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Abstract. We show that the Holmes–Thompson area of every Finsler disk of radius r whose inte-
rior geodesics are length-minimizing is at least 6� r

2. Furthermore, we construct examples showing
that the inequality is sharp and observe that equality is attained by a non-rotationally-symmetric
metric. This contrasts with Berger’s conjecture in the Riemannian case, which asserts that the
round hemisphere is extremal. To prove our theorem we discretize the Finsler metric using ran-
dom geodesics. As an auxiliary result, we include a proof of the integral geometry formulas of
Blaschke and Santaló for Finsler manifolds with almost no trapped geodesics.

Keywords. Finsler metrics, Holmes–Thompson area, Berger’s conjecture, integral geometry,
discrete geometry

1. Introduction

Isoembolic inequalities on Riemannian manifolds are curvature-free volume estimates in
terms of the injectivity radius. The first sharp isoembolic inequality valid in all dimen-
sion is due to Berger [12] who showed that the volume of every closed Riemannian
n-manifold M satisfies

vol.M/ � ˛n

�
inj.M/

�

�n
; (1.1)

where ˛n is the volume of the canonical n-sphere. Furthermore, equality holds if and only
ifM is isometric to a round sphere. The two-dimensional case was proved earlier in [10].

A long standing conjecture in Riemannian geometry also due to Berger asserts that
every ball B.r/ of radius r � 1

2
inj.M/ in a closed Riemannian n-manifold M satisfies

volB.r/ �
˛n

2

�
2r

�

�n
; (1.2)
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with equality if and only if B.r/ is isometric to a round hemisphere of (intrinsic) radius r .
This can be viewed as a local version of the sharp isoembolic inequality (1.1). This con-
jecture is open even in the two-dimensional case where the previous inequality can be
written as

areaD.r/ �
8

�
r2: (1.3)

A survey on isoembolic inequalities and Berger’s conjecture is given in [26, §6].
A non-sharp volume estimate volB.r/ � cnrn was established by Berger [10, 11] for
n D 2; 3, and by Croke [22, Proposition 14] for every n. The conjecture (with a sharp
constant) is satisfied for metrics of the form ds2 D dr2 C f .r; �/2 d�2 in polar coordi-
nates when n � 3; see [23]. In [24], Croke also showed that the optimal inequality (1.3)
holds true on average over all balls B.r/ of M . In the two-dimensional case, the best
general estimate areaD.r/ � 8��

2
rn can be found in [25]. The lower bound (1.3) on the

area of D.r/ has recently been obtained in [19] by Chambers–Croke–Liokumovich–Wen
under the stronger hypothesis that r � 1

2
conv.M/, where conv.M/ is the convexity radius

ofM . (This implies that r � 1
4

inj.M/, since conv.M/ � 1
2

inj.M/.) Note, however, that
this stronger condition rules out the possibility that D.r/ is a hemisphere of intrinsinc
radius r , which is the only expected equality case of (1.3).

The condition that r � 1
2

inj.M/ in Berger’s conjecture (1.2) can be relaxed by requir-
ing instead that every interior geodesic in B.r/ is length-minimizing. The results of
[10, 11] and [22, Proposition 14], for instance, still hold under this more general con-
dition.

In this article, we consider the case of disks with a self-reverse Finsler metric whose
interior geodesics are length-minimizing. (A precise definition of Finsler metrics and area
can be found in Section 2.) It is natural to expect that inequality (1.3) holds in this setting.
This is the case for isosystolic inequalities on the projective plane, where the canonical
round metric minimizes the systolic area among both Riemannian and Finsler metrics;
see [33, 34]. However, we show that the round hemisphere is not area-minimizing among
Finsler metric disks of the same radius whose interior geodesics are length-minimizing.
More precisely, we establish a sharp isoembolic inequality for Finsler metrics in the two-
dimensional case under the assumption that every interior geodesic is length-minimizing.
We observe that the extremal metric is not Riemannian and, surprisingly, not even rota-
tionally symmetric.

Before stating our main result, let us introduce the following definition.

Definition 1.1. A Finsler disk D of radius r with minimizing interior geodesics is a disk
with a Finsler metric such that

� every interior point of D is at distance less than r from a specified center point O;

� every point of @D is at distance exactly r from O;

� every interior geodesic of D is length-minimizing.

For instance, a ball of radius r on a complete Finsler plane with no conjugate points is a
Finsler disk of radius r with minimizing interior geodesics.
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The optimal version of Berger’s conjecture for Finsler surfaces with self-reverse met-
ric is given by the following result. We emphasize that we make no assumptions on the
convexity radius.

Theorem 1.2. Let D be a self-reverse Finsler metric disk D of radius r with minimizing
interior geodesics. Then the Holmes–Thompson area of D satisfies

area.D/ �
6

�
r2:

Furthermore, the inequality is optimal.

The lower bound is attained by a non-smooth space consisting of a disk of radius r
centered at the tip of the cone obtained by gluing together three copies of a quadrant
of the `1-plane. (Recall that the `1-plane is the normed plane where unit balls have the
least possible area, according to Mahler’s theorem on convex bodies in the plane.) Note
that this disk is not rotationally symmetric. In Section 11 we use Busemann’s construc-
tion of projective metrics (developed in relation with Hilbert’s fourth problem) to give
another description of this non-smooth extremal metric. More precisely, we define a non-
smooth projective metric on the plane where the disk of radius r centered at the origin has
area 6

�
r2. Then, we approximate this non-smooth projective metric by smooth projective

metrics (which are therefore Finsler and have minimizing interior geodesics) where the
area of the disk converges to 6

�
r2, proving that the inequality of Theorem 1.2 is sharp.

Let us further comment on the result proved in [19] for Riemannian disks D.r/ �M
of radius r � 1

2
conv.M/. As previously mentioned, this excludes the possibility that

D.r/ is a hemisphere of intrinsinc radius r . Still, the argument in [19] is valid for Finsler
surfaces with self-reverse metric, except for the proof of their Lemma 2.1, which is purely
Riemannian. Therefore, a self-reverse Finsler metric disk of radius r in which the distance
function from each given point is convex along all geodesics satisfies (1.3). The extremal
surfaces that we construct in this paper violate this inequality, but this is no contradiction
because they have a vanishing convexity radius.

Instead of the Holmes–Thompson area, one could consider the Busemann–Hausdorff
area, which, in general, is bounded below by the former; see [29]. However, the
Busemann–Hausdorff area of the extremal metric in Theorem 1.2 is equal to 3

4
�r2, which

is greater than the area of the round hemisphere of intrinsic radius r that is conjectured to
be minimal.

The proof of Theorem 1.2 and the construction of extremal and almost extremal
metrics occupy the whole article. The approach, based on a discretization of the metric
(cf. [20]), is fairly robust and new in this context.

The article is organized as follows.
In Section 2, we recall the notions of Finsler manifolds, their Holmes–Thompson

measure, and their geodesics described from the Hamiltonian point of view.
In Section 3, we go over the standard proofs of the integral geometry formulas of

Blaschke and Santaló, showing that they are valid for Finsler manifolds with almost no
trapped geodesics. In the case of a disk as in Theorem 1.2, the formulas say that the
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length of a curve in the disk is proportional to the expected number of intersections with
a random geodesic, and the area of a region is proportional to the expected length of the
intersection with a random geodesic.

In Section 4, we introduce the notion of a quasi wall system on a surface, generalizing
the wall systems studied in [20]. A quasi wall system on a surface is a 1-dimensional
submanifold satisfying certain conditions. It determines a discrete metric, according to
which the length of a curve is its number of intersections with the quasi wall system, and
the area of the surface is the number of self-intersections of the quasi wall system. We
show how to approximate a self-reverse Finsler metric with minimizing geodesics by a
quasi wall system consisting of random geodesics. To prove the approximation properties
we use the integral geometry formulas to compute the expected values of discrete length
and area, and then we apply the law of large numbers.

In Section 5, we use this approximation result to show that Theorem 1.2 follows from
an analogous theorem on simple discrete metric disks.

Sections 6–9 are devoted to the proof of this discrete theorem. The proof is based on
identifying certain configurations on a quasi wall system and operating on these configu-
rations in order to transform a simple discrete disk into a new one of less area. When the
disk has minimum area, none of these configurations is present, and this implies that the
quasi wall system is of a special kind where we can compute a lower bound for the area.

In Section 10, we construct a simple discrete disk of minimal discrete area and show
that it is unique up to isotopy.

In Section 11, we use Busemann’s construction of projective metrics to obtain contin-
uous versions of our discrete area-minimizing disk.

Finally, Section 12 is an appendix where we show that on a Finsler surface with bound-
ary, distance-realizing curves are C 1.

2. Finsler metrics and Holmes–Thompson volume

In this section, we recall basic definitions of Finsler geometry.

2.1. Finsler metrics

Let us recall the definition of a Finsler metric.

Definition 2.1. A Finsler metric on a smooth manifold M is a continuous function F W
TM ! Œ0;C1/ on the tangent bundle TM of M satisfying the following properties
(here, Fx WD F jTxM for short):

(1) Positive homogeneity: Fx.tv/ D t Fx.v/ for all v 2 TxM and t � 0.

(2) Subadditivity: Fx.v C w/ � Fx.v/C Fx.w/ for all v;w 2 TxM .

(3) Positive definiteness: Fx.v/ > 0 for every nonzero v 2 TxM .

(4) Smoothness: F is smooth outside the zero section.
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(5) Strong convexity: for any two linearly independent vectors v;w 2 TxM , the Hessian
value qv.w/ D d2

dt2

ˇ̌
tD0
Fx.v C tw/ is strictly positive.

Additionally, a Finsler metric F may or be not be

(6) Self-reverse: Fx.�v/ D Fx.v/ for every v 2 TxM .

Equivalently, one could define a Finsler metric by replacing (3) and (5) with the con-
dition that for every nonzero vector v 2 TM , the Hessian of F 2 at v is positive definite;
see [21].

In each tangent space TxM , the unit ball and unit sphere determined by the norm Fx
are

BxM D ¹v 2 TxM j Fx.v/ � 1º; UxM D ¹v 2 TxM j Fx.v/ D 1º:

Similarly, in the cotangent space T �xM , the norm F �x dual to Fx determines the unit
coball B�xM and the unit cosphere U �xM .

Remark 2.2. To handle technical details in case M has nonempty boundary, we extend
the metric F to a manifoldMC �M , of the same dimension asM but without boundary.

2.2. Length, geodesics and distance-realizing arcs

Definition 2.3. Let M be a manifold with a Finsler metric F . The length of a piece-
wise-C 1 curve  W I !M is defined as the integral of its speed F. 0.t//, that is,

length./ D
Z
I

F. 0.t// dt (2.1)

and the distance dF .x; y/ between two points x and y in M is the infimum length of a
curve  in M joining x to y.

A distance-realizing curve is a curve  W I !M such that

dF ..t/; .t
0// D t 0 � t

for all t < t 0.
A geodesic of M is a smooth, unit-speed curve  W I ! M that is extremal for the

length functional. In case M has boundary, the extremality is defined by considering
variations in MC; see Remark 2.2. Thus the geodesics of M are the geodesics of MC

that are contained in M . Equivalently, the geodesics of M are the unit-speed curves that
satisfy the Euler–Lagrange equation for the length functional; see Definition 2.6 below
for an explicit equation in terms of momentum.

In a compact connected Finsler manifold, any two points can be joined by a distance-
realizing arc.2 A distance-realizing arc contained in the interior of M is necessarily

2A proof for more general, complete self-reverse metrics is given [32, §1.12]; see also [36,
Theorem 9.1] for directed metrics.
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a geodesic and is therefore smooth. However, a distance-realizing arc of M does not
necessarily lie in the interior of M , even if its endpoints do. Still, if the manifold is
two-dimensional, then every distance-realizing arc is C 1 and has unit speed; see The-
orem 12.1. Thus, in a compact Finsler surface, any two points x; y can be joined by a C 1

arc of length dF .x; y/.

2.3. Symplectic structure on the cotangent bundle

Recall also some definitions about the geodesic flow of a Finsler manifold from the Hamil-
tonian viewpoint; see [5, 8, Chaps. 7–9] and [21].

Definition 2.4. Let M be a manifold. The tautological 1-form ˛M on T �M is defined as

˛M j�.V / D �.d��.V //

for all � 2 T �M and V 2 T�T �M , where � W T �M ! M is the canonical projection.
The standard symplectic form !M on T �M is given by

!M D d˛M :

Using canonical coordinates .xi ; �i / on T �M , these forms can be expressed as

˛M D
X
i

�idxi ; !M D
X
i

d�i ^ dxi : (2.2)

Definition 2.5. Let .M;F / be a Finsler manifold. The Legendre map

L W UM ! U �M

is defined as follows: the image of a unit vector v 2 UxM is the unique unit covec-
tor � 2 U �xM such that �.v/ D 1. Since F is strongly convex, the Legendre map is
a diffeomorphism. Its inverse is the Legendre map associated to the dual metric F �

on T �M , which is also strongly convex. The unit covectors will also be referred to as
momentums. The Hamiltonian lift of a unit-speed curve  inM is the curve t 7!L. 0.t//

in U �M .

Definition 2.6. The cogeodesic vector field of a Finsler manifold M is the vector field Z
on U �M given by the equations

�Z.!M jU�M / D 0; �Z.˛M / D 1;

where �Z is the operator that contracts a differential form with the vector field Z. The
integral curves of Z are the Hamiltonian lifts of the geodesics in M ; see [21].

It follows from the Cartan formula that the forms ˛M and !M restricted to U �M are
invariant under the cogeodesic flow.

2.4. Holmes–Thompson volume

We will consider the following notion of volume.
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Definition 2.7. The Holmes–Thompson volume of a Finsler n-manifold M is defined as
the symplectic volume of its unit coball bundle B�M � T �M , divided by the volume �n
of the Euclidean unit ball in Rn. That is,

vol.M/ D
1

�n

Z
B�M

1

nŠ
!nM ; (2.3)

where !M is the standard symplectic form on T �M and 1
nŠ
!nM D

1
nŠ
!M ^ � � � ^ !M is

the corresponding volume form. Equivalently, the Holmes–Thompson volume is given as
an integral over the unit sphere bundle by the formula

vol.M/ D
1

�nnŠ

Z
U�M

˛M ^ !
n�1
M : (2.4)

The factor 1
�n

ensures that for Riemannian metrics, the Holmes–Thompson definition
of volume agrees with the conventional Riemannian definition.

3. Integral geometry in Finsler manifolds with almost no trapped geodesics

The goal of this section is to present versions of two classical formulas in integral geom-
etry, due to Blaschke [15] and Santaló [39, 40], which are in turn generalizations to
manifolds of the classical Crofton formulas on the Euclidean plane. In [6], Blaschke’s
formula is proved for Finsler manifolds whose space of geodesics is a smooth manifold.
Here, we give slightly more general versions which hold for Finsler manifolds with almost
no trapped geodesics (and, in particular, for compact Finsler manifolds with minimizing
interior geodesics). The proofs mimick those given by Blaschke, Santaló, and Álvarez-
Paiva–Berck. However, we give them in full in order to provide additional details and
introduce the few extra steps needed for the generalization.

Definition 3.1. Let M be a Finsler n-manifold with nonempty boundary. A traversing
geodesic of M is a maximal geodesic  W Œ0; `./�! M which does not intersect @M ,
except at its endpoints where it meets the boundary transversely. The Finsler manifoldM
has almost no trapped geodesics if for almost every unit tangent vector v 2 UM , the
maximal geodesic v defined by  0v.0/ D v reaches the boundary of M in the future and
in the past, that is, v.t/ 2 @M for some t � 0 and some t � 0.

For instance, a compact Finsler manifold with minimizing interior geodesics has
almost no trapped geodesics. Another example is obtained by taking a closed Finsler
manifold with ergodic geodesic flow and removing a smoothly bounded nonempty open
set.

As we will explain below, the space � of traversing geodesics of M is a .2n � 2/-
dimensional manifold admitting a natural symplectic structure, whose corresponding nat-
ural volume measure is denoted by �� ; see Definition 3.6.
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Theorem 3.2 (Blaschke’s formula). Let M be a Finsler n-manifold with almost no
trapped geodesics. Then the Holmes–Thompson volume of an immersed hypersur-
face N �M is equal to

voln�1.N / D
1

2�n�1

Z
2�

#. \N/ d��./; (3.1)

where #. \N/ is the number of times that  intersects N .
Similarly, the Holmes–Thompson volume of a cooriented immersed hypersurfaceN �

M is equal to

voln�1.N / D
1

�n�1

Z
2�

#. \C N/ d��./; (3.2)

where #. \C N/ is the number of times that  intersects N transversely in the positive
direction.

In (3.1), we can restrict the integral to geodesics  2 � which are transverse to the
hypersurface N since the geodesics  2 � which are tangent to N form a subset of zero
measure; see Proposition 3.7 (3).

Remark 3.3. Since every traversing geodesic intersects @M positively exactly once, we
deduce from (3.2) that the total measure of the space � is

��.�/ D �n�1 voln�1.@M/:

In particular, if M is compact, then ��.�/ <1.

Theorem 3.4 (Santaló’s formula). LetM be a Finsler n-manifold with almost no trapped
geodesics. Then the Holmes–Thompson volume of a smoothly bounded domain D � M
is equal to

voln.D/ D
1

n�n

Z
2�

length. \D/ d��./: (3.3)

In the case of Finsler surfaces with self-reverse metric, the Blaschke and Santaló for-
mulas specialize as follows.

Corollary 3.5. Let M be a self-reverse Finsler metric surface with almost no trapped
geodesics. Then the length of any immersed curve c in M is

length.c/ D
1

4

Z
2�

#. \ c/ d��./; (3.4)

and the Holmes–Thompson area of any smoothly bounded domain D �M is

area.D/ D
1

2�

Z
2�

length. \D/ d��./ (3.5)

D
1

8�

“
.0;1/2���

#.0 \ 1 \D/ d��.0/ d��.1/: (3.6)
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Equation (3.6), obtained from (3.5) and (3.4), will be called the Santaló+Blaschke
formula. In deducing this formula, we use the hypothesis that the metric is self-reverse
when we equate the length of a geodesic with its Holmes–Thompson measure. In general,
the Holmes–Thompson measure of a curve is the average of its forward and backward
lengths.

The rest of this section is dedicated to describing the symplectic structure on � and
proving Theorems 3.2 and 3.4.

3.1. Symplectic manifold of traversing geodesics

Let M be a Finsler n-manifold. Recall that � is the space of traversing geodesics of M .
The space � is a .2n � 2/-dimensional manifold parameterized by the initial vectors
 0.0/ 2 UM j@M of the geodesics  W Œ0; `./� ! M of � . Note that the length `./
depends smoothly on  2 � .

Definition 3.6. Define the open subset of U �M ,

U ��M D ¹L.
0.t// 2 U �M j  2 �; t 2 Œ0; `./�º;

consisting of the momentums of the traversing geodesics of M . Note that U ��M is a Z-
invariant open subset of U �M .

Consider the surjective submersion

�� W U
�
�M ! � (3.7)

taking any momentum � 2 U ��M to the geodesic  2 � it generates. The fibers of �� are
the Z-orbits corresponding to the traversing geodesics.

There exists a unique 2-form !� on � such that

��� !� D !M jU��M
:

This follows from the invariance of the 2-form !M jU�
�
M under the cogeodesic flow, and

the fact that this form vanishes in the direction of Z according to Definition 2.6. (See
also [21] for details, or [1, §4.3] for a general account of symplectic reduction.) The
form !� is symplectic, thus it determines on � a smooth volume measure �� given by

d�� D
1

.n � 1/Š
j!n�1� j: (3.8)

3.2. Non-traversing geodesics are negligible

We will need the following result in order to establish our versions of Blaschke’s and
Santaló’s formulas. This feature is not required in the previous versions and necessitates
the manifold having almost no trapped geodesics.

Recall that a subset A of a manifoldX is negligible inX if the image of A in any local
chart of X has zero measure.



M. Cossarini, S. Sabourau 994

Proposition 3.7. (1) The complement of the open subset U ��M � U
�M is negligible

in U �M .

(2) Given a hypersurface H � U �M transverse to Z, the complement of H \ U ��M is
negligible in H .

(3) The set of geodesics  2 � tangent to an immersed hypersurface of M or passing
through an immersed submanifold of M of codimension > 1 has zero measure in � .

Proof. To avoid technical problems we extend the Finsler metric to an open mani-
fold MC; see Remark 2.2. This ensures the cogeodesic flow .�; t/ 7! Zt .�/ is defined
on an open domain.

By definition of � , the complement U �M n U ��M is formed by momentums of two
types. First, momentums of U �M that correspond to geodesics ofM with at least one end
trapped in M . These momentums form a negligible set since M has almost no trapped
geodesics; see Definition 3.1. Second, momentums of U �M corresponding to geodesics
tangent to @M . These momentums are of the form Zt .�/, where Zt is the cogeodesic
flow and � is the Legendre image of a unit vector v tangent to @M . These unit vectors
form a manifold U@M of dimension 2n � 3. Thus, by Sard’s theorem, the map from an
open subset of U@M � R to U �M defined by .v; t/ 7! Zt .L.v// has negligible image
in U �M . Having considered both types of momentums, we conclude that the comple-
ment U �M n U ��M is negligible in U �M .

For the second point, simply observe that if A is a Z-invariant negligible subset
of U �M and H is a hypersurface of U �M transverse to Z, then A \ H is negligible
in H . Apply this property to A D U �M n U ��M to conclude.

The proof of the third point is similar to the proof of the first point and relies on Sard’s
theorem.

3.3. Manifold of positive momentums across a hypersurface

We will need the following notion in the proof of Blaschke’s formula.

Definition 3.8. Let N be a cooriented embedded hypersurface in a Finsler manifold M .
(For example, we can have N D @M cooriented so that inwards-pointing vectors are pos-
itive.) Denote by C �N � U �M jN the manifold of momentums crossing positively the
hypersurface N , that is, the momentums corresponding under the Legendre map to unit
vectors transverse to N pointing in the positive direction according to the coorientation
of N . Note that C �N is an open subset of U �M jN and therefore a differentiable mani-
fold, with the structure of an open ball bundle over N .

Consider the restriction map

�N W C
�N ! Int.B�N/; T �xM 3 � 7! �jTxN ;

to the interior Int.B�N/ of the unit coball bundle B�N of N .

The following statement can be found in [6, Lemma 5.4]. For completeness we pro-
vide the details of the proof.
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Lemma 3.9. The space C �N is a symplectic submanifold of T �M and the restriction
map

�N W .C
�N;!M /! .Int.B�N/; !N /

is a symplectomorphism. Thus,

��N !N D !M jC�N :

Proof. Let � 2 C �N with basepoint x 2 N . By definition, the norm of � is 1, so the norm
of its restriction � 0 to TxN is at most 1. Furthermore, by strong convexity of F �x , the linear
form � attains its maximum only at its Legendre-dual unit vector, which is positive and
thus not contained in TxN . Therefore, k� 0k < 1 and the restriction map �N takes values
in Int.B�N/.

To see that �N is a diffeomorphism, we employ local coordinates .xi /1�i�n in M
so that the hypersurface N is given by the equation xn D 0. Let .xi ; vi /i and .xi ; �i /i
be the corresponding coordinates in TM and T �M . In terms of these coordinates, the
operator �N acts by suppressing the last coefficient, that is, if � D .�i /1�i�n, then � 0 D
.�i /1�i�n�1. Hence �N is smooth.

To prove that �N is bijective, consider a covector � 0 D .�i /1�i�n�1 2 Int.B�xN/ and
denote its norm � D k� 0k < 1. The covectors � 2 T �xM such that �jTxN D �

0 are of the
form � t D .�1; : : : ; �n�1; t / with t 2 R. Consider the function t 7! k� tk, where k � k is the
norm F �x on T �xM that is dual to Fx . This function is bounded below by �, and by the
Hahn–Banach theorem, this lower bound is attained at some t0 2 R. Furthermore, since
the norm F �x is strongly convex, the set of values of t such that k� tk � 1 is a compact
interval Œt�; tC� that contains t0 in its interior, and k� tk D 1 if and only if t D t˙. Thus
we are left with two candidates � t˙ that are the only unit covectors � whose restriction
to TxN is � 0.

We claim that � tC is positive (and � t� is negative). That is, the vector in Legendre cor-
respondence with � tC (i.e., the unit vector where � tC attains its norm) is positive. Indeed,
when t D t0, the covector � t , as a function BxM ! R, is bounded above by �. As t
increases towards tC, the coefficient �n increases, and thus the values of � t .v/ for v on the
negative side decrease (hence they are< �). Thus, any functional � t with t > t0, restricted
to the ball BxM , must attain its maximum value k� tk (which is > �) on a positive vector,
as required. This shows that � t is positive if t > t0 (and similarly � t is negative if t < t0).
We conclude that � tC is the only positive unit covector � whose restriction to TxN is � 0.
This proves that �N is bijective. Additionally, tC depends smoothly on � 0 by the implicit
function theorem. This finishes the proof that the restriction map �N W C �N ! Int.B�N/
is a diffeomorphism.

Let us show that .�N /�˛N D ˛M jC�N . In canonical coordinates, the tautological 1-
form ˛M on T �M is written as ˛M D

Pn
iD1 �idxi . In restricting to C �N , the last term

vanishes because xn D 0 on N , thus the restricted form can be written as ˛M jC�N DPn�1
iD1 �idxi . On the other hand, the tautological 1-form of N is ˛N D

Pn�1
iD1 �i dxi , and

this expression is unchanged by the pullback .�N /� since the map �N WC �N ! Int.B�N/
acts simply by suppressing the coordinate �n. We conclude that .�N /�˛N D ˛M jC�N .
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Taking the exterior differential of this expression, we obtain .�N /�!N D !M jC�N . This
implies that C �N is a symplectic submanifold of T �M .

3.4. Coarea formula and fiber integration

In the proofs of Blaschke’s and Santaló’s formulas, we will need the following version
of the coarea formula; see [28, (16.24.8)] (see also [30, Theorem 3.2.3] and [17, Theo-
rem 5.5.8] when n D m).

Lemma 3.10. Let � WX ! Y be a submersion between two oriented manifolds of dimen-
sion n and m with n � m. Let ˛ and ˇ be differential forms on X and Y of degree n �m
and m. Then Z

X

˛ ^ ��ˇ D

Z
y2Y

�Z
��1.y/

˛

�
ˇ;

where ��1.y/ is endowed with the orientation induced by � from the orientations of X
and Y . In particular, for n D m and ˛ D 1, we haveZ

X

��ˇ D

Z
y2Y

#.��1.y// ˇ: (3.9)

3.5. Proof of the Blaschke formula

We can now proceed to the proof of Blaschke’s formula (3.1).

Proof of Theorem 3.2. We will follow the proof given in [6, Theorem 5.2] under the extra
assumption that the space of oriented geodesics on M is a manifold.

The Blaschke formula (3.1) for a non-cooriented hypersurface N can be deduced
from the cooriented version (3.2) by taking the cooriented double cover of N . Therefore
it is sufficient to prove the latter formula. Furthermore, every immersed hypersurface can
be decomposed into a disjoint union of embedded hypersurfaces up to a negligible set.
Therefore it is sufficient to prove (3.2) for a cooriented embedded hypersurface N .

By definition of the Holmes–Thompson volume (see (2.3)), we have

voln�1.N / D
1

�n�1.n � 1/Š

Z
B�N

!n�1N D
1

�n�1.n � 1/Š

Z
C�N

!n�1M ;

where the second equality follows from Lemma 3.9.
Now, apply Proposition 3.7 (2) withH DC �N �U �M . It follows thatC �N \U ��M

has full measure in C �N . Thus,Z
C�N

!n�1M D

Z
C�N\U�

�
M

!n�1M :

Consider the map � W C �N \ U ��M ! � taking a unit momentum of M based at N
pointing in a positive direction (with respect to the coorientation of N ) to the traversing
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geodesic it generates. Apply the fiber integration formula (3.9) to this map with ˇD!n�1� .
This yields the relationZ

C�N\U�
�
M

!n�1M D

Z
2�

#. \C N/!n�1� ;

where #. \C N/ is the number of times that  crosses N transversely in the positive
sense (as determined by the coorientation of N ). Taking into account the definition of ��
by (3.8), we get Blaschke’s formula.

3.6. Proof of the Santaló formula

Let us prove Santaló’s formula (3.3).

Proof of Theorem 3.4. Recall that !M D ��� !� (see Definition 3.6), and U ��M has full
measure in U �M (see Proposition 3.7 (1)). By (2.4), we have

voln.D/ D
1

�nnŠ

Z
U�D\U�

�
M

˛M ^ �
�
� !

n�1
� :

By Lemma 3.10, integrating along the fibers of the submersion � W U �D \ U ��M ! �

induced by �� (see (3.7)), we obtain

voln.D/ D
1

�nnŠ

Z
2�

�Z
��1./

˛M

�
!n�1� :

Since all the fibers ��1./ D ¹L. 0.t// 2 U �M j t 2 Œ0; `./�º \ U �D are tangent to
the cogeodesic vector field Z on U �M and ˛M .Z/ D 1, we deriveZ

��1./

˛M D length. \D/:

Hence,

voln.D/ D
1

�n nŠ

Z
2�

length. \D/!n�1� D
1

�n n

Z
2�

length. \D/ d��./:

4. Discretization of Finsler surfaces

The goal of this section is to describe a discretization of Finsler disks with minimizing
interior geodesics into simple discrete metric disks. For this, we adapt the general scheme
of discretization developed in [20] in relation with the filling area conjecture. The main
novelty is that, in our case, the discrete geometry is described by a system of curves (wall
system) made up of geodesics.

First, we need to fix some notation regarding intersections of maps.
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Definition 4.1. The intersections of a map f W X ! Y with a map f 0 W X 0! Y lying in
a subset A � Y are the ordered pairs in the set

IA.f; f
0/ D ¹.x; x0/ 2 X �X 0 j f .x/ D f 0.x0/ 2 Aº:

The number of intersections between f and f 0 is defined as

#.f \ f 0/ D #IY .f; f 0/;

where #S denotes the cardinality of a set S .
Similarly, the self-intersections of a map f W X ! Y lying in a subset A � Y are the

unordered pairs in the set

IA.f / D
®
¹x; x0º � X j f .x/ D f .x0/ 2 A but x ¤ x0

¯
;

and the multiplicity of a point y 2 Y as a self-intersection of f is the number #I¹yº.f /.
A self-intersection is simple if it has multiplicity 1.

Let us introduce the notion of a wall system on a disk; see [20].

Definition 4.2. A (smooth) wall system on a surface M is a 1-dimensional (smooth)
immersed submanifold W satisfying the following conditions:

(1) the immersion map is proper (that is, the preimage of any compact subset of M is
compact);

(2) W is transverse to the boundary @M and satisfies @W D W \ @M ;

(3) W is self-transverse and has only simple self-intersections;

(4) no self-intersections of W lie on the boundary @M .

As a technical remark, we note that the symbol W denotes the immersion map, not its
image Im.W/ � M or its domain. The domain is a 1-manifold, i.e., a disjoint union of
countably many intervals and circles. Hence the expression @W � @M involves an abuse
of notation and actually means Im.@W/ � @M , where @W is the restriction of the map W

to the boundary of the domain of W . The image of W will also be denoted W . Thus, the
expression M nW denotes M n Im.W/.

Eventually we will need to relax the definition by dropping condition (4). In this case,
we say that W is a quasi wall system on M .

The curves that form a (quasi) wall system are called its walls. Note that if the sur-
face M is compact, then W consists of finitely many compact walls; each of these walls
is either a loop that avoids the boundary or an arc that meets the boundary only at its two
endpoints.

A quasi wall system W on a disk D is simple if its walls are arcs that have no self-
intersections and that meet each other at most once.3

3Simple wall systems are also called pseudoline arrangements; see [20]. However, some authors
(e.g., [31]) only consider complete pseudoline arrangements, which are those where every pair of
walls crosses exactly once.
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In this paper, every quasi wall system W is smooth unless we make it clear that it
is piecewise smooth. In that case, the non-smooth points of W may not coincide with
the self-intersection points of W . Note that a piecewise smooth quasi wall system can be
turned into a smooth quasi wall system by an isotopic deformation.

Example 4.3. Let D be the unit disk in the Euclidean plane. A wall system made of the
horizontal and vertical diameters of D has area 1. A quasi wall system made of the three
sides of an inscribed triangle of D has area 3=2.

We will also need the following definitions regarding the geometry induced by a quasi
wall system.

Definition 4.4. Every quasi wall system W on a compact surfaceM determines a discrete
length

lengthW .c/ D #.c \W/ (4.1)

for curves c in M . That is, the length of a curve is the number of times it intersects the
quasi wall system (counted with multiplicity). Every quasi wall system W also induces a
pseudo-distance on M nW defined by

dW .x; y/ D inf
c

lengthW .c/

where the infimum is taken over all paths of M joining x to y. We will refer to the
pseudo-distance dW on M as the discrete distance induced by W on D.

The discrete area of .M;W/ is the number of self-crossings of W contained in the
interior of M plus half the number of self-crossings on the boundary. That is,

area.M;W/ D #IIntM .W/C 1
2

#I@M .W/ D #IIntMC 12 @M
.W/

where #IIntMC 12 @M
is just an abbreviation for #IIntM C

1
2

#I@M .

Note that, if W consists of finitely many curves i , then

area.M;W/ D
X
i<j

#IIntMC 12 @M
.i ; j /C

X
i

#IIntMC 12 @M
.i /: (4.2)

When the quasi wall system is simple, the curves of W have no self-intersections and the
second sum vanishes.

We will need the following result describing the intersection of two distance-realizing
arcs of M . Recall that � is the space of traversing geodesics of M (i.e., geodesic arcs
of M which do not intersect @M except at their endpoints, where they meet the boundary
transversely).

Lemma 4.5. Let M be a self-reverse Finsler metric disk with minimizing interior geo-
desics. Let  2 � be a traversing geodesic of M and let Œx; y� be a distance-realizing arc
of M with endpoints x and y not lying in  . Then

#. \ Œx; y�/ D

´
1 if  separates x and y;

0 otherwise:

Proof. By Theorem 12.1, the distance-realizing arc Œx; y� is C 1.



M. Cossarini, S. Sabourau 1000

Suppose that the arcs  and Œx; y� are tangent, either at an interior point of M or at an
endpoint of  in @M . In both cases, this implies that Œx; y� contains  since the distance-
realizing arc Œx; y� follows the geodesic flow in the interior of M and the endpoints x; y
do not lie in  . Now, since the interior geodesic  is transverse to @M at its endpoints Nx
and Ny, the distance-realizing arc Œx; y� is not differentiable at Nx and Ny. In particular, it
is not C 1, which is absurd. Therefore, the arcs  and Œx; y� may only have transverse
intersections.

Suppose that the arcs  and Œx; y� intersect at least twice, say at a and b (with a and b
different from x and y). Since both arcs are distance-realizing curves, the subarcs Œa; b��
Œx; y� and ab �  joining a and b have the same length. Construct an arc ˛ joining x
and y by replacing the subarc Œa; b� of Œx; y� with the arc ab of the same length. By
construction, the arc ˛ is a distance-realizing curve. But since the intersection between 
and Œx; y� is transverse, the arc ˛ is not differentiable at a and b. In particular, it is not C 1,
which is absurd. Therefore, the arcs  and Œx; y� intersect at most once, and so exactly
once if  separates x and y.

Suppose now that  does not separate x and y. Then the arc Œx;y� does not intersect  .
Otherwise, it would go from one side of  to the other (recall that  and Œx; y� have
transverse intersection) and, because x and y are on the same side of  , it would have to
cross  a second time, which is excluded. Therefore, the arcs  and Œx; y� do no intersect
if  does not separate x and y.

Let us compare the shortest paths for Finsler metrics and discrete metrics.

Definition 4.6. A quasi wall system is geodesic if its walls are geodesics.

Proposition 4.7. Let M be a self-reverse Finsler metric disk with minimizing interior
geodesics, and let W be a geodesic quasi wall system onM . Then every distance-realizing
arc Œx; y� of M with endpoints x; y not lying in W is also length minimizing with respect
to W . Thus, for all x; y 2M nW , we have

dW .x; y/ D lengthW .Œx; y�/: (4.3)

Proof. The quasi wall system W is made up of finitely many geodesics i that are trans-
verse to @M . By Lemma 4.5, the arc Œx; y� crosses only those geodesics i that separate x
from y, exactly once. Therefore, no curve from x to y can be shorter than Œx; y� with
respect to W .

Before proceeding we derive a useful consequence of the last lemma.

Lemma 4.8. Let M be a self-reverse Finsler metric disk with minimizing interior geo-
desics. Then

d.x; y/ � 1
2

length.@M/ for all x; y 2M .

The same inequality holds if the distance and length are taken with respect to a geodesic
quasi wall system W , that is,

dW .x; y/ �
1
2

lengthW .@M/ for all x; y 2M nW .
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Proof. Join the points x; y 2 M by a distance-realizing arc Œx; y�. By Lemma 4.5,
each traversing geodesic  of M intersects Œx; y� at most once and meets @M exactly
twice. Then the inequality d.x;y/� 1

2
length.@M/ follows from Blaschke’s formula (3.4)

applied to Œx; y�.
The claim regarding the geodesic quasi wall system W is proved in a similar way. By

Proposition 4.7, the distance-realizing arc Œx; y� is also length-minimizing with respect
to W . Since each wall of W crosses Œx; y� at most once and meets @M exactly twice, we
derive the desired second inequality from the definition of lengthW ; see (4.1).

Simple wall systems can be used to discretize Finsler disks M with minimizing inte-
rior geodesics.

For any a; b 2 R and " > 0, we write

a ' b ˙ " if ja � bj < ".

Theorem 4.9. Let .M; F / be a self-reverse Finsler metric disk with minimizing interior
geodesics. Then, for every " > 0 and every integer n large enough, there exists a wall
system W , made up of n geodesics of M , such that for all x; y 2M nW , we have

1

n
dW .x; y/ '

2

L
dF .x; y/˙ "; (4.4)

2

n2 � n
area.M;W/ '

2�

L2
area.M;F /˙ "; (4.5)

where L D lengthF .@M/. Furthermore, the wall system W is necessarily simple.

Note that [20, Theorem 7.1] states the existence of a system with similar approxima-
tion properties but not necessarily made up of geodesics.

Proof of Theorem 4.9. The wall system W will be formed by random geodesics. Recall
that � is the space of traversing geodesics of M (i.e., geodesic arcs of M which do
not intersect @M except at their endpoints where they meet the boundary transversely)
and has a natural measure �� ; see (3.8). Furthermore, this space has finite total mea-
sure ��.�/ D 2L; see Remark 3.3. Thus we may define on � the probability mea-
sure P D ��

2L
.

Take n independent identically distributed (i.i.d.) random geodesics 1, . . ., n of �
with probability distribution P . Almost surely, these geodesics form a wall system W

ofM (see Definition 4.2), because they are pairwise different and have only simple cross-
ings located in the interior ofM . Moreover, this wall system is simple, since the geodesics
are minimizing and therefore they cannot cross each other more than once by Lemma 4.5.
Now, Theorem 4.9 follows from the next two lemmas.

The first lemma is obtained by applying the weak law of large numbers to the Blaschke
formula (3.4) in a uniform way.

Lemma 4.10. With probability converging to 1 as n!1, we have

1

n
dW .x; y/ '

2

L
dF .x; y/˙ " for all x; y 2M nW .
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Proof. Let D be a finite covering of M by smoothly bounded disks D with perimeter
lengthF .@D/ < ". Fix a basepoint p in each diskD 2D and denote by P the collection of
all basepoints. Almost surely, the geodesics of W avoid the points of P and are transverse
to the boundaries of the disks D 2 D .

The following claim shows that the conclusion of the lemma holds in some finite
cases.

Claim 4.11. The following assertions hold with probability converging to 1 as n!1:

(1) For all p; q 2 P , we have

1

n
dW .p; q/ '

2

L
dF .p; q/˙ ": (4.6)

(2) For every disk D 2 D and all x; y 2 D nW , we have

1

n
dW .x; y/ �

�
1

L
C
1

2

�
": (4.7)

Proof. (1) Recall that the distance-realizing arc Œp; q� is C 1 embedded in M (see Theo-
rem 12.1).

The intersection function f D fp;q W � ! N defined by

f ./ D #. \ Œp; q�/

is a nonnegative measurable function. By Blaschke’s formula (3.4), the random variables
Xi D f .i / with 1 � i � n are i.i.d. with finite expected value

E.Xi / D

Z
�

#. \ Œp; q�/ dP D
2

L
dF .p; q/:

Note that E.jXi j/ D E.Xi / <1. By the weak law of large numbers applied to ¹Xiº (see
e.g. [42]), we derive ˇ̌̌̌

1

n

nX
iD1

#.i \ Œp; q�/ �
2

L
dF .p; q/

ˇ̌̌̌
< "

with probability converging to 1 as n!1. By Proposition 4.7, we have

dW .p; q/ D lengthW .Œp; q�/ D

nX
iD1

#.i \ Œp; q�/;

hence (1) follows.
(2) The proof of the second assertion is similar. For a disk D 2 D , the intersec-

tion function f ./ D #. \ @D/ has expected value 2
L

lengthF .@D/ by Blaschke’s for-
mula (3.4). Applying the weak law of large numbers to the random variables Xi D f .i /
as previously, we deriveˇ̌̌̌

1

n

nX
iD1

#.i \ @D/ �
2

L
lengthF .@D/

ˇ̌̌̌
< "
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with probability converging to 1 as n!1. Thus,

1

n
lengthW .D/ '

2

L
lengthF .D/˙ "

�

�
2

L
C 1

�
":

Since D is a disk with minimizing interior geodesics, the discrete part of Lemma 4.8
yields (2).

Without loss of generality, we can assume that the conclusion of Claim 4.11 is satis-
fied. Let x; y 2 M nW . The points x and y lie in some disks Dx and Dy of D . Denote
by px and py the basepoints of Dx and Dy . Since Dx is a disk with minimizing interior
geodesics, by Lemma 4.8 we have

dF .x; px/ �
1
2

lengthF .@Dx/ <
1
2
";

thus by the triangle inequality,

jdF .x; y/ � dF .px ; py/j � dF .x; px/C dF .y; py/ < ": (4.8)

Combining the triangle inequality with (4.7), we obtainˇ̌̌̌
1

n
dW .x; y/ �

1

n
dW .px ; py/

ˇ̌̌̌
�
1

n
dW .x; px/C

1

n
dW .y; py/

�

�
2

L
C 1

�
": (4.9)

Thus,
1

n
dW .x; y/ '

(4.9)

1

n
dW .px ; py/ '

(4.6)

2

L
dF .px ; py/ '

(4.8)

2

L
dF .x; y/

up to additive constants which are universal multiples of " (namely, .2=LC 1/" for the
first one, " for the second and .2=L/" for the third one). Therefore,ˇ̌̌̌

1

n
dW .x; y/ �

2

L
dF .x; y/

ˇ̌̌̌
< C0"

where C0 D 4=LC 2. This proves Lemma 4.10.

The second lemma is obtained by applying a (slightly generalized) weak law of large
numbers to the Santaló+Blaschke formula (3.6).

Lemma 4.12. With probability converging to 1 as n!1, we have

2

n2 � n
area.M;W/ '

2�

L2
area.M/˙ ":

Proof. The intersection counting function f W � � � ! N defined by

f .;  0/ D #. \  0/
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is a measurable function that takes value 0 or 1 almost surely. The n.n � 1/=2 random
variables Xi;j D f .i ; j / with i < j are identically distributed but not completely inde-
pendent. In fact, Xi;j is independent of Xk;l if and only if ¹i; j º \ ¹k; lº D ;. To apply
the generalized weak law of large numbers, Theorem 4.13 below, we must check that the
variables Xi;j are sufficiently independent. There are n.n � 1/=2 � n2 variables Xi;j ,
which yield � n4 pairs .Xi;j ; Xk;l /, of which only � n3 are not independent. Therefore
the proportion of nonindependent pairs p � n3=n4 � 1=n goes to zero as n!1. Thus,
by Theorem 4.13, the average value of the variables Xi;j ,P

i<j Xi;j

n.n � 1/=2
D

P
i<j #.i \ j /

n.n � 1/=2
D

area.M;W/

n.n � 1/=2

converges in probability to the expected value, which is equal to

E.Xi;j / D

“
���

#. \  0/ dP ./ dP . 0/ D
2

L2
� area.M/

by the Santaló+Blaschke formula (3.6).

This concludes the proof of Theorem 4.9.

Let us prove the following generalization of the weak law of large numbers.

Theorem 4.13 (Weak law of large numbers for identically distributed, mostly independent
random variables). Fix a real valued random variable X with finite expected absolute
value E.jX j/ <1 and an integer n > 0. Then the average xX D 1

n

P
i Xi of n random

variables Xi , each with the same distribution as X , is near the expected value E.X/ with
probability arbitrarily close to 1 if the proportion of nonindependent pairs,

p D
#¹.i; j / j Xi and Xj are not independentº

n2
;

is small; more precisely, if for all "; ı > 0, there exists p0 D p0.X; ı; "/ > 0 such that if
p � p0, then P .j xX � E.X/j � "/ � ı.

Remark 4.14. Note that we do not explicitly require n to be large, but this is generally
necessary for p to be small, because each variable Xi is in general correlated with itself,4

which implies that p � n=n2 D 1=n. If these are the only correlations and n goes to
infinity, then p D 1=n ! 0 and therefore xX converges to E.X/ in probability. In this
way, we recover the usual weak law of large numbers.

Proof of Theorem 4.13. The proof is similar to the standard proof of the weak law of
large numbers; see [42, Theorem 1.5.1] for instance. It proceeds by cases; only the first
one requires attention to the nonindependent pairs.

4A random variable is independent of itself if and only if its probability distribution is concen-
trated in one value.
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Case E.X2/ <1 and E.X/ D 0. Fix " > 0. We have to prove that the probability of
deviation, P .j xX j> "/, gets arbitrarily low if p is sufficiently small. To apply Chebyshev’s
inequality, we compute

E. xX2/ D
1

n2

X
i

X
j

E.XiXj / � pE.X2/:

Here we have used the Cauchy–Schwarz inequality E.XiXj / � E.X2/ and the fact that
E.XiXj /D E.Xi /E.Xj /D E.X/2 D 0 if Xi and Xj are independent. Applying Cheby-
shev’s inequality, we obtain

P .j xX j � "/ �
E. xX2/

"2
�
pE.X2/

"2
���!
p!0

0;

which we had to prove.

Case E.X2/ <1. This case follows from the previous one applied to the random vari-
able Y D X � E.X/, which satisfies E.Y 2/ <1 and E.Y / D 0.

The general case E.jX j/ < 1, which is not needed in this article, follows from a
truncation argument as in the usual proof of the weak law of large numbers, given for
instance in [42].

5. Minimal area of disks: from discrete to Finsler metrics

The goal of this section is to state a discrete version of the area lower bound on Finsler
disks with minimizing interior geodesics and to show how to derive the area lower bound
for Finsler metrics from its discrete version.

Let us recall the area lower bound for Finsler metrics we want to prove.

Theorem 5.1. Let M be a self-reverse Finsler metric disk of radius r with minimizing
interior geodesics. Then the Holmes–Thompson area of M satisfies

area.M/ �
6

�
r2:

In order to state the discrete version of this result, we need to introduce the notion of
simple discrete metric disks.

Definition 5.2. A topological disk D with a quasi wall system W is a simple discrete
metric disk of radius r centered at an interior pointO 2D nW if the quasi wall system W

is simple (see Definition 4.2), all the points ofD nW are at dW -distance at most r fromO

and all the points of @D nW are at distance exactly r from O .

It is essential here to allow W to be a quasi wall system rather than a wall system.
Indeed, all points of W located on @D necessarily have multiplicity 2.

The following result, which will be proved in the subsequent sections, can be seen as
a discrete version of Theorem 5.1.
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Theorem 5.3. The discrete area of every simple discrete metric disk .D;W/ of radius r
satisfies

area.D;W/ �
3

2
r2:

Furthermore, equality is attained.

Assuming this discrete area lower bound, we can derive Theorem 5.1 as follows.

Proof of Theorem 5.1 assuming Theorem 5.3. Let M be a Finsler disk of radius r cen-
tered at O with minimizing interior geodesics. By Theorem 4.9, for every " > 0, there
exists a simple wall system WM , made up of n interior geodesics ofM , satisfying the esti-
mates (4.4) and (4.5). The simple wall system WM decomposesM into convex polygonal
cells. By definition, all the points in a cell are at the same distance from the center of M
with respect to the discrete distance dWM . Since M has minimizing interior geodesics,
the geodesic rays of length r issuing from its center O form a geodesic foliation F of the
punctured disk M n ¹Oº. The sides of the cells of M , which lie in the geodesics of WM ,
are transverse to the foliation F , otherwise the origin O would lie in W .

Consider a convex polygonal cell � of M not containing O . Choose an arbitrary
interior point of � as its center. Denote by d the dWM -distance from O to the interior
of the cell �. The geodesic rays of the foliation intersecting � form a spray F�, where
each ray of F� intersects � along an interval with nonempty interior, except for the two
extremal rays of the spray which intersect the convex polygonal cell� at two vertices; see
Figure 1. Denote by ˇ� the broken line made up of two segments joining the center of �
to these two extremal vertices. Note that every geodesic ray of the spray F� intersects
the broken line ˇ� at a single point; see Figure 1. Since the rays of the spray are length-
minimizing with respect to dWM (see Proposition 4.7), all the cells intersecting the spray
between O and ˇ� are at dWM -distance at most d from O , and all the cells intersecting
the spray after ˇ� are at dWM -distance at least d from O .

O

�
ˇ�

Fig. 1. Spray F� intersecting the convex polygonal cell �.

Denote by r0 the integer part of n.2r=L � "/. By (4.4), every boundary point p 2
@M nWM is at dWM -distance greater than r0 from O , that is, dWM .O; p/ > r0. A cell
of M whose interior points are at dWM -distance r0 from O will be referred to as an
outermost cell. The broken lines ˇ�, where � runs over all outermost cells of M , form a
piecewise geodesic closed curve bounding a topological diskD �M containing O . This



Minimal area of Finsler disks with minimizing geodesics 1007

curve can be smoothed to ensure that D is a smoothly bounded manifold. The restriction
W DWM \D of WM toD defines a simple quasi wall system onD. By construction, all
the points ofD nW are at dW -distance at most r0 fromO and all the points of @D nW are
at distance exactly r0 fromO . Hence, .D;W/ is a simple discrete metric disk of radius r0.
By Theorem 5.3 and by definition of the discrete area (4.2), we have

area.M;WM / � area.D;W/ � 3
2
r20 :

Dividing by n2, using (4.4) and (4.5), and letting " go to zero, we obtain

�

L2
area.M/ �

3

2

�
2

L
r

�2
:

Hence, area.M/ � 6
�
r2.

Sections 6–9 are devoted to the proof of Theorem 5.3.

6. Quasi wall systems and interval families

In this section, we show how to encode a simple discrete disk as a 1-dimensional object.
We start by proving the following basic fact about simple discrete metrics.

Proposition 6.1. Let D be a disk with a simple quasi wall system W . Then

dW .x; y/ D number of walls of W that separate x from y (6.1)

for any x; y 2 D nW .

Note that ifD is a Finsler disk with minimizing interior geodesics and W is geodesic,
then this proposition follows from Proposition 4.7.

Proof of Proposition 6.1. It is clear that

dW .x; y/ � number of walls of W that separate x from y:

To prove the reverse inequality we will show the following.

Claim 6.2. There exists a smooth path ˛ from x to y that is in general position with
respect to W [ @D and crosses each wall of W at most once.

Here, we say that a smooth curve ˛ is in general position with respect to an immersed
1-submanifold N if it is regular, transverse to N and avoids the self-intersections of N .
If ˛ is piecewise smooth, we require in addition that none of its nonsmooth points lies
in N .

The claim is a version of Levi’s extension (or enlargement) lemma for pseudoline
arrangements. This version concerns arrangements on a disk, rather than on the projective
plane as in the more standard version of the lemma (found e.g. in [31, Thm. 5.1.1]).
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We prove the claim by induction on the number of walls. Suppose the claim is valid
for any quasi wall system W made up of n walls. Consider a simple quasi wall system W 0

obtained by adding an extra w0 to W . By inductive hypothesis, there is a smooth path ˛
that satisfies all the conditions of the claim with respect to W . By perturbing ˛, we ensure
that it is transverse to w0 as well. If ˛ crosses w0 at most once, then we are done. Other-
wise, let x0 and y0 be the first and last points of ˛ where ˛ crosses w0. Note that they are
generic points of w0: they are neither on W , nor on @D. Replace the segment of ˛ from x0

to y0 by the segment Œx0; y0� of w0, and let ˛0 be the resulting curve. We claim that ˛0 is
a piecewise smooth curve, in general position with respect to W , that crosses each wall
of W at most once. This is because the segment Œx0; y0� that we inserted only crosses the
walls of W that separate x0 from y0 (since it is part of a wall of the simple quasi wall
system W 0), and these walls are necessarily crossed as well by the piece of ˛ between x0

and y0 that we replaced.
The next step is to perturb the curve ˛0 so that the segment Œx0; y0� is displaced side-

ways and away from w0 and the resulting curve ˛00 is in general position with respect
to W [ @D and crosses W the same number of times as ˛0 does, and in addition is trans-
verse to w0 and crosses w0 at most once. Thus, ˛00 is in general position with respect to
W 0 [ @D and crosses each wall of W 0 at most once, but is nonsmooth at two points. To
make it smooth, we modify it near these two points.

Let .D;W/ be a simple discrete disk of radius r and center O (see Definition 5.2).
Identify the boundary @D with the circle S1, and identify the punctured disk D n ¹Oº
with the flat cylinder C D S1 � Œ0;C1/. Under this identification, the point O of D
corresponds to the point at infinity in the one-point compactification of the cylinder C .
Note that the universal cover of C is the half-plane H D R � Œ0;C1/.

Definition 6.3. Given a simple arc ˛ in the cylinder M D D n ¹Oº (or in the half-plane
M D R � Œ0;C1/) with endpoints on the boundary @M , denote by x̨ the segment of @D
with the same endpoints, homotopic to ˛ in M . The arc ˛ covers a point p of @M if p
lies in x̨. Similarly, the arc ˛ covers another arc ˇ if x̌ lies in x̨. Two arcs ˛ and ˛0 are
adjacent if the intervals x̨ and x̨0 are adjacent, meaning that they have exactly one point
in common.

Definition 6.4. An arc in the flat cylinderM D S1 � Œ0;C1/ (or in the half-planeM D
R � Œ0;C1/) with endpoints on the boundary @M is standard if it consists of a segment
of slope 1 followed by a segment of slope �1; see Figure 2. A quasi wall system W

is standard if its walls are standard arcs. For two boundary points a; b 2 S1 D @M (or
a < b 2 R if M is the half-plane), we denote by Œa; b� the arc of S1 that goes from a to b
in the positive (i.e., counterclockwise) sense, and we denote by cab the standard arc in M
that is homotopic to Œa; b�.

Let .D;W/ be a simple discrete disk of radius r centered at O . Denote by I D IW

the set of boundary intervals x̨ homotopic to the walls ˛ of W . The family I of intervals
of S1 contains all the information about W that is relevant to our problem of finding
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simple discrete disks of minimum area. For instance, two walls ˛; ˇ of W meet on @D if
and only if the intervals x̨, x̌ have a common endpoint. That is,

#I@D.˛; ˇ/ D 1 ” #.@x̨ \ @ x̌/ D 1: (6.2)

Furthermore, assuming x̨ and x̌ have no common endpoints, the arcs ˛ and ˇ cross in the
interior of D if and only if the interval x̨ contains exactly one endpoint of x̌. That is,

#IIntD.˛; ˇ/ D 1 ” #.x̨ \ @ x̌/ D 1: (6.3)

One consequence of these formulas is that the discrete area of .D;W/ given by (4.2) may
be computed from I.

The following result characterizes the relation between the quasi wall system W

and the interval family I. Before stating this result, we need to introduce a definition.
A point p of S1 is generic with respect to a finite interval family I of S1 if p is not an
endpoint of any interval of I. Alternatively, the endpoints of the intervals of I are the
nongeneric points of S1.

Proposition 6.5. Let .D; W / be a simple discrete disk of radius r centered at O . The
family I D IW of intervals of S1 has the following properties:

(1) no two intervals of I cover S1;

(2) every generic point of S1 is contained in exactly r intervals of I;

(3) every nongeneric point of S1 is an endpoint of exactly two, adjacent intervals of I.

Moreover, if a finite family I of intervals of S1 satisfies conditions (1)–(3), then I D IW

for some quasi wall system W that makes D a simple discrete metric disk of radius r
and center O . For instance, one may let W be the unique standard quasi wall system
homotopic to I on D n ¹Oº.

Proof. (1) If two intervals x̨; x̌ 2 I cover S1, then the corresponding walls ˛; ˇ of W

would form a bigon containing the pointO , which implies they cross twice, contradicting
the hypothesis that W is simple.

(2) Consider a generic point p 2 S1. Since W is a simple quasi wall system onD, the
distance between any pair of points of D is the number of walls that separate them (see
Proposition 6.1). On the other hand, the walls that separate O from p are the walls that
cover p. This yields the result.

(3) follows from the previous property: if p 2 S1 is the endpoint of some interval
x̨ 2 I, it must also be the startpoint of some other interval so that every generic point
near p is contained in the same number r of intervals of I. This means that p is the
endpoint of two walls, and it cannot be the endpoint of more walls because W can only
have simple self-intersections on @D since it is a quasi wall system (see Definition 4.2).

Now, let I be a finite family of intervals of S1 satisfying conditions (1)–(3), and let W

be the unique standard quasi wall system homotopic to I on D n ¹Oº. Clearly, W is a
quasi wall system, and it is simple because it is made up of arcs that intersect each other
at most once. Also, every point p 2 D nW is at distance at most r from O , and exactly r
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if p 2 @D. (A shortest path is the vertical ray from p to O .) This shows that .D;W/ is a
simple discrete disk of radius r centered at O .

7. Inadmissible configurations in a minimal simple disk

In this section, we rule out some intersection patterns for an extremal quasi wall system
on a disk.

Consider a quasi wall system W on D defining a simple discrete metric disk of
radius r with minimal discrete area. By Proposition 6.5, we can assume that W is formed
by standard arcs (see Definition 6.4).

Lemma 7.1. No arc of W covers two .possibly adjacent/ intersecting arcs of W .

Proof. Towards a contradiction, suppose that an arc  of W covers two intersecting
arcs ˛ D bac and ˇ D cbd of W . Switching the roles of the two arcs if necessary, we
may assume that the points a; b; c; d appear in that order in the interval x (with pos-
sibly b D c); see Figure 2. Let W 0 be the collection of curves obtained from W by
replacing ˛ and ˇ with the standard arcs ˛0 D cad and ˇ0 D bbc (with no ˇ0 if b D c).
See Figure 2. Note that, like W , the immersed 1-submanifold W 0 is a quasi wall system
onD. Moreover, we claim that W 0 also makesD a simple discrete metric disk of radius r
centered atO . This is because none of the properties (1)–(3) of Proposition 6.5 is affected
by the replacement. For instance, there is no arc ı of W 0 such that the intervals xı and x̨0

cover the boundary @D, because in that case xı and x would also cover @D; however, the
arcs xı and x are already present in W , contradicting by Proposition 6.5 the fact that W is
simple. Also, the fact that every generic point of @D is covered by exactly r arcs of the
quasi wall system is clearly maintained, as also is the fact that each nongeneric boundary
point is the common endpoint of two adjacent walls.

˛ ˇ



ı

b c da

˛0

ˇ0



ı

b c da

Fig. 2. Replacing two intersecting arcs covered by a third arc.

Let us show that the area of .D;W 0/ is less than the area of .D;W/ by comparing
the number of self-intersections of the quasi wall systems W and W 0 according to the
discrete area formula (4.2). First, observe that every pair of arcs of W different from ˛

and ˇ belongs to W 0. Therefore, these pairs of arcs give the same contribution to the
discrete areas of W and W 0. Let ı D cpq be an arc of W different from ˛ and ˇ. By
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considering cases depending on the location of the endpoints p and q with respect to the
points a, b, c and d , we see that

#IIntDC 12 @D
.ı; ˛0 [ ˇ0/ � #IIntDC 12 @D

.ı; ˛ [ ˇ/:

In fact, equality holds unless p and q lie in the interiors of Œa; b� and Œc; d �, in which case
the inequality is strict. Finally, note that

#IIntD.˛
0; ˇ0/ D 0 and #IIntD.˛; ˇ/ D 1:

We conclude that
area.D;W 0/ � area.D;W/ � 1;

which contradicts the minimiality of the discrete area of .D;W/.

Lemma 7.2. No arc of W intersects two adjacent arcs of W .

Proof. Suppose that an arc  of W intersects two adjacent arcs ˛ and ˇ of W . We
choose  so that it is minimal with respect to the covering relation (i.e., no arc of W

covered by  intersects ˛ and ˇ). Denote by a; b; c; d; e the endpoints of the three arcs, in
the order in which they are found on the interval x̨ [ x̌. Thus, ˛D bac, ˇD bce and  Dcbd ,
and no arc of W that covers c is covered by  (other than  itself); see Figure 3. Let c�

and cC be two points of @D close to c such that Œc�; cC� \ @W D ¹cº. Let W 0 be the
collection of curves obtained from W by replacing the three arcs ˛, ˇ and  with the four
arcs ˛0 D bacC, ˇ0 Dbc�e, � D bbc� and C D bcCd ; see Figure 3.

˛ ˇ

c



ı

b da e

˛0 ˇ0

c�

�

cC

C
ı

b da e

Fig. 3. Replacing a configuration of one arc intersecting two adjacent arcs.

Note that W 0 is a quasi wall system on the disk D. In fact, W 0 makes D a simple
discrete disk of radius r centered atO . To see this we argue as in the proof of Lemma 7.1.
By Proposition 6.5, it is enough to check that the family I D IW 0 of boundary segments xı
corresponding to the walls ı of W 0 has properties (1)–(3) of Proposition 6.5. To check
property (2) (that each generic point of @D is covered r times by the walls of W 0) note
that both ˛ [ ˇ [  and ˛0 [ ˇ0 [ � [ C cover twice the generic points of Œb; d � and
once the remaining generic points of Œa; e�. Property (3) regarding nongeneric boundary
points is also maintained, with the wall endpoint c replaced by the two points c� and cC.
Finally, to check property (1), suppose ı and " are two arcs of W 0 that cover the whole
boundary @D. It is impossible for both ı and " to be among the new arcs ˛0, ˇ0 and ˙

because that would mean that ˛ and ˇ already cover @D, contradicting the fact that W

is simple. Similarly, the arcs ı and " cannot both be among the unchanged arcs (those
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in W \W 0) either, since otherwise W would not be simple. Therefore, ı is one of the
unchanged arcs and " is one of the new arcs ˛0, ˇ0, ˙. In the case " D ˛0, we see that ı
and ˛0 cannot cover @D since this would imply that ı and ˛ already cover @D. This is
because ˛0 n x̨ is contained in the interval Œc�; cC� which contains no endpoints of ı since
Œc�; cC� \W D ¹cº. The case " D ˇ0 is analogous and the cases " D ˙ are easier to
rule out since the arcs ˙ are covered by  . We conclude that property (1) is satisfied,
thus .D;W 0/ is a simple discrete metric disk of radius r .

Let us show that the area of .D;W 0/ is less than the area of .D;W/. Again, we use
the discrete area formula (4.2), which says

area.D;W/ D
X
¹ı;"º

#IIntDC 12 @D
.ı; "/

where the sum is over pairs ¹ı; "º of different walls of W . The pairs ¹ı; "º of walls that
are contained in W \W 0 make the same contribution to area.D;W/ and to area.D;W 0/.
To evaluate the contribution of pairs ¹ı; "º with ı 2 W \W 0 and " 62 W \W 0, we note
that any arc ı D cpq with no endpoints in Œc�; cC� satisfies

#IIntDC 12 @D
.ı; ˛0 [ ˇ0 [ C [ �/ D #IIntDC 12 @D

.ı; ˛ [ ˇ [ /

unless p 2 Œb; c� and q 2 Œc; d �. This is seen by considering case by case the possible
locations of p and q with respect to a; b; c; d; e. The equality holds for all arcs ı Dcpq 2 W \W 0, because the exceptional case p 2 Œb; c� and q 2 Œc; d � is excluded by
how  was chosen: the arc  Dccd covers no other arc ı Dcpq of W that in turn covers c.
Finally, to compute the contribution of the pairs ¹ı; "º where none of the two arcs ı and "
is in W \W 0, we note that

#IIntDC 12 @D
.˛0 [ ˇ0 [ � [ C/ D 2

while
#IIntDC 12 @D

.˛ [ ˇ [ / D 5=2:

We conclude that area.D;W 0/ D area.D;W/ � 1=2, contradicting the minimality of W .

8. Pairs of adjacent arcs

In this section we show that the sequences of adjacent arcs in an extremal quasi wall
system on a disk have a periodic structure.

Consider a quasi wall system W on the disk D, made up of standard arcs, defining
a simple discrete metric disk of radius r centered at O with minimal discrete area as in
Section 7. Recall that the upper half-plane H D R � Œ0;C1/ is the universal cover of
the cylinder C D S1 � Œ0;C1/ D D n ¹Oº. We identify its boundary @H with the real
line R. Let WH be the quasi wall system on H formed by all the lifts of the arcs of W .
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Since D is a disk of radius r , it follows that every generic point of @H is covered by
exactly r arcs of WH . To ensure this uniform coverage, each endpoint of an arc must be
the startpoint of another arc, and thus each arc of WH belongs to a bi-infinite sequence of
consecutive arcs, called a “strand” of WH .

Definition 8.1. A strand of WH is a bi-infinite sequence .˛i /i2Z of consecutive arcs
of WH of the form

˛i D2aiaiC1:
The points ai where the strand .˛i /i meets the boundary @H are called the stops of the
strand. The width of an arc ˛i is the number aiC1 � ai .

Since each strand of arcs covers the generic points of @H once, it follows that the
quasi wall system WH is composed of exactly r strands.

The following result describes how each strand intersects a pair of adjacent arcs
of WH .

Lemma 8.2. Let ˛0 D ba0a1 and ˛1 D ba1a2 be two adjacent arcs of WH . Then every
strand of WH has exactly one arc with endpoints on the boundary interval I D Œa0; a2/.
This arc is covered by ˛0 or by ˛1.

Proof. The strand that contains the arcs ˛0 and ˛1 clearly satisfies the conclusion. Thus
let .ˇi /i2Z be any other strand of WH , numbered so that the arc ˇ0 covers the point a1.
This strand has a stop in I , otherwise ˇ0 would cover the two adjacent arcs ˛0 and ˛1, in
contradiction with Lemma 7.1. Also, the strand .ˇi /i cannot have stops in both intervals
Œa0; a1/ and Œa1; a2/, as otherwise the arc ˇ0 would intersect the two adjacent arcs ˛0
and ˛1, contrary to Lemma 7.2. Thus the strand .ˇi /i has stops in exactly one of the
intervals Œa0; a1/ and Œa1; a2/, say, the second one; see Figure 4. Furthermore, it cannot

˛0

˛1
ˇ0

a0 a1 a2

ˇ1

Fig. 4. Leaping over every other arc.

have just one stop in this interval, since otherwise the two adjacent arcs ˇ0; ˇ1 that share
this stop would intersect ˛1, contradicting Lemma 7.2. Also, it cannot have three stops
in the interval, as otherwise the adjacent arcs ˇ1 and ˇ2 would be covered by ˛1, in
contradiction with Lemma 7.1. We conclude that the strand .ˇi /i has exactly two stops
(and therefore one arc) in the interval Œa0; a2/, and both of these stops are covered by one
of the arcs ˛0 or ˛1; see Figure 4.

Let n be the number of walls of the quasi wall system W on the diskD. From now on,
changing the parameterization of the boundary circle S1 D @D, we assume that S1 is a
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circle of length n, thus S1 D R=nZ, and that the endpoints of the walls of W are located
at half-integer points. (This implies that the distance between two adjacent integer points
is equal to 1.) Therefore, on the universal cover of the cylinder C D D n ¹Oº, which is
the upper half-plane H , we have @WH D ZC 1

2
� R D @H .

Note that the quasi wall system WH is periodic of period n (where n is the number
of walls of W ) in the sense that it is invariant by the horizontal translation of length n.
However, the following result implies that WH is also periodic with period 2r , where r is
the number of strands of WH (see Definition 8.1).

Lemma 8.3. The sum of the widths of two adjacent arcs ˛0; ˛1 of WH is equal to 2r .

Proof. Consider two adjacent arcs ˛0D ba0a1 and ˛1D ba1a2 as in Lemma 8.2. According
to that lemma, each of the r strands of WH has exactly two stops in the interval Œa0; a2/.
Therefore there are 2r half-integers in that interval. It follows that a2 � a0 D 2r .

Denote by �Œt;tC2r/ D Œt; t C 2r/ � Œ0;C1/ a strip of width 2r of the half-plane H .
The following result describes the arcs of the quasi wall system WH that are contained in
such a strip.

Proposition 8.4. (1) Each strip �Œt;tC2r/ contains exactly one arc of each strand .and
each of these arcs determines its strand completely/.

(2) The r arcs contained in a strip �Œt;tC2r/ do not intersect each other.

(3) Any pair of strands intersects each other exactly twice in the strip �Œt;tC2r/.

Proof. (1) Consider a strand .˛i /i2Z, with ˛i D2aiaiC1. According to Lemma 8.3, we
have aiC2 D ai C 2r for all i . This implies that the strip �Œt;tC2r/ contains exactly two
stops and thus exactly one arc of the strand .˛i /i . The same equation implies that two
consecutive stops determine the strand.

(2) Consider a second strand . ǰ /j2Z, with ǰ D
2bj bjC1. Assuming that two arcs ˛0

and ˇ0 of WH intersect, we want to show that they are not contained in a strip �Œt;tC2r/.
We may assume without loss of generality that a0 < b0, therefore b0 2 .a0; a1/. Since
the strand . ǰ /j has a stop in the interval Œa0; a1/, by Lemma 8.2 it cannot have a stop
in Œa1; a2/. It follows that b1 > a2 D a0C 2r , hence the arcs ˛0 D 1a0; a1 and ˇ0 D1b0; b1
are not contained in a strip of width 2r .

(3) Consider two strands .˛i /i2Z and . ǰ /j2Z as above. Since aiC2 D ai C 2 as
shown in (1), the strand .˛i /i is invariant by the horizontal translation by 2r . The same
holds with . ǰ /j . We want to show that they cross exactly twice in a strip �Œt;tC2r/.
By invariance under the horizontal translation by 2r , we may choose t arbitrarily. For
instance, we can choose t D a0. By Lemma 8.2, the strand . ǰ /j has stops in exactly
one of the intervals .a0; a1/ and .a1; a2/. Thus, it intersects (twice) exactly one of the
arcs ˛0 D ba0a1, ˛1 D ba1a2.

We also note the following.

Lemma 8.5. In the quasi wall system WH , there is an arc of width 1.
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Proof. Let ˛0 D ba0a1 be an arc that is minimal with respect to covering (i.e., ˛0 does not
cover any arc of WH ). We want to show that a1 � a0 D 1. By Lemma 8.2, each strand
other than the one generated by ˛0 has two stops in the interval .a0; a2/, both contained
either in .a0; a1/ or in .a1; a2/. Thus, if the interval .a0; a1/ has any stop, it has in fact
two stops of a strand, and therefore there is an arc of WH covered by ˛0. However, this
possibility is excluded by the minimality of ˛0. Therefore, the interval .a0; a1/ has no
stops and hence its endpoints a0 and a1 are consecutive half-integers.

9. Proof of the discrete area lower bound

We can now proceed to the proof of the discrete area lower bound for simple discrete
metric disks (see Theorem 5.3), making use of the previous notations and constructions.
Namely, let us prove the following.

Theorem 9.1. The discrete area of every simple discrete metric disk of radius r is at
least 3

2
r2.

Proof. Let .D;W 0/ be a simple discrete metric disk of radius r and center O that has
minimal area. Recall that the punctured disk D n ¹Oº is identified with the flat cylin-
der C D S1 � Œ0;C1/. As shown in Section 6, W 0 is homotopic in C to a quasi wall
system W made up of standard arcs such that .D;W/ is also a discrete disk of radius r cen-
tered atO and has the same area as .D;W 0/. Thus we must show that area.D;W/ � 3

2
r2.

Also, we may assume that the lift of W to the universal cover H D R � Œ0;C1/ is a
quasi wall system WH such that @WH D ZC 1

2
� R D @H as in Section 8.

Let t 2 R be a generic number. By Proposition 8.4, the weighted number of self-
intersections of the quasi wall system WH that lie in the strip �Œt;tC2r/ is

#IInt HC 12 @H
.WH j�Œt;tC2r// D 2

r.r � 1/

2
C
1

2
2r D r2: (9.1)

The first term counts the crossings between the different strands: each pair of strands
crosses twice, and the crossings are located in the interior of the half-plane H . The second
term counts, with weight 1

2
, the intersections that lie in the boundary @H ; these are the

intersections between adjacent arcs that belong to the same strand. Thus, the discrete area
of the disk .D;W/ is

area.D;W/ D #IInt HC 12 @H
.WH j�Œt;tCn// D

n

2r
#IInt HC 12 @H

.WH j�Œt;tC2r//

D
n

2r
r2;

where n is the number of walls of W .
To finish we will show that n� 3r . Let .˛i D2aiaiC1/i2Z be a strand of WH such that

a0 � a�1 D 1. Such a strand exists by Lemma 8.5. Moreover, we may assume that a0 D 1
2

and a�1D�12 . The interval .a0;a1/ has width 2r � 1 (by Lemma 8.3) and contains 2r � 2
half-integers.
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Each of these half-integers is either the startpoint or the endpoint of one of the r � 1
arcs that are covered by ˛0 (see Proposition 8.4). Let b0 be the rightmost of the r � 1
startpoints. Note that

b0 � a0 C .r � 1/: (9.2)

This point b0 is a stop of a strand . ǰ D
2bj bjC1/j2Z. The arc ˇ0 is covered by ˛0 and

the arc ˇ1 D bb1b2 intersects the arc ˛0. The arcs ˛0 and ˇ1 cannot extend over a whole
fundamental domain �Œt;tCn/ of the universal cover, by property (1) of Proposition 6.5.
Therefore, n > b2 � a0. On the other hand, by Lemma 8.3 and inequality (9.2), we have

b2 D b0 C 2r � a0 C 3r � 1:

We conclude that n > 3r � 1, or equivalently n � 3r , as we had to prove.

10. Simple discrete metric disks of minimal area

In this section, we analyze the equality case of Theorem 9.1.

Proposition 10.1. For every positive integer r , there is a simple discrete metric disk of
radius r and area 3

2
r2. It is unique up to isotopy of the disk with the center fixed.

Proof. Recall the proof of Theorem 9.1. Let W 0 be a simple quasi wall system such that
.D;W 0/ is a simple discrete metric disk of radius r with minimal discrete area. Consider
the simple quasi wall system W homotopic to W 0 made up of standard arcs. To attain
the lower bound on area.D;W/ and so on area.D;W 0/, we must have n D 3r , therefore
inequality (9.2) must be an equality. This implies that, for the r � 1 arcs covered by ˛0,
the r � 1 startpoints must precede the r � 1 endpoints in the interval .a0; a1/. In conse-
quence, these r � 1 arcs together with the arc ˛0 form a chain with respect to the covering
relation; see Figure 5. This implies that the r arcs are completely determined, and by
Proposition 8.4, so are the quasi wall systems WH and W , which are made up of standard
arcs. Thus, the quasi wall system WH contains all arcs of the form 6kr � s; kr C s with k
integer and s 2 .0; r/ half-integer; see Figure 5. Similarly, the quasi wall system W is

r�1 r 2r�1 2r 3r�10 ��� ��� ���1 rC1 2rC1 3r

Fig. 5. The lift WH corresponding to an area-minimizing simple discrete disk .D;W/ of radius
r D 5, where the quasi wall system W consists of standard arcs.
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O

Fig. 6. An area-minimizing simple discrete disk .D;W/ of radius r D 5 where the topological
disk D is a hexagon and the quasi wall system W consists of straight lines.

obtained from WH by taking the quotient of H under the horizontal translation by 3r ; see
Figure 6. This proves the uniqueness of the simple discrete metric disk of minimal area,
but only up to homotopy of the quasi wall system. The uniqueness up to isotopy of the
disk follows from the next result.

Lemma 10.2. Let W and W 0 be simple quasi wall systems on the disk D, homotopic
in D n ¹0º and forming no triangle in D n ¹Oº. Then there is an isotopy of D which
fixes O and carries W to W 0.

Proof. We proceed by induction on the number n of walls. The case n D 1 is trivial. In
general, we argue as follows.

Let  be a wall of W that covers no other wall of W (see Definition 6.3). The curve 
divides the disk D into two topological closed disks A and B which intersect along  ,
with O 2 A. The part of W that lies in B consists of k � 0 arcs going from  to @B n  .
These arcs are pairwise disjoint, otherwise they would form a triangle in B � D n ¹Oº.
The part of W that lies in A, excluding  , is a quasi wall system on A with n � 1 walls.

Let  0 be the wall of W 0 homotopic to  in D n ¹Oº. We apply to W 0 a first isotopy
of D n ¹Oº to ensure that  0 D  . The wall  0 does not cover any other wall ˇ0 of W 0,
as otherwise the wall ˇ of W homotopic to ˇ0 would cross  twice. Similarly to W , the
part of W 0 lying in B consists of k pairwise disjoint arcs going from  to @B n  . Thus,
by applying a second isotopy, we may ensure that W 0 \ B D W \ B . Finally, we get
.W 0 n  0/ \ A D .W n / \ A by applying an isotopy of the disk A fixing O , whose
existence is guaranteed by the inductive hypothesis.

Now, the walls of W do not bound any triangle in D n ¹Oº (where each side lies in
a wall); see Figures 6 and 5. Since two arcs of W intersect each other if and only if the
same holds for the corresponding homotopic arcs of W 0, we deduce that the walls of W 0

do not form any triangle in D n ¹Oº either. The uniqueness of the simple discrete metric
disk of minimal area up to isotopy of the disk fixing O follows from Lemma 10.2.

Remark 10.3. The isotopy between W and W 0 can also be derived from [27], where it
is proved that two wall systems on a closed surface which are homotopic to each other
and are both in minimally crossing position (i.e., they attain the minimum number of
self-intersections possible in their homotopy class) can be obtained from each other by
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isotopies and triangle flip moves (called “type III moves” in [27]). Strictly speaking, we
first need to adapt this result to quasi wall systems on surfaces with boundary. Since W

and W 0 do not form any triangle in D n ¹0º, we conclude that they are isotopic in D.

11. Construction of almost minimizing Finsler disks

In this section, we construct a Finsler disk of radius r with minimizing interior geodesics
whose area is arbitrarily close to the lower bound 6

�
r2 given by Theorem 1.2.

Let us first go over Busemann’s construction of projective metrics in relation with
Hilbert’s fourth problem. We refer to [2, 18, 37, 38, 41] and references therein for an
account on the subject.

The space � of oriented lines in R2 can be identified with S1 � R. Under this iden-
tification, an oriented line  is represented by a pair .ei� ; p/ where ei� is the direction of
the oriented line  and p D h

��!
OH � ei� ;�!ez i is the signed distance from the origin O to  .

Here, H is a point of  , the vector �!ez is the third vector in the canonical basis of R3, thus
it is a unit vector orthogonal to R2, and “�” is the vector product in R3.

Definition 11.1. Let � be a (nonnegative) Borel measure on � . Consider the following
conditions:

(1) the measure is invariant under the involution of � reversing the orientation of lines;

(2) the measure of every compact subset of � is finite;

(3) the set of all oriented lines passing through any given point of R2 has measure zero;

(4) the set of all oriented lines passing through any given line segment in R2 has positive
measure.

A Borel measure � satisfying (1)–(3) induces a length function

length�.˛/ D
1

4

Z
2�

#. \ ˛/ d�./

defined for any curve ˛ in the plane R2. For this kind of length function, straight segments
are shortest paths, therefore the pseudo-distance associated to this length function is

d�.x; y/ D
1

4

Z
2�

#. \ Œx; y�/ d�./ D
1

4
�.�Œx;y�/;

where �A denotes the set of lines  2 � that intersect a subset or point A contained in the
plane R2. The pseudo-distance d� is projective, which means that d.x; z/ D d.x; y/C
d.y;z/ for all x;y; z 2R2 with y 2 Œx; z�, and in fact every continuous projective distance
is obtained from a unique measure �; see [2]. If � also satisfies (4) then d� is a projective
distance (and vice versa).

For example, the product measure �, given by d� D d� dp, yields the Euclidean dis-
tance d�.x; y/ D jy � xj.
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The projective distance induced by a Borel measure satisfying (1)–(4) is not Finsler
in general. Borel measures inducing a Finsler metric can be characterized as follows (see
[4] for a presentation of this result due to Pogorelov [38], and [7] for a generalization).

Theorem 11.2. Let � be a Borel measure on � satisfying (1)–(4). The distance d� is
Finsler if and only if � is a positive smooth measure. In this case, the smooth measure
on � induced by the symplectic form associated to the Finsler metric .see (3.8)/ coincides
with �.

Here, a measure � on � is (positive) smooth if it admits a (positive) smooth function h
as density, that is, d� D h d�.

Remark 11.3. The geodesics of a plane with a projective Finsler metric d� are the
straight lines parametrized by�-length. Therefore, a plane with a projective Finsler metric
has minimizing geodesics.

We may define the area of a Borel setD in the plane with a measure � on � satisfying
(1)–(3) by the Santaló+Blaschke formula (3.6),

area�.D/ D
1

8�

Z
02�

Z
12�

#.0 \ 1 \D/ d�.1/ d�.0/: (11.1)

In other terms, the area measure is the normalized pushforward measure

area� D
1

8�
i�.� � �/; (11.2)

where i W � � � n�� ! RP 2 maps each ordered pair of different lines to its intersection
point in the projective plane RP 2 � R2. (Note that the diagonal �� has measure zero
because � has no atoms.) This area function coincides with Holmes–Thompson area if
the metric is Finsler (see (3.6)).

11.1. Construction of a non-Finsler extremal disk

Let us construct a non-Finsler projective pseudo-metric disk satisfying the equality case
in Theorem 1.2. Consider the three pairs of one-parameter families L˙

k
of oriented lines

in R2 defined as

LC
k
W RC ! � D S1 �R;

t 7! .ei 2k�3 ; t /;

L�k W RC ! � D S1 �R;

t 7! .ei. 2k�3 C�/;�t /;

where k 2 ¹0; 1; 2º; see Figure 7. Note that the lines LC
k
.t/ and L�

k
.t/ only differ in their

orientation. We will sometimes denote these families of lines by Lk when the orientation
does not matter. Consider the (nonsmooth) Borel measure on �

�ext D �0 C �1 C �2;

where
�k D

1
2
Œ.LC

k
/�.L/C .L

�
k /�.L/�
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L0

L1 L2

Fig. 7. Extremal pseudo-metric disk.

is the average of the pushforwards to � of the Lebesgue measure L on RC. Let Dk
be the line passing through O orthogonal to Lk . Let xDk � Dk be the ray from O that
intersects orthogonally every line Lk.t/. Denote by �k the orthogonal projection of R2

to Dk . By construction, the d�k -pseudo-distance between two points x; y 2 R2 is equal
to one quarter of the Euclidean length of the projection of Œx; y� to Dk lying in xDk . That
is,

d�k .x; y/ D
1
4

length.�k.Œx; y�/ \ xDk/ � 1
4
jx � yj

for all x; y 2 R2. Furthermore,

d�ext.x; y/ D
X

kD0;1;2

d�k .x; y/ D
1

4

X
kD0;1;2

length.�k.Œx; y�/ \ xDk/:

Observe also that the measure �ext satisfies (1)–(3), but not (4). Thus, d�ext is a projective
pseudo-distance on R2.

The disk D�ext.r/ of radius r for the pseudo-distance d�ext with center the origin O
of R2 is the minimal regular hexagon containing the Euclidean disk of radius 4r , whose
vertices are 2

p
3
3
4reik �3 for k 2 ¹0; : : : ; 5º; see Figure 7. A direct computation using (11.1)

shows that its area is 6
�
r2. Thus, the disk D�ext.r/ is a non-Finsler projective pseudo-

metric disk satisfying the equality case in Theorem 1.2. One can think of it as an extremal
(degenerate) metric for the problem considered. Observe also that D�ext.r/ is not rota-
tionally symmetric.

Remark 11.4. By identifying all pairs of points at zero pseudo-distance, the pseudo-
metric disk D�ext.r/ identifies with the closed ball D.r/ of radius r centered at the tip
of a cone composed of three copies of a quadrant of the `1-plane glued together. It fol-
lows from a direct computation that the Holmes–Thompson area of the diskD.r/ is equal
to 6

�
r2. Defined in this way, the metric on D.r/ is non-Finsler (e.g., it has a singular-

ity at the origin and the tangent norms are neither smooth nor strongly convex) but can
still be thought of as an extremal (degenerate) metric. Note that the (pseudo-)metrics
on D�ext.r/ and D.r/ can be viewed as continuous versions of the extremal simple dis-
crete disk (see Section 10).
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11.2. Construction of a Finsler nearly extremal disk

In the rest of this section, we explain how to modify the pseudo-metric d�ext so as to
obtain a projective Finsler disk of radius r whose area is arbitrarily close to 6

�
r2. First,

the projective pseudo-metric d�ext can be approximated by a projective metric by simply
adding to � a multiple "� of the uniform measure � (given by d� D d� dp) so that (4) is
also satisfied; this changes d�ext by adding " times the Euclidean distance. This projective
metric is not Finsler, but in turn it can be approximated by a Finsler metric; see [38]. More
generally, every projective distance d�, where � is a Borel measure satisfying (1)–(4), can
be approximated by a projective Finsler distance on every compact subset of R2. Thus, by
Theorem 11.2, there exists a sequence �n of positive smooth measures on � such that the
corresponding sequence of Finsler distances d�n uniformly converges to d�ext on every
compact set of R2. This approximation result is obtained by a convolution argument on
the distance function d�. Although it is possible that the measures �n weakly converge
to �ext, this issue is not addressed in [38]. This leads us to consider a slightly different
approach. Instead of regularizing the distance function, we smooth out the measure �ext

and show that the corresponding projective Finsler distance converges to d�ext . This alter-
native approach to the regularization of a projective distance provides a weak convergence
of measure by construction, which allows us to estimate areas as well as distances.

We proceed as follows. First, we truncate the measure �ext by setting a bound for
the absolute value of the p coordinate of the lines  2 � . In this way, we obtain a
probability measure �0 on � , without changing the corresponding distance function in
a neighborhood of the origin. Similarly, we truncate the uniform measure � to a prob-
ability measure �0. This enables us to use standard theorems on weak convergence of
probability measures.

Let us now describe the convolution process. For " > 0, let h" be a smooth nonnegative
function on � DR=2�Z�R, with support in .�";"/�.�";"/, such that

R
�
h".�;p/d� dp

D 1. For each " > 0, consider the positive smooth measure �" on � with density h" ��0,
that is,

d�" D .h" � �0/ d�;

where h" � �0 is the smooth function on � defined by the convolution

h" � �0./ D

Z
�

h". � 
0/ d�0. 0/

and � is the standard product measure on � D R=2�Z � R, given by d� D d� dp. By
[16, §1.4.3], the smooth measure �" weakly converges to �0 as "! 0. Define also the
measure

�C" D .1 � "/�" C "�0;

which also converges to �0 as "! 0. By Theorem 11.2, the distance d
�
C
"

induced by �C"
is a projective Finsler distance on a neighborhood of the origin in R2.

To approximate distances and areas, we have the following tools.
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Lemma 11.5. Let � and �n be probability measures on � satisfying conditions (1)–(3) of
Definition 11.1. If �n weakly converges to �, then the distance d�n converges uniformly
to d� on every compact subset of R2.

Proof. Note first that the distance between two points x; y 2 R2 is

d�.x; y/ D �.�Œx;y�/;

where �Œx;y� denotes the set of lines that intersect the segment Œx; y�. Thus, for a specific
pair of points x; y, the weak convergence �n! � implies that d�n.x; y/! d�.x; y/ by
the Portmanteau theorem [13, Theorem 2.1], since �Œx;y� is a continuity set for �. That is,
its boundary

@�Œx;y� D �x [ �y

(where �z is the set of lines that contain a point z) has measure �.@�Œx;y�/ D 0 since
�.�z/ D 0 for each point z 2 R2 by condition (3) on �.

To show that this convergence holds uniformly for x, y in any given compact set
K � R2, let A be the family of sets �Œx;y� for x; y 2 K. According to [14, Theorems 2
and 3], to show uniform convergence �n.A/! �.A/ for all sets A 2A, it is sufficient to
show that �.Bı.@A//! 0 uniformly as ı! 0, where Bı.S/ denotes the ı-neighborhood
of a set S � � (say, with respect to the supremum distance in terms of the coordi-
nates �; p). Now,

Bı.@�Œx;y�/ D Bı.�x/ [ Bı.�y/;

therefore it suffices to show that �.Bı.�x// ! 0 uniformly for all x 2 K as ı ! 0.
Suppose that this is not the case. Then there are sequences ım! 0 and xm! x 2K such
that �.Bım.�xm// does not tend to zero. However, we also have

Bım.�xm/ � Bı0m.�x/

for some sequence ı0m! 0 (namely, ı0m D ım C jxm � xj), which yields Bı0m.�x/! �x
and therefore

�.Bım.�xm// � �.Bı0m.�x//! �.�x/ D 0:

This contradiction finishes the proof.

Lemma 11.6. Let � and �n be probability measures on � satisfying conditions (1)–(3)
of Definition 11.1. If �n weakly converges to �, then area�n.K/ converges to area�.K/
for every compact set K � R2 such that �.@K/ D 0.

Proof. We will use some properties of weak convergence of probability measures;
see [13]. Since �n weakly converges to �, it follows from [13, Example 3.2] that the
product measure �n � �n converges weakly to � � � on � � � . Restricting to the set
� � � n �� , the measures � � � and �n � �n are still probability measures since the
diagonal �� � � � � has zero measure because � and �n have no atoms. Moreover,
since the diagonal �� is a closed set, the product measure �n � �n weakly converges
to ��� on � � � n�� by condition (iv) of the Portmanteau theorem [13, Theorem 2.1].
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Furthermore, since the function i W � � � n�� ! RP 2 is continuous, the pushforward
measure i�.�n � �n/ weakly converges to i�.� � �/ by the definition of weak conver-
gence; see [13, p. 14]. Therefore, the area measure area�n D

1
8�
i�.�n � �n/ weakly

converges to area�, with both area measures considered as probability measures on the
projective plane RP 2; see (11.2). Finally, to show that area�n.K/! area�.K/, we must
check, according to part (v) of the Portmanteau theorem, that K is a continuity set of
area�, which by definition means that �.@RP 2K/D 0. This follows from the facts thatK
is compact and �.@R2K/ D 0.

Consider the disk D
�
C
"
.r/ centered at O of radius r for the distance d

�
C
"

. The num-
bers r > 0 and " > 0 are small enough so that the truncations of �ext and � have no effect
on the disk D

�
C
"
.r/. The number r is fixed while " goes to 0.

Proposition 11.7. The disk D
�
C
"
.r/ is a projective Finsler disk with minimizing interior

geodesics, whose area converges to 6
�
r2 as "! 0. Therefore, the area lower bound in

Theorem 1.2 is sharp.

Proof. The fact that d
�
C
"

is a projective Finsler metric follows from Theorem 11.2, and
the fact that its geodesics are minimizing was stated in Remark 11.3.

To compute the area of the disk D
�
C
"
.r/ we proceed as follows. By uniform conver-

gence of the metrics (Lemma 11.5), for every ı > 0 and every " > 0 small enough, we
have

D�0.r � ı/ � D�C"
.r/ � D�0.r C ı/:

Therefore,

area
�
C
"
.D�0.r � ı// � area

�
C
"
.D

�
C
"
.r// � area

�
C
"
.D�0.r C ı//:

Since the sets D�0.r ˙ ı/ are compact and have boundary of �0-measure zero, Lem-
ma 11.6 shows that

area
�
C
"
.D�0.r ˙ ı//! area�0.D�0.r ˙ ı// as "! 0.

Since this holds for each ı > 0, we conclude that

area
�
C
"
.D

�
C
"
.r//! area�0.D�0.r// as "! 0.

12. Appendix: Differentiability of distance-realizing paths on Finsler surfaces with
boundary

Consider a smooth manifold M with smooth boundary endowed with a Finsler metric F .
Recall that a distance-realizing curve is a curve ˛ W I !M defined on an interval I � R
such that

dF .˛.t/; ˛.t
0// D t 0 � t

for all t < t 0.
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If the manifold has an empty boundary (or, more generally, a convex boundary), then
its distance-realizing curves satisfy a differential equation, and it is therefore clear that
they are smooth. However, if the boundary is not convex, then the distance-realizing
curves are not C 2 in general, and they are not even determined by their initial velocity
vector. This happens, for instance, on the Euclidean plane minus an open disk.

In the case of Riemannian manifolds with boundary, it was claimed in [3, 43] that
distance-realizing curves are C 1. This result can also be recovered from [35] by gluing
together two copies of a Riemannian manifold M along their boundaries. The Rieman-
nian metric obtained on the resulting double manifold N is ˛-Hölder continuous for any
˛ 2 .0; 1�; see [35, Example 3.3]. By [35], the geodesics onN are C 1 (and even C 1;

˛
2�˛ ),

from which we can deduce that the distance-realizing curves on M are also C 1. This
argument does not hold for Finsler metrics. Indeed, the double of a Finsler metric is not
even a continuous Finsler metric in general.

Here, by adapting the argument of [3], we prove that the same result holds for Finsler
surfaces.

Theorem 12.1. On a Finsler surfaceM with boundary, every distance-realizing curve ˛ W
I !M is C 1. Furthermore, the velocity vectors ˛0.t/ have unit norm.

Let us introduce some technical definitions. We assume without loss of generality that
the surface M is the closed upper half-space of R2.

Definition 12.2. Let ˛ W I ! M be a continuous curve, where I � R is an interval.
Fix t0 2 I and denote x0 D ˛.t0/. An arrival velocity of ˛ at t0 is a vector v 2 Tx0M that
is an accumulation point of the set of vectors

V � D

²
˛.t/ � ˛.t0/

t � t0

ˇ̌̌̌
t < t0

³
as t ! t0. Similarly, a departure velocity of ˛ at t0 is a vector v 2 Tx0M that is an
accumulation point of the set of vectors

V C D

²
˛.t/ � ˛.t0/

t � t0

ˇ̌̌̌
t > t0

³
as t ! t0. Note that if ˛ is left (resp. right) differentiable at t0, then ˛ has exactly one
arrival (resp. departure) velocity at t0.

We begin by proving a weak differentiability result.

Lemma 12.3. Let .M; F / be a Finsler manifold with boundary and let ˛ W I !M be a
distance-realizing curve. Fix t0 2 I and denote x0 D ˛.t0/. Then

(1) The curve ˛ has at least one arrival velocity and one departure velocity at t0 .unless t0
D min I or t0 D max I , respectively/.

(2) Every arrival or departure velocity v has norm Fx0.v/ D 1.

(3) If the curve ˛ is differentiable on one side at an interior point t0 of I , then ˛ is
differentiable at t0.
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Proof. By continuity of the Finsler metric at x0, we can bound Fx below and above by
two multiples of the norm Fx0 D j � j for every x close enough to x0. That is,

�� jvj � Fx.v/ � �
C
jvj

for every v 2 Rn, which in turn implies that

�� jx � x0j � dF .x0; x/ � �
C
jx � x0j:

This implies that the sets V ˙ are bounded when t ! t0, which implies the first claim.
In fact, as x ! x0, the optimal coefficients �˙ converge to 1, which implies the second
claim.

To prove the last claim, we assume that the curve ˛ is left differentiable at an interior
point t0 of I . (The argument is similar if ˛ is right differentiable at t0.) Let v� be the
arrival tangent vector. Let us prove that ˛ is right differentiable at t0 and has departure
tangent vector vC D v�. For contradiction, assume that the set of vectors V C has an accu-
mulation point vC¤ v� as t! t0. As already noticed in the second claim, we have jv�j D
jvCj D 1. Since the norm Fx0 D j � j is strictly convex, we also have jv� C vCj < 2.
Let �m ! 0 be a decreasing sequence of positive numbers such that

yCm D ˛.t0 C �m/ D ˛.t0/C �mv
C
C o.�m/:

Since ˛ is left differentiable at t0, we also have

y�m D ˛.t0 � �m/ D ˛.t0/ � �mv
�
C o.�m/:

Thus,
dF .y

C
m ; y

�
m/ � �

C
jyCm � y

�
mj D �

C�mjv
C
C v� C o.1/j:

For m large enough, we can take �C arbitrarily close to 1. It follows from the inequal-
ity jvC C v�j < 2 that

dF .y
�
m; y

C
m / < 2�m;

contradicting the assumption that ˛ is a distance-realizing curve.

Before proceeding to the proof of Theorem 12.1, we extend the Finsler metric F to
a surface MC � M with empty boundary; see Remark 2.2. As for any Finsler surface
with empty boundary, every point of MC has a normal neighborhood, that is, an open
neighborhood U such that for any x; y 2 U , there is a unique geodesic from x to y
contained in U and this geodesic is the unique distance-realizing arc from x to y in MC;
see [9, p. 160]. Note that if this geodesic is contained in M , then it is also the unique
distance-realizing arc from x to y in M .

Proof of Theorem 12.1. We assume first that the metric is self-reverse.
Let ˛ W I ! M be a distance-realizing curve. Let t0 2 I and let x0 D ˛.t0/. If

x0 D ˛.t0/ lies in the interior of M then the arc ˛ coincides with a geodesic in a neigh-
borhood of t0, where it is C 1 (and we are done). Thus, we can assume that x0 lies in @M .
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Again, we assume without loss of generality by working in a small enough neighbor-
hood of x0 that M is a closed half-space of MC D R2 and that every geodesic arc is a
unique distance-realizing arc.

Suppose that the arc ˛ is not right differentiable at some t0 2 I . (The argument is
similar if ˛ is not left differentiable at t0.) The arc ˛ has two departure velocities v and w.
LetKv andKw be two convex cones based at x0 that contain the points x0C v and x0Cw
in their interior and only meet at x0. Take a unit vector u 2 Tx0M not tangent to @M that
points into the interior of M and separates Kv from Kw , and denote by u the geodesic
with initial velocity  0u.t0/ D u. This geodesic does not visit Kv or Kw in some inter-
val .t0; t2/. On the other hand, the arc ˛.t/ visits the cones Kv and Kw infinitely many
times in any interval .t0; �/ with � > t0. Therefore, it must cross the geodesic u at some
time t1 2 .t0; t2/. Since u is the unique distance-realizing path between any of its points,
the arc ˛ coincides with u in Œt0; t1�. Thus ˛ does not visit Kv and Kw in .t0; t1/. This
contradiction proves that ˛ is right differentiable at t0. It follows from Lemma 12.3 that ˛
is differentiable at every interior point t0 2 I .

Suppose ˛ is not C 1 on the right at t0. (The argument is similar in case it is not C 1

on the left.) The vector v D ˛0.t0/ points inside M or is tangent to the boundary of M .
Since the velocities ˛0.t/ are unit vectors and the curve ˛ is not C 1 on the right at t0, its
derivative ˛0 has an accumulation pointw ¤ v when t goes to t0 from the right. Let u be a
unit vector spanning a line that separates v fromw. Consider three disjoint neighborhoods
U; V; W of u; v; w such that for any u0; v0; w0 in U; V; W respectively, the line spanned
by u0 separates v0 from w0. Let KV be the union of the rays contained in M starting at x0
with direction v0 2 V , and let R be any of these rays. Note that u is transverse to all these
rays. Working in a small enough neighborhood of x0, we can assume that the family � of
geodesics that visit R with velocity u foliates the cone KV , and that their tangent vectors
do not deviate too much from u and thus lie in U . Since the velocity of ˛ at t0 lies in the
open set V , the arc ˛ restricted to some nontrivial interval Œt0; t3/ lies inKV . Now, sincew
is an accumulation point for ˛0 when t goes to t0 from the right, there exists t2 2 .t0; t3/
such that w0 D ˛0.t2/ lies inW . Let x2 D ˛.t2/, and let v0 be the direction from x0 to x2.
Let  be the geodesic of � passing through x2, and let u0 2 U be its velocity at x2. The
vector w0 D ˛0.t2/ points strictly inside the region of M bounded by  containing x0,
since the vector v0 points outside, and the line generated by the vector u0 separates v0

from w0.
Therefore, the arc ˛ starting at x0 must cross  a first time at t1 2 .t0; t2/ before cross-

ing it again at t2. Since  is the unique distance-realizing path between ˛.t1/ and ˛.t2/,
the arc ˛ coincides with  in Œt1; t2�, which contradicts the fact that ˛0 is transverse to 
at t2 (or t1). This finishes the proof of Theorem 12.1 for self-reverse metrics.

In the case of directed metrics we adapt the argument as follows. Apart from the
foliation � , we need a second foliation �� of KV by geodesics transverse to the ray R
with initial velocity �u. Then we proceed as in the proof above and after choosing the
point x1 in KV , we let  and � be the two geodesics of � and �� passing through x1.
We keep only the part of each geodesic before it reaches x1 and discard the rest. These
two half-geodesics bound a region ofKV containing x0. The curve ˛ points strictly inside
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this region at x1. Therefore, it must cross either  or � a first time before reaching x1.
We derive a contradiction as in the previous proof.
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