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A non-Hopfian relatively hyperbolic group with respect
to a Hopfian subgroup

Jan Kim and Donghi Lee

Abstract. We produce an example demonstrating that every finitely generated relatively hyperbolic
group with respect to a collection of Hopfian subgroups need not be Hopfian. This answers a ques-
tion of Osin (2006) in the negative.

1. Introduction

Recall that a group G is Hopfian if every epimorphism G — G is an automorphism. Recall
also that a group G is residually finite if for every g € G \ {1}, there are some finite
group P and an epimorphism ¥: G — P so that ¥(g) # 1. Inspirited by well-known
questions about ordinary hyperbolic groups, Osin [10, Problems 5.5 and 5.6] asked the
following questions:

» If a finitely generated group G is hyperbolic relative to a collection of Hopfian sub-
groups {H1, ..., Hy}, does it follow that G is Hopfian?

e If a group G is hyperbolic relative to a collection of residually finite subgroups
{H)}sen, does it follow that G is residually finite?

Later, Osin [11] proved that the second question is equivalent to Gromov’s famous
open question of whether every hyperbolic group is residually finite. The Hopf property
and the residual finiteness property have a close connection. In particular, Mal’cev [7]
proved that every finitely generated residually finite group is Hopfian. Mal’cev’s result
provides a useful tool to prove that a certain finitely generated group is non-residually
finite. The Hopf properties of torsion-free hyperbolic groups, toral relatively hyperbolic
groups, hyperbolic groups with torsion, lacunary hyperbolic groups and finitely presented
C’(1/6) or C’(1/4)-T(4) small cancellation groups were verified by many authors (see
[2,5,12,14,15]). In contrast, Wise [16] constructed a non-Hopfian CAT(0)-group.

On the other hand, there is another property related to the Hopf property. A group G is
called equationally noetherian if for every system of equations in G, there exists a finite
subsystem that has the same set of solutions. It is well known that every finitely gener-
ated equationally noetherian group is Hopfian. Reinfeldt and Weidmann [15] proved that
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every hyperbolic group is equationally noetherian. Also, for relatively hyperbolic groups,
Groves and Hull [6] proved that if a group G is hyperbolic relative to a collection of equa-
tionally noetherian subgroups, then G is itself equationally noetherian. However, it has
been unknown up to the present whether every finitely generated group that is hyperbolic
relative to a collection of Hopfian subgroups is Hopfian.

The main result of this paper is the following. This solves Osin’s first question men-
tioned above in the negative.

Theorem 1.1. Let Hy be the group given by the presentation
Hy= (b.c|b?>=c®=1,b"teb=c1), )]
and take successively two HNN-extensions from Hy as follows:

H, = (Hy,s | s 'bs =bc™2, s7les = ¢), (2a)
H, = (H],[ | st = S3>. (2b)

Next, form the free product H = Hy x (e, f | @). Finally, letting (a) be an infinite cyclic
group, take successively two multiple HNN-extensions from H x {(a) as follows:

K= Hx*(a),u,v|ut(bach™Yu=a, v'iav =tst71), (3a)
G=(Kxvy|xtux =cecde, y lvy =3 f3 7). (3b)

Then G is a non-Hopfian group which is hyperbolic relative to the Hopfian subgroup H.
In more detail, the following hold:

(i)  Kis hyperbolic relative to the subgroup H.

(i) G is hyperbolic relative to the subgroup H.

(iii) G is a non-Hopfian group.

(iv) H; is a Hopfian group, and thus H is a Hopfian group.

Remark 1.2. (1) The group G can be regarded as a relatively hyperbolic group with
respect to the subgroup H,. The reason goes as follows. Since H is the free product of H,
and (e, f), clearly H is hyperbolic relative to the collection of subgroups {H,, (e, f)}.
Here, since every finitely generated free group is hyperbolic, H is hyperbolic relative
to the subgroup H,. This together with (ii) yields that G is hyperbolic relative to the
subgroup H».

(2) The subgroup H is non-residually finite. Indeed, for any finite group P and for
any epimorphism ¥ from H to P, ¥ (c®) = 1. The reason can be seen as follows. From
the defining relation t~'st = s3 of H, it follows that v (s) and ¥ (s)> have the same
order, so that the order of v (s) is relatively prime to 3, say m. Also from the defining
relation s~'bs = b3 of H, it follows that b~'sb = sc3 in H, so that ¥ (sc3)™ = 1.
Here, since ¥ (s) and ¥ (c) commute with each other, ¥ (¢3)”™ = 1. On the other hand,
since ¢® = 1in H, ¥ (c?)3 = 1, which together with ¥ (c3)™ = 1 finally yields ¥ (c?) = 1.
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This paper is organized as follows. In Section 2, we recall the necessary definitions and
known results to be used throughout this paper. The proof of Theorem 1.1 is contained
in Sections 3-6. In Section 3, by using Osin’s theorem concerning the unique maximal
elementary subgroups of hyperbolic elements in relatively hyperbolic groups, we first
prove that the free product H * {(a) is hyperbolic relative to the collection of subgroups
{H, {a), {(ac)}. And then by successively using Osin’s combination theorem for relatively
hyperbolic groups, we show that K is hyperbolic relative to H. In Section 4, again by using
Osin’s theorem about unique maximal elementary subgroups, we show that the peripheral
structure of K can be extended to the collection of subgroups {H, (u), (v)}. At this point,
by using Osin’s combination theorem twice, we obtain that G is hyperbolic relative to H.
In Section 5, we show that G is non-Hopfian by constructing a particular surjective, but
not injective, endomorphism of G. To be more precise, the endomorphism of G induced
by the mapping b > b, ¢ > ¢
x +— x and y — y is shown to be surjective but not injective. Finally, Section 6 is devoted
to the proof that H is Hopfian, in which Bass—Serre theory plays a crucial role.

,S|—>s3,tr—>t,e|—>e,f|—>f,a|—>s,u|—>1,v|—>l,

2. Preliminaries

In this section, we recall the necessary definitions, notation and known results to be used
throughout this paper.

2.1. Relatively hyperbolic groups

In this paper, we adopt Osin’s definition [9] among many equivalent definitions of rela-
tively hyperbolic groups.

Let G be a group, H = {H) } 1ca a collection of subgroups of G, and X a subset of G.
Suppose that X is a relative generating set for (G, H), namely, G is generated by the set
(Uzea H) U X (for convenience, we assume that X = X ~1). Then G can be regarded
as the quotient group of the free product

F = (%1ep Hy) * F(X),

where the groups H) are isomorphic copies of H,, and F(X) is the free group generated
by X. Let J be the disjoint union

g = |_|(H\ {1).

AEA

For every A € A, we denote by S, the set of all words over the alphabet H, \ {1} that
represent the identity in F. Let § be the disjoint union

s=1] S

AEA
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Then we may describe G as a relative presentation
(X, H ]S, R) “

with respect to the collection of subgroups {H } ca, where R C F. If both the sets R
and X are finite, relative presentation (4) is said to be finite and the group G is said to be
finitely presented relative to the collection of subgroups H.

For every word w over the alphabet X U J representing the identity in the group G,
there exists an expression

k
w=r [[f'Ri f 5)
i=1
with the equality in the group F, where R; € R and f; € F fori = 1,...,k. The smallest
possible number k in a presentation of the form (5) is called the relative area of w and is
denoted by Area™ (w).

Definition 2.1 (Relatively hyperbolic groups). A group G is said to be hyperbolic relative
to a collection of subgroups H if G admits a relatively finite presentation (4) with respect
to H satisfying a linear relative isoperimetric inequality. That is, there is a constant C > 0
such that for any cyclically reduced word w over the alphabet X U J representing the
identity in G, we have

Area™ (w) < Cllw],

where ||w|| is the length of the word w. This definition is independent of the choice of the
finite relative generating set X and the finite set R in (4).

2.2. Unique maximal elementary subgroups

Suppose that G is hyperbolic relative to a collection of subgroups H = {Hj },c. Then
we refer to the collection H as a peripheral structure of G, and any element in H as
a peripheral subgroup of G.

An element is called hyperbolic if it has infinite order and it is not conjugate to any
element of a peripheral subgroup of G. Due to Osin [8], there is a well-known example of
subgroups which may be added to enlarge peripheral structures.

Theorem 2.2 ([8, Theorem 4.3 and Corollary 1.7]). Let G be hyperbolic relative to a col-
lection of subgroups H. Then for any hyperbolic element g € G, G is hyperbolic relative
to H U {E(g)}, where E(g) is the unique maximal elementary subgroup containing g
defined as follows:

E(g) ={feG| fg"f ! =g*" forsomen € N}.

2.3. Osin’s combination theorem

We recall one of Osin’s combination theorems for relatively hyperbolic groups. Earlier,
Dahmani [3] proved the combination theorem for finitely generated groups. In fact, apply-
ing Dahmani’s combination theorem is sufficient for our purposes in this paper, but we
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introduce Osin’s combination theorem in order to match with the definition of relatively
hyperbolic groups stated above.

Theorem 2.3 ([9, Corollary 1.4]). Suppose that a group G is hyperbolic relative to a col-
lection of subgroups H = {H} } e p. Assume in addition that there exists a monomorphism
v Hy — H, for some  # v € A, and that H, is finitely generated. Then the HNN-
extension

G*=(G,t|t7'ht =u(h), h e H,)

is hyperbolic relative to the collection H \ {H,,}.

2.4. Bass—Serre trees for HNN-extensions

We recall some basic concepts of Bass—Serre theory (see [1, 13]). A graph of groups
(+, X) consists of a connected graph X and a collection of groups indexed by the vertices
and edges of X, and a family of monomorphisms from the edge groups to the adjacent ver-
tex groups. For each spanning tree T in X, one can canonically associate a unique group,
called the fundamental group and denoted by 71 (4, T). Here, it turns out that the funda-
mental group 71 (s, T) is independent of the choice of a spanning tree 7', so we simply
write 771 () instead of 1 (s, T'). The fundamental group 71 (#) admits an orientation-
preserving action on a tree I" such that the quotient graph /7 (<) is isomorphic to X.
Such a tree is called a Bass—Serre tree of A.
On the other hand, given a graph of groups (+, X) with the fundamental group

G = m(A),

where G is an HNN-extension, one can construct a Bass—Serre tree for G due to the
following theorem (see, for example, [17]). This result plays an important role in the
proof of Proposition 6.2.

Theorem 2.4 (Bass—Serre trees for HNN-extensions). Suppose that G* is an HNN-ex-
tension of a group G with associated isomorphism 1 between two subgroups H and K,
that is,

G* = (G,t|t7'ht = 1(h), h € H).

Let A be a graph of groups consisting of a single loop-edge e, a single vertex v =
o(e)=t(e), a vertex group G, an edge group H, and the boundary monomorphisms
te: H —> G and we: H — G. Then the fundamental group of A is clearly isomorphic
to G*. On the other hand, let T be a graph defined as follows:

(1)  The vertex set V consists of all cosets in {xG | x € G*}.
(ii)  The edge set E consists of all cosets in {xH | x € G*}.
(iii) The edge xH € E connects xG and xtG.

Then T is a tree and G* acts on T" without inversion by left multiplication such that the
quotient graph T'/ G* is isomorphic to X, where X is the underlying graph of A.



J. Kim and D. Lee 6
3. Proof of Theorem 1.1 (i)

Let H and K be the groups defined in the statement of Theorem 1.1. The aim of this section
is to prove the relative hyperbolicity of K with respect to the subgroup H.

We start with the free product H * (@), which is clearly hyperbolic relative to the
collection of subgroups {H, (a)}. Recall that

Hx (a) = (b,c,s,t,a |b2 = =1,b"Yeb=c71,

sTVbs =be3, s7les = ¢, t7 st = s3).

Obviously, ac is a hyperbolic element in H * {a) seen as a relatively hyperbolic group
with peripheral structure {H, (a)}. Moreover, we can prove the following.

Claim A. The unique maximal elementary subgroup E(ac) of H * (a) is precisely the
infinite cyclic subgroup (ac).

Proof. Suppose to the contrary that E(ac) \ {ac) # @. Among all such elements in
E(ac) \ (ac), we take an element in normal form, say f, with shortest syllable length.
Here, by the syllable length, we mean the total number of syllables which are max-
imal subwords consisting entirely of letters from either H or (a). For such f, clearly
f(ac)™ f~1 = (ac)" for some n € N. Moreover, f satisfies the following:

(i) f does not begin with ah for any 1 # h € Hnor with ¢ 'a’ for any 1 # a’ € {(a);
(i) f does not end with ha~! for any 1 # h € H nor with a’c for any 1 # a’ € (a).

The reason goes as follows. First, assume that f* begins with ah for some 1 # & € H, that
is, f = ahf, in normal form. Then it follows from the equality f(ac)*" f~! = (ac)"
that

(ac)(c hf)(ac)E (f7 h o) (e a™Y) = (ac)”,

so that

(€ hfi)@e) ™ (fi'h™ e) = (ac)™;

thus ¢~'hf; € E(ac) \ {(ac). Here, since ¢~ 'h € H, the element ¢~ '/ f; has a shorter
syllable length than f does. This is a contradiction to our choice of f. Next, assume
that f begins with ¢~'a’ for some 1 # a’ € (a), that is, f = c¢~'a’ f, in normal form.
Then

(c_la_l)(aa’fz)(ac)i"(f2_1a’71a_1)(ac) = (ac)",

and so
(ad' fo)(ac)*"(f; ' a7 = (ac)".

This means that aa’ f> € E(ac) \ {ac). In addition, aa’ f> has a shorter syllable length
than f does, since aa’ € {(a). This is also a contradiction to our choice of f. Hence
item (i) holds.
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For (ii), note that £ ~! € E(ac) \ (ac) with the same syllable length as that of . Also,
if f ends with ha=! for some 1 # h € H or with a’c for some 1 # a’ € (a), then f~!
begins with ah~! or with ¢~'a’ ~! But then by the same argument applied to f in the
proof of (i), we reach a contradiction. So (ii) holds.

But then the expression f(ac)*” f~!(ac)™ cannot represent the identity element
in H * (a) by the normal form theorem for free products. This contradiction completes
the proof of the claim. ]

The above Claim A together with Theorem 2.2 yields that H * {a) is hyperbolic rel-
ative to the collection of subgroups {H, (a), {(ac)}. Then due to Theorem 2.3, the group
(Hx (a),u | u"'b(ac)b~'u = a) is hyperbolic relative to the collection of subgroups
{H, (a)}. Finally, the group K = (H * (a),u,v | u"'(bach ™" )u = a,v"'av = tst™ 1) is
hyperbolic relative to the subgroup H again by Theorem 2.3, completing the proof of The-
orem 1.1 (i).

4. Proof of Theorem 1.1 (ii)

Let H, K and G be the groups defined in the statement of Theorem 1.1. The aim of this
section is to prove the relative hyperbolicity of G with respect to the subgroup H. By the
result of Section 3, K is relatively hyperbolic with peripheral structure {H}.

Since K is a multiple HNN-extension of H * (a) with stable letters u and v, the
element u is clearly a hyperbolic element in K. Moreover, we can prove the following
assertion.

Claim B. The unique maximal elementary subgroup E(u) of K is precisely the cyclic
subgroup (u).

Proof. To find E(u), view K as an HNN-extension with stable letter u of
L:= (Hx {(a),v) <K

Suppose to the contrary that E(u) \ (u) # @. Among all such elements in E(u) \ (u),
we take an element, say f', in u-reduced form with minimal number of uE!. For such f,
clearly fu®" f=1 = u”" for some n € N. Moreover, f satisfies the following:

(i) f does not begin with hu for any h € (bach™!) nor with a’u! for any a’ € (a);
(i) f does not end with u~'A for any h € (bach™') nor with ua’ for any a’ € {(a).

The reason is as follows. First, assume that f begins with hu for some h € (bach™!),
thatis, f = huf; (u-reduced). It then follows from the equality fu*" f~! = u” that

(™ ) fp 7 @ T )y =

so that

@ fout (7™ =
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for some a’ € {(a). Thus a’ fi € E(u) \ (u). But clearly, @’ f; has fewer numbers of u*!
than f does, which is a contradiction to the choice of f. Next, assume that f begins with
a'u~! for some a’ € {(a), thatis, f = a’u™! f, (u-reduced). Then

{wa'u™) oy fy e ™ ™)y = u”
and so
()™ (f; 'hh) ="

for some h € (bacb™'). Hence hf> € E(u) \ (u). In addition, % f> has fewer numbers
of u*! than f does, which is also a contradiction to the choice of f. Therefore, (i) holds.

For (ii), note that f~!' € E(u) \ (u) has the same number of u*! as f. Also, if f
ends with u~'h for some h € (bach™') or with ua’ for any a’ € (a), then f~! begins
with A~ u or with @’ 'u~". But then by the same argument applied to f in the proof
of (i), we reach a contradiction. So (ii) holds.

But then the expression fu®” f~'u™" does not represent the identity element in K
by Britton’s lemma. This contradiction completes the proof of the claim. ]

By Claim B together with Theorem 2.2, the peripheral structure K can be extended to
{H, (u)}. In this point of view, v is a hyperbolic element in K, since v has infinite order
and is not conjugate to any element of H nor to any element of (#). Moreover, the unique
maximal elementary subgroup E (v) of K is precisely the cyclic subgroup (u). To see this,
view K as an HNN-extension with stable letter v of

M := (Hx (a),u) <K,

and then apply an argument similar to the one given in the proof of Claim B. This, together
with Theorem 2.2, means that the peripheral structure of K can be extended further to the
collection of subgroups {H, (u), (v)}.

Clearly, there exist monomorphisms ¢: () — H and ¢: (v) — H defined by ((u) =
ece™ and ¢ (v) = ¢3 fc3 £, Then by applying Theorem 2.3 twice, we finally obtain
that G = (K, x, y | x tux = c3ec3e™!, y~ vy = ¢3 fe3 £71) is hyperbolic relative to H.
This completes the proof of Theorem 1.1 (ii).

c3

5. Proof of Theorem 1.1 (iii)

Let G be the group defined in the statement of Theorem 1.1. The aim of this section is
to prove that G is a non-Hopfian group by constructing a surjective, but not injective,
endomorphism of G.

Let ¢ be a unique homomorphism from a free group with basis {b, ¢, s, t, e, f,a, u,
v, X, y} to G induced by the mapping

b>b, c—>c3 se>s53, t>1f, ere, fef

atr>s, ur1, v>1, XX, Yy
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Then it is easy to see that every defining relator in presentations (1)—(3b) is sent to the
identity element in G by . So ¥ induces an endomorphism {/; of G.

We will show that 1; is surjective but not injective. To prove that g; is surjective, it is
sufficient to show thata,c,u,v € im {Z? From the x- and y-relations in presentation (3b),
it follows that u, v € im 1; This together with the v-relation in presentation (3a) yields
that a € im {/; so that ¢ € im 1; from the u-relation in presentation (3a). Therefore, & is
a surjective endomorphlsm of G.

However, w is not injective, smce c3 € ker w but c3 75 1. Indeed, ¢3 is contained in
the finite subgroup Hy of G; so ife3 = 1, then ¢3 = 1, which is obviously a contradiction.

6. Proof of Theorem 1.1 (iv)

Let H be the group defined in the statement of Theorem 1.1. The aim of this section is to
prove that H is a Hopfian group. Since the free product of two finitely generated Hopfian
groups is also Hopfian (see [4]), it suffices to prove that H, is Hopfian.

Throughout this section, let ¢ be a surjective endomorphism of H,. We begin with the
following.

Proposition 6.1. We may assume that (b) = b and ¢(c) = c* withk € Z.

Proof. Clearly, ¢(Hp) is a finite subgroup of Hj. Since Hy is a maximal finite subgroup
of Hy, ¢(Hp) is contained in a conjugate of Hy. So by replacing ¢ by the composition
of ¢ and an appropriate inner automorphism of H,, we may assume that ¢(Hy) < Hy,
so that ¢(b), ¢(c) € Hy.

First consider ¢(c). Note that every element in Hy can be written as ¢¥ or bk, where
k € Z. Since ¢® = 1 in Ha, ¢(c)° = ¢(c®) = 1. But since (bc¥)? = 1 for every k € Z,
we must have ¢(c) = c¥’ for some k' € Z.

Next consider ¢(b). Since b2 = 1 in H,, ¢(b)? = ¢(b?) = 1. As observed above,
o(b) = 1 or otherwise ¢(b) = bc™ in H, for some m € Z. Assume that ¢(b) = 1. Then
since ¢ is surjective and ¢(c) = ¢¥’, we have

(@), 0O}/ (D, = (@), (). 0(5), p())/ (), = Ha/{c)u,

This implies that the quotient group Ha/{(c))y, can be generated by two elements. But
then
Ho/(c. s, 1,17 btb™ Yy, = (b) x (3) x (I) = Zp x Zr X L»

could be also generated by two elements, which is a contradiction. Hence ¢(b) # 1, and
thus @(b) = bc™.

Now let p be the unique homomorphism from a free group with basis {b, ¢, s, ¢} to H,
induced by the mapping

p:b>bc™, crc, srs and [t
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Then every defining relator in presentations (1)—(2b) is sent to the identity element in H,
by p. So p induces an endomorphism p of H;. Also, since m is an arbitrary integer, there
exists an endomorphism g’ of H, defined by b + bc™, ¢ +> ¢, s +> s and t +> t. Then
clearly, p o p’ = idy, and p’ o p = idy,. This means that p is an automorphism of H,.
By replacing further ¢ by the composition p o ¢, we may finally assume that ¢(b) = b
and ¢(c) = ¢ with k’ € Z, as desired. [

Proposition 6.2. Under the assumption that (b) = b and ¢(c) = c* with k € Z, we may
further assume that ¢(s) = s¥3” with p € Z 1 U {0} and that

() =t wy -t wy,  (t-reduced),
where h > 1, &; = £1 and w; € H, for everyi =1,... h.

Proof. Let I be the Bass—Serre tree associated to H, viewed as an HNN-extension of H;
(see Theorem 2.4). Denote by v the vertex labeled as the coset H;. Since ¢(Hp) €
HyC H;, clearly ¢(Hp) fixes v. We shall show that ¢(s) fixes v as well. Assume on
the contrary that (s)v # v. Clearly, ¢(s)o(Hp)p(s) ™! fixes ¢(s)v. It also fixes v since

9(s)pHo)p(s)™" = p(sHos ") = ¢(Hop) € Hj.

Since ¢(s)v # v, and since T is a tree, ¢(s)p(Ho)@(s)~! fixes an edge in I, and thus
it is a subgroup of some edge stabilizer of I'. But since every edge stabilizer of T is
conjugated to (s) which is an infinite cyclic group, and since ¢(s)@(Ho)@(s)™! is finite,
the only possibility is that ¢(Hg) = {1}, which is impossible. Therefore, ¢(s) fixes v, that
is, ¢(s) € Hy.

Now consider ¢(z). Since ¢ is surjective, ¢(¢) ¢ Hy. This yields that ¢(z)v # v. Since
st =153 in Ha, 0(s)@(t) = ¢(t)e(s)3, and hence

P()e()v = e()¢(s)°v = p(t)v.
This means that ¢(s) fixes ¢(¢)v. Since ¢(¢)v # v, ¢(s) fixes an edge in I". In particular,
o(s) fixes every edge on the geodesic [v, ¢(t)v] in T.
At this point, write ¢(t) as
o(t) = wot®'wy -+t wy  (z-reduced),

where h > 1,¢; = £1foreveryi = 1,...,h,and w; € Hy forevery j =0,..., h. Thus
1

by replacing ¢ by the composition of ¢ and the inner automorphism of H, given by wo™",
we may assume that ¢(b) = bc™, ¢(c) = ¢, p(s) € H; and
o(t) = t"wy ---t%wy,’  (¢t-reduced),

where h > 1,¢; = +1foreveryi =1,...,h, andw}l, w; € Hy forevery j =1,...,h—1.
Then by replacing further ¢ by the composition p o ¢, where p is the automorphism of H,
(see the proof of Proposition 6.1) defined by

p:b—>bc™, crc, sr>s and >t

we may further assume that ¢(b) = b and ¢(c) = c®', o(s) € Hy and ¢(r) as above.
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Now recall that ¢(s) fixes every edge on the geodesic [v, ¢(¢)v] in I'. In particular, ¢(s)
belongs to the stabilizer of the first edge on the geodesic [v, ¢(¢)v]. Since ¢(¢) begins with
the letter ¢ or ¢!, the first edge on the geodesic [v, ¢(¢)v] is labeled as (s) or as ¢! (s).
So the stabilizer of the former is (s) and that of the latter is  ~! (s)¢ = (s3). In either case,
@©(s) € (s), that is, ¢(s) = s" for some r € Z.

Write r = £3P¢, where p,q € Z 4+ U {0} and gcd(3, ¢) = 1. We shall show thatg = 1.
Clearly, s” = s34 ¢ {s7)u,- Suppose that g # 1, namely ¢ > 2. Since ¢ is surjective
and since ¢(b) = b and ¢(c) = ¢, we have

(@) /(b.c.s N, = (9(b).¢(c). (). (1)) /{b.c.s"hu, = Ha/{b.c. s g,

This implies that the quotient group Hz/{(b, ¢, s7))y, can be generated by only one ele-
ment. But this is a contradiction since

Hz/((b,c,sq))Hz > (5) X (t) = Zy X L.
Hence g = 1, that is, ¢(s) = sE3” as desired. [

Proposition 6.3. Under the assumption that ¢(b) = b, ¢(c) = c*, ¢(s) = s*3” and
o(t) = t°"wy -+ - t*hwy, (t-reduced), where k, p € Z with p > 0, h > 1, ¢; = +1, and
where w; € Hy foreveryi = 1,..., h, we may further assume that ¢(c) = ¢ and ¢(s) = s.

Proof. We shall first show that ¢(c) = ¢ with k = 1 (mod 3). Suppose the contrary.
Then ¢(c) = 1 or ¢(c) = c*3, because ¢® = 1. Since ¢ is surjective, we have

{p®)/(b.c> shm, = (0(B). 9(c). (). 0(0))/ (b, sy, = Ha/ (b, > s\,

This implies that the quotient group Hy/ (b, c3, s)u, can be generated by only one ele-
ment. But since
Hz/((b,c3,s))H2 >~ (C)* () = Z3 % Z,

we reach a contradiction.
Thus ¢(c) = c* withk = £1 (mod 3). Let k’ be an integer such that kk’ = 1 (mod 9).

For such k’, clearly either ¢T3k = 3 =3k —
C_3k

— 4 — .
or ¢ ¢3. Moreover, ¢ 3k" — =3k First

assume that ¢ 3% = = ¢73. Let p and p’ be the unique homomorphisms from a free
group with basis {b, ¢, s, ¢} to H, induced by the mappings
k/

p:b—b, crHc S8, >t

oibb, ek sl et
Then every defining relator in presentations (1)—(2b) is sent to the identity element in H,
by both p and p’. So there are endomorphisms 5 and p’ of H, induced by p and p,
respectively. For such p and 7/, clearly p o p’ = idp, and p’ o p = idp,, meaning that p is
an automorphism of H,. By replacing ¢ by ¢ o p, we may assume that ¢(b) = b, p(c) =c¢
and ¢(s) = sT3°.
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Next assume that ¢=3¥" = ¢73% = ¢3_ Let 7 and 7’ be the unique homomorphisms

from a free group with basis {b, ¢, s, ¢} to H, induced by the mappings

’ _
k, Sk s 1, t—=t,

bbb, crck, s>s7 tet

T:b—=b, crHc

Again since every defining relator in presentations (1)—(2b) is sent to the identity element
in H, by both 7 and 7/, there are endomorphisms 7 and 7' of H, induced by 7 and 7/,
respectively. For such 7 and 7', clearly T o T = idy, and 7’ o T = idp,, meaning that T
is an automorphism of H,. By replacing ¢ by ¢ o T, we may also assume that ¢(b) = b,
@(c) = c and ¢(s) = s*3’.

Now consider ¢(s). From the defining relation s~!'hs = hc™3 in presentation (2a),
it follows that

9(9) " p(b)g(s) = p(b)p(c) .
Here, since ¢(b) = b, ¢(c) = ¢ and ¢(s) = s3", we get
sT37pst3’ = pe3, (6)

But from the defining relations in presentation (2a), we obtain that shs™! = bc3 and that
sT3ps*3 = p foranyi > 1. Combining these with (6) yields ¢® = 1 or ¢ = 1, contrary
to the fact that ¢ has order 9. Therefore, the only possibility to avoid a contradiction is that
o(s) = s, as desired. [

Proposition 6.4. Under the assumption that ¢(b) = b, ¢(c) = ¢, p(s) = s and ¢(t) =
t8wy - - - t¥hwy, (t-reduced), where ¢; = +1 and w; € Hy foreveryi = 1,..., h, we may
Sfurther assume that ¢(t) = t°'wy - - - Wp_1t°k.

Proof. Define the unique homomorphism p from a free group with basis {b, ¢, s, ¢} to Hp
induced by the mapping

p:br>b, crsc, srts and t>tw; .

Then every defining relator in presentations (1)—(2b) is sent to the identity element in H,
: -1 -3 _ ~1gpyy—1—3H2 3, —1.-3H :
by p, since p(¢) " sp(1)s™> = wpt ™ stw; s = wpsw, s~ = 1. So p induces an en-
domorphism p of H,. For the same reason, there exists the endomorphism 5’ of H, defined
by b+ b,c+> c,s— s and t > twy. Then clearly, p o p’ = idg, and p’ o p = idy,.
Therefore, p is an automorphism of H,. By replacing ¢ by the composition ¢ o p, we
may assume that ¢(b) = b, ¢(c) = ¢ and ¢(s) = s, and that ¢(¢) = t°1wyq -+ wp_ 1%k,
as desired. ]

Proposition 6.5. Under the assumption that ¢(b) = b, ¢(c) = ¢, p(s) = s and ¢(t) =
tP wy - wp—1t°h (t-reduced), where ¢; = %1 for everyi = 1,...,h, and w; € H; for
every j = 1,...,h — 1, we may finally assume that ¢(t) = t.
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Proof. From the defining relation #~!s¢ = s in presentation (2b) together with the hy-
pothesis, it follows that

1

(w7 wy T ) s (B wy - wp— g t5)s T = 1. @)

By Britton’s lemma, this expression is not 7-cyclically reduced.

Assume that ¢y = —1. Then the part t~*'s¢°! is already ¢-reduced. So the only ¢-
reductions can be made successively starting from the part #¥4s~3¢ . Assume that -
reductions can be made only until %/ (w; - -+ (1555 ™3¢ ¢h) - .. wj_l)t_gl' . Here, if j > 2, then
by Britton’s lemma, equality (7) cannot hold, a contradiction. Also, if j = 1, then after
making all #-reductions, 71 (wy - -+ (15453 7h) ... w 1)1 ~¢1 becomes sk for some k € Z.
In particular, since &; = —1, k is a multiple of 3. But then s**1 = 1 from equality (7),
contrary to the fact that s is an element of infinite order.

Thus &1 =1. On the other hand, since ¢ is surjective, there is a reduced word z (b, c, s, 1)
in {b, ¢, s, t} such that

H;
t=z(b,c,s,0()). ®)

We may write z (b, ¢, s, 1) as follows:
z(b,c,s,t) = 20t5121 ---ZZ_IIS‘ZK (t-reduced),

where zg, ..., zy are reduced words in {b, c, s}, 81,...,8¢ = £1, and wherever z; is not
the identity element in Hy, z; ¢ (s) provided either §; = —1 or §;+; = 1.

Claim C. Even after making all t-reductions in the right-handed expression

z(b.c.5.9(1) = 209D 21 -+ ze-10(D) 2.
at least one t= in ¢(t)% remains unreduced for everyi =1, ... L.

Proof. Let us consider all possible ¢-reductions in each ¢(¢)% z; p(r)%+1 . First, if §; = —1
and §; 1 = 1, it follows from the fact &; = 1 that there is no ¢-reduction in @(¢) 'z, ¢(2),
since z; ¢ (s) in this case.

Next, if either both §; = —1 and §;4; = —1, or both §; = 1 and §; 1 = 1, it follows
from our assumption z; ¢ (s) that there is no ¢-reduction in ¢(¢) T!z;p(¢) 1.
Finally, assume that §; = 1 and §;+; = —1. In this case, there can be z-reductions

in ¢(t)zi@(t)"". Even if there are ¢-reductions in ¢(f)z;@(¢)~", not all of t*! can be
reduced. The reason is as follows. Suppose that all of %! in ¢(#)z;¢(¢) ™" can be reduced.
Then since the initial letter of ¢(z) is t°1 with &; = 1, the last z-reduction in ¢(¢)z; o (£) !
has the form 72/t ™!, where z] € (s?), and so ¢(r)z;¢(r) ™", after making all 7-reductions,
becomes a power of 5. But then from the equality ¢ ()" 's@(z) = s> in H,, it follows that
z; € (s3). This is a contradiction to the assumption that z (b, c, s, t) is t-reduced.
Therefore, only in the case where §; = 1 and §;4; = —1, t-reductions can happen in
@(1)% z;p(¢)%+1. But even in this case, not all of 7+ in ¢(7)% z;(¢)%+! can be reduced.
Therefore, the assertion of Claim C follows. [
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In view of Claim C, in order for equality (8) to hold, we see that the only possibility is
that £ = 1, so that z(b, c, s, ¢(t)) = zo@(t)®1 z,. Combining this with (8), we get

H,
1= zo0(1)"1 2y )

Since @(t) is written as a ¢-reduced form, the right-handed expression of (9) is already
t-reduced. Then by Britton’s lemma, for the equality in (9) to hold, only one alphabet ¢
occurs and at the same time no alphabet ¢~ occurs in the right-handed expression. Here,
since ¢(t) = t°'wy --- wp_1t° with 1 = 1, we see that this happens only when §; = 1
and ¢(t) = t, completing the proof of Proposition 6.5. |

In conclusion, we obtain the following.

Corollary 6.6. The group H, is Hopfian.

Proof. Let ¢ be a surjective endomorphism of H,. Propositions 6.1-6.5 show that the
composition of ¢ with appropriate automorphisms of H, becomes the identity function
of Hj, so that ¢ is indeed an automorphism of H,. This means that H, is Hopfian. ]
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