D = {Xv}(;o:O

is a £,-decomposition of T, and satisfies the fact that, for all v € N,

o0
Poo=1- Z QvPa,B, P and Ppy = QyPa,p,P.

v=1
Denote by
w
Py =Y Pp,.
v=0
Then
_ o0 o0
ITU =Pl < Y ITPoull <6 D 6.
v=w+1 v=w+1
Therefore,
lim ||T(I — Py)| = 0. 4.12)
w—>00

On the other hand, it follows from
(I — Py)T(I — Ppyo) = (I — P,)TyP(I — Py o)
= (I = Py)T1(I = Pp )

o0 o0
=( > QvPA,,,BvP)Tl(Z QUPAU,B,)P)
v=w+1 v=1
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that
I(I = Pu)Ti(I = Po,o)ll < 36| EV2o+0 Ty .
Therefore,
Jim ||(1 = Pu)T(I = Ppo)| = 0. (4.13)
By (4.12), (4.13), and Lemma 4.7, T is a commutator. [

5. A characterization of commutators on £(7,) (1 < p < 00)

In this section, we will show Theorem B mentioned in the end of the first section; that
is,let 1 < p < oo, T € £(7,) is a commutator if and only if 7 — A is not J,-strictly
singular foreach A # 0 € C.

For X and Y be two subspaces of a Banach space Z, let

d(Sx,Y) = inf{||x —yl:xeSx,ye Y},

where Sy is the unit sphere of X .
Note that if both X and Y are closed with X N'Y =0, then X + Y is a closed subspace
of Z if and only if d(Sx,Y) > 0. Note also that

1/2d(Sx,Y) < d(Sy, X) < 2d(Sx,Y).

The following two theorems are due to Chen, Johnson, and Zheng [9, Lemmas 2.13,
2.14, and Theorem 2.15].

Theorem 5.1 (Chen—Johnson—Zheng). Let p € [1, 00] U {0}, and let X be a comple-
mentably homogeneous Banach space isomorphic to (3_ X), and T a bounded linear
operator on X for which there is a subspace Y of X isomorphic to X such that Ty is an
isomorphism and d(Sy,TY) > 0. Then, T is a commutator.

Theorem 5.2 (Chen—Johnson—Zheng). Let p € [1, oo] U {0}, and let X be a comple-
mentably homogeneous Banach space isomorphic to () X)p. Suppose that the set of all
X -strictly singular operators on X form an ideal in £(X). Let T : X — X be a bounded
linear operator such that, for every A’ € C, T — A'I is not X -strictly singular. If there is
a A € C and a subspace Y of X isomorphic to X and such that (T — A1)|y is X -strictly
singular, then T is a commutator.

Theorem 5.3. Given1 < p <2, letT € £(T,) suchthat T — Al is not T,-strictly singular
forall A € C. Then, T is a commutator.

Proof. By Lemma 4.10, we can assume that there exist 7o € £(7,), T1 € M(rp, and a
scalar o such that
T =T+ T,



L. Cheng and Z. Yu 768

and
(Toeiy,j) ik, ji) = Sk pr - 81,1 - .
Let P be the natural projection from 7, onto [e;, , ;,];<x defined as in Lemma 4.9. Then
PToyP = aP.
Therefore,
(I—-P)TP=TP—-P(To+T)P=(T —al)P— PT,P.

If (I — P)TP is not T,-strictly singular, then there is a subspace X of 7, isomorphic to
Tp sothat (I — P)TP is an isomorphism on X . Denote by Y = PX. Then, Y ~ 7. Since
(I — P)T is an isomorphism on Y, there is a positive number ¢ so that

(T =P)YTW zclyll, yeY.
ForallTy € Sty andy' €Y,
(= P)Ty]| clyll ¢
1Ty =yl = > > :
11— P =PI~ T =Pl
Therefore, d(Sty,Y) > 0. By Theorem 5.1, T is a commutator.
In the case that (/ — P)TP is Jp-strictly singular, since

(T —al)P = (I — P)TP + PT; P,

(T - aI)l[eik,jl]lsk
tator. | ]

is Jp-strictly singular. It follows from Theorem 5.2 that 7" is a commu-

Theorem 5.4. Let 1 < p < co. Then, an operator T € £(T,) is a commutator if and only
ifT — Al & Mg, forall A # 0.

Proof. According to Brown and Pearcy [8], the conclusion is true for p = 2. By a duality
argument, it suffices to show that it is true for 1 < p < 2.
Necessity. It follows immediately from Wintner’s theorem (i.e., Theorem 1.1).
Sufficiency. Suppose that T — Al ¢ Mg, for all A # 0. If T € Mg, , then, by Theo-
rem 4.11, T is a commutator. If T ¢ MTP, then, by Theorem 5.3, T — Al ¢ M% for all
A € C. Consequently, T is a commutator. |

Corollary 5.5. Let 1 < p < oo. Then, an operator T € £(€p) is a commutator if and
only if T — Al & Me, for any A # 0.

Proof. By Theorem 5.4, if suffices to note that 7, ~ €, for all 1 < p < oo (Proposi-
tion 2.5). ]

Acknowledgments. The authors would like to thank people in the Functional Analysis
seminar of Xiamen University for their helpful conversations on the paper.

Funding. Research of the first author was partially supported by National Natural Science
Foundation of China (Grant no. 12271453).



Representation of commutators on Schatten p-classes 769

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]

(14]

(15]

[16]

(17]

(18]

F. Albiac and N. J. Kalton, Topics in Banach space theory. 2nd edn., Grad. Texts in Math. 233,
Springer, Cham, 2016 Zbl 1352.46002 MR 3526021

C. Apostol, Commutators on £p-spaces. Rev. Roumaine Math. Pures Appl. 17 (1972), 1513—
1534 7Zbl 0247.47030 MR 336432

C. Apostol, Commutators on cg-spaces and on £1-spaces. Rev. Roumaine Math. Pures Appl.
18 (1973), 1025-1032 Zbl 0261.47019 MR 336433

J. Arazy, On large subspaces of the Schatten p-classes. Compositio Math. 41 (1980), no. 3,
297-336 Zbl 0415.47014 MR 589085

J. Arazy, A remark on complemented subspaces of unitary matrix spaces. Proc. Amer. Math.
Soc. 79 (1980), no. 4, 601-608 Zbl 0436.47030 MR 572312

J. Arazy and Y. Friedman, The isometries of C;,n’n into C. Israel J. Math. 26 (1977), no. 2,
151-165 Zbl 0345.47035 MR 440396

J. Arazy and J. Lindenstrauss, Some linear topological properties of the spaces Cp, of operators
on Hilbert space. Compositio Math. 30 (1975), 81-111 Zbl 0302.47034 MR 372669

A. Brown and C. Pearcy, Structure of commutators of operators. Ann. of Math. (2) 82 (1965),
112-127 Zbl 0131.12302 MR 178354

D. Chen, W. B. Johnson, and B. Zheng, Commutators on (3 Lq)p. Studia Math. 206 (2011),
no. 2, 175-190 Zbl 1232.47031 MR 2860306

D. Dosev and W. B. Johnson, Commutators on . Bull. Lond. Math. Soc. 42 (2010), no. 1,
155-169 Zbl 1190.47036 MR 2586976

D. Dosev, W. B. Johnson, and G. Schechtman, Commutators on L, 1 < p < co. J. Amer.
Math. Soc. 26 (2013), no. 1, 101-127 Zbl 1278.47038 MR 2983007

D. T. Dosev, Commutators on /. J. Funct. Anal. 256 (2009), no. 11, 3490-3509

Zbl 1170.47022 MR 2514050

P. Enflo and T. W. Starbird, Subspaces of L1 containing L1. Studia Math. 65 (1979), no. 2,
203-225 Zbl 0433.46027 MR 557491

I. C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert
space. Transl. Math. Monogr. 24, American Mathematical Society, Providence, RI, 1970

7Zbl 0194.43804 MR 264447

W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach
spaces. Mem. Amer. Math. Soc. 19 (1979), no. 217, v+298 Zbl 0421.46023 MR 527010

M. Tarbard, Hereditarily indecomposable, separable £~, Banach spaces with £ dual having
few but not very few operators. J. Lond. Math. Soc. (2) 85 (2012), no. 3, 737-764

7Zbl 1257.46013 MR 2927806

A. Wintner, The unboundedness of quantum-mechanical matrices. Phys. Rev. (2) 71 (1947),
738-739 Zbl 0032.13602 MR 20724

B. Zheng, Commutators on (X4g)y, . J. Math. Anal. Appl. 413 (2014), no. 1, 284-290

7Zbl 1343.47047 MR 3153585

Received 17 July 2022; revised 6 October 2022.

Lixin Cheng
School of Mathematical Sciences, Xiamen University, Xiamen, 361005 Fujian, P. R. China;
Ixcheng@xmu.edu.cn


https://doi.org/10.1007/978-3-319-31557-7
https://zbmath.org/?q=an:1352.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=3526021
https://zbmath.org/?q=an:0247.47030
https://mathscinet.ams.org/mathscinet-getitem?mr=336432
https://zbmath.org/?q=an:0261.47019
https://mathscinet.ams.org/mathscinet-getitem?mr=336433
https://zbmath.org/?q=an:0415.47014
https://mathscinet.ams.org/mathscinet-getitem?mr=589085
https://doi.org/10.2307/2042507
https://zbmath.org/?q=an:0436.47030
https://mathscinet.ams.org/mathscinet-getitem?mr=572312
https://doi.org/10.1007/BF03007665
https://zbmath.org/?q=an:0345.47035
https://mathscinet.ams.org/mathscinet-getitem?mr=440396
https://zbmath.org/?q=an:0302.47034
https://mathscinet.ams.org/mathscinet-getitem?mr=372669
https://doi.org/10.2307/1970564
https://zbmath.org/?q=an:0131.12302
https://mathscinet.ams.org/mathscinet-getitem?mr=178354
https://doi.org/10.4064/sm206-2-5
https://zbmath.org/?q=an:1232.47031
https://mathscinet.ams.org/mathscinet-getitem?mr=2860306
https://doi.org/10.1112/blms/bdp110
https://zbmath.org/?q=an:1190.47036
https://mathscinet.ams.org/mathscinet-getitem?mr=2586976
https://doi.org/10.1090/S0894-0347-2012-00748-6
https://zbmath.org/?q=an:1278.47038
https://mathscinet.ams.org/mathscinet-getitem?mr=2983007
https://doi.org/10.1016/j.jfa.2009.03.006
https://zbmath.org/?q=an:1170.47022
https://mathscinet.ams.org/mathscinet-getitem?mr=2514050
https://doi.org/10.4064/sm-65-2-203-225
https://zbmath.org/?q=an:0433.46027
https://mathscinet.ams.org/mathscinet-getitem?mr=557491
https://zbmath.org/?q=an:0194.43804
https://mathscinet.ams.org/mathscinet-getitem?mr=264447
https://doi.org/10.1090/memo/0217
https://doi.org/10.1090/memo/0217
https://zbmath.org/?q=an:0421.46023
https://mathscinet.ams.org/mathscinet-getitem?mr=527010
https://doi.org/10.1112/jlms/jdr066
https://doi.org/10.1112/jlms/jdr066
https://zbmath.org/?q=an:1257.46013
https://mathscinet.ams.org/mathscinet-getitem?mr=2927806
https://doi.org/10.1103/PhysRev.71.738.2
https://zbmath.org/?q=an:0032.13602
https://mathscinet.ams.org/mathscinet-getitem?mr=20724
https://doi.org/10.1016/j.jmaa.2013.11.066
https://zbmath.org/?q=an:1343.47047
https://mathscinet.ams.org/mathscinet-getitem?mr=3153585
mailto:lxcheng@xmu.edu.cn

L. Cheng and Z. Yu 770

Zhizheng Yu
School of Mathematical Sciences, Xiamen University, Xiamen, 361005 Fujian, P. R. China;
19020200156565 @stu.xmu.edu.cn


mailto:19020200156565@stu.xmu.edu.cn

	1. Introduction
	2. Preliminaries
	3. Properties of operators in M_{T_p}
	4. Every T∈M_{T_p} is a commutator
	5. A characterization of commutators on L(T_p) (1≤p<∞)
	References

