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Operator norm localization property for
equi-approximable families of projections

Bruno M. Braga, Ilijas Farah, and Alessandro Vignati

Abstract. The rigidity problem for uniform Roe algebras was recently positively solved. Before
its solution was found, there were positive solutions under the assumption of certain technical geo-
metric conditions. In this paper, we introduce weaker versions of the operator norm localization
property (ONL) which turn out to characterize those technical geometric conditions. We use this to
obtain new rigidity results for nonmetrizable coarse spaces. As an application, we provide a novel
partial answer to a question of White and Willett about Cartan subalgebras of uniform Roe algebras.
We also study embeddings between uniform Roe algebras.

1. Introduction

Given a metric space X , its uniform Roe algebra, denoted by C �u .X/, is a C �-subalgebra
of B.`2.X//—the space of bounded linear operators on `2.X/—which captures several
aspects of the coarse geometry of X (we defer its formal definition to Section 2). The
rigidity problem for uniform Roe algebras of uniformly locally finite metric spaces asked
how “rigid” is the procedure of constructing C �u .X/ given the metric space X . This prob-
lem has been recently positively solved; precisely, it was shown in [1, Theorem 1.2] that
if X and Y are uniformly locally finite metric spaces with isomorphic uniform Roe alge-
bras, then X and Y are coarsely equivalent. Before this solution was found, several partial
answers were obtained under some geometric conditions on the spaces. Its first partial
solution was proven in [16, Theorem 4.1] under the assumption of the metric spaces hav-
ing Yu’s property A. This result was then strengthened in [4, Theorem 6.1] and proven to
hold for metric spaces satisfying a technical condition on the ideal of ghost operators. The
authors of [11] then observed that this technical condition could be weakened further (see
[11, Corollary 3.9])1.

These notes concern characterizations of the technical properties on the ideal of ghost
operators mentioned above. We start by recalling those properties: given a metric space
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1To the best of our knowledge, it is currently not known if the condition of [11, Corollary 3.9] is
actually strictly weaker than the previously studied conditions. We provide a more detailed discussion of
this question below.
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.X; d/, a subspace X 0 � X is sparse if

X 0 D
G
n

Xn;

where eachXn is finite and d.Xn;Xm/!1 as nCm!1. A projection p 2 C �u .X/ is
called a block projection if there is a disjoint sequence .Xn/n of finite (non-empty) subsets
of X such that

p D SOT-
X
n

�Xnp�Xn ;

where �Xn is the orthogonal projection onto `2.Xn/. If, moreover, each �Xnp�Xn has
rank 1, then p is called a block-rank-one projection.

We can now formally state the aforementioned partial answers to the rigidity problem.
Precisely, after the rigidity problem was solved for metric spaces with property A (see [16,
Theorem 4.1]), positive solutions were obtained for metric spaces satisfying the following
properties:

(I) If X 0 � X is sparse, all ghost projections in C �u .X
0/ are compact ([4, Theorem

6.1]).

(II) There are no block-rank-one ghost projections inC �u .X/ ([11, Corollary 3.9])2.

It is immediate that (I) implies (II); however, the question whether these two properties
are equivalent is closely related to a tantalizingly innocent-looking question about the
structure of uniform Roe algebras (see Question 6.1).

In these notes, we characterize each of the properties (I) and (II) in terms of natural
weakenings of the operator norm localization property (ONL)—a property known to be
equivalent to property A ([15, Theorem 4.1] and [7, Proposition 3.2]). We then use this
characterization to obtain new rigidity results and new information about the Cartan masas
of uniform Roe algebras; the latter provides a novel partial answer to a question of White
and Willett (see Theorem 1.7).

Let us describe our main results. We start by recalling the definition of the operator
norm localization property. While our definition is nonstandard, it is not difficult to see
that it is equivalent to the usual one (see Proposition 2.5). The reason for our choice of
a nonstandard definition will be clear in Definition 1.2 below. If .X; d/ is a metric space
and a 2 B.`2.X//, the propagation of a is the quantity

prop.a/ D sup
®
d.x; y/ j haıx ; ıyi ¤ 0

¯
;

.ıx/x2X being the canonical basis for `2.X/.

Definition 1.1. Let .X; d/ be a metric space.

(1) A family S � C �u .X/ is equi-approximable if for all " > 0 there is s > 0 such that
for all a 2 S there is b 2 B.`2.X// with prop.b/ � s and ka � bk � ".

2Notice that block-rank-one projections are non-compact by definition.
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(2) We say that X has the operator norm localization property (ONL) if for all " > 0
and all equi-approximable families S � C �u .X/, there is s > 0 such that for all
a 2 S there is a unit vector � 2 `2.X/ such that

diam.supp.�// � s and ka�k � .1 � "/kak:

Restricting to families satisfying extra conditions, we obtain a family of natural weak-
enings of the ONL.

Definition 1.2. Let .X; d/ be a metric space and let P be a property of operators. We say
that X has the operator norm localization for P (ONL for P ) if for all " > 0 and all equi-
approximable families S � C �u .X/ of operators satisfying P , there is s > 0 such that for
all a 2 S some unit vector � 2 `2.X/ satisfies diam.supp.�// � s and ka�k � .1� "/kak.

In the following two theorems, we characterize properties (I) and (II) stated above. The
following are proven as Theorems 3.1 and 3.2. They are natural analogs of the well-known
fact (see [14, 15]) that the classical version of ONL is equivalent to the non-existence of
non-compact ghost projections.

Theorem 1.3. Let .X; d/ be a uniformly locally finite metric space. The following are
equivalent:

(1) There are no non-compact block ghost projections in C �u .X/.

(2) If X 0 � X is sparse, then all ghost projections in C �u .X
0/ are compact.

(3) X has ONL for equi-approximable finite-rank projections.

Theorem 1.4. Let .X; d/ be a uniformly locally finite metric space. The following are
equivalent:

(1) There are no non-compact block-rank-one ghost projections in C �u .X/.

(2) X has ONL for equi-approximable rank-one projections.

Theorems 1.3 and 1.4 show that weak requirements on the ideal of ghost operators
are already strong enough to force the space to satisfy ONL in some sense. This may
provide an approach to extending results previously known to hold only under ONL to
more general spaces.

We point out that the equivalent conditions in Theorem 1.4 above are also equivalent
to “X contains no sparse subspaces consisting of ghostly measured asymptotic expanders”
(see [11, Corollary C]), and thus can be geometrically characterized. We do not know of
a geometric characterization of the conditions in Theorem 1.3.

1.1. Application to rigidity

Our first application is to rigidity of uniform Roe algebras of coarse (not necessarily
metrizable) spaces. Indeed, coarse spaces generalize the concept of metric spaces in the
context of coarse geometry. We refer the reader to Section 2 for precise definitions. For
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now, we simply say that a coarse space is a set X together with a family E of subsets of
X � X which gives a notion of uniform boundedness of families of subsets of X . The
uniform Roe algebra of .X; E/ is, as in the case when X is metric, denoted by C �u .X/.
While [1, Theorem 1.2] showed that if .X;d/ and .Y; @/ are uniformly locally finite metric
spaces, then X and Y must be coarsely equivalent provided that C �u .X/ and C �u .Y / are
isomorphic, the same problem remains open if .X; E/ and .Y;F / are uniformly locally
finite coarse spaces.

The next result was only known to hold in case where one of the spaces of interest has
property A (see [7, Theorem 1.3]).

Theorem 1.5. Let .X;E/ and .Y;F / be uniformly locally finite coarse spaces with

C �u .X/ Š C
�
u .Y /:

If X is metrizable and C �u .X/ has no block-rank-one ghost projections, then .X;E/ and
.Y;F / are coarsely equivalent. In particular, .Y;F / is metrizable.

Moreover, a coarse equivalence is given by some (any) gW Y ! X for which some
ı > 0 satisfies

kˆ�1.�y/ıg.y/k > ı for all y 2 Y:

1.2. Applications to Cartan masas

The results of this section are concerned with metric spaces and the following notion.

Definition 1.6. Let A be a unital C �-algebra, and let B � A be a C �-subalgebra. We say
that B is a Cartan masa in A if

(1) B is a maximal abelian self-adjoint subalgebra (masa) of A,

(2) A is generated as a C �-algebra by the normalizer of B in A; i.e.,

NA.B/ D
®
a 2 A j aBa� [ a�Ba � B

¯
;

(3) there is a faithful conditional expectation ‡ WA ! B . That is, for all a 2 A it,
satisfies the following conditions:

(a) ‡ WA! B is completely positive,

(b) ‡.b1ab2/ D b1‡.a/b2 for all b1; b2 in B ,

(c) ‡.a�a/ D 0 implies a D 0.

In the terminology of [17], a Cartan masa B � C �u .X/ is co-separable if there is a count-
able S � C �u .X/ such that C �u .X/ D C

�.B; S/.

Note that the maximality of B implies 1A 2 B (in the non-unital case, the definition
of a Cartan masa involves an approximate unit). It is not difficult to see that for every uni-
formly locally finite spaceX , `1.X/ is a Cartan masa in C �u .X/; the (unique) conditional
expectation is defined by (see Section 2.1.2 for the notation �Y , where Y � X )

E.a/ D
X
x2X

�xa�x :
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Conversely, by the duality result established in [17, Theorem 4.17], if a unital C �-subalge-
bra A of B.`2.X// contains K.`2.X// and has a Cartan masa B isomorphic to `1.X/
then X carries a uniformly locally finite coarse structure such that A is naturally iso-
morphic to C �u .X/, via an isomorphism that sends B to `1.X/. In [17, Remark 3.4],
the authors ask whether every Cartan masa of C �u .X/, where .X; d/ is a metric space,
is automatically co-separable. In other words, by [17, Theorem 4.17] this question asks
whether C �u .X/ and C �u .Y / can be isomorphic for uniformly locally finite spaces X and
Y if exactly one of them is a metric space. Until now, the strongest result in this direc-
tion was [1, Theorem 1.12]. This result asserts that if C �u .X/ and C �u .Y / are isomorphic,
both spaces are uniformly locally finite, and X is metrizable, then Y is countable and it
contains a coarse copy of X .

The next result was only known to hold under the additional assumption that X has
property A (see [7, Theorem 1.3]). Note that the assumption on the absence of ghost
projections is strictly weaker than property A [4, page 1010].

Theorem 1.7. Let X be a uniformly locally finite metric space and assume that C �u .X/
has no block-rank-one ghost projections. If B � C �u .X/ is a Cartan masa isomorphic to
`1.N/, then B is co-separable in C �u .X/.

Still in the topic of Cartan masas, the importance of the question whether a Cartan
masa B � C �u .X/ isomorphic to `1.N/ can contain non-compact ghosts to the rigidity
problem for uniform Roe algebra has been known for a while (see the paragraph after
[4, Theorem 6.2]). We show the following theorem.

Theorem 1.8. Let .X; d/ be a uniformly locally finite metric space and B � C �u .X/ be a
Cartan masa isomorphic to `1.N/. The following are equivalent:

(1) All ghost operators in B are compact.

(2) All ghost projections in B are compact.

(3) B is co-separable in C �u .X/.

By [2, Theorem 1.2], L1Œ0; 1� does not embed into C �u .X/ and therefore the assump-
tion that B is isomorphic to `1.N/ can be weakened to B being a von Neumann algebra.

Using the duality result [17, Theorem 4.17] again, this puts [1, Theorem 1.12] in
proper context.

1.3. A word on embeddings

Finally, in Section 5, we deal with embeddings between uniform Roe algebras, a study of
which was initiated in [5]. The existence of such embeddings often suffices to guarantee
the existence of nontrivial maps X ! Y , which in turn imposes restrictions on the geom-
etry of X given by the geometry of Y . Using techniques from [1], we further develop
the theory of embeddings between uniform Roe algebras (see Proposition 5.1 and Theo-
rem 5.3 for details).
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2. Preliminaries

2.1. Basic definitions

2.1.1. Coarse spaces. We start by recalling the definition of a coarse space—we refer the
reader to [13, Chapter 2] for a detailed treatment of the subject. Loosely speaking, coarse
spaces are abstractions of metric spaces which still allow one to talk about large-scale
geometry. Precisely, let X be a set and E be a family of subsets of X �X . We say that E

is a coarse structure on X if the following hold.

(1) �X D ¹.x; x/ 2 X �X j x 2 Xº belongs to E .

(2) If E 2 E and F � E, then F 2 E .

(3) If E;F 2 E , then E [ F 2 E .

(4) If E 2 E , then E�1 D ¹.y; x/ 2 X �X j .x; y/ 2 Eº is in E .

(5) If E;F 2 E , then

E ı F D
®
.x; y/ 2 X �X j 9z 2 X; .x; z/ 2 E and .z; y/ 2 F

¯
belongs to E .

The elements of E are called controlled sets or entourages. The pair .X;E/ is then called a
coarse space. Metric spaces have a canonical coarse structure: if .X; d/ is a metric space,

Ed D
°
E � X �X j sup

.x;y/2E

d.x; y/ <1
±

is a coarse structure. Throughout this paper, metric spaces are viewed as coarse spaces
with the coarse structure described above. A coarse space .X; E/ is called metrizable
when E D Ed for some metric d on X .

Let .X; E/ and .Y;F / be coarse spaces and f WX ! Y be a map. We say that f is
coarse if for all E 2 E there is F 2 F such that

.x; z/ 2 E implies .f .x/; f .z// 2 F;

and we say that f is expanding if for all F 2 F there is E 2 E such that

.x; z/ 62 E implies .f .x/; f .z// 62 F:

If f is both coarse and expanding, then f is a coarse embedding. If f is a coarse embed-
ding and there is F 2 F such that for all y 2 Y there is x 2 X with .f .x/; y/ 2 F , the
map f is called a coarse equivalence.

A coarse space .X;E/ is uniformly locally finite (abbreviated as u.l.f.) if for all E 2 E

we have that
sup
x2X

j¹z 2 X j .x; z/ 2 Eºj <1:

For a metric space .X; d/, this simply means that for each r > 0 there is N > 0 such that
every r-ball in X has at most N elements.
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2.1.2. Uniform Roe algebras. Given a Hilbert space H , B.H/ denotes the space of
bounded operators on H . Given a set X , `2.X/ denotes the Hilbert space of square-
summable functions X ! C and we denote its canonical orthonormal basis by .ıx/x2X .
Given A � X , �A denotes the orthogonal projection onto `2.A/. If x 2 X , we write �x
for �¹xº.

Given an operator a 2 B.`2.X// and x; z 2 X , we let ax;z D haız ; ıxi; we identify
a with the X �X matrix Œax;z �x;z2X . If .X;E/ is a coarse space, we say that an operator
a D Œax;z � 2 B.`2.X// has controlled propagation if

supp.a/ D
®
.x; z/ 2 X �X j ax;z ¤ 0

¯
belongs to E .

Definition 2.1. Let .X; E/ be a coarse space. The norm closure of all operators a 2
B.`2.X// with controlled propagation is the uniform Roe algebra of .X; E/, denoted
by C �u .X/.

We identify `1.X/ with the set of all operators in B.`2.X// diagonalized by the
canonical basis. These coincide with the operators a 2B.`2.X// such that supp.a/��X .
Hence, every uniform Roe algebra contains `1.X/ �B.`2.X//. If .X;E/ is a connected
coarse space, i.e., if ¹.x; z/º 2 E for all x; z 2 X , then C �u .X/ also contains the compact
operators; this is always the case if X is metrizable.

The definitions of projections in B.`2.X// being block projections or block-rank-
one projections for coarse spaces are identical to the ones for metric spaces given in the
introduction. However, to make sense of sparseness of a subspace X 0 � X , one needs the
coarse structure to be countably generated, which is essentially the same as metrizability
of the coarse structure [13, Section 2.4]. Hence, we only talk about projections on sparse
subspaces of X when X is metrizable.

2.2. Ghosts, equi-approximability, and ONL

In this subsection, we present some extra technical definitions about uniform Roe algebras.
Let .X;E/ be a u.l.f. coarse space. An operator a 2 C �u .X/ is a ghost if for all " > 0 there
is a finite A � X such that jax;zj � " for all x; z 62 A. Clearly, compacts operators in
C �u .X/ are always ghosts.

We generalize the definitions of equi-approximability and ONL from metric to coarse
spaces (cf. Definitions 1.1 and 1.2).

Definition 2.2. Let .X;E/ be a u.l.f. coarse space.

(1) Let " > 0, E 2 E , and a 2 B.`2.X//. We say that a is "-E-approximable if there
is b 2 B.`2.X// with supp.b/ � E such that ka � bk � ".

(2) A family S � C �u .X/ is equi-approximable if for all " > 0 there is E 2 E such
that each a 2 S is "-E-approximable.
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The next lemma is fundamental for the results of the present paper. It will be used to
guarantee that certain families of operators are equi-approximable. By SOT-

P
n2M pn

we denote the SOT-limit of finite partial sums, and by using this notation, we indicate that
this limit exists.

Lemma 2.3 ([4, Lemma 4.9]). Let .X; d/ be a u.l.f. metric space and let .pn/n be a
sequence of orthogonal projections such that SOT-

P
n2M pn belongs to C �u .X/ for all

M � N. Then, .SOT-
P
n2M pn/M�N is equi-approximable.

Definition 2.4. Let .X;E/ be a coarse space.

(1) Given a 2 B.`2.X//, " > 0, and E 2 E , we say that a is ."; E/-normed if there
is A � X with A � A � E such that ka�Ak � .1 � "/kak.

(2) We say that X has the operator norm localization property (ONL) if for all " > 0
and all equi-approximable S � C �u .X/, there is E 2 E such that every a 2 S is
."; E/-normed.

(3) Let P be a property of operators. We say that .X;E/ has the operator norm local-
ization property for P (ONL for P ) if for all " > 0 and all equi-approximable
families S � C �u .X/ of operators satisfying P , there is E 2 E such that every
a 2 S is ."; E/-normed.

The original definition of ONL, as introduced in [8, Definition 2.3], was not stated in
these terms. A series of equivalent definitions were provided by Sako in [15], even though
these only refer to the metric setting. Below, we show that our definition of ONL coincides
with the one stated in Clause 2 of [15, Proposition 3.1].

Proposition 2.5. Let .X;E/ be a coarse space. The following are equivalent:

(1) .X;E/ has ONL,

(2) for all " > 0 and allE0 2 E , there isE 2 E such that if a 2B.`2.X// is such that
supp.a/ � E0, then there is A � X with A � A � E and ka�Ak � .1 � "/kak.

Proof. Since the set of all operators with a given propagation is equi-approximable, the
implication (1))(2) is immediate. Suppose now that (2) holds. Let " > 0 and S � C �u .X/
be equi-approximable. Then, there isE0 2 E such that any a 2 S can be "-E0 approximat-
ed. Then, given a 2 S with kak D 1, let b 2 C �u ŒX� be such that

supp.b/ � E0 and ka � bk � ":

LetE 2 E be given by the hypothesis for " andE0. Hence, there isA�X withA�A�E
such that kb�Ak � .1 � "/kbk. So,

ka�Ak � .1 � "/kbk � ka � bk � .1 � "/
2
� ":

Since " and a 2 S were arbitrary, this shows that .X;E/ has ONL.
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2.3. Candidates for coarse equivalences

The content of this subsection will be used for the applications of our main results in
Section 4. Let .X;E/ and .Y;F / be coarse spaces. Given an isomorphism ˆWC �u .X/!

C �u .Y /, a natural candidate for a coarse equivalence (or embedding) is a map f WX ! Y

such that
inf
x2X
kˆ.�x/ıf .x/k > 0: (2.1)

It is therefore necessary to understand when such maps exist. The following is one of the
main results of [1] and it can be extracted from the proof of [1, Theorem 1.2].

Corollary 2.6. Let .X;E/ and .Y;F / be u.l.f. coarse spaces and letˆWC �u .X/! C �u .Y /

be an isomorphism. If .X;E/ is metrizable, then there is f WX ! Y satisfying (2.1).

Since this result has not been stated explicitly in [1], for the reader’s convenience, we
include its brief proof below. First, we have the following lemma.

Lemma 2.7 ([1, Corollary 3.3]). Let .X; E/ be a metrizable u.l.f. coarse space and let
.pn/n2N be a sequence of projections in B.`2.X// such that

(1) the family �X
n2A

pn

�
A�N;jAj<1

is equi-approximable,

(2) SOT-
P
n2N pn D 1`2.X/.

Then,
inf
x2X

sup
n2N
kpnıxk > 0:

Proof of Corollary 2.6. As isomorphisms between uniform Roe algebras are strongly con-
tinuous ([16, Lemma 3.1]), the projections

.ˆ�1.�y//y2Y

satisfy the hypothesis of Lemma 2.7. As X is metrizable, this lemma applies and there is
ı > 0 and f WX ! Y such that

ˆ�1.�f .x//ıx

 > ı for all x 2 X:

Therefore, for all x 2 X ,

kˆ.�x/ıf .x/k D kˆ.�x/�f .x/k D k�xˆ
�1.�f .x//k D kˆ

�1.�f .x//ıxk > ı:

The next lemma highlights the reason why a map f WX ! Y satisfying (2.1) is impor-
tant for rigidity problems. Item (1) is [5, Lemma 5.1], and items (2) and (3) can be
extracted from the proof of [1, Theorem 1.12].

A function is said to be uniformly finite-to-one if there is a uniform finite bound on the
cardinalities of the preimages of points in its range.
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Lemma 2.8. Let .X; E/ and .Y;F / be u.l.f. coarse spaces, and suppose that .X; E/ is
metrizable. Let ˆWC �u .X/! C �u .Y / be an embedding, and suppose that f WX ! Y sat-
isfies (2.1). The following holds:

(1) If .Y;F / is metrizable, then f is coarse and uniformly finite-to-one3.

(2) If c0.Y / � ˆ.C �u .X//, then f is coarse and uniformly finite-to-one.

(3) If ˆ is surjective, then f is a coarse embedding.

3. ONL for equi-approximable projections

In this section, we prove Theorems 1.3 and 1.4. Both of those results follow immediately
from the next two more technical theorems.

Theorem 3.1. Let .X;E/ be a u.l.f. coarse space, and consider the following assertions.

(1) All ghost block projections in C �u .X/ are compact.

(2) X has ONL for finite-rank projections.

Then, (1))(2). Moreover, if .X;E/ is metrizable, then (2))(1) and those conditions are
also equivalent to the following:

(3) If X 0 � X is sparse, then all ghost projections in C �u .X
0/ are compact.

(4) If X 0 � X is sparse, then all ghost block projections in C �u .X
0/ are compact.

Theorem 3.2. Let .X;E/ be a u.l.f. coarse space, and consider the following assertions.

(1) There are no ghost block-rank-one projections in C �u .X/.

(2) X has ONL for rank-one projections.

Then, (1))(2). Moreover, if .X;E/ is metrizable, then (2))(1) and those conditions are
also equivalent to the following:

(3) If X 0 � X is sparse, then there are no non-compact ghost block-rank-one projec-
tions in C �u .X

0/.

Before presenting the (very similar) proofs of Theorems 3.1 and 3.2, we need some
lemmas. The next technical lemma was proved in [1, Lemma 5.4] for metrizable u.l.f.
coarse spaces. Its proof for an arbitrary coarse space is virtually identical, but we present
the details here for the reader’s convenience.

Lemma 3.3 ([1, Lemma 5.4]). Let .X;E/ be a u.l.f. coarse space. Then, given "; ı > 0,
there is 
 > 0 so that for all E;F 2 E there is W 2 E for which the following holds: let
p; q; a 2 B.`2.X//, where p is a projection and q is a rank 1 projection. If supp.q/ � E,
kp � ak < 
 , supp.a/ � F , and kpqk � ı, then p is .";W /-normed.

3It is straightforward to check that any map satisfying (2.1) is uniformly finite-to-one; see [5, Lemma
5.1] for details.
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Proof. Fix "; ı > 0 and pick k 2N with .ı=2/1=k > 1� ". Pick a positive 
 < .ı=2/1=k �
1C " so that kp � ak � 
 implies kp � akk � ı=2 for any projection p and any operator
a 2 B.`2.X//.

Fix E; F 2 E . Without loss of generality, assume that both E and F are symmetric
and contain�X . Let p;q;a 2B.`2.X// be as in the statement of the lemma. In particular,
kp � akk � ı=2. This implies that kakqk � ı=2. Otherwise, if kakqk < ı=2, then

kpq � akqk � kpqk � kakqk > ı=2;

contradicting
kpq � akqk � kp � akk � ı=2:

Therefore,
k�1Y
iD0

kaiC1qk

kaiqk
�
ı

2

(notice that aiq ¤ 0 for all i � k). There must then be j 2 ¹0; : : : ; k � 1º with

kaaj qk � .ı=2/
1
k kaj qk:

As q is a rank 1 projection, we can pick a unit vector � 2 `2.X/ such that q D h�; �i�. As
supp.q/ � E, we must have supp.�/ � supp.�/ � E. Define

� WD aj �=kaj �k:

As supp.a/ � F , it follows that supp.aj / � F .j /. So,

supp.�/ � supp.�/ � F .j / ıE ı F .j /:

Finally, as ka�k � .ı=2/1=k , it follows that

kp�k � .ı=2/1=k � 
:

By our choice of 
 , this shows that kp�k � 1 � ". So, the conclusion follows by letting

W D F .j / ıE ı F .j /:

The previous lemma allows us to show that, given " > 0, certain equi-approximable
families can be .";W /-normed with respect to a single entourage W 2 E .

Lemma 3.4. Let X be a u.l.f. coarse space and let P be an equi-approximable family of
finite-rank projections in C �u .X/. The following are equivalent:

(1) infp2P supx2X kp�xk > 0.

(2) For all " > 0, there is W 2 E such that each p 2 P is .";W /-normed (that is, X
satisfies ONL for finite-rank projections).

(3) There are " 2 .0; 1/ and W 2 E such that each p 2 P is .";W /-normed.
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Proof. (1))(2): Fix " > 0. Pick ı > 0 and a family .xp/p2P in X such that kp�xpk > ı
for all p 2 P . Let 
 > 0 be given by Lemma 3.3 for " and ı. As P is equi-approximable,
there is F 2 E such that every p 2 P is 
 -F -approximable. Let W 2 E be given by
Lemma 3.3 for F and E D �X .

By our choice of F , for each p 2 P , there is ap 2 C �u .X/ with supp.ap/ � F such
that kp � apk � 
 . By Lemma 3.3 applied with q as the projection to the span of ıxp ,
each p is .";W /-normed.

(2))(3) is obvious, so we are left with (3))(1). Let " 2 .0; 1/ and W such that each
p 2P is .";W /-normed. SinceX is u.l.f., there is k such that if A�A�W then jAj � k,
for all A�X . For each p 2 P , pick Ap with kp�Apk � .1� "/ and Ap �Ap �W . Then,
we can find x 2 Ap such that kp�xk � 1�"

k
. As " and k are fixed, this completes the

proof.

A well-known example shows that it is not true in general that, given an arbitrary u.l.f.
coarse space .X;E/, any equi-approximable family of finite-rank projections P in C �u .X/
must satisfy

inf
p2P

sup
x2X

kp�xk > 0:

Indeed, if the space .X; d/ contains a subspace Y on which the metric is the graph metric
given by a sequence .Xn/ of expander graphs ([12]), then, by identifying the expander
graphs with their images as subspaces of X , there is a disjoint sequence .Xn/n of finite
subsets of X such that for every n

pn D

2664
1
jXnj

� � �
1
jXnj

:::
: : :

:::
1
jXnj

� � �
1
jXnj

3775 2 B.`2.Xn// � B.`2.X//

defines a projection in B.`2.Xn//. The spectral gap property of the discrete Laplacian
operator associated with the expanders implies that each M � N satisfies

SOT-
X
n2M

pn 2 C
�
u .X/;

and moreover that this family is equi-approximable asM varies over all subsets of N (see
[10, pages 348–349]). On the other hand,

inf
n2N

sup
x2X

kpn�xk D 0:

This example indicates the need for a workable condition that implies that a family of
equi-approximable projections P satisfies infp2P supx2X kp�xk > 0. This is the content
of the next lemma.

Lemma 3.5. Let X be a u.l.f. coarse space and let P be an equi-approximable family of
nonzero finite-rank projections in C �u .X/.
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(1) If all ghost block projections in C �u .X/ are compact, then

inf
p2P

sup
x2X

kp�xk > 0:

(2) If all ghost block-rank-one projections in C �u .X/ are compact and each p 2 P

has rank one, then
inf
p2P

sup
x2X

kp�xk > 0:

Proof. We will prove (1) and (2) simultaneously, indicating the only difference in the
proofs in the appropriate moment. By contradiction, pick, for each n 2 N, pn 2 P such
that kpn�xk < 2�n for all x 2 X . Notice that, for each finite A � X , limn!1 pn�A D 0.
In fact, for each n,

kpn�Ak �
X
x2A

kpn�xk � 2
�n
jAj;

and as A is fixed, the conclusion follows.
As each pn is finite dimensional, we can go to a subsequence and find (modulo rein-

dexing) a disjoint sequence .Xn/n of finite subsets of X such that

kpn � �Xnpn�Xnk < 2
�n�1 (3.1)

for all n 2 N. Since P is equi-approximable and each �Xn has propagation zero, the se-
quence .�Xnpn�Xn/n is equi-approximable. Moreover, as .Xn/n are disjoint, this implies
that

p0 D SOT-
X
n

�Xnpn�Xn 2 C
�
u .X/:

Notice that p0 is a ghost. Each one of the operators an D �Xnpn�Xn is positive, and by
(3.1), these operators satisfy

lim
n!1

kan � a
2
nk D 0:

By standard continuous functional calculus argument using (3.1), for each n 2 N, we can
find a projection qn 2 B.`2.Xn// such that

kqn � �Xnpn�Xnk < 2
�nC1:

In the situation of (2), pn has rank one, and therefore, �Xnpn�Xn has rank one, and the
same applies to qn.

As pn is nonzero, qn is nonzero, and therefore,

q D SOT-
X
n

qn

is a non-compact block projection. Moreover,

p0 � q D
X
n

.�Xnpn�Xn � qn/

in norm, so, as each �Xnpn�Xn � qn is compact, p0 � q is also compact. As p0 is a ghost,
so is q. This contradicts the fact that all ghost block projections in C �u .X/ are compact.
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Proof of Theorem 3.1. (1))(2): If all ghost block projections inC �u .X/ are compact, then
Lemma 3.5 implies that condition (1) in Lemma 3.4 holds. Therefore, condition (2) in
Lemma 3.4 holds, that is, X has ONL for finite-rank projections.

Suppose now that .X;E/ is metrizable, say E D Ed for some metric d on X .
Clearly, (1))(4). Conversely, suppose (4) holds and (1) fails, and let

P
n pn be a

non-compact ghost block projection in X . Then, all pn are nonzero, and we can find an
infinite M � N such that

P
n2M pn belongs to C �u .X

0/ for some sparse X 0 � X , and it
is therefore compact, a contradiction.

Since (3))(4) is trivial, we are left to show that (2))(1) and (4))(3).
(2))(1): Fix a non-compact block projection with respect to a disjoint sequence

.Xn/n of finite subsets of X , say p 2 C �u .X/. For each n 2 N, let pn D �Xnp�Xn ; so
p D SOT-

P
n pn.

Claim 3.6. We have that SOT-
P
n2M pn 2 C

�
u .X/ for all M � N.

Proof. For M � N, let
XM D

[
n2M

Xn:

Then,
SOT-

X
n2M

pn D �XMp�XM :

Since p 2 C �u .X/, we have the thesis.

By Claim 3.6 and Lemma 2.3, .pn/n is equi-approximable. Hence, by our hypothesis,
there is r > 0 such that every pn is .1=2; r/-normed. For each n 2N, letAn �X be a such
that diam.An/ � r and kpn�Ank � 1=2. As X is u.l.f., k D supn2N jAnj <1. Suppose
for a contradiction that p is a ghost. Then, there is n 2 N such that kpnıxk < 1=.2k/ for
all x 2 X . So,

kpn�Ank �
X
x2An

kpnıxk < 1=2I

contradiction.
(4))(3): Let X 0 D

F
nXn be a sparse subspace of X and let p 2 C �u .X

0/ be a ghost
projection. Since X 0 is sparse, if a is a finite propagation operator in C �u .X

0/ then there is
n0 2 N such that

a D SOT-
X
m�n0

�Xma�Xm

is compact. This shows that passing to the Calkin algebra, we have

C �u .X
0/=K.`2.X

0// �

�Y
n

K.`2.Xn//

��
K.`2.X

0//:

Therefore, as�Y
n

K.`2.Xn//

��
K.`2.X

0// D
Y
n

K.`2.Xn//
.M

K.`2.Xn//
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and since all projections in Y
n

K.`2.Xn//
.M

K.`2.Xn//

lift to a projection in
Q
n K.`2.Xn// (see [9, Lemma 3.1.13]), we can pick a projection

p0 2
Q
n K.`2.Xn// such that p � p0 is compact. As K.`2.X

0// � C �u .X
0/ and p 2

C �u .X
0/, we have that p0 2 C �.X 0/. As p is a ghost, so is p0. Therefore, p0 is a ghost

block projection in C �u .X
0/ and, by our hypothesis, p0 must be compact. This gives us

that p is compact. Since p was an arbitrary ghost projection in C �u .X
0/ for an arbitrary

sparse subspace X 0 of X , we are done.

Proof of Theorem 3.2. The proof is analogous to that of Theorem 3.1, with “finite-rank
projections” replaced with “rank-one projections” everywhere and (4) replaced with (3).

4. Applications I: Rigidity and Cartan masas

In this section, we use Theorem 1.4 to prove Theorems 1.5, 1.7, and 1.8. The conclusions
of these theorems were previously known to hold only in the presence of ONL.

In order to prove Theorem 1.5, we will need some technical results already proven
in the literature. For the reader’s convenience, we state those results below. Given coarse
spaces .X;E/ and .Y;F /, an isomorphismˆWC �u .X/!C �u .Y /, x 2X , y 2 Y , and � > 0,
we let

• Xy;� WD ¹z 2 X j kˆ
�1.�y/ızk � �º,

• Yx;� WD ¹z 2 Y j kˆ.�x/ızk � �º.

We isolate two results from [1, 7].

Lemma 4.1 ([1, Corollary 5.3]). Let .X; E/ and .Y;F / be u.l.f. coarse spaces and ˆ W
C �u .X/! C �u .Y / be an isomorphism. If X is metrizable, then for all " > 0 there is � > 0
such that kˆ.�x/.1`2.Y / � �Yx;� /k � " for all x 2 X .

Lemma 4.2 ([7, Lemma 4.7]). Let .X;E/ and .Y;F / be u.l.f. coarse spaces,ˆWC �u .X/!
C �u .Y / be an isomorphism, and let f WX ! Y be such that infx2X kˆ.�x/ıf .x/k > 0.
Then, the following holds:

(1) If for all " > 0 there is � > 0 such that

kˆ.�x/.1`2.Y / � �Yx;� /k � ";

for all x 2 X , then f is expanding.

(2) If for all " > 0 there is � > 0 such that

kˆ�1.�f .x//.1`2.X/ � �Xf .x/;� /k � ";

for all x 2 X , then f is coarse.
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Proof of Theorem 1.5. Suppose that .X; E/ and .Y; F / are u.l.f. coarse spaces and ˆ W
C �u .X/! C �u .Y / is an isomorphism. Also suppose X is metrizable and C �u .X/ has no
block-rank-one ghost projections. We need to prove that .X; E/ and .Y;F / are coarsely
equivalent.

Since X is metrizable and C �u .X/ has no block-rank-one ghost projections, replacing
ı by a smaller positive number if necessary, Lemmas 3.5 and 2.3 together imply that there
is gWY ! X such that kˆ�1.�y/ıg.y/k > ı for all y 2 Y (see footnote4). Let us show g

is a coarse embedding.
By Lemma 4.1, for all " > 0 there is � > 0 such that

kˆ.�x/.1`2.Y / � �Yx;� /k � ":

Therefore, by Lemma 4.2, g is coarse. We now show that g is also expanding.

Claim 4.3. For all " > 0 there is � > 0 such that kˆ�1.�y/�Xy;�k � 1 � " for all y 2 Y .

Proof. As X is a metrizable space, it follows from Lemma 2.3 that the indexed family
.ˆ�1.�y//y2Y is equi-approximable. Therefore, as C �u .X/ has no ghost block-rank-one
projection, Theorem 3.2 gives that ONL holds for .ˆ�1.�y//y2Y . The remaining part
of the proof now closely follows the proof of [17, Lemma 6.7]. Alternatively, and using
a terminology closer to that of the present paper, the proof can be completed by using
[6, Lemma 7.4]. Indeed, although [6, Lemma 7.4] assumes the metric spaces have ONL,
the only thing necessary for its argument to hold is that ONL holds for .ˆ�1.�y//y2Y .
So, we are done.

As each ˆ�1.�y/ has rank 1, then

kˆ�1.�y/.1`2.X/ � �Xy;� /k
2
D kˆ�1.�y/1`2.X/k

2
� kˆ�1.�y/�Xy;�k

2:

By Claim 4.3, the second term on the right-hand side can be made greater than 1 � " by
choosing a small enough � > 0. Since " > 0 was arbitrary, Lemma 4.2 now implies that g
is expanding.

The result now follows immediately from [1, Theorem 1.2]. Indeed, as .Y;F / coarsely
embeds into .X; E/ and .X; E/ is metrizable, .Y;F / is also metrizable. Therefore, [1,
Theorem 1.2], .X;E/ and .Y;F / are actually coarsely equivalent.

It remains to prove that g is a coarse equivalence. By Corollary 2.6, there are ı > 0
and f WX ! Y such that kˆ.�x/ıf .x/k > ı for all x 2 X . By Lemma 2.8, f is a coarse
embedding. We need to verify that g ı f and f ı g are close to IdX and IdY , respectively.
Let us first show that g ı f is close to IdX . As X is metrizable, Lemma 2.3 gives E 2 E

such that every ˆ�1.�y/ is ı2-E-approximable. Therefore, since

k�g.f .x//ˆ
�1.�f .x//�xk � kˆ

�1.�f .x//�g.f .x//kkˆ
�1.�f .x//�xk

D kˆ�1.�f .x//�g.f .x//kkˆ.�x/�f .x/k < ı
2

for all x 2 X , we must have that .x; g.f .x/// 2 E for all x 2 X .

4Alternatively, this follows from [11, Corollary 3.3].
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We now show that f ı g is close to IdY . This follows from the following general
fact in coarse geometry: as g is expanding and g ı f is close to IdX , then f ı g is close
to IdY . For completeness, we prove this simple fact. As g ı f is close to IdX , fix E 2
E such that .x; g.f .x/// 2 E for all x 2 X . As g is expanding, there is F 2 F such
that .y; x/ 62 F implies .g.y/; g.x// 62 E. In particular, if .y; f .g.y/// 62 F for some
y 2 Y , then .g.y/; g.f .g.y//// 62 E. By our choice of E, this cannot happen. Therefore,
.y; f .g.y/// 2 F for all y 2 F .

Proof of Theorem 1.7. Suppose that X is a u.l.f. metric space, C �u .X/ has no block-rank-
one ghost projections, and B � C �u .X/ is a Cartan masa (Definition 1.6) isomorphic to
`1.N/. We need to prove that B is co-separable in C �u .X/.

By [17, Theorem 4.17], there is a u.l.f. coarse space .Y; F / and an isomorphism
ˆWC �u .X/! C �u .Y / such that ˆŒB�D `1.Y /. By Theorem 1.5, Y is metrizable. Hence,
by [17, Lemma 4.19], `1.Y / is co-separable in C �u .Y /. This in turns implies that B is
co-separable in C �u .X/.

The next lemma is an easier version of part (1) of Lemma 3.5, and several small
variations of it have already been obtained in the literature, probably starting with [4,
Theorem 6.2]. For this reason, we omit its proof.

Lemma 4.4. Let .X; E/ be a u.l.f. coarse space and let .pn/n be a family of finite-rank
projections in C �u .X/ such that, for all infinite M � N, SOT-

P
n2M pn is a non-ghost

projection in C �u .X/. Then
inf
n2N

sup
x2X

kpn�xk > 0:

Proof of Theorem 1.8. Suppose .X;d/ is a u.l.f. metric space and B � C �u .X/ is a Cartan
masa isomorphic to `1.N/.

(1))(2): If all ghost operators in B are compact, then all ghost projections in B are
compact.

(2))(3): Suppose that all ghost projections in B are compact. A proof that B is co-
separable in C �u .X/ is analogous to that of Theorem 1.5. Precisely, by [17, Theorem 4.17],
there are a u.l.f. coarse space .Y;F / and an isomorphism ˆWC �u .X/! C �u .Y / such that
ˆ.B/ D `1.Y /. Then, by Lemma 4.4, there are ı > 0 and a map gWY ! X such that

kˆ�1.�y/ıg.y/k > ı for all y 2 Y:

Proceeding as in the proof of Theorem 1.5, we conclude that g is a coarse embedding.
In particular, .Y;F / is metrizable. By [17, Lemma 4.19], this implies that `1.Y / is co-
separable in C �u .Y /. Hence, B is co-separable in C �u .X/.

(3))(1): Suppose that B is co-separable in C �u .X/. By [17, Theorem B] there are
a u.l.f. metric space .Y; @/ and an isomorphism ˆWC �u .X/! C �u .Y / such that ˆ.B/ D
`1.Y /. By [1, Theorem 1.11], any isomorphism between uniform Roe algebras of metric
spaces must send ghosts to ghosts. As all ghosts in `1.Y / are compact, the same must
happen in B .
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5. Applications II: Embeddings

The study of embeddings between uniform Roe algebras was initiated in [5]. It is known
that the existence of an embedding C �u .X/ ,! C �u .Y / does not necessarily imply that
X coarsely embeds into Y . Indeed, an embedding C �u .X/ ,! C �u .Y / exists if there is
an injective coarse map X ! Y . Hence, letting f WZ! N be such that f .0/ D 0, and
f .n/ D 2n and f .�n/ D 2n � 1 for all n 2 N, we conclude that C �u .Z/ embeds into
C �u .N/ but Z clearly does not coarsely embed into N (cf. [5, Section 2.4]).

On the other hand, the existence of an embedding C �u .X/ ,! C �u .Y / satisfying some
extra conditions (e.g., rank preservation, compact preservation, hereditary range, etc.) is
often enough to give us some information on how to map X into Y . In this section, we
study how the new rigidity techniques introduced in [1] apply to embeddings. More pre-
cisely, we investigate when the analog of Corollary 2.6 holds for embeddings in place of
isomorphisms.

We start with a simple, but hopefully somewhat enlightening, observation.

Proposition 5.1. Let .X;E/ and .Y;F / be u.l.f. coarse spaces. The following are equiv-
alent for an embedding ˆWC �u .X/! C �u .Y /:

(1) ˆ is unital, rank-preserving, and strongly continuous.

(2) ˆ is implemented by a unitary uW `2.X/! `2.Y /.

(3) ˆ.`1.X// is a masa of B.`2.Y //.

(4) ˆ.`1.X// is a masa of C �u .Y /.

We do not know whether the conditions in Proposition 5.1 suffice to guarantee that
infx2X supy2Y kˆ.�x/ıyk > 0. Its proof uses the following minor strengthening of [17,
Lemma 2.3], where the same conclusion was obtained under the stronger assumption that
A includes all compact operators.

Lemma 5.2. Suppose that A is a concrete subalgebra of B.H/ for some Hilbert space
that includes a masa of B.H/ isomorphic to `1.Z/ for some set Z. If B is a masa in A,
then every minimal projection in B has rank 1.

Proof. Fix a masa B in A and a minimal projection p in B . The map a 7! pap is SOT-
continuous, hence, P D ¹pqp j q 2 `1.Z/ has finite rankº is a directed net of positive
contractions included in A with p as its supremum. By SOT-continuity we can fix a rank 1
projection q 2 `1.Z/ such that pqp¤ 0. By the minimality of p, pqp is a scalar multiple
of p and therefore p has rank 1.

Proof of Proposition 5.1. (1) implies (2): this is similar to the proof of [4, Lemma 3.1].
Suppose that ˆ is as in (1). Write X as a discrete sum of its connected components,
X D

F
i Xi . It suffices to prove that the restriction of ˆ to each Xi is implemented by a

unitary, so we may assume thatX is connected. By assumption,ˆ sends rank 1 projections
to rank 1 projections; as moreover it is unital and SOT-continuous, its range contains a



Operator norm localization property for equi-approximable families of projections 675

maximal orthogonal set of rank-one projections. As ˆ is a �-homomorphism, it preserves
Murray–von Neumann equivalence of projections, and so, the range of ˆ includes the
ideal of compact operator on `2.Y /. The conclusion follows as in [4, Lemma 3.1].

Clearly, (2) implies (3) and (3) implies (4).
Suppose that ˆ satisfies (4). In particular, ˆ.1`2.X// D 1`2.Y /, so ˆ is unital. By

Lemma 5.2 applied to A D C �u .Y /, every minimal projection in ˆŒ`1.X/� has rank 1.
Therefore, each ˆ.exz/ also has rank one and it follows that

ˆ �
[

F�X;jF j<1

B.`2.F //

is rank-preserving. As each finite-rank operator can be norm approximated by operators
in
S
F�X;jF j<1B.`2.F // with the same rank, it easily follows thatˆ is rank-preserving.

It remains to show that ˆ is strongly continuous. For that, notice that as ˆW `1.X/!
ˆ.`1.X// is an isomorphism, as eachˆ.�x/ has rank one, and asˆ.`1.X// is a masa in
C �u .Y /, we have that .ˆ.�x//x2X is a maximal family of rank-one projections. Therefore,

SOT-
X
x2X

ˆ.�x/ D 1`2.Y / D ˆ.1`2.X//:

Since ˆ is strongly continuous if and only if

ˆ.1`2.X// D SOT-
X
x2X

ˆ.�x/

(see, for instance, [3, Corollary 5.2]5), this shows that ˆ satisfies (1).

We continue with a positive result.

Theorem 5.3. Let .X; E/ and .Y; F / be u.l.f. coarse spaces. If .X; E/ is metrizable,
ˆWC �u .X/!C �u .Y / is an embedding, and at least one of the following conditions applies:

(1) .Y;F / is metrizable and ˆ.`1.X// is a co-separable Cartan masa of C �u .Y /,

(2) `1.Y / � ˆ.C �u .X//,

then there is a coarse and uniformly finite-to-one f WX ! Y such that

inf
x2X
kˆ.�x/ıf .x/k > 0:

Proof. Suppose that .Y; E/ is metrizable and that ˆ.`1.X// is a co-separable Cartan
masa ofC �u .Y /. By Theorem 1.8, all ghosts inˆ.`1.X// are compact. Therefore, Lemma
4.4 gives a map f WX ! Y such that

inf
x2X
kˆ.�x/ıf .x/k > 0:

As .Y;F / is metrizable, Lemma 2.8 implies f is coarse and uniformly finite-to-one.

5[3, Corollary 5.2] is based on [5, Theorem 4.3]. Even though metrizability of X and Y is stated as
a hypothesis, it is not used in the proof of [5, Theorem 4.3], which holds for u.l.f. coarse spaces in full
generality. See also [2, Theorem 6.1].



B. M. Braga, I. Farah, and A. Vignati 676

Suppose now that `1.Y / � ˆ.C �u .X//. Then, for each M � Y , we have

ˆ�1
�

SOT-
X
y2M

�y

�
D SOT-

X
y2M

ˆ�1.�y/:

Indeed, fix M � Y , and let p be a finite-rank projection below the projection ˆ�1.SOT-P
y2M �y/ and orthogonal to all .ˆ�1.�y//y2M . AsX is metrizable, C �u .X/ contains the

compacts; so, p 2 C �u .X/. Therefore, ˆ.p/ is a projection below SOT-
P
y2M �y which

is orthogonal to all .�y/y2M , i.e., ˆ.p/ D 0. As ˆ is injective, p D 0.
As `1.Y / � ˆ.C �u .X//, the previous paragraph implies that the projections .ˆ�1

.�y//y2Y satisfy the following:

(1) SOT-
P
y2M ˆ�1.�y/ 2 C

�
u .X/ for all M � Y ,

(2) SOT-
P
y2Y ˆ

�1.�y/ D 1`2.X/.

Therefore, by Corollary 2.6, there are ı > 0 and f WX ! Y such that kˆ�1.�f .x//ıxk> ı
for all x 2 X . Hence,

kˆ.�x/ıf .x/k D kˆ
�1.�f .x//ıxk > ı

for all x 2 X . Again, Lemma 2.8 implies that f is coarse and uniformly finite-to-one.

Remark 5.4. Notice that the existence of a uniformly finite-to-one coarse map X ! Y

between u.l.f. coarse spaces is enough so that the geometry ofX is highly controlled by the
one of Y . For instance, if such map exists, (1) the asymptotic dimension of X is bounded
by the one of Y , (2) if Y has property A, so does X , and (3) if Y has finite decomposition
complexity, then so does X (see [5, Corollary 1.3]).

The reader familiar with the theory of embeddings of uniform Roe algebras may have
noticed that the conditions in Theorem 5.3 radically differ from the ones previously con-
sidered in this context. Precisely, the results in the literature (see [5, Theorems 1.4 and
5.4]) usually require the target space Y to satisfy some geometric condition and the
embedding ˆWC �u .X/ ! C �u .Y / to either (1) be rank-preserving or (2) have its image
to be a hereditary subalgebra of C �u .Y /.

It is then natural to wonder if the techniques used to prove Corollary 2.6 can be applied
to obtain a version of this corollary for embeddings. The following shows that this is not
possible.

Proposition 5.5. Let X D
F
n ¹xnº be the coarse disjoint union of singletons6. Given a

u.l.f. metric space Y , the following are equivalent:

(1) There is a block-rank-one ghost projection in C �u .Y /.

(2) There is an embedding ˆW C �u .X/ ! C �u .Y / onto a hereditary subalgebra of
C �u .Y / such that infx2X supy2Y kˆ.�x/ıyk D 0.

6For instance, the reader can have X D ¹n2 j n 2 Nº with the metric inherited from N in mind.



Operator norm localization property for equi-approximable families of projections 677

(3) There is a unital rank-preserving embedding ˆWC �u .X/! C �u .Y / such that

inf
x2X

sup
y2Y

kˆ.�x/ıyk D 0:

Proof. Since X is the coarse disjoint union of singletons, finite propagation elements of
C �u .X/ with zero diagonal are finite rank. Hence,

C �u .X/ D `1.X/CK.`2.X//:

Therefore, in order to define a �-homomorphism ˆW C �u .X/ ! C �u .Y /, it is enough to
define ˆ on `1.X/ and on each exnxm and then extend it linearly and continuously to the
whole C �u .X/, where exz is the rank 1 partial isometry mapping ıx to ız for x; z 2 X .

(1))(2): Let p 2 C �u .Y / be a block-rank-one ghost projection and let .Yn/n be a
disjoint sequence of finite subsets of Y such that

p D SOT-
X
n2N

�Ynp�Yn :

Replacing .Yn/n by a subsequence if necessary, we can assume that Y 0 D
F
n Yn is sparse.

For each n 2 N, let pn D �Ynp�Yn and pick a normalized �n 2 `2.X/ such that pn D
h�; �ni�n.

Define an embedding ˆWC �u .X/! C �u .Y / by

ˆ

� X
n2M

�xn

�
D

X
n2M

pn

for allM �N, andˆ.exnxm/D h�; �mi�n for all n;m 2N. Asˆ.�xn/D pn for all n 2N
and as p is a ghost, then

inf
x2X

sup
y2Y

kˆ.�x/ıyk D 0:

It remains to notice that ˆ.C �u .X// is a hereditary subalgebra of C �u .Y /. As C �u .Y
0/

is a hereditary subalgebra of C �u .Y / and as p D ˆ.1`2.X//, it is sufficient to show that
pC �u .Y

0/p � ˆ.C �u .X//. For that, it is enough to notice that pC �u ŒY
0�p � ˆ.C �u .X//.

Since Y 0 is sparse and each pn has rank 1, this is straightforward and we leave the details
to the reader.

(1))(3): Let Y 0 D
F
n Yn and p D SOT-

P
n pn be as in (1). Note that as p is a ghost

and 1 is not, 1 � p has infinite rank. Let ˆW C �u .X/ ! C �u .Y / be a �-homomorphism
constructed as in the proof of (1))(2), so in particular, ˆ.1/ D p. Fix a nonprincipal
ultrafilter U on N and let ‰W C �u .X/ ! C �u .Y / be a �-homomorphism determined by
‰.K.`2.X/// D ¹0º and

‰.�A/ D

´
1 � p if A 2 U;

0 if A 62 U:
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As ˆ.a/‰.b/ D ‰.b/ˆ.a/ D 0 for all a; b 2 C �u .X/, then the map

‚ D ˆC‰

is a �-homomorphism, hence, an embedding7. Moreover, it is clear that ‚ is unital, rank-
preserving, and that

inf
x2X

sup
y2Y

k‚.�x/ıyk D 0:

(2))(1) and (3))(1): Suppose (1) fails, and let us show that both (2) and (3) must
fail. For that, consider an embedding ˆWC �u .X/! C �u .Y /. If ˆ.C �u .X// is a hereditary
subalgebra of C �u .Y /, then ˆ is strongly continuous and rank-preserving ([5, Lemma
6.1]). We will prove that if there is a rank-preserving embedding, then there is a strongly
continuous rank-preserving embedding8. Suppose that ˆ is rank-preserving, and let

q D SOT- lim
n
ˆ.�¹x1;:::;xnº/;

and notice that, by [5, Theorem 4.3], q 2 C �u .Y / and the map

ˆq WC �u .X/! C �u .Y /

a 7! qˆ.a/q

is a strongly continuous rank-preserving embedding. As

q � ˆ.�x/; ˆq.�x/ D ˆ.�x/ for all x 2 X:

Therefore, ˆq is a strongly continuous rank-preserving embedding, and there is no
loss of generality to assume thatˆ is strongly continuous. Therefore, asˆ is rank-preserv-
ing, Lemmas 2.3 and 3.5 say that if there are no ghost block-rank-one projections in
C �u .Y /, then

inf
x2X

sup
y2Y

kˆ.�x/ıyk > 0:

This shows that :(1)) :(2) and :(1)) :(3).

Remark 5.6. As shown in [11, Corollary C], Item (1) of Proposition 5.5 is equivalent
to Y containing no coarse disjoint union Y 0 D

F
n Yn consisting of ghostly measured

asymptotic expanders (see [11, Definition 1.3] for definitions).

6. Are (I) and (II) equivalent?

As mentioned earlier, the question whether the properties (I) and (II) of C �u .X/ discussed
in the introduction are equivalent reduces to an innocent-looking question.

7Notice that ‚ is not strongly continuous; see [2, Theorem 6.1] for the proper context.
8Again, see [2, Theorem 6.1] for the proper context.
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Question 6.1. Let X be a u.l.f. metric space. Suppose that .pn/ is a sequence of projec-
tions in C �u .X/ such that SOT-

P
n2M pn is in C �u .X/ for every M � N and each pn is

of rank strictly greater than 1.

(1) Can we conclude that for every n there are projections qn � pn of rank 1 such that
SOT-

P
n2M qn is in C �u .X/ for every M � N?

(2) Can we at least conclude that there are an infinite M � N and qn � pn of rank 1
for all n 2M such that SOT-

P
n2M0

qn is in C �u .X/ for every M0 �M ?

A positive answer to either part of Question 6.1 would imply that (I) and (II) are
equivalent. A partial result is given in [6, Lemma 4.3], where a positive answer to (2) is
given in case the projections of interest satisfy our usual regularity condition, that is, if
infn2N supx2Xkpn�xk > 0.
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