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Abstract. The problem of generating random samples of high-dimensional posterior distributions
is considered. The main results consist of non-asymptotic computational guarantees for Langevin-
type MCMC algorithms which scale polynomially in key quantities such as the dimension of the
model, the desired precision level, and the number of available statistical measurements. As a direct
consequence, it is shown that posterior mean vectors as well as optimisation based maximum a
posteriori (MAP) estimates are computable in polynomial time, with high probability under the
distribution of the data. These results are complemented by statistical guarantees for recovery of the
ground truth parameter generating the data.

Our results are derived in a general high-dimensional non-linear regression setting (with Gaus-
sian process priors) where posterior measures are not necessarily log-concave, employing a set of
local ‘geometric’ assumptions on the parameter space, and assuming that a good initialiser of the
algorithm is available. The theory is applied to a representative non-linear example from PDEs
involving a steady-state Schrödinger equation.
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1. Introduction

Markov chain Monte Carlo (MCMC) type algorithms are a key methodology in compu-
tational mathematics and statistics. The main idea is to generate a Markov chain .#k W
k 2 N/ whose laws L.#k/ on RD approximate its invariant measure. In Bayesian infer-
ence the relevant invariant measure has a probability density of the form

�.� jZ.N// / e`N .�/�.�/; � 2 RD : (1)

Here � is a prior density function for a parameter � 2 RD and the map `N W RD ! R
is the ‘data-log-likelihood’ based on N observations Z.N/ from some statistical model,
so that �.� jZ.N// is the density of the Bayesian posterior probability distribution on RD

arising from the observations.
It can be challenging to give performance guarantees for MCMC algorithms in the

increasingly complex and high-dimensional statistical models relevant in contemporary
data science. By ‘high-dimensional’ we mean that the model dimension D may be large
(e.g., proportional to a power of N ). Without any further assumptions accurate sampling
from �.� jZ.N// in high dimensions can then be expected to be intractable (see below for
more discussion). For MCMC methods the computational hardness typically manifests
itself in an exponential (or worse) dependence on D or N of the ‘mixing time’ of the
Markov chain .#k W k 2 N/ towards its equilibrium measure (1).

In this work we develop mathematical techniques which allow one to overcome such
computational hardness barriers. We consider diffusion-based MCMC algorithms tar-
geting the Gibbs-type measure with density �.� jZ.N// from (1) in a non-linear and
high-dimensional setting. The prior � will be assumed to be Gaussian—the main chal-
lenge thus arises from the non-convexity of �`N . We will show how local geometric
properties of the statistical model can be combined with recent developments in Bayesian
non-parametric statistics [74, 77] and the non-asymptotic theory of Langevin algorithms
[32, 36, 37] to justify the polynomial time feasibility of such sampling methods.

While the approach is general, it crucially takes advantage of the particular geometric
structure of the statistical model at hand. In a large class of high-dimensional non-linear
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inference problems arising throughout applied mathematics, such structure is described
by partial differential equations (PDEs). Examples that come to mind are inverse and data
assimilation problems, and in particular since influential work by A. Stuart [92], MCMC-
based Bayesian methodology has been frequently used in such settings, especially for the
task of uncertainty quantification. We refer the reader to [3,8,13,22,23,29–31,34,47,48,
56, 57, 63, 72, 88, 90, 92] and the references therein. A main contribution of this paper is
to demonstrate the feasibility of our proof strategy in a prototypical non-linear example
where the parameter � models the potential in a steady-state Schrödinger equation. This
PDE arises in various applications such as photo-acoustics (e.g., [6, 7]), and provides a
suitable framework to lay out the main mathematical ideas underpinning our proofs.

1.1. Basic setting and contributions

To summarise our key results we now introduce a more concrete setting. For O a bounded
subset of Rd , d 2 N; and ‚ some parameter space, consider a family ¹G .�/ W � 2 ‚º
of real-valued bounded ‘regression’ functions defined on O. If L2.O/ denotes the usual
space of square Lebesgue-integrable functions, this induces a ‘forward map’

G W ‚! L2.O/; (2)

and we suppose that N observations Z.N/ D .Yi ; Xi W i D 1; : : : ; N / arising via

Yi D G .�/.Xi /C "i ; i D 1; : : : ; N; (3)

are given, where "i � N.0; 1/ are independent noise variables, and design variables Xi
are drawn uniformly at random from the domain O (independently of "i ). While natural
parameter spaces ‚ can be infinite-dimensional, in numerical practice a D-dimensional
discretisation of ‚ is employed, where D can possibly be large. The log-likelihood func-
tion of the data .Yi ; Xi / then equals, up to additive constants, the usual least squares
criterion

`N .�/ D �
1

2

NX
iD1

ŒYi � G .�/.Xi /�
2; � 2 RD : (4)

The aim is to recover the unknown � from Z.N/. A widespread practice in statistical
science is to employ Gaussian (process) priors … with multivariate normal probability
densities � on RD; from a numerical point of view the Bayesian approach to inference in
such problems is then precisely concerned with (approximate) evaluation of the posterior
measure (1).

As discussed above, in important physical applications the forward map G is described
by a partial differential equation. For example suppose that G .�/ D uf� arises as
the unique solution u D uf� to the following elliptic boundary value problem for a
Schrödinger equation (with � the Laplacian):´

1
2
�u � f�u D 0 on O;

u D g on @O;
(5)
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with a suitable parameterisation � 7! f� > 0, � 2 RD (see (17) below for details). In
such cases, the map G is non-linear and �`N .�/ is not convex. The probability meas-
ure with density �.� jZ.N// given in (1) may then be highly complex to evaluate in a
high-dimensional setting, with computational cost scaling exponentially as D !1. For
instance, complexity theory for high-dimensional numerical integration (see [82, 83] for
general references) implies that computing the integral of a D-dimensional real-valued
Lipschitz function—such as the normalising factor implicit in (1)—by a deterministic
algorithm has worst case cost scaling as DD=5 [52, 93]. Relaxing a worst case analysis,
Monte Carlo methods can in principle obtain dimension-free guarantees (with high prob-
ability under the randomisation scheme). However, a curse of dimensionality may persist
as one typically is only able to sample approximately from the target measure, and since
the approximation error incurred, e.g., by the mixing time of a Markov chain, could scale
exponentially in dimension. The references [9–12, 14, 71, 87, 105] discuss this issue in a
variety of contexts. In addition, since the distribution becomes increasingly ‘spiked’ as
the statistical information increases (i.e., N !1), commonly used iterative algorithms
can take an exponential in N time to exit neighbourhoods of local optima of the posterior
surface �.� jZ.N// (e.g., [38], Example 4).

In light of the preceding discussion one may ask whether the approximate calcula-
tion of basic aspects of �.� jZ.N//—such as its mean vector (expected value), real-valued
functionals

R
RD H.�/�.� jZ

.N//d� , or mode—is feasible at a computational cost which
grows at most polynomially in D; N and the desired (inverse) precision level. While
answering this question in the affirmative may not directly identify a practical algorithm,
it clarifies a fundamental aspect of the computational complexity of the problem at hand.
Very few rigorous results providing even just partial such guarantees appear to be avail-
able in PDE settings. The notable exception of Hairer, Stuart and Vollmer [50] along with
some other important references will be discussed below.

Let us describe the scope of the methods to be developed in this article in the problem
of approximate computation of the high-dimensional posterior mean vector in the PDE
model (5) with the Schrödinger equation. We will require mild regularity assumptions
on D;… and on the ground truth �0 generating the data (3)—full details can be found
in Section 2. If … is a D-dimensional Gaussian process prior with covariance equal to
a rescaled inverse Laplacian raised to some large enough power ˛ 2 N, if the model
dimension grows at most as D . N d=.2˛Cd/, and if �0 is sufficiently well-approximated
by its ‘discretisation’ in RD (see (28)), we obtain the following main result.

Theorem 1.1. Suppose that dataZ.N/ D .Yi ;Xi W i D 1; : : : ;N / arise through (3) in the
Schrödinger model (5) and let P > 0. Then, for any precision level " � N�P there exists
a .randomised/ algorithm whose output O�" 2 RD can be computed with computational
cost

O.N b1Db2"�b3/ .b1; b2; b3 > 0/; (6)

and such that with high probability .under the joint law of Z.N/ and the randomisation
mechanism/,

k O�" �E
…Œ� jZ.N/�kRD � ";
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where
E…Œ� jZ.N/� D

Z
RD

��.� jZ.N// d�

denotes the mean vector of the posterior distribution ….� jZ.N// with density (1).

We further show in Theorem 2.6 that O�" also recovers the ground truth �0, within
precision ". The method underlying Theorem 1.1 consists of an initialisation step which
requires solving a standard convex optimisation problem, followed by iterations .#k/ of
a discretised gradient based Langevin-type MCMC algorithm, at each step requiring a
single evaluation ofr`N (which itself amounts to solving a standard linear elliptic bound-
ary value problem). In particular, our results will imply that the posterior mean can be
computed by ergodic averages .1=J /

P
k�J #k along the MCMC chain (after some burn-

in time); see Theorem 2.5 (which implies Theorem 1.1). The laws L.#k/ of the iterates
.#k/ in fact provide a global approximation

W2.L.#k/;….� jZ
.N/// � "; k � kmix;

of the high-dimensional posterior measure on RD in Wasserstein distance W2. Our
explicit convergence guarantees will ensure that both the ‘mixing time’ kmix and the
number J of required iterations to reach precision level " scales polynomially in
D; N; "�1. Similar statements hold true for the computation of real-valued functionalsR

RD H.�/�.� jZ
N / d� for Lipschitz maps H W RD ! R and of maximum a posteriori

(MAP) estimates. See Theorems 2.7, 2.8 as well as Proposition 2.4 for precise statements.
The main ideas of this article can be summarised as follows. We first demonstrate

that, with high probability under the law generating the data Z.N/, the target measure
….� jZ.N// from (1) is locally log-concave on a region in RD where most of its mass con-
centrates. Then we show that a ‘localised’ Langevin-type algorithm, when initialised into
the region of log-concavity, possesses polynomial time convergence guarantees in ‘mod-
erately’ high-dimensional models. That sufficiently precise initialisation is possible has
to be shown in each problem individually (for the Schrödinger model, see Section B.3).
Our proofs provide a template (outlined in Section 3) that can be used in principle also in
general settings as long as the linearisation r�G .�0/ of G at the ground truth parameter
�0 satisfies a suitable stability estimate (i.e., a quantitative injectivity property related to
the ‘information’ operator of the statistical model). We note that this ‘gradient stability’
hypothesis remains entirely ‘local’ and is hence weaker than the ‘Polyak–Łojasiewicz’
gradient condition used in non-convex optimisation [67,86] (see also [59]). We verify our
local stability property for the Schrödinger equation using elliptic PDE techniques (see
Lemma 4.7) but our approach may succeed in a variety of other non-linear forward mod-
els arising in inverse problems [60,76,92,98], integralX -ray geometry [54,74,84,85], and
also in the context of data assimilation and filtering [29,72,88]. In fact, the very recent ref-
erence [16] achieves this for the non-linear inverse problem considered in [74,84]. Further
advancing our understanding of the computational complexity of such PDE-constrained
high-dimensional inference problems poses a formidable challenge for future research.
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1.2. Discussion of related literature

Both the statistical and computational aspects of high-dimensional Bayes procedures have
been a subject of great interest in recent years. Frequentist convergence properties of high-
and infinite-dimensional Bayes procedures were intensively studied in the last two dec-
ades. For ‘direct’ statistical models we refer to the recent monograph [42] (and references
therein), and in the non-linear (PDE) setting relevant here to [1,2,15,16,18,45,61,74,75,
77, 79–81, 91].

We now discuss a variety of mixing time results of MCMC algorithms in high-dimen-
sional settings, and refer to the references cited in these articles for further important
results.

1.2.1. Mixing times for pCN-type algorithms. The important contribution [50] by Hairer,
Stuart and Vollmer derives dimension-independent convergence guarantees for the pre-
conditioned Crank–Nicolson (pCN) algorithm, using ergodicity results for infinite-dimen-
sional Markov chains from Hairer, Mattingly and Scheutzow [49]. The task of sampling
from a general measure arising from a Gaussian process prior and a general likelihood
function exp.�ˆ.�// is considered there. Their results are hence naturally compatible
with the setting considered in this paper, where ˆ is given by (4), i.e. ˆ D ˆN D �`N
and it is natural to ask (a) whether the bounds from [50] apply to this class of problems
and (b) if they apply, how they quantitatively depend on N and model dimension.

The key Assumptions 2.10, 2.11, and 2.13 made in [50] can be summarised as

(A) a global lower bound on the acceptance probability of the pCN, and

(B) a (local) Lipschitz continuity requirement on ˆ.

In PDE models, part (B) can usually be verified (e.g., [81]), while part (A) is more chal-
lenging: due to the global nature of the assumption, it seems that verification of (A) will
typically require bounds for likelihood ratios exp.ˆ.�/ � ˆ. N�// with �; N� arbitrarily far
apart. Of course, in some specific problems an initial bound may be obtained by invoking
inequalities like (18) below. However the resulting lower bounds on the acceptance prob-
abilities in the pCN scheme will decrease exponentially in N . We also note that though
dimension-independent, the main Theorems 2.12 and 2.14 from [50] remain implicit (non-
quantitative) in the relevant quantities from assumptions (A) and (B); this seems to stem
both from the utilised proof techniques, such as considerations regarding level sets of Lya-
punov functions (cf. [50, p. 2474]), and from the qualitative nature of the key underlying
probabilistic weak Harris theorem proved in [49].

Summarising, while it would be very exciting to see the results of [50] extended to
yield quantitative bounds which are polynomial in both N;D, serious technical and con-
ceptual innovations seem to be required. These remarks apply as well to recent dimension-
free mixing time bounds on Hamiltonian Monte Carlo (HMC) methods in [19, 20, 46],
which scale exponentially in N via the Lipschitz constant of `N . In our context, when
exploiting local average curvature of the likelihood surface arising from PDE structure, it
is initially more promising to use diffusion-based methods.
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1.2.2. Computational guarantees for Langevin-type algorithms. For the important
gradient-based class of Langevin Monte Carlo (LMC) algorithms, non-asymptotic con-
vergence guarantees which are suited for high-dimensional settings were obtained by
Dalalyan [32] for log-concave densities, and extended shortly after by Durmus and Mou-
lines [36, 37] to closely related cases. Our proofs rely substantially on these convergence
results for the strongly log-concave case (see Appendix A for a review). We emphasise
that the fundamental ideas underpinning the fast mixing of ‘hypercontractive’ Langevin
diffusions in high dimensions go back to earlier seminal work [4, 55]; see also the mono-
graph [5].

Very recently further extensions have emerged, notably [27,70,71,103], which estab-
lish convergence guarantees assuming that either the density to be sampled from is con-
vex outside of some region, or the target measure satisfies functional inequalities of
log-Sobolev and Poincaré type. However, it appears that both of these results, when
applied to (4) without any further substantial work, yield bounds that scale exponen-
tially in N . Indeed, the bound in [71, Theorem 1] evidently depends exponentially on
the Lipschitz constant of the gradient r`N ; and ad hoc verification of assumptions from
[103] would utilise the Holley–Stroock perturbation principle [53] (and (18)), exhibiting
the same exponential dependence. Alternative, more elaborate ways of verifying func-
tional inequalities in this context would be highly interesting, but this is not the approach
we take here.

1.2.3. Relationship to Bernstein–von Mises theorems. A key idea in our proofs is to use
approximate curvature of `N .�/ ‘near’ the ground truth �0. On a deeper level this idea is
related to the possibility of a Bernstein–von Mises theorem which would establish precise
Gaussian (‘Laplace’) approximations to posterior distributions; see [62, 64, 101] for the
classical versions of such results in ‘low-dimensional’ statistical models, and [24–26, 41]
for high- or infinite-dimensional versions.

Such an approach is taken by [9] who attempt to exploit the asymptotic ‘normality’ of
the posterior measure to establish bounds on the computation time of MCMC-based pos-
terior sampling, building on seminal work by Lovász, Simonovits and Vempala [68, 69]
on the complexity of general Metropolis–Hastings schemes. While [9] potentially allows
for moderately high-dimensional situations (by appealing to high-dimensional Bernstein–
von Mises theorems from [41]), their sampling guarantees hold for rescaled posterior
measures arising as laws of

p
N .� � Q�/ jZ.N/ where Q� D Q�.Z.N// is an initial ‘semi-

parametrically efficient centring’ of the posterior draws � jZ.N/. In our setting such a
centring is not generally available (in fact, to show that one can compute such centrings,
such as the posterior mode or mean, in polynomial time, is one of the main aims of our
analysis). The setting in [9] thus appears somewhat unnatural for the problems studied
here, also because the conditions there do not appear to permit Gaussian priors.

For the Schrödinger equation example considered in the present paper, Bernstein–von
Mises theorems were obtained in [77]—see also the more recent paper [75]. While we
follow [77] in using elliptic PDE theory to quantify the amount of curvature expressed in
the ‘limiting information operator’ arising from the Schrödinger model, our proofs are in
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fact not based on an asymptotic Gaussian approximation of the posterior distribution (via
Le Cam theory, as in [75, 77]). Rather we use tools from high-dimensional probability
to deduce local curvature bounds directly for the likelihood surface, and then show that
the posterior measure is approximated, in Wasserstein distance, by a globally log-concave
measure that concentrates around the posterior mode (see Theorem 4.14). While one can
think of this as a ‘non-asymptotic’ version of a Bernstein–von Mises theorem, the under-
lying techniques do not require the full inversion of the information operator (as in [77] or
in [73,75,80]), but solely rely on a ‘stability estimate’ for the local linearisation of the for-
ward map, and hence are likely to apply to a larger class of PDEs (a PDE model where this
difference matters is discussed in [78]). A further key advantage of our approach is that
we do not require the initialiser for the algorithm to be a ‘semi-parametrically efficient’
estimator (as [9] does), instead only a sufficiently fast ‘non-parametric’ convergence rate
is required, which substantially increases the class of admissible initialisation strategies.

1.2.4. Regularisation/optimisation literature. Regularisation-driven optimisation meth-
ods have been studied for a long time in applied mathematics; see for instance the mono-
graphs [39, 58]. In the setting of non-linear operator equations in Hilbert spaces and with
deterministic noise, ‘local’ convergence guarantees for iterative (gradient or ‘Landweber’)
methods have been obtained in [51, 58], assuming that optimisation is performed over
a (sufficiently small) neighbourhood of a maximum. The proof techniques underlying
our main results allow one as well to derive guarantees for gradient descent algorithms
targeting, for instance, maximum a posteriori (MAP) estimates; see Section 2.2.5. Spe-
cifically, in Theorem 2.8, global convergence guarantees for the computation of MAP
estimates over a high-dimensional discretisation space are given, in our statistical frame-
work, paralleling our main results for Langevin sampling methods, which can be regarded
as randomised versions of classical gradient methods. A main attraction of studying such
randomised algorithms, and more generally of solving the problem of Bayesian compu-
tation, is of course that one can access entire posterior distributions, which is required for
quantifying the statistical uncertainty in the reconstruction provided by point estimates
such as posterior mean or mode.

1.3. Notations and conventions

Throughout, N will denote the number of observations in (3) and D will denote the
dimension of the model from (4). For a real-valued function f W RD ! R, its gradient
and Hessian are denoted by rf and r2f , respectively, while � D rTr denotes the
Laplace operator. For any matrix A 2 RD�D , we denote the operator norm by

kAkop WD sup
 W k kRD�1

kA kRD :

If A is positive definite and symmetric, then we denote the minimal and maximal eigen-
values of A by �min.A/ and �max.A/ respectively, with condition number �.A/ WD
�max.A/=�min.A/. The Euclidean norm on RD will be denoted by k � kRD . The space
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`2.N/ is the usual space of square-summable sequences .an W n 2 N/, normed by k � k`2 .
For any a 2R, we write aC Dmin ¹a; 0º. Throughout, .;&;' will denote (in-)equalities
up to multiplicative constants.

For a Borel subset O � Rd , d 2 N, let Lp D Lp.O/ be the usual spaces of func-
tions endowed with the norm k � kpLp D

R
O
jh.x/jp dx, where dx is Lebesgue measure.

The L2.O/ inner product is denoted by h�; �iL2.O/. If O is a smooth domain in Rd , then
C.O/ denotes the space of bounded continuous functions h W O ! R equipped with the
supremum norm k � k1 and C ˛.O/; ˛ 2 N, are the usual spaces of ˛-times continuously
differentiable functions on O with bounded derivatives. Likewise we denote by H˛.O/

the usual order-˛ Sobolev spaces of weakly differentiable functions with square integ-
rable partial derivatives up to order ˛ 2 N, and this definition extends to positive ˛ … N
by interpolation [95]. We also define .H 2

0 .O//
� as the topological dual space of�

H 2
0 .O/ D ¹h 2 H

2.O/ W tr.h/ D 0º; k � kH2.O/
�
;

where tr.�/ denotes the usual trace operator acting on functions on O. We will repeatedly
use the inequalities

kghkH˛ � c.˛;O/kgkH˛khkH˛ ; ˛ > d=2; (7)

khkHˇ � c.ˇ; ˛;O/khk
.˛�ˇ/=˛

L2
khk

ˇ=˛
H˛ ; 0 � ˇ � ˛; (8)

for g; h 2 H˛; see, e.g., [66]. For Borel probability measures �1; �2 on RD with finite
second moments we define the Wasserstein distance

W 2
2 .�1; �2/ D inf

�2�.�1;�2/

Z
RD�RD

k� � #k2RD d�.�; #/; (9)

where �.�1; �2/ is the set of all ‘couplings’ of �1 and �2 (see, e.g., [104]). Finally, we
say that a map H W RD ! R is Lipschitz if it has finite Lipschitz norm

kHkLip WD sup
x¤y; x;y2RD

jH.x/ �H.y/j

kx � ykRD
: (10)

2. Main results for the Schrödinger model

Our object of study in this section is a non-linear forward model arising from a (steady
state) Schrödinger equation. Throughout, let O � Rd be a bounded domain with smooth
boundary @O. For convenience, we restrict ourselves throughout to d � 3; dimensions
d � 4 could be considered as well at the expense of further technicalities. Moreover,
without loss of generality we assume vol.O/ D 1.

Suppose that g 2 C1.@O/ is a given function prescribing boundary values g � gmin

> 0 on @O . For an ‘attenuation potential’ f 2 H˛.O/, consider solutions u D uf of the
PDE ´

1
2
�u � f u D 0 on O;

u D g on @O:
(11)
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If ˛ > d=2 and f � 0 then standard theory for elliptic PDEs (see [43, Chapter 6] or
[28, Chapter 4]) implies that a unique classical solution uf 2 C 2.O/ to the Schrödinger
equation (11) exists. The non-linearity of the map f 7! uf becomes apparent from the
classical Feynman–Kac formula (e.g., [28, Theorem 4.7])

uf .x/ D uf;g.x/ D E
x
�
g.X�O /e

�
R �O
0

f .Xs/ ds
�
; x 2 O; (12)

where .Xs W s � 0/ is a d -dimensional Brownian motion started at x with exit time �O

from O. This PDE appears in various applications, for example in photo-acoustics [7,
Section 3].

2.1. Bayesian inference with Gaussian process priors

2.1.1. The Dirichlet-Laplacian and Gaussian random fields. In Bayesian statistics pop-
ular choices of prior probability measures arise from Gaussian random fields whose cov-
ariance kernels are related to the Laplace operator �; see, e.g., [92, Section 2.4] and
also [42, Example 11.8] (where the closely related ‘Whittle–Matérn’ processes are con-
sidered).

For  2 L2.O/, let v � V Œ � denote the (unique) solution in H 2
0 to the Poisson

equation �v=2 D  on O. By standard results [95, Section 5.A] the compact h�; �iL2.O/-
self-adjoint operator V has eigenfunctions .ek W k 2 N/ forming an orthonormal basis
of L2.O/ such that V Œ � D

P1
kD1 �khek ;  iL2.O/ek , with (negative) eigenvalues �k

satisfying the Weyl asymptotics (e.g., [96, Corollary 8.3.5])

�k D
1

j�kj
' k2=d as k !1; 0 < �k < �kC1; k 2 N: (13)

The ‘spectrally defined’ Sobolev-type spaces H˛ D ¹F 2 L2.O/ W
P1
kD1 �

˛
k
hF; eki

2
L2.O/

<1º are isomorphic to the corresponding Hilbert sequence spaces

h˛ WD
°
� 2 `2.N/ W k�k2h˛ D

1X
kD1

�˛k�
2
k <1

±
; h0 DW `2.N/:

One shows that H˛ is a closed subspace of H˛.O/ and the sequence norm k � kh˛ is
equivalent to k � kH˛.O/ on H˛ . For ˛ even, this follows from the usual isomorphism
theorems for the ˛=2-fold application of the inverse Dirichlet-Laplacian, and extends to
general ˛ by interpolation; see [95, Section 5.A]. One also shows that any F 2 H˛.O/

supported strictly inside of O belongs to H˛ .
A centred Gaussian random field M˛ on O can be defined by the infinite random

series

M˛.x/ D

1X
kD1

�
�˛=2

k
gkek.x/; x 2 O; gk

i:i:d:
� N.0; 1/: (14)

For ˛ > d=2 one shows that M˛ defines a Gaussian Borel random variable in C.O/ \
¹h uniformly continuous, h D 0 on @Oº with reproducing kernel Hilbert space equal
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to H˛ (see [44, Example 2.6.15]), thus providing natural priors for ˛-regular functions
vanishing at @O. Such Dirichlet boundary conditions could be replaced by Neumann con-
ditions at the expense of minor changes (see [95, p. 473]). Our techniques in principle
may extend to other classes of priors such as exponential Besov-type priors considered in
[2,63], but we focus our development here on the most commonly used class of ˛-regular
Gaussian process priors.

2.1.2. Re-parameterisation, regular link functions, and forward map. To use Gaussian
random fields such as M˛ to model a potential f � 0 featuring in the Schrödinger equa-
tion (11), we need to enforce positivity by use of a ‘link function’ ˆ. While ˆ D exp is
common, for technical convenience (following [81]) we choose a function that is globally
Lipschitz.

Definition 2.1 (Regular link function). LetKmin 2 Œ0;1/. We say thatˆ WR! .Kmin;1/

is a regular link function if it is bijective, smooth, strictly increasing (i.e. ˆ0 > 0 on R)
and if for any k � 1, the k-th derivative of ˆ satisfies supx2R jˆ

.k/.x/j <1:

For a simple example of a regular link function ˆ, see [81, Example 3.2]. We denote
the composition operator associated to ˆ by

ˆ� W L2.O/! L2.O/; F 7! ˆ ı F D ˆ�.F /: (15)

Now to describe a natural parameter space for f , we will first expand functions F 2
L2.O/ in the orthonormal basis from Section 2.1.1,

F D F� D

1X
kD1

�kek ; .�k W k D 1; 2; : : : / 2 `
2.N/; (16)

and denote by ‰.�/ D F� the map ‰ W `2.N/ ! L2.O/ that associates to the vec-
tor � the ‘Fourier’ series of F� . We then apply a regular link function ˆ to F� and set
f� WD ˆ ı F� . For ˛ > d=2, one shows (see (176) below) that F� 2 H˛.O/ implies
f� 2H

˛.O/ and hence solutions of the Schrödinger equation (11) exist for such f . If we
denote the solution map f 7! uf from (11) byG, then the overall forward map describing
our parametrisation is given by

G W h˛ ! L2.O/; G .�/ D uf� D ŒG ıˆ
�
ı‰�.�/: (17)

We shall frequently regard G as a map on the closed linear subspace RD of h˛ consisting
of the first D coefficients .�1; : : : ; �D/ of � 2 h˛ , and suppress the dependence of G

on ˆ in the notation. We also note that the solutions of (11) are uniformly bounded by a
constant independent of � 2 h˛ , specifically

kG .�/k1 D kuf� k1 � kgk1; (18)

as follows from (12) and f� � 0. This ‘bounded range’ property of G is relative to the
norm employed; for instance the kuf� kH˛ -norms are not uniformly bounded in � 2 h˛

for general ˛.
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2.1.3. Measurement model, prior, likelihood and posterior. For the forward map G from
(17), we now consider the measurement model

Yi D G .�/.Xi /C "i ; i D 1; : : : ; N;

"i
i:i:d:
� N.0; 1/; Xi

i:i:d:
� Uniform.O/:

(19)

The i.i.d. random vectors

Z.N/ D .Zi /
N
iD1 D .Yi ; Xi /

N
iD1 (20)

are drawn from a product measure on .R�O/N that we denote by PN
�
D
NN
iD1P� . The

coordinate (Lebesgue) densities p� of the joint probability density pN
�
D
QN
iD1p� of PN

�

are of the form

p� .y; x/ WD
1
p
2�

exp
®
�
1
2
Œy � G .�/.x/�2

¯
; y 2 R; x 2 O; (21)

(recalling vol.O/ D 1) and we can define the log-likelihood function as

`N .�/ � logpN� CN log
p
2� D �

1

2

NX
iD1

.Yi � G .�/.Xi //
2: (22)

When using Gaussian process prior models in Bayesian statistics, a common discret-
isation approach is to truncate the (‘Karhunen–Loève’ type) expansion of the prior in a
suitable basis [33, 50, 63, 92]. In our context this will mean that we truncate the series
defining the random field M˛ in (14) at some finite dimension D to be specified. For
integer ˛ to be chosen, and recalling the eigenvalues .�k W k 2 N/ of the Dirichlet Lapla-
cian from (13), we thus consider priors

� � … D …N � N.0;N
�d=.2˛Cd/ƒ�1˛ /; ƒ˛ D diag.�˛1 ; : : : ; �

˛
D/; (23)

supported in the subspace RD of h˛ consisting of its first D coordinates. The Lebesgue
density d… of… on RD will be denoted by � . The posterior measure….� jZ.N// on RD

then arises from data Z.N/ in (19) via Bayes’ formula, with probability density function

�.� jZ.N// / e`N .�/�.�/

/ exp
²
�
1

2

NX
iD1

.Yi � G .�/.Xi //
2
�
N d=.2˛Cd/

2
k�k2h˛

³
; � 2 RD : (24)

2.2. Polynomial time guarantees for Bayesian posterior computation

2.2.1. Description of the algorithm. We now describe the Langevin-type algorithm tar-
geting the posterior measure ….� jZ.N//. It requires the choice of an initialiser �init and
of constants �; K;  . Our goal is merely to exhibit its polynomial runtime and we do not
attempt to optimize the constants involved.
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Throughout, we use the initialiser �init D �init.Z
.N// 2 RD constructed in Theorem

B.6 in Section B.3 (computable in O.N b0/ polynomially many steps, for some b0 > 0).
For � > 0 to be chosen we define the high-dimensional region

OB D ¹� 2 RD W k� � �initkRD � �D
�4=d=2º: (25)

We then construct a proxy function Q̀N W RD ! R which agrees on OB with the log-
likelihood function `N from (22). Specifically, take the cut-off function ˛ D ˛� from (53)
and the convex function g D g� from (52) with choice � D �D�4=d and j � j1 D k � kRD .
Note that ˛ is compactly supported and identically 1 on OB and that g vanishes on OB.
Then for K to be chosen, Q̀N takes the form

Q̀
N .�/ WD ˛.�/`N .�/ �Kg.�/; � 2 RD : (26)

This induces a proxy probability measure, correspondingly denoted by Q….� jZ.N//, with
log-density

log Q�.� jZ.N// D Q̀N .�/ �N d=.2˛Cd/
k�k2h˛=2C const; � 2 RD : (27)

Note that Q�.� jZ.N// coincides with the posterior density �.� jZ.N// on the set OB up
to a (random) normalising constant. The MCMC scheme we consider is then given in
Algorithm 1 and the law of the resulting Markov chain .#k/2RD will be denoted by P�init .

Algorithm 1

Input: Initialiser �init 2 RD , convexification parameters �;K > 0, step size  > 0, i.i.d. sequence
�k � N.0; ID�D/.
Output: Markov chain #1; : : : ; #k ; : : : 2 RD .

1: initialise #0 D �init
2: for k D 0; : : : do
3: #kC1 D #k C r log Q�.#k jZ.N//C

p
2 �kC1

4: return .#k W k D 1; : : : /

While the algorithm is related to stochastic optimisation methods based on gradient
descent, the diffusivity term is of constant order in k, allowing .#k/ to explore the entire
support of the target measure. It coincides with the unadjusted Langevin algorithm (see
Appendix A) targeting �.� jZ.N// as long as the iterates .#k/ stay within the region
OB � RD we have initialised to. When .#k/ exits OB, the Markov chain is forced by the

‘proxy’ function Q̀N to eventually return to OB. This procedure is justified since most of
the posterior mass will be shown to concentrate on OB with high probability under the law
of Z.N/. [In fact, a key step of our proofs is to control the Wasserstein distance between
the measures induced by the densities �.� jZ.N//; Q�.� jZ.N//; cf. Theorem 4.14.] Note
that while the ball in (25) shrinks asD!1, relative to the step sizes  permitted below,
OB has asymptotically growing diameter. The results that follow show that the Markov
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chain .#k/ mixes sufficiently fast to reconstruct the posterior surface on OB with arbitrary
precision after a polynomial runtime.

To demonstrate the performance of Algorithm 1 in a large N;D scenario, we now
make the following specific choices of the key algorithm parameters �;K;  .

Condition 2.2. Let �init be the initialiser from Theorem B.6 and suppose that

� WD
1

logN
; K WD ND8=d .logN/3;  �

1

ND8=d .logN/4
:

2.2.2. Conditions involving �0. The convergence guarantees obtained below hold for
high-dimensional models where D is permitted to grow polynomially in N , and under
the frequentist assumption that the data Z.N/ from (19) is generated from a fixed ground
truth �0 inducing the law PN

�0
. Note that we do not assume that �0 2 RD , but rather that

�0 2 h
˛ is sufficiently well approximated by its `2.N/-projection �0;D onto RD . The pre-

cise condition, which is discussed in more detail in Remark 2.9 below, reads as follows.

Condition 2.3. For integers d � 3 and ˛ > 6, suppose data Z.N/ from (20) arise in the
Schrödinger model (19) for some fixed �0 2 h˛ . Moreover, suppose that D 2 N is such
that for some constants c0 > 0, 0 < c00 < 1=2, and �0;D D ..�0/1; : : : ; .�0/D/,

D � c0N
d=.2˛Cd/; kG .�0;D/ � G .�0/kL2.O/ � c

0
0N
�˛=.2˛Cd/: (28)

Though it will be left implicit, the results we obtain in this section depend on �0 only
through c00 and an upper bound S � k�0kh˛ .

2.2.3. Computational guarantees for ergodic MCMC averages. We first present a con-
centration inequality for ergodic averages along the Markov chain .#k/. Proposition 2.4
is non-asymptotic in nature; hence its statement necessarily involves various constants
whose dependence on D and N is tracked. Theorems 2.5 and 2.6 then demonstrate
how the desired polynomial time computation guarantees, including Theorem 1.1, can
be deduced from it.

For ‘burn-in’ time Jin 2N and MCMC samples .#k W k D Jin C 1; : : : ; Jin C J / from
Algorithm 1, define

O�JJin
.H/ D

1

J

JinCJX
kDJinC1

H.#k/; H W RD ! R:

We also set, for c1 > 0 to be chosen,

B./ WD c1
�
D.dC24/=d .logN/6 C 2ND.dC44/=d .logN/12

�
C 2 exp.�N�.d/=2˛Cd /:

(29)

The quantity B./ is an upper bound for the error incurred by the discretisation of the
Langevin dynamics (see (162) below) and by the ‘proxy’ construction (27).
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Proposition 2.4. Assume Condition 2.3 is satisfied and consider iterates #k of the
Markov chain from Algorithm 1 with �init; �;K; satisfying Condition 2.2. Then there exist
constants c1; : : : ; c5 > 0 such that for all N 2 N, any Lipschitz function H W RD ! R,
any burn-in period

Jin �
logN

ND�4=d
� log.D C B./�1/; (30)

any J 2N, any t � 2kHkLip
p
B./ and on events EN .measurable subsets of .R�O/N /

of probability PN
�0
.EN / � 1 � c2 exp.�c3N d=.2˛Cd//,

P�init.j O�
J
Jin
�E…ŒH jZ.N/�j � t / � c5 exp

�
�c4

t2N 2J

D8=dkHk2Lip.1CD
4=d=.NJ//

�
:

The next result concerns computation of the posterior mean vector

E…Œ� jZ.N/� D

Z
RD

��.� jZ.N// d�

by ergodic averages

N�JJin
WD

1

J

JinCJX
kDJinC1

#k ; Jin; J 2 N;

within prescribed precision level ". For convenience we assume "�N�P for someP > 0,
which is natural in view of the statistical error to be considered in Theorem 2.6 below. To
this end, we make an explicit choice for the step size parameter

 D " D min
�

"2

D.dC24/=d
;

"
p
N D.22Cd=2/=d

;
1

ND8=d

�
� .logN/�7: (31)

Theorem 2.5. Assume Condition 2.3 is satisfied. Fix P > 0 and let " � N�P . Consider
iterates #k of the Markov chain from Algorithm 1 with �init; �;K satisfying Condition 2.2
and with  D " as in (31). Then there exist c6; c7; c8 > 0 and at most polynomially
growing constants

gD;N;" D O.D
Nb1N

Nb2"�
Nb3/; Nb1; Nb2; Nb3 > 0; (32)

such that for allN 2N, Jin � gD;N;", J 2N, and on events EN of probability PN
�0
.EN /�

1 � c7 exp.�c8N d=.2˛Cd//,

P�init.k
N�JJin
�E…Œ� jZ.N/�kRD � "/ � c6D exp

�
�

J

gD;N;"

�
: (33)

Theorem 2.5 implies that for Jin ^ J � gD;N;" � logD, one can compute the posterior
mean vector within precision " > 0 with probability as close to 1 as desired. Using this
and Theorem B.6 (whose hypotheses are implied by those of Theorem 2.5), we have in
particular also proven Theorem 1.1. Similar bounds for computation of E…ŒH jZ.N/�
can be obtained as long as kHkLip grows at most polynomially in D.
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We conclude this subsection with a result concerning recovery of the actual target of
statistical inference, that is, the ground truth �0. It combines Theorem 2.5 with a statistical
rate of convergence of E…Œ� jZ.N/� to �0, obtained by adapting recent results from [74]
to the present situation.

Theorem 2.6. Consider the setting of Theorem 2.5 with P D ˛2=..2˛ C d/.˛ C 2//.
There exist further constants c9; c10; c11; c12 > 0 such that for all N 2 N, all " �
c11N

� ˛
2˛Cd

˛
˛C2 , with gD;N;" from (32) and on events EN of probability PN

�0
.EN / �

1 � c9 exp.�c10N d=.2˛Cd//,

P�init.k
N�JJin
� �0k`2 � "/ � c12 exp

�
�

J

4gD;N;"

�
: (34)

While the statistical minimax-optimal rate towards �0 2 h˛ in this problem can be
expected to be faster than N�P (see [77]), it appears unclear how to obtain this rate when
F� is discretised by means of the (for the purposes of the present paper essential) spectral
decomposition of the Dirichlet-Laplacian from Section 2.1.1. The difficulty arises with
the approximation theory of the space H˛

c .O/ (equal to the completion of C1c .O/ in
H˛.O/) and is not discussed further here.

2.2.4. Global bounds for posterior approximation in Wasserstein distance. The previous
theorems concern the computation of specific posterior characteristics; one may also be
interested in global mixing properties of the laws L.#k/ induced by the Markov chain
.#k W k 2 N/ towards the target ….� jZ.N//, for instance in the Wasserstein distance
from (9).

Theorem 2.7. Assume Condition 2.3 is satisfied, let L.#k/ denote the law of the k-th
iterate #k of the Markov chain from Algorithm 1 with �init; �;K; satisfying Condition 2.2,
and letB./; c1 be as in (29). For any P > 0 there exist constants c1; c13; c14; c15; c16 > 0
such that on events EN of probability PN

�0
.EN / � 1 � c13 exp.�c14N d=.2˛Cd// and for

all N 2 N, the following holds:

(i) For any k � 1,

W 2
2 .L.#k/;….� jZ

.N/// � c15D
2˛=d .1 � c16ND

�4=d/kC C B./: (35)

(ii) For any ‘precision level’ " � N�P and for  D " from (31), there exists

kmix D O.N
Qb1D

Qb2"�
Qb3/; Qb1; Qb2; Qb3 > 0; (36)

such that for any k � kmix,

W2.L.#k/;….� jZ
.N/// � ":

The first term on the right hand side of (35) characterises the rate of geometric conver-
gence towards equilibrium of .#k/; the factor ND�4=d can be thought of as a spectral
gap of the Markov chain (related to the ‘average local curvature’ of `N .�/ near �0 in the
Schrödinger model). Choosing  D " as in (31), part (ii) further establishes ‘polynomial-
time’ mixing of the MCMC scheme towards the posterior measure.
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2.2.5. Computation of the MAP estimate. Our techniques also imply the following guar-
antees for the computation of maximum a posteriori (MAP) estimates

O�MAP 2 arg max
�2RD

�.� jZ.N//

by a classical gradient (ascent) method applied to the ‘proxy’ posterior surface (27).

Theorem 2.8. Assume Condition 2.3 is satisfied and let �init denote the initialiser from
Theorem B.6. For k D 0; 1; 2; : : : ; consider the gradient algorithm

#0 D �init; #kC1 D #k C r log Q�.#k jZ.N//;  D
1

ND8=d .logN/4
:

There exist constants c17; c18; c19; c20; c21 > 0 such that for all N 2 N and on events EN
of probability at least PN

�0
.EN / � 1 � c17 exp.�c18N d=.2˛Cd// we have the following:

(i) There exists a unique maximiser O�MAP of �.� jZ.N// over RD .

(ii) For all k � 1, we have the geometric convergence

k#k � O�MAPk
2
RD � c19D

4=d

�
1 �

c20

D12=d .logN/4

�k
C

:

(iii) Finally, we can choose k D O.D12=d .logN/5/ such that

k#k � �0k`2 � c21N
� ˛
2˛Cd

˛
˛C2 :

Remark 2.9 (about Condition 2.3). In principle the upper bound for D required in Con-
dition 2.3 could be replaced by general conditions on D (like those from Lemma 3.4)
which do not become more stringent as ˛ increases. From a statistical point of view, how-
ever, a choiceD � c0N d=.2˛Cd/ is natural as it corresponds to the optimal ‘bias-variance’
tradeoff underpinning the convergence rate towards �0 2 h˛ from Theorem 2.6. [In fact,
the second requirement in (28) can be checked for �0 2 h˛ and D ' N d=.2˛Cd/, since G

is `2.N/-L2.O/ Lipschitz.] Moreover, combined with ˛ > 6, such a choice ofD provides
a convenient sufficient condition throughout our proofs: It is used critically when showing
(in Theorem 4.14) that the proxy posterior measure Q….� jZ.N// contracts about a k � kRD -
neighbourhood of �0 of radiusD�4=d on which the information in the Schrödinger model
has a stable behaviour (see (115)). It is also required for our initialiser �init to lie in this
neighbourhood (Theorem B.6). While it is conceivable that the condition on ˛ could be
weakened (as discussed, e.g., in the next remark), it would come at the expense of con-
siderable further technicalities that we wish to avoid here.

3. General theory for random design regression

In proving the results from Section 2, we will first develop some theory which applies to
general non-linear regression models. We thus consider in this section the measurement
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model (3) for a general forward model G that satisfies a set of analytic conditions to
be detailed below. Let ‚ be a (measurable) linear subspace of `2.N/ which itself has a
subspace RD �‚,D 2N. Let O be a Borel subset of Rd ; d � 1, and consider a model of
regression functions ¹G .�/ W � 2‚º via a Borel-measurable forward map G W‚! C.O/.
While we regard each G .�/ as a continuous real-valued function, the results of this section
readily extend to vector or matrix fields over manifolds O; see Remark 3.11. Our data is
given by Zi D .Yi ; Xi / arising from

Yi D G .�/.Xi /C "i ; i D 1; : : : ; N; (37)

whereXi
i:i:d:
� PX , PX a Borel probability measure on O, and where "i

i:i:d:
� N.0;1/, inde-

pendently of the Xi ’s. We write Z.N/ D .Z1; : : : ; ZN / for the full data vector with joint
distribution PN

�
D
NN
iD1 P� on .R � O/N and expectation operator EN

�
D
NN
iD1 E� .

Then the log-likelihood functions of the data Z.N/ and of a single observation Z D
.Y;X/ � P� are given by

`N .�/ � `N .�;Z
.N// D �

1

2

NX
iD1

ŒYi � G .�/.Xi /�
2;

`.�/ � `.�;Z/ D �
1

2
ŒY � G .�/.X/�2;

(38)

respectively. If we regard these maps as being defined on RD � ‚, and if … is a Gaus-
sian prior … supported in RD , then we obtain the posterior measure ….� jZ.N// with
probability density �.� jZ.N// on RD as in (24).

The main results of this section are Theorems 3.7 and 3.8, providing convergence
guarantees for a Langevin sampling method for the posterior distribution that depend
polynomially on the model dimension D and the number N of measurements, and which
hold on an event (i.e., a measurable subset E of the sample space .R � O/N supporting
the data Z.N/) of the form

E WD Econv \ Einit \ Ewass:

On Econv the negative log-likelihood �`N .�/ will be strongly convex in some region
B � RD , while Einit is the event that allows one to initialise the method at some (data-
driven) �init D �init.Z

.N// in that set B. Finally, intersection with Ewass further guaran-
tees that the posterior measure ….� jZ.N// is close in Wasserstein distance to a glob-
ally log-concave surrogate probability measure Q….� jZ.N// which locally coincides with
….� jZ.N// up to proportionality factors. In applying the results of this section to a con-
crete sampling problem, one needs to show that all the events Econv; Einit; Ewass have
sufficiently high frequentist PN

�0
-probability, where �0 is the ground truth parameter gen-

erating data (37). For the event Econv we provide a generic method in Lemma 3.4, based
on a stability estimate for the linearisation of the map G combined with high-dimensional
concentration of measure techniques. Techniques for controlling the respective probabil-
ities of Einit and Ewass are discussed in Remark 3.10.

We will assume that the set B � RD of local convexity is of ellipsoidal form.
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Definition 3.1. A norm j � j on RD is called ellipsoidal if there exists a positive definite,
symmetric matrix M 2 RD�D such that j� j2 D �TM� for any � 2 RD .

Throughout this section, for some centring �� 2RD , scalar �> 0 and ellipsoidal norm
j � j1 with associated matrix M , let B denote the open subset of RD given by

B WD ¹� 2 RD W j� � ��j1 < �º: (39)

One may think of �� as the projection of �0 onto RD , but at this stage this is not necessary.
While for the Schrödinger model with d � 3 we can choose j � j1 D k � kRD , in general
(e.g., when d � 4 or in other non-linear problems) it may be convenient to consider other
(ellipsoidal) localisation regions.

3.1. Local curvature bounds for the likelihood function

In what follows, �0 2 ‚ is an arbitrary ‘ground truth’ and the gradient operator r D r�
will always act on G ; `; `N viewed as maps on the subspace RD � ‚. Specifically we
shall write .rG .�/.x/ W x 2 O/ and .r2G .�/.x/ W x 2 O/ for the vector and matrix fields

rG .�/ W O ! RD; r2G .�/ W O ! RD�D;

respectively. The following assumption summarises some quantitative regularity condi-
tions on the map G . These have to hold locally on the set B (and are satisfied, for
instance, for any smooth G ). To formulate them we equip RD and RD�D with the Euc-
lidean norm k � kRD and the operator norm k � kop D k � kRD!RD (for linear maps from
RD ! RD) respectively, and the functional norms of RD- or RD�D-valued fields are
understood relative to these norms. [So for instance, in (40), one requires a bound k2 for
supx2O kr

2G .�/.x/kRD!RD that is uniform in � 2 B.]

Assumption 3.2 (Local regularity). Let B be given in (39).

(i) For any x 2 O, the map � 7! G .�/.x/ is twice continuously differentiable on B.

(ii) For some k0; k1; k2 > 0,

sup
�2B

kG .�/ � G .�0/k1 � k0;

sup
�2B

krG .�/kL1.O;RD/ � k1;

sup
�2B

kr
2G .�/kL1.O;RD�D/ � k2: (40)

(iii) For some m0; m1; m2 > 0 and any �; N� 2 B, we have

kG .�/ � G . N�/k1 � m0j� � N� j1;

krG .�/ � rG . N�/kL1.O;RD/ � m1j� �
N� j1;

kr
2G .�/ � r2G . N�/kL1.O;RD�D/ � m2j� �

N� j1:
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We now turn to the central condition underlying the results in this section in terms of a
local curvature bound on E�0 Œ�r

2`.�;Z/�, with `.�/ W RD ! R from (38). To motivate
it, notice that

�r
2`.�;Z/ D ŒrG .�/.X/�ŒrG .�/.X/�T C ŒG .�/.X/ � Y �r2ŒG .�/.X/�: (41)

If the design distribution PX is uniform on a bounded domain O (say, of unit volume)
then at � D �0, the EN

�0
-expectation of the last expression can be represented as

vTE�0 Œ�r
2`.�0; Z/�v D krG .�0/

T vk2
L2.O/

; v 2 RD : (42)

Therefore, if a suitable ‘L2.O/-stability estimate’ for the linearisation rG of G at �0 is
available, the key condition (43) below holds at �0; by regularity of G this should extend
to � sufficiently close to �0. In the example with the Schrödinger equation studied in Sec-
tion 2, such a stability estimate indeed follows from elliptic PDE theory (see Lemma 4.7),
and the recent reference [16] verifies this condition for the non-Abelian X -ray transform
considered in [74].

Note that the HessianE�0 Œ�r
2`.�;Z/� is symmetric (by (41) and Assumption 3.2 (i)),

and recall that �min.A/ denotes the smallest eigenvalue of a symmetric matrix A.

Assumption 3.3 (Local curvature). Let B be given in (39) and let ` W RD ! R be as
in (38).

(i) For some cmin > 0, we have

inf
�2B

�min.E�0 Œ�r
2`.�;Z/�/ � cmin: (43)

(ii) For some cmax � cmin > 0, we have

sup
�2B

�
jE�0 Œ`.�;Z/�j C kE�0 Œr`.�;Z/�kRD C kE�0 Œr

2`.�;Z/�kop
�
� cmax: (44)

The following lemma, which is based on concentration of measure arguments, shows
that the local ‘average’ curvature bound in (43) carries over to the ‘observed’ log-like-
lihood function, with high frequentist PN

�0
-probability, and whenever D � RN , where

the dimension constraint is explicitly quantified in terms of the constants featuring in the
previous hypotheses. The expression for RN substantially simplifies in concrete settings,
but, in this general form, reflects the various non-asymptotic stochastic regimes of the
log-likelihood function and its derivatives.

Lemma 3.4. Suppose that the data arises from (37) with `N W RD ! R given by (38).
Suppose Assumptions 3.2 and 3.3 are satisfied. There exists a universal constant C > 0

such that if

RN WD CN min
²
c2min

C 2
G
�2
;
cmin

CG�
;
c2min

C 02
G

;
cmin

k2
;
c2max

C 002
G
�2
;
cmax

C 00
G
�
;
c2max

C 0002
G

;
cmax

k0 C k1

³
; (45)
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where

CG WD k0m2 C k1m1 C k2m0 Cm2; C 0G WD k
2
1 C k0k2 C k2;

C 00G WD k0m1 C k1m0 Cm1 C k0m0 Cm0; C 000G D k0k1 C k1 C k
2
0 C k0;

(46)

then for any D;N � 1 satisfying D � RN , we have

PN�0

�
inf
�2B

�minŒ�r
2`N .�;Z

.N//� < 1
2
Ncmin

�
� 8e�RN ; (47)

as well as

PN�0

�
sup
�2B

Œj`N .�;Z
.N//jCkr`N .�;Z

.N//kRDCkr
2`N .�;Z

.N//kop� > N.5cmaxC1/
�

� 24e�RN C e�N=8: (48)

Inspection of the proof (given in Section 3.4) shows that for the first inequality (47),
the terms involving cmax can be removed from the definition of RN . In what follows, we
will restrict considerations to the event

Econv WD

°
inf
�2B

�minŒ�r
2`N .�/� � Ncmin=2

±
\

°
sup
�2B

Œj`N .�/jCkr`N .�/kRD Ckr
2`N .�/kop� � N.5cmaxC1/

±
; (49)

whose PN
�0

-probability is controlled by Lemma 3.4.

3.2. Construction of the likelihood surrogate function

For Bayesian computation via Langevin-type algorithms one needs to ensure recurrence
of the underlying diffusion process, a sufficient condition for which is global (strong)
log-concavity (on RD) of the target measure to be sampled from; see Appendix A. To this
end we now construct a ‘surrogate log-likelihood function’ Q̀N W RD ! R for the log-
likelihood `N such that Q̀N D `N identically on the subset ¹� 2 RD W j� � ��j1 � 3�=8º
of B from (39), and which will be shown to be globally log-concave on the event E

from (60) below.
In order to perform the convexification of �`N , one needs to identify the region B.

In what follows, we denote by �init D �init.Z
.N// 2 RD a (data-driven) point estimator

where the sampling algorithm is initialised; and we define the event Einit (a measurable
subset of .R �O/N ) by

Einit WD ¹j�init � �
�
j1 � �=8º; (50)

where �init belongs to the region B. That such initialisation is possible (i.e., Einit has
sufficiently high PN

�0
-probability for appropriate � > 0) is proved for the Schrödinger

model in Theorem B.6.
We require two auxiliary functions, g� (globally convex) and ˛� (a cut-off function):

For some smooth and symmetric (about 0) function ' W R! Œ0;1/ satisfying supp.'/ �
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Œ�1; 1� and
R

R '.x/dx D 1, let us define the mollifiers 'h.x/ WD h�1'.x=h/;h > 0. Then
we define the functions Q�; � W R! R by

Q�.t/ WD

´
0 if t < 5�=8;

.t � 5�=8/2 if t � 5�=8;
�.t/ WD Œ'�=8 � Q��.t/; (51)

where � denotes convolution, and

g� W R
D
! Œ0;1/; g�.�/ WD �.j� � �initj1/: (52)

Finally, for some smooth ˛ W Œ0;1/! Œ0; 1� which satisfies ˛.t/ D 1 for t 2 Œ0; 3=4� and
˛.t/ D 0 for t 2 Œ7=8;1/, we define the ‘cut-off’ function

˛� W R
D
! Œ0; 1�; ˛�.�/ D ˛.j� � �initj1=�/: (53)

Definition 3.5. For the auxiliary functions g�; ˛� from (52), (53) and K > 0, we define
the surrogate likelihood function Q̀N by

Q̀
N W R

D
! R; Q̀N .�/ WD ˛�.�/`N .�/ �Kg�.�/: (54)

When the choice of the constantK > 0 is large enough relative to cmax from Assump-
tion 3.2, the following global convexity property can be proved for Q̀N (see Appendix B
for a proof).

Proposition 3.6. On the event Econv \ Einit (cf. (49), (50)), when Q̀N from (54) is defined
with any constant K satisfying

K � CN.cmax C 1/ �
1C �max.M/=�2

�min.M/
(55)

.C > 1 depending only on the function ˛ above/, we have

`N .�/ D Q̀N .�/ for all � 2 RD with j� � ��j1 � 3�=8:

Moreover, Q̀N 2 C 2.RD/ and

inf
�2RD

�min.�r
2 Q̀
N .�// � Ncmin=2; (56)

as well as

kr Q̀N .�/ � r Q̀N . N�/kRD � 7K�max.M/k� � N�kRD ; �; N� 2 RD : (57)

3.3. Non-asymptotic bounds for Bayesian posterior computation

We now consider the problem of generating random samples from the posterior measure

….B jZ.N// D

R
B
e`N .�;Z

.N// d….�/R
RD e

`N .�;Z.N// d….�/
; B � RD measurable;
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arising from data (37) with log-likelihood (38) and GaussianN.0;†/ prior… of density �
on RD , with positive definite covariance matrix † 2 RD�D .

We use the stochastic gradient method obtained from an Euler discretisation of the
D-dimensional Langevin diffusion (see Appendix A) with drift vector fieldr. Q̀NClog�/
based on the surrogate likelihood function. More precisely, for stepsize  >0 and auxiliary
variables �k

i:i:d:
� N.0; ID�D/, define a Markov chain as

#0 D �init;

#kC1 D #k C Œr Q̀N .#k/ �†
�1#k �C

p
2 �kC1; k D 0; 1; : : : :

(58)

Probabilities and expectations with respect to the law of this Markov chain (random only
through the �k , conditional on the data Z.N/) will be denoted by P�init ;E�init respectively.
The invariant measure of the underlying continuous time Langevin diffusion equals the
surrogate posterior distribution given by

Q….B jZ.N// WD

R
B
e
Q̀
N .�;Z

.N// d….�/R
RD e

Q̀
N .�;Z.N// d….�/

; B � RD measurable:

In the following results we assume that the Wasserstein distance W2 between
Q….� jZ.N// and ….� jZ.N// can be controlled; specifically, for any � > 0, let us define

the event
Ewass.�/ WD ¹W

2
2 .….� jZ

.N//; Q….� jZ.N/// � �=2º: (59)

For the Schrödinger model this is achieved in Theorem 4.14, for � decaying exponentially
in N , using that most of the posterior mass (and its mode) concentrates on the set B

from (39), and the ideas underlying this proof extend to general settings; see Remark 3.10.
Our first result consists of a global Wasserstein approximation of ….� jZ.N// by the

law L.#k/ on RD of the k-th iterate #k arising from (58).

Theorem 3.7 (Non-asymptotic Wasserstein mixing). Suppose that the model given by
(37)–(38) fulfills Assumptions 3.2 and 3.3 for some 0 < � � 1, letD;N 2 N be such that
D � RN with RN from (45), and let K be as in (55). Further define the constants

m WD Ncmin=2C �min.†
�1/; ƒ WD 7K�max.M/C �max.†

�1/:

Then for any 0 <  � 1=ƒ and any � > 0 the algorithm .#k W k � 0/ from (58) satisfies,
on the event .i.e., measurable subset of .R �O/N /

E WD Econv \ Einit \ Ewass.�/; (60)

.with Econv;Einit;Ewass.�/ defined in (49), (50), (59), respectively/, and all k � 0,

W 2
2 .L.#k/;….�jZ

.N/// � �C b./C 4.�.†;M;R/CD=m/.1 � m=2/k ; (61)

where, for some universal constants c1; c2 > 0, any R � k��kRD and �.†/ D

�max.†/=�min.†/,

b./D c1

�
Dƒ2

m2
C
2Dƒ4

m3

�
; �.†;M;R/D c2�.†/

�
1C

�2

�min.M/
CR2

�
: (62)
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From the previous theorem we can obtain the following bound on the computation of
posterior functionals by ergodic averages of #k collected after some burn-in time Jin 2N.
Specifically, if we define, for anyH W RD! R integrable with respect to….� jZ.N//, the
random variable

O�JJin
.H/ D

1

J

JinCJX
kDJinC1

H.#k/; (63)

we obtain the following non-asymptotic concentration bound.

Theorem 3.8 (Lipschitz functionals). In the setting of the previous theorem, there exist
further constants c3; c4 > 0 such that for any � > 0, any burn-in period

Jin �
c3

m
� log

�
1C

1

�C b./
C �.†;M;R/C

D

m

�
; (64)

any J 2 N, any Lipschitz function H W RD ! R, any

t �
p
8 kHkLip

p
�C b./ (65)

and on the event E from (60), we have

P�init

�
j O�JJin

.H/ �E…ŒH jZ.N/�j � t
�
� 2 exp

�
�c4

t2m2J

kHk2Lip.1C 1=.mJ//

�
: (66)

From the last theorem one can obtain as a direct consequence the following guarantee
for computation of the posterior meanE…Œ� jZ.N/� by the ergodic average accrued along
the Markov chain.

Corollary 3.9. In the setting of Theorem 3.8, if we define

N�JJin
D
1

J

JinCJX
kDJinC1

#k ;

then on the event E and for t �
p
8
p
�C b./ we have, for some constant c5 > 0,

P�init

�
k N�JJin

�E…Œ� jZ.N/�kRD � t
�
� 2D exp

�
�c5

t2m2J

D.1C 1=.mJ/

�
: (67)

The previous two results imply that one can compute the posterior mean (or
E…ŒH jZ.N/� with kHkLip � 1) within precision " > 0 as long as � & p�: For instance
if  is chosen as

 ' min
°"2m2
Dƒ2

;
"m3=2

D1=2ƒ2

±
;

then the overall number of required MCMC iterations Jin C J depends polynomially on
the quantitiesN;D;m�1;ƒ;"�1. When the last three constants exhibit at most polynomial
growth in N;D (as is the case for the Schrödinger equation treated in Section 2), we can
deduce that polynomial-time computation of such posterior characteristics is feasible, on
the event E from (60) at computational cost Jin C J D O.N

b1Db2"�b3/; b1; b2; b3 > 0,
with P�init -probability as close to 1 as desired.
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Remark 3.10 (about the events Einit; Ewass). Controlling the probability of the events
Einit;Ewass (featuring in the definition of E in (60)) on which the preceding bounds hold
may pose a formidable challenge in its own right when considering a concrete ‘forward
map’ G . For our prototypical example of the Schrödinger equation from Section 2, this
is achieved in Sections B.3 and 4.2, respectively. The proofs there give some guidance
for how to proceed in other settings, too. In essence one can expect that in bounding the
PN
�0

-probability of the events Einit; Ewass, global ‘stability’ and ‘range’ properties of the
map G will play a role. In contrast, Assumptions 3.2, 3.3 employed in this section are
‘local’ in the sense that they concern properties of G on B from (39) only. Discerning
local from global requirements on G in this way appears helpful both in the proofs and in
the exposition of the main ideas of this paper. Following the ideas in Section 4.2 below,
the recent contribution [16] provides a set of conditions on G under which a log-concave
approximation of the posterior measure similar to Theorem 4.14 holds true.

Remark 3.11 (Extensions to vector-valued data). The key results of this section apply
to other settings (e.g. in [74, 85]) where the ‘forward’ map G .�/ defines an element of
the space of continuous maps C.M ! V / from a d -dimensional compact manifold M

(possibly with boundary) into a finite-dimensional inner product space V of fixed finite
dimension dim.V / < 1. If we assume that the statistical errors ."i W i D 1; : : : ; N / in
equation (37) are i.i.d. N.0; IdV / in V , then the log-likelihood function of the model is
not given by (38) but instead of the form

`N .�/ D �
1

2

NX
iD1

kYi � G .�/.Xi /k
2
V ; `.�/ D �

1

2
kY � G .�/.X/k2V ;

where the Xi ; X are drawn i.i.d. from a Borel measure PX on M. Imposing Assumption
3.2 with the obvious modification of the norms there for V -valued maps, and if Assump-
tion 3.3 holds for the preceding definition of `.�/, then the conclusion of Lemma 3.4
remains valid as stated (see also [16, proof of Lemma 5.6]).

3.4. Proof of Lemma 3.4

It suffices to prove the assertion for RN � 1. We first need some more notation: For any
x 2 O, we denote the point evaluation map by

G x W ‚! R; � 7! G .�/.x/:

ForZ D .Y;X/� P�0 , we will frequently use the following identities in the proofs below
(where we recall that r and r2 act on the � -variable):

�`.�;Z/ D 1
2
ŒY � GX .�/�2 D 1

2
ŒGX .�0/C " � GX .�/�2;

�r`.�;Z/ D ŒGX .�/ � GX .�0/ � "�rGX .�/;

�r
2`.�;Z/ D rGX .�/rGX .�/T C ŒGX .�/ � GX .�0/ � "�r

2GX .�/;

�E�0 Œ`.�;Z/� D
1
2
C

1
2
EX Œ.GX .�0/ � GX .�//2�;

(68)
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where we note that by Assumption 3.2, the Hessian r2`.�; Z/ is a symmetric D � D
matrix field. When no confusion can arise, we will suppress the second argument Z and
write `.�/ for `.�;Z/.

Throughout, PN WD N�1
PN
iD1 ıZi denotes the empirical measure induced by Z.N/,

which acts on measurable functions h W R �O ! R via

PN .h/ D

Z
R�O

h dPN D
1

N

NX
iD1

h.Zi /:

3.4.1. Proof of (47). Let us write ǸN WD `N =N . Then, by a standard inequality due to
Weyl as well as Assumption 3.3, we see that for any � 2 B,

�minŒ�r
2 Ǹ
N .�/� � �min.E�0 Œ�r

2`.�/�/ � kr2 ǸN .�/ �E�0 Œr
2`.�/�kop

� cmin � kr
2 Ǹ
N .�/ �E�0 Œr

2`.�/�kop: (69)

Hence we deduce

PN�0

�
inf
�2B

�minŒr
2`N .�;Z/� < Ncmin=2

�
� PN�0

�
kr

2 Ǹ
N .�/ �E�0 Œr

2`.�/�kop � cmin=2 for some � 2 B
�

� PN�0

�
sup
�2B

sup
vW kvkRD�1

ˇ̌
vT
�
r
2 Ǹ
N .�/ �E�0 Œr

2`.�/�
�
v
ˇ̌
� cmin=2

�
D PN�0

�
sup
�2B

sup
vW kvkRD�1

jPN .gv;� /j � cmin=2
�
; (70)

where
gv;� .�/ WD v

T
�
r
2`.�; �/ �E�0 Œr

2`.�/�
�
v; v 2 RD :

The next step is to reduce the supremum over ¹v W kvkRD � 1º to a suitable finite max-
imum over grid points vi by a contraction argument (commonly used in high-dimensional
probability). For � > 0, let N.�/ denote the minimal number of balls of k � kRD -radius �
required to cover ¹v W kvkRD � 1º, and let vi with kvikRD � 1 be the centre points of a
minimal covering. Thus for any such v 2 RD there exists an index i such that

kv � vikRD � �:

Hence, with shorthand

M� D r
2 Ǹ
N .�/ �E�0 Œr

2`.�/�; � 2 B;

by the Cauchy–Schwarz inequality and the symmetry of the matrix M� we have

vTM�v D v
T
i M�vi C .v � vi /

TM�v C v
T
i M� .v � vi /

� vTi M�vi C kv � vikRDkM�vkRD C kv � vikRDkM�vikRD

� vTi M�vi C 2� sup
vW kvkRD�1

vTM�v:
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Choosing � D 1
4

and taking suprema it follows that for any � 2 B,

sup
vW kvkRD�1

vTM�v � 2 max
iD1;:::;N.1=4/

vTi M�vi : (71)

Since the covering .vi / is independent of � , we can further estimate the right hand side of
(70) by a union bound to the effect that

PN�0

�
sup
�2B

sup
vW kvkRD�1

jvTM�vj � cmin=2
�

� N.1=4/ � sup
vW kvkRD�1

PN�0

�
sup
�2B

jvTM�vj � cmin=4
�

� N.1=4/

� sup
vW kvkRD�1

h
PN�0

�
sup
�2B

jPN .gv;� �gv;��/j � cmin=8
�
CPN�0 .jPN .gv;�

�/j � cmin=8/
i
;

(72)

where we recall that �� is the centre point of the set B from (39). For the rest of the proof,
we fix any v 2 RD with kvkRD � 1. Next, we use (68) to decompose the ‘uncentred’ part
of gv;� as

� vTr2`.�;Z/v

D vT
�
rGX .�/rGX .�/T C ŒGX .�/ � GX .�0/�r

2GX .�/
�
v � "vTr2GX .�/v

DW QgIv;� .X/C "g
II
v;� .X/;

such that
gv;� .z/ D g

I
v;� .x/C "g

II
v;� .x/;

where we have defined the centred version of QgI
v;�

as

gIv;� .x/ D Qg
I
v;� .x/ �E�0 Œ Qg

I
v;� .X/�; x 2 O:

We can therefore bound the right hand side of (72) by

N

�
1

4

�
� sup
vW kvkRD�1

�
PN�0

�
sup
�2B

ˇ̌̌̌
1

N

NX
iD1

.gIv;� � g
I
v;��/.Xi /

ˇ̌̌̌
�
cmin

16

�
C PN�0

�ˇ̌̌̌
1

N

NX
iD1

gIv;��.Xi /

ˇ̌̌̌
�
cmin

16

�
CPN�0

�
sup
�2B

ˇ̌̌̌
1

N

NX
iD1

"i .g
II
v;��g

II
v;��/.Xi /

ˇ̌̌̌
�
cmin

16

�
CPN�0

�ˇ̌̌̌
1

N

NX
iD1

"ig
II
v;��.Xi /

ˇ̌̌̌
�
cmin

16

��
DW N

�
1
4

�
� .i C i i C i i i C iv/:

We now use empirical process techniques (Lemma 3.12 and also Hoeffding’s inequality)
to bound the preceding probabilities.
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Terms i and i i . In order to apply Lemma 3.12 to term i , we require some preparations.
By the definition of QgI

v;�
and of the operator norm k � kop, using the elementary identity

vT .aaT � bbT /v D vT .aC b/.a � b/T v for any v; a; b 2 RD and Assumption 3.2, we
find that for any �; N� 2 B,

k QgIv;� � Qg
I

v; N�
k1 �

�rG .�/rG .�/T C ŒG .�/ � G .�0/�r
2G .�/

�
�
�
rG . N�/rG . N�/T C ŒG . N�/ � G .�0/�r

2G . N�/
�
L1.O;RD�D/

� kŒrG .�/ � rG . N�/�ŒrG .�/CrG . N�/�T kL1.O;RD�D/

C kŒG .�/ � G . N�/�r2G .�/kL1.O;RD�D/

C kŒG . N�/ � G .�0/�Œr
2G .�/ � r2G . N�/�kL1.O;RD�D/

� 2m1k1j� � N� j1 Cm0k2j� � N� j1 Cm2k0j� � N� j1

� 2CG j� � N� j1: (73)

In particular, by (39) we obtain the uniform bound

sup
�2B

kgIv;� � g
I
v;��k1 � 2 sup

�2B

k QgIv;� .X/ � Qg
I
v;��k1 � 4CG j� � �

�
j1 � 4CG�: (74)

We introduce the rescaled function class

hI� WD
gI
v;�
� gI

v;��

16CG�
; H I

D ¹hI� W � 2 Bº;

which has envelope and variance proxy bounded as

sup
�2B

khI�k1 � 1=4 � U; sup
�2B

.E�0 Œh
I
� .X/

2�/1=2 � 1=4 � �: (75)

Next, if

d22 .�;
N�/ D E�0 Œ.h

I
� .X/ � h

I
N�
.X//2�; d1.�; N�/ D kh

I
� � h

I
N�
k1; �; N� 2 B;

then using (73) we have

d2.�; N�/ � d1.�; N�/ � j� � N� j1=�; �; N� 2 B:

Thus for any � 2 .0; 1/, using [44, Proposition 4.3.34], we obtain

N.H I ; d2; �/ � N.H
I ; d1; �/ � N.B; j � j1=�; �/ � .3=�/

D : (76)

For any A � 2 we haveZ 1

0

log.A=x/ dx D logAC 1;Z 1

0

p
log.A=x/ dx �

2 logA
2 logA � 1

p
logA
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(see [44, p. 190] for the latter inequality), and hence, using this for AD 3, we can respect-
ively bound the L1 and L2 metric entropy integrals of H I by

J1.H
I / D

Z 4U

0

logN.H I ; d1; �/ d� . D;

J2.H
I / D

Z 4�

0

q
logN.H I ; d2; �/ d� .

p
D:

Now, an application of Lemma 3.12 below implies that for any x � 1 and some universal
constant L0 > 0, we have

PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hI� .Xi /

ˇ̌̌̌
� L0Œ

p
D C

p
x C .D C x/=

p
N�
�
� 2e�x : (77)

By the definition of gI
v;��

we also have

kgIv;��k1 � 2k Qg
I
v;��k1 � 2.k

2
1 C k0k2/;

and hence by Hoeffding’s inequality [44, Theorem 3.1.2],

i i � 2 exp
�
�

2Nc2min

256 � 4.k21 C k0k2/
2

�
� 2 exp

�
�
Nc2min

512C 02
G

�
: (78)

Now if we define

R
2;I
N WD CN min

²
c2min

C 2
G
�2
;
cmin

CG�
;
c2min

C 02
G

³
; (79)

then for any D � R
2;I
N and choosing x D 4R2;I

N we have

L0Œ
p
D C

p
x C .D C x/=

p
N� �

cmin
p
N

256CG�
; 4R

2;I
N �

Nc2min

512C 02
G

;

whenever C > 0 is small enough. Therefore, combining (77) and (78), and using the
definitions of the term i and of hI

�
, we obtain

i i C i � 2e�4R
2;I
N C PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hI� .Xi /
ˇ̌̌
�
cmin
p
N

256CG�

�
� 4e�4R

2;I
N : (80)

Terms i i i and iv. Let us now treat the empirical process indexed by the functions ¹gII
v;�
W

� 2 Bº. Since kvkRD � 1, for any �; N� 2 B we have

kgIIv;� � g
II

v; N�
k1 � kr

2G .�/ � r2G . N�/kL1.O;RD�D/ � m2j� �
N� j1;

which also yields the envelope bound

sup
�2B

kgIIv;� � g
II
v;��k1 � m2 sup

�2B

j� � ��j1 � m2�:



R. Nickl, S. Wang 1060

Now the rescaled function class

hII� WD
gII
v;�
� gII

v;��

4m2�
; H II

D ¹hII� W � 2 Bº;

admits envelopes

sup
�2B

khIIv;�k1 � 1=4 � U; sup
�2B

.E�0 Œh
II
v;� .X/

2�/1=2 � 1=4 � �:

Thus defining

d22 .�;
N�/ WD E�0 Œ.h

II
v;� .X/ � h

II

v; N�
.X//2�; d1.�; N�/ D kh

II
v;� � h

II

v; N�
k1; �; N� 2 B;

we have
d2.�; N�/ � d1.�; N�/ � j� � N� j1=�; �; N� 2 B:

Therefore, just as with the bounds obtained for term i , we have N.H II ; d2; �/ �

N.H II ; d1; �/ � .3=�/
D and thus, by Lemma 3.12 below,

PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

"ih
II
� .Xi /

ˇ̌̌
� L0Œ

p
D C

p
x C .D C x/=

p
N�

�
� 2e�x ; x � 1:

(81)

Moreover, by the hypotheses, kgII
v;��
k1 � k2, and hence, invoking the Bernstein inequal-

ity (96) with U D � � k2, we deduce

PN�0

�ˇ̌̌̌
1
p
N

NX
iD1

"ig
II
v;��.Xi /

ˇ̌̌̌
� k2
p
2x C

k2x

3
p
N

�
� 2e�x ; x > 0: (82)

We can now set

R
2;II
N WD CN min

²
c2min

m22�
2
;
cmin

m2�
;
c2min

k22
;
cmin

k2

³
;

and choosing x D 4R
2;II
N in the preceding displays, we deduce that for C > 0 small

enough and any D � R
2;II
N ,

i i i C iv � PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

"ih
II
� .Xi /

ˇ̌̌
�
cmin
p
N

64m2�

�
C PN�0

�ˇ̌̌̌
1
p
N

NX
iD1

"ig
II
v;��.Xi /

ˇ̌̌̌
�
cmin
p
N

16

�
� 4e�4R

2;II
N : (83)

Combining the terms. By combining the bounds (70), (72), (80), (83) and using
N.1=4/ � 9D � e3D (cf. [44, Proposition 4.3.34]) we find that since D � RN �

min ¹R2;I
N ;R

2;II
N º from (45),

PN�0

�
inf
�2B

�min.�r
2`N .�;Z// < Ncmin=2

�
� N.1=4/ � .i C i i C i i i C iv/

� 4e3D�4R
2;I
N C 4e3D�4R

2;II
N � 8e�RN ;

completing the proof of (47).
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3.4.2. Proof of (48). We derive probability bounds for each of the three terms in (48)
separately. The general scheme of proof for each of the three bounds is similar to the
proof of (47), and we condense some of the steps to follow.

Second order term. Using cmax � cmin, we can replace (70) by

PN�0

�
sup
�2B

�maxŒ�r
2`N .�;Z/��3Ncmax=2

�
�PN�0

�
sup
�2B

sup
vW kvkRD�1

jPN .gv;� /j�cmin=2
�
:

From here onwards, this term can be treated exactly as in the proof of (47) and thus, for
D � Rn from (45), we deduce

PN�0

�
sup
�2B

�maxŒ�r
2`N .�;Z/� � 3Ncmax=2

�
� 8e�RN : (84)

First order term. First, let us denote

fv;� .z/ WD v
T
�
r`.�; z/ �E�0 Œr`.�;Z/�

�
; kvkRD � 1; � 2 B;

and let .vi W i D 1; : : : ; N.1=2// be the centre points of a k � kRD -covering of the unit
ball ¹� W k�kRD � 1º with balls of radius 1=2. Then for any v there exists vi such that
kv � vikRD � 1=2, so that by the Cauchy–Schwarz inequality,

jPN .fv;� /j � jPN .fv;� � fvi ;� /j C jPN .fvi ;� /j

� kv � vikRDkr
Ǹ
N .�/ �E�0 Œr`.�/�kRD C jPN .fvi ;� /j

�
1
2
kr ǸN .�/ �E�0 Œr`.�/�kRD C jPN .fvi ;� /j:

Therefore, since kukRD D supvW kvkRD�1 jv
T uj for any u2RD , we deduce for any � 2B,

sup
vW kvkRD�1

jPN .fv;� /j � 2 max
1�i�N.1=2/

jPN .fvi ;� /j: (85)

We can hence estimate

PN�0

�
sup
�2B

kr ǸN .�/kRD � 3cmax=2
�

� PN�0

�
sup
�2B

sup
vW kvkRD�1

ˇ̌
vT
�
r ǸN .�/ �E�0 Œr`.�/�

�ˇ̌
� cmax=2

�
� N.1=2/ � sup

vW kvkRD�1

PN�0

�
sup
�2B

jPN .fv;� /j � cmax=4
�
: (86)

We fix v 2RD with kvkRD � 1. Using (68), by decomposing the ‘uncentred’ part of fv;�
into

vTr`.�;Z/ D vTrGX .�/ŒGX .�/ � GX .�0/� � "v
T
rGX .�/ DW Qf Iv;� .X/ � "f

II
v;� .X/;

we can then write
fv;� .z/ D f

I
v;� .x/C "f

II
v;� .x/;
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where we have further defined f I
v;�
.x/ WD Qf I

v;�
.x/ � E�0 Œ

Qf I
v;�
.X/� (and still write

PN .f
I
v;�
/ D N�1

PN
iD1 f

I
v;�
.Xi / to simplify notation). We then estimate the probabil-

ity on the right hand side of (86) as follows:

PN�0

�
sup
�2B

jPN .fv;� /j � cmax=4
�

� PN�0

�
sup
�2B

jPN .f
I
v;� � f

I
v;��/j � cmax=16

�
C PN�0

�
jPN .f

I
v;��/j � cmax=16

�
C PN�0

�
sup
�2B

jPN .f
II
v;� � f

II
v;��/j � cmax=16

�
C PN�0

�
jPN .f

II
v;��/j � cmax=16

�
DW i C i i C i i i C iv: (87)

We first treat the terms i and i i . By the definition of Qf I
v;�

and Assumption 3.2, for any
�; N� 2 B we have

k Qf Iv;� �
Qf I
v; N�
k1 � kŒrG .�/�rG . N�/�ŒG .�/�G .�0/�CrG . N�/ŒG .�/�G . N�/�kL1.O;RD/

� .k0m1Ck1m0/j�� N� j1:

Again using Assumption 3.2, we also have

sup
�2B

k Qf Iv;� �
Qf Iv;��k1 � .k0m1 C k1m0/�:

Moreover, using kf I
v;��
k1 � 2k0k1, Hoeffding’s inequality yields

i i � 2 exp
�
�
Nc2max

512k20k
2
1

�
:

Therefore, by using Lemma 3.12 in the same manner as in (77), we find that the rescaled
process

hIv;� WD
Qf I
v;�
� Qf I

v;��

8.k0m1 C k1m0/�

satisfies

PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hIv;� .Xi /
ˇ̌̌
�L0Œ

p
DC
p
xC.DCx/=

p
N�

�
�2e�x ; x�1: (88)

Thus, setting

R
1;I
N WD CN min

²
c2max

.k0m1 C k1m0/2�2
;

cmax

.k0m1 C k1m0/�
;
c2max

k20k
2
1

³
;

and choosing x D 3R1;I
N in (88), we find that for C > 0 small enough and anyD �R

1;I
N ,

i i C i � 2e�3R
1;I
N C PN�0

�ˇ̌̌̌
1
p
N

NX
iD1

hIv;� .Xi /

ˇ̌̌̌
�

cmax
p
N

128.k0m1 C k1m0/�

�
� 4e�3R

1;I
N :

(89)
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We now treat the terms i i i and iv. As kvkRD � 1, for any �; N� 2 B we have

kf IIv;� � f
II

v; N�
k1 � m1j� � N� j1; kf

II
v;� � f

II
v;��k1 � m1�; kf

II
v;��k1 � k1:

Therefore, by utilising Lemma 3.12 below as well as Bernstein’s inequality (96) in pre-
cisely the same manner as in the derivations of (81) and (82) respectively, we obtain the
two inequalities

PN�0

�
sup
�2B

1
p
N

ˇ̌̌̌ NX
iD1

"i
f II
v;�
.Xi / � f

II
v;��

.Xi /

4m1�

ˇ̌̌̌
� L0Œ

p
D C

p
x C .D C x/=

p
N�

�
� 2e�x ; x � 1;

and

PN�0

�ˇ̌̌̌
1
p
N

NX
iD1

"if
II
v;��.Xi /

ˇ̌̌̌
� k1
p
2x C

k1x

3
p
N

�
� 2e�x ; x > 0:

Thus, if we set

R
1;II
N WD CN min

²
c2max

m21�
2
;
cmax

m1�
;
c2max

k21
;
cmax

k1

³
;

then for C > 0 small enough, for any D � 3R1;II
N and choosing x D 3R

1;II
N in the

preceding displays, we obtain

i i i C iv � 4e�3R
1;II
N : (90)

By combining (86), (87), (89), (90), usingN.1=2/� e2D (cf. [44, Proposition 4.3.34])
and since D � RN � min ¹R1;I

N ;R
1;II
N º, we conclude that

PN�0

�
sup
�2B

kr ǸN .�/kRD � 3cmax=2
�
� N.1=2/ � .i C i i C i i i C iv/

� 4e2D�3R
1;I
N C 4e2D�3R

1;II
N � 8e�RN : (91)

Order zero term. As with the previous terms, we introduce a decomposition

�`.�;Z/ D 1
2
ŒGX .�0/ � GX .�/�2 � "ŒGX .�0/ � GX .�/�C "2=2

DW QlI� .X/C "l
II
� .X/C "2=2;

and therefore, defining

lI� .x/ DW
QlI� .x/ �E�0 Œ

QlI� .X/�; x 2 O;

we have
�`.�;Z/CE�0 Œ`.�/� D l

I
� .X/C "l

II
� .X/C "2=2:

Then, using Assumption 3.3, we can estimate
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PN�0

�
sup
�2B

j ǸN .�;Z/j � 2cmax C 1
�

� PN�0

�
sup
�2B

j ǸN .�;Z/ �E�0 Œ`.�;Z/�j � cmax C 1
�

� PN�0

�
sup
�2B

jPN .l
I
� � l

I
��/j � cmax=4

�
C PN�0

�
sup
�2B

jPN .l
I
��/j � cmax=4

�
C PN�0

�
sup
�2B

jPN .l
II
� � l

II
�� /j � cmax=4

�
C PN�0

�
sup
�2B

jPN .l
II
�� /j � cmax=4

�
C PN�0

�
1

2N

NX
iD1

"2i � 1

�
DW i C i i C i i i C iv C v:

To bound the preceding terms, we use Assumption 3.2 to deduce that for all �; N� 2 B,

klI� � l
I
N�
k1 � 2kQl

I
� �
QlIN�
k1 D k�2G .�0/ŒG .�/ � G . N�/�C G .�/2 � G . N�/2k1

D kŒ.G .�/ � G .�0//C .G . N�/ � G .�0//�ŒG .�/ � G . N�/�k1

� 2k0m0j� � N� j1;

as well as
sup
�2B

klI� � l
I
��k1 � 2k0m0�; kl

I
��k1 � k

2
0 :

Moreover, again by Assumption 3.2 we have, for all �; N� 2 B,

klII� � l
II
N�
k1 � 2m0j� � N� j1; sup

�2B

klII� � l
II
�� k1 � 2m0�; kl

II
�� k1 � 2k0:

Next, similarly to the second and first order terms, in order to control terms i and i i i we
now apply Lemma 3.12 to the rescaled empirical processes

hI� WD
lI
�
� lI

��

8k0m0�
; hII� WD

lII
�
� lII

��

8m0�
;

and in order to control terms i i and iv, we respectively apply Hoeffding’s inequality and
Bernstein’s inequality (96) in the same manner as before. Overall, if we set

R
0;I
N WD CN min

²
c2max

k20m
2
0�
2
;
cmax

k0m0�
;
c2max

k40

³
;

R
0;II
N WD CN min

²
c2max

m20�
2
;
cmax

m0�
;
c2max

k20
;
cmax

k0

³
;

(92)

then for C > 0 small enough we obtain, for any D � RN � min.R0;I
N ;R

0;II
N /,

i C i i C i i i C iv � PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hI� .Xi /
ˇ̌̌
�
cmax
p
N

32k0m0�

�
C 2 exp

�
�
Nc2max

8k40

�
C PN�0

�
sup
�2B

1
p
N

ˇ̌̌ NX
iD1

hII� .Xi /
ˇ̌̌
�
cmax
p
N

32m0�

�
C 2e�R

0;II
N

� 4e�R
0;I
N C 4e�R

0;II
N � 8e�RN :
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Finally, we estimate the term v by a standard tail inequality (see [44, Theorem 3.1.9]),

v D PN�0

� NX
iD1

."2i � 1/ � N
�
� e�N=8;

and thus obtain

PN�0

�
sup
�2B

j ǸN .�;Z/j � 2cmax C 1
�
� i C i i C i i i C ivC v � 8e�RN C e�N=8: (93)

Conclusion. By combining (84), (91) and (93), the proof of (48) is completed.

3.5. A chaining lemma for empirical processes

The following key technical lemma is based on a chaining argument for stochastic pro-
cesses with a mixed tail (cf. [94, Theorem 2.2.28] and [35, Theorem 3.5]). For us it will
be sufficient to control the ‘generic chaining’ functionals employed in these references by
suitable metric entropy integrals. For any (semi)metric d on a metric space T , we denote
by N D N.T; d; �/ the minimal cardinality of a covering of T by balls with centres
.ti W i D 1; : : : ;N / � T such that for all t 2 T there exists i such that d.t; ti / < �. Below
we require the index set ‚ to be countable (to avoid measurability issues). Whenever
we apply Lemma 3.12 in this article with an uncountable set ‚, one can show that the
supremum can be realised as one over a countable subset of it.

Lemma 3.12. Let‚ be a countable set. Suppose a class of real-valued measurable func-
tions

H D ¹h� W X ! R; � 2 ‚º

defined on a probability space .X;A; PX / is uniformly bounded by U � sup� kh�k1
and has variance envelope �2 � sup� E

X Œh2
�
.X/� where X � PX . Define metric entropy

integrals

J2.H / D

Z 4�

0

p
logN.H ; d2; �/ d�; d2.�; �

0/ WD

q
EX Œ.h� .X/ � h� 0.X//2�;

J1.H / D

Z 4U

0

logN.H ; d1; �/ d�; d1.�; �
0/ WD kh� � h� 0k1:

For X1; : : : ; XN drawn i.i.d. from PX and "i
i:i:d:
� N.0; 1/ independent of all the Xi ’s,

consider empirical processes arising either as

ZN .�/ D
1
p
N

NX
iD1

h� .Xi /"i ; � 2 ‚;

or as

ZN .�/ D
1
p
N

NX
iD1

.h� .Xi / �EŒh� .X/�/; � 2 ‚:
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Then, for some universal constant L > 0 and all x � 1,

Pr
�

sup
�2‚

jZN .�/j � LŒJ2.H /C �
p
x C .J1.H /C Ux/=

p
N �
�
� 2e�x :

Proof. We only prove the case where ZN .�/ D
P
i h� .Xi /"i=

p
N , the simpler case

without Gaussian multipliers is proved in the same way. We will apply Theorem 3.5
of [35], whose condition (3.8) we need to verify. First notice that for j�j<1=kh� � h� 0k1,
and E" denoting the expectation with respect to ",

EŒexp¹�".h� � h� 0/.X/º� � 1C
1X
kD2

j�jkE"Œj"jk �EX Œjh� � h� 0 j
k.X/�

kŠ

� 1C �2EX Œ.h� .X/ � h� 0.X//
2�

1X
kD2

E"Œj"jk �

kŠ
.j�j kh� � h� 0k1/

k�2

� exp
²

�2d22 .�; �
0/

1 � j�jd1.�; � 0/

³
(94)

where we have used the basic fact E"Œj"jk �=kŠ � 1. By the i.i.d. hypothesis we then also
have

EŒexp¹�.ZN .�/ �ZN .� 0//º� � exp
²

�2d22 .�; �
0/

1 � j�jd1.�; � 0/=
p
N

³
:

An application of the exponential Chebyshev inequality (and optimisation in �, as in
[44, proof of Proposition 3.1.8]) then implies that condition (3.8) in [35] holds for the
stochastic process ZN .�/ with metrics Nd2 D 2d2 and Nd1 D d1=

p
N : In particular, the

Nd2-diameter �2.H / of H is at most 4� and the Nd1-diameter �1.H / of H is bounded
by 4U=

p
N . [These bounds are chosen so that they remain valid for the process without

Gaussian multipliers as well.] Theorem 3.5 in [35] now implies, for some universal con-
stant M and any �� 2 ‚, that

Pr
�

sup
�2‚

jZN .�/ �ZN .��/j �M
�
2.H /C 1.H /C �

p
x C .U=

p
N/x

��
� e�x

where the ‘generic chaining’ functionals 1;2 are upper bounded by the respective metric
entropy integrals of the metric spaces .H ; Ndi /, i D 1; 2, up to universal constants (see
[35, (2.3)]). For 1 also notice that a simple substitution �0 D �

p
N implies thatZ 4U=

p
N

0

logN.H ; Nd1; �/ d� D
1
p
N

Z 4U

0

logN.H ; d1; �
0/ d�0;

and we hence deduce that

Pr
�

sup
�2‚

jZN .�/�ZN .��/j � NLŒJ2.H /C�
p
xC.J1.H /CUx/=

p
N �
�
� e�x (95)

for some universal constant NL.
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The preceding argument also implies the classical Bernstein inequality

Pr
�
jZN .�/j � �

p
2x C

Ux

3
p
N

�
� 2e�x ; x > 0; (96)

for any fixed � 2 ‚;U � kh�k1 and �2 � EX Œh2
�
.X/�, proved [44, (3.24)], using (94).

Applying this with �� and using (95), the final result follows now from

Pr
�

sup
�2‚

jZN .�/j > 2�.x/
�

� Pr
�

sup
�2‚

jZN .�/ �ZN .��/j > �.x/
�
C Pr

�
jZN .��/j > �.x/

�
� 2e�x ;

for any x � 1, where �.x/D NLŒJ2.H /C �
p
xC .J1.H /CUx/=

p
N � andL� 2 NL> 0

is large enough.

3.6. Proofs for Section 3.3

We apply the results from Appendix A to � D Q….� jZ.N//.

Proof of Theorem 3.7. For any �; N� 2 RD , for the log-prior density we have

kr log�.�/ � r log�. N�/kRD D k†
�1.� � N�/kRD � �max.†

�1/k� � N�kRD ;

�min.�r
2 log�.�// � �min.†

�1/;

and for the likelihood surrogate Q̀N , by Proposition 3.6 and on the event E from (60),

kr Q̀N .�/ � r Q̀N . N�/kRD � 7K�max.M/k� � N�kRD ;

�min.�r
2 Q̀
N .�// � Ncmin=2:

Combining the last two displays, and on the event E , we can verify Assumption A.1 below
for � log d Q….� jZ.N// with constants

m D Ncmin=2C �min.†
�1/; ƒ D 7K�max.M/C �max.†

�1/:

We may thus apply Proposition A.4 to obtain

W 2
2 .L.#k/;….� jZ

.N/// � 2W 2
2 .….� jZ

.N//; Q….� jZ.N///C 2W 2
2 .L.#k/;

Q….� jZ.N///

� �C b./C 4.1 �m=2/k Œk�init � �maxk
2
RD CD=m�;

where �max denotes the unique maximiser of log d Q….� jZ.N// over RD (which exists on
the event Econv, by virtue of strong concavity).

We conclude by an estimate for k�init � �maxkRD . To start, notice that for any � 2 RD

we have

j� � �initj
2
1 D .� � �init/

TM.� � �init/ � �min.M/k� � �initk
2
RD : (97)
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Thus, for any � 2 RD with k� � �initk
2
RD
� 4�2=�min.M/, we have j� � �initj1 � 2�, and

therefore also g�.�/ � .j� � �initj1 � �/
2 �

1
4
j� � �initj

2
1. Thus, for C from (55) and any

� 2 RD satisfying

k� � �initk
2
RD �

20

C
C

4�2

�min.M/
;

using (97), (55) as well as the upper bound for j`N .�/j in the definition of Econv, we obtain

� Q̀N .�/ D Kg�.�/ � CN.cmax C 1/
1C �max.M/=�2

�min.M/
�
j� � �initj

2
1

4

�
C

4
N.cmax C 1/k� � �initk

2
RD

� 5N.cmax C 1/ � � Q̀N .�init/:

This implies that necessarily the unique maximiser � Q̀ of the (on Econv) strongly concave
map Q̀N over RD satisfies k� Q̀� �initk

2
RD
� 20=C C 4�2=�min.M/:Moreover, in view of

the definition of B and the hypotheses on �� we have

k�initkRD � k�init � �
�
kRD C k�

�
kRD �

j�init � �
�j1p

�min.M/
CR �

�p
�min.M/

CR;

which also allows us to deduce

k� Q̀kRD � k� Q̀ � �initkRD C k�initkRD �
p
20=C C

3�p
�min.M/

CR:

We further have �Tmax†
�1�max � �T

Q̀
†�1� Q̀ (otherwise �max would not maximise

log d Q….� jZ.N//), and thus, for �.†/ the condition number of †,

k�maxk
2
RD �

1

�min.†�1/
�Tmax†

�1�max �
1

�min.†�1/
�T
Q̀
†�1� Q̀ � �.†/k� Q̀k

2
RD :

Combining the preceding displays, the proof is now completed as follows:

k�max � �initk
2
RD . k�maxk

2
RD C k�initk

2
RD

. �.†/k� Q̀k
2
RD C

�2

�min.M/
CR2

. �.†/

�
1C

�2

�min.M/
CR2

�
:

Proof of Theorem 3.8. For any t � 0 and any Lipschitz function H W RD ! R we have

P�init

�ˇ̌
O�JJin
.H/ �E…ŒH jZ.N/�

ˇ̌
� t

�
� P�init

�ˇ̌
O�JJin
.H/ � E�init Œ O�

J
Jin
.H/�

ˇ̌
� t �

ˇ̌
E�init Œ O�

J
Jin
.H/� �E…ŒH jZ.N/�

ˇ̌�
: (98)
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To further estimate the right side, note that for c3 large enough and any k � Jin, by (64)
and Theorem 3.7, we have

W 2
2 .L.#k/;….� jZ

.N/// � 2.�C b.//:

Noting that (165) below in fact holds for any probability measure � and thus in particular
for � D ….� jZ.N//, it follows that for any Lipschitz function H W RD ! R,�

E�init Œ O�
J
Jin
.H/� �E…ŒH jZ.N/�

�2
� 2kHk2Lip.�C b.//:

Thus if t � 0 satisfies (65), then applying Proposition A.3 to both H and �H shows that
the r.h.s. in (98) is further bounded by

P�init

�
j O�JJin

.H/ � E�init Œ O�
J
Jin
.H/�j � t=2

�
� 2 exp

�
�c

t2m2J

kHk2Lip.1C 1=.mJ//

�
:

Proof of Corollary 3.9. We first estimate the probability to be bounded by

P�init

�
k N�JJin

� E�init Œ
N�JJin
�kRD � t � kE�init Œ

N�JJin
� �E…Œ� jZ.N/�kRD

�
:

Next, for any k � 1, let �k denote an optimal coupling between L.#k/ and ….� jZ.N//
(cf. [104, Theorem 4.1]). Then by Jensen’s inequality and the definition of W2 from (9),

kE�init Œ
N�JJin
� �E…Œ� jZ.N/�k2RD D

 1J JinCJX
kDJinC1

Z
RD�RD

.� � � 0/ d�k.�; �
0/

2
RD

D

DX
jD1

�
1

J

JinCJX
kDJinC1

Z
RD�RD

.�j � �
0
j / d�k.�; �

0/

�2
�
1

J

JinCJX
kDJinC1

Z
RD�RD

DX
jD1

.�j � �
0
j /
2 d�k.�; �

0/

D
1

J

JinCJX
kDJinC1

W 2
2 .L.#k/;….� jZ

.N///:

Thus from (61), (64) (as after (98)) we obtain

kE�init Œ
N�JJin
� �E…Œ� jZ.N/�kRD �

p
2
p
�C b./:

Now for any j D 1; : : : ; d , let us write Hj W RD ! R; � 7! �j ; for the j -th coordinate
projection map, of Lipschitz constant 1. Then in the notation (63) we can write

Œ N�JJin
�j D O�

J
Jin
.Hj /; j D 1; : : : ;D:

For t �
p
8.�C b.// and applying Proposition A.3 as in the proof of Theorem 3.8, as

well as a union bound, gives
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P�init

�
k N�JJin

�E…Œ� jZ.N/�kRD � t
�
� P�init

�
k N�JJin

�E�init Œ
N�JJin
�


RD
� t=2

�
D P�init

� DX
jD1

�
O�JJin
.Hj /�E�init Œ O�

J
Jin
.Hj /�

�2
� t2=4

�
�

DX
jD1

P�init

��
O�JJin
.Hj /�E�init Œ O�

J
Jin
.Hj /�

�2
�

t2

4D

�
� 2D exp

�
�c

t2m2J

DŒ1C1=.mJ/�

�
:

4. Proofs for the Schrödinger model

In this section, we will show how the results from Section 3 can be applied to the non-
linear problem for the Schrödinger equation (17). Recalling the notation of Sections 2
and 3, we will set �� D �0;D , the norm j � j1 WD k � kRD as well as � WD �D�4=d (for � to
be chosen), such that the region B from (39) equals the Euclidean ball

B� WD ¹� 2 RD W k� � �0;DkRD < �D�4=d º: (99)

The first key observation is the following result on the local log-concavity of the like-
lihood function on B� , which will be proved by a combination of the concentration result
of Lemma 3.4 with the PDE estimates below, notably the ‘average curvature’ bound from
Lemma 4.7.

Proposition 4.1. Let �0 2 h2 satisfy k�0kh2 � S for some S > 0 and consider `N from
(22) with forward map G W RD ! R from (17). Then there exist constants 0 < �S D

�S .O; g; ˆ/ � 1 and c1; c2; c3; c4 > 0 such that for any � � �S and all D;N satisfying
D � c2N

d
dC12 as well as kG .�0/ � G .�0;D/kL2.O/ � c1D

�4=d , the event

Econv.�/ D
°

inf
�2B�

�min.�r
2`N .�// > c3ND

�4=d ;

sup
�2B�

Œj`N .�/j C kr`N .�/kRD C kr
2`N .�/kop� < c4N

±
satisfies

PN�0 .Econv.�// � 1 � 33e
�c2N

d=.dC12/

: (100)

Proof. For any � 2 RD , F� as in (16), by a Sobolev embedding and (13), we have
kF�k1 . k�kh2 . D2=dk�kRD . This and Lemmas 4.4–4.6 verify Assumption 3.2 in
the present setting, with constants

k0 ' k1 ' const; k2 ' m0 ' m1 ' D
2=d ; m2 ' D

4=d ;

whence the constants from (46) satisfy

CG ' D
4=d ; C 0G ' D

2=d ; C 00G ' D
2=d ; C 000G ' const:
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Moreover, using (28) and (107), Lemmas 4.7 and 4.8 verify Assumption 3.3 for our choice
of � with

cmin ' D
�4=d ; cmax ' const. (101)

Then the minimum (45) is dominated by the third term, yielding

RN D RN;D ' c
2
min=C

02
G ' ND

�12=d :

Therefore, we can choose c > 0 small enough such that for any D; N 2 N satisfying
D � cN d=.dC12/, we also have D � RN;D . Lemma 3.4 then implies that for all such
D;N , we have

PN�0 .E
c
conv/ � 32e

�RN C e�N=8 � 33e�cN
d=.dC12/

:

Next, if �init is the estimator from Theorem B.6, then in the present setting with � D
1=logN , the event (50) equals

Einit D

²
k�init � �0;DkRD �

1

8.logN/D4=d

³
:

Proposition 4.2. Assuming Condition 2.3, there exist constants c5; c6 > 0 such that for
all N 2 N,

PN�0 .Einit/ � 1 � c5e
�c6N

d=.2˛Cd/

:

Proof. Using Theorem B.6 and ˛ > 6, we see that with sufficiently high probability,

k�init � �0;DkRD . N�.˛�2/=.2˛Cd/ D o..logN/�1D�4=d /:

Next, denoting by Q….� jZ.N// the ‘surrogate’ posterior measure with density (27), and
if

Ewass D ¹W
2
2 .
Q….� jZ.N//;….� jZ.N/// � exp.�N d=.2˛Cd//º

is given by (59) with � D 2 exp.�N d=.2˛Cd//, then Theorem 4.14 implies the following
approximation result in Wasserstein distance.

Proposition 4.3. Assume Conditions 2.2 and 2.3. Then there exist constants c7; c8 > 0

such that for all N 2 N,

PN�0 .Ewass/ � 1 � c7e
�c8N

d=.2˛Cd/

:

The preceding propositions imply that the events

EN WD Econv \ Einit \ Ewass (102)

satisfy the probability bound PN
�0
.EN / � 1 � c

0e�c
00Nd=.2˛Cd/ . In what follows, the

events EN will be tacitly further intersected with events which have probability 1 for
all N large enough, ensuring that the non-asymptotic conditions required in the results of
Section 3 are eventually verified.
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Proof of Theorem 2.7. We will prove Theorem 2.7 by applying Theorem 3.7 with
the choices B D B� from (99), � D 1=log N and K from Condition 2.2, � D
2 exp.�N d=.2˛Cd// andM D ID�D generating the ellipsoidal norm k � kRD . Using (13),
the prior covariance † from (23) satisfies

�min.†
�1/ ' N d=.2˛Cd/; �max.†

�1/ ' N d=.2˛Cd/D2˛=d :

Then using Condition 2.2, we first have

K & ND8=d .logN/2 ' Ncmax � .1C �
�2/;

verifying the lower bound (55), and then also m;ƒ > 0 from Theorem 3.7 satisfy

m ' ND�4=d CN d=.2˛Cd/; ƒ ' ND8=d .logN/3 CN d=.2˛Cd/D2˛=d :

The dimension condition (28) and the condition on ˛ further imply

ND�4=d & N d=.2˛Cd/; N d=.2˛Cd/D2˛=d . N;

whence we further obtain

m ' ND�4=d ; ƒ ' ND8=d .logN/3: (103)

Noting that also  D o.ƒ�1/ with our choices, Theorem 3.7 implies that on the event EN
from (102), the Markov chain .#k/ satisfies the Wasserstein bound (61) with

b./ .
Dƒ2

m2
C
2Dƒ4

m3
. D.dC24/=d .logN/6 C 2ND.dC44/=d .logN/12;

(104)
as well as

�.†;M; k�0;DkRD / . �.†/ ' D2˛=d :

Using also D=m . const, the first part of Theorem 2.7 follows.
For the choice of  D " from (31), straightforward calculation yields (for N large

enough)
B."/ D o."

2
CN�2P /; (105)

which proves the second part of Theorem 2.7.

Proof of Proposition 2.4 and of Theorems 2.5, 2.6. Proposition 2.4 now follows directly
from Theorem 3.8 and the preceding computations. Noting that for all N large enough
we have B./ � N�P , Theorem 2.5 follows from Corollary 3.9, (105) as well as (67),
for Jin � .logN/3=."ND�4=d /. Finally, intersecting further with the event

Emean WD ¹kE
…Œ� jZ.N/� � �0k`2 � LN

� ˛
2˛Cd

˛
˛C2 º; L > 0;

Theorem 2.6 follows from the triangle inequality and (151).

Proof of Theorem 2.8. In the proof we intersect EN from (102) further with the event
on which the conclusion of Theorem 4.12 holds. Part (iii) then follows from part (ii) and
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straightforward calculations. Part (i) follows from the arguments following (157) below,
where it is proved in particular that O�MAP is the unique maximiser of the proxy posterior
density Q�.� jZ.N// over RD . We can now apply Proposition A.2 with m;ƒ from (103),
using also

jlog Q�.�init jZ
.N// � log Q�. O�MAP jZ

.N//j

. sup
�2B1=.8 logN/

j`N .�/j CN
d=.2˛Cd/

k O�MAPk
2
h˛ CN

d=.2˛Cd/
k�initk

2
h˛

. N CN d=.2˛Cd/.1CD2˛=d / . N;

in view of `N D Q̀N on B1=.8 logN/, the definition of Einit, (13) and since �0 2 h˛ .

4.1. Analytical properties of the Schrödinger forward map

This section is devoted to proving the four auxiliary Lemmas 4.5–4.8 used in the proof
of Proposition 4.1. Throughout we consider the forward map G W RD ! L2.O/, G D

G ıˆ� ı‰, given by (17) and assume the hypotheses of Proposition 4.1, where the set B�

was defined in (99).
For any f 2 C.O/ with f � 0, by standard theory for elliptic PDEs (see e.g. [40,

Chapter 6.3]) there exists a linear, continuous operator Vf W L2.O/! H 2
0 .O/ describing

(weak) solutions Vf Œ � D w 2 H 2
0 of the (inhomogeneous) Schrödinger equation´

�
2
w � f w D  on O;

w D 0 on @O:
(106)

Lemma 4.4. For any x 2 O, the map � 7! G .�/.x/ is twice continuously differentiable
on RD . The vector field rG� W O ! RD is given by

vTrG� .x/ D Vf� Œuf� .ˆ
0
ı F� /‰.v/�.x/; x 2 O; v 2 RD :

Moreover, for any v1; v2 2 RD and x 2 O, the matrix field r2G� W O ! RD�D is given
by

vT1 r
2G� .x/v2 D Vf� Œuf�‰.v1/‰.v2/.ˆ

00
ı F� /�.x/

C Vf�
�
.ˆ0 ı F� /‰.v1/Vf� Œuf� .ˆ

0
ı F� /‰.v2/�

�
.x/

C Vf�
�
.ˆ0 ı F� /‰.v2/Vf� Œuf� .ˆ

0
ı F� /‰.v1/�

�
.x/:

Proof. In the notation from (17), the map � 7! G .�/.x/ can be represented as the compos-
ition ıx ıG ıˆ� ı‰, where ıx W w 7! w.x/ denotes point evaluation. We first show that
each of these four operators is twice differentiable. The continuous linear maps‰ WRD!
C.O/ and ıx W C.O/! R are infinitely differentiable (in the Fréchet sense). Moreover,
the maps G W C.O/ \ ¹f > 0º ! C.O/ and ˆ� W C.O/! C.O/ \ ¹f > 0º are twice
Fréchet differentiable with derivatives DG, D2G and Dˆ�;D2ˆ� given by Lemma B.2
and (175) respectively. By the chain rule for Fréchet derivatives (see Lemma B.3), we
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deduce that x 7! G .�/.x/ is twice differentiable, with the desired expressions for the
vector and matrix fields. The continuity of the second partial derivatives follows from
inspection of the expression for the matrix field, and by applying the regularity results for
Vf ; G and ˆ� from Appendix B.

Now since k�0kh2 � S and by the definition (99) of the set B1, we see from (13) that

sup
�2B1

k�kh2 � k�0;Dkh2 C sup
�2B1

k� � �0;Dkh2 . S CD2=d sup
�2B1

k� � �0;DkRD

. S C 1:

It follows further from the Sobolev embedding and regularity of the link function ˆ
(Appendix B.1.1) that there exists a constant B D B.S;ˆ;O/ <1 such that

sup
�2B1

ŒkF�k1 C kF�kH2 C kf�kH2 C kf�k1� � B: (107)

In particular, this estimate implies that the constants appearing in the inequalities from
Lemma B.1 can be chosen independently of � 2 B, which we use frequently below.

For notational convenience we also introduce the spaces

ED WD span.e1; : : : ; eD/ � L2.O/; D 2 N; (108)

spanned by the first D eigenfunctions of � on O (cf. Section 2.1.1).
We first verify the boundedness property required in Assumption 3.2 (ii).

Lemma 4.5. There exists a constant C > 0 such that

sup
�2B1

kG .�/kL1 � C;

sup
�2B1

krG .�/kL1.O;RD/ � C;

sup
�2B1

kr
2G .�/kL1.O;RD�D/ � CD

2=d :

Proof. The estimate for kG .�/k1 follows immediately from (18). To estimate
krG .�/kL1.O;RD/, we first note that by Lemma 4.4,

krG .�/kL1.O;RD/ D sup
vW kvkRD�1

kvTrG .�/kL1

� sup
H2ED W kHkL2�1

kVf� Œuf� .ˆ
0
ı F� /H�k1:

Thus by the Sobolev embedding k � k1 . k � kH2 , Lemma B.1 and boundedness of ˆ0,
we deduce that for any � 2 B1 and any H 2 ED ,

kVf� Œuf� .ˆ
0
ı F� /H�k1 . kVf� Œuf� .ˆ

0
ı F� /H�kH2 . kuf� .ˆ

0
ı F� /HkL2

. kuf� k1kˆ
0
ı F�k1kHkL2 . kHkL2 :
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Again using Lemma 4.4, we can similarly estimate kr2G .�/kL1.O;RD/ by

kr
2G .�/kL1.O;RD/ � sup

vW kvkRD�1

kvTr2G .�/vkL1

� sup
H2ED W kHkL2�1

�
2kVf� ŒH.ˆ

0
ı F� /Vf� ŒH.ˆ

0
ı F� /uf� ��k1

C kVf� ŒH
2.ˆ00 ı F� /uf� �k1

�
DW sup

H2ED W kHkL2�1

.I C II /: (109)

Arguing as in the estimate for krG .�/kL1.O;RD/, we find that for any � 2 B1 and
H 2 ED ,

I . kH.ˆ0 ı F� /Vf� ŒH.ˆ
0
ı F� /uf� �kL2

. kHkL2kˆ0 ı F k1kVf ŒH.ˆ0 ı F /uf �k1

. kHkL2kH.ˆ0 ı F /uf kL2 . kHk2
L2
;

as well as

II . kH 2.ˆ00 ı F� /uf� kL2 . kuf� k1kˆ
00
ı F�k1kHkL2kHk1

. kHkL2kHkH2 . D2=d
kHk2

L2
;

where we have used the basic norm estimate on ED � L2.O/ from Lemma 4.9. By com-
bining the last three displays, the proof is completed.

Next, we verify the increment bound needed in Assumption 3.2 (iii).

Lemma 4.6. There exists a constant C > 0 such that for anyD 2N and any �; � 0 2 RD ,

kG .�/ � G . N�/k1 � CkF� � F N�k1; kG .�/ � G . N�/kL2 � CkF� � F N�kL2 ; (110)

as well as, for any �; � 0 2 B1,

krG .�/ � rG . N�/kL1.O;RD/ � CkF� � F N�k1; (111)

kr
2G .�/ � r2G . N�/kL1.O;RD�D/ � CD

2=d
kF� � F N�k1: (112)

Proof. The estimate (110) follows immediately from (171) and (177) in Appendix B.
Now fix any �; N� 2 B1. To simplify notation, in what follows we write F D ‰.�/,
NF D ‰. N�/, f D ˆ ı F and Nf D ˆ ı NF . For (111), arguing as in the proof of Lemma 4.5,

we first have

krG .�/ � rG . N�/kL1.O;RD/ � sup
vW kvkRD�1

kvT .rG .�/ � rG . N�//k1

� sup
H2ED W kHkL2�1

kVf ŒH.ˆ
0
ı F /uf � � V Nf ŒH.ˆ

0
ı NF /u Nf �k1

D sup
H2ED W kHkL2�1

�
k.Vf � V Nf /ŒH.ˆ

0
ı F /uf �k1 C kV Nf ŒH.ˆ

0
ı F �ˆ0 ı NF /u Nf �k1

C kV Nf ŒH.ˆ
0 ı F /.uf � u Nf /�k1

�
DW sup

H2ED W kHkL2�1

.Ia C Ib C Ic/:
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Now, we fixH 2 ED for the rest of the proof. The term Ia can be estimated by repeatedly
using the Sobolev embedding k � k1 . k � kH2 , Lemma B.1 as well as (107) and (177):

Ia D kVf Œ.f � Nf /V Nf Œu Nf .ˆ
0
ı F /H��k1 . kVf Œ.f � Nf /V Nf Œu Nf .ˆ

0
ı F /H��kH2

. k.f � Nf /V Nf Œu Nf .ˆ
0
ı F /H�kL2 . kf � Nf k1ku Nf .ˆ

0
ı NF /HkL2

. kF � NF k1kHkL2 : (113)

Similarly, Ib is estimated as follows:

Ib . kH.ˆ0 ı F �ˆ0 ı NF /u Nf kL2 . kˆ0 ı F �ˆ0 ı NF k1ku Nf k1kHkL2

. kF � NF k1kHkL2 :

Finally, we can similarly estimate

Ic . k.uf � u Nf /.ˆ
0
ıF /HkL2 . kuf � u Nf k1kˆ

0
ıF k1kHkL2 . kF � NF k1kHkL2 ;

where we have also used (110). By combining the estimates for Ia; Ib and Ic , we have
completed the proof of (111).

It remains to prove (112). In analogy to (109), we may fix any v 2 RD , and it suffices
to derive a bound for vT .r2G .�/ � r2G . N�//v. To simplify notation, let us write H D
‰v 2 ED Š RD , as well as h D H.ˆ0 ı F / and Nh D H.ˆ0 ı NF /. Then by Lemma 4.4,
we have the following decomposition into eight terms:

vT .r2G .�/ � r2G . N�//v

D 2V Nf
�
NhV Nf Œ
Nhu Nf �

�
� 2Vf

�
hVf Œhuf �

�
C V Nf Œu NfH

2.ˆ00 ı NF /� � Vf ŒufH
2.ˆ00 ı F /�

D 2.V Nf � Vf /
�
NhV Nf Œ
Nhu Nf �

�
C 2Vf

�
. Nh � h/V Nf Œ

Nhu Nf �
�

C 2Vf
�
h.V Nf � Vf /Œ

Nhu Nf �
�
C 2Vf

�
hVf Œ. Nh � h/u Nf �

�
C 2Vf

�
hVf Œh.u Nf � uf /�

�
C .V Nf � Vf /Œu NfH

2.ˆ00 ı NF /�C Vf Œ.u Nf � uf /H
2.ˆ00 ı NF /�

C Vf ŒufH
2.ˆ00 ı NF �ˆ00 ı F /�

DW IIa C IIb C IIc C IId C IIe C IIf C IIg C IIh: (114)

To estimate these terms, we will again repeatedly use (107), the regularity estim-
ates from Lemmas B.1–B.2 below, the estimates khkL2 ; k NhkL2 . kHkL2 together with
kf � Nf k1 . kF � NF k1, which all hold uniformly in � 2 B1.

Using Lemma B.1, including the estimate (169) with  D NhV Nf Œ Nhu Nf �, we obtain

kIIak1 . kf � Nf k1k NhV Nf Œ Nhu Nf �kL2 . kf � Nf k1k NhkL2kV Nf Œ Nhu Nf �k1
. kf � Nf k1kHkL2k Nhu Nf kL2 . kf � Nf k1kHk2L2ku Nf k1
. kF � NF k1kHk2L2 :

Similarly, we have

kIIbk1 . k. Nh � h/V Nf Œ Nhu Nf �kL2 . kH.ˆ0 ı NF �ˆ0 ı F /kL2kV Nf Œ Nhu Nf �k1
. kuf k1kHkL2k NF � F k1k Nhu Nf kL2 . kHk2

L2
k NF � F k1;
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and, again using (169),

kIIck1 . kh.V Nf � Vf /Œ Nhu Nf �kL2 . khkL2k.V Nf � Vf /Œ Nhu Nf �k1
. kHkL2k Nf � f k1k Nhu Nf kL2 . kHk2

L2
k NF � F k1:

For IId , by following similar steps to those for IIb , we see that

kIIdk1 . kHkL2kVf Œ. Nh � h/u Nf �k1 . kHk2
L2
k NF � F k1;

and similarly, using also (110), we obtain

kIIek1 . kHkL2kVf Œh.u Nf � uf /�k1 . kHk2
L2
ku Nf � uf k1

. kHk2
L2
k NF � F k1:

For IIf , we note that by the Sobolev embedding,

kwk.H2
0
/� � sup

 W k k
H2
�1

ˇ̌̌̌Z
O

w 

ˇ̌̌̌
. kwkL1 sup

 W k k
H2
�1

k k1 . kwkL1 ; w 2 L1.O/;

and consequently by Lemma B.1,

kIIf k1 D kVf Œ. Nf � f /V Nf Œu NfH
2.ˆ00 ı F /��k1

. k Nf � f k1kV Nf Œu NfH
2.ˆ00 ı F /�kL2 . k Nf � f k1ku NfH

2.ˆ00 ı F /k.H2
0
/�

. k Nf � f k1ku NfH
2.ˆ00 ı F /kL1 . k NF � F k1kHk2L2 :

For IIg and IIh, by similar steps and additionally using the fact that by Lemma 4.9,
kHk1 . kHkH2 . D2=dkHkL2 for any H 2 ED , we obtain

kIIgk1 . ku Nf � uf k1kH
2
kL2kˆ

00
ı NF k1 . k Nf � f k1kHkL2kHk1

. D2=d
k NF � F k1kHk

2
L2
;

as well as

kIIhk1 � kufH
2.ˆ00 ı NF �ˆ00 ı F /kL2 . kHkL2kHk1k NF � F k1

. D2=d
k NF � F k1kHk

2
L2
:

By combining (114) with the estimates for IIa–IIh, the proof of (112) is complete.

We now turn to the key ‘geometric’ bound from the first part of Assumption 3.3,
which quantifies the average curvature of the likelihood function `N near �0;D in a high-
dimensional setting (when PX is uniform on O). The curvature deteriorates with rate
D�4=d as D ! 1, which is in line with the (local) ill-posedness of the Schrödinger
model, and the related fact that the associated ‘information operator’ is of the form I 2,
with I being the inverse of a second order (elliptic Schrödinger-type) operator (cf. also
[77, Section 4]).
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Lemma 4.7. Let `.�/ be as in (38) with G W RD ! R from (17), and let B� be as in (99).
Let �0 2 h2 satisfy k�0kh2 � S for some S > 0. Then there exist constants 0 < �S � 1
and c1; c2 > 0 such that if also kG .�0/� G .�0;D/kL2.O/ � c1D

�4=d , then for allD 2 N
and all � � �S ,

inf
�2B�

�min.E�0 Œ�r
2`.�/�/ � c2D

�4=d : (115)

Proof. We begin by noting that for any Z D .Y;X/ 2 R �O, we have

�r
2`.�;Z/ D rGX .�/rGX .�/T � .Y � GX .�//r2GX .�/:

Using this and Lemma 4.4, we find that for any v 2 RD , with the previous notation H D
‰.v/ and h D .ˆ0 ı F� /H ,

vTE�0 Œ�r
2`.�;Z/�v D kVf� Œuf� .ˆ

0
ı F� /H�k

2
L2.O/

�
˝
uf�0
� uf� ; 2Vf�

�
hVf� Œhuf� �

�˛
L2.O/

� huf�0
� uf� ; Vf� Œuf�H

2.ˆ00 ı F� /�iL2.O/

DW I C II C III: (116)

We next derive a lower bound on I and upper bounds for II and III , for any fixed
v 2 RD .

Lower bound for I . Writing a� WD uf� .ˆ
0 ı F� /, using the elliptic L2-.H 2

0 /
� coercivity

estimate (168) from Lemma B.1 below as well as (107), we have

p
I D kVf� Œa�H�kL2.O/ &

ka�Hk.H2
0
/�

1C kf�k1
& ka�Hk.H2

0
/� ; � 2 B1: (117)

The next step is to lower bound a� . By [28, Theorem 1.17], the expected exit time �O fea-
turing in the Feynman–Kac formula (12) satisfies the uniform estimate supx2O E

x�O �

K.vol.O/;d/ <1. Therefore, using also Jensen’s inequality and g� gmin >0, we obtain,
with B from (107),

inf
�2B1

inf
x2O

uf� .x/ � gmine
�BK.vol.O/;d/

DW umin > 0: (118)

Also, since ˆ is a regular link function, for some k D k.B/ > 0 we have

inf
�2B1

inf
x2O

Œˆ0 ı F� �.x/ � inf
t2Œ�k;k�

ˆ0.t/ > 0;

and therefore for some amin D amin.ˆ;B;O; gmin/ > 0,

inf
�2B1

inf
x2O

a� .x/ � amin > 0: (119)

We thus find, by definition of .H 2
0 /
� and the multiplication inequality (7), that for some

c D c.amin/ > 0,

kHk.H2
0
/� D ka�a

�1
� Hk.H2

0
/� � ka

�1
� kH2ka�Hk.H2

0
/�

� c.1C ka�k
2
H2
/ka�Hk.H2

0
/� ; (120)
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where in the last inequality we have used (176) for the function x 7! 1=x. Using again
(107), regularity of ˆ0, the chain rule as well as the elliptic regularity estimate (173), we
obtain

sup
�2B1

ka�kH2 � sup
�2B1

kuf� kH2 sup
�2B1

kˆ0 ı F�kH2 � C.g; S;O; ˆ/ <1: (121)

Therefore, combining the displays (117), (120), (121), we have proved that, uniformly in
� 2 B1,

I & ka�Hk2.H2
0
/�

&
kHk2

.H2
0
/�

c2 sup�2B1
.1C ka�k

2
H2
/2

& D�4=dkHk2
L2
; (122)

where we have used Lemma 4.9 below in the last inequality.

Upper bound for II and III . Using the self-adjointness of Vf� on L2.O/, a Sobolev
embedding, Lemma B.1, (107), the Lipschitz estimate (171) as well as (18), we have,
uniformly in � 2 B1,

jII j .
ˇ̌̌̌Z

O

.uf�0
� uf� /Vf�

�
hVf� Œhuf� �

�ˇ̌̌̌
D

ˇ̌̌̌Z
O

Vf� Œuf�0
� uf� �

�
hVf� Œhuf� �

�ˇ̌̌̌
. kVf� Œuf�0 � uf� �k1khVf� Œhuf� �kL1 . kuf�0 � uf� kL2khkL2kVf� Œhuf� �kL2

. kuf�0 � uf� kL2kHk
2
L2
: (123)

Similarly, for III , using also kˆ00k1 <1, we estimate

jIII j D jhuf�0
� uf� ; Vf� Œuf�H

2.ˆ00 ı F� /�iL2.O/j

D jhVf� Œuf�0
� uf� �; uf�H

2.ˆ00 ı F� /iL2.O/j

� kVf� Œuf�0
� uf� �k1kuf� k1kˆ

00
ı F�k1kH

2
kL1

. kuf�0 � uf� kL2kHk
2
L2
: (124)

Combining the displays (116), (122), (123) and (124), we have proved that for any
� 2 B1, any v 2 RD and some constants c0; c00 > 0,

vTE�0 Œ�r
2`.�;Z/�v � .c0D�4=d � c00kuf�0

� uf� kL2/kHk
2
L2
:

Using (110) and the hypotheses, we see that for some cg > 0,

kuf�0
� uf� kL2 � kG .�0/ � G .�0;D/kL2 C cgk�0;D � �kRD � .c1 C cg�S /D

�4=d :

Thus for all c1; "S > 0 small enough and taking the infimum over v 2 RD with kvkRD D
k‰.v/kL2 D kHkL2 D 1, we conclude that for any � 2 B�S and some c000 > 0,

�min.E�0 Œ�r
2`.�;Z/�/ � c000D�4=d ;

which completes the proof.
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Finally, we prove the upper bound required for Assumption 3.3 (ii).

Lemma 4.8 (Upper bound). For every S > 0, there exists a constant c > 0 such that for
k�0kh2 � S and all D 2 N, we have

sup
�2B1

�
jE�0 Œ`.�;Z/�j C kE�0 Œr`.�;Z/�kRD C kE�0 Œr

2`.�;Z/�kop
�
� c:

Proof. For the first term, using Lemma 4.5, we see that for someK0 > 0 and any � 2B1,

jE�0 Œ`.�/�j D 1=2C .1=2/kG .�/ � G .�0/k
2
L2

. 1C kG .�/k21 C kuf0k
2
1 � K0:

For the first derivative, similarly by Lemma 4.5 there exists some K1 > 0 such that for
any � 2 B1,

kE�0 Œ�r`.�/�kRD . khG .�0/ � G .�/;rG .�/iL2.O/kRD

. kG.�0/ � G .�/k1krG .�/kL1.O;RD/ � K1:

For the second derivative, we recall the decomposition

�max.E�0 Œ�r
2`.�/�/ D sup

vW kvkRD�1

vTE�0 Œ�r
2`.�/�v

D sup
vW kvkRD�1

ŒI C II C III �;

where the terms I–III were defined in (116). Suitable uniform upper bounds for II and
III have already been shown in (123) and (124) respectively, whence it suffices to upper
bound the term I . We do this by using (107) and Lemma B.1: for any � 2 B1 and any
H D ‰.v/, v 2 RD ,

p
I D kVf� Œuf� .ˆ

0
ı F� /H�kL2 . kuf� .ˆ

0
ı F� /HkL2

. kuf� k1kˆ
0
ı F�k1kHkL2 . kvkRD :

We conclude with the following basic comparison lemma for Sobolev norms on the
subspaces ED � L2.O/ from (108).

Lemma 4.9. There exists C > 0 such that for any D 2 N and any H 2 ED ,

kHkH2 � CD
2=d
kHkL2 ; kHkL2 � CD

2=d
kHk.H2

0
/� : (125)

Proof. Fix D 2 N. By the isomorphism property of � between the spaces H 2
0 and L2

(see e.g. [66, Theorem II.5.4]), we first have the norm equivalence

k�HkL2 . kHkH2
0

. k�HkL2 ; H 2 ED :

It follows by Weyl’s law (13) that

kHk2
H2
0

.
DX
kD1

jhH; ekiL2 j
2�2k . D4=d

kHk2
L2
:
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Thus, combining the above display with the following duality argument completes the
proof:

kHkL2 D sup
 2ED W k kL2�1

jhH; iL2 j

. D2=d sup
 2ED W k kH2

0

�1

jhH; iL2 j � D
2=d
kHk.H2

0
/� :

4.2. Wasserstein approximation of the posterior measure

The main purpose of this section is to prove Theorem 4.14, which provides a bound on
the Wasserstein distance between the posterior measure ….� jZ.N// from (24) and the
surrogate posterior Q….� jZ.N// from (27) in the Schrödinger model. The idea behind the
proof is to show that both ….� jZ.N// and Q….� jZ.N// concentrate most of their mass
on the region (99) where the log-likelihood function `N is strongly concave (with high
PN
�0

-probability, cf. Proposition 4.1). We achieve this by a careful study of the mode
(maximiser) of the posterior density, given in Theorem 4.12. Our derivations reveal that
both �.� jZ.N// and Q�.� jZ.N// possess a unique mode, with high frequentist probability
(see after (157)).

4.2.1. Convergence rate of MAP estimates. For .Yi ; Xi /NiD1 arising from (19) with G W

RD ! R from (17), we now study maximisers

O�MAP2arg max
�2RD

�
�
1

2N

NX
iD1

.Yi�G .�/.Xi //
2
�.ı2N /=2k�k

2
h˛

�
; ıNDN

� ˛
2˛Cd ; (126)

of the posterior density (24). Forƒ˛ from (23) we will write I.�/ WD 1
2
k�k2

h˛
D

1
2
�Tƒ˛�

for � 2 RD . We denote the empirical measure on R � O induced by the Zi D .Yi ; Xi /’s
as

PN D
1

N

NX
iD1

ı.Yi ;Xi /; so that
Z
h dPN D

1

N

NX
iD1

h.Yi ; Xi / (127)

for any measurable map h W R � O ! R. Recall also that p� W R � O ! Œ0;1/ denotes
the marginal probability densities of PN

�
defined in (21).

Lemma 4.10. Let O�MAP be any maximiser in (126), and denote by �0;D the projection
of �0 onto RD . We have .PN

�0
-a.s./

1
2
kG . O�MAP/ � G .�0/k

2
L2
C ı2N I.

O�MAP/

�

Z
log

p O�MAP

p�0;D
d.PN � P�0/C ı

2
N I.�0;D/C

1
2
kG .�0;D/ � G .�0/k

2
L2
:

Proof. By the definitions,

`N . O�MAP/ � `N .�0;D/ �Nı
2
N I.
O�MAP/ � �Nı

2
N I.�0;D/;
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which is the same as

N

Z
log

p O�MAP

p�0;D
d.PN � P�0/CNı

2
N I.�0;D/

� Nı2N I.
O�MAP/ �N

Z
log

p O�MAP

p�0;D
dP�0 : (128)

The last term can be decomposed as

�

Z
log

p O�MAP

p�0;D
dP�0 D �

Z
log

p O�MAP

p�0
dP�0 C

Z
log

p�0;D

p�0
dP�0

D
1
2
kG . O�MAP/ � G .�0/k

2
L2.O/

�
1
2
kG .�0;D/ � G .�0/k

2
L2.O/

;

where we have used a standard computation of likelihood ratios (see also [45, Lem-
ma 23]). The result follows from the last two displays after dividing by N .

The following result can be proved by adapting techniques from M -estimation [100]
(see also [81, 99]) to the present situation. We will make crucial use of the concentration
Lemma 3.12.

Proposition 4.11. Let ˛ > d . Suppose that k�0kh˛ � c0 and D is such that
kG .�0/ � G .�0;D/kL2 � c1ıN for some c0; c1 > 0. Then for any c � 1 we can choose
C D C.c; c0; c1/ large enough so that every O�MAP maximising (126) satisfies

PN�0

�
1
2
kG . O�MAP/ � G .�0/k

2
L2
C ı2N I.

O�MAP/ > Cı
2
N

�
. e�c

2Nı2
N : (129)

Proof. We define functionals

�.�; � 0/ D 1
2
kG .�/ � G .� 0/k2

L2
C ı2N I.�/; � 2 RD; � 0 2 h˛;

and empirical processes

WN .�/D

Z
log

p�

p�0;D
d.PN �P�0/; WN;0.�/D

Z
log

p�

p�0
d.PN �P�0/; � 2RD;

so that
WN .�/ D WN;0.�/ �WN;0.�0;D/; � 2 RD :

Using the previous lemma it suffices to bound

PN�0

�
�. O�MAP; �0/ > Cı

2
N ;

WN . O�MAP/ � �. O�MAP; �0/ � ı
2
N I.�0;D/ � kG .�0;D/ � G .�0/k

2
L2
=2
�
:

Since
I.�0;D/ D k�0;Dk

2
h˛=2 � k�0k

2
h˛=2 � c

2
0=2

and
kG .�0;D/ � G .�0/k

2
L2
� c21ı

2
N
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by hypothesis, we can choose C large enough so that the last probability is bounded by

PN�0

�
�. O�MAP; �0/ > Cı

2
N ; jWN .

O�MAP/j � �. O�MAP; �0/=2
�

�

1X
sD1

PN�0

�
sup

�2RD W2s�1Cı2
N
��.�;�0/�2sCı

2
N

jWN;0.�/j � 2
sCı2N =8

�
C PN�0

�
jWN;0.�0;D/j � Cı

2
N =4

�
� 2

1X
sD1

PN�0

�
sup
�2‚s

jWN;0.�/j � 2
sCı2N =8

�
; (130)

where, for s 2 N,

‚s WD ¹� 2 RD W �.�; �0/ � 2
sCı2N º

D ¹� 2 RD W kG .�/ � G .�0/k
2
L2
C ı2N k�k

2
h˛ � 2

sC1Cı2N º; (131)

and where we have used the fact that �0;D 2 ‚1 for C large enough by the hypotheses.
To proceed, notice that

NWN;0.�/ D `N .�/ � `N .�0/ �E�0 Œ`N .�/ � `N .�0/�

and that, for .Yi ; Xi /
i:i:d:
� P�0 ,

`N .�/ � `N .�0/ D �
1

2

NX
iD1

Œ.G .�0/.Xi / � G .�/.Xi /C "i /
2
� "2i �

D �

NX
iD1

.G .�0/.Xi / � G .�/.Xi //"i �
1

2

NX
iD1

.G .�0/.Xi / � G .�/.Xi //
2; (132)

so that we have to deal with two empirical processes separately. We first bound

1X
sD1

PN�0

�
sup
�2‚s

jZN .�/j �
p
N 2sCı2N =16

�
(133)

where

ZN D
1
p
N

NX
iD1

h� .Xi /"i ; h� D G .�0/ � G .�/; � 2 ‚ D ‚s; s 2 N;

is as in Lemma 3.12. We will apply that lemma with bounds (recalling vol.O/ D 1)

EX Œh2� .X/� D kG .�/ � G .�0/k
2
L2
� 2sC1Cı2N DW �

2
s ;

kh�k1 � 2 sup
�

kG .�/k1 � U <1
(134)
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uniformly in all � 2 ‚s , for some fixed constant U D U.g;O/ (cf. (18)). For the entropy
bounds, we use the fact that on each slice sup�2‚s kF�kH˛ �

p
2C 2s=2, which for ˛ > d

implies (using [44, (4.184)] and standard extension properties of Sobolev norms)

logN.¹F� W � 2 ‚sº; k � k1; �/ � K.
p
C 2s=2=�/d=˛; � > 0;

for some constant K D K.˛; d/. Since the map F� 7! G .�/ is Lipschitz for the k � k1-
norm (Lemma 4.6) we deduce that also

logN
�
¹h� D G .�/�G .�0/ W � 2‚sº;k � k1; �

�
�K 0.

p
C 2s=2=�/d=˛; � > 0; (135)

and as a consequence, for ˛ > d and J2.H /; J1.H / defined in Lemma 3.12,

J2.H / .
Z 4�s

0

�p
C 2s=2

�

�d=2˛
d� . C d=.4˛/2sd=.4˛/�1�d=.2˛/s ;

J1.H / .
Z 4U

0

�p
C 2s=2

�

�d=˛
d� . C d=.2˛/2sd=.2˛/U 1�d=˛:

(136)

The sum in (133) can now be bounded by Lemma 3.12 with xD c2N2sı2N and the choices
of �s; U in (134) for C > 0 large enough:

1X
sD1

PN�0

�
sup
�2‚s

jZN .�/j �
p
N �2s =32

�
� 2

X
s2N

e�c
22sNı2

N . e�c
2Nı2

N (137)

since then, by definition of ıN , for ˛ > d and C large enough, the quantities

J2.H /.C d=.4˛/2sd=.4˛/.2s=2
p
C ıN /

1�d=.2˛/.
1
p
C

p
N �2s ; �s

p
x�

c
p
2C

p
N �2s ;

(138)
and

1
p
N

J1.H / .
C d=.2˛/2sd=.2˛/

p
N

.
1

C d=.2˛/�1

p
N �2s ;

x
p
N
D

c2

2C

p
N �2s (139)

are all of the correct order of magnitude compared to
p
N �2s .

We now turn to the process corresponding to the second term in (132), which is
bounded by X

s2N

PN�0

�
sup
�2‚s

jZ0N .�/j �
p
N 2sCı2N =16

�
(140)

where Z0N is now the centred empirical process

Z0N .�/ D
1
p
N

NX
iD1

.h� �E
X Œh� .X/�/

with
H D ¹h� D .G .�/ � G .�0//

2
W � 2 ‚sº;
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to which we will again apply Lemma 3.12. Just as in (134) the envelopes of this pro-
cess are uniformly bounded by a fixed constant, again denoted by U , which implies in
particular that the bounds (136) also apply to H as then, for some constant cU > 0,

kh� � h� 0k1 � cU kG .�/ � G .� 0/k1:

Moreover, on each slice ‚s the weak variances are bounded by

EX Œh2� .X/� � c
0
U kG .�/ � G .�0/k

2
L2
� c0U �

2
s

with �s as in (134) and some c0U > 0. We see that all bounds required to obtain (133) apply
to the process Z0N as well, and hence the series in (130) is indeed bounded as required in
the proposition, completing the proof.

From a stability estimate for � 7! G .�/ we now obtain the following convergence rate
for k O�MAP � �0k`2 which in turn also bounds k O�MAP � �0;DkRD .

Theorem 4.12. Let Z.N/ � PN
�0

be as in (20) where �0 2 h˛ , ˛ > d , d � 3. Define

NıN WD N
�r.˛/ where r.˛/ D

˛

2˛ C d

˛

˛ C 2
:

Suppose k�0kh˛ � c0 and that D is such that kG .�0/ � G .�0;D/kL2 � c1ıN for some
constants c0; c1 > 0. Then given c � 1 we can choose NC ; Nc large enough .depending on
c; c0; c1; ˛;O/ so that for all N and any maximiser O�MAP satisfying (126), one has

PN�0 .k
O�MAP � �0k`2 � NC

NıN ; k O�MAPkh˛ � NC/ � 1 � Nce
�c2Nı2

N : (141)

Proof. By Proposition 4.11 we can restrict to events

TN WD ¹kG . O�MAP/ � G .�0/k
2
L2
� 2Cı2N ; kF O�MAP

kH˛ D k
O�MAPkh˛ �

p
2C º (142)

of sufficiently high PN
�0

-probability. If we write Of D ˆ ı F O�MAP
for ˆ from (17) then by

(176), on the events TN we also have k Of kH˛ � C 0 and k Of k1 � C 0; for some C 0 > 0.
We write u Of D G . O�MAP/ for the unique solution of the Schrödinger equation (11) corres-

ponding to Of . We then necessarily have f D �uf =.2uf / both for f D Of and f D f0,
where we also use the fact that the denominator uf is bounded away from zero by a con-
stant C 00 > 0 depending only on kf k1;O; g (see (118)). Then using the multiplication
and interpolation inequalities (7), (8), and the regularity estimate from (174) and (176),
we have, for t D ˛=.˛ C 2/,

k Of � f0kL2 . ku Of � uf0kH2 . kG . O�MAP/ � G .�0/k
t
L2
ku Of � uf0k

1�t
H˛C2

. ıtN .k
Of kH˛ C kf0kH˛ / . ıtN (143)

on the event TN . From a Sobolev imbedding (for some � > 0) and applying (8) again we
further deduce k Of � f0k1 . ı

.˛�d=2��/=.˛C2/
N ! 0 asN !1, hence using the fact that
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infx f0.x/ > Kmin we also have infx Of .x/ � Kmin C k for some k > 0 (on TN , for all N
large enough). We deduce

k O�MAP � �0k`2 � kF O�MAP
� F�0kL2 D kˆ

�1
ı Of �ˆ�1 ı f0kL2

. k Of � f0kL2 . ıtN

on the events TN , where in the last inequality we have used regularity of the inverse link
function ˆ�1 W ŒKmin C k;1/! R and (177). This completes the proof.

4.2.2. Posterior contraction rates. We now study the full posterior distribution (24)
arising from the Gaussian prior … for � from (23). The result we shall prove parallels
Theorem 4.12 but holds for most of the ‘mass’ of the posterior measure instead of just
for its ‘mode’ O�MAP. This requires very different techniques and we rely on ideas from
Bayesian nonparametrics [42, 102], specifically recent progress [74] that allows one to
deal with non-linear settings (see also [45]).

In the proof of Theorem 4.14 to follow we will require control of the posterior ‘norm-
alising factors’, expressed via sets

CN D CN;K

D

²Z
RD

e`N .�/�`N .�0/ d….�/ � ….B.ıN // exp¹�.1CK/Nı2N º
³
; (144)

for some K > 0, where ıN D N�˛=.2˛Cd/ and

B.ıN / D ¹� 2 RD W kG .�/ � G .�0/kL2.O/ � ıN º:

This is achieved in the course of the proof of our next result. We denote by cg the global
Lipschitz constant of the map � 7! G .�/ from `2.N/! L2.O/ (see (110)).

Theorem 4.13. Let Z.N/; �0; ˛; d; NıN be as in Theorem 4.12 and let ….� jZ.N// denote
the posterior distribution from (24). Suppose that k�0kh˛ � c0 and D � c2Nı2N is such
that

kG .�0/ � G .�0;D/kL2.O/ � c1ıN (145)

for some finite constants c0; c2 > 0 and 0 < c1 < 1=2. Then for any a > 0 there exist
c0; c00 such that for K;L D L.a; c0; c2; cg ; ˛;O/ large enough,

PN�0

�®
….� W k� � �0;DkRD � L

NıN ; k�kh˛ � L jZ
.N// � 1 � e�aNı

2
N

¯
;CN;K

�
� 1 � c0e�c

00Nı2
N : (146)

Proof. We initially establish some auxiliary results that will allow us to apply a standard
contraction theorem from Bayesian non-parametrics, specifically in a form given in [45,
Theorem 13]. By [45, Lemma 23] and (18) we can lower bound…N .BN / in (A5) in [45]
by our…N .B.ıN // (after adjusting the choice of ıN in [45] by a multiplicative constant).
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Then using (145), [44, Corollary 2.6.18], and ultimately [65, Theorem 1.2] combined with
[44, (4.184)] we have, for � 0 � N.0;ƒ�1˛ /,

…N .kG .�/ � G .�0/kL2.O/ < ıN / � …N .kG .�/ � G .�0;D/kL2.O/ < ıN =2/

� …N .k� � �0;DkRD < ıN =.2cg//

� e�Nı
2
N
k�0;Dk

2
h˛
=2 Pr.k� 0kRD <

p
N ı2N =.2cg// � e

� NdNı2
N (147)

for some Nd > 0. From this we deduce further from Borell’s Gaussian isoperimetric
inequality [17] (in the form of [44, Theorem 2.6.12]), arguing just as in [45, Lemma 17]
(and invoking the remark after that lemma with � D 0 there) that given B > 0 we can find
M large enough (depending on Nd;B) such that

…N .� D �1 C �2 2 RD W k�1kRD �MıN ; k�2kh˛ �M/ � 1 � 2e�BNı
2
N :

Next the eigenvalue growth �˛
k

. k2˛=d from (13) and the hypothesis onD imply that for
NL large enough we have

k�1kh˛ . D˛=d
k�1kRD � .c2Nı

2
N /

˛=dMıN � NL=2 (148)

and then also

…N .A
c
N / � 2e

�BNı2
N where AN D ¹� 2 RD W k�kh˛ � NLº: (149)

The k � k1-covering numbers of the implied set of regression functions G .�/ satisfy the
bounds

logN.¹G .�/ W � 2 AN º; k � k1; ıN / . logN.¹F� W � 2 AN º; k � k1; cıN /

. logN.¹F W kF kH˛.O/ � NLº; k � k1; cıN / . Nı2N ;

for some c > 0, using the fact that the map F� 7! G .�/ is globally Lipschitz for the
k � k1-norm (Lemma 4.6) and also the bound in [44, (4.184)]. By (18) and [45, Lemma
22] the previous metric entropy inequality also holds for the Hellinger distance replacing
k � k1-distance on the l.h.s. in the last display. Theorem 13 and again Lemma 22 in [45]
now imply that for any a > 0 there exists L large enough,

PN�0

�
….¹� W kG .�/ � G .�0/kL2 > LıN º [Ac

N jZ
.N// � e�aNı

2
N

�
! 0 (150)

asN !1. The convergence in probability to zero obtained in [45, proof of Theorem 13]
is in fact exponentially fast, as required in (146): This is true by virtue of the bound to
follow in the next display (which forms part of the proof in [45] as well), and since the
type-one testing errors in [45, (39)] are controlled at the required exponential rate (via
[44, Theorem 7.1.4]). The inequality

PN�0

�Z
B.ıN /

e`N .�/�`N .�0/ d….�/ � ….B.ıN // exp¹�.1CK/Nı2N º
�
� c0e�c

00Nı2
N ;
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bounding PN
�0
.CcN;K/ as required in the theorem follows from Lemma 4.15 below for

large enough K and NC D 1=2.
Now to conclude, we can define subsets of RD as

‚N WD ¹� W kG .�/ � G .�0/kL2 � LıN º \AN

D ¹� W kG .�/ � G .�0/kL2 � LıN ; kF�kH˛ D k�kh˛ � NLº

parallelling the events TN from (142) above. Then arguing as in and after (143), one
shows that

‚N � Q‚N D ¹� W k� � �0kRD � LN
�r.˛/; k�kh˛ � Lº;

increasing also the constant L if necessary, and hence the posterior probability of this
event is also lower bounded by…. Q‚N jZ.N//� 1� e�aNı

2
N ; with the desired PN

�0
-prob-

ability, proving the theorem, since k� � �0k`2 � k� � �0;DkRD .

Moreover, a quantitative uniform integrability argument from [74, Section 5.4.5] (see
the proof of Theorem 4.14, term III, below) then also gives a convergence rate for the pos-
terior meanE…Œ� jZ.N/� towards �0, namely that forL large enough there exist Nc0; Nc00 > 0
such that

PN�0 .kE
…Œ� jZ.N/� � �0k`2 > L

NıN / � Nc
0e�Nc

00Nı2
N : (151)

4.2.3. Globally log-concave approximation of the posterior in Wasserstein distance.
Recall the surrogate posterior measure Q….� jZ.N// from (27) with log-density

log Q�N .�/ D constC Q̀N .�/ �
Nı2N
2
k�k2h˛ ; � 2 RD; (152)

with �init and parameters �; K chosen as in Condition 2.2, and with ıN D N�˛=.2˛Cd/.
We now prove the main result of this section.

Theorem 4.14. Assume Condition 2.3 and let Q….� jZ.N// be the probability measure of
density given in (27) with K; " > 0 chosen as in Condition 2.2. Then for some a1; a2 > 0
and all N 2 N,

PN�0

�
W 2
2 .
Q….� jZ.N//;….� jZ.N/// > e�Nı

2
N

�
� a1e

�a2Nı
2
N :

Proof. In the proof we will require a new sequence

QıN D N
.�˛C2/=.2˛Cd/

p
logN (153)

describing the ‘rate of contraction’ of the surrogate posterior obtained below. We first
notice that the definitions of NıN (from Theorem 4.12) and of ıN imply by straightforward
calculations and using D . Nı2N ; ˛ > 6, the asymptotic relations as N !1,

ıND
2=d
p

logN D O. QıN /; ıN � NıN � QıN �
1

logN
D�4=d ; (154)
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which we shall use in the proof. We will prove the bound for all N large enough, which
is sufficient to prove the desired inequality after adjusting the constant in . (since prob-
abilities are always bounded by 1).

Geometry of the surrogate posterior. To set things up, consider MAP estimates O�MAP

from (126). In view of (18), the function qN to be maximised over RD in (126) satisfies
qN .�/ < qN .0/ for all � such that k�kh˛ exceeds some positive constant k. Then on the
compact setM D¹� 2RD W k�kh˛ � kº the function qN is continuous (as G is continuous
from RD to L1.O/, by Lemma 4.6), and hence attains its maximum at some O�M 2 M ,
which must be a global maximiser of qN since qN . O�M / � qN .0/ > inf�2Mc qN .�/. We
conclude that a maximiser O�MAP exists (one shows that it can be taken to be measurable,
[44, Exercise 7.2.3]).

In view of Proposition 4.1, Theorem 4.12, Theorem B.6 (and the remark before it) and
˛ > 6, we may restrict ourselves in the rest of the proof to the event

�N WD

²
k�init��0;DkRD �

1

8 logND4=d

³
\

°
inf

�2B1=logN

�min.�r
2`N .�//� cND

�4=d
±

\

°
sup

�2B1=logN

Œj`N .�/jCkr`N .�/kRDCkr
2`N .�/kop� < c

0N
±

\

²
any O�MAP satisfies k O�MAP��0;DkRD �min

²
1

8 logND4=d
; NC NıN

³³
;

where B� was defined in (99), where NC is from (141) and where c D c3, c0 D c4 from
Proposition 4.1. On �N we have the following properties of Q̀N . First, from (26),

Q̀
N .�/ D `N .�/ for any � with k� � �0;DkRD �

3

8D4=d logN
: (155)

Moreover, by Proposition 3.6, log Q�.� jZ.N// is strongly concave in view of

sup
�2B1=logN ; #2RD ; k#kRDD1

#T Œr2 log Q�N .�/�#

� sup
�2B1=logN ; #2RD ; k#kRDD1

#T Œr2 Q̀N .�/�# � �cND
�4=d : (156)

Finally, any O�MAP satisfies

0 D r log�. O�MAP jZ
.N// D r log Q�. O�MAP/; (157)

from which we conclude that O�MAP necessarily equals the unique global maximiser of the
strongly concave function log Q�.� jZ.N// over RD .

Decomposition of the Wasserstein distance. Now let us write

OB.r/ D ¹� 2 RD W k� � O�MAPkRD � rº



R. Nickl, S. Wang 1090

for the Euclidean ball of radius r > 0 centred at O�MAP. Then using [104, Theorem 6.15]
with x0 D O�MAP we obtain, for any m > 0

W 2
2 .
Q….� jZ.N//;….� jZ.N///

� 2

Z
RD
k� � O�MAPk

2
RD d

ˇ̌
Q….� jZ.N// �….� jZ.N//

ˇ̌
.�/

� 2

Z
OB.mQıN /

k� � O�MAPk
2
RD d

ˇ̌
Q….� jZ.N// �….� jZ.N//

ˇ̌
.�/

C 2

Z
RDn OB.mQıN /

k� � O�MAPk
2
RD d

ˇ̌
Q….� jZ.N// �….� jZ.N//

ˇ̌
.�/

� 2m2 Qı2N

Z
OB.mQıN /

d
ˇ̌
….� jZ.N// � Q….� jZ.N//

ˇ̌
.�/

C 2

Z
k�� O�MAPkRD>m

QıN

k� � O�MAPk
2
RD d

Q….� jZ.N//

C 2

Z
k�� O�MAPkRD>m

QıN

k� � O�MAPk
2
RD d….� jZ.N//

� I C II C III;

and we now bound I; II; III in separate steps.

Term II: We can write the surrogate posterior density as

Q�.� jZ.N// D
e
Q̀
N .�/�Q̀N . O�MAP/�.�/R

RD e
Q̀
N .�/�Q̀N . O�MAP/�.�/ d�

; � 2 RD;

and will first lower bound the normalising factor. From (154) we have for any c > 0 the
set inclusion

BN � ¹k� � �0;DkRD � cıN º �

²
k� � �0;DkRD �

3

8D4=d logN

³
whenever N is large enough. Since `N .�/ D Q̀N .�/ on the last set, we have on an event
of large enough PN

�0
-probability,Z

RD
e
Q̀
N .�/�Q̀N . O�MAP/ d….�/ �

Z
BN

e
Q̀
N .�/�Q̀N . O�MAP/ d….�/

D

Z
BN

e`N .�/�`N .
O�MAP/ d�.�/ �….BN /

� e�NcNı
2
N

for some Nc D Nc. Nd; c/, where we have used Lemma 4.15 for our choice of BN (permitted
for an appropriate choice of c > 0 by (28) and since G W RD ! L2 is Lipschitz, see
Appendix B) with � D ….�/=….BN /; NC D 1=2I as well as the small ball estimate for …
in (147).
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Now recall the prior (23) and define scaling constants

VN D .2�/
�D=2

q
det.Nı2Nƒ˛/ � e

NcNı2
N :

Then on the preceding events the term II can be bounded, using a second order Taylor
expansion of log Q�.� jZ.N// around its maximum O�MAP combined with (156), (157), asZ
k�� O�MAPkRD>m

QıN

k� � O�MAPk
2
RD Q�.� jZ

.N// d�

� e NcNı
2
N

Z
k�� O�MAPkRD>m

QıN

k�� O�MAPk
2
RDe

Q̀
N .�/�Q̀N . O�MAP/�.�/ d�

� VN

Z
k�� O�MAPkRD>m

QıN

k�� O�MAPk
2
RDe

Q̀
N .�/�

Nı2
N
2 k�k

2
h˛
�Q̀N . O�MAP/C

Nı2
N
2 k

O�MAPk
2
h˛ d�

D VN

Z
k�� O�MAPkRD>m

QıN

k�� O�MAPk
2
RDe

log Q�N .�/�log Q�N . O�MAP/ d�

� VN

Z
k�� O�MAPkRD>m

QıN

k�� O�MAPk
2
RDe

�cND�4=d k�� O�MAPk
2

RD
=2
d�

� 2VN

�
4�

cND�4=d

�D=2
Pr.kZkRD > m QıN /;

where we have used x2e�cx
2
� 2e�cx

2=2 for all x 2 R, c � 1 (and N such that
cND�4=d � 1) and where

Z � N

�
0;

2

cD�4=dN
ID�D

�
:

Now by D � c0Nı2N and (154),

EkZkRD �

q
EkZk2

RD
�

q
2D=.cD�4=dN/ � .2c0=c/

1=2ıND
2=d
� .m=2/ QıN

for m large enough, so that

Pr.kZkRD > m QıN / � Pr
�
kZkRD �EkZkRD > .m=2/ QıN

�
� e�m

2cND�4=d Qı2
N
=16

by a concentration inequality for Lipschitz functionals of D-dimensional Gaussian ran-
dom vectors (e.g., [44, Theorem 2.5.7] applied to .cND�4=d=2/1=2Z � N.0; ID�D/ and
F D k � kRD ). By (13) and since D . Nı2N we have, for some c0 > 0,

VN � e
c0Nı2

N
logN ;

so that form large enough and using (154), the last term in the displayed array above, and
hence II=2 is bounded by

2VN

�
4�

cND�4=d

�D=2
e�m

2cD�4=dN Qı2
N
=16
� e�m

2D�4=dN Qı2
N
=32
�

1
8
e�Nı

2
N :
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Term III: We first note that Theorem 4.13 and (154) imply that for every a > 0 we can
find m large enough such that

….k� � O�MAPkRD > m QıN jZ
.N//

� ….k� � �0;DkRD > m NıN � k O�MAP � �0;DkRD jZ
.N//

� ….k� � �0;DkRD > m NıN =2 jZ
.N// � e�aNı

2
N

on events � 0N � �N of sufficiently high probability. Moreover, again by Theorem 4.13,
we can further restrict the argument that follows to the event CN;K from (144) for
some K > 0. Now using the Cauchy–Schwarz and Markov inequalities as well as
EN
�0
e`N .�/�`N .�0/ D 1 and the small ball estimate for … in (147), we have

PN�0

�
CN;K \ � 0N ;

Z
k�� O�MAPkRD>m

QıN

k� � O�MAPk
2
RD d….� jZ

.N// > e�Nı
2
N =8

�
� PN�0

�
CN;K \ � 0N ;

….k� � O�MAPkRD > m QıN jZ
.N//E…Œk� � O�MAPk

4
RD jZ

.N/� > e�2Nı
2
N =64

�
� PN�0

�
� 0N ; e

.1CKC NdC2�a/Nı2
N

Z
RD
k� � O�MAPk

4
RDe

`N .�/�`N .�0/ d….�/ > 1=64

�
. e.1CKC

NdC2�a/Nı2
N

Z
RD
.1C k�k4RD / d….�/ � e

�a2Nı
2
N

wheneverm and then a are large enough, since… has uniformly bounded fourth moments
and since k O�MAPkRD is uniformly bounded by a constant depending only on k�0k`2 on
the events �N .

Term I: On the events �N we have from (154) that for fixed m > 0 and all N large
enough

OB.m QıN / � ¹� W k� � �0;DkRD � 3=.8D
4=d logN/º:

On the latter set, by (155), the probability measures Q….� jZ.N// and ….� jZ.N// coincide
up to a normalising factor, and thus we can represent their Lebesgue densities as

Q�.� jZ.N// D pN�.� jZ
.N//; � 2 OB.m QıN /;

for some 0 < pN <1. Moreover, by the preceding estimates for terms II and III (which
hold just as well without the integrating factors k� � O�MAPk

2
RD

), we have both

pN…. OB.m QıN / jZ
.N//D Q…. OB.m QıN / jZ

.N//�1�e�Nı
2
N =8; so 1�e�Nı

2
N =8�pN ;

p�1N
Q…. OB.m QıN / jZ

.N//D…. OB.m QıN / jZ
.N//�1�e�Nı

2
N =8; so 1�e�Nı

2
N =8�1=pN

on events of sufficiently high PN
�0

-probability. On these events necessarily

pN 2

�
1 � e�Nı

2
N =8;

1

1 � e�Nı
2
N =8

�
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and so for N large enoughZ
OB.mQıN /

d
ˇ̌
….� jZ.N// � Q….� jZ.N//

ˇ̌
.�/

D j1 � pN j

Z
OB.mQıN /

�.� jZ.N// d� � j1 � pN j � e
�Nı2

N =4;

which is obvious for pN � 1 and follows from the mean value theorem applied to f .x/D
.1 � x/�1 near x D 0 also for pN > 1. Collecting the bounds for I; II; III completes
the proof.

4.2.4. An ‘exponential’ small ball lemma.

Lemma 4.15. Let G be as in (17) and let � be a probability measure on some .`2.N/-
measurable/ set

BN � ¹� 2 h
˛
W kG .�/ � G .�0/k

2
L2
� 2 NCı2N º for some NC > 0: (158)

Then for `N from (22) there exists b > 0 such that for every K > 0 large enough,

PN�0

�Z
BN

e`N .�/�`N .
O�MAP/ d�.�/ � e�.1CK/

NC2Nı2
N

�
. e�bNı

2
N : (159)

The same conclusion holds true with `N . O�MAP/ replaced by `N .�0/.

Proof. We proceed as in [44, Lemma 7.3.2] to deduce from Jensen’s inequality (applied
to log and

R
.�/ d�) that, for PN the empirical measure from (127), the probability in

question is bounded by

PN�0

�Z Z
BN

log
p�

p O�MAP

d�.�/ d.PN � P�0/

� �.1CK/ NC 2ı2N �

Z Z
BN

log
p�

p O�MAP

d�.�/ dP�0

�
:

Now just as in the proof of Lemma 4.10 we see that for all � 2 BN ,

�

Z
log

p�

p O�MAP

dP�0 D �

Z
log

p�

p�0
dP�0 �

Z
log

p�0
p O�MAP

dP�0

D
1
2
kG .�/ � G .�0/k

2
L2
�
1
2
kG . O�MAP/ � G .�0/k

2
L2
� NC 2ı2N

so that using also Fubini’s theorem the last probability can be bounded by

PN�0

�
p
N

Z Z
BN

log
p�0
p�

d�.�/ d.PN � P�0/ � K
NC 2
p
N ı2N =2

�
C PN�0

�
p
N

Z
log

p O�MAP

p�0
d.PN � P�0/ � K

NC 2
p
N ı2N =2

�
:
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For the first probability we decompose as in (132) and considerZN as in Lemma 3.12 for
fixed h� equal to either h1 or h2, where

h1.x/ D

Z
BN

.G .�/.x/ � G .�0/.x// d�.�/;

h2.x/ D

Z
BN

.G .�/.x/ � G .�0/.x//
2 d�.�/:

To each of these we apply Bernstein’s inequality (96) with x D N�2 and K large enough
to obtain the desired exponential bound, using uniform boundedness kG .�/ � G .�0/k1
� 2U from (18) and Jensen’s inequality in the variance estimates

EX Œh21.X/� � 2
NC 2ı2N � �

2

in the first case and

EX Œh22.X/� � 4U
2

Z
BN

kG .�/ � G .�0/k
2
L2
d�.�/ � 8U 2 NCı2N � �

2

for the second case. [This already proves the case where O�MAP is replaced by �0.]
For the second probability, restricting to the event in the supremum below, which has

sufficiently high PN
�0

-probability in view of Proposition 4.11, it suffices to bound for some
C > 0,

PN�0

�
sup

k�kh˛�2C; kG .�/�G .�0/k
2
L2
�2Cı2

N

p
N

ˇ̌̌̌Z
log

p�

p�0
d.PN �P�0/

ˇ̌̌̌
�K NC 2

p
N ı2N =2

�
:

This term corresponds to the empirical process bounded in and after (130) for s D 1.
Choosing K large enough the proof there now applies directly, giving the desired expo-
nential bound.

Appendix A. Review of convergence guarantees for ULA

In this section we collect some key results (that were used in our proofs) about con-
vergence guarantees for an Unadjusted Langevin Algorithm (ULA) for sampling from
strongly log-concave target measures; see [32, 36, 37] and also the classical reference
[89]. Our presentation follows the recent article [37].

Suppose that � is a Borel probability measure on RD which has a Lebesgue density
proportional to e�U for some potential U W RD ! R, specifically

�.B/ D

R
B
e�U.�/ d�R

RD e
�U.�/ d�

; B � RD measurable: (160)

Following [37, H1, H2] we will assume that the potential U has a ƒ-Lipschitz gradient
and is m-strongly convex.
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Assumption A.1. (1) The function U WRD!R is continuously differentiable and there
exists a constant ƒ � 0 such that for all �; N� 2 RD ,

krU.�/ � rU. N�/kRD � ƒk� �
N�kRD :

(2) There exists a constant 0 < m � ƒ such that for all �; N� 2 RD , we have

U. N�/ � U.�/C hrU.�/; N� � �iRD C
m

2
k� � N�k2RD :

Under Assumption A.1, the potential U has a unique minimiser over RD , which we
shall denote by �U . For the computation of �U via gradient descent methods, we have the
following standard result from convex optimisation (see [32, Theorem 1] and [21, (9.18)]).

Proposition A.2. Suppose U W RD ! R satisfies Assumption A.1. Then the gradient
descent algorithm given by

#kC1 D #k �
1

2ƒ
rU.#k/; k D 0; 1; 2; : : : ;

satisfies

k#k � �U k
2
RD �

2.U.#0/ � U.�U //

m

�
1 �

m

2ƒ

�k
; k D 0; 1; 2; : : : :

The results presented below establish corresponding geometric convergence bounds
for stochastic gradient methods which target the entire probability measure � (instead of
just its mode �U ). Define the continuous time Langevin diffusion process as the unique
strong solution .Lt W t � 0/ of the stochastic differential equation

dLt D �rU.Lt / dt C
p
2 dWt ; t � 0; Lt 2 RD; (161)

where .Wt W t � 0/ is a D-dimensional standard Brownian motion. It is well known that
the Markov process .Lt W t � 0/ has � from (160) as its invariant measure. The Euler–
Maruyama discretisation of the dynamics (161) gives rise to the discrete-time Markov
chain .#k W k � 0/,

#kC1 D #k � rU.#k/C
p
2 �kC1; k � 0; (162)

where .�k W k � 1/ form an i.i.d. sequence of D-dimensional standard Gaussian
N.0; ID�D/ vectors, and  > 0 is some fixed step size. We will refer to .#k/ as the
unadjusted Langevin algorithm (ULA) in what follows. We denote by P�init ;E�init the law
and expectation operator, respectively, of the Markov chain .#k W k � 1/ when started at a
deterministic point #0 D �init. We also write L.#k/ for the (marginal) distribution of the
k-th iterate #k .

For any measurable functionH WRD!R and any Jin;J � 0, let us define the average
of H along an ULA trajectory after ‘burn-in’ period Jin by

O�JJin
.H/ D

1

J

JinCJX
kDJinC1

H.#k/:
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Proposition A.3. Suppose that U satisfies Assumption A.1 and suppose  � 2=.mCƒ/.
Then for all J; Jin � 1; x > 0 and any Lipschitz function H W RD ! R, we have the
concentration inequality

P�init

�
O�JJin

.H/ � E�init Œ O�
J
Jin
.H/� � x

�
� exp

�
�

Jx2m2

16kHk2Lip.1C 2=.mJ//

�
:

Proof. The statement follows directly from [37, Theorem 17], noting that � D
2mƒ=.m C ƒ/ 2 Œm; 2m� and that the constant vN;n./ from [37, (28)] can be upper
bounded by

1C
m�1 C 2=.mCƒ/

J
� 1C 2=.mJ /:

Proposition A.4. Suppose that U satisfies Assumption A.1 and let ; Jin; J and H be as
in Proposition A.3. Then for � as in (160) we have

W 2
2 .L.#k/; �/ � 2.1 �m=2/

k Œk�init � �U k
2
RD CD=m�C b./=2; k � 0; (163)

where

b./ D 36
Dƒ2

m2
C 12

2Dƒ4

m3
; (164)

as well as �
E�init Œ O�

J
Jin
.H/� �E�ŒH �

�2
� kHk2Lip

1

J

JinCJX
kDJinC1

W 2
2 .L.#k/; �/: (165)

Proof. The display (165) is derived in [37, (27)]. The bound (163) follows from an applic-
ation of [37, Theorem 5] with fixed step size  >0, where in our case, noting again that � 2
Œm; 2m�, the expression u.1/n ./ there is upper bounded by 2.1�m=2/k and the expres-
sion u.2/n ./ there is upper bounded by (using  � min ¹2=ƒ; 1=mº � min ¹2=ƒ; 2=�º)

ƒ2D2.��1 C /

�
2C

ƒ2

m
C
ƒ22

6

� kX
iD1

.1 � �=2/k�i

� ƒ2D2.��1 C /

�
2C

ƒ2

m
C
ƒ22

6

�
2

�
� ƒ2D

�
��2 C



�

��
6C

2ƒ2

m

�
� ƒ2Dm�2

�
18C

6ƒ2

m

�
;

which equals (164).

Appendix B. Auxiliary results

B.1. Analytical properties of Schrödinger operators and link functions

Recall the inverse Schrödinger operators Vf from (106).
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Lemma B.1. There exists a constant C > 0 such that for any f 2 C.O/ with f � 0, the
following holds:

(i) We have the estimates

kVf Œ �kL2 � Ck kL2 ;  2 L2.O/;

kVf Œ �k1 � Ck k1;  2 C.O/:
(166)

(ii) For any  2 L2.O/, we have

kVf Œ �kH2 � C.1C kf k1/k kL2 ; (167)

as well as

1

C.1C kf k1/
k k.H2

0
/� � kVf Œ �kL2 � C.1C kf k1/k k.H2

0
/� : (168)

(iii) If also d � 3, then for any  2 L2.O/ and any f; Nf 2 C.O/ with f; Nf � 0, we have

kVf Œ � � V Nf Œ �k1 . .1C kf k1/k kL2kf �
Nf k1: (169)

Proof. Part (i) is a direct consequence of the Feynman–Kac formula for Vf Œ � from [28]
(see also [81, Lemma 25]). The upper bounds in (ii) likewise are proved by standard
arguments for elliptic PDEs (see, e.g., [81, Lemma 26]). In order to prove the lower bound
in (168), let us denote the Schrödinger operator by Sf Œw� D 1

2
�w � f w. Since Sf W

H 2
0 ! L2 satisfies Sf Vf Œ � D  , it suffices to show that

kSfwk.H2
0
/� . .1C kf k1/kwkL2 ; w 2 H 2

0 :

Using the divergence theorem we have, for such w,

kSfwk.H2
0
/� D sup

 2H2
0
W k k

H2
0

�1

ˇ̌̌̌Z
O

 Sfw

ˇ̌̌̌

D sup
 2H2

0
W k k

H2
0

�1

ˇ̌̌̌Z
O

wSf  

ˇ̌̌̌
� kwkL2 sup

 2H2
0
W k k

H2
0

�1

kSf  kL2 ;

and the term on the right hand side is further estimated by

kSf  kL2 . k� kL2 C kf  kL2 . 1C kf k1k kL2 � 1C kf k1;

which proves (168). Finally, (169) is proved by using a Sobolev embedding as well as
(166) and (167):

kVf Œ � � V Nf Œ �k1 .
Vf �.f � Nf /V Nf Œ ��H2 . .1C kf k1/k.f � Nf /Vf Œ �kL2

. .1C kf k1/kf � Nf k1k kL2 :
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For any normed vector spaces .V;k � kV / and .W;k � kW / letL.V;W /, denote the space
of bounded linear operators V !W , equipped with the operator norm. For g 2 C1.@O/
and any f 2 C.O/ with f > 0, there exists a unique (weak) solution G.f / 2 C.O/
of (11) (see [28, Theorem 4.7]. We define the operators DGf 2 L.C.O/; C.O// and
D2Gf 2 L.C.O/; L.C.O/; C.O/// as

DGf Œh1� D Vf Œh1uf �;

.D2Gf Œh1�/Œh2� D Vf
�
h1DGf Œh2�

�
C Vf

�
h2DGf Œh1�

�
; h1; h2 2 C.O/:

(170)

The next lemma establishes that these operators are suitable Fréchet derivatives of G on
the open subset ¹f 2 C.O/ W f > 0º of C.O/.

Lemma B.2. (i) For any f 2 C.O/ with f > 0, we haveG.f / 2 C.O/. Moreover there
exists C > 0 such that for any f; Nf 2 C.O/ with f; Nf > 0,

kG. Nf / �G.f /k1 � Ck Nf � f k1; (171)

as well as

kG. Nf / �G.f / �DGf Œ Nf � f �k1 � Ck Nf � f k
2
1;

kDG Nf �DGf �D
2Gf Œ Nf � f �kL.C.O/;C.O// � Ck Nf � f k

2
1:

(172)

(ii) For any integer ˛ > d=2 there exists a constant C > 0 such that for all f 2H˛ with
infx2O f .x/ > 0, we have

kG.f /kH2 � C.kf kL2 C kgkC2.@O//; (173)

kG.f /kH˛C2 � C.1C kf k
˛=2C1
H˛ /kgkC˛C2.@O/: (174)

Proof. The estimate (171) follows from the identityG. Nf /�G.f /D Vf Œ. Nf � f /G. Nf /�,
(166) and (18). Arguing similarly and using (171), we further obtain

kG. Nf / �G.f / �DGf Œ Nf � f �k1 D kVf Œ. Nf � f /.G. Nf / �G.f //�k1

. k. Nf � f /.G. Nf / �G.f //k1 . k Nf � f k21;

which proves the first part of (172). For the second part of (172) we have, for any h 2
C.O/,

DG Nf Œh� �DGf Œh� D V Nf Œhu Nf � � Vf Œhuf �

D V Nf Œh.u Nf � uf /�C .V Nf � Vf /Œhuf �

D Vf
�
hDGf Œ Nf � f �

�
CR1 C Vf

�
. Nf � f /Vf Œhuf �

�
CR2

D .D2Gf Œ Nf � f �/Œh�CR1 CR2;

with remainder terms R1; R2 given by

R1 D ŒV Nf � Vf �Œh.u Nf � uf /�C Vf
�
h.u Nf � uf �DGŒh�/

�
;

R2 D ŒV Nf � Vf �.huf / � Vf
�
. Nf � f /Vf Œhuf �

�
:
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Using the identity .V Nf � Vf / D Vf Œ. Nf � f /V Nf Œ �� with  D h.u Nf � uf /, Lemma B.1
as well as the first part of (172), we have

kR1k1 . k Nf � f k1kh.u Nf � uf /k1 C khk1kufCh � uf �D NGŒh�k1
. k Nf � f k21khk1;

and arguing similarly,

kR2k1 D
Vf �. Nf � f /.V Nf � Vf /Œhuf ��1 . k Nf � f k1k.V Nf � Vf /Œhuf �k1

. k Nf � f k21khk1:

This completes the proof of (172).
To prove (173), we use the fact that .�; tr/ W H 2.O/! L2 � H 3=2.@O/ [where tr

denotes the boundary trace operator for the domain O] is a topological isomorphism (see
[66, Theorem II.5.4]) such that in particular

kG.f /kH2 . kf uf kL2 C kgkC2.@O/ � kf kL2 C kgkC2.@O/:

where we have also used (18). Finally, (174) is proved in [81, Lemma 27].

B.1.1. Properties of the map ˆ�. We summarise some properties of ‘regular’ link func-
tions from Definition 2.1. We recall the notation ˆ� for the associated composition
operator from (15). For any F 2 C.O/, define the operators Dˆ�F 2 L.C.O/; C.O//,
D2ˆ�F 2 L.C.O/; L.C.O/; C.O/// by

Dˆ�F ŒH � D Hˆ
0
ı F; .D2ˆ�F ŒH �/ŒJ � D HJˆ

00
ı F; H; J 2 C.O/: (175)

Then for any F;H; J 2 C.O/ and x 2 O, a Taylor expansion immediately implies that,
with �x ; N�x denoting intermediate points between F.x/ and .F CH/.x/,

j.ˆ�.F CH/ �ˆ�.F / �Dˆ�F ŒH �/.x/j D jH
2.x/ˆ00.�x/=2j

� kHk21 sup
t2R
jˆ00.t/j;

j.Dˆ�FCH �Dˆ
�
F �D

2ˆ�F ŒH �/ŒJ �.x/j D jJ.x/H
2.x/ˆ000. N�x/=2j

� kJ k1kHk
2
1 sup
t2R
jˆ000.t/j;

whence Dˆ�;D2ˆ� are the Fréchet derivatives of ˆ� W C.O/! C.O/.
We also need the basic fact that for any integer ˛ > d=2 there exists C > 0 such that

for all F 2 H˛.O/,
kˆ ı F kH˛ � C.1C kˆ ı F k

˛
H˛ / (176)

(see [81, Lemma 29]). Finally, note that by the definition of ˆ, there exists C 0 > 0 such
that for any NF ;F 2 C.O/,

kˆ ı NF �ˆ ı F k1 � Ck NF � F k1; kˆ ı NF �ˆ ı F kL2 � Ck NF � F kL2 : (177)
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B.1.2. Chain rule for Fréchet derivatives. Let U;V be normed vector spaces and D � U

an open subset. For a map T W D ! V we denote by DT� 2 L.U; V / and D2T� 2

L.U; L.U; V // the first and second order Fréchet derivatives at � 2 D , respectively,
whenever they exist. The following basic lemma then follows directly from the chain
rule.

Lemma B.3. Suppose U;V;W are .open subsets of / normed vector spaces, and suppose
that A W U ! V and B W V ! W are both twice differentiable in the Fréchet sense. Then
for any � 2 U and H1;H2 2 U , we have D.B ı A/� D DBA.�/ ıDA� and

.D2.B ı A/� ŒH1�/ŒH2� D
�
D2BA.�/

�
DA� ŒH1�

���
DA� ŒH2�

�
CDBA.�/

�
.D2A� ŒH1�/ŒH2�

�
: (178)

B.2. Proof of Proposition 3.6

We first record the following basic lemma without proof.

Lemma B.4. Let j � j be an ellipsoidal norm on RD with associated matrix M , j� j2 D
�TM� and define the function n W � ! j� j. Then for any � ¤ 0, we have

rn.�/ D
M�

j� j
; r2n.�/ D

M

j� j
�
M�.M�/T

j� j3
; (179)

as well as the norm estimates

krn.�/kRD �
p
�max.M/; (180)

kr
2n.�/kop � 2�max.M/=j� j1: (181)

Using Lemma B.4, we prove the following bounds on the cut-off function ˛� .

Lemma B.5. If j � j1 is an ellipsoidal norm with associated matrix M , j� j21 D �TM� ,
then the function ˛� from (53) satisfies, for all � 2 RD ,

kr˛�.�/kRD �
k˛kC1

p
�max.M/

�
; kr2˛�.�/kop �

4k˛kC2�max.M/

�2
:

Proof. We may assume without loss of generality that �init D 0 and we write n.�/D j� j1.
The gradient bound is obtained by the chain rule and (180):

kr˛�.�/kRD D k�
�1˛0.j� j1=�/rn.�/kRD � �

�1
k˛kC1

p
�max.M/:

For the Hessian, we similarly employ the chain rule, (180), (181) as well as the fact that
˛0.t/ D 0 when t 2 .0; 3=4/:

kr
2˛�.�/kop � �

�2
k˛00.j� j1=�/rn.�/rn.�/

T
kop C �

�1
k˛0.j� j1=�/r

2n.�/kop

� ��2k˛kC2krn.�/k
2
RD C �

�1
k˛kC11¹j� j�3�=4º �

2�max.M/

j� j1

� 4��2k˛kC2�max.M/:
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We now turn to the proof of Proposition 3.6. Throughout, we work on the event
Econv \ Einit defined by (49), (50); moreover, we assume without loss of generality that
�init D 0.

Proof of Proposition 3.6. We divide the proof into five steps.

1. Local lower bound for ˛�`N . For the set

V WD ¹� W j� j1 � 3�=4º;

by definition of Einit, we have V � B. Thus using the definitions of Econv and of ˛� , we
obtain

inf
�2V

�min.�r
2Œ˛�`N �.�// � Ncmin=2: (182)

2. Upper bound for ˛�`N . By the chain rule, Lemma B.5, the definition of Econv and
using k˛kC2 � 1, we deduce that for any � 2 RD and some c D c.˛/,

kr
2Œ˛�`N �.�/kop

� j`N .�/j kr
2˛�.�/kop C 2kr˛�.�/kRDkr`N .�/kRD C j˛�.�/j kr

2`N .�/kop

� 2 sup
�2B

�
Œj˛�.�/j C kr˛�.�/kRD C kr

2˛�.�/kop�Œj`N .�/j C kr`N .�/kRD

C kr2`N .�/kop�
�

� c.1C �max.M/=�2/ �N.cmax C 1/: (183)

3. Global lower bound for r2g� . First we note that g� is convex on all of RD: Indeed,
this follows from the identity � D Q� � '�=8, the convexity of the functions n W � 7! j� j1,
Q� and the fact that convolution with the positive function '�=8 preserves convexity. As
g� has C 2 regularity, it follows that r2g� � 0 on all of RD .

We next prove a quantitative lower bound for r2g� on the set V c . By the chain rule
and Lemma B.4, for any � 2 RD , writing v D rn.�/, we have

r
2g�.�/ D 

00
� .j� j1/rn.�/rn.�/

T
C  0�.j� j1/r

2n.�/

D  00� .j� j1/vv
T
C
 0�.j� j1/

j� j1
.M � vvT /

D

�
 00� .j� j1/ �

 0�.j� j1/

j� j1

�
vvT C

 0�.j� j1/

j� j1
M

DW A.j� j1/vv
T
C B.j� j1/M: (184)

To derive lower bounds for the functions B.�/ and A.�/, we first observe that by the sym-
metry of '�=8 around 0, for any t � 3�=4 we have

 0�.t/ D

Z
Œ��=8;�=8�

'�=8.y/ � 2.t � y � 5�=8/ dy D 2.t � 5�=8/: (185)

Thus the function B.t/ D  0�.t/=t strictly increases on .3�=4;1/, and for any t � 3�=4,
we obtain

B.t/ � B.3�=4/ D
 0�.3�=4/

3�=4
D 2

3�=4 � 5�=8

3�=4
D
1

3
: (186)
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For the term A.�/, we note that for any t � 3�=4, using  00� .t/ D 2 as well as (185), we
have

A.t/ D 2 �
2.t � 5�=8/

t
� 0: (187)

Combining the displays (184), (186), (187), we have proved the lower bound

inf
�2V c

�min.r
2g�.�// � �min.M/=3: (188)

4. Global upper bound for r2g� . We note that the functions A.�/, B.�/ from (184)
satisfy

sup
t2.0;1/

jA.t/j � sup
t2.0;1/

�
j 0�.t/=t jCj

00
� .t/j

�
� 4; sup

t2.0;1/

jB.t/j � sup
t2.0;1/

j 0�.t/=t j � 2:

Hence, by (184) and Lemma B.4, we obtain

kr
2g�.�/kop � 4kvv

T
kop C 2kMkop � 6�max.M/; � 2 RD : (189)

5. Combining the bounds. Combining the estimates (182), (183) and (188), we obtain
that

inf
�2V

�min.�r
2 Q̀
N .�// � Ncmin=2;

inf
�2V c

�min.�r
2 Q̀
N .�// � K�min.M/=3 � c.1C �max.M/=�2/N.cmax C 1/:

(190)

In particular, there exists C � 3 such that for any K satisfying (55), we have

inf
�2RD

�min.�r
2 Q̀
N .�// � min ¹Ncmin=2;K�min.M/=6º D Ncmin=2;

which completes the proof of (56). To prove (57), we use (183), (189) and (55) to find
that for all � ¤ N� 2 RD ,

kr Q̀N .�/ � r Q̀N . N�/kRD

k� � N�kRD
� sup
�2RD

kr
2 Q̀
N .�/kop

� ck˛kC2.1C �max.M/=�2/N.cmax C 1/C 6K�max.M/

� 7K�max.M/:

B.3. Initialisation

In this section we prove the existence of a polynomial time ‘initialiser’ �init D

�init.Z
.N// 2 RD (that lies in the region B1=logN from (99) of strong log-concavity of

the posterior measure with high PN
�0

-probability, when ˛ > 6) in the Schrödinger model.

Theorem B.6. Suppose �0 2 h˛.O/ for some ˛ > 2C d=2 with d � 3. Then there exists
a measurable function �init 2 RD of the data Z.N/ from (20) and large enough M 0 > 0
such that for all N;D 2 N and some Nc > 0,

PN�0 .k�init � �0;DkRD > M 0N�.˛�2/=.2˛Cd// . e�NcN
d=.2˛Cd/

:
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Moreover, �init is the output of a polynomial time algorithm involving O.N b0/, b0 > 0;

iterations of gradient descent .each requiring a multiplication with a fixed D0 �D0 mat-
rix, D0 . N d=.2˛Cd//.

Proof. Step I. To start, consider the wavelet frame

¹�l;r W 1 � r � Nl ; l 2 Nº; Nl . 2ld ;

of L2.O/ constructed in [97, Theorem 5.51]. Then for data arising from (19), choosing

2J ' N 1=.2˛Cd/
D .Nı2N /

1=d ; ıN D N
�˛=.2˛Cd/; nJ �

X
l�J

Nl . 2Jd ;

and for multiscale vectors .�l;r / 2 RnJ , define

O� D arg min
�2RnJ

�
1

N

NX
iD1

�
Yi �

X
l�J;r

�l;r�l;r .Xi /
�2
C ı2N k�k

2
h˛

�
; k�k2h˛ D

X
l;r

22l˛�2l;r ;

(191)
noting that the arg min set is a singleton due to strong convexity. Next we set

Ou D Ou.Z.N// D
X
l�J;r

O�l;r�l;r ; uf0;J D
X
l�J;r

�0;l;r�l;r ;

where the �0;l;r 2 h˛C2 are frame coefficients of uf0 D G .�0/ 2 H
˛C2 furnished by

[97, Theorem 5.51] and the elliptic regularity estimate (174). In particular, by the Sobolev
embedding h˛C2 � b˛11 (d < 4) and again [97, Theorem 5.51] we can prove

kuf0 � uf0;J kL2 . kuf0 � uf0;J k1 . 2�J˛ . ıN : (192)

We now apply a standard result from M estimation [99, 100], with empirical norms

kuk2.N/ D
1

N

NX
iD1

u2.Xi /;

conditional on the design X1; : : : ; Xn, to obtain the following bound.

Proposition B.7. For ˛ > d=2, all N and some constant c > 0, we have

PN�0

�
k Ou� uf0k

2
.N/C ı

2
N k
O�k2h˛ > kuf0 � uf0;J k

2
.N/C ı

2
N k�0;l;rk

2
h˛ j.Xi /

N
iD1

�
� e�cNı

2
N :

(193)

Proof. We apply [99, Theorem 2.1]. We can bound the k � k1 and then also k � k.N/-metric
entropy of the class of functions°

u W u D
X
l�J;r

�l;r�l;r ; k�k
2
h˛ � m

±
; m > 0;

by the metric entropy of a ball of radiusm in anH˛-Sobolev space, which by [44, (4.184)]
is of orderH.�/ . .m=�/d=˛ for everym > 0. Then arguing as in [99, Section 3.1.1] (the
only notational difference being that here d > 1), the result follows.
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This implies in particular, using kuk.N/ � kuk1, (192), �0;l;r 2 h˛C2 and [97, The-
orem 5.51], that for some C;C 0 > 0,

PN�0 .k Ouk
2
H˛ > C/ � P

N
�0
.kO�k2h˛ > C

0/ � exp¹�cNı2N º: (194)

as well as
PN�0 .k Ou � uf0;J k

2
.N/ > Cı

2
N / � exp¹�cNı2N º: (195)

In Step IV below we establish the following restricted isometry type bound:

PN�0

�ˇ̌̌̌
k Ou � uf0;J k

2
.N/

k Ou � uf0;J k
2
L2

� 1

ˇ̌̌̌
�
1

2

�
� 1 � c00e�c

0Nı2
N (196)

for some constants c0; c00 > 0 so that in particular

PN�0

�
1

2
�
k Ou � uf0;J k

2
.N/

k Ou � uf0;J k
2
L2

�
3

2

�
� 1 � c00e�c

0Nı2
N :

On the event AN in the last probability we can write, using again (192) and (195), for M
large enough,

PN�0 .k Ou � uf0k
2
L2
> Mı2N / � P

N
�0
.k Ou � uf0;J k

2
L2
> .M=2/ı2N /

� PN�0

�
k Ou � uf0;J k

2
L2

k Ou � uf0;J k
2
.N/

k Ou � uf0;J k
2
.N/ > .M=2/ı

2
N ;AN

�
C c00e�c

0Nı2
N

� PN�0 .k Ou � uf0;J k
2
.N/ > .M=4/ı

2
N /C c

00e�c
0Nı2

N . e�cNı
2
N C e�c

0Nı2
N :

Overall what precedes implies that we can find M large enough such that for some con-
stants Nc; Nc0 > 0,

PN�0 .k Ou � uf0k
2
L2
�Mı2N and k Ouk2H˛ �M/ � 1 � Nc0e�NcNı

2
N : (197)

Step II. By definition of the k � kh˛ -norm, the objective function minimised in (191)
over RnJ is m-strongly convex with convexity bound m � ı2N . Moreover, noting that the
sum-of-squares term QN appearing in (191) satisfies

@QN

@�l 0;r 0
.�/ D �

2

N

NX
iD1

h
Yi �

X
l�J;r

�l;r�l;r .Xi /
i
�l 0;r 0.Xi /; l 0 � J; 1 � r 0 � Nl 0 ;

we can deduce that the gradient of the objective function is globally Lipschitz with con-
stant at most of orderO.2Jd /DO.Nı2N /, using standard properties of the wavelet frame
from [97, Definition 5.25]. Using (18), (96) and a standard tail inequality for �2-random
variables [44, Theorem 3.1.9], one shows further that for some NC > 0 and on events of
sufficiently high PN

�0
-probability,

QN .0/ D
1

N

NX
iD1

."2i C 2"iuf0.Xi /C u
2
f0
.Xi // � NC :
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By Proposition A.2 and using the standard sequence norm inequality

kvkhˇ � 2
Jˇ
kvk`2 . N ˇ=.2˛Cd/

kvk`2 ; v 2 RnJ ; ˇ � 0;

we deduce that on preceding events and for any fixed p > 0 there exists b0 > 0 such that
the output �init 2 RnJ from O.N b0/ iterations of gradient descent satisfies k�init � O�kh˛

� N�p: In particular, we can choose p such that, denoting

uinit WD
X
l�J;r

�init;l;r�l;r ;

we have k Ou� uinitkH˛ . kO�� �initkh˛ D o.ıN /; hence by virtue of (197), we may restrict
the rest of the proof to an event of sufficiently high probability where uinit satisfies

kuinit � uf0k
2
L2
C ı2N kuinitk

2
H˛ � .2M C 1/ı

2
N : (198)

Step III. From the interpolation inequality for Sobolev norms from Section 1.3 and (198)
we now obtain, with sufficiently high PN

�0
-probability,

kuinit � uf0kH2 �
NMN�.˛�2/=.2˛Cd/ (199)

and the Sobolev imbedding (d < 4) further implies kuinit � uf0k1 ! 0 as N !1 so
that we deduce from (118) that Ou � uf0=2 � c > 0 with sufficiently high PN

�0
-probability.

So on these events we can define a new estimator

finit D
�uinit

2uinit
; noting that f0 D

�uf0
2uf0

: (200)

For Finit Dˆ
�1 ı finit, using also the regularity of the inverse link function (177), we then

see
kFinit � F�0kL2 . kfinit � f0kL2 . kuinit � uf0kH2 ;

and hence for some M 0 > 0,

PN�0 .kFinit � F�0kL2 �M
0N�.˛�2/=.2˛Cd// � 1 � Nc0e�NcNı

2
N :

We finally define �init as

�init D .hFinit; ekiL2 W k � D/ 2 RD; D 2 N;

the vector of the first D ‘Fourier coefficients’ of Finit. Then we deduce from Parseval’s
identity that k�init � �0;DkRD �kFinit �F�0kL2 , which combined with the last probability
inequality establishes convergence rate desired in Theorem B.6.

Step IV. Proof of (196). Let us introduce the symmetric nJ � nJ ; nJ . 2Jd ; matrices

O�.l;r/;.l 0;r 0/ D
1

N

NX
iD1

�l;r .Xi /�l 0;r 0.Xi /; �.l;r/;.l 0;r 0/ D

Z
O

�l;r .x/�l 0;r 0.x/ dP
X .x/;
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and vectors . O� D O�l;r /; .�0 D �0;l;r / 2 RnJ . Then we can write

k Ou � uf0;J k
2
.N/ � k Ou � uf0;J k

2
L2.O/

D . O� � �0/
T . O� � �/. O� � �0/

and hence (one minus the) probability relevant in (196) can be bounded as

Pr
�ˇ̌̌̌
. O� � �0/

T . O� � �/. O� � �0/

. O� � �0/T�. O� � �0/

ˇ̌̌̌
> 1=2

�
� Pr

�
sup

v2RnJ WvT �v�1

jvT . O� � �/vj > 1=2
�
:

We also note that by the frame property of the ¹�l;rº, specifically from [97, (5.252)] with
s D 0; p D q D 2, for any uv D

P
l�J;r vl;r�l;r we have the norm equivalence

kvk2RnJ ' kuvk
2
L2
D

X
l;l 0�J; r;r 0

vl;rvl 0;r 0�.l;r/;.l 0;r 0/ D v
T�v DW kvk2� ; (201)

with the constants implied by' independent of J . Next for any � > 0 let

¹vm W m D 1; : : : ;MJ;�º; MJ;� . .3=�/nJ ;

denote the centres of balls of k � k� -radius � covering the unit ball V� of .RnJ ; k � k�/
(e.g., as in [44, Prop. 4.3.34] and using (201)). Then by the Cauchy–Schwarz inequality,

jvT . O� � �/vj D j.v � vm C vm/
T . O� � �/.v � vm C vm/j

� kv � vmk
2
� sup
v2V�

jvT . O� � �/vj C 2kv � vmk�k. O� � �/vk� C jv
T
m.
O� � �/vmj

� .�2 C 2�/ sup
v2V�

jvT . O� � �/vj C jvTm.
O� � �/vmj;

so choosing � small enough so that �2 C 2� < 1=4 we obtain

sup
v2V�

jvT . O� � �/vj � .4=3/ max
mD1;:::;MJ

jvTm.
O� � �/vmj; MJ �MJ;� : (202)

In particular, using also MJ . ec02
Jd
� ec1Nı

2
N , the last probability is thus bounded by

Pr
�

max
mD1;:::;MJ

jvTm.
O� ��/vmj>1=4

�
� ec1Nı

2
N max

m
Pr
�
jvTm.
O� ��/vmj>1=4

�
: (203)

Each of the last probabilities can be bounded by Bernstein’s inequality [44, Prop. 3.1.7]
applied to

vTm.
O� � �/vm D

1

N

NX
iD1

.Zi �EZi /;

with i.i.d. variables Zi D Zi;m given by

Zi D
X

l;l 0�J;r;r 0

vm;l;rvm;l 0;r 0�l;r .Xi /�l 0;r 0.Xi /

D

X
l�J;r

vm;l;r�l;r .Xi /
X
l 0�J;r 0

vm;l 0;r 0�l 0;r 0.Xi /; (204)
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with vectors vm all satisfying kvmk� � 1. For these variables we have, by the Cauchy–
Schwarz inequality,

jZi j �
ˇ̌̌ X
l�J;r

vm;l;r�l;r .�/
ˇ̌̌2
� kvmk

2
RnJ

X
l�J;r

.�l;r .�//
2
� c2Jd � U

where the constant c depends only on the wavelet frame (cf. (201) and also [97, Definition
5.25]). Similarly, using the previous estimate, we can bound

EŒZ2i �DE
h� X
l�J;r

vm;l;r�l;r .Xi /
�4i
� U

Z
O

h X
l�J;r

vm;l;r�l;r .x/
i2
dx D U kvmk

2
� � U:

Now Proposition 3.1.7 in [44] implies, for some constant c0 > 0,

Pr
�
N jvm. O� � �/vmj > N=4

�
� 2 exp

²
�

N 2=16

2NU C .2=12/NU

³
� 2e�c0=ı

2
N

since U D c2Jd ' Nı2N . Now since ˛ > d=2 we have ı2N D o.1=
p
N/ and thus

1=ı2N � Nı2N , which means that the r.h.s. in (203) is bounded by a constant multiple
of e�c

0Nı2
N for some c0 > 0, completing the proof.
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