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Poisson–Lie group structures on semidirect products

Floris Elzinga and Makoto Yamashita

Abstract. We look at the Poisson structure on the total space of the dual bundle to the Lie algebroid
arising from a matched pair of Lie groups. This dual bundle, with the natural semidirect product
group structure, becomes a Poisson–Lie group as suggested by a recent work of Stachura. Moreover,
when we start from the matched pairs given by the Iwasawa decomposition of simple Lie groups,
we find that the associated Lie bialgebra is coboundary.

1. Introduction

Matched pairs of subgroups have been used to produce interesting examples of Hopf alge-
bras [22] in the ‘80s. Its Hopf algebraic analog; such as the Drinfeld double of a Hopf
algebra, proved to be a very fruitful source of interesting objects as further elaborated
upon by Majid [13] and collaborators.

More recently in [19, 20], Stachura gave a groupoid quantization of the �-Poincaré
group [27]. His model is based on a Lie groupoid arising from a matched pair of subgroups
in SO.N C 1; 1/ and its associated Lie algebroid. The total space of the dual bundle of a
Lie algebroid can be given by the structure of a Poisson manifold [4], and the main result
of [19] amounts to identifying this Poisson structure with that of the �-Poincaré group.

Motivated by this work, we look at the general case in the framework of matched
pairs of Lie groups, and a particular case arising from the Iwasawa decomposition for real
simple Lie groups.

In the general setting, suppose that B; C � G is a matched pair of Lie groups with
their Lie algebras b, c, and g, meaning that B \ C D ¹eº and BC is an open subset of G.
The induced partial action of C on B defines a Lie groupoid GB D BC \ CB with base
B , and vice versa. The dual bundle E of the associated Lie algebroid is trivializable, and
the fibers can be identified with the annihilator b0 � g� of b.

Our starting observation is that B naturally acts on b0, whence E has a semidirect
group structure by combining this action with the linear group structure on b0. Our main
result (Theorem 3.2) is that the Poisson structure on E is multiplicative with respect to
this group structure. Hence, E becomes a Poisson–Lie group.

This can be further motivated by the fact that, when BC � G is dense, the opera-
tor algebra associated with GB represents a locally compact quantum group, namely, the
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bicrossed product of B and C [1]. In this scheme, the crossed product of C with respect
to the induced action on the function algebra of G=C , identified with the function alge-
bra of B , corresponds to the quantized algebra of functions on the Poisson–Lie group E.
However, as the action of B on C is not by group automorphisms, we “break” the group
structure on C and look at the semidirect product of b0 ' c� by B .

As an example, when we start from the matched pair of U.1/ and the .ax C b/-group
in SU.1; 1/, we get a double cover of the E.2/-group as E. The corresponding Poisson
structure is essentially the one studied by Maślanka in [14].

One interesting feature of this Poisson–Lie group is that the associated cobracket on
its Lie algebra is coboundary. Motivated by this, we look at the matched pairs arising from
the Iwasawa decomposition of real simple Lie groupsG with finite center whose maximal
compact subgroups (which will play the role of B) have a nondiscrete center. We show
that the cobracket on E is always coboundary (Theorem 4.1).

The paper is organized as follows: in Section 2, we collect some preliminary material
and fix our conventions. In Section 3, we prove our first main result. We also include a
small discussion on the deformation quantization picture. In Section 4, we turn to matched
pairs in real simple Lie groups and prove our second main result.

2. Preliminaries

2.1. Conventions

Given a (real) vector space V , we denote its linear dual by V �, and the annihilator sub-
space of a given subspace W � V by

W 0
D ¹� 2 V � j 8w 2 W W�.w/ D 0º:

We identify the second exterior power
V2

V with a subspace of the second tensor power
T 2V in such a way that the duality pairing satisfies

hx ^ y; � ˝  i D �.x/ .y/ �  .x/�.y/

for x; y 2 V and �; 2 V �.
For (real) Lie groups G, A, etc., we denote their Lie algebras by g, a, etc. The adjoint

action of G on g is denoted by Ad, and the coadjoint action of G on g� is denoted by
Ad_. The corresponding Lie algebra actions of g are denoted by ad and ad_, so we have
ad.x/.y/ D Œx; y� and

had_.x/.�/; yi D �h�; ad.x/.y/i D �.Œy; x�/:

When B , C are subgroups of G, BC denotes the set of elements of the form bc 2 G for
b 2 B and c 2 C .
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2.2. Matched pairs and associated structures

Let G be a second countable locally compact Hausdorff topological group. By a matched
pair of subgroups of G, we mean a pair of closed subgroups B , C such that B \ C D ¹eº
and that BC is open in G. Thus, any element g in the open set BC \ CB has unique
factorizations g D bc D c0b0 for b; b0 2 B and c; c0 2 C .

Given such a matched pair, we have a groupoid GG;B;C (denoted by �B in [19]) defined
as follows:

• base space: G
.0/
G;B;C D B ,

• arrow space: G
.1/
G;B;C D BC \ CB ,

• range and source maps: r.g/ D b, s.g/ D b0 for g D bc D c0b0 as above,

• composition: g ı g0 D bcc00 (product in G) when g D bc D c0b0 and g0 D b0c00.

The composition is well defined as we have

bcc00 D gb0�1g0 D c0c000b00

when g0 D b0c00 D c000b00. We will write GB D GG;B;C .
If in addition G is a Lie group, GB becomes a Lie groupoid. The Lie algebras form

a matched pair [13, Section 4]: g D b˚ c as vector space, with b and c sitting inside as
subalgebras. Moreover, the groupoid C �-algebras of GB make sense as completions of
the algebra of compactly supported sections of the half-density bundle [2], or the one of
compactly supported smooth functions and the convolution product with respect to a Haar
system [12]. If G is a double Lie group, i.e., G D BC , these algebras are nothing but the
crossed products for the corresponding action of C on C0.B/.

In general, when BC is dense in G, the partial action of C on B , whose graph is
GB , is densely defined so that C acts on L1.B/, and the associated crossed product von
Neumann algebra M D C Ë L1.B/ admits the structure of a semi-regular locally com-
pact quantum group, which is regular when G D BC [1]. Its dual algebra is given by
yM D L1.C / Ì B . In particular, the associated reduced C �-algebras are given by the

reduced groupoid C �-algebras A D C �r .GB/ and yA D C �r .GG;C;B/.

2.3. Lie groupoids and Lie algebroids

Let G be a Lie groupoid with base M D G .0/. Then, we get a Lie algebroid L.G / on M
in the standard way, as follows. As a vector bundle, it is given by

L D ker.Tr W ��TG ! TM/;

where �WM ! G is the embedding as identity morphism in G and Tr is the tangent map
of r . The bracket on �.L/ is given by identifying it with the space of left invariant vector
fields on G and restricting the usual bracket on X.G / D �.TG /. The anchor map aWL!
TM is the restriction of Ts.
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IfG is a Lie group and its subgroupsB;C form a matched pair inG, then the Lie alge-
broid L.GB/ can be modeled on B � c. Namely, at b 2 B , elements of the fiber L.GB/b
correspond to the tangent vectors at b with integral curve b exp.ty/ for y 2 c. Equiva-
lently, we use the left translation map Lb W g 7! bg to identify L.GB/b with c. This gives
the trivialization

L.GB/ Š B � c: (1)

3. Poisson–Lie groups from matched pairs

3.1. Poisson structures from Lie algebroids

Let G be a Lie group, and let B , C be its subgroups forming a matched pair. Let us look
in detail at the groupoid GB over B and the associated Lie algebroid L.GB/.

Consider E D .TB/0, the (total space of the) subbundle of T�GjB D ��T�GB orthog-
onal to TB � ��TGB . We identify E with b0 �B by right translations. Using this presen-
tation, we interpret it as the semidirect product for the natural action of B on b0. That is,
given g D .v; b/ and h D .w; b0/ in b0 � B , we put

gh D .v C Ad_b w; bb
0/; g�1 D .�Ad_

b�1
w; b�1/:

This is consistent with viewing E as a subgroup of T�G, which has a semidirect product
structure g� ÌG coming from Ad_. Let us write the Lie algebra of E as

e D b0 ˚ b:

Lemma 3.1. The action of g D .v; b/ for AdE is as follows:

AdEg . / D Ad_b  . 2 b0/; (2)

AdEg .y/ D Adb y � ad_.Adb y/.v/ .y 2 b/: (3)

Proof. First, let us consider  . The vector AdEg . / is the differential at t D 0 of the
integral curve g.t ; e/g�1. By the commutativity of b0, this is equal to

d
dt

ˇ̌̌̌
tD0

.Ad_b t ; e/ D Ad_b  :

As for y, the vector AdEg .yi / is the differential of the integral curve g.v; exp.ty//g�1.
Computing the adjoint by g, we get

.v � Ad_
b exp.ty/b�1 v; b exp.ty/b�1/:

Its differential is indeed Adb y � ad_.Adb y/.v/.

Note thatE is isomorphic to the dual vector bundle of L.GB/ by the duality between c

and b0. Let us describe the induced Poisson structure on E [4]. The bracket is defined on
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fiberwise linear functions zX on E coming from the sections X of L.GB/, and pullbacks
��.f / of the smooth functions on B , as

¹fX1;fX2º DCŒX1; X2�; ¹ zX;��.f1/º D ��.a.X/f /; ¹��.f1/; ��.f2/º D 0: (4)

To obtain a more concrete formula for the second relation, let us denote the projections
from g ' b˚ c to b and c by Pb and Pc respectively. Then, given y 2 c and b 2 B , the
corresponding section (up to the trivialization (1)) XLy of L.GB/ satisfies

a.XLy /.b/ D .TRb/ePb Adb y (5)

with respect to the right translation map Rb W b0 ! b0b.
Our first goal is to prove the following.

Theorem 3.2. The Poisson bracket on E characterized by (4), together with the semidi-
rect product group structure, defines a Poisson–Lie group structure.

Let us first start with an observation: the invariance of b under Adb for b 2 B implies
that c ' g=b admits an action of B , concretely given by the operators .Pc Adb/b2B .
Another viewpoint is to use the nondegenerate linear duality pairing between c and b0,
given as the restriction of the canonical paring between g and g�. As b0 is invariant under
the transformations Ad_b for b 2 B , we obtain an action of B on c by duality, which is the
contragredient representation of the above one: for b 2 B , y 2 c, and � 2 b0, we have

hPc Adb y; �i D hy;Ad_
b�1

�i:

Let us fix a basis .yi /i2I of c and take its dual basis . i /i2I in b0 with respect to the
duality pairing. Then, the element t D

P
i2I  

i ˝ yi is invariantly defined, and we haveX
i

Ad_b  
i
˝ Pc Adb yi D

X
i

 i ˝ yi .b 2 B/: (6)

The candidate group 1-cocycleE!
V2 e for our bracket is the function �D �0C �b,

with the factors

�0.g/ D
1

2

X
i;j

hv;AdbŒyi ; yj �iAd_b  
i
^ Ad_b  

j ; �b.g/ D
X
i

Ad_b  
i
^ Pb Adb yi ;

where we write g D .v; b/ as above.

Lemma 3.3. The Poisson bivector … 2 �.E;
V2 TE/ for (4) is given by

…g D .TRg/˝2e �.g/:

Proof. We have to check

h…g ; df ˝ df
0
i D ¹f; f 0º.g/
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for functions f , f 0 of the form either zX or ��.f 00/. The third relation in (4) is obviously
satisfied as �.g/ does not have components in

V2 b.
Note that we have

h.Teyi /g ; .TRg/e.Ad_b  
j /i D

d
dt

ˇ̌̌̌
tD0

eyi .v C t Ad_b  
j ; b/

D
d
dt

ˇ̌̌̌
tD0

hv C t Ad_b  
j ;Adb yi i

D
d
dt

ˇ̌̌̌
tD0

th j ; yi i D ıi;j : (7)

Here, the adjoint action of b on yi comes from the fact that we are comparing left translates
from the Lie algebroid with right translates in E. This, combined with (5), implies the
second relation in (4) for ….

Finally, we have

h.Teyi /g ; .TRg/e.Pb Adb yj /i D
d
dt

ˇ̌̌̌
tD0

hAd_exp.tPb Adb yi /
.v/;Adexp.tPb Adb yi /a.yj /i

D
d
dt

ˇ̌̌̌
tD0

hv;Adb yj i

D 0:

Combining this with (7), we obtain the first relation in (4) for ….

Lemma 3.4. With g 2 E presented by .v; b/ 2 b0 � B , we have

�0.g/ D
1

2
hv; Œyi ; yj �i 

i
^  j � Ad_b  

i
^ ad_.Pb Adb yi /.v/: (8)

Proof. The coefficient of Ad_b  
i ^ Ad_b  

j in �0.g/ can be written as

hv;AdbŒyi ; yj �i D hv; Pc AdbŒyi ; yj �i D hv; PcŒAdb yi ;Adb yj �i

using the assumption v 2 b0. The second term on the right-hand side can be expanded as

PcŒ.Pb C Pc/Adb yi ; .Pb C Pc/Adb yj �

D ŒPc Adb yi ; Pc Adb yj �C PcŒPb Adb yi ; Pc Adb yj �C PcŒPc Adb yi ; Pb Adb yj �

which we pair with v.
Then, using the invariance (6), we can write

hv; ŒPc Adb yi ; Pc Adb yj �iAd_b  
i
^ Ad_b  

j
D hv; Œyi ; yj �i 

i
^  j ;

hv; ŒPb Adb yi ; Pc Adb yj �iAd_b  
i
^ Ad_b  

j
D hv; ŒPb Adb yi ; yj �iAd_b  

i
^  j ;

hv; ŒPc Adb yi ; Pb Adb yj �iAd_b  
i
^ Ad_b  

j
D hv; Œyi ; Pb Adb yj �i i ^ Ad_b  

j :



Poisson–Lie group structures on semidirect products 637

Notice that the last two terms are the same after swapping the order of the bracket and the
wedge product and renaming dummy indices.

Finally, by definition

hv; ŒPb Adb yi ; yj �i D �had_.Pb Adb yi /.v/; yj i;

we can now complete one of the summations to get that

hv; ŒPb Adb yi ; yj �iAd_b  
i
^  j D �Ad_b  

i
^ ad_.Pb Adb yi /.v/:

Combining these, we obtain the claim.

Now, we are ready for the proof of our first main result.

Proof of Theorem 3.2. By Lemma 3.3, it is enough to show that � satisfies the cocycle
condition

�.gh/ D �.g/C .AdEg ˝AdEg /�.h/;

or equivalently,
.AdEg ˝AdEg /�.h/ D �.gh/ � �.g/:

We proceed by computing the left-hand side for the two pieces �0 and �b separately and
then compare. In the following, we write g D .v; b/ and h D .w; b0/.

First, we expand .AdEg ˝AdEg /�0.h/ as

1

2
hw;Adb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j

D
1

2
hAd_b w;Adbb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j

D
1

2
hv C Ad_b w;Adbb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j

�
1

2
hv;Adbb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j :

We recognize the first term as �0.gh/, so we focus on the second term. If we apply our
formula (8) to it, we find that

1

2
hv;Adbb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j

D
1

2
hv; Œyi ; yj �i 

i
^  j � Ad�bb0  

i
^ ad_.Pb Adbb0 yi /.v/:

Relation (8) also implies that

1

2
hv; Œyi ; yj �i 

i
^  j D

1

2
hv;AdbŒyi ; yj �iAd_b  

i
^ Ad_b  

j

C Ad_b  
i
^ ad_.Pb Adb yi /.v/:
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Combining the two yields

1

2
hv;Adbb0 Œyi ; yj �iAd_bb0  

i
^ Ad_bb0  

j

D
1

2
hv;AdbŒyi ; yj �iAd_b  

i
^ Ad_b  

j
C Ad_b  

i
^ ad_.Pb Adb yi /.v/

� Ad_bb0  
i
^ ad_.Pb Adbb0 yi /.v/:

The first term on the right-hand side is precisely �0.g/, so we now have�
AdEg ˝AdEg

�
�0.h/ D �0.gh/ � �0.g/ � Ad_b  

i
^ ad_.Pb Adb yi /.v/

C Ad_bb0  
i
^ ad_.Pb Adbb0 yi /.v/: (9)

Second, we see that .AdEg ˝AdEg /�b.h/ is equal to

Ad_bb0  
i
^ ŒAdb Pb Adb0 yi � ad_.Adb Pb Adb0 yi /.v/�

by (2) and (3). To obtain projections in the right places, write

Adb Pb Adb0 yi D Pb Adb Pb Adb0 yi D Pb Adb.1 � Pc/Adb0 yi :

We proceed by exploiting the duality again:

Ad_bb0  
i
^ ŒPb Adbb0 yi � Pb Adb Pc Adb0 yi �

D Ad_bb0  
i
^ Pb Adbb0 yi � Ad_b  

i
^ Pb Adb yi

D �b.gh/ � �b.g/:

This implies

.AdEg ˝AdEg /�b.h/

D �b.gh/ � �b.g/ � Ad_bb0  
i
^ ad_.Pb Adbb0 yi � Pb Adb Pc Adb0 yi /.v/;

and by invariance (6), we have

.AdEg ˝AdEg /�b.h/ D �b.gh/ � �b.g/ � Ad_bb0  
i
^ ad_.Pb Adbb0 yi /.v/

C Ad_b  
i
^ ad_.Pb Adb yi /.v/: (10)

Combining (9) and (10), we find

.AdEg ˝AdEg /.�0.h/C �b.h//

D �0.gh/ � �0.g/C �b.gh/ � �b.g/C Ad_bb0  
i
^ ad_.Pb Adbb0 yi /.v/

� Ad_bb0  
i
^ ad_.Pb Adbb0 yi /.v/ � Ad_b  

i
^ ad_.Pb Adb yi /.v/

C Ad_b  
i
^ ad_.Pb Adb yi /.v/

D �.gh/ � �.g/;

as desired.
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Remark 3.5. Let us sketch another argument to obtain the cocycle property of �. We
thank the reviewer for this observation. Generally, suppose that .�; V / is a linear repre-
sentation of a Lie groupG0, and further suppose that we have a linear representation ofG0

on V ˚ V � by operators of the form�
�g � 0.g/

0 �_g

�
.g 2 G0/

for some function � 0 fromG0 to Lin.V �; V /, the space of linear maps from V � to V . Then,

� 0.gh/ D �g�
0.h/C � 0.g/�_h

implies that the function
� 00.g/ D � 0.g/.�_g /

�1

is a 1-cocycle for the adjoint representation of G0 on Lin.V �; V /. Identifying Lin.V �; V /
with V ˝ V D T 2V and then composing � 00 with the equivariant projection to the G0-
invariant summand

V2
V , we obtain a 1-cocycle � with values in

V2
V . Up to rescaling,

our construction corresponds to V D b0˚ b (with V � identified with c˚ c0) andG0 DE.
To be more precise, V ˚ V � is identified with g� ˚ g up to rearranging summands in

V ˚ V � D b0 ˚ b˚ c˚ c0:

On g� ˚ g, one has the adjoint representation of G00 D g� Ì G, and its restriction on
E D b0 ÌB has the desired triangular form, since this action ofG00 restricts to the adjoint
representation of E on V . We then obtain �2� D � by a direct computation.

3.2. Alternative proof of Theorem 3.2 for double Lie groups

It was pointed out to us by P. Stachura that Theorem 3.2 can also be derived from the
work of Zakrzewski [26] when the matched pair decomposition is global. This situation is
referred to as a double Lie group. We will freely use the terminology and notation of [21].
Now, we give a sketch of the argument.

LetG DBC be a double Lie group, and consider the groupoids GB and GC D GG;C;B .
Write mC for the multiplication relation of GC . We begin by taking its transpose, which
gives the relation

mTC .g/ D ¹.b1c; cb2/ j b1; b2 2 B; c 2 C; b1cb2 D gº:

This can be viewed as a relationmTC WGB _ GB � GB , which turns out to be a (Zakrzewski)
morphism of Lie groupoids.

We now apply the phase lift functor to GB and the morphism mTC . The phase lift of a
differentiable relation r WX _ Y is a new relation Pr WT�X _ T�Y with graph

.˛; ˇ/ 2 Gr.Pr/, 8.u; v/ 2 T.�Y .˛/;�X .ˇ// Gr.r/W W h˛; ui D hˇ; vi:
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The resulting groupoid PGB has as arrow space the total space of the cotangent bundle
T�GB . However, the base space is not T�B , as one might expect. The unit relation eW ¹1º_
GB becomes a relation PeW ¹1º � ¹0º_ T�GB . Because the original base space was B , it
follows that the conditions for .g; X�/ 2 T�GB to lie in Gr.Pe/ are that g 2 B and that
X� 2 b0, as the fiber of the tangent and cotangent bundle of ¹1º is the zero vector space.

We now claim that the base map of the phase lift PmTC is precisely the group operation
of .TB/0. The graph of the base map is the transpose of the intersection

Gr.PmTC / \ .TB/
0
� .TB/0 � .TB/0 � .T�GB � T�GB/ � T�GB :

Let ..b1;  1/; .b2;  2/; .b;  // 2 .TB/0 � .TB/0 � .TB/0. Note that .b1; b2; b/ lies in
the graph of mTC if and only if b D b1b2. We describe the tangent space to Gr.mTC / at
.b1; b2; b1b2/. Any tangent vector in the direction of B is not important because  1,  2,
 are from b0. Take X 2 c instead; then, we get a curve

.b1e
tX ; etXb2; b1e

tXb2/ D ..b1e
tXb�11 /b1; e

tXb2; .b1e
tXb�11 /b1b2/:

Differentiating this curve, we get the tangent vectors .Adb1.X/; X;Adb1.X//, or equiva-
lently .Y;Adb�11 .Y /; Y /. Plugging this into the equation defining the graph of PmTC , we
find the condition that

 .Y / D  1.Y /C  2.Adb�11 .Y // D . 1 C Ad_b1  2/.Y /:

Therefore, the base map of PmTC is

..b1;  1/; .b2;  2// 7! .b1b2;  1 C Ad_b1  2/;

as claimed.
Then, the phase lift of a Zakrzewski morphism produces a morphism of symplectic

groupoids and the fact that the base map of such a morphism is always a Poisson map;
see, for example, [3, Chapter II] and [26, Section 5].

3.3. Example: The E.2/ group from SU.1; 1/

Let us take G D SU.1; 1/ and its Iwasawa decomposition G D KAN with subgroups

K D U.1/ D

²�
ei' 0

0 e�i'

�
j ' 2 R

³
;

A D

²�
cosh.t/ sinh.t/
sinh.t/ cosh.t/

�
j t 2 R

³
;

N D

²�
1C is �is

is 1 � is

�
j s 2 R

³
:

Take B D K and C D AN as a matched pair in G. In this case, we get b0 ' C, and the
group E is the semidirect product C Ì U.1/ with the product

.z; ei'/.w; ei / D .z C e2i'w; ei.'C //:
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Denote the semidirect product R2 Ì SO.2/ for the natural rotation action of SO.2/ on
R2 by EC.2/, which is the “positive” part of the 2-dimensional Euclidean group. Now,
consider the twofold cover of EC.2/ given by the matrix group

E.2/ D
²�
v n

0 v�1

�
j v 2 T ; n 2 C

³
;

which acts on � 2 C as � 7! v2� C vn. We have an isomorphism E ' E.2/ through the
identifications v D ei' and n D e�i'z. This isomorphism also matches up the actions of
the groups on C. As we will see below, the Poisson–Lie group structure on E.2/ obtained
by our scheme agrees (up to double covering) with the one considered in [14].

Write the generators of K, A, N above as

ih D

�
i 0

0 �i

�
; y.a/ D

�
0 1

1 0

�
; y.2/ D

�
i �i

i �i

�
:

We realize g� as a subspace of sl2.C/ by

g� D

²�
a z

0 �a

�
j a 2 R; z 2 C

³
compatible with the natural duality pairing

hx; yi D Im Tr.xy/:

Then, b0 is spanned by

y.a/� D

�
0 i

0 0

�
; y.2/� D

�
0 1

0 0

�
:

To help compare with [14], let us write our basis of e as

P1 D y
.a/�; P2 D y

.2/�; J D ih:

Their relations are given by

ŒP1; P2� D 0; ŒJ; P1� D 2P2; ŒJ; P2� D �2P1:

Let us compute the bracket on e� induced by the Poisson bracket coming from the Lie
groupoid. As before, we denote by XLy the sections of L.GB/ corresponding to y 2 c. We
will also denote the sections coming from y.a/ and y.2/ by XL

.a/
and XL

.2/
. Furthermore,

we denote the corresponding fiber-wise linear functions on E by eXLy , etc. Concretely, we
have

eXL.a/.P1; ei'/ D hP1;Adei' y
.a/
i D cos.2'/; eXL.a/.P2; ei'/ D sin.2'/;

eXL.2/.P1; ei'/ D � sin.2'/; eXL.2/.P2; ei'/ D cos.2'/:
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So, these two functions can and will be used as coordinate functions p1 and p2 on the
“linear part” of E. On the U.1/ part of E, we have the function

U.1/! C;

�
ei' 0

0 e�i'

�
7! ei' ;

which we denote by ei' again.
The anchor map aWL.GK/! TK D k �K becomes

a.XLy /.e
i'/ D .Pk.Adei'y/; e

i'/;

where Pk is the projection g! k corresponding to the decomposition g D k ˚ .a˚ n/.
For our basis above, we get

a.XL.a//.e
i'/ D .sin.2'/J; ei'/; a.XL.2//.e

i'/ D ..1 � cos.2'//J; ei'/:

We can now compute the Poisson structure. The bracket on the linear part is given by

¹
eXL.a/; eXL.2/º DDXL

Œy.a/;y.2/�
D 2eXL.2/:

Between the linear part and the base part, we have

¹
eXL.a/; ei'º D a.XL.a//e

i'
D sin.2'/JRei' D i sin.2'/ei' ;

¹
eXL.2/; ei'º D i.1 � cos.2'//ei' :

To compare with [14], we pass to the quotient E=Z2 ' EC.2/. This identification is
given by .z; ei'/ 7! .z; ei2'/ so that the linear functions are unchanged, but the function
ei# on EC.2/ corresponds to ei2' on E. As

¹
eXL.a/; ei2'º D 2ei'¹eXL.a/; ei'º D 2i sin.2'/ei2' ; ¹eXL.2/; ei2'ºD2i.1 � cos.2'//ei2' ;

we obtain the following Poisson bracket on EC.2/:

¹
eXL.a/; eXL.2/º D 2eXL.2/; ¹eXL.a/; ei#º D 2i sin.#/ei# ; ¹eXL.2/; ei#º D 2i.1 � cos.#//ei# :

Then, putting

V 1 D �eXL.a/; V 2 D eXL.2/;

we obtain the bracket [14, Equation (10)] for ! D �2.
In [24, Section 3], Woronowicz constructed the quantum group Eq.2/ starting with

the model E.2/ for the group of Euclidean motions of the plane. Note that the Poisson–
Lie structure obtained here is different from the one behind Woronowicz’s example. In
the notation of [17], what we obtained is a scaled version of the cobracket ı3 on e.2/,
while Woronowicz’s Eq.2/ corresponds to the family ı1. Nevertheless, there is still some
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similarity between the two. If we pass to the dual e.2/�, with basis ¹J �;P �1 ;P
�
2 º, then the

Lie brackets dualizing ı1 and ı3 yield isomorphic Lie algebras. Indeed, ı1 gives

ŒP �1 ; P
�
2 �1 D 0; ŒP �1 ; J

��1 D sP
�
1 ; ŒP �2 ; J

��1 D sP
�
2 ; (11)

where s is an auxiliary parameter, while ı3 gives

ŒP �1 ; P
�
2 �3 D P

�
2 ; ŒP �1 ; J

��3 D J
�; ŒP �2 ; J

��3 D 0:

So, the linear isomorphism �W e.2/� ! e.2/� given by

�.J �/ D �sP �1 ; �.P �1 / D J
�; �.P �2 / D P

�
2

satisfies � ı Œ�; ��1 D Œ�.�/; �.�/�3.
Let us also note that this Lie algebra structure on e.2/� is isomorphic to the standard

Lie algebra structure on
su.1; 1/� D su.2/�:

The latter is spanned by h, e, and ie as a real Lie subalgebra of sl2.C/, which is indeed
isomorphic to e.2/� with bracket (11). In particular, dualizing the Lie bialgebras .e.2/; ı1/,
.e.2/; ı3/, and su.1; 1/, we get different Lie bialgebra structures on e.2/�. The ones from
ı1 and su.1; 1/ are cohomologous as we will see in Section 4, while the one from ı3 has
a different class in cohomology.

3.4. Deformation quantization

Let us explain an analog of strict deformation quantization, in the framework of unbound-
ed multipliers. The bounded picture, that is, aC �-algebraic strict deformation quantization
in the sense of Rieffel [16], is already provided in [11].

Let U.c/ be the complexified universal enveloping algebra of c, i.e., the universal
associative unital C-algebra generated by a copy of c as its real subspace, with relations
xy � yxD Œx;y�c for x;y 2 c. The Hopf algebraU.c/ acts onC1

b
.B/, and the elements of

the crossed product U.c/ËC1
b
.B/ can be regarded as unbounded multipliers of C �.GB/;

see Appendix A.
Since Sym.c/ can be identified with the space of complex polynomial functions on b0,

the elements of Sym.c/˝ C1
b
.B/ can be regarded as unbounded multipliers of C0.E/.

Let us consider the corresponding bracket on Sym.c/˝ C1
b
.B/.

By choosing an ordered basis of c, by the same argument as the Poincaré–Birkhoff–
Witt theorem, we get a linear isomorphism:

QWSym.c/˝ C1b .B/! U.c/ Ë C1b .B/;

which is compatible with the filtrations by degree in c. For an auxiliary parameter h, define
QhWSym.c/˝ C1

b
.B/! U.c/ Ë C1

b
.B/ by

Qh.y1 � � �yk ˝ f / D h
kQ.y1 � � �yk ˝ f /:
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Proposition 3.6. We have

ŒQh.T ˝ f /;Qh.T
0 ˝ f 0/�

h
D Qh.¹T ˝ f; T

0
˝ f 0º/CO.h/

for T; T 0 2 Sym.c/ and f; f 0 2 C1
b
.B/.

Proof. For linear polynomials, we have

ŒQh.y ˝ 1/;Qh.y
0 ˝ 1/�

h
D Qh.¹y ˝ 1; y

0
˝ 1º/ .y; y0 2 c/

with exact equality, from the structure of U.c/. (y ˝ 1 corresponds to the function eXLy .)
For general elements T; T 0 2 Sym.c/, induction on degree gives

ŒQh.T ˝ 1/;Qh.T
0 ˝ 1/�

h
D Qh.¹T ˝ 1; T

0
˝ 1º/CO.h2/:

Between c and C1
b
.B/, we again have

ŒQh.y ˝ 1/;Qh.1˝ f /�

h
D Qh.¹y ˝ 1; 1˝ f º/ .y 2 c; f 2 C1b .B//

with exact equality, from the way the anchor map is defined. (1˝ f corresponds to the
function ��f .) For general T 2 Sym.c/, again by induction on degree, we get

ŒQh.T ˝ 1/;Qh.1˝ f /�

h
D Qh.¹T ˝ 1; 1˝ f º/CO.h/:

Finally, we also have ŒQh.1˝ f /;Qh.1˝ f 0/� D 0.

There is a structure of a Hopf algebra (up to completion) on U.c/ Ë C1
b
.B/ corre-

sponding to the bicrossed product structure, as follows. On C1
b
.B/, we consider the one

coming from the group structure of B , implemented as

�WC1b .B/! C1b .B � B/ �M.C0.B/˝ C0.B//:

(We can also take C1
b
.B/ as the domain.) We mix this with the usual cocommutative

coproduct �WU.c/! U.c/˝ U.c/, using the action of B on c, as follows.
Note that U.c/˝ C1.B � B/ is identified with the space of smooth functions B �

B ! U.c/ with finite-dimensional images. For T ˝ f with T 2 U.c/ and f 2 C1.B �
B/, denote by �.T ˝ f / the function .g; h/ 7! T gf .g; h/, where T g is the right action
of B on U.c/ induced by the right action on c. Since U.c/ is the increasing union of
finite-dimensional representations of B , the map � is well defined as a transformation on
U.c/˝ C1.B � B/. We then put

�.T ˝ f / D .T.1/ ˝ �.T.2/ ˝�.f ///1324 .T 2 U.c/; f 2 C1b .B//;

where T.1/ ˝ T.2/ is the Sweedler notation for �.T /.
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If B is compact, we can have a model of a genuine Hopf algebra by taking the algebra
O.B/ of matrix coefficients of finite-dimensional complex linear representations instead
of C1.B/. Indeed, since U.c/ is a union of finite-dimensional B-modules, the above
� restricts to a coproduct map from H D U.c/˝ O.B/ to the algebraic tensor product
H ˝H .

4. Coboundary Lie bialgebras from real simple Lie groups

Throughout this section, letG denote a connected real simple Lie group with finite center,
and let K be its maximal compact subgroup. We further assume that K has a nondiscrete
center, which is equivalent to Z.k/ being 1-dimensional. This means that G is, up to a
finite cover, the identity component of the group of isometries on a noncompact irreducible
Hermitian symmetric space [7]. For example, we could take G D SU.p; q/ and K D
S.U.p/ � U.q//.

4.1. Finding the r-matrix

Denote the real Lie algebras of G and K by g and k, respectively. Let us take the Cartan
decomposition for K � G, i.e., an orthogonal decomposition g D k ˚ p for the invariant
symmetric bilinear form. We note

Œk; k� � k; Œk;p� � p; Œp;p� � k: (12)

Under our assumptions, Z.k/ must be 1-dimensional, and we can pick a spanning
element z of Z.k/ satisfying

ad.z/2
ˇ̌
p
D �1I (13)

see, for example, [7, Chapter VIII].
The Iwasawa decomposition G D KAN gives a matched pair of subgroups K and

S D AN in G and induces the decomposition g D k ˚ s as a vector space. We denote
the two projections associated to this decomposition by P Ik and P Is , respectively. By
the recipe of our main result, we get a Poisson–Lie group structure on E D k0 Ì K, or
equivalently a Lie bialgebra structure on e D k0 Ì k. As in Lemma 3.3, the Poisson–Lie
structure can be described by the 1-cocycle �WE ! e˝ e. The cobracket ı on e is then
given by differentiating �. Let ¹yiº be a basis of s and ¹ iº the dual basis inside k0. Then,
for x 2 k, we get

ı.x/ D
d
dt

ˇ̌̌̌
tD0

�.0; etx/

D
d
dt

ˇ̌̌̌
tD0

X
i

Ad_etx  
i
^ P Ik Adetx yi

D

X
i

P Ik Œyi ; x� ^  
i ;

where we have used the Leibniz rule and P Ik yi D 0 at the last step.
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Similarly, for  2 k0, ı. / is an element of k0 ˝ k0 characterized by

hı. /; y ˝ y0i D h ; Œy; y0�i .y; y0 2 s/:

In the following, we will use the notation

x � .y ˝ z/ D .ad.x/˝ �C �˝ ad.x//.y ˝ z/

for x; y; z 2 e.

Theorem 4.1. Under the above setting, the Lie bialgebra structure on the Lie algebra e

is coboundary. More precisely, r D z � ı.z/ satisfies ı.x/ D Œr;�.x/� for all x 2 e.

Proof. Let us first check
ı.x/ D Œr;�.x/�

for x 2 k.
On the one hand, we have

z � z � ı.x/ D �ı.x/:

Indeed, we can identify k0 with p as representations of k by the Killing form of g. Then,
the centrality of z and the normalization condition (13) implies this claim.

On the other hand, we have

0 D ı.Œx; z�/ D x � ı.z/ � z � ı.x/ .x 2 k/

by the centrality of z and the cocycle condition for ı.
Combining these two, we obtain

ı.x/ D �z � z � ı.x/ D �x � z � ı.z/ D Œz � ı.z/;�.x/�:

It remains to show that
ı. / D Œr;�. /�

for  2 k0.
Let us look at the Cartan decomposition g D k ˚ p and write the corresponding pro-

jections as PCk and PCp . Then, for y 2 s, we have

PCk y D �P
I
k P

C
p y;

by the following general lemma.

Lemma 4.2. Let V be a vector space, and suppose that we have decompositions U ˚W1
and U ˚W2. Denote the corresponding projections by P 1U , P 1W1 and P 2U , P 2W2 , respec-
tively. Then, we have

P 2Uw D �P
1
UP

2
W2
w .w 2 W1/:
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Proof. We can expand 0 D P 1Uw as P 1UP
2
Uw C P

1
UP

2
W2

, which is equal to P 2Uw C
P 1UP

2
W2
w.

Proof of Theorem 4.1 (continued). We claim that our candidate for the r-matrix can be
also written as

r D
X
i

PCk yi ^  
i : (14)

By the centrality of z, we can write r D z � ı.z/ as

z �
�X

i

P Ik Œyi ; z� ^  
i
�
D

X
i

P Ik Œyi ; z� ^ ad_.z/. i /:

Then, the K-invariance of the canonical tensor
P
i yi ˝  

i as in (6) implies that the
right-hand side is equal to

�

X
i

P Ik ŒP
I
s ad.z/.yi /; z� ^  i D

X
i

P Ik ad.z/2.yi / ^  i :

Using (13), we have ad.z/2.y/ D �PCp y for y 2 s. Then, Lemma 4.2 implies the claim.
Finally, notice that (12) implies

 .Œy; y0�/ D  .ŒPCk y; y
0� � ŒPCk y

0; y�/

for  2 k0. Therefore,

h ; Œy; y0�i D h ; ŒPCk y; y
0� � ŒPCk y

0; y�i

D

X
i

h ; Œ i .y/PCk yi ; y
0� � Œ i .y0/PCk yi ; y�i

D �

X
i

h i ˝ ad_.PCk yi /. /; y ^ y
0
i;

but this is nothing but hŒr;� �; y ˝ y0i by (14).

Remark 4.3. We note that the above element r is the only one satisfying ı.x/D Œr; x� for
all x 2 e. Indeed, take any other potential r-matrix r 0; then, the difference r � r 0 would be
an invariant element of k˝ k0˚ k0˝ k. Testing against�.z/ shows that no such elements
exist except for 0.

Remark 4.4. While our argument relies on the centrality of z, the expression (14) makes
sense as an element of

V2 e in general, and in some cases, it still implements the cobracket.
For example, this is the case for g D so.3; 1/ [27]; see also a related phenomenon for the
semidirect product of so.p; q/ and RpCq [18, 28].

Example 4.5. Starting from g D su.1; 1/ and k D so.2/, we get r D J ^ P2 for the
cobracket on e.2/ (cf. [14]).
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4.2. Example: G D SU.p; 1/

The Lie algebra of SU.p; 1/ for p � 2 is

su.p; 1/ D

²�
M b

b� �TrŒM �

�
jM 2Mp.C/; M

�
D �M; b 2 Cp

³
:

We pick the maximal compact subalgebra

k D

²�
M 0

0 �TrŒM �

�
jM 2Mp.C/; M

�
D �M

³
;

which corresponds to the maximal compact subgroup S.U.p/ � U.1// of SU.p; 1/. We
remark that the center of k is one-dimensional and spanned by

z D
1

p C 1

�
iIp 0

0 �pi

�
;

where we have normalized such that ad_.z/2jk0 D ��. The associated Cartan decomposi-
tion is given by

su.p; 1/ D k ˚ p; p D

²�
0 b

b� 0

�
j b 2 Cp

³
:

The other decomposition which we will use is the Iwasawa decomposition. This begins
with a choice of maximal commutative subalgebra a of p. We will work with

a D

²
t

�
0 ep
e�p 0

�
j t 2 R

³
;

where ep is the column vector of size p with entries 0; : : : ; 0; 1. In addition, we have the
positive restricted root spaces

gf1 D

8<:
0@ 0 v �v

�v� 0 0

�v� 0 0

1A j v 2 Cp�1

9=; ; g2f1 D

8<:t
0@0 0 0

0 i �i

0 i �i

1A j t 2 R

9=; :
These combine into the nilpotent part n D gf1 ˚ g2f1 , which is normalized by a. Finally,
this gives the solvable part of the Iwasawa decomposition:

s D a˚ n:

The complexification of su.p; 1/ is sl.pC 1;C/, and its dual su.p; 1/� (with respect
to the imaginary part of the Killing form) is given by the Lie algebra of upper triangular
.p C 1/ � .p C 1/-matrices with real entries on the diagonal. Then, k0 � su.p; 1/� is
given by

k0 D

²�
0 w

0 0

�
j w 2 Cp

³
;

which is indeed a commutative subspace.
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Let us take a basis of s as follows:

y.a/D

�
0 ep
e�p 0

�
2 a; y.2/D

0@0 0 0

0 i �i

0 i �i

1A 2 g2f1 ;

y
.R/

k
D

0@ 0 �ek ek
e�
k

0 0

e�
k

0 0

1A 2 gf1 ; y
.I /

k
D

0@ 0 iek �iek
ie�
k

0 0

ie�
k

0 0

1A2gf1 .kD1; : : : ; p � 1/:

Their brackets are given by

Œy.a/; y.2/� D 2y.2/; Œy.a/; y
.R/

k
� D y

.R/

k
; Œy.a/; y

.I /

k
� D y

.I /

k
;

Œy
.R/

k
; y
.R/

`
� D 0; Œy

.I /

k
; y
.I /

`
� D 0; Œy

.R/

k
; y
.I /

`
� D 2ık`y

.2/;

while all other brackets involving y.2/ vanish.
The dual basis in k0 is given by

y.a/� D

�
0 iep
0 0

�
; y.2/� D

�
0 ep
0 0

�
;

y
.R/�

k
D

�
0 iek
0 0

�
; y

.I /�

k
D

�
0 ek
0 0

�
.k D 1; : : : ; p � 1/:

From the above computation, we see that the induced cobracket ı on k0 is given by

ı.y.a/�/ D 0; ı.y
."/�

k
/ D y.a/� ^ y

."/�

k
;

ı.y.2/�/ D y.a/� ^ y.2/� C 2

p�1X
kD1

y
.R/�

k
^ y

.I /�

k
;

where " denotesR or I in the second relation. From (14), we see that the r-matrix is given
by

r D PCk y
.2/
^ y.2/� C

p�1X
kD1

ŒPCk y
.R/

k
^ y

.R/�

k
C PCk y

.I /

k
^ y

.I /�

k
�

D .iepp � iepC1;pC1/ ^ y
.2/�
C

p�1X
kD1

Œ.epk � ekp/ ^ y
.R/�

k
C .iekp C iepk/ ^ y

.I /�

k
�:

Let us take a look at the structure on the Lie group level. (The formulas apply to the
case p D 1 as well.) The maximal compact subgroup K is

S.U.p/ � U.1// D
²�
U 0

0 det.U /

�
j U 2 U.p/

³
Š U.p/:

Write E.p C 1/ for the Poisson–Lie group k0 ÌK constructed out of SU.p; 1/ as in the
previous section. Then,

EC.p C 1/ Š Cp Ì U.p/;
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and a brief computation shows that

Ad_U .z1; : : : ; zp/ D det.U /U

0B@z1:::
zp

1CA :
Thus, the groups EC.p C 1/ can be regarded as subgroups of the even-dimensional Eu-
clidean groups compatible with the complex structure.

4.3. Another deformation scheme

Let gC be the complexification of g. By our assumption on K, there is commutative
subgroup T � K whose complexified Lie algebra tC is a Cartan subalgebra of gC . Let
us also choose an order of roots for this Cartan subalgebra. Then, we get a Manin triple
.gC; g; g

�/, where g� is the subspace of gC spanned by it and the positive root spaces,
and the real invariant bilinear form on gC is given by the imaginary part of the Killing
form [9]. This defines a Poisson–Lie group structure on G.

As remarked at the end of Section 3.3, in the case of g D su.1; 1/, the Lie algebra e�

is isomorphic to g�. In general, this relation does not hold, which can be directly seen for
the above examples su.p; 1/. Nonetheless, there is another similar construction that does
relate g and e. (A similar construction for G D SO.n; 1/0 was studied in detail in [18].)

One motivation behind this construction is the following relation between E and GC ,
the complexification of G.

Proposition 4.6. The subspace k0 � g� is commutative.

Proof. Pick a compact form gc of gC that contains k.
On the one hand, the above choice of positive roots defines a Lie bialgebra structure

on g�c , and by construction, g�c is identified with g�.
On the other hand, we have k D g�c for some invariant automorphism � of gc . The

automorphism � must be of the form Adexp.x/ for some x 2 Z.k/, and hence, �t is also
a Lie algebra automorphism of g�c . It is clear that k0 must be the .�1/-eigenspace of �t

acting on g�c , and it is also an ideal of g�c as K is a Poisson–Lie subgroup of G. Finally
then,

Œk0; k0� � k0 \ .g�c /
�t
D ¹0º:

This shows the claim.

Corollary 4.7. The group E D k0 ÌK is a subgroup of GC .

Now, take the Cartan decomposition g D k ˚ p. Then, we have e ' p Ì k, where we
treat p as a vector space with an action of k. To recover g from e, we just need to use the
restriction of the bracket map

V2 p! k as a cocycle (say c) and deform the bracket of e.
Moreover, as the standard maximal compact form gc � gC is k ˚ ip, the deformation of
e by the inverted cocycle �c gives gc .
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On the other hand, �.k0/ is a subalgebra of gC which is stable under ad.k/ and is
isomorphic to p as a k-module. Thus, the subalgebra g0 D �.k0/ Ì k � gC is isomorphic
to g0 ' e. Moreover, .gC;g

0;g�/ is a Manin triple.
Thus, we have three Lie bialgebra structures on g� corresponding to g, gc , and g0. By

the above discussion, the corresponding cobrackets ıg, ıgc , and ıg0 are different by one
map c0Wg� !

V2 g� dualizing c.

Proposition 4.8. Let s 2
V2 p be the element representing the complex structure of p. Up

to the identification p ' p� by the inner product and p� � g� from the Cartan decompo-
sition, s satisfies

1

2
Œs; s�C ds D 0;

where d is the differential of the Gerstenhaber algebra corresponding to ıg0 . The twist of
ıg0 by s is ıg.

That is, if .yj /j is an orthonormal basis of p as a real Euclidean space, we have

s D
X
j

iyj ˝ yj ;

where iyj is computed using the complex structure of p.
By the main result of [6], quantized universal algebras Uh.g�/ arising from these Lie

bialgebra structures on g� are related by 2-cocycles. On the other hand, by the quantum
duality principle, these can be interpreted as function algebras on the quantum groups
Gh, .Gc/h, and Eh. This gives a formal analog of the functional analytic construction
of 2-cocycles by De Commer [5] for the case g D su.1; 1/ that connects Woronowicz’s
SUq.2/ [23] to Koelink–Kusterman’s fSUq.1; 1/ [8].

A. Groupoid C �-algebras of matched pairs of Lie groups

Let .B; C / be a matched pair of subgroups of a Lie group G. Let us be precise about our
convention of the groupoid C �-algebra of the groupoid G D GB . We are going to make
sense of unbounded multipliers coming from elements of c.

First, let us fix our convention of Haar system on G . We mostly follow the convention
of [15].

Let � be a left Haar measure on the Lie group C , and let � be the modular function
of C . We thus haveZ

C

f .cc0/d�.c0/ D

Z
C

f .c0/d�.c0/;

Z
C

f .c0c/d�.c0/ D �.c�1/

Z
C

f .c0/d�.c0/

for all c 2 C and f 2 Cc.C /. Let us also write

�.y/ D
d�.ety/

dt

ˇ̌̌̌
tD0

.y 2 c/:



F. Elzinga and M. Yamashita 652

On the groupoid G , to avoid the confusion with the group structure of G, we write
g � g0 for the product of composable arrows and Qg for the groupoid inverse. Thus, given
g D r.g/c D c00s.g/ and g0 D s.g/c0 with s.g/; r.g/ 2 B , we have g � g0 D r.g/cc0 and
Qg D c

00�1r.g/ D s.g/c�1.
For a fixed b 2 B , the set G b can be identified with

C .b/ D ¹c 2 C j bc 2 CBº;

which is an open subset of C by our assumption. We define the measure �b on G b to be
the restriction of � on C .b/ up to this identification. Then, the invariance conditionZ

f .g � g0/d�s.g/.g0/ D

Z
f .g0/d�r.g/.g0/ .g 2 GB ; f 2 Cc.G

r.g///

follows from the left invariance of �. By C �.G / and C �r .G /, we mean the full and reduced
groupoid C �-algebras associated with this Haar system.

Next, let us make sense of the associated left derivation in the direction of y 2 c as an
unbounded multiplier on C �.G / (or on C �r .G /). We follow the approach of [10, Chapters
9 and 10]. We consider the Cc.G /-valued inner product on Cc.G /, defined as

hf; f 0i.g/ D f � � f 0.g/ D

Z
Nf . Qg0 � Qg/f 0. Qg0/d�s.g/.g0/:

Let us fix y 2 c and formally write

.us � f /.g/ D �.esy/1=2f .e�syc00b0/ .g D c00b0/:

When f is compactly supported, this is well defined for small s by our openness assump-
tion of G � G. Moreover, we have

.us � f / � f 0 D us � .f � f 0/ (15)

from left invariance of � and

.us � f /� � f 0 D f � � .u�s � f 0/ (16)

from the defining property of �, whenever both sides are well defined. In particular, for
any f 2 Cc.G /, we have

hf; f i D hus � f; us � f i

for sufficiently small s.
Now, we define the operator t0y on C1c .G / by

t0yf D i
d

ds
us � f

ˇ̌̌
sD0
D
i

2
�.y/f C iXyf;

where Xy is the smooth vector field on G whose integral curve is c00b0 ! e�syc00b0.
By (15), this is a map of right Cc.G /-modules. By (16), we also have

ht0yf; f
0
i � hf; t0yf

0
i D 0:
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Polynomials of t0y1 ; : : : ; t
0
yk

for y1; : : : ;yk 2 c make sense as operators onC1c .G /. Looking
at the commutators, we have

Œt0y1 ; t
0
y2
� D i t0Œy1;y2�

from the standard property of Xy (note that �.Œy1; y2�/ always vanishes as � is a homo-
morphism).

Next, let f be a bounded continuous function on B . For f 0 2 Cc.G /, we define the
left action of f on f 0, f � f 0 2 Cc.G / by

.f � f 0/.g/ D f .r.g//f 0.g/:

We then have hf � f 0; f 00i D hf 0; Nf � f 00i for f 0; f 00 2 Cc.G /. Thus, the left action of
f extends to a bounded adjointable endomorphism of A. When f 2 C1

b
.B/ and f 0 2

C1c .G /, we have f � f 0 2 C1c .G /. Given y 2 c, the differentiation of the action of esy

on B defines a vector field X 0y on B . We then have the commutation relation

t0y .f � f
0/ � f � .t0yf

0/ D iX 0y.f / � f
0 .f 0 2 C1c .G //;

giving a realization of the algebra U.c/ Ë C1
b
.B/ inside the space of unbounded mul-

tipliers of C �.G /. (In general, we make no claim about regularity properties of these
multipliers.)

In the case of double Lie group, G D BC , we can interpret C �.G / as the full crossed
product C0.B/ Ì C for the induced action of C on B . In this case, there is a unital �-
homomorphism M.C �.C // ! M.C �.G //, and t0y has an extension to an unbounded
selfadjoint element affiliated to C �.G /; see [25].

Acknowledgments. We thank Piotr Stachura for illuminating comments on an early draft
of this work and the anonymous reviewer for their careful reading on the draft and valuable
suggestions.

Funding. The authors were partially supported by the NFR funded project 300837
“Quantum Symmetry”.

References

[1] S. Baaj, G. Skandalis, and S. Vaes, Non-semi-regular quantum groups coming from number
theory. Comm. Math. Phys. 235 (2003), no. 1, 139–167 Zbl 1029.46113 MR 1969723

[2] A. Connes, Feuilletages et algèbres d’opérateurs. In Bourbaki Seminar, Vol. 1979/80, pp. 139–
155, Lecture Notes in Math. 842, Springer, Berlin, 1981 Zbl 0522.46043 MR 636521

[3] A. Coste, P. Dazord, and A. Weinstein, Groupoïdes symplectiques. In Publications du
Département de Mathématiques. Nouvelle Série. A, Vol. 2, pp. i–ii, 1–62, Publ. Dép. Math.
Nouvelle Sér. A 87, Université Claude-Bernard, Lyon, 1987 Zbl 0668.58017 MR 996653

[4] T. J. Courant, Dirac manifolds. Trans. Amer. Math. Soc. 319 (1990), no. 2, 631–661
Zbl 0850.70212 MR 998124

https://doi.org/10.1007/s00220-002-0780-6
https://doi.org/10.1007/s00220-002-0780-6
https://zbmath.org/?q=an:1029.46113
https://mathscinet.ams.org/mathscinet-getitem?mr=1969723
https://doi.org/10.1007/BFb0089932
https://zbmath.org/?q=an:0522.46043
https://mathscinet.ams.org/mathscinet-getitem?mr=636521
https://zbmath.org/?q=an:0668.58017
https://mathscinet.ams.org/mathscinet-getitem?mr=996653
https://doi.org/10.2307/2001258
https://zbmath.org/?q=an:0850.70212
https://mathscinet.ams.org/mathscinet-getitem?mr=998124


F. Elzinga and M. Yamashita 654

[5] K. De Commer, On a correspondence between SUq.2/; eEq.2/ and fSUq.1; 1/. Comm. Math.
Phys. 304 (2011), no. 1, 187–228 Zbl 1230.46057 MR 2793934

[6] G. Halbout, Formality theorem for Lie bialgebras and quantization of twists and coboundary
r-matrices. Adv. Math. 207 (2006), no. 2, 617–633 Zbl 1163.17303 MR 2271019

[7] S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Grad. Stud. Math. 34,
American Mathematical Society, Providence, RI, 2001 Zbl 0993.53002 MR 1834454

[8] E. Koelink and J. Kustermans, A locally compact quantum group analogue of the normalizer
of SU.1; 1/ in SL.2;C/. Comm. Math. Phys. 233 (2003), no. 2, 231–296 Zbl 1028.46101
MR 1962042

[9] L. I. Korogodsky, Quantum group SU.1; 1/ Ì Z2 and “super-tensor” products. Comm. Math.
Phys. 163 (1994), no. 3, 433–460 Zbl 0833.17020 MR 1284791

[10] E. C. Lance, Hilbert C�-modules. A toolkit for operator algebraists. London Math. Soc. Lec-
ture Note Ser. 210, Cambridge University Press, Cambridge, 1995 Zbl 0822.46080
MR 1325694

[11] N. P. Landsman, Lie groupoid C�-algebras and Weyl quantization. Comm. Math. Phys. 206
(1999), no. 2, 367–381 Zbl 0964.46043 MR 1722129

[12] N. P. Landsman and B. Ramazan, Quantization of Poisson algebras associated to Lie alge-
broids. In Groupoids in analysis, geometry, and physics (Boulder, CO, 1999), pp. 159–192,
Contemp. Math. 282, American Mathematical Society, Providence, RI, 2001
Zbl 1013.46053 MR 1855249

[13] S. Majid, Physics for algebraists: Noncommutative and noncocommutative Hopf algebras by
a bicrossproduct construction. J. Algebra 130 (1990), no. 1, 17–64 MR 1045735
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