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Representation of commutators on Schatten p-classes

Lixin Cheng and Zhizheng Yu

Abstract. Let Cp be the Schatten p-class of `2 for 1 < p <1, and let Tp be the closed subspace of
Cp consisting of all lower triangular matrices. In this paper, we show that a bounded linear operator
T on Cp is a commutator if and only if T is not of the form �I CK, where 0 ¤ � 2 C and K is a
Cp-strictly singular operator. It is done by showing that a bounded linear operator T on Tp is not a
commutator if and only if T has the same form.

1. Introduction

When studying a general algebra, we are sure to meet a mathematical object — commuta-
tors, i.e., elements of the form AB � BA. Functional analysts are more willing to focus it
on a Banach algebra. The following well-known obstruction was proven by Wintner [17]
in 1947.

Theorem 1.1 (Wintner). The identity in a unital Banach algebra is not a commutator.

This immediately implies that no element of the form �I C K is a commutator in a
Banach algebra A, where K belongs to a norm closed (proper) ideal 	 of A and � ¤ 0 is
a scalar. Usually, it is difficult to check whether an element of a general Banach algebra is
a commutator.

If we consider the Banach algebra L.X/ of all bounded linear operators on a Banach
space X , and provided the space X has some “nice” property, then it allows one to tackle
the problem successfully. Indeed, for example, if X is finite-dimensional, then the answer
is classical and easily stated: a sufficient and necessary condition for T 2 L.X/ to be a
commutator is that the trace of T is zero. The first profound result was given by Brown
and Pearcy [8] in 1965 for X D `2. They proved that an operator T 2 L.`2/ is not a
commutator if and only if T can be represented as �I CK for some compact operator K
with �.¤ 0/ 2C. In 1972–1973, Apostol [2,3] proved the same representation forX D p̀

(1 < p <1) and c0 and also presented some partial results for `1, `1, and C.Œ0; 1�/.
Thirty-five years later after Apostol’s results, this topic was resuscitated by Dosev [12].

He developed Apostol’s technique [2] and obtained complete classification of commuta-
tors on `1, which states that the representation of a commutator on `1 is the same as that
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of a commutator on `2. He applied the generalized technique to obtain partial results for
commutators on spaces X of the form

X �

� 1M
iD1

X

�
p

if either 1 � p <1 or p D 0. In particular, he gave a characterization of commutators on
p̀1 ˚ p̀2 ˚ � � � ˚ p̀n . Dosev and Johnson [10] further showed that every noncommutator

on p̀1 ˚ p̀2 ˚ � � � ˚ p̀n has the form �I C K, where � ¤ 0 and K belongs to some
proper ideal of L. p̀1 ˚ p̀2 ˚ � � � ˚ p̀n/.

Wintner’s theorem tells us that if one obtained complete representation of commuta-
tors in L.X/which is the same as mentioned above, that is, T 2L.X/ is not a commutator
if and only if T D �I C K with � ¤ 0, then there must be a largest nontrivial ideal of
L.X/ so that the operatorK is in it. For example, the ideal K.X/ of all compact operators
on X is the largest nontrivial ideal in L.X/ for X D p̀ (1 � p <1) or c0. The situation
forX D `1 is different. The largest ideal in L.`1/ is the ideal of all strictly singular oper-
ators �.`1/ (incidentally, agrees with the ideal of all weakly compact operators), instead
of K.`1/. Dosev and Johnson [10] proved that T 2L.`1/ is not commutator if and only
if T has the form �I C S for some strictly singular operator S and � ¤ 0. It seemed that
it is reasonable to consider a converse version of Wintner’s theorem: for a Banach space
X which satisfies that there is a largest nontrivial ideal M in L.X/, does the follow-
ing statement hold? T 2 L.X/ is not a commutator if and only if T D �I CK for some
K 2M and �¤ 0. Nevertheless, with the help of Tarbard’s example [16], Dosev, Johnson,
and Schechtman [11] found that the statement is not true. Thus, Dosev and Johnson [10]
further proposed the following conjecture (which remains open now).

Conjecture (Dosev–Johnson). LetX be a Banach space such thatX � .
P
X/p , 1� p �

1, or p D 0. Assume that L.X/ has a largest nontrivial ideal M. Then, T 2 L.X/ is not
a commutator if and only if T D �I CK for some K 2M and � ¤ 0.

In order to obtain a complete classification of commutators in L.X/, checking whether
L.X/ has a largest nontrivial ideal turns into an important step. Recall that an operator
S 2 L.X/ is said to factor through T 2 L.X/ provided there are A;B 2 L.X/ such that

S D ATB:

The following useful set is defined by Dosev and Johnson [10] in a clever way. For a
Banach space X , let

MX D
®
T 2 L.X/ W IX does not factor through T

¯
: (1.1)

Firstly, note that the set MX is closed under left and right multiplication by operators in
L.X/. Therefore, the question whether MX is an ideal is equivalent to that whether MX

is closed under addition. Secondly, note that if MX is an ideal, then it is automatically the
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largest ideal in L.X/. Finally, note that T … MX if and only if there exists a subspace
Y � X so that the restriction T jY of T is an isomorphism from Y onto its image T Y such
that T Y is complemented in X and such that Y � X .

The next useful notion was used in [9, 11].

Definition 1.2. An infinite-dimensional Banach space X is said to be complementably
homogeneous if every subspace of X isomorphic to X must contain a smaller subspace
isomorphic to X and is complemented in X .

For example, Lp.Œ0; 1�/ .1 � p < 1/ (see [15]), L1.Œ0; 1�/ (see [13]) are comple-
mentably homogeneous spaces. Dosev, Johnson, and Schechtman [11] showed that T 2
L.LpŒ0; 1�/ (1 � p <1) is not commutator if and only if T has the form �I CK, where
K is LpŒ0; 1�-strictly singular and � ¤ 0. Chen, Johnson, and Zheng [9] proved that the
same conclusion for

X D

�X
`q

�
p̀

with 1 � q <1 and 1 < p <1, and Zheng [18] further showed that it is again true for

X D

�X
`q

�
`1

with 1 � q <1.
The following property immediately follows from Definition 1.2.

Proposition 1.3. Let X be a complementably homogeneous Banach space. Then, MX is
equal to the set of all X -strictly singular operators on X ; i.e., those operators T 2 L.X/

satisfy that T jX0 is not an isomorphism for every subspace X0 of X which is isomorphic
to X .

In this paper, we focus on the Schatten p-class of `2 and show the following theorem.

Theorem A. T 2 L.Cp/ (1 < p <1) is a commutator if and only if T is not of the form
�I CK with � ¤ 0, where K is Cp-strictly singular.

It is done by showing a more general result below.

Theorem B. Let Tp be the closed subspace of Cp consisting of all lower triangle matrices;
i.e.,

Tp D
®
x 2 Cp W x.i; j / D 0 for j > i

¯
:

Then, T 2L.Tp/ (1 � p <1) is not a commutator if and only if T is of the form �I CK

for some Tp-strictly singular K and some scalar � ¤ 0.

Since Tp � Cp for all 1 < p <1, Theorem A is an immediate consequence of The-
orem B.

This paper is organized as follows. In the second section, we present some notions,
basic properties, and known results which will be used in the sequel. In the third section,
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we will give some properties of operators in MTp for 1 � p < 2. In the fourth section,
we will show that, for any fixed 1 � p < 2, every Tp-strictly singular T is a commutator,
which is equivalent to T 2MTp . We should mention that results in the third and fourth
sections were motivated by Arazy [4, 5]. In the fifth section (the last section), motivated
by Chen, Johnson, and Zheng [9], and applying the main results established in the third
and the fourth sections, we will show the main theorem of this paper, i.e., Theorem B
mentioned above.

2. Preliminaries

In this section, we recall some notions, basic properties, and known results which will be
used in the sequel.

By a subspace, we will always mean a closed subspace. A sequence ¹xnº1nD1 in a
Banach space X is said to be semi-normalized if there exist positive numbers a and b
such that

a � kxnk � b; n 2 N:

We denote by Œxn�1nD1 the closure of span¹xnº1nD1 in X . A basic sequence ¹xnº1nD1 is said
to be �-equivalent to another basic sequence ¹ynº1nD1 provided there exist 1 � � <1 so
that, for every scalar sequence ¹tnº1nD1 with finitely many tn ¤ 0,

��1




X

n

tnyn





 � 



X
n

tnxn





 � �



X
n

tnyn





:
We say that a subspace Y of X is �-complemented in X if there exists a projection P
from X onto Y with kP k � �. For two Banach spaces X and Y , their Mazur’s distance is
defined by

d.X; Y / D inf
®
kT k � kT �1k W T is an isomorphism from X onto Y

¯
:

We use X � Y to denote that X is linearly isomorphic to Y , and X ' Y means that X is
linearly isometric to Y .

Definition 2.1. Let ¹Xkº1kD1 be a sequence of nontrivial closed subspaces of a Banach
space X , and let K > 0 be a constant. Then, ¹Xkº1kD1 is said to be a Schauder decompo-
sition of the subspace �[

k

Xk

�
with the decomposition constant K provided that



 mX

kD1

xk





 � K



 nX
kD1

xk






for every sequence ¹xkº1kD1 with xk 2 Xk and for all integers m, n 2 N with m � n.
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The next theorem is classical. See, for instance, [1, Theorem 1.3.9].

Theorem 2.2 (Principle of small perturbations). Let ¹xnº1nD1 be a basic sequence with a
basis constant K in a Banach space X . If ¹ynº1nD1 is a sequence in X such that

2K

1X
nD1

kxn � ynk

kxnk
D � < 1;

then there exists T 2 L.X/ such that

T xn D yn; n D 1; 2; : : : ;

and
kT � idX k � �:

Theorem 2.3. Let X and Y be Banach spaces, and let ¹Xkº1kD1 be a Schauder decom-
position of X with the decomposition constant K. Assume that T 2 L.X; Y /, Gk 2
L.TXk ; Y /, k D 1; 2; : : : ; such that

2K

1X
kD1



T jXk

 � 

 idTXk �Gk


 � "

for some " > 0. Then, there exists T0 2 L.X; Y / so that

T0jXk D GkT jXk and kT0 � T k � ":

Proof. For each k 2 N, let Pk be the natural projection from X D
P1
kD1 Xk onto Xk .

Then

T0 � T C

1X
kD1

.Gk � idTXk /TPk D
1X
kD1

GkTPk

is strongly convergent. Clearly, T0 has the property we desired.

We often apply the particular case of Theorem 2.3 that X � Y and T D �X,!Y (the
natural embedding).

Given 1 � p < 1, the Schatten p-class Cp of operators on the Hilbert space `2 is
defined as follows.

Let Cp be the Banach space of all compact operators x on `2 so that

kxkp D .trace.x�x/p=2/1=p <1:

We use C1 to denote the Banach space of all compact operators on `2 with the usual
operator-norm of the space L.`2/.

Now, we introduce some notations which will be used in the sequel. For two orthonor-
mal bases ¹eiº1iD1 and ¹fiº1iD1, we represent every x 2 L.`2/ as a matrix:

x D .x.i; j //1i;jD1; x.i; j / D .xfj jei /:
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Let
ei;j D . � jfj /ei ; 1 � i; j <1:

Note that
ei;j .k; l/ D ıi;k � ıj;l :

Clearly, ¹ei;j º1i;jD1 forms a Schauder basis of Cp for every such p, if we arrange it as
follows:

e1;1; e2:1; e2;2; e1;2; e3;1; e3;2; e3;3; e2;3; e1;3; : : : ;

en;1; en;2; : : : ; en;n; en�1;n; en�2;n; : : : ; e1;n; : : : :

For each n 2 N, we define two projections Pn and En on Cp as follows:

.Pnx/.i; j / D

´
x.i; j /; 1 � i; j � n;

0; otherwise;
(2.1)

and

.Enx/.i; j / D

´
x.i; j /; 1 � min¹i; j º � n;

0; otherwise:
(2.2)

Let
Pn;m D Pm � Pn; n < m and E.n/ D I �En; n 2 N: (2.3)

Clearly,
kPnk D kE

.n/
k D 1

for every n. We denote by Tp the subspace of Cp consisting of all lower triangular matrices:

Tp D
®
x 2 Cp W x.i; j / D 0;1 > j > i � 1

¯
:

Note that the spaces Cp and Tp admit the following finite-dimensional Schauder decom-
positions:

Cp D

1X
nD1

.Pn � Pn�1/Cp; Tp D

1X
nD1

.Pn � Pn�1/Tp; where P0 D 0:

The following property is classical. See, for instance, Gohberg and Krein’s book [14,
pp. 118–120].

Proposition 2.4. For every 1 < p <1, the triangular projection PT defined by

.PT x/.i; j / D

´
x.i; j /; i � j;

0; j > i;

is a bounded projection from Cp onto Tp .
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The next property can be found in Arazy and Lindenstrauss’s work [7, Proposition 1].

Proposition 2.5. The space Cp is isomorphic to its subspace Tp if and only if 1 < p <1.

Another important projection, actually a whole class of projections, in Cp is defined
as follows.

Definition 2.6. Let ¹AkºnkD1 and ¹BkºnkD1 be two sequences of mutually disjoint subsets
of positive integers for n 2 N; i.e.,

Aj \ Ak D ; D Bj \ Bk for all 1 � j ¤ k � n:

We define the projection P.¹Akº;¹Bkº/ by

.P.¹Akº;¹Bkº/x/.i; j / D

´
x.i; j /; if i 2 Ak ; j 2 Bk ; k D 1; : : : ;

0; otherwise:

Clearly, for all 1 � p � 1 and every pair of such sequences ¹Akº and ¹Bkº, the
projection P.¹Akº;¹Bkº/ is of norm one. It is easy to observe that

kP.¹Akº;¹Bkº/xkp D

�X
k

kxkk
p
p

�1=p
;

where
xk.i; j / D x.i; j /;

if .i; j / 2 Ak � Bk and D 0, otherwise. If p D 1, the sum in the right-hand side will be
replaced by supk kxkkp .

We will also apply the following theorems, which are due to Arazy [4] and Arazy and
Lindenstrauss [7].

Theorem 2.7 ([4, Proposition 2.2]). Assume that X � Cp (1 � p < 2) and that X is
isomorphic to a Hilbert space. Then, for every " > 0, there exists n 2 N such that

kE.n/jXk � ":

Theorem 2.8 ([4, Lemma 2.4]). Let ¹xkº1kD1 be a normalized sequence in Cp (1� p < 2)
which is equivalent to the unit vector basis of `2. Then,

(i) for every 0 < " < 1, there exists a subsequence ¹xkj º
1
jD2 which is .1 C "/-

equivalent to the unit vector basis of `2 so that Œxkj �
1
jD2 is .1C"/-complemented

in Cp;

(ii) given any sequence ¹˛iº1iD1 with 0 < ˛i < 1, there exist a normalized sequence
¹uiº

1
iD2 in Cp and three sequences ¹aj º1jD1, ¹bj º1jD1, and ¹ciº1iD2 in Cp with

ui D

i�1X
jD1

.ei;j ˝ aj C ej;i ˝ bj /C ei;i ˝ ci
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so that

.kaj k
p
p C kbj k

p
p /
1=p
� j̨�1; kcj kp � j̨�1 for all j � 2;

1 � ˛1 � .ka1k
p
p C kb1k

p
p /
1=p
� 1;

and
kui � xki kp � ˛i for all i � 2:

Theorem 2.9 ([7, Theorem 1]). Let 1 � p <1, and let ¹xnº1nD1 be a semi-normalized
weakly null sequence in Cp . Then, there is a subsequence ¹xnk º

1
kD1

of ¹xnº1nD1 which is
equivalent to the unit vector basis of `2 or p̀ .

Theorem 2.10 ([4, Theorem 3.2]). For 1 � p <1, letX be a subspace of Tp isomorphic
to Tp , and let 0 < � < 1. Then, there exists a subspace Y of X so that

d.Y; Tp/ � 1C �

so that Y is .2C �/-complemented in Tp .

The following result follows from Proposition 2.5 and Theorem 2.10.

Corollary 2.11. For every 1 < p <1, Cp is complementably homogeneous.

Now, we recall some known results related to tensor products of operators. Let H be
a Hilbert space, let Cp.H/ be the Schatten p-class of operators on H , and let `2 ˝ `2
be the tensor product of `2 by itself. If x; y 2 B.`2/, then there exists a unique element
x ˝ y 2 B.`2 ˝ `2/ satisfying

.x ˝ y/.� ˝ �/ D x� ˝ y�

for every pair �; � 2 `2. If x; y 2 Cp.`2/ (1 � p � 1), then

x ˝ y 2 Cp.`2 ˝ `2/

and
kx ˝ ykp D kxkp � kykp:

Moreover, Cp.`2 ˝ `2/ is the closure of the linear hull of all elements x ˝ y with x; y 2
Cp.`2/. We therefore denote

Cp.`2 ˝ `2/ by Cp.`2/˝ Cp.`2/

or simply by
Cp.`2 ˝ `2/ D Cp ˝ Cp:

Since we can identify Cp with Cp ˝ Cp , we call this identification a “tensor product rep-
resentation” of Cp with Cp ˝ Cp . Obviously, we can identify Cp with Cp ˝ Cp ˝ Cp and
with Cp ˝ Cp ˝ Cp ˝ Cp; : : : ; in an analogous way.
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Let p; q 2 L.`2/ be two projection operators. Then, p ˝ q is again a projection oper-
ator on L.`2/, and

x 2 Cp ˝ Cp 7! .p ˝ q/x 2 Cp ˝ Cp;

x 2 Cp ˝ Cp 7! x.p ˝ q/ 2 Cp ˝ Cp

induce two contractive projections on Cp˝Cp . Therefore, we have the following property.

Corollary 2.12. Let the projections Pn and E.n/ be defined on Cp by (2.1) and (2.3).
Then, I ˝ Pn and I ˝E.n/ induce two contractive projections on Cp ˝ Cp .

The following property is due to Arazy and Friedman [6].

Proposition 2.13 ([6, Theorem 2.2]). Let x 2 Cp (1 � p �1), kxkp D 1, and let xi;j D
ei;j ˝ x for 1� i; j <1. Then, ¹xi;j º1i;jD1 is isometrically equivalent to the standard unit
matrices ¹ei;j º1i;jD1 in Cp , and there is a contractive projection from Cp onto Œxi;j �1i;jD1.

A triangular sequence is a double sequence of the form ¹xi;j º1�j�i<1. In short, we
denote it also by ¹xi;j ºj�i and call it simply a t riangle. A subt riangle of ¹xi;j ºj�i is
a triangle of the form ¹xik ;jl ºl�k , where ¹ikº1kD1 and ¹jlº1lD1 are increasing sequences of
positive integers with ik � jk for every k.

In what follows, we will use the phrase “by passing a subtriangle” ¹xik ;jl ºl�k (which
has some nice properties) starting with a triangle ¹xi;j ºj�i . The general scheme of a such
procedure is the following. Let j1 2 N, and let ¹x

i
.1/
k
;j1
º1
kD1

be a be a “nice” subsequence

of ¹xi;j1º
1
iDj1

. Assume that j1 < j2 < � � �< jm have been chosen and that we have already
defined increasing sequences

¹i
.l/

k
º
1
kDl ; 1 � l � m;

so that ®
x
i
.l/
k
;jl

¯1
kDl

is a “nice” subsequence of ®
x
i
.l�1/
k

;jl j̄l�i
.l�1/
k

:

Choose jmC1 2 N, which is greater than jm, such that there is a “nice” subsequence®
x
i
.mC1/
k

;jmC1

¯1
kDmC1

of
®
x
i
.m/
k
;jm j̄m�i

m
k

:

If we write ik D i
.k/

k
, then ¹xik ;jl ºl�k is clearly a subtriangle of ¹xi;j ºj�i , and each column

¹xik ;jl º
1
kDl

is “nice”.

3. Properties of operators in MTp

In this section, we will show that MTp is the largest nontrivial ideal in L.Tp/ for 1 � p <
1 and present a “local” property of operators in MTp (Theorem 3.6).

The following property is included in [4, p. 300, lines 19–20].
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Theorem 3.1. For any fixed 1 � p � 1, we have

Cp �

�X
Cp

�
p

and Tp �

�X
Tp

�
p

:

Recall (1.1) that, for a Banach space X ,

MX D
®
T 2 L.X/ W IX does not factor through T

¯
:

The following property follows immediately from Proposition 1.3 and Theorem 2.10.

Proposition 3.2. For every 1 � p <1, MTp is the subspace of all Tp-strictly singular
operators on Tp .

Theorem 3.3. For 1 � p <1, MTp is the largest ideal of L.Tp/.

Proof. Let T 2 L.Tp/. If there is a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i such thatˇ̌
.Teik ;jl /.ik ; jl /

ˇ̌
� 1=2

for all l � k, then, by [5, Corollary 2.2], we obtain T … MTp . Otherwise, there exist a
positive integer j0 and an increasing sequence of positive integers ¹ikº1kD1 with i1 � j0
such that, for all j > j0, there are only finitely many

j.Teik ;j /.ik ; j /j of
®
j.Teik ;j /.ik ; j /j

¯1
kD1

which are greater than or equal to 1=2. Thus, there is a subtriangle ¹eikv ;j�º��v of ¹ei;jºj�i
with j1 > j0 such that ˇ̌

.I � Teikv ;j�/.ikv ; j�/
ˇ̌
� 1=2:

It follows again from [5, Corollary 2.2] that

I � T …MTp :

By [10, Proposition 5.1], MTp is the largest ideal of L.Tp/.

Lemma 3.4. Let T 2L.Tp/ (1�p <2). Then, one of the following conditions is satisfied:

(a) For any " > 0, there is a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i such that T jŒeik ;jl �l�k
is compact and

kT jŒeik ;jl �l�k
k � ":

(b) For any sequence ¹"lº1lD1 of positive numbers, there is a subtriangle ¹eik ;jl ºl�k
of ¹ei;j ºj�i so that, for any fixed l , ¹Teik ;jl º

1
kDl

is equivalent to the unit vector
basis of `2 and

kT jŒeik ;jl �
1
kDl
k � "l :

(c) There exist K > 0 and a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i such that, for any
fixed l , ¹Teik ;jl º

1
kDl

is K-equivalent to the unit vector basis of `2.
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Proof. (a) We assume that A is an infinite set of natural numbers satisfying that for the
first number j1 of A, there is a subsequence ¹e

i
.1/
k
;j1
º1
kD1

of ¹ei;j1º
1
iDj1

such that

lim
k!1

kTe
i
.1/
k
;j1
kp D 0:

Assume that j1 <j2 < � � �<jm have been chosen fromA and that we have already defined
m increasing sequences ¹i .l/

k
º1
kDl

, 1 � l � m satisfying that for each such l , ¹i .l/
k
º1
kDl

is a
subsequence of ¹i .l�1/

k
º1
kDl�1

with i .l/
l
� jl and that

lim
k!1

kTe
i
.l/
k
;jl
kp D 0:

Then, let jmC1 be the first number of A n ¹j1; : : : ; jmº which is greater than jm, and let
¹i
.mC1/

k
º1
kDmC1

be a subsequence of ¹i .m/
k
º1
kDm

with i .mC1/mC1 � jmC1 and with

lim
k!1

kTe
i
.mC1/
k

;jmC1
kp D 0:

We write ik D i
.k/

k
. Then, ¹eik ;jl ºl�k is a subtriangle of ¹ei;j ºj�i . For any fixed sequence

¹ck;lºl�k of positive numbers, we can assume that

kTeik ;jl kp � ck;l :

For any fixed " > 0, since ¹ck;lºl�k is arbitrary, we can claim that T jŒeik ;jl �l�k is compact
and that kT jŒeik ;jl �l�kk � ".

(b) If the process in (a) cannot be continued, then there exist a positive integer j0 and
an increasing sequence ¹isº1sD1 of positive integers so that, for every j � j0, ¹Teis ;j º

1
sD1

does not admit a null subsequence. Therefore, there is a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i
such that, for each fixed l ,

lim inf
k!1

kTeik ;jl kp > 0:

By passing a subtriangle of ¹eik ;jl ºl�k , without loss of generality, we can assume that
ıl � kTeik ;jl kp � 2ıl , where ¹ılº1lD1 is a sequence of positive integers. Since ¹eik ;jl º

1
kDl

is weakly null, by Theorem 2.9 and by passing a subtriangle of ¹eik ;jl ºl�k (if necessary),
we can further claim that ¹Teik ;jl º

1
kDl

is equivalent to the unit vector basis of `2 or p̀ . If it
is Ml -equivalent to the unit vector basis of p̀ , then for every sequence ¹tkº1kDl of scalars
with finitely many tk ¤ 0,

ılMl
�1

� 1X
kDl

jtkj
p

�1=p
�





 1X
kDl

tkTeik ;jl






p

� kT k





 1X
kDl

tkeik ;jl






p

� kT k

� 1X
kDl

jtkj
2

�1=2
:
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This is a contradiction to the fact that 1 � p < 2 and that ¹tkº1kDl is arbitrary. Hence,
¹Teik ;jl º

1
kDl

is equivalent to the unit vector basis of `2. By Theorem 2.8, we can claim
that

¹Teik ;jl=kTeik ;jl kpº
1
kDl

is 2-equivalent to the unit vector basis of `2.
Now, we assume that

lim
l!1

ıl D 0:

For any sequence ¹"lº1lD1 of positive numbers, up to passing a subtriangle of ¹eik ;jl ºl�k ,
without loss of generality, we can assume that ıl � "l=4. For every sequence ¹tkº1kDl of
scalars with finitely many tk ¤ 0,



T� 1X

kDl

tkeik ;jl

�




p

D





 1X
kDl

tkkTeik ;jl kp � Teik ;jl
ı
kTeik ;jl kp






p

� 2

� 1X
kDl

.jtkkTeik ;jl kp/
2

�1=2
� 4ıl

� 1X
kDl

jtkj
2

�1=2
� "l





 1X
kDl

tkeik ;jl






p

:

Hence, kT jŒeik ;jl �1kDl k � "l .
(c) Suppose that lim supl!1 ıl > 0 in (b). Again by passing a subtriangle, we can

assume that
M � kTeik ;jl kp � 2M for some M > 0:

By an argument similar to that of (b) and passing a subtriangle of ¹eik ;jl ºl�k , we can
assume that there is a positive numberK such that, for each l , ¹Teik ;jl º

1
kDl

isK-equivalent
to the unit vector basis of `2.

The following is the proof line of lemma; it was deeply motivated by the procedure of
the proof of Arazy [4, Theorem 4.6]

Lemma 3.5. For 1 � p < 2, let ¹xi;j ºj�i be a triangle with entries in Tp . Assume that

(i) K;M > 0 such that, for any fixed j , ¹xi;j º1iDj isK-equivalent to the unit vector
basis of `2, and

(ii) for every finite sequence ¹tj ºijD1 of scalars,



 iX
jD1

tjxi;j






p

�M

� iX
jD1

jtj j
2

�1=2
:
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Then, for all 0 < � < 1, there exist

(a) a tensor product representation of Cp ˝ Cp as a subspace of Cp ,

(b) a subtriangle ¹xik ;jl ºl�k of ¹xi;j ºj�i ,

(c) an increasing sequence ¹slº1lD1 of positive integers,

(d) a sequence ¹zlº1lD1 � Cp of nonzero elements of the form zl D Psl ;slC1zl ,
which is .K C 1/-equivalent to the unit vector basis of `2,

(e) a linearly isomorphic embedding V from span¹xik ;jl ºl�k into Cp so that,
for every x 2 span¹xik ;jl ºl�k ,

kVx � xkp � �kxkp and Vxik ;jl D ek;1 ˝ zl :

Proof. Since for each fixed j , ¹xi;j º1iDj is K-equivalent to the unit vector basis of `2,
for any sequence of positive numbers ¹"j º1jD1 satisfying the fact that

P1
jD1 "j is small

enough, applying Theorem 2.7, we can construct an increasing sequence of positive inte-
gers ¹nj º1jD1 so that

kE.nj /jŒxi;j �1iDj k < "j ;

where E.n/ is defined by (2.3). On the other hand, since Enj xi;j
w
�! 0 .i !1/, for any

sequence ¹ck;j ºj�k of positive numbers so that
P
j�k ck;j is small enough, by a routine

perturbation argument (say, by using Theorems 2.2 and 2.3), there are two increasing
sequences ¹mkº1kD1 and ¹ikº1kD1 of positive integers with mk > nk satisfying the fact
that, for every j � k, 

Pmk ;mkC1Enj xik ;j �Enj xik ;j

p < ck;j ;
where En is defined by (2.2). For each j 2 N, we denote by

Xj D Œxik ;j �
1
kDj :

Without loss of generality, we can assume that for every j there exists Tj 2 L.Xj ; Tp/

with
kTj � idXjk < "j (3.1)

and with
Tjxik ;j D Pmk ;mkC1Enj xik ;j :

Write

yk;j D Pmk ;mkC1Enj xik ;j and �k D

kX
jD1

nj :

We can claim that
yk;j D Pmk ;mkC�j yk;j ; k; j 2 N: (3.2)

Otherwise, we can substitute a new orthonormal basis for the original basis of the range
space of the operators so that the representation above holds. Indeed, note that, for every
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j � k, Enj yk;j D yk;j . Then, rank.yk;j / � nj . For x 2 L.`2/, we denote by R.x/ the
range of x. Let �

f
.k/
i

��01
iD1
; k D 1; 2; 3; : : : ; 1 � �01 � �1;

be orthonormal sequences so that

R.yk;1/ �
�
f
.k/
i

��01
iD1

and so that
1[
kD1

®
f
.k/
i

¯�01
iD1

is again an orthonormal sequence. Since rank.yk;2/ � n2, k D 2; 3; 4; : : :, there exist
orthonormal sequences

¹f
.k/
i º

�02
iD�01C1

; �01 < �
0
2 � �2;

so that

¹f
.1/
i º

�01
iD1

[� 1[
kD2

¹f
.k/
i º

�02
iD1

�
is also an orthonormal sequence. We have finished the proof of the claim (3.2) by induc-
tion. Therefore,

yk;j D Pmk ;mkC�j yk;j D Pmk ;mkC1Enj yik ;j ; k; j 2 N:

Consequently, for every j � k, we can choose an appropriate tensor product representation
Cp as C

.1/
p ˝ C

.2/
p so that

yk;j D ek;1 ˝ ak;j ; ak;j 2 C
�j ;nj
p � C .2/p ;

where C
.i/
p are copies of Cp for i D 1; 2; and C

m;n
p denotes the space of all m � n scalar

matrices with the norm induced from Cp .
For a sequence ¹˛k;j ºj�k of positive numbers satisfying the fact that

P
j�k ˛k;j is

small enough, by an argument of passing a subtriangle, we can assume that there exist
aj 2 C

.2/
p for 1 � j � k such that

kak;j � aj kp D kek;1 ˝ ak;j � ek;1 ˝ aj kp < ˛k;j : (3.3)

We can further assume that ¹aj º1jD1 is semi-normalized, and for every finite sequence
¹tkº

k
jD1 of scalars,



 kX

jD1

tjaj






p

D





 kX
jD1

tj eik ;1 ˝ aj






p

� .M C 1/

� iX
jD1

jtj j
2

�1=2
:
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By an argument similar to the proof of Lemma 3.4 (b), there is an increasing sequence
of positive integers ¹jlº1lD1 so that ¹ajl º

1
lD1

is .K C 1=2/-equivalent to the unit vector
basis of `2. We can also assume that ik � jk for all k 2 N. For a sequence ¹ılº1lD1 of
positive numbers satisfying the fact that

P1
lD1 ıl is small enough, again by an argument

of passing a subsequence, we may assume that there is an increasing sequence ¹slº1lD1 of
positive integers such that

kajl � Psl ;slC1ajl kp < ıl ;

and ¹Psl ;slC1ajl º
1
lD1

is .K C 1/-equivalent to the unit vector basis of `2.
For each fixed l and for every sequence ¹tkº1kD1 of scalars with finitely many tk ¤ 0,

we have 



 1X
kDl

tkek;1 ˝ ajl �

1X
kDl

tkek;1 ˝ Psl ;slC1ajl






p

< ıl

� 1X
lD1

jtj j
2

�1=2
: (3.4)

Denote by
Yl D Œek;1 ˝ Psl ;slC1ajl �

1
kDl :

Then, due to Definition 2.1 and Corollary 2.12, ¹Ylº1lD1 is a 1-Schauder decomposition of

span
²[

l

Yl

³
:

By (3.1), (3.3), and (3.4), we may assume that, for every l , there exists Sl 2 L.Xjl ;Cp/

satisfying
kSl � idXjl k < "jl and Slxik ;jl D ek;1 ˝ Psl ;slC1ajl :

Put zl D Psl ;slC1ajl . Then, by Theorem 2.3, for every 0 < � < 1, there exists a linear iso-
morphic embedding V from span¹xik ;jl ºl�k into Cp so that, for every x 2 span¹xik ;jl ºl�k ,

kVx � xkp � �kxkp and Vxik ;jl D ek;1 ˝ zl :

Now, we are ready to state and prove the main theorem of this section as follows.

Theorem 3.6. Let 1 � p < 2. Then, T 2 L.Tp/ is Tp-strictly singular, or equivalently,
T 2MTp , if and only if, for every X � Tp with X � Tp and for all " > 0, there exists a
subspace Y � X such that Y � Tp and kT jY k < ".

Proof. Sufficiency. It follows from the definition of Tp-strictly singular operators.
Necessity. Suppose that T 2MTp and that X � Tp with X � Tp . Let S W Tp ! X be

a linear isomorphism, and " > 0. We will apply Lemmas 3.4 and 3.5 to the proof.

Case 1. If TS satisfies (a) of Lemma 3.4, then there is a subtriangle

¹eik ;jl ºl�k of ¹ei;j ºj�i

so that
kTS jŒeik ;jl �l�k

k � "=kS�1k:
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Let
Y D S.Œeik ;jl �l�k/ � X:

Then
kT jY k D kTS jŒeik ;jl �l�k

S�1jY k �
"

kS�1k
� kS�1k D ":

Case 2. If TS satisfies (b) of Lemma 3.4, then for every sequence of positive numbers
¹"lº

1
lD1

so that
P1
lD1 "l <1, there is a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i , satisfying, for

each fixed l , kTS jŒeik ;jl �1kDl k � "l . Choose an integer number l0 so that

1X
lDl0

"l < "=kS
�1
k:

Since
P1
lD1Œeik ;jl �

1
kDl

is a Schauder decomposition of itself,

kTS jŒeik ;jl �l0�l�k
k � "=kS�1k:

Put Y D S.Œeik ;jl �l0�l�k/ � X . Then, kT jY k < ".

Case 3. If TS satisfies (c) of Lemma 3.4, then there exist a positive constantK and a sub-
triangle ¹eik ;jl ºl�k of ¹ei;j ºj�i such that, for each fixed l , ¹TSeik ;jl º

1
kDl

is K-equivalent
to the unit vector basis of `2. Meanwhile, for every finite sequence¹tlºklD1 of scalars,



 kX

lD1

tlTSeik ;jl






p

� kTSk





 kX
lD1

tleik ;il






p

D kTSk

� kX
lD1

jtl j
2

�1=2
:

Applying Lemma 3.5 and by an argument of passing a subtriangle of ¹TSeik ;jl ºl�k , we
can assume that there exist a tensor product representation of Cp ˝ Cp as Cp , an increas-
ing sequence ¹slº1lD1 of positive integers, a sequence ¹zlº1lD1 of nonzero elements of Cp
satisfying

zl D Psl ;slC1zl ;

which is .K C 1/-equivalent to the unit vector basis of `2, and a linear isomorphic embed-
ding V from span¹TSeik ;jl ºl�k into Cp so that

kV k; kV �1k < 2 and V TSeik ;jl D ek;1 ˝ zl :

Let ¹˛iº1iD1 be a sequence of positive numbers with 0 < ˛i < 1 so that
P1
iD1 ˛i is small

enough. By Theorem 2.8, there exist a sequence ¹ulº1lD2 � Cp with

kulkp �M 2 Œ.K C 1/
�1; K C 1�

and three sequences ¹aiº1iD1, ¹bj º1iD1, and ¹ckº1lD1 in Cp satisfying

uk D

k�1X
iD1

.ek;i ˝ ai C ei;k ˝ bi /C ek;k ˝ ck
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so that for i � 2

.kaik
p
p C kbik

p
p /
1=p
� ˛i�1; kcikp � ˛i�1;

M � ˛1 � .ka1k
p
p C kb1k

p
p /
1=p
�M;

and there is a subsequence of ¹zlº1lD1 (again denoted by ¹zlº1lD2) satisfying

kzl � ulkp � ˛l ; l D 2; 3; : : : :

For each fixed l , and for each sequence ¹tkº1kD1 of scalars with finitely many tk ¤ 0,



 1X
kDl

tkek;1 ˝ zl �

1X
kDl

tkek;1 ˝ ul






p

< ˛l

� 1X
lD1

jtj j
2

�1=2
:

Denote by
Zl D Œek;1 ˝ zl �

1
kDl :

Then, ¹Zlº1lD1 is a 1-Schauder decomposition of span¹
S
l Zlº. By Theorem 2.3, there

exists a linear isomorphic embedding U from span¹
S
l Zlº into Cp so that

kU k; kU�1k < 2 and Uek;1 ˝ zl D ek;1 ˝ ul :

If there is an integer i 0 such that bi 0 ¤ 0, then we can choose a projection operator
q 2L.`2/ so that qul D ei 0;l ˝ bi 0 for l � i 0C 1. By Proposition 2.13, for every sequence
¹tk;lºi 0C1�l�k of scalars with finitely many tk;l ¤ 0,

kbi 0kp





 X
i 0C1�l�k

tk;leik ;jl






p

D





 X
i 0C1�l�k

tk;lek;1 ˝ ei 0;l ˝ bi 0






p

D





.I ˝ q/ � UV TS� X
i 0C1�l�k

tk;leik ;jl

�




p

�





UV TS� X
i 0C1�l�k

tk;leik ;jl

�




p

� kUV TSk





 X
i 0C1�l�k

tk;leik ;jl






p

:

This says that T is not Tp-strictly singular. Thus, bi D 0 for all i .
Next, we will use average skill to “kill this theorem”. (Such an idea can be seen in [4].)

Given m 2 N and for 1 � � � v <1, we write

hv;� D

mX
jD1

evmCj;1 ˝ u�mCj =m
1=p:
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For every sequence ¹tv;�º��v of scalars with finitely many tv;� ¤ 0, we obtain



X
��v

tv;�hv;�






p

� m�1=p

´



X
��v

tv;�

mX
jD1

�mCj�1X
iD1

evmCj;1 ˝ e�mCj;i ˝ ai






p

C





X
��v

tv;�

mX
jD1

evmCj;1 ˝ e�mCj;�mCj ˝ c�mCj






p

µ

D m�1=p

´



 1X
iD1

X
��v

i��mC1�j�m

tv;�evmCj;1 ˝ e�mCj;i ˝ ai






p

C





X
��v

mX
jD1

tv;�evmCj;1 ˝ e�mCj;�mCj ˝ c�mCj






p

µ

� m�1=p

´
1X
iD1

kaikp





X
��v

mX
jD1

tv;�evmCj;1 ˝ e�mCj;i






p

C





 mX
jD1

1X
�D1

1X
vD�

tv;�evmCj;1 ˝ e�mCj;�mCj ˝ c�mCj






p

µ

� m�1=p

´
1X
iD1

kaikpm
1=2

�X
��v

jtv;�j
2

�1=2
C

mX
jD1

1X
�D1

kc�mCj kp

� 1X
vD�

jtv;�j
2

�1=2µ

� m�1=p

´
1X
iD1

kaikpm
1=2
C

1X
jDmC1

kcj kp

µ�X
��v

jtv;�j
2

�1=2
� m1=2�1=p

²
M C 2

1X
iD1

˛i

³�X
��v

jtv;�j
2

�1=2
: (3.5)

Let

wv;� D

mX
j 0D1

eivmCj 0 ;j�mCj 0 =m
1=p:

Then, again by Proposition 2.13, for all m 2 N satisfying

m1=2�1=p
²
M C 2

1X
iD1

˛i

³
< "=.4kS�1k/; (3.6)

we obtain



X
��v

tv;�wv;�






p

D





X
��v

tv;�ev;�






p

�





X
��v

tv;�ev;�






2

D

�X
��v

jtv;�j
2

�1=2
: (3.7)
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Since
hv;� D UV TSwv;�;

by (3.5), (3.6), and (3.7),

kUV TS jŒwv;����vk < "=.4kS
�1
k/:

Let
Y D S.Œwv;����v/.� X/:

Then
kT jY k � kV

�1
k kU�1k kUV TS jŒwv;����vk kS

�1
k < ":

Remark 3.7. In Theorem 3.6, we cannot claim that the restriction T jY of T is compact.
For example, let T satisfy Tei;j D e2i .2jC1/;1. Then, by [4, Proposition 2.2] and

kTEnxk �
�
kTEnxk

2
C kTE.n/xk2

� 1
2 D kT xk;

we get that T jY is not compact for every subspace Y � Tp isomorphic to Tp .

4. Every T 2MTp
is a commutator

In this section, we will show that every T 2MTp is a commutator for all 1 � p < 2.

Definition 4.1. A sequence ¹Xiº1iD0 of closed subspaces of a Banach space X is said
to be an p̀-decomposition of X for 1 � p <1 or p D 0, provided the following three
conditions are satisfied:

(1) ¹Xiº1iD0 is a Schauder decomposition of X .

(2) Xi .i D 0; 1; 2; : : :/ are uniformly linear isomorphic to X .

(3) There is a positive constantK, such that for every convergent series
P1
iD0 xi 2 X

with xi 2 Xi ,

1

K

� 1X
iD0

kxik
p

�1=p
�





 1X
iD0

xi





 � K� 1X
iD0

kxik
p

�1=p
:

The next property follows immediately.

Proposition 4.2. Let ¹Xiº1iD0 be an p̀-decomposition of a Banach space X . Then, for
every strictly increasing sequence ¹mj º1jD0 of positive integers, ¹ zXj º1jD0 is again an p̀-
decomposition of X , where

zX0 D

m0X
iD0

Xi and zXj D

mjX
iDmj�1C1

Xi for j > 0:
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Assume that ¹Xiº1iD0 is an p̀-decomposition of X . For each j 2 ¹0; 1; 2; : : :º, we
denote by PD;j the natural projection from X D

P1
iD0 Xi onto Xj . Obviously, X �

.
P
X/p . Let ¹ iº1iD0 be a sequence of uniform isomorphisms  i W Xi ! X ; i.e., both

¹ iº
1
iD0 and ¹ �1i º

1
iD0 are uniformly bounded. Next, let

U W

1X
iD0

xi 2 X 7! . 0.x0/;  1.x1/; : : :/; xi 2 Xi :

Then, U is an isomorphism from X onto .
P
X/p . Let U be the set of all such iso-

morphisms U . We denote by L (resp., R) the left (resp., right) shift operator, i.e., for
y D .yi /

1
iD0 2 .

P
X/p ,

L.y/ D .y1; y2; : : :/ .resp.; R.y/ D .0; y0; y1; : : ://:

Next, let
LD D U

�1LU; RD D U
�1RU:

Finally, let

LD D
®
LD D U

�1RU W U 2 U
¯
; RD D

®
RD D U

�1RU W U 2 U
¯
:

We denote by DS the inner derivation determined by S in L.X/, i.e.,

DST D ST � TS:

Keep these notations just mentioned above in mind. Then, we have the following
property.

Proposition 4.3. An operator T 2 L.X/ is a commutator if and only if there exists S 2
L.X/ such that T 2 DSL.X/.

The following theorem is due to Dosev [12, Corollary 7].

Theorem 4.4 (Dosev). Let D D ¹Xiº be a p̀-decomposition of a Banach spaceX . Then,
for all T 2 L.X/, R 2 RD , and for L 2 LD , we have

TPD;0 2 Im.DR/ and PD;0T 2 Im.DL/;

where PD;0 is the natural projection from X D
P1
iD0 Xi onto X0, and Im.DR/ (resp.,

Im.DL/) denotes the image of DR (resp., DL).

The theorem below follows from a quick observation of the proof of Dosev [12, The-
orem 8].

Theorem 4.5. Let D D ¹Xiº be an p̀-decomposition of a Banach space X and zPn DPn
iD0 PD;i . Assume that T 2 L.X/ such that

1X
nD0



.I � zPn/T 

C 1X
nD0



T .I � zPn/

C 1X
m;nD0



.I � zPm/T .I � zPn/

 <1:
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Then, for all R 2 RD and L 2 LD , we have

T 2 Im.DR/ \ Im.DL/:

The next result is also due to Dosev [12, Lemma 5].

Lemma 4.6 (Dosev). Let D D ¹Xiº be an p̀-decomposition of a Banach space X and
zPn D

Pn
iD0 PD;i , where PD;i is the natural projection from X D

P1
iD0 Xi onto Xi .

Suppose that T 2 L.X/ satisfies

lim
n!1



.I � zPn/T 

 D lim
n!1



T .I � zPn/

 D 0:
Then, there exists an increasing sequence ¹mj º1jD0 of positive integers such that

1X
jD0



.I � zPmj /T 

C 1X
jD0



T .I � zPmj /

C 1X
i;jD0



.I � zPmi /T .I � zPmj /

 <1:
We can further show the following result.

Lemma 4.7. Let D D ¹Xiº be an p̀-decomposition of a Banach space X and zPn DPn
iD0 PD;i . Suppose that T 2 L.X/ satisfies

lim
n!1



.I � zPn/T .I � PD;0/


 D lim

n!1



T .I � zPn/

 D 0:
Then, T is a commutator.

Proof. Since

lim
n!1



.I� zPn/T .I�PD;0/


D lim

n!1



T .I � zPn/

D lim
n!1



T .I �PD;0/.I � zPn/


D 0;

by Lemma 4.6, there exists an increasing sequence ¹mj º1jD0 of positive integers such that

1X
jD0



.I � zPmj /T .I � PD;0/


C 1X

jD0



T .I � PD;0/.I � zPmj /




C

1X
i;jD0



.I � zPmi /T .I � PD;0/.I � zPmj /


 <1:

Note that
1X
jD0



.I � zPmj /T .I � zPm0/

 � 

I � zPm0

 1X
jD0



.I � zPmj /T .I � PD;0/


:

Then, we have
1X
jD0



.I � zPmj /T .I � zPm0/

C 1X
jD0



T .I � zPm0/.I � zPmj /


C

1X
i;jD0



.I � zPmi /T .I � zPm0/.I � zPmj /

 <1:
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Let D 0 D ¹ zXj º
1
jD0, where zX0 D

Pm0
iD0Xi and zXj D

Pmj
iDmj�1C1

Xi for j > 0. Then, by
Proposition 4.2, D 0 is an p̀-decomposition of X . Due to Theorems 4.4 and 4.5, we can
choose R 2 RD 0 such that

T zPm0 ; T .I �
zPm0/ 2 Im.DR/:

Consequently,
T D T zPm0 C T .I �

zPm0/ 2 Im.DR/:

Therefore, T is a commutator.

The next result follows from [1, Theorem 2.2.3].

Lemma 4.8. Given 1 � p < 1, let X be a Banach space satisfying X � .
P
X/p . If

Y and Z are closed subspaces of X with Y � X , and with Y ˚ Z D X , then for every
complemented subspace W of Z, Y ˚W � X .

Lemma 4.9. Given 1 � p � 1, let ¹eik ;jl ºl�k be a subtriangle of ¹ei;j ºj�i . Then, the
natural projection P from Tp onto Œeik ;jl �l�k satisfies kP k � 2.

Proof. For each k 2 N, put

A D ¹ikº
1
kD1; B D ¹jlº

1
lD1;

Bk D
®
j 2 N W jk C 1 � j � jkC1

¯
:

Then, .PA;B � P.¹ikº;¹Bkº//jTp is just a reformulation of the natural projection P from Tp
onto Œeik ;jl �l�k .

Note that a commutator is not invariant under small perturbations. For example, 0 is
a commutator, but "I is not a commutator for all " > 0. To show the main result of this
section, we require the next lemma, which was motivated by the proof of [4, Theorem 4.6]
and Arazy’s another important result [5, Lemma 2.1]. It can also be regarded as a further
representation of “small perturbations" of the target operator in Arazy’s lemma.

Lemma 4.10. Let T 2 MTp (1 � p < 2). Then, there exist a subtriangle ¹eik ;jl ºl�k of
¹ei;j ºj�i , a scalar ˛, and two operators T0 2L.Tp/ and T1 2L.Œeik ;jl �l�k ;Tp/ such that

T D T0 C T1P; (4.1)

.T0eik ;jl /.ik0 ; jl 0/ D ık;k0 � ıl;l 0 � ˛; (4.2)

and
lim
n!1

kE.n/T1k D 0; (4.3)

where P is the natural projection from Tp onto Œeik ;jl �l�k defined as in Lemma 4.9, and
E.n/ is defined by (2.3).

Proof. By Lemma 3.4, we can assume that there is a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i
so that either T jŒeik ;jl �l�k is compact, or for each fixed l , ¹Teik ;jl º

1
kDl

is equivalent to the
unit vector basis of `2.
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Case 1. T jŒeik ;jl �l�k is compact. Let

T0 D T .I � P /; T1 D T jŒeik ;jl �l�k
;

and ˛ D 0. Then, compactness of T1 entails that

lim
n!1

kE.n/T1k D 0:

Case 2. For each fixed l , ¹Teik ;jl º
1
kDl

is equivalent to the unit vector basis of `2. By the
same procedure in the proof of [4, Theorem 4.6], for every sequence ¹"lº1lD1 of positive
numbers with

P1
lD1 "l < 1, we may assume that there are two increasing sequences

¹mkº
1
kD1

and ¹nlº1lD1 of positive integers with mk < ik � mkC1, nl < jl � nlC1, and
three operators S 2 L.Tp/, S1; S2 2 L.Œeik ;jl �l�k ; Tp/ so that S1 is compact such that

T D S C S1P C S2P; (4.4)

and such that the following formulas hold:

Seik ;jl D EnlC1Pmk ;mkC1Seik ;jl ;

S2jŒeik ;jl �
1
kDl
D E.nlC1/T jŒeik ;jl �

1
kDl
;

and
kE.nlC1/jŒTeik ;jl �

1
kDl
k � "l :

By a routine diagonal process of passing subsequence, we can assume that the following
limits exist for all l 0 � l :

lim
k!1

.Seik ;jl /.ik ; jl 0/ D ˛l;l 0 : (4.5)

Again by a diagonal process, we may assume that the following equations hold:

˛ D lim
l!1

˛l;l ; (4.6)

˛l 0 D lim
l!1

˛l;l 0 ; l 0 D 1; 2; : : : : (4.7)

For an arbitrary double sequence ¹ıl;l 0ºl 0�l of positive numbers so that
P
l 0�l ıl;l 0 is small

enough, up to passing subsequence, we can assume that

j˛l;l 0 � ˛l 0 j < ıl;l 0 ; l 0 < l;

j˛l;l � ˛j < ıl;l :

Now, up to passing a subtriangle and by a perturbation argument, (4.5), (4.6), and (4.7), it
follows from (4.4) that we can simply assume that

T D S0 C S1P C S2P C S3P;
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where S0 D S � S3P satisfying

.S0eik ;jl /.ik ; jl 0/ D ˛l 0 ; l 0 < l � k;

.S0eik ;jl /.ik ; jl / D ˛; l � k;

and S3 2 L.Œeik ;jl �l�k/ satisfies

S3eik ;jl D

kX
l 0D1

a
.k;l/

l 0
eik ;jl 0 (4.8)

and
ja
.k;l/

l 0
j < ıl;l 0 :

Compactness of S1 entails that

lim
n!1

kE.n/S1k D 0: (4.9)

On the other hand, since for each positive integer l ,

S2jŒeik ;jl �
1
kDl
D E.nlC1/T jŒeik ;jl �

1
kDl
;

and since ŒTeik ;jl �
1
kDl

is isomorphic to a Hilbert space, by Arazy’s lemma (Theorem 2.8),

lim
n!1

mX
lD1



E.n/S2jŒeik ;jl �1kDl

 D 0; m 2 N;

and
1X

lDmC1



E.n/S2jŒeik ;jl �1kDl

 � kT k 1X
lDmC1

"l ; m 2 N:

Therefore,
lim
n!1

kE.n/S2k D 0: (4.10)

By (4.8), for every sequence ¹tkº1kDl of scalars with finitely many tk ¤ 0,



S3� 1X
kDl

tkeik ;jl

�




p

D





 1X
kDl

tk

lX
l 0D1

a
.k;l/

l 0
eik ;jl






p

�

lX
l 0D1





 1X
kDl

tka
.k;l/

l 0
eik ;jl






p

�

lX
l 0D1

ıl;l 0

� 1X
kDl

jtvj
2

�1=2
:
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Therefore,

kS3jŒeik ;jl �
1
kDl
k �

lX
l 0D1

ıl;l 0 :

For all positive numbers l0 and n > nl0 ,

kE.n/S3


 � 1X

lDl0



S3jŒeik ;jl �1kDl

 � 1X
lDl0

lX
l 0D1

ıl;l 0 :

Therefore,
lim
n!1

kE.n/S3k D 0: (4.11)

Put T0 D S0 and T1 D S1 C S2 C S3. By (4.9), (4.10), and (4.11), we obtain

lim
n!1

kE.n/T1k D 0:

Therefore, (4.1) and (4.3) hold.
In order to show (4.2), it suffices to prove that ˛l 0 D 0 for every l 0.
Fix l 0, N 2 N and k � N C l 0. Then

kS0kN
1=2
�





 l 0CNX
lDl 0C1

S0eik ;jl






p

�

ˇ̌̌̌ l 0CNX
lDl 0C1

.S0eik ;jl /.ik ; jl 0/

ˇ̌̌̌
D j˛l 0 jN:

Since N is arbitrary, ˛l 0 D 0.

Theorem 4.11. Every T 2MTp (1 � p < 2) is a commutator.

Proof. By Lemma 4.10, there exists a subtriangle ¹eik ;jl ºl�k of ¹ei;j ºj�i , a scalar ˛, and
two operators T0 2 L.Tp/ and T1 2 L

�
Œeik ;jl �l�k ; Tp

�
such that

T D T0 C T1P;

.T0eik ;jl /.ik0 ; jl 0/ D ık;k0 � ıl;l 0 � ˛;

lim
n!1

kE.n/T1k D 0;

where P is the natural projection P from Tp onto Œeik ;jl �l�k defined as in Lemma 4.9.
Note that

kT1P �EnT1P k D kE
.n/T1P k ! 0; as v !1;

and
EnTP 2MTp :

Since MTp is the largest closed ideal of L.Tp/ (Theorem 3.3), T1P 2MTp . Consequently,
T0 D T � T1P 2MTp . It follows from [5, Corollary 2.2] that ˛ D 0.

By Lemma 4.8, we can assume that .I � P /Tp � Tp . For each v 2 N, put

Av D ¹i2v.2�C1/º
1
�D1 and Bv D ¹j2v.2�C1/º

1
�D1:
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Then, P.¹Avº;¹Bvº/P is again a projection satisfying for all v 2 N,

P.¹Avº;¹Bvº/P Tp D

� 1X
vD1

Œei2v.2sC1/;j2v.2tC1/ �t�s

�
p

;

and
PAv ;BvP Tp D Œei2v.2sC1/;j2v.2tC1/ �t�s :

For every sequence ¹ıvº1vD1 of positive numbers with
P1
vD1 ıv <1 and for every v 2N,

by Theorems 2.10 and 3.6, we can choose a closed subspace Xv of Œei2v.2sC1/;j2v.2tC1/ �t�s
such thatXv is 2-isomorphic to Tp with kT jXvk � ıv and such thatXv is 3-complemented
in Œei2v.2sC1/; j2v.2tC1/ �t�s . Let Qv W Œei2v.2sC1/; j2v.2tC1/ �t�s ! Xv be a projection with
kQvk � 3. Then

1X
vD1

Xv '

� 1X
vD1

M
Xv

�
p

�

� 1X
vD1

M
Tp

�
p

;

the series
P1
vD1QvPAv ;BvP is strongly convergent and induces a projection from Tp ontoP1

vD1Xv . Let

X0 D ker
� 1X
vD1

QvPAv ;BvP

�
:

By Lemma 4.8, X0 is isomorphic to Tp . Thus,

D D ¹Xvº
1
vD0

is a p̀-decomposition of Tp and satisfies the fact that, for all v 2 N,

PD;0 D I �

1X
vD1

QvPAv ;BvP and PD;v D QvPAv ;BvP:

Denote by

zPw D

wX
vD0

PD;v:

Then

kT .I � zPw/k �

1X
vDwC1

kTPD;vk � 6

1X
vDwC1

ıv:

Therefore,
lim
w!1

kT .I � zPw/k D 0: (4.12)

On the other hand, it follows from

.I � zPw/T .I � PD;0/ D .I � zPw/T1P.I � PD;0/

D .I � zPw/T1.I � PD;0/

D

� 1X
vDwC1

QvPAv ;BvP

�
T1

� 1X
vD1

QvPAv ;BvP

�
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that
k.I � zPw/T1.I � PD;0/k � 36kE

.j2wC1 /T1k:

Therefore,
lim
w!1

k.I � zPw/T .I � PD;0/k D 0: (4.13)

By (4.12), (4.13), and Lemma 4.7, T is a commutator.

5. A characterization of commutators on L.Tp/ (1 � p <1)

In this section, we will show Theorem B mentioned in the end of the first section; that
is, let 1 � p <1, T 2 L.Tp/ is a commutator if and only if T � �I is not Tp-strictly
singular for each � ¤ 0 2 C.

For X and Y be two subspaces of a Banach space Z, let

d.SX ; Y / D inf
®
kx � yk W x 2 SX ; y 2 Y

¯
;

where SX is the unit sphere of X .
Note that if bothX and Y are closed withX \ Y D 0, thenX C Y is a closed subspace

of Z if and only if d.SX ; Y / > 0. Note also that

1=2d.SX ; Y / � d.SY ; X/ � 2d.SX ; Y /:

The following two theorems are due to Chen, Johnson, and Zheng [9, Lemmas 2.13,
2.14, and Theorem 2.15].

Theorem 5.1 (Chen–Johnson–Zheng). Let p 2 Œ1;1� [ ¹0º, and let X be a comple-
mentably homogeneous Banach space isomorphic to .

P
X/p and T a bounded linear

operator on X for which there is a subspace Y of X isomorphic to X such that T jY is an
isomorphism and d.SY ; T Y / > 0. Then, T is a commutator.

Theorem 5.2 (Chen–Johnson–Zheng). Let p 2 Œ1;1� [ ¹0º, and let X be a comple-
mentably homogeneous Banach space isomorphic to .

P
X/p . Suppose that the set of all

X -strictly singular operators on X form an ideal in L.X/. Let T W X ! X be a bounded
linear operator such that, for every �0 2 C, T � �0I is not X -strictly singular. If there is
a � 2 C and a subspace Y of X isomorphic to X and such that .T � �I/jY is X -strictly
singular, then T is a commutator.

Theorem 5.3. Given 1�p < 2, let T 2L.Tp/ such that T ��I is not Tp-strictly singular
for all � 2 C. Then, T is a commutator.

Proof. By Lemma 4.10, we can assume that there exist T0 2 L.Tp/, T1 2 MTp , and a
scalar ˛ such that

T D T0 C T1;
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and
.T0eik ;jl /.ik0 ; jl 0/ D ık;k0 � ıl;l 0 � ˛:

Let P be the natural projection from Tp onto Œeik ;jl �l�k defined as in Lemma 4.9. Then

PT0P D ˛P:

Therefore,

.I � P /TP D TP � P.T0 C T1/P D .T � ˛I /P � PT1P:

If .I � P /TP is not Tp-strictly singular, then there is a subspace X of Tp isomorphic to
Tp so that .I �P /TP is an isomorphism onX . Denote by Y D PX . Then, Y � Tp . Since
.I � P /T is an isomorphism on Y , there is a positive number c so that

k.I � P /T .y/k � ckyk; y 2 Y:

For all Ty 2 STY and y0 2 Y ,

kTy � y0k �
k.I � P /Tyk

kI � P k
�

ckyk

kI � P k
�

c

kT kkI � P k
:

Therefore, d.STY ; Y / > 0. By Theorem 5.1, T is a commutator.
In the case that .I � P /TP is Tp-strictly singular, since

.T � ˛I /P D .I � P /TP C PT1P;

.T � ˛I /jŒeik ;jl �l�k
is Tp-strictly singular. It follows from Theorem 5.2 that T is a commu-

tator.

Theorem 5.4. Let 1 � p <1. Then, an operator T 2L.Tp/ is a commutator if and only
if T � �I …MTp for all � ¤ 0.

Proof. According to Brown and Pearcy [8], the conclusion is true for p D 2. By a duality
argument, it suffices to show that it is true for 1 � p < 2.

Necessity. It follows immediately from Wintner’s theorem (i.e., Theorem 1.1).
Sufficiency. Suppose that T � �I …MTp for all � ¤ 0. If T 2MTp , then, by Theo-

rem 4.11, T is a commutator. If T …MTp , then, by Theorem 5.3, T � �I …MTp for all
� 2 C. Consequently, T is a commutator.

Corollary 5.5. Let 1 < p <1. Then, an operator T 2 L.Cp/ is a commutator if and
only if T � �I …MCp for any � ¤ 0.

Proof. By Theorem 5.4, if suffices to note that Tp � Cp for all 1 < p < 1 (Proposi-
tion 2.5).
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