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Abstract. This paper is devoted to the local null-controllability of the nonlinear KdV equation
equipped the Dirichlet boundary conditions using the Neumann boundary control on the right.
Rosier proved that this KdV system is small-time locally controllable for all noncritical lengths
and that the uncontrollable space of the linearized system is of finite dimension when the length is
critical. Concerning critical lengths, Coron and Crépeau showed that the same result holds when
the uncontrollable space of the linearized system is of dimension 1; later Cerpa, and then Cerpa
and Crépeau, established that the local controllability holds at a finite time for all other critical
lengths. In this paper, we prove that, for a class of critical lengths, the nonlinear KdV system is not
small-time locally controllable.
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1. Introduction

We are concerned with the local null-controllability of the (nonlinear) KdV equation
equipped the Dirichlet boundary conditions using the Neumann boundary control on the
right. More precisely, given L > 0 and T > 0, we consider the following control system:8̂̂<̂
:̂
yt .t; x/C yx.t; x/C yxxx.t; x/C y.t; x/yx.t; x/ D 0 for t 2 .0; T /; x 2 .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 for t 2 .0; T /;

yx.t; x D L/ D u.t/ for t 2 .0; T /;
(1.1)

and
y.t D 0; x/ D y0.x/ for x 2 .0; L/: (1.2)

Here y is the state, y0 is the initial datum, and u is the control. More precisely, we are
interested in the small-time local controllability of this system.

The KdV equation has been introduced by Boussinesq [15] and Korteweg and de Vries
[30] as a model for propagation of surface water waves along a channel. This equation also
furnishes a very useful nonlinear approximation model including a balance between weak
nonlinearity and weak dispersive effects. The KdV equation has been intensively studied
from various aspects, including well-posedness, existence and stability of solitary waves,
integrability, long-time behavior, etc.; see e.g. [29, 31, 33, 44, 46].

1.1. History

The controllability properties of system (1.1)–(1.2) (or of its variants) have been studied
intensively; see e.g. the surveys [19, 40] and the references therein. Let us briefly review
the existing results on (1.1) and (1.2). For the initial and final datum in L2.0; L/ and
controls in L2.0; T /, Rosier [38] proved that the system is small-time locally controllable
around 0 provided that the length L is not critical, i.e., L … N , where

N WD

²
2�

r
k2 C kl C l2

3
I k; l 2 N�

³
: (1.3)

To this end, he studied the controllability of the linearized system using the Hilbert
Uniqueness Method and compactness-uniqueness arguments. Rosier also showed that the
linearized system is controllable if L 62 N . Moreover, he established that when L 2 N ,
the linearized system is not controllable. More precisely, he showed that there exists a
nontrivial finite-dimensional subspace M of L2.0; L/ such that its orthogonal space is
reachable from 0 whereas M is not.



On the small-time local controllability of KdV equations 1195

To tackle the control problem for the critical length L 2 N with initial and final
datum in L2.0; L/ and controls in L2.0; T /, Coron and Crépeau introduced the power
series expansion method [24]. The idea is to take into account the effect of the nonlinear
term yyx absent in the linearized system. Using this method, they showed [24] (see also
[22, Section 8.2]) that system (1.1)–(1.2) is small-time locally controllable if L D m2�
for m 2 N� satisfying

À.k; l/ 2 N� �N� with k2 C kl C l2 D 3m2 and k ¤ l: (1.4)

In this case, dimMD 1 and M is spanned by 1� cosx. Cerpa [18] developed the analysis
in [24] to prove that system (1.1)–(1.2) is locally controllable in a finite time in the case
dim M D 2. This corresponds to the case where

L D 2�

r
k2 C kl C l2

3

for some k; l 2N� with k > l , and there are nom;n 2N� withm> n andm2CmnC n2

D k2 C kl C l2. Later, Crépeau and Cerpa [20] succeeded in extending the ideas in [18]
to obtain local controllability for all other critical lengths in a finite time. To summarize,
concerning the critical lengths with initial and final datum in L2.0; L/ and controls in
L2.0; T /, small-time local controllability is valid when dim M D 1 and local controllab-
ility in large enough time holds when dim M � 2.

1.2. Statement of the result

The control properties of KdV equations have been intensively studied previously but the
following natural question remains open (see [23, Open problem 10], [18, Remark 1.7]):

Open Problem 1.1. Is system (1.1)–(1.2) small-time locally controllable for all L 2 N ?

In this paper we give a negative answer to this question. We show that system (1.1)–
(1.2) is not small-time locally controllable for a class of critical lengths. More precisely,
we have

Theorem 1.2. Let k; l 2 N� be such that 2k C l 62 3N�. Assume that

L D 2�

r
k2 C kl C l2

3
:

Then system (1.1)–(1.2) is not small-time locally null-controllable with controls in H 1

and initial and final datum in H 3.0; L/ \H 1
0 .0; L/, i.e., there exist T0 > 0 and "0 > 0

such that, for all ı > 0, there is y0 2 H 3.0; L/ \H 1
0 .0; L/ with ky0kH3.0;L/ < ı such

that for all u 2 H 1.0; T0/ with kukH1.0;T0/ < "0 and u.0/ D y00.L/, we have

y.T0; �/ 6� 0;

where y 2 C.Œ0; T0�I H
3.0; L// \ L2.Œ0; T0�I H

4.0; L// is the unique solution of
(1.1)–(1.2).
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Open Problem 1.3. We have not been able to establish that the control system (1.1)–(1.2)
is not small-time locally controllable with initial and final datum in L2.0; L/ and control
in L2.0; T / for a critical length as in Theorem 1.2. It would be interesting to extend the
method in the paper to deal with this problem. It would also be interesting to know what
is the smallest s such that system (1.1)–(1.2) is not small-time locally controllable with
controls inH s.0;T /, and initial and final datum inD.As/, A being defined in Lemma 2.1
below.

Remark 1.4. Concerning Open Problem 1.3, maybe the smallest s is not an integer, as
in the nonlinear parabolic equation studied in [8], a phenomenon which is specific to the
infinite dimension as shown in [7]. Note that in [32] a noninteger s already appears for
an obstruction to small-time local controllability; however, it is not known if this s is the
optimal one.

Open Problem 1.5. It would also be interesting to know what is the optimal time for
local null controllability. In particular, one may ask if for T � T >, with T > defined in
[20, p. 463], the control system (1.1)–(1.2) is not locally null controllable in time T (for
example with initial and final datum in H 3.0; L/ \H 1

0 .0; L/ and control in H 1.0; T /)
for critical lengths L as in the above theorem.

Open Problem 1.6. Finally, it would be interesting to know if the assumption
2k C l 62 3N� can be replaced by the weaker assumption dim M > 1. In other words,
is it true that the control system (1.1)–(1.2) is not small-time locally controllable when
dim M > 1?

In Theorem 1.2, we deal with controls in H 1.0; T0/ and initial and final datum in
H 3.0; L/ \ H 1

0 .0; L/, instead of controls in L2.0; T0/ and initial and final datum in
L2.0; L/ as considered in [18, 20, 24, 38]. For a subclass of critical lengths considered in
Theorem 1.2, we prove later (see Theorem 6.1) that system (1.1)–(1.2) is locally control-
lable with initial and final datum in H 3.0; L/ \H 1

0 .0; L/ and controls in H 1.0; T /. It
is worth noting that even though the propagation speed of the KdV equation is infinite,
some time is needed to reach the zero state.

We emphasize that there are other types of boundary controls for the KdV equations
for which there is no critical length: see [19, 28, 38, 39]. There are also results on internal
controllability for KdV equations: see [42], [17] and references therein.

A minimal time of null-controllability is also required for some linear partial differ-
ential equations. This is obviously the case for equations with finite speed of propaga-
tion, such as the transport equation [22, Theorem. 2.6], or the wave equation [3, 16], or
hyperbolic systems [25]. But this can also happen for equations with infinite speed of
propagation, such as some parabolic systems [2, 11], Grushin-type equations [4, 9, 26],
Kolmogorov-type equations [5] or parabolic-transport coupled systems [6] (see also the
references in those papers). Nevertheless, to our knowledge, a minimal time required for
KdV equations using boundary controls is established for the first time in this work. This
fact is surprising when compared with known results on internal controls for the KdV
system (1.1) with u D 0. It is known (see [17, 36, 37]) that the KdV system (1.1) with
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u D 0 is locally controllable using internal controls whenever the control region contains
an arbitrary open subset of .0; L/.

However, our obstruction to small-time local controllability of our KdV control sys-
tem is of a different nature than these obstructions to small-time null controllability for
linear partial differential equations. It comes from a phenomenon which already appears
in finite dimensions for nonlinear control systems. Note that in finite dimensions, in con-
trast to the case of partial differential equations as just pointed above, a linear control
system which is controllable in large time is controllable in arbitrarily small time. This is
no longer the case for nonlinear control systems in finite dimensions: There are nonlinear
control systems in finite dimensions which are locally controllable in large enough time
but are not locally controllable in small time. A typical example is the control system

Py1 D u; Py2 D y3; Py3 D �y2 C 2y1u; (1.5)

where the state is .y1; y2; y3/T 2 R3 and the control is u 2 R. There are many power-
ful necessary conditions for small-time local controllability of nonlinear control systems
in finite dimensions. Let us mention in particular the Sussmann condition [43, Propos-
ition 6.3]. See also [7] by Beauchard and Marbach for further results, in particular for
controls in the Sobolev spaces H k.0; T /, and a different approach. The Sussmann condi-
tion [43, Proposition 6.3] tells us that the nonlinear control system (1.5) is not small-time
locally controllable (see [22, Example 3.38]): it gives a precise direction, given by an
explicit iterated Lie bracket, in which one cannot move in small time. For partial differ-
ential equations iterated Lie brackets can sometimes be defined, at least heuristically, for
interior controls but are not well understood for boundary controls (see [22, Chapter 5]),
which is the type of controls considered here. However, for the simple control system
(1.5), an obstruction to small-time local controllability can be obtained by pointing out
that if .y; u/ W Œ0; T � ! R3 � R is a trajectory of the control system (1.5) such that
y.0/ D 0, then

y2.T / D

ˆ T

0

cos.T � t /y1.t/2 dt; (1.6)

y3.T / D y1.T /
2
�

ˆ T

0

sin.T � t /y1.t/2 dt: (1.7)

Hence,

y2.T / � 0 if T 2 Œ0; �=2�; (1.8)

y3.T / � 0 if T 2 Œ0; �� and y1.T / D 0; (1.9)

which also shows that the control system (1.5) is not small-time locally controllable and
more precisely, using (1.9), is not locally controllable in time T 2 Œ0; �� ((1.8) gives only
an obstruction for T 2 Œ0;�=2�). Note that condition (1.8), at least for T > 0 small enough,
is the obstruction to small-time local controllability given by [43, Proposition 6.3], while
(1.9) is not related to this proposition. For the control system (1.5) one knows that it is
locally controllable in large enough time and the optimal time for local controllability is
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also known: this control system is locally controllable in time T if and only if T > � ; see
[22, Example 6.4]. Moreover, if there are higher order perturbations (with respect to the
weight .r1; r2; r3/ D .1; 2; 2/ for the state and 1 for the control; see [22, Section 12.3])
one can still get an obstruction to small-time local controllability by pointing out that (1.6)
and (1.7) respectively imply

for every T 2 .0; �=2/ there exists ı > 0 such that y2.T / � ıjuj2H�1.0;T /; (1.10)

for every T 2 .0; �� there exists ı > 0 such that
if y1.T / D 0, then y3.T / � �ıjuj2H�2.0;T /. (1.11)

Assertion (1.11) follows from the following facts:
ˆ T

0

�ˆ t

0

y1.s/ ds

�2
dt �

ˆ T

0

t

ˆ t

0

y1.s/
2 ds dt � T

ˆ T

0

.T � s/y1.s/
2 ds;

ˆ T

0

�ˆ T

t

y.s/ ds

�2
dt �

ˆ T

0

.T � s/y.s/2 ds;

and since y01 D u and y1.0/ D 0,

kuk2
H�2.0;T /

� C

ˆ T

0

�ˆ t

0

y1.s/ ds

�2
dt C C

�ˆ T

0

y1.s/ ds

�2
:

Note that (1.10) does not require any condition on the control, while (1.11) requires that
the control is such that y1.T / D 0. On the other hand, it is (1.11) that gives the largest
time for the obstruction to local controllability in time T : (1.10) gives an obstruction for
T 2 Œ0; �=2/, while (1.11) gives an obstruction for T 2 Œ0; ��, which in fact is optimal as
mentioned above.

There are nonlinear partial differential equations where related inequalities giving
an obstruction to small-time local controllability were already proved, namely nonlinear
Schrödinger control systems considered by Coron [21] and by Beauchard and Morancey
[10], a viscous Burgers equation considered by Marbach [32], and a nonlinear parabolic
equation considered by Beauchard and Marbach [8]. Our obstruction to small-time local
controllability is also in the same spirit (see in particular Corollary 3.7). Let us briefly
explain some of the main ingredients of these previous works.

� In [10, 21], the control is interior and one can compute, at least formally, the iterated
Lie bracket [43] in which one could not move in small time (see [22, Section 9.3.1])
if the control systems were in finite dimensions. Then one checks by suitable compu-
tations that it is indeed impossible to move in small time in this direction by proving
an inequality analogous to (1.11). The computations are rather explicit due to the fact
that the drift1 of the linearized control system is skew-adjoint with explicit and simple
eigenvalues and eigenfunctions.

1If the linearized control system is written in the form Py D Ay C Bu, the drift term is the map
y 7! Ay.
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� In [32] the control is again interior. However, the iterated Lie bracket [43] in the direc-
tion of which one could not move in small time turns out to be 0. Hence it does not pro-
duce any obstruction to small-time local controllability. However, an inequality analog-
ous to (1.10) is proved, but with a fractional (noninteger) Sobolev norm. An important
tool of the proof is a change of time-scale which allows one to take an expansion with
respect to a new parameter. In the framework of (1.5), this leads to a boundary layer
which is analyzed thanks to the maximum principle. Here the drift term of the linearized
control system is self-adjoint with explicit and simple eigenvalues and eigenfunctions.

� In [8] the control is again an interior control. Two cases are considered: a case [8, The-
orem 3] related to [10, 21] (already analyzed above) and a case [8, Theorem 4] where
classical obstructions relying on iterated Lie brackets fail. Concerning [8, Theorem 4]
the proof relies on an inequality of type (1.11); its proof can be performed by explicit
computations due to some special structure of the quadratic form one wants to analyze:
roughly speaking, it corresponds to the case (see [8, (4.17)]) where (3.6) below would
be replaced by
ˆ L

0

ˆ C1
0

jy.t; x/j2'x.x/e
�ipt dt dx D

ˆ
R
Ou.z/ Ou.z/

ˆ L

0

B.z; x/ dx dz; (1.12)

which simplifies the analysis of the left hand side (in (3.6) one has Ou.z/ Ou.z � p/ instead
of Ou.z/ Ou.z/). The computations are also simplified by the fact that the drift term of the
linearized control system is self-adjoint with, again, explicit eigenvalues and eigen-
functions.

In this article we prove an estimate of type (1.11), instead of (1.10), expecting that with
more precise estimates one might get the optimal time for local controllability as for the
control system (1.5). The main differences between our study and the previous articles
are the following:

� This is the first case dealing with boundary controls. In our case one does not know what
are the iterated Lie brackets even heuristically. Let us take this opportunity to point out
that even if they are expected not to live in the state space (see [22, pp. 181–182]), it
would be very interesting to understand what are these iterated Lie brackets.

� It seems difficult to perform the change of time-scale introduced in [32] in our situation.
Indeed, this change will also lead to a boundary layer. However, one can no longer use
the maximum principle to study this boundary layer. Moreover, if the change of time-
scale, if justified, allows simpler computations,2 the advantage of not using it might be
to get better or more explicit time for the obstruction to small-time local controllability.

� The linear drift term of the linearized control system (i.e. the operator A defined in
Lemma 2.1) is neither self-adjoint nor skew-adjoint. Moreover, its eigenvalues and
eigenfunctions are not explicit.

� Finally, (1.12) does not hold.

2This is in particular due to the fact that for the limit problem one again has (1.12).
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1.3. Ideas of the analysis

Our approach is inspired by the power series expansion method introduced by Coron and
Crépeau [24]. The idea of this method is to search/understand a control u of the form

u D "u1 C "
2u2 C � � � :

The corresponding solution then formally has the form

y D "y1 C "
2y2 C � � � ;

and the nonlinear term yyx can be written as

yyx D "
2y1y1;x C � � � :

One then obtains the following systems:8̂̂<̂
:̂
y1;t .t; x/C y1;x.t; x/C y1;xxx.t; x/ D 0 for t 2 .0; T /; x 2 .0; L/;

y1.t; x D 0/ D y1.t; x D L/ D 0 for t 2 .0; T /;

y1;x.t; x D L/ D u1.t/ for t 2 .0; T /;

(1.13)

8̂̂̂̂
<̂
ˆ̂̂:
y2;t .t; x/C y2;x.t; x/C y2;xxx.t; x/C y1.t; x/y1;x.t; x/ D 0

for t 2 .0; T /; x 2 .0; L/;

y2.t; x D 0/ D y2.t; x D L/ D 0 for t 2 .0; T /;

y2;x.t; x D L/ D u2.t/ for t 2 .0; T /:

(1.14)

The idea in [18, 20], with its root in [24], is then to find u1 and u2 such that if y1.0; �/ D
y2.0; �/ D 0, then y1.T; �/ D 0 and the L2.0; L/-orthogonal projection of y2.T / on M

is a given (nonzero) element in M. In [24], the authors needed to make an expansion up
to order 3 since y2 belongs to the orthogonal space of M in this case. To this end, in
[18, 20, 24], the authors used delicate contradiction arguments to capture the structure of
KdV systems.

The analysis in this paper has the same roots as the ones mentioned above. Never-
theless, instead of using a contradiction argument, our strategy is to characterize all pos-
sible u1 which steer 0 at time 0 to 0 at time T (see Proposition 2.8). This is done by taking
the Fourier transform with respect to time of the solution y1 and applying Paley–Wiener’s
theorem. Surprisingly, in the case 2k C l ¤ 3N�, if the time T is sufficiently small, there
are directions in M which cannot be reached via y2 (see Corollary 3.7 and Lemma 5.3).
This is one of the crucial observations in this paper. Using this observation, we then imple-
ment a method to prove the obstruction to small-time local null-controllability of the KdV
system; see Theorem 5.1. The idea is to bring the nonlinear context to the one based on the
power series expansion approach, where the new phenomenon is observed (the context of
Corollary 3.7). To be able to reach the result of Theorem 1.2, we establish several new
estimates for linear and nonlinear KdV systems using low regularity data (see Section 4.2
for the linear and Lemma 5.4 for the nonlinear settings). Their proofs partly involve a
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connection between linear KdV equations and linear KdV-Burgers equations as previ-
ously used by Bona et al. [13] and inspired by the work of Bourgain [14] and Molinet
and Ribaud [34]. To establish local controllability for a subclass of critical lengths in a
finite time (Theorem 6.1), we again apply the power series method and use a fixed point
argument. The key point here is to first obtain controls in H 1.0; T / to control directions
which can be reached via the linearized system, and then to obtain controls in H 1.0; T /

for y1 and y2 mentioned above. The first part is based on a modification of the Hilbert
Uniqueness Method, and the second part is again based on the information obtained in
Corollary 3.7 and Lemma 5.3. Our fixed point argument is inspired by [18, 24] but is dif-
ferent, somewhat simpler, and, more importantly, relies on the usual Banach fixed point
theorem instead of the Brouwer fixed point theorem, which might be interesting for hand-
ling nonlinear partial differential equations such that M is of infinite dimension, as, for
example, in [32].

1.4. Structure of the paper

The paper is organized as follows. Section 2 is devoted to the study of controls which
steer 0 to 0 (motivated by the system of y1). In Section 3, we study attainable direc-
tions for small time via the power series approach (motivated by the system of y2). The
main result in this section is Proposition 3.6 whose consequence (Corollary 3.7) is cru-
cial to the proof of Theorem 1.2. In Section 4, we establish several useful estimates for
linear KdV systems. In Section 5, we give the proof of Theorem 1.2. In fact, we estab-
lish a result (Theorem 5.1) which implies Theorem 1.2 and reveals a connection with
unreachable directions via the power series expansion method. In Section 6, we establish
local controllability for the nonlinear KdV system (1.1) with initial and final datum in
H 3.0; L/ \H 1

0 .0; L/ and controls in H 1.0; 1/ for some critical lengths (Theorem 6.1).
In the appendix, we establish various results used in Sections 2 to 4.

2. Properties of controls steering 0 at time 0 to 0 at time T

In this section, we characterize the controls that steer 0 to 0 for the linearized KdV sys-
tem at a given time. This is done by considering the Fourier transform in the t -variable
and the characterization written in terms of Paley–Wiener’s conditions. The resolvent of
@3x C @x hence naturally appears during this analysis. We begin with the discreteness of
the spectrum of this operator.

Lemma 2.1. Set D.A/ D ¹v 2 H 3.0; L/I v.0/ D v.L/ D v0.L/ D 0º and let A be the
unbounded operator on L2.0; L/ with domain D.A/ and defined by Av D v000 C v0 for
v 2 D.A/. The spectrum of A is discrete.

Proof. Since A is closed, we only have to prove that there exists a discrete set D � C
such that for z 2C nD and for f 2L2.0;L/, there exists a unique solution v 2H 3.0;L/
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of the system ´
v000 C v0 C zv D f in .0; L/;

v.0/ D v.L/ D v0.L/ D 0:
(2.1)

Step 1: An auxiliary shooting problem. For each z 2C, letU.z/ 2C 3.RIC/ be the unique
solution of the Cauchy problem

U 000.z/ C U
0
.z/ C zU.z/ D 0 in .0; L/; U 0.z/.L/ D U.z/.L/ D 0; U 00.z/.L/ D 1: (2.2)

Let � WC ! C be defined by �.z/ D U.z/.0/. Then � is an entire function. We claim
that this function does not vanish identically, and therefore D WD ��1.0/ is a discrete set.
Indeed, let us assume that U.1/.0/ D �.1/ D 0. Multiplying (2.2) for z D 1 (the equation
of U.1/) by the (real) function U.1/ and integrating by parts on Œ0; L�, one gets

1

2
U 0.1/.0/

2
C

ˆ L

0

U.1/.x/
2 dx D 0; (2.3)

which implies U.1/ D 0 in Œ0; L�. This contradicts U 00
.1/
.L/ D 1.

Step 2: Uniqueness. Let z …D , i.e., �.z/D U.z/.0/¤ 0. Assume that v1; v2 2H 3.0;L/

are two solutions of (2.1). Set U D v1 � v2. Then U 000 C U 0 C zU D 0 and U.L/ D
U 0.L/ D 0. It follows that U D U 00.L/U.z/ in Œ0; L�. So U.0/ D U 00.L/U.z/.0/ D

U 00.L/�.z/. Since �.z/¤ 0 and U.0/D v1.0/� v2.0/D 0, we conclude that U 00.L/D 0.
Hence U D 0 in Œ0; L�, which implies uniqueness.

Step 3: Existence. Let z …D and f 2L2.0;L/. Let V 2H 3.0;L/ be the unique solution
of the Cauchy problem ´

V 000 C V 0 C zV D f in .0; L/;

V .L/ D V 0.L/ D V 00.L/ D 0:
(2.4)

Set v D V � V.0/.�.z//�1U.z/ in Œ0; L�. Then v belongs to H 3.0; L/ and satisfies the
differential equation v000C v0C zv D f , and the boundary conditions v.L/D 0, v0.L/D
0, and v.0/ D V.0/ � V.0/ D 0. Thus v is a solution of (2.1).

Before characterizing controls steering 0 at time 0 to 0 at time T , we introduce

Definition 2.2. For z 2C, let .�j /1�j�3 D .�j .z//1�j�3 be the three solutions, repeated
with multiplicity, of

�3 C �C iz D 0: (2.5)

Set

Q D Q.z/ WD

0@ 1 1 1

e�1L e�2L e�3L

�1e
�1L �2e

�2L �3e
�3L

1A ; (2.6)
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P D P.z/ WD

3X
jD1

�j .e
�jC2L � e�jC1L/ D det

0@ 1 1 1

e�1L e�2L e�3L

�1 �2 �3

1A ; (2.7)

„ D „.z/ WD �.�2 � �1/.�3 � �2/.�1 � �3/ D det

0@ 1 1 1

�1 �2 �3
�21 �22 �23

1A ; (2.8)

with the convention �jC3 D �j for j � 1.

Remark 2.3. The matrix Q and the quantities P and „ are antisymmetric with respect
to �j (j D 1; 2; 3), and their definitions depend on the order of .�1; �2; �3/. Nevertheless,
we later consider a product of either P , „, or detQ with another antisymmetric function
of .�j /, or deal with jdetQj, and therefore these quantities make sense (see e.g. (2.11),
(2.12)). The definitions of P , „, and Q are only understood in these contexts.

In what follows, for an appropriate function v defined on RC � .0; L/, we extend v
by 0 on R� � .0; L/ and we denote by Ov its Fourier transform with respect to t , i.e., for
z 2 C,

Ov.z; x/ D
1
p
2�

ˆ C1
0

v.t; x/e�izt dt:

Lemma 2.4. Let u 2 L2.0;C1/ and let

y 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L//

be the unique solution of8̂̂<̂
:̂
yt .t; x/C yx.t; x/C yxxx.t; x/ D 0 in .0;C1/ � .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 in .0;C1/;

yx.t; x D L/ D u.t/ in .0;C1/;

(2.9)

with
y.t D 0; �/ D 0 in .0; L/: (2.10)

Then, outside of a discrete set z 2 R, we have

Oy.z; x/ D
Ou

detQ

3X
jD1

.e�jC2L � e�jC1L/e�j x for a.e. x 2 .0; L/; (2.11)

and in particular

@x Oy.z; 0/ D
Ou.z/P.z/

detQ.z/
: (2.12)

Remark 2.5. Assume that Ou.z; �/ is well-defined for z 2 C (e.g. when u has a compact
support). Then the conclusions of Lemma 2.4 hold outside of a discrete set of z 2 C.
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Proof of Lemma 2.4. From the system of y, we have8̂̂<̂
:̂
iz Oy.z; x/C Oyx.z; x/C Oyxxx.z; x/ D 0 in R � .0; L/;

Oy.z; x D 0/ D Oy.z; x D L/ D 0 in R;

Oyx.z; x D L/ D Ou.z/ in R:

(2.13)

Taking into account the equation of Oy, we search for the solution of the form

Oy.z; �/ D

3X
jD1

aj e
�j x ;

where �j D �j .z/ with j D 1; 2; 3 are defined in Definition 2.2.
According to the theory of ordinary differential equations with constant coefficients,

this is possible if the equation �3 C � C iz D 0 has three distinct solutions, i.e., if the
discriminant�4C 27z2 is not 0. Moreover, if�iz … Sp.A/, this solution is unique. Thus,
by Lemma 2.1, outside a discrete set in R, Oy.z; �/ can be written in this form in a unique
way. Using the boundary conditions for Oy, we require that8̂̂<̂

:̂
P3
jD1 aj D 0;P3
jD1 e

�jLaj D 0;P3
jD1 �j e

�jLaj D Ou:

This implies, with Q D Q.z/ defined in Definition 2.2,

Q.a1; a2; a3/
T
D .0; 0; Ou/T: (2.14)

It follows that

aj D
Ou

detQ
.e�jC2L � e�jC1L/:

This yields

Oy.z; x/ D
Ou

detQ

3X
jD1

.e�jC2L � e�jC1L/e�j x : (2.15)

We thus obtain

@x Oy.z; 0/ D
Ou.z/P.z/

detQ.z/
: (2.16)

As mentioned in Remark 2.3, the maps P and detQ are antisymmetric functions with
respect to �j . It is hence convenient to write @x Oy.z; 0/ in the form

@x Oy.z; 0/ D
Ou.z/G.z/

H.z/
; (2.17)

where, with „ defined in (2.8),

G.z/ D P.z/=„.z/ and H.z/ D detQ.z/=„.z/: (2.18)

Concerning the functions G and H , we have
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Lemma 2.6. The functions G and H defined in (2.18) are entire functions.

Proof. Note that the maps z 7! „.z/P.z/, z 7! „.z/ detQ.z/ and z 7! „.z/2 are sym-
metric functions of the �j and are thus well-defined, and even entire functions (see
Lemma A.1 in Appendix A). According to the definition of „, „.z0/ D 0 if and only
ifX3CX C iz0 has a double root, i.e. z0 D˙2=.3

p
3/. Simple computations prove that

when � is small, 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�1.z0 C "/ D �
i
p
3
C

p
�i

31=4

p
� CO."/;

�2.z0 C "/ D �
i
p
3
�

p
�i

31=4

p
"CO."/;

�3.z0 C "/ D ˙
2i
p
3
C
"

3
CO."2/:

(2.19)

Indeed, the behavior of �3 follows immediately from the expansion of �3 near˙ 2ip
3

. The

behavior of �1 and �2 can then be verified using, with � D �3�23 � 4,

�1 D
��3 C

p
�

2
and �2 D

��3 �
p
�

2
:

It follows that that „.z0 C "/2 D c˙" C O."
2/ for some c˙ ¤ 0. This in turn implies

that z0 D ˙2=.3
p
3/ are simple zeros of „2. When X3 CX C iz has a double root, the

definitions of P and detQ (in (2.6) and (2.7)) imply

jP.z0/j D jdetQ.z0/j D 0 for z0 D ˙2=.3
p
3/:

The conclusion follows.

Remark 2.7. It is interesting to note that

(1) (H.z/ D 0 and z ¤ ˙2=.3
p
3// if and only if �iz 2 Sp.A/;

(2) iz 2 Sp.A/ and z is real if and only if L D 2�
q
k2CklCl2

3
, and

z D
.2k C l/.k � l/.2l C k/

3
p
3 .k2 C kl C l2/3=2

; (2.20)

for some k; l 2 N� with 1 � l � k.

Indeed, if L D 2�

q
k2CklCl2

3
and z is given by the RHS of (2.20), then, from [38],

iz 2 Sp.A/. On the other hand, if z is real and iz 2 Sp.A/, then, by an integration by
parts, the corresponding eigenfunctionw also satisfies the conditionwx.0/D 0. It follows

from [38] that L D 2�
q
k2CklCl2

3
and z is given by (2.20) for some k; l 2 N� with 1 �

l � k. We finally note that for z ¤ ˙2=.3
p
3/, the solutions of the ordinary differential

equation u000 C u0 C izu D 0 are of the form u.x/ D
P3
jD1 aj e

�j x . This implies that
Q.a1; a2; a3/

T D .0; 0; 0/T if u.0/ D u.L/ D u0.L/ D 0. Therefore, for z ¤ ˙2=.3
p
3/,

�iz is an eigenvalue of A if and only if jdetQ.z/j D 0, i.e., H.z/ D 0. We finally note
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that˙2i=.3
p
3/ is not a purely imaginary eigenvalue of A since, for k � l � 1,

0 �
.2k C l/.k � l/.2l C k/

3
p
3 .k2 C kl C l2/3=2

D
.2k C l/.k2 C kl � 2l2/

3
p
3 .k2 C kl C l2/3=2

<
.2k C l/

3
p
3 .k2 C kl C l2/1=2

<
2

3
p
3
:

We are ready to give the characterization of the controls steering 0 to 0, which is the
starting point of our analysis.

Proposition 2.8. LetL;T >0, and u2L2.0;C1/. Assume that u has a compact support
in Œ0; T �, and u steers 0 at time 0 to 0 at time T , i.e., the unique solution y of (2.9)–
(2.10) satisfies y.T; �/ D 0 in .0;L/. Then Ou and OuG=H satisfy the assumptions of Paley–
Wiener’s theorem concerning the support in Œ�T; T �, i.e.,

Ou and OuG=H are entire functions;

and

j Ou.z/j C

ˇ̌̌̌
OuG.z/

H.z/

ˇ̌̌̌
� CeT j=.z/j

for some positive constant C .

Here and in what follows, for a complex number z, <.z/, =.z/, and Nz denote the real
part, the imaginary part, and the conjugate of z, respectively.

Proof of Proposition 2.8. Proposition 2.8 is a consequence of Lemma 2.4 and Paley–
Wiener’s theorem (see e.g. [41, 19.3 Theorem]). The proof is clear from the analysis
above in this section and left to the reader.

3. Attainable directions for small time

In this section, we investigate controls which steer a linear KdV equation from 0 to 0 in
some time T , and a quantity related to the quadratic order in the power expansion of a
nonlinear KdV equation. Let u 2 L2.0;C1/ and denote by y the corresponding solution
of the linear KdV equation (2.9). We assume that the initial condition is 0 and y satisfies
y.t; �/ D 0 in .0;L/ for t � T . We have, by Lemma 2.4 (and also Remark 2.5), for z 2 C
outside a discrete set,

Oy.z; x/ D Ou.z/

P3
jD1.e

�jC1L � e�jL/e�jC2xP3
jD1.�jC1 � �j /e

��jC2L
: (3.1)

Recall that �j D �j .z/ for j D 1; 2; 3 are the three solutions of the equation

x3 C x D �iz for z 2 C: (3.2)

Let �1; �2; �3 2 iR, i.e., �j 2 C with <.�j / D 0 for j D 1; 2; 3. Define

'.x/ D

3X
jD1

.�jC1 � �j /e
�jC2x for x 2 Œ0; L�; (3.3)
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with the convention �jC3 D �j for j � 1. The following assumption on �j is used
repeatedly throughout the paper:

e�1L D e�2L D e�3L; (3.4)

which is equivalent to �3 � �2; �2 � �1 2 2�i
L

Z. The definition of ' in (3.3) and the
assumption on �j in (3.4) are motivated by the structure of M [18, 20] and will be clear
in Section 5.

We have

Lemma 3.1. Let p 2 R and let ' be defined by (3.3). Set, for .z; x/ 2 C � Œ0; L�,

B.z; x/ D

P3
jD1.e

�jC1L � e�jL/e�jC2xP3
jD1.�jC1 � �j /e

��jC2L
�

P3
jD1.e

z�jC1L � e
z�jL/e

z�jC2xP3
jD1.
z�jC1 � z�j /e

�z�jC2L
� 'x.x/;

(3.5)
where z�j D z�j .z/ .j D 1; 2; 3/ denotes the conjugate of the roots of (3.2) with z replaced
by z � p and with the use of the convention z�jC3 D z�j for j � 1. Let u 2 L2.0;C1/
and let y 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH

1.0; L// be the unique solution of
(2.9)–(2.10). Assume that u.t/ D 0 and y.t; �/ D 0 for large t . Then
ˆ L

0

ˆ C1
0

jy.t; x/j2'x.x/e
�ipt dt dx D

ˆ
R
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz: (3.6)

Remark 3.2. The LHS of (3.6) is a multiple of the L2.0; L/-projection of the solution
y.T; �/ into the space spanned by the conjugate of the vector '.x/e�ipT whose real and
imaginary parts are in M for appropriate choices of �j and p when the initial data is
orthogonal to M (see [18, 20, 24], and also (5.18)).

Proof of Lemma 3.1. We have

ˆ L

0

ˆ 1
0

jy.t; x/j2'x.x/e
�ipt dt dx

D
p
2�

ˆ L

0

'x.x/
b
jyj2.p; x/ dx D

ˆ L

0

'x.x/ Oy �bNy.p; x/ dx
D

ˆ L

0

'x.x/

ˆ
R
Oy.z; x/bNy.p � z; x/ dz dx D ˆ L

0

'x.x/

ˆ
R
Oy.z; x/ Oy.z � p; x/ dz dx:

Using Fubini’s theorem, we deduce from (3.1) that
ˆ L

0

ˆ 1
0

jy.t; x/j2'x.x/e
�ipt dt dx D

ˆ
R
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz;

which is (3.6).

We next state the behaviors of �j and z�j given in Lemma 3.1 for “large positive” z,
which will be used repeatedly in this section and in Section 4. These asymptotics are
direct consequences of equation (2.5) satisfied by the �j .



J.-M. Coron, A. Koenig, H.-M. Nguyen 1208

Lemma 3.3. For p 2R and z in a small enough conic neighborhood of RC, let �j and z�j
with j D 1;2;3 be given in Lemma 3.1. Consider the convention<.�1/ <<.�2/ <<.�3/
and similarly for z�j . We have, in the limit jzj ! 1,

�j D �j z
1=3
�

1

3�j
z�1=3 CO.z�2=3/ with �j D e�i�=6�2ji�=3; (3.7)

z�j D z�j z
1=3
�

1

3z�j
z�1=3 CO.z�2=3/ with z�j D ei�=6C2ij�=3 (3.8)

.see Figure 1 for the geometry of �j and z�j /. Here z1=3 denotes the cube root of z with
the real part positive.

�1

z�1

�3

z�3

�2

z�2

Fig. 1. The roots �j of �3C �C iz D 0 satisfy, when z > 0
is large, �j � �j z1=3 where �3j D �i . When z < 0 and jzj

is large, the corresponding roots O�j satisfy O�j � z�j jzj1=3

with z�j D x�j . We also have z�j � O�j .

We are ready to establish the behavior of
ˆ L

0

B.z; x/ dx

for z 2 R with large jzj, which is one of the main ingredients for the analysis in this
section.

Lemma 3.4. Let p 2R, and let ' be defined by (3.3). Assume that (3.4) holds and �j ¤ 0
for j D 1; 2; 3. Let B be defined by (3.5). We have

ˆ L

0

B.z; x/ dx D
E

jzj4=3
CO.jzj�5=3/ for z 2 R with large jzj; (3.9)

where E is defined by

E D
1

3
.e�1L � 1/

�
�
2

3

3X
jD1

�2jC2.�jC1 � �j / � ip

3X
jD1

�jC1 � �j

�jC2

�
: (3.10)

Proof. We first deal with the case where z is positive and large. We use the convention in
Lemma 3.3 for �j and z�j . Consider the denominator of B.z; x/. We have, by Lemma 3.3,

1P3
jD1.�jC1 � �j /e

��jC2L
�

1P3
jD1.
z�jC1 � z�j /e

�z�jC2L

D
e�1Le

z�1L

.�3 � �2/.z�3 � z�2/
.1CO.e�C jzj

1=3

//: (3.11)
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We next deal with the numerator of B.z; x/. Set,3 for .z; x/ 2 R � .0; L/,

f .z; x/ D

3X
jD1

.e�jC1L � e�jL/e�jC2x ; g.z; x/ D

3X
jD1

.e
z�jC1L � e

z�jL/e
z�jC2x ; (3.12)

fm.z; x/ D �e
�3Le�2x C e�2Le�3x C e�3Le�1x ;

gm.z; x/ D �e
z�3Le

z�2x C e
z�2Le

z�3x C e
z�3Le

z�1x :

We have
ˆ L

0

f .z; x/g.z; x/'x.x/ dx

D

ˆ L

0

fm.z; x/gm.z; x/'x.x/ dxC

ˆ L

0

.f �fm/.z; x/gm.z; x/'x.x/ dx

C

ˆ L

0

fm.z; x/.g�gm/.z; x/'x.x/ dxC

ˆ L

0

.f �fm/.z; x/.g�gm/.z; x/'x.x/ dx:

It is clear from Lemma 3.3 that
ˆ L

0

j.f � fm/.z; x/gm.z; x/'x.x/jdx C

ˆ L

0

j.f � fm/.z; x/.g � gm/.z; x/'x.x/jdx

C

ˆ L

0

jfm.z; x/.g � gm/.z; x/'x.x/j dx � C je
.�3Cz�3/Lje�C jzj

1=3

: (3.13)

We next estimate
ˆ L

0

fm.x; z/gm.x; z/'x.x/ D

ˆ L

0

fm.x; z/gm.x; z/
� 3X
jD1

�jC2.�jC1 � �j /e
�jC2x

�
dx:

(3.14)
We first have, by (3.4) and Lemma 3.3,
ˆ L

0

.�e�3Le�2xe
z�2Le

z�3x � e�2Le�3xe
z�3Le

z�2x C e�2Le�3xe
z�2Le

z�3x/

�

� 3X
jD1

�jC2.�jC1 � �j /e
�jC2x

�
dx D e.�3C

z�3C�2Cz�2/L
�
e�1LT1.z/CO.e

�C jzj1=3/
�
;

(3.15)

where

T1.z/

WD

3X
jD1

�jC2.�jC1 � �j /

 
1

�3 C z�3 C �jC2
�

1

�3 C z�2 C �jC2
�

1

�2 C z�3 C �jC2

!
:

(3.16)

3The index m stands for the main part.
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Let us now deal with the terms of (3.14) that contain both e�3LCz�3L and either e�1x

or ez�1x . We obtain, by (3.4) and Lemma 3.3,

ˆ L

0

.e�3Le�1xe
z�3Le

z�1x � e�3Le�1xe
z�3Le

z�2x � e�3Le�2xe
z�3Le

z�1x/

�

� 3X
jD1

�jC2.�jC1 � �j /e
�jC2x

�
dx D e.�3C

z�3/L.T2.z/CO.e
�C jzj1=3//; (3.17)

where

T2.z/

WD

3X
jD1

�jC2.�jC1 � �j /

�
�

1

�1 C z�1 C �jC2
C

1

�1 C z�2 C �jC2
C

1

�2 C z�1 C �jC2

�
:

(3.18)

We have, by (3.4),

ˆ L

0

e�3Le�2xe
z�3Le

z�2x
� 3X
jD1

�jC2.�jC1 � �j /e
�jC2x

�
dx D e.�3C

z�3/LT3.z/; (3.19)

where

T3.z/ WD .e
�2LCz�2LC�1L � 1/

3X
jD1

�jC2.�jC1 � �j /

�2 C z�2 C �jC2
: (3.20)

The other terms of (3.14) are negligible, because we have

ˇ̌̌ˆ L

0

.e�3Le�1xe
z�2Le

z�3x C e�2Le�3xe
z�3Le

z�1x/
� 3X
jD1

�jC2.�jC1 � �j /e
�jC2x

�
dx
ˇ̌̌

D je.�3C
z�3/LjO.e�Cz

1=3

/: (3.21)

Using Lemma 3.3, we have8̂̂<̂
:̂
�1 C z�1 C �2 C z�2 C �3 C z�3 D O.z

�1=3/;

�1 C z�1 C �3 C z�3 D O.z
�1=3/;

.�3 � �2/.z�3 � z�2/ D 3z
2=3.1CO.z�1=3//:

(3.22)

We claim that

jT1.z/j C jT2.z/j C jT3.z/j D O.z
�2=3/ for large positive z: (3.23)

Assuming (3.23), and combining (3.11), (3.15), (3.17), (3.19), (3.21), and (3.22)
yields

ˆ L

0

B.z; x/ dz D
1

3jzj2=3

�
e�1LT1.z/C T2.z/C T3.z/CO.z

�1/
�
: (3.24)
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We next derive the asymptotic behaviors of T1.z/, T2.z/, and T3.z/, which in partic-
ular imply (3.23). We first deal with T1.z/ given in (3.16). Since

3X
jD1

�jC2.�jC1 � �j / D 0; (3.25)

we obtain

T1.z/ D

3X
jD1

�jC2.�jC1 � �j /

�
1

�3 C z�3 C �jC2
�

1

�3 C z�3

�

C

3X
jD1

�jC2.�jC1 � �j /

�
�

1

�3 C z�2 C �jC2
C

1

�3 C z�2

�

C

3X
jD1

�jC2.�jC1 � �j /

�
�

1

�2 C z�3 C �jC2
C

1

�2 C z�3

�
:

Using Lemma 3.3, we get

T1.z/D �

3X
jD1

�2jC2.�jC1 � �j /

�
1

.�3 C z�3/2
�

1

.�3 C z�2/2
�

1

.�2 C z�3/2

�
CO.z�1/:

Moreover, from Lemma 3.3 we derive

1

.�3 C z�3/2
�

1

.�3 C z�2/2
�

1

.�2 C z�3/2

D z�2=3
�
.�3 C z�3/

�2
� .�3 C z�2/

�2
� .�2 C z�3/

�2
�
CO.z�1/

D z�2=3
�
1

3
�
�1C i

p
3

6
�
�1 � i

p
3

6

�
CO.z�1/ D

2

3
z�2=3 CO.z�1/: (3.26)

We deduce that

T1.z/ D �
2

3
z�2=3

3X
jD1

�2jC2.�jC1 � �j /CO.z
�1/: (3.27)

We next consider T2.z/ given in (3.18). We have, by (3.25),

T2.z/ D

3X
jD1

�jC2.�jC1 � �j /

�
�

1

�1 C z�1 C �jC2
C

1

�1 C z�1

�

C

3X
jD1

�jC2.�jC1 � �j /

�
1

�1 C z�2 C �jC2
�

1

�1 C z�2

�

C

3X
jD1

�jC2.�jC1 � �j /

�
1

�2 C z�1 C �jC2
�

1

�2 C z�1

�
:



J.-M. Coron, A. Koenig, H.-M. Nguyen 1212

Using Lemma 3.3, we obtain

T2.z/ D

3X
jD1

�2jC2.�jC1 � �j /

�
1

.�1 C z�1/2
�

1

.�1 C z�2/2
�

1

.�2 C z�1/2

�
CO.z�1/;

and
1

.�1 C z�1/2
�

1

.�1 C z�2/2
�

1

.�2 C z�1/2

D z�2=3
�
.�1 C z�1/

�2
� .�1 C z�2/

�2
� .�2 C z�1/

�2
�
CO.z�1/:

By Lemma 3.3, we have

.�1 C z�1/
2
D .�3 C z�3/

2 .�1 C z�2/
2
D .z�3 C �2/

2 .z�1 C �2/
2
D .�3 C z�2/

2:

Combining this with (3.26), we then have

T2.z/ D
2

3
z�2=3

3X
jD1

�2jC2.�jC1 � �j /CO.z
�1/: (3.28)

We finally consider T3.z/ given in (3.20). We have, by (2.5),

�32 C
z�32 C �2 C

z�2 D �iz C i.z � p/ D �ip:

This yields

�2 C z�2 D �
ip

�22 C
z�22 C �2

z�2
:

From Lemma 3.3, we have

�2 C z�2 D ipz
�2=3
CO.z�1/:

It follows that
3X

jD1

�jC2.�jC1 � �j /

�2 C z�2 C �jC2
D

3X
jD1

�jC2.�jC1 � �j /

ipz�2=3 C �jC2
CO.jzj�1/

D

3X
jD1

.�jC1 � �j /

�
1 �

ipz�2=3

�jC2

�
CO.jzj�1/

D �ip

3X
jD1

�jC1 � �j

�jC2
z�2=3 CO.z�1/: (3.29)

We deduce from (3.29) and Lemma 3.3 that

T3 D �ip.e
�1L � 1/

3X
jD1

�jC1 � �j

�jC2
z�2=3 CO.z�1/: (3.30)

Using (3.27), (3.28), and (3.30), we infer from (3.24) that
ˆ L

0

B.z; x/ dx D Ez�4=3 CO.z�5=3/;

which is the conclusion for large positive z.



On the small-time local controllability of KdV equations 1213

The conclusion in the case where z is large and negative can be derived from the case
where z is positive and large as follows. Define, for .z; x/ 2 R � .0; L/ with large jzj,

M.z; x/ D

P3
jD1.e

�jC1L � e�jL/e�jC2xP3
jD1.�jC1 � �j /e

��jC2L
:

Then
B.z; x/ DM.z; x/M.z � p; x/'x.x/:

It is clear from the definition of M that

M.�z; x/ DM.z; x/:

We then have

B.�z; x/ DM.�z; x/M.�z � p; x/'x.x/ DM.z; x/M.z C p; x/ 'x.x/:

We thus obtain the result in the case where z is negative and large by taking the conjugate
of the corresponding expression for large positive z in which �j and p are replaced by
��j and �p. The conclusion follows.

As a consequence of Lemmas 3.1 and 3.4, we obtain

Lemma 3.5. Let p 2 R and let ' be defined by (3.3). Assume that (3.4) holds and
�j ¤ 0 for j D 1; 2; 3. Let u 2 L2.0; C1/ and let y 2 C.Œ0; C1/I L2.0; L// \
L2loc.Œ0;C1/IH

1.0; L// be the unique solution of (2.9)–(2.10). Assume that u.t/ D 0

and y.t; �/ D 0 for large t . We have
ˆ C1
0

ˆ L

0

jy.t; x/j2'x.x/e
�ipt dx dt D

ˆ
R
Ou.z/ Ou.z � p/

�
E

jzj4=3
CO.jzj�5=3/

�
dz:

(3.31)

Using Lemma 3.5, we will establish the following result which is the key ingredient
in the analysis of the non-null-controllability for small time of the KdV system (1.1).

Proposition 3.6. Let p 2 R and let ' be defined by (3.3). Assume that (3.4) holds
and �j ¤ 0 for j D 1; 2; 3. Let u 2 L2.0;C1/ and let y 2 C.Œ0;C1/IL2.0; L// \
L2loc.Œ0;C1/IH

1.0; L// be the unique solution of (2.9)–(2.10). Assume that u 6� 0,
u.t/ D 0 for t > T , and y.t; �/ D 0 for large t . Then there exists a real number N.u/ � 0
such that C�1kukH�2=3 � N.u/ � CkukH�2=3 for some constant C � 1 depending only
on L, and4

ˆ 1
0

ˆ L

0

jy.t; x/j2e�ipt'x.x/ dx dt D N.u/
2.E CO.1/T 1=4/: (3.32)

4The map u 7! N.u/ is actually a norm, which is (somewhat indirectly) given in the proof, by
N.u/2 D k Owk2

L2
, where w is defined in (3.46).
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Here we use the following definition, for s < 0 and for u 2 L2.RC/:

kuk2H s.R/ D

ˆ
R
j Ouj2.1C j�j2/s d�;

where Ou is the Fourier transform of the extension of u by 0 for t < 0.
Before giving the proof of Proposition 3.6, we present one of its direct consequences.

Denote �1.t; x/ D <¹'.x/e�iptº and �2.t; x/ D =¹'.x/e�iptº. Then

�1.t; x/C i�2.t; x/ D '.x/e
�ipt : (3.33)

Denote E1 D <.E/ and E2 D =.E/, and set

‰.t; x/ D E1�1.t; x/CE2�2.t; x/: (3.34)

Multiplying (3.32) by E and normalizing appropriately, we have

Corollary 3.7. Let p 2 R and let ' be defined by (3.3). Assume that (3.4) holds, �j ¤ 0
for j D 1; 2; 3, and E ¤ 0. There exists T� > 0 such that, for any .real/ u 2 L2.0;C1/
with u.t/ D 0 for t > T� and y.t; �/ D 0 for large t where y is the unique solution of
(2.9)–(2.10), we have

ˆ 1
0

ˆ C1
0

y.t; x/2‰x.t; x/ dx dt � Ckuk
2
H�2=3.R/

: (3.35)

Proof of Proposition 3.6. By Proposition 2.8,

OuG=H is an entire function:

By Lemma 2.6, G and H are entire functions. The same holds for Ou since u.t/ D 0 for
large t . One can show that the number of common roots of G and H in C is finite, see
Lemma B.2. Let z1; : : : ; zk be the distinct common roots of G and H in C. There exist
m1; : : : ; mk 2 N� such that,5 with

�.z/ D

kY
jD1

.z � zj /
mj in C;

the following two functions are entire:

G .z/ WD
G.z/

�.z/
and H .z/ WD

H.z/

�.z/
; (3.36)

and G and H have no common roots. Since

OuG=H D OuG=H

5One can prove thatmj D 1 for 1� j � k by Lemma B.1, but this is not important at this stage.
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which is an entire function, it follows that the function v defined by

v.z/ D Ou.z/=H .z/ D Ou.z/
�.z/„.z/

detQ.z/
in C (3.37)

is also an entire function.
It is clear that

Ou.z/ D v.z/H .z/ in C: (3.38)

We consider the holomorphic function v restricted to Lm WD ¹z 2 CI j<.z/j � cm,
�..2mC 1/=.

p
3L//3 � =.z/ � ..2mC 1/=.

p
3L//3º with large m 2 N�. Using Pro-

position 2.8 to bound Ou, and Lemma B.3 to bound .detQ.z//�1, we can bound v on @Lm

(and thus also in the interior of Lm) by

jv.z/j � C"e
.TC"=2/..2mC1/=.

p
3L//3 in Lm; (3.39)

for all " > 0, since, for large jzj,

j„.z/j � C jzj:

Note that the constant C" can be chosen independently of m. Here we use the fact

j Ou.z/j � CeT j=.z/j for z 2 C:

On the other hand, applying Lemmas 3.3 and B.3 (2), we have

jv.z/j � C"e
.TC"/jzj (3.40)

in ¹z 2 CI j<.z/j � cm; �..2mC 1/=.
p
3L//3 � =.z/ � ..2mC 1/=.

p
3L//3º.

Combining (3.39) and (3.40) yields

jv.z/j � C"e
.TC"/jzj in C: (3.41)

Since H is a non-constant entire function, there exists  > 0 such that

H 0.z C i/ ¤ 0 for all z 2 R: (3.42)

Fix such a  and denote H .z/ D H .z C i/ for z 2 C.
Let us prove some asymptotics for H . Since

P3
jD1 �j D 0, it follows from (2.6) that

detQ D .�2 � �1/e��3L C .�3 � �2/e��1L C .�1 � �3/e��2L:

We use the convention in Lemma 3.3. Thus, by Lemma 3.3, for fixed ˇ � 0,

H .z C iˇ/ D
detQ.z C i/

„.z C i/�.z C i/

D �z�2=3�
Pk
iD1mj e��1Lz

1=3

.1CO.z�1=3//; (3.43)
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where
� D �

1

.�2 � �1/.�1 � �3/
:

We can also compute the asymptotic expansion of H 0.z C iˇ/, either by explicitly com-
puting the asymptotic behavior of �0j .zC iˇ/ for large positive z (formally, one just needs
to take the derivative of (3.43) with respect to z), or by using the Cauchy integral formula
on the contour @D.z; r/ for some fixed r to justify differentiating (3.43). We get

H 0.z C iˇ/ D �
�1L

3
z�2=3�z�2=3�

Pk
iD1mj e��1Lz

1=3

.1CO.z�1=3//:

We then get
lim

z2R; z!C1
H .z/jzj�2=3=H 0 .z/ D ˛ WD 3e

�i�=6=L:

Similarly, we obtain

lim
z2R; z!�1

H .z/jzj�2=3=H 0 .z/ D � N̨ :

Moreover, we have

jH .z/jzj�2=3 � ˛H 0 .z/j � C jH .z/j jzj�1

� C jH 0 .z/j jzj
�1=3 for large positive z; (3.44)

and ˇ̌
H .z/jzj�2=3 C N̨H 0 .z/

ˇ̌
� C jH .z/j jzj�1

� C jH 0 .z/j jzj
�1=3 for large negative z: (3.45)

Set
Ow.z/ D v.z/H 0 .z/ D Ou.z/H

0
 .z/H .z/�1: (3.46)

Then Ow is an entire function and satisfies Paley–Wiener’s conditions for the interval
.�T � "; T C "/ for all " > 0 (see e.g. [41, 19.3 Theorem]). Indeed, this follows from
the facts j Ow.z/j � C"jv.z/je"jzj for z 2 C by Lemma 3.3, jv.z/j � C"e.TC"/jzj for z 2 C
by (3.41), jH 0 .z/v.z/j D jH

0
 .z/H .z/�1 Ou.z/j � j Ou.z/j for real z with large jzj, so that´

R j Owj
2 < C1.

We claim that6 ˇ̌̌̌ˆ L

0

B.z; x/ dx

ˇ̌̌̌
�

C

.jzj C 1/4=3
for z 2 R: (3.47)

In fact, this inequality follows from Lemma 3.4 for large z, and from Lemma B.1 other-
wise, since if z is a real solution of the equationH.z/D 0, which is simple by Lemma B.1,
we have, by Lemma B.1 again,

3X
jD1

.e�jC1L � e�jL/e�jC2x
(B.2)
D 0:

6Recall that B was defined in (3.5).
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From (3.42), (3.44), (3.45), and (3.47), we deriveˇ̌̌̌
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx

ˇ̌̌̌
� C j Ow.z/j j Ow.z � p/j for z 2 R: (3.48)

Note that, for m � 1,ˇ̌̌̌ˆ
jzj>m

Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz �Ej˛j2
ˆ
jzj>m

Ow.z/ Ow.z � p/ dz

ˇ̌̌̌
�

ˆ
jzj>m

ˇ̌̌̌
Ou.z/ Ou.z � p/

�ˆ L

0

B.z; x/ dx �Ejzj�4=3
�ˇ̌̌̌
dz

C jEj

ˆ
jzj>m

ˇ̌̌̌
j˛j2 Ow.z/ Ow.z � p/ � jzj�4=3 Ou.z/ Ou.z � p/

ˇ̌̌̌
dz:

Using (3.44), (3.45), and Lemmas 3.1 and 3.4, we deriveˇ̌̌̌ˆ
jzj>m

Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz �Ej˛j2
ˆ
jzj>m

Ow.z/ Ow.z � p/ dz

ˇ̌̌̌
� C

ˆ
jzj>m

j Ow.z/j j Ow.z � p/jjzj�1=3 dz:

We deduce from (3.42) and (3.48) thatˇ̌̌̌ˆ
R
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz �Ej˛j2
ˆ

R
Ow.z/ Ow.z � p/ dz

ˇ̌̌̌
� C

ˆ
jzj�m

j Ow.z/j j Ow.z � p/j dz C Cm�1=3
ˆ
jzj>m

j Ow.z/j j Ow.z � p/j dz:

Since, for z 2 R,

j Ow.z/j � CkwkL1 D CkwkL1.�T;T / � CT
1=2
kwkL2.R/;

we deriveˇ̌̌̌ˆ
R
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz �Ej˛j2
ˆ

R
Ow.z/ Ow.z � p/ dz

ˇ̌̌̌
� C

ˆ T

�T

.TmCm�1=3/jwj2:

Using the fact that
ˆ

R
Ow.z/ Ow.z � p/ dz D

ˆ
R
jw.t/j2e�itp dt D

ˆ T

�T

jw.t/j2e�itp dt;

we obtain, by choosing m D 1=T 3=4,
ˆ

R
Ou.z/ Ou.z � p/

ˆ L

0

B.z; x/ dx dz D Ej˛j2
ˆ T

�T

jw.t/j2.1CO.1/T 1=4/ dt:
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The conclusion follows by noting that
ˆ

R
jw.t/j2 dt D

ˆ
R
j Ow.z/j2 dz � C

ˆ
R

j Ou.z/j2

1C jzj4=3
dz:

The proof is complete.

4. Useful estimates for linear KdV equations

In this section, we establish several results for linear KdV equations which will be used
in the proof of Theorem 1.2. Our study of inhomogeneous KdV equations is based on
three elements. The first one is the information on KdV equations explored previously.
The second one is a connection between KdV equations and KdV-Burgers equations, as
previously suggested in [13, 29]. The third one is estimates for KdV-Burgers equations
with periodic boundary condition. This section contains two subsections: on inhomogen-
eous KdV-Burgers equations with periodic boundary condition and on inhomogeneous
KdV equations.

4.1. On linear KdV-Burgers equations

In this section, we derive several estimates for solutions of linear KdV-Burgers equations
using low regular data information. The main result of this section is the following result:

Lemma 4.1. Let L > 0 and f1 2 L1.RCIL1.0; L// and f2 2 L1.RCIW 1;1.0; L// be
such that ˆ L

0

f1.t; x/ dx D 0 for a.e. t > 0; (4.1)

and
f2.t; 0/ D f2.t; L/ D 0 for a.e. t > 0: (4.2)

Set f D f1 C f2;x and assume that f 2 L1.RCIL2.0;L//. Let y be the unique solution
in C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH

1.0; L//, which is periodic in space, of the
system

yt .t; x/C 4yx.t; x/C yxxx.t; x/� 3yxx.t; x/D f .t; x/ in .0;C1/� .0;L/; (4.3)

and
y.t D 0; �/ D 0 in .0; L/: (4.4)

We have, for x 2 Œ0; L�,

ky.�; x/kL2.RC/ C kyx.�; x/kH�1=3.R/ � Ckf kL1.RC�.0;L//; (4.5)

and

ky.�; x/kH�1=3.R/ C kyx.�; x/kH�2=3.R/ C kykL2.RCIH�1.0;L//

� Ck.f1; f2/kL1.RC�.0;L//: (4.6)



On the small-time local controllability of KdV equations 1219

Assume that f .t; �/ D 0 for t > T . We have, for all ı > 0 and all t � T C ı,

jyt .t; x/j C jyx.t; x/j � Cık.f1; f2/kL1.RC�.0;L// for x 2 Œ0; L�: (4.7)

Here C .resp. Cı/ denotes a positive constant depending only on L .resp. L and ı/.

Remark 4.2. Using the standard energy method, as for KdV equations, one can prove
that if f 2 L1.RC; L2.0; L// with

´ L
0
f .t; x/ dx D 0 for a.e. t > 0 (this holds by

(4.1) and (4.2)), then (4.3)–(4.4) has a unique solution in C.Œ0; C1/I L2.0; L// \

L2.Œ0;C1/IH 1.0; L// which is periodic in space.

In the proof of Lemma 4.1, we use the following elementary estimate, which has its
root in the work of Bourgain [14].

Lemma 4.3. There exists a positive constant C such that, for j D 0; 1 and z 2 R,7X
n¤0

jnjj

jz C 4n � n3j C n2
�

C ln.jzj C 2/
.jzj C 2/.2�j /=3

: (4.8)

Proof. For z 2 R, let k 2 Z be such that k3 � z < .k C 1/3. It is clear thatX
n¤0

jnjj

jz C 4n � n3j C n2
D

X
mCk¤0

jmC kjj

jz C 4.mC k/ � .mC k/3j C .mC k/2
: (4.9)

We split the sum into two parts, for jmj � 2jkj C 2 and for jmj > 2jkj C 2. Since k3 �
z < .k C 1/3, one can check that, for m 2 Z, mC k ¤ 0, and jmj � 2jkj C 2,

jz C 4.mC k/ � .mC k/3j C jmC kj2 � C.jmj C 1/.jkj C 2/2;

and for jmj � 2jkj C 2,

jz C 4.mC k/ � .mC k/3j C jmC kj2 � C jmj3

(by considering jkj � 10 and jkj < 10). We deduce that

X
jmj�2jkjC2;mCk¤0

jmC kjj

jz C 4.mC k/ � .mC k/3j C .mC k/2

� C
X

jmj�2jkjC2

1

.jkj C 2/2�j .jmj C 1/

�
C ln.jkj C 2/
.jkj C 2/2�j

; (4.10)

7We recall that an absolutely convergent sum is none other than an integral with respect to the
counting measure which is � -finite. In the following, we will often exchange sums and integrals
without comments, the justification being by the use of Fubini’s theorem.



J.-M. Coron, A. Koenig, H.-M. Nguyen 1220

and X
jmj>2jkjC2

jmC kjj

jz C 4.mC k/ � .mC k/3j C .mC k/2

� C
X

jmj>2jkjC2

1

jmj3�j
�

C

.jkj C 2/2�j
: (4.11)

Combining (4.9)–(4.11) yields (4.8).

In what follows, for an appropriate function � defined in RC � .0; L/, we denote

OO�.z; n/ D
1

L

ˆ L

0

O�.z; x/e�i2�nx=L dx for .z; n/ 2 R � Z:

Recall that to define O�.z; x/, we extend � by 0 for t < 0.

Proof of Lemma 4.1. For simplicity of notations we will assume that L D 2� . We estab-
lish (4.5)–(4.7) in Steps 1–3 below.

Step 1: Proof of (4.5). We first estimate ky.�; x/kL2.RC/ for x 2 Œ0; L�. From (4.3) and
(4.4), we have

OOy.z; n/ D

OOf .z; n/

i.z C 4n � n3/C 3n2
for .z; n/ 2 R � .Z n ¹0º/; (4.12)

and
OOy.z; 0/ D 0 for z 2 R (4.13)

since
´ L
0
f .t; x/ dx D 0 for t > 0 by (4.1) and (4.2). By Plancherel’s theorem, we obtain

ˆ
RC

jy.t; x/j2 dt D

ˆ
R
j Oy.z; x/j2 dz � C

ˆ
R

ˇ̌̌̌X
n¤0

j
OOf .z; n/j

jz C 4n � n3j C n2

ˇ̌̌̌2
dz: (4.14)

Since
j
OOf .z; n/j � Ckf kL1.RC�.0;L//; (4.15)

it follows from (4.14) that
ˆ

RC

jy.t; x/j2 dt � Ckf k2
L1.RC�.0;L//

ˆ
R

ˇ̌̌̌X
n¤0

1

jz C 4n � n3j C n2

ˇ̌̌̌2
dz: (4.16)

Applying Lemma 4.3 with j D 0, we deduce from (4.16) that
ˆ

RC

jy.t; x/j2 dt � Ckf k2
L1.RC�.0;L//

ˆ
R

ln2.jzj C 2/
.jzj C 2/4=3

dz;

which yields
ky.�; x/kL2 � Ckf kL1.RC�.0;L//: (4.17)
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We next estimate kyx.�; x/kH�1=3.RC/ for x 2 Œ0; L�. By (4.12), (4.13), and (4.15),
we have

kyx.�; x/k
2
H�1=3.RC/

� Ckf k2
L1.RC�.0;L//

ˆ
R

1

.1C jzj2/1=3

ˇ̌̌̌X
n¤0

jnj

jz C 4n � n3j C n2

ˇ̌̌̌2
dz: (4.18)

Applying Lemma 4.3 with j D 1, we deduce from (4.18) that

kyx.�; x/k
2
H�1=3.RC/

� Ckf k2
L1.RC�.0;L//

ˆ
R

ln2.jzj C 2/
.jzj C 2/4=3

dz;

which yields
kyx.�; x/kH�1=3.R/ � Ckf kL1.RC�.0;L//: (4.19)

Assertion (4.5) now follows from (4.17) and (4.19).

Step 2: Proof of (4.6). By Step 1, without loss of generality, one might assume that
f1 D 0. The proof of the inequality ky.�; x/kH�1=3 � Ckf2kL1.RC�.0;L// is similar to
the one of (4.19) and is omitted.

To prove
kyx.�; x/kH�2=3.R/ � Ckf2kL1.RC�.0;L//; (4.20)

we proceed as follows. For z 2 R,

Oyx.z; x/ D �
1

L

ˆ L

0

Of2.z; �/
X
n¤0

n2ein.x��/

i.z C 4n � n3/C 3n2
d�: (4.21)

We have, for some large positive constant c,ˇ̌̌̌ X
jnj�c.jzjC1/

n2ein.x��/

i.z C 4n � n3/C 3n2
C

X
jnj�c.jzjC1/

ein.x��/

in

ˇ̌̌̌
� C

X
jnj�c.jzjC1/

1

jnj2

�
C

jzj C 1
;ˇ̌̌̌ X

0<jnj�c.jzjC1/

ein.x��/

in

ˇ̌̌̌
� C ln.jzj C 2/;

and, as in (4.10) in the proof of Lemma 4.3,ˇ̌̌̌ X
0<jnj�c.jzjC1/

n2ein.x��/

i.z C 4n � n3/C 3n2

ˇ̌̌̌
� C ln.jzj C 2/:

It follows thatˇ̌̌̌X
n¤0

n2ein.x��/

i.z C 4n � n3/C 3n2
C

X
n¤0

ein.x��/

in

ˇ̌̌̌
�

C

jzj C 1
C C ln.jzj C 2/: (4.22)
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Since X
n¤0

ein�
0

in
D �� 0 C � for � 0 2 .0; 2�/;

and

kyx.�; x/k
2
H�2=3.R/

D

ˆ
R

j Oyx.z; x/j
2

.1C jzj2/2=3
dz;

assertion (4.20) follows from (4.21) and (4.22).
We next find that the estimate

kykL2.RCIH�1.0;L// � Ckf2kL1.RC�.0;L//

follows from

kyk2
L2.RCIH�1.0;L//

� C

ˆ
R

X
n¤0

ˇ̌̌̌ OOf2.z; n/

ji.z C 4n � n3/j C 3n2

ˇ̌̌̌2
dz

and Lemma 4.3. The proof of Step 2 is complete.

Step 3: Proof of (4.7). For simplicity of presentation, we will assume that f1 D 0. We
have the following representation for the solution:

y.t; x/ D
X
n¤0

einx
ˆ t

0

e�.i.4n�n
3/C3n2/.t��/

�
in

L

ˆ L

0

f2.�; �/e
�in� d�

�
d�: (4.23)

Let 1A denote the characteristic function of a set A in R. Assertion (4.7) then follows
easily from (4.23) by noting that, for t � T C ı,X

n¤0

ˆ t

0

jnj10e�3n
2.t��/1¹�<T º d� < Cı :

The proof is complete.

4.2. On linear KdV equations

In this section, we derive various results on linear KdV equations using low regularity
data information. These result will be used in the proof of Theorem 1.2. We begin with

Lemma 4.4. Let h D .h1; h2; h3/ 2 H
1=3.RC/ � H 1=3.RC/ � L2.RC/, and let y 2

C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// be the unique solution of the system´

yt .t; x/C yx.t; x/C yxxx.t; x/D0 in .0;C1/ � .0; L/;

y.t; xD0/Dh1.t/; y.t; xDL/Dh2.t/; yx.t; xDL/Dh3.t/ in .0;C1/;
(4.24)

and
y.t D 0; �/ D 0 in .0; L/: (4.25)
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We have, for T > 0,

kykL2..0;T /�.0;L// � CT;L.k.h1; h2/kL2.RC/ C kh3kH�1=3.R//; (4.26)

kykL2..0;T /IH�1.0;L// � CT;L.k.h1; h2/kH�1=3.R/ C kh3kH�2=3.R//; (4.27)

for some positive constant CT;L independent of h.

Here and in what follows, H�1.0; L/ is the dual space of H 1
0 .0; L/ with the corres-

ponding norm.

Proof. By the linearity of the system and the uniqueness of solutions, it suffices to con-
sider the three cases .h1; h2; h3/D .0; 0; h3/, .h1; h2; h3/D .h1; 0; 0/, and .h1; h2; h3/D
.0; h2; 0/ separately.

We first consider the case .h1; h2; h3/ D .0; 0; h3/. Making a truncation, without loss
of generality, one can assume that h3 D 0 for t > 2T . Let g3 2 C 1.R/ be such that
suppg3 � ŒT; 3T �, and if z is a real solution of the equation detQ.z/„.z/D 0 of orderm
then z is also a real zero of order m of Oh3.z/ � Og3.z/, and

kg3kH�1=3.R/ � CT;Lkh3kH�2=3.R/:

The construction of g3, inspired by the moment method (see e.g. [45]), can be done as
follows. Set �.t/D e�1=.t

2�.T /2/1jt j<T for t 2R. Assume that z1; : : : ; zk are real, distinct
solutions of the equation detQ.z/„.z/ D 0, and m1; : : : ; mk are their respective orders
(the number of real solutions of the equation detQ.z/„.z/ D 0 is finite by Lemma B.1
and in fact they are simple; nevertheless, we ignore this point and present a proof without
using this information). Set, for z 2 C,

�.z/ D

kX
iD1

�
O�.z � zi /

kY
jD1

j¤i

.z � zj /
mj

� miX
lD0

ci;l .z � zi /
l
��
;

where ci;l 2 C is chosen such that

d l

dzl
.e2iT z�.z//

ˇ̌̌̌
zDzi

D
d l

dzl
Oh3.zi / for 0 � l � mi ; 1 � i � k:

This can be done because O�.0/ ¤ 0. Since

j O�.z/j � CeT j=.z/j;

and, by [45, Lemma 4.3],

j O�.z/j � C1e
�C2jzj

1=2

for z 2 R;

using Paley–Wiener’s theorem one can prove that � is the Fourier transform of a function
 of class C 1; moreover,  has support in Œ�T; T �. Set, for z 2 C,

g3.t/ D  .t C 2T /:
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Using the fact Og3.z/ D ei2T z�.z/, one can check that Og3 � Oh3 has zeros z1; : : : ; zk of
respective orders m1; : : : ; mk . One can check that

k kC1 � CT;L

kX
iD1

miX
lD0

ˇ̌̌̌
d l

dzl
Oh3.zi /

ˇ̌̌̌
;

which yields
k kC1 � CT;Lkh3kH�2=3.R/:

The required properties of g3 follow.
By considering the solution corresponding to h3 � g3, without loss of generality one

can assume that if z is a real solution of order m of the equation detQ.z/„.z/ D 0 then
z is also a real zero of order at least m of Oh3.z/. This fact is assumed from now on.

We now establish (4.26). We have, by Lemma 2.4,

Oy.z; x/ D
Oh3.z/

detQ

3X
jD1

.e�jC2L � e�jC1L/e�j x for a.e. x 2 .0; L/: (4.28)

From the assumption on h3, we have, for z 2 R and jzj �  ,ˇ̌̌̌
Oh3.z/

detQ.z/

3X
jD1

.e�jC2L � e�jC1L/e�j x
ˇ̌̌̌
� CT;kh3kH�2=3.R/; (4.29)

and, by Lemma 3.3, for z 2 R with jzj �  with sufficiently large  ,ˇ̌̌̌
1

detQ

3X
jD1

.e�jC2L � e�jC1L/e�j x
ˇ̌̌̌
�

C

.1C jzj/1=3
: (4.30)

Combining (4.29) and (4.30) yields

k OykL2.R�.0;L// � CT kh3kH�1=3.R/;

which is (4.26) when .h1; h2; h3/ D .0; 0; h3/.
We next deal with (4.27). The proof of (4.27) is similar to the one of (4.26). One just

notes that, instead of (4.30), for z 2 R with jzj �  with sufficiently large  , we have 1

detQ

3X
jD1

.e�jC2L � e�jC1L/e�j x

H�1.0;L/

�
C

.1C jzj/2=3
: (4.31)

The details are omitted.
The proof in the case .h1; h2; h3/ D .h1; 0; 0/ or in the case .h1; h2; h3/ D .0; h2; 0/

is similar. We only mention here that the solution corresponding to .h1; 0; 0/ is given by

Oy.z; x/ D
Oh1.z/

detQ

3X
jD1

.�jC2 � �jC1/e
�j .x�L/ for a.e. x 2 .0; L/;



On the small-time local controllability of KdV equations 1225

and the solution corresponding to .0; h2; 0/ is given by

Oy.z; x/ D
Oh2.z/

detQ

3X
jD1

.�jC1e
�jC1L � �jC2e

�jC2L/e�j x for a.e. x 2 .0; L/:

The details are left to the reader.

Remark 4.5. The estimates in Lemma 4.4 are in the spirit of the well-posedness results
due to Bona et al. [13] (see also [12]) but quite different. The setting of Lemma 4.4 is
below the limiting case in [13], which was not investigated in their work.

We next establish a variant of Lemma 4.4 for inhomogeneous KdV systems.

Lemma 4.6. Let L > 0 and T > 0. Let h D .h1; h2; h3/ 2 H 1=3.RC/ �H 1=3.RC/ �
L2.RC/, f1 2 L1..0; T / � .0; L//, and f2 2 L1..0; T /IW 1;1.0; L// with

f2.t; 0/ D f2.t; L/ D 0: (4.32)

Set f D f1C f2;x and assume that f 2L1.RCIL2.0;L//. Let y 2C.Œ0;C1/IL2.0;L//
\ L2loc.Œ0;C1/IH

1.0; L// be the unique solution of the system´
yt .t; x/C yx.t; x/C yxxx.t; x/Df .t; x/ in .0;C1/ � .0; L/;

y.t; xD0/Dh1.t/; y.t; xDL/Dh2.t/; yx.t; xDL/Dh3.t/ in .0;C1/;
(4.33)

and
y.t D 0; �/ D 0 in .0; L/:

We have

kykL2..0;T /�.0;L// � CT
�
k.h1; h2/kL2.RC/ C kh3kH�1=3.R/ C kf kL1.RC�.0;L//

�
;

(4.34)
and

kykL2..0;T /IH�1.0;L//

� CT
�
k.h1; h2/kH�1=3.R/ C kh3kH�2=3.R/ C k.f1; f2/kL1.RC�.0;L//

�
: (4.35)

Assume in addition that h.t; �/D 0 and f .t; �/D 0 for t � T1 for some 0 < T1 < T . Then,
for any ı > 0 and T1 C ı � t � T , we have

jyt .t; x/j C jyx.t; x/j

� CT;T1;ı
�
k.h1; h2/kH�1=3.R/ C kh3kH�2=3.R/ C k.f1; f2/kL1.RC�.0;L//

�
: (4.36)

Here CT and CT;T1;ı denote positive constants independent of h and f .

Proof. The proof is based on a connection between KdV equations and KdV-Burgers
equations. Set v.t; x/ D e�2tCxy.t; x/, which is equivalent to y.t; x/ D e2t�xv.t; x/.
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Then

yt .t; x/ D .2v.t; x/C vt .t; x//e
2t�x ;

yx.t; x/ D .�v.t; x/C vx.t; x//e
2t�x ;

yxxx.t; x/ D .vxxx.t; x/ � 3vxx.t; x/C 3vx.t; x/ � v.t; x//e
2t�x :

Hence, if y satisfies the equation

yt .t; x/C yx.t; x/C yxxx.t; x/ D f .t; x/ in RC � .0; L/;

then

vt .t; x/C 4vx.t; x/C vxxx.t; x/ � 3vxx.t; x/ D f .t; x/e
�2tCx in RC � .0; L/:

Set, in RC � .0; L/,

 .t;x/D .t/ WD
1

L

ˆ L

0

f .t; �/e�2tC� d� and g.t;x/ WD f .t;x/e�2tCx � .t;x/:

(4.37)
Then ˆ L

0

g.t; x/ dx D 0:

Let y1 2 C.Œ0;C1/IL2.0;L//\L2loc.Œ0;C1/IH
1.0;L// be the unique solution which

is periodic in space of the system

y1;t .t; x/C 4y1;x.t; x/C y1;xxx.t; x/ � 3y1;xx.t; x/ D g.t; x/ in .0;C1/ � .0; L/;
(4.38)

y1.t D 0; �/ D 0 in .0; L/: (4.39)

We have, by (4.32),

g.t; x/ D f1.t; x/e
�2tCx

C f2;x.t; x/e
�2tCx

�  .t; x/; (4.40)

 .t; x/ D
1

L

ˆ L

0

f1.t; �/e
�2tC� d� �

1

L

ˆ L

0

f2.t; �/e
�2tC� d�: (4.41)

Applying Lemma 4.1, we have

ky1.�; x/kL2.RC/ C ky1;x.�; x/kH�1=3.R/ � CkgkL1.RC�.0;L//

which yields, by (4.37),

ky1.�; x/kL2.RC/ C ky1;x.�; x/kH�1=3.R/ � Ckf kL1.RC�.0;L//: (4.42)

Similarly, by noting f2;x.t; x/e�2tCx D .f2.t; x/e�2tCx/x � f2.t; x/e�2tCx , we get

ky1.�; x/kH�1=3.R/ C ky1;x.�; x/kH�2=3.R/ � Ck.f1; f2/kL1.RC�.0;L//: (4.43)
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Applying Lemma 4.1 again, we obtain

jy1;x.t; x/j C jy1;t .t; x/j � CT;T1;ık.f1; f2/kL1.RC�.0;L// for T1 C ı=2 � t � T:
(4.44)

if f D 0 for t � T1.
Fix ' 2 C.R/ such that ' D 1 for jt j � T and ' D 0 for jt j > 2T . Let y2 2

C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// be the unique solution of the system8̂̂̂̂

<̂
ˆ̂̂:
y2;t .t; x/C y2;x.t; x/C y2;xxx.t; x/ D '.t/ .t; x/ in .0;C1/ � .0; L/;

y2.t; x D 0/ D h1.t/ � '.t/e
2ty1.t; 0/ in .0;C1/;

y2.t; x D L/ D h2.t/ � '.t/e
2t�Ly1.t; L/ in .0;C1/;

y2;x.t; x D L/ D h3.t/ � '.t/.e
2t��y1.t; �//x.t; L/ in .0;C1/;

and
y2.t D 0; �/ D 0 in .0; L/:

Using (4.40) and applying Lemma 4.4 to y2, from (4.42) we have

ky2kL2..0;T /�.0;L// � CT
�
k.h1; h2/kL2.RC/ C kh3kH�1=3.R/ C kf kL1.RC�.0;L//

�
;

(4.45)
and from (4.43), we obtain

ky2kL2..0;T /IH�1.0;L//

� CT
�
k.h1; h2/kH�1=3.R/ C kh3kH�2=3.R/ C k.f1; f2/kL1.RC�.0;L//

�
: (4.46)

One can verify that y1 C y2 and y satisfy the same system for 0 � t � T and they
are in the space C.Œ0; T �IL2.0; L// \ L2.0; T IH 1.0; L//. By the well-posedness of the
KdV system, one has

y D y1 C y2 in .0; T / � .0; L/:

Combining (4.42) and (4.45) yields (4.34), and combining (4.43) and (4.46) yields (4.35).
Combining (4.44) and (4.45) gives, for some T1 C ı=2 � � � T1 C 3ı=4,

ky.�; �/kH�1.0;L/

� CT;T1;ı
�
k.h1; h2/kH�1=3.R/ C kh3kH�2=3.R/ C k.f1; f2/kL1.RC�.0;L//

�
; (4.47)

and assertion (4.36) follows by the standard C1 smoothness property of solutions of the
linear KdV system (4.33). The proof is complete.

Remark 4.7. One can also check (4.47) by using a variant of (4.7) in Lemma 4.1 in which
f D 0 but a non-zero initial condition is considered.

5. Small time local null-controllability of the KdV system

The main result of this section is the following, which implies in particular Theorem 1.2.
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Theorem 5.1. Let L > 0, and k; l 2 N�. Set

p D
.2k C l/.k � l/.2l C k/

3
p
3 .k2 C kl C l2/3=2

: (5.1)

Assume that

L D 2�

r
k2 C kl C l2

3
; (5.2)

2k C l 62 3N�: (5.3)

Let ‰ be defined in (6.8), where

�1 D �
2�i

3L
.2k C l/; �2 D �1 C

2�i

L
k; �3 D �2 C

2�i

L
l; (5.4)

andE is given by (3.10). There exists "0>0 such that for all 0< "< "0, all8 0<T <T�=2
and for all solutions y 2 C.Œ0;C1/IH 2.0; L// \ L2loc.Œ0;C1/IH

3.0; L// of8̂̂̂̂
<̂
ˆ̂̂:
yt .t; x/C yx.t; x/C yxxx.t; x/C yyx.t; x/ D 0 in .0;C1/ � .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 in .0;C1/;

yx.t; x D L/ D u.t/ in .0;1/;

y.0; �/ D y0.x/ WD "‰.0; �/ in .0; L/;

(5.5)

with u 2 H 2=3.RC/, kukH2=3.R/ < "0, u.0/ D 0, and suppu � Œ0; T �, we have

y.T; �/ ¤ 0:

Remark 5.2. With the choices of p and L in Theorem 5.1, the function ‰.t; x/ given in
Corollary 3.7 satisfies the linear KdV system as in [18], i.e.,

‰t .t; x/C‰xxx.t; x/C‰x.t; x/ D 0 in RC � .0; L/; (5.6)

‰.t; 0/ D ‰.t; L/ D ‰x.t; 0/ D ‰x.t; L/ D 0 in RC: (5.7)

This property can be rechecked using the fact �1; �2; �3 are the roots of �3 C �� ip D 0.

We first show that E defined by (3.10) with �j given in (5.4) and with p as in (5.1) is
not zero if (5.3) holds. More precisely, we have

Lemma 5.3. Let k; l 2 N� and let E be given by (3.10) with �j in (5.4) and with p as
in (5.1). Assume that (6.2) holds. We have

E D
40�3

3L3
.e�1L � 1/ikl.k C l/:

Consequently,
E ¤ 0 provided that (5.3) holds.

8T� is the constant in Corollary 3.7 with p, �j , and L given previously. Note that E ¤ 0 by
Lemma 5.3 below.
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Proof. With j D L�j =.2�i/, we have

1 D �
2k C l

3
; 2 D

k � l

3
; 3 D

k C 2l

3
:

It follows that

L3

.2�i/3

3X
jD1

�2jC2.�jC1 � �j / D

3X
jD1

2jC2.jC1 � j / D 
2
3k C 

2
1 l � 

2
2 .k C l/

D .23 � 
2
2 /k � .

2
2 � 

2
1 /l D .k C l/kl;

which yields
3X

jD1

�2jC2.�jC1 � �j / D �8�
3ikl.k C l/=L3:

We also have

3X
jD1

�jC1 � �j

�jC2
D

3X
jD1

jC1 � j

jC2

D
3k

k C 2l
�

3l

2k C l
�
3.k C l/

k � l

D �
27kl.k C l/

.k C 2l/.2k C l/.k � l/
:

We then have, by (3.10),

E D
1

3
.e�1L � 1/

�
16�3i

3L3
kl.k C l/C

27ipkl.k C l/

.k � l/.k C 2l/.2l C k/

�
: (5.8)

From (5.1) and (6.2), we obtain

p

.k � l/.k C 2l/.2l C k/
D

�
2�

3L

�3
:

We deduce from (5.8) that

E D
40�3

3L3
.e�1L � 1/ikl.k C l/:

The proof is complete.

Before giving the proof of Theorem 5.1, we state and prove new estimates for the
nonlinear KdV system (1.1)–(1.2), which play a role in the proof of Theorem 5.1.

Lemma 5.4. Let L; T > 0. There exists a constant "0 > 0 depending on L and T such
that for y0 2 L2.0; L/ and u 2 L2.RC/ with

ky0kL2.0;L/ C kukL2.RC/ � "0;
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the unique solution y 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// of the system8̂̂<̂

:̂
yt .t; x/C yx.t; x/C yxxx.t; x/C y.t; x/yx.t; x/ D 0 in .0;C1/ � .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 in .0;C1/;

yx.t; x D L/ D u.t/ in .0;1/;

with y.0; �/ D y0, satisfies

kykL2..0;T /�.0;L// � C.ky0kL2.0;L/ C kukH�1=3.R//; (5.9)

kykL2..0;T /IH�1.0;L// � C.ky0kL2.0;L/ C kukH�2=3.R//; (5.10)

where C is a positive constant depending only on T and L.

Proof. We have (see e.g. [24, Proposition 14]), for "0 small,

kyxkL2..0;T /�.0;L// � CT .ky0kL2.0;L/ C kukL2.RC//;

which yields
kyxkL2..0;T /�.0;L// � C"0: (5.11)

Set
f .t; x/ D �y.t; x/@xy.t; x/:

The Cauchy–Schwarz inequality and (5.11) yield

kf kL1.RC�.0;L// � C"0kykL2.RC�.0;L//:

Applying Lemma 4.6, and more precisely (4.34), we have

kykL2.RC�.0;L// � C"0kykL2.RC�.0;L// C C.ky0kL2.0;L/ C kukH�1=3.R//:

By choosing "0 sufficiently small, the first term of the RHS can be absorbed by the LHS
and assertion (5.9) follows.

To prove (5.10), one notes that

ky2kL1..0;T /�.0;L// � CkykL2..0;T /IH�1.0;L//kykL2..0;T /IH1.0;L//
(5.11)
� C"0kykL2..0;T /IH�1.0;L//:

By Lemma 4.6 (this time (4.35)), we obtain

kykL2..0;T /IH�1.0;L// � C"0kykL2..0;T /IH�1.0;L// C C.ky0kL2.0;L/ C kukH�2=3.R//:

By choosing "0 sufficiently small, the first term of the RHS can be absorbed by the LHS
and assertion (5.10) follows.
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Proof of Theorem 5.1. By Lemma 5.3, the constant E is not 0. Let "0 be a small positive
constant, which depends only on k and l and is determined later. We prove Theorem 5.1
by contradiction. Assume that there exists a solution y 2 C.Œ0; C1/IH 2.0; L// \

L2loc.Œ0;C1/IH
3.0;L// of (5.5) with y.t; �/D 0 for t � T , for some u 2H 2=3.0;C1/,

some 0 < " < "0, and some 0 < T < T�=2 with kukH2=3.RC/ < "0, u.0/ D 0, and
suppu � Œ0; T �.

For "0 small, we have (see e.g. [24, Proposition 14])

kykL2..0;T /IH1.0;L// � C.ky0kL2.0;L/ C kukL2.RC//: (5.12)

Set

y1.t; x/ D y.t; x/ � c

ˆ L

0

y.t; �/‰.t; �/ d�‰.t; x/; (5.13)

with c�1 WD
´ L
0
j‰.0; �/j2 d�. Since y0.x/ D �‰.0; x/, this choice of c ensures that

y1.0; �/ D 0 in .0; L/. Then y1 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// is

the solution of8̂̂̂̂
<̂
ˆ̂̂:
y1;t .t; x/C y1;x.t; x/C y1;xxx.t; x/C f .t; x/ D 0 in .0;C1/ � .0; L/;

y1.t; x D 0/ D y1.t; x D L/ D 0 in .0;C1/;

y1;x.t; x D L/ D u.t/ in .0;C1/;

y1.0; �/ D 0;

where
f .t; x/ D f1.t; x/C f2;x.t; x/;

with

f1.t; x/ D �c

ˆ L

0

yyx.t; �/‰.t; �/ d�‰.t; x/ D
c

2

ˆ L

0

y2.t; �/‰x.t; �/ d�‰.t; x/;

f2.t; x/ D
1

2
y2.t; x/:

By Lemma 5.4, we have

kykL2..0;T /�.0;L// � C.ky0kL2.0;L/ C kukH�1=3.R//; (5.14)

kykL2..0;T /IH�1.0;L// � C.ky0kL2.0;L/ C kukH�2=3.R//: (5.15)

From the definition of y1 in (5.13), and (5.15), we obtain

ky1kL2..0;T /IH�1.0;L// � C.ky0kL2.0;L/ C kukH�2=3.R//: (5.16)

Let y2 2 C.Œ0;C1/IL2.0;L//\L2loc.Œ0;C1/IH
1.0;L// be the unique solution of8̂̂̂̂

<̂
ˆ̂̂:
y2;t .t; x/C y2;x.t; x/C y2;xxx.t; x/ D �f .t; x/ in .0;C1/ � .0; L/;

y2.t; x D 0/ D y2.t; x D L/ D 0 in .0;C1/;

y2;x.t; x D L/ D 0 in .0;C1/;

y2.0; �/ D 0;
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and let y3 2 C.Œ0;C1/IL2.0;L//\L2loc.Œ0;C1/IH
1.0;L// be the unique solution of8̂̂̂̂

<̂
ˆ̂̂:
y3;t .t; x/C y3;x.t; x/C y3;xxx.t; x/ D 0 in .0;C1/ � .0; L/;

y3.t; x D 0/ D y3.t; x D L/ D 0 in .0;C1/;

y3;x.t; x D L/ D u.t/ in .0;C1/;

y3.0; �/ D 0:

Then
y1 D y2 C y3:

There exists u4 2 L2.0;C1/ such that suppu4 � Œ2T�=3; T��,

ku4kL2.0;C1/ � Cky3.2T�=3; �/kL2.2T�=3;T�/;

and
y4.T�; �/ D 0;

where y4 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// is the unique solution of8̂̂̂̂

<̂
ˆ̂̂:
y4;t .t; x/C y4;x.t; x/C y4;xxx.t; x/ D 0 in .2T�=3;C1/ � .0; L/;

y4.t; x D 0/ D y4.t; x D L/ D 0 in .2T�=3;C1/;

y4;x.t; x D L/ D u4.t/ in .2T�=3;C1/;

y4.T�=2; �/ D y3.2T�=3; �/:

Such a u4 exists since y3.2T�=3; �/ is generated from zero at time 0 (see [38]).
Since y2.t; �/C y3.t; �/ D 0 for t � T�=2, we have

ku4kL2.0;C1/ � Cky2.2T�=3; �/kL2.0;L/;

which yields

ku4kL2.0;C1/
Lemma 4.6
� Ck.f1; f2/kL1.RC�.0;L//

� C min ¹kyk2
L2..0;T /�.0;L//

; kykL2..0;T /IH1.0;L//kykL2..0;T /IH�1.0;L//º

(5.12);(5.14);(5.15)
� C min ¹.ky0kL2.0;L/ C kukH�1=3.R//

2; "0.ky0kL2.0;L/ C kukH�2=3.R//º:

(5.17)

Let zy 2 C.Œ0;C1/IL2.0; L// \ L2loc.Œ0;C1/IH
1.0; L// be the unique solution of8̂̂̂̂

<̂
ˆ̂̂:
zyt .t; x/C zyx.t; x/C zyxxx.t; x/ D 0 in .0;C1/ � .0; L/;

zy.t; x D 0/ D zy.t; x D L/ D 0 in .0;C1/;

zyx.t; x D L/ D u.t/C u4.t/ in .0;C1/;

zy.0; �/ D 0;

Then, by the choice of u4,
zy.t; �/ D 0 for t � T�:
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Multiplying the equation of y by ‰.t; x/, integrating by parts on Œ0; L�, and using
(5.6) and (5.7), we have

d

dt

ˆ L

0

y.t; x/‰.t; x/ dx �
1

2

ˆ L

0

y.t; x/2‰x.t; x/ dx D 0: (5.18)

Integrating (5.18) from 0 to T and using the fact that y.T; �/ D 0 yields
ˆ L

0

y0.x/‰.0; x/ dx C
1

2

ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt D 0: (5.19)

It is clear thatˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
�

ˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ T

0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt

ˇ̌̌̌
C

ˇ̌̌̌ˆ C1
0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
: (5.20)

We next estimate the two terms of the RHS of (5.20).
We begin with the first term. We haveˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ T

0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt

ˇ̌̌̌
� Cky � y1kL2..0;T /IH1.0;L//k.y; y1/kL2..0;T /IH�1.0;L//: (5.21)

By considering the system of y � y1, we obtain

ky � y1kL2..0;T /IH1.0;L// � C.ky0kL2.0;L/ C kf1kL1..0;T /IL2.0;L///

� Cky0kL2.0;L/ C Ckyk
2
L2..0;T /�.0;L//

(5.14)
� Cky0kL2.0;L/ C C.ky0kL2.0;L/ C kukH�1=3.R//

2: (5.22)

Combining (5.15), (5.16), and (5.22), we deduce from (5.21) thatˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ T

0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt

ˇ̌̌̌
�C"0ky0kL2.0;L/CC.ky0kL2.0;L/CkukH�2=3.R//.ky0kL2.0;L/CkukH�1=3.R//

2:

(5.23)

We next estimate the second term of the RHS of (5.20). It is clear thatˇ̌̌̌ˆ C1
0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
� Cky1 � zykL2..0;T�/IH1.0;L//.ky1kL2..0;T�/IH�1.0;L// C kzykL2..0;T�/IH�1.0;L///:

(5.24)
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Consider the systems of y1 � y and zy. We have

ky1 � zykL2..0;T�/IH1.0;L// � C.kf kL1..0;T /IL2.0;L// C ku4kL2.0;T //

(5.17)
� CkyyxkL1..0;T /IL2.0;L// C C.ky0kL2.0;L/ C kukH�1=3.R//

2

(5.12)
� C.ky0kL2.0;L/ C kukL2.RC//

2; (5.25)

and, by Lemma 4.6 and (5.17),

kzykL2..0;T�/IH�1.0;L// � Ck.u; u4/kH�2=3.R/ � C.ky0kL2.0;L/ C kukH�2=3.R//:

(5.26)
Using (5.16), (5.25), and (5.26), we deduce from (5.24) thatˇ̌̌̌ˆ C1
0

ˆ L

0

y1.t; x/
2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
� C.ky0kL2.0;L/ C kukL2.RC//

2.ky0kL2.0;L/ C kukH�2=3.R//: (5.27)

Combining (5.20), (5.23), and (5.27) yieldsˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
� C"0ky0kL2.0;L/ C C.ky0kL2.0;L/ C kukH�2=3.R//.ky0kL2.0;L/ C kukL2.RC//

2:

(5.28)

On the other hand, from Corollary 3.7 and the choice of y0, we have

ˆ L

0

y0.x/‰.0; x/ dx C
1

2

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

� C.ky0kL2.0;L/ C kuC u4k
2
H�2=3.R/

/: (5.29)

Using the fact that

kuC u4k
2
H�2=3.R/

� Ckuk2
H�2=3.R/

� Cku4k
2
L2.R/

(5.17)
� Ckuk2

H�2=3.R/
� C.ky0kL2.0;L/ C kukH�1=3.R//

4;

we infer from (5.29) that, for small "0,

ˆ L

0

y0.x/‰.0; x/ dx C
1

2

ˆ 1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

� C.ky0kL2.0;L/ C kuk
2
H�2=3.R/

/ � Ckuk4
H�1=3.R/

: (5.30)

Combining (5.19), (5.28), and (5.30) yields
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C"0ky0kL2.0;L/ C C.ky0kL2.0;L/ C kukH�2=3.R//.ky0kL2.0;L/ C kukL2.RC//
2

(5.28)
�

ˇ̌̌̌ˆ T

0

ˆ L

0

y.t; x/2‰x.t; x/ dx dt �

ˆ C1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

ˇ̌̌̌
(5.19)
�

ˆ L

0

y0.x/‰.0; x/ dx C
1

2

ˆ 1
0

ˆ L

0

zy.t; x/2‰x.t; x/ dx dt

(5.30)
� C.ky0kL2.0;L/ C kuk

2
H�2=3.R/

� Ckuk4
H�1=3.R/

/: (5.31)

It follows that, if "0 is fixed but sufficiently small,

kuk4
H�1=3.R/

C kukH�2=3.R/kuk
2
L2.RC/

� Ckuk2
H�2=3.R/

: (5.32)

We have

kuk2
H�1=3.R/

� CkukL2.R/kukH�2=3.R/ � C"0kukH�2=3.R/; (5.33)

kuk2
L2.R/ � CkukH�2=3.R/kukH2=3.R/ (5.34)

(recall that we extended u by 0 for t < 0). Let U be the even extension of ujRC
over R. Applying toU the Hardy inequality for the fractional Sobolev–Slobodetskiı̆ space
H 2=3.R/ after noting that U.0/ D 0 (see e.g. [35, Theorem 1.1])9, we derivej � j�2=3U.�/

L2.R/
� CkU kH2=3.R/:

We have
kU kH2=3.R/ � CkukH2=3.RC/

since U is an even extension of u, and

jU j2
H2=3.R/

�

ˆ
R

ˆ
R

jU.s/ � U.t/j2

js � t j1C4=3
ds dt;

juj2
H2=3.R/

�

ˆ
RC

ˆ
RC

ju.s/ � u.t/j2

js � t j1C4=3
ds dt:

We obtain j � j�2=3u.�/
L2.R/

� CkukH2=3.RC/:

Since

juj2
H2=3.R/

�

ˆ
R

ˆ
R

ju.s/ � u.t/j2

js � t j1C4=3
ds dt

u.s/D0; s<0

�

ˆ
RC

ˆ
RC

ju.s/ � u.t/j2

js � t j1C4=3
dx dy C C

ˆ
RC

ju.t/j2

t4=3
dt

� Ckuk2
H2=3.RC/

C C

ˆ
RC

ju.t/j2

t4=3
dt;

9We here apply [35, Theorem 1.1 (ii)] with  D �2=3, � D p D 2, s D 2=3, a D 1, ˛ D 0.
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it follows that
kukH2=3.R/ � CkukH2=3.RC/: (5.35)

Here we have also used the fact that u D 0 in R�. Combining (5.34) and (5.35) yields

kuk2
L2.R/ � C"0kukH�2=3.R/: (5.36)

Using (5.33) and (5.36), we deduce from (5.32) that kuk2
H�2=3

� C"20kuk
2
H�2=3

C

C"0kuk
2
H�2=3

. So, for fixed sufficiently small "0,

u D 0:

As a consequence, we obtain, by considering the system of u � "‰,

ky.T; �/ � "‰.T; �/kL2.0;L/ � C"
2:

One has a contradiction if "0 is sufficiently small. The proof is complete.

Remark 5.5. Viewing the proof of Theorem 5.1, it is natural to ask whether or not one
needs to derive estimates for (linear and nonlinear) KdV systems using low regular data. In
fact, without using these estimates, one might require that kukH2.0;T / or even kukH3.0;T /
is small.

6. Controllability of the KdV system with controls in H 1

For T > 0, set
X D C.Œ0; T �IY / \ L2..0; T /IH 4.Œ0; L�//

with the corresponding norm. Here we denote

Y D H 3.0; L/ \H 1
0 .0; L/;

which is a Hilbert space with the corresponding scalar product.
In this section, we prove the following local controllability result for the KdV system

(1.1)–(1.2):

Theorem 6.1. Let L > 0 and k; l 2 N�. Let p be defined by (5.1). Assume that (6.2)
holds, 2k C l 62 3N�, and the dimension of M is 2. Given T > �=p, there exists "0 > 0
such that for y0; yT 2 Y with

k.y0; yT /kY � "0;

there exists u 2 H 1.0; T / such that u.0/ D y00.L/,

kukH1.0;T / � Ck.y0; yT /k
1=2
Y ;

and the corresponding solution y 2 X of the nonlinear system (1.1) with y.t D 0; �/D y0
satisfies y.t D T; �/ D yT .
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We recall a result of [12, Lemma 3.3] (applied to s D 3) on the well-posedness and
the stability of the linearized system of (1.1).

Lemma 6.2. Let L;T > 0. For y0 2H 3.0;L/\H 1
0 .0;L/, f 2W

1;1.Œ0; T �IL2.0;L//,
and u 2 H 1.0; T / with u.0/ D y00.L/ there exists a unique solution y 2 X of the system8̂̂̂̂

<̂
ˆ̂̂:
yt .t; x/C yx.t; x/C yxxx.t; x/ D f .t; x/ for t 2 .0; T /; x 2 .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 for t 2 .0; T /;

yx.t; x D L/ D u.t/ for t 2 .0; T /;

y.t D 0; �/ D y0 for x 2 .0; L/:

(6.1)

Moreover,
kykX � C.kf kW 1;1.Œ0;T �IL2.0;L// C kukH1.0;1//

for some positive constant C depending only on L and T .

Remark 6.3. By the same method, the conclusion also holds for nonlinear KdV equations
if kf kW 1;1..0;T /IL2.0;L// C ku0kH1.0;L/ is small.

In the remainder of this section, M? denotes all elements of Y orthogonal to M with
respect to the L2.0; L/-scalar product. We also denote by PM and PM? the projections
into M and M? with respect to L2.0; L/-scalar product.

For the convenience of the reader, we recall the definition of M. For each L 2 N ,
there exist exactly nL 2 N� pairs .km; lm/ 2 N� �N� (1 � m � nL) such that km � lm
and

L D 2�

r
k2m C kmlm C l

2
m

3
: (6.2)

For 1 � m � nL, set

pm D p.km; lm/ D
.2km C lm/.km � lm/.2lm C km/

3
p
3 .k2m C kmlm C l

2
m/
3=2

; (6.3)

and denote 8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
�1;m D �

2�i.2km C lm/

3L
;

�2;m D �1;m C
2�i

L
km D

2�i.km � lm/

3L
;

�3;m D �2;m C
2�i

L
lm D

2�i.km C 2lm/

3L
:

(6.4)

Define, with the convention �jC3;m D �j;m for j D 1; 2; 3,

 m.x/ D

3X
jD1

.�jC1;m � �j;m/e
�jC2;mx for x 2 Œ0; L�: (6.5)

Then

M D span
®
¹<. m.x//I 1 � m � nLº [ ¹=. m.x//I 1 � m � nLº

¯
: (6.6)
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It is clear from the definition of �j;m in (6.4) that

e�1;mL D e�2;mL D e�3;mL: (6.7)

This implies that the function

‰m.t; x/ D e
�itpm m.x/ for .t; x/ 2 R � Œ0; L�

is a solution of the linearized KdV equation which satisfies

‰m.t; 0/ D ‰m.t; L/ D @x‰m.t; 0/ D @x‰m.t; L/ (6.8)

(see also Remark 5.2). In fact, every solution of the linearized KdV equation satisfying
the boundary condition given in (6.8) is a linear combination of ‰m’s for 1 � m � nL.

Before giving the proof of Theorem 6.1, let us establish two lemmas used in its proof.
The first one is a consequence of the Hilbert Uniqueness Method for controls in H 1 and
solutions in X .

Lemma 6.4. Let L 2 N and T > 0. There is a continuous linear map L W M? !

H 1.0; T / such that if ' 2M? and u D L.'/, then u.0/ D 0, and the unique solution
y 2 X of 8̂̂̂̂

<̂
ˆ̂̂:
yt .t; x/C yx.t; x/C yxxx.t; x/ D 0 for t 2 .0; T /; x 2 .0; L/;

y.t; x D 0/ D y.t; x D L/ D 0 for t 2 .0; T /;

yx.t; x D L/ D u.t/ for t 2 .0; T /;

y.t D 0; �/ D 0;

(6.9)

satisfies y.T; �/ D '.

Proof. Set
M?1 D ¹w 2M?I wx.0/ D 0º:

For  2M?1 , by Lemma 6.2, there exists a unique solution y� 2 X of the backward KdV
system8̂̂̂̂

<̂
ˆ̂̂:
y�t .t; x/C y

�
x .t; x/C y

�
xxx.t; x/ D 0 for t 2 .0; T /; x 2 .0; L/;

y�.t; x D 0/ D y�.t; x D L/ D 0 for t 2 .0; T /;

y�x .t; x D 0/ D 0 for t 2 .0; T /;

y�.T; �/ D  :

(6.10)

Applying the observability inequality to y� and y�t (see e.g. [18, Theorem 2.4] and also
[38, proof of Proposition 3.9]), we have, for  � 1,
ˆ T

T=2

. jy�x .t; L/�j
2
C jy�tx.t; L/j

2/ dt � C

ˆ L

0

. jy�.T; x/j2 C jy�t .T; x/j
2/ dx;
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where in the last inequality, we use the fact that if  2M? then  000 C  0 is also in M?

(this can be proved through integration by part arguments; recall that M? is defined via
the L2.0; L/-scalar product). In other words,
ˆ T

T=2

. jy�x .t; L/j
2
C jy�tx.t; L/j

2/ dt � C

ˆ L

0

. j j2 C j 000 C  0j2/ dx: (6.11)

Fix a nonnegative function � 2 C 1.Œ0; T �/ such that � D 1 in ŒT=2; T � and � D 0 in
Œ0; T=3�. Since

ˆ L

0

. j j2 C j 000 C  0j2/ dx D

ˆ L

0

. j j2 C j 000j2 C j 0j2 C 2 000 0/ dx;

and, for all " > 0, ˆ L

0

j 0j2 dx �

ˆ L

0

."j 000j2 C C"j j
2/ dx;

it follows that, for large  ,
ˆ L

0

. j j2 C j 000 C  0j2/ dx � Ck k2
H3.0;L/

: (6.12)

We have ˆ T

0

jy�x .t; L/y
�
tx.t; L/j dt �

ˆ T

0

."�1jy�x j
2
C "jy�txj

2/ dt

� C

ˆ L

0

."�1j j2 C "j 000 C  0j2/ dx:

In the last inequalitiy, we have applied [38, (58) in the proof of Proposition 3.7] (see also
[18, Proposition 2]) to y� and y�t . It follows from (6.11) and (6.12), for  large enough,
that ˆ T

0

Œ�.t/jy�x .t; L/j
2
C y�tx.t; L/.�y

�
x .t; L//t � dt � Ck k

2
H3.0;L/

: (6.13)

For a given ' 2M?1 , by the Lax–Milgram theorem and (6.13), there exists a unique
ˆ 2M?1 such that
ˆ L

0

Œ' C .'000 C '0/. 000 C  0/� dx D

ˆ T

0

.y�x�Y
�
x C y

�
tx.�Y

�
x /t / dt 8 2M?1 ;

(6.14)
where Y � is the solution of (6.10) with  D ˆ.

Let y 2 X be the solution of (6.9) with u.�/D L1.'/D �.�/Y
�
x .�;L/. Then, by integ-

ration by parts,
ˆ L

0

Œ y.T; �/C . 000 C  0/.yxxx.T; �/C yx.T; �//� dx

D

ˆ T

0

.y�x�Y
�
x C y

�
tx.�Y

�
x /t / dt 8 2M?1 : (6.15)
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From (6.14) and (6.15), we obtain

ˆ L

0

Œ' C .'000 C '0/. 000 C  0/�

D

ˆ L

0

Œ y.T; �/C . 000 C  0/.yxxx.T; �/C yx.T; �//� 8 2M?1 :

Since y and Y � satisfies system (6.9) with the same u for t 2 ŒT=2; T �, it follows that
y.t; �/� Y �.t; �/ 2M for t 2 ŒT=2; T �. In particular, y.T; �/ 2M?1 since Y �.T; �/ 2M?1 .
Combining this with the fact that ' 2M?1 , we deduce from (6.12) that

y.T; �/ D ':

The conclusion for 2T (instead of T ) is now as follows. Fix � 2 C 1.Œ0; 2T �/ with
�.2T / D 1 and �.t/ D 0 for t � 5T=4. For ' 2M?, let zy� be the unique solution of8̂̂̂̂

<̂
ˆ̂̂:
zy�t .t; x/C zy

�
x .t; x/C zy

�
xxx.t; x/ D 0 for t 2 .T; 2T /; x 2 .0; L/;

zy�.t; x D 0/ D zy�.t; x D L/ D 0 for t 2 .T; 2T /;

zy�x .t; x D 0/ D 'x.2T; 0/�.t/ for t 2 .T; 2T /;

zy�.2T; �/ D ':

One can check that zy�.T; �/ 2M?1 . Set

L.'/.t/ D

´
zy�x .t; L/ for t 2 .T; 2T /;

L1.zy
�.T; �//.t/ for t 2 .0; T /:

(6.16)

It is clear that L.'/ 2H 1.0; 2T / since zyx.�;L/ 2H 1.T; 2T /, L1.zy
�.T; �// 2H 1.0; T /,

and L1.zy
�.T; �//.T / D zy�x .T; L/, and that the corresponding solution at time 2T is '.

The proof is complete.

For r > 0 and an element e 2 Y , we denote by Br .e/ the open ball in Y centered at
e with radius r , and open Br .e/ its closure in Y . The second lemma is a consequence of
the power series method and the information derived in Sections 3 and 5.

Lemma 6.5. Let L > 0 and k; l 2 N�. Let p be defined by (5.1). Assume that (6.2)
holds, 2k C l 62 3N�, and the dimension of M is 2. Let T > �=p and 0 < c1 < c2. Fix
' 2M with c1 � k'kY � c2. There exist a constant 0 < c3 < c1=2, and two maps U1 W
Bc3.'/!H 1.0; T / and U2 W Bc3.'/!H 1.0; T / such that U1.'/.0/D U2.'/.0/D 0,
and for  2 Bc3.'/, the unique solutions y1 and y2 in X of the following two systems,
with u1 D U1.'/ and u2 D U2.'/:8̂̂̂̂

<̂
ˆ̂̂:
y1;t .t; x/C y1;x.t; x/C y1;xxx.t; x/ D 0 for t 2 .0; T /; x 2 .0; L/;

y1.t; x D 0/ D y1.t; x D L/ D 0 for t 2 .0; T /;

y1;x.t; x D L/ D u1.t/ for t 2 .0; T /;

y1.t D 0; �/ D 0 for t 2 .0; T /;

(6.17)
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8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

y2;t .t; x/C y2;x.t; x/C y2;xxx.t; x/C y1.t; x/y1;x.t; x/ D 0

for t 2 .0; T /; x 2 .0; L/;

y2.t; x D 0/ D y2.t; x D L/ D 0 for t 2 .0; T /;

y2;x.t; x D L/ D u2.t/ for t 2 .0; T /;

y1.t D 0; �/ D 0 for t 2 .0; T /;

(6.18)

satisfy
y1.T; �/ D 0 and y2.T; �/ D  :

Moreover, for  ; z 2 Bc3.'/,

kU1. / � U1. z /kH1.0;T / � Ck � z kY (6.19)

and
kU2. / � U2. z /kH1.0;T / � Ck � z kY ; (6.20)

for some positive constant C depending only on L, T , c1, and c2.

Proof. By Lemma 5.3 and Corollary 3.7, for all � > 0, there exists v1 2 H 2
0 .0; �/ such

that if y1 2 X is the solution of (6.17) with u1 D v1 and y2 2 X is the solution of (6.18)
with u2 D 0 then

y2.�; �/ 2M n ¹0º:

Since c3 is small and dim M D 2, and v1 2 H 2
0 .0; L/, by using rotations (see also [18,

proof of Proposition 13]) there exists U1. / with U1. /.0/ D 0 satisfying (6.19) such
that if y1 2 X is the solution of (6.17) with u1 D U1. / and Oy2 2 X is the solution of
(6.18) with u2 D 0 then

Oy2 D PM :

We then choose
u2 D L. Oy2 � PM /;

where L is the map given by Lemma 6.4.

Proof of Theorem 6.1. Fix y0; yT 2 Y with small norms. For simplicity of presentation,
we will assume that ky0kY � kyT kY (the other case also follows from this case by e.g.
reversing the time: t ! T � t and noting that yx.�; 0/ is in H 1.0; T /; this can be derived
by considering the equation for yt 10). Set � D kyT kY and assume that � > 0; otherwise,
one just takes the zero control and the conclusion follows.

Let w0 be the state at time T of the solution of the linear system (6.9) with the zero
control starting from PMy0 at time 0. We first consider the case where

kPMyT � w0kH2.0;L/ � 2c� (6.21)

for some small constant c independent of � and to be defined later.

10The compatibility condition is automatic.
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Set
GWY \ Bc�.yT /! H 1.0; T /; ' 7! �u0 C �1=2u1 C �u2:

Here we decompose ' as
' D PM?' C PM';

u0 2 H 1.0; T / is a control for which the corresponding solution y0 in X of the linear
system (6.9) starting from PM?y0=� at 0 and arriving at PM?'=� at time T , and u1
and u2 are controls for which the solutions y1 2 X and y2 2 X of the system (6.17)–
(6.18) (with initial data PMy0=� instead of 0

�
satisfy y1.T; �/D 0 and y2.T; �/DPM'=�.

Moreover, by Lemma 6.4, one can choose u0 in such a way that u0 D u0.'/ is a Lipschitz
function of ' with Lipschitz constant bounded by a positive constant independent of �,
and by Lemma 6.5 one can choose u1 D u1.'/ and u2 D u2.'/ as Lipschitz functions of
PM'=� with Lipschitz constants bounded by positive constants independent of �.

Set

P W ¹w 2 H 1.0; T /I w.0/ D y00.L/º ! H 3.0; L/; w 7! y.T; �/;

where y 2 X is the unique solution of the nonlinear system (1.1) with u D w starting
from y0 at time 0. Consider the map

ƒWY \ Bc�.yT /! Y; ' 7! ' � P ıG.'/C yT :

We will prove that
ƒ.'/ 2 Bc�.yT /; (6.22)

and
kƒ.'/ �ƒ.�/kY � �k' � �kY (6.23)

for some � 2 .0; 1/. Assuming this, one infers from the contraction mapping theorem that
there exists a unique '0 2 Y \ Bc�.yT / such that ƒ.'0/ D '0. As a consequence,

yT D P ıG.'0/;

and G.'0/ is hence a required control.
We next establish (6.22) and (6.23). Indeed, (6.22) follows from the inequality

k' � P ıG.'/kY � Ck'k
3=2
Y for ' 2 Y \ Bc�.yT /:

This can be proved using approximation via the power series method as follows. Set11

u D �u0 C �1=2u1 C �u2 and ya D �y0 C �1=2y1 C �y2:

Let y 2 X be the solution of the nonlinear KdV system (1.1) with y.t D 0; �/ D y0 and
with u defined above. Then

.y � ya/t C .y � ya/x C .y � ya/xxx C yyx � yaya;x D f .t; x/;

11The subscript a stands for approximation.
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where

�f .t; x/ D �3=2.y1y2/x C �
2y2y2;x C �

2y0y0;x C �3=2.y0.y1 C �1=2y2//x :

Since
yyx � yaya;x D .y � ya/yx C ya.yx � ya;x/;

applying Lemma 6.2 we obtain, for small �,

ky � yakX � Ckf kW 1;1..0;T /IL2.0;L// � C�
3=2: (6.24)

Assertion (6.22) follows since y.T; �/ D P ıG.'/ and ya.T; �/ D '.
We next establish (6.23). To this end, we estimate

.' � P ıG.'// � .z' � P ıG.z'//:

Denote by zu0; zu1; zu2; zu and zy0; zy1; zy2; zya; zy the functions corresponding to z' which are
defined in the same way as the functions u0; u1; u2; u and y0; y1; y2; ya; y defined for '.

We have

.y � zy/t C .y � zy/x C .y � zy/xxx C yyx � zy zyx D 0;

.ya � zya/t C .ya � zya/x C .ya � zya/xxx C yaya;x � zya zya;x D g.t; x/;

where

g.t; x/ D �3=2..y1y2/x � .zy1 zy2/x/C �
2.y2y2;x � zy2 zy2;x/C �

2.y0y0;x � zy0zy0;x/

C �3=2
�
y0.y1 C �1=2y2/ � zy0.zy1 C �1=2 zy2/

�
x
: (6.25)

This implies

.y � ya � zy C zya/t C .y � ya � zy C zya/x C .y � ya � zy C zya/xxx

D �..y � ya/yx C ya.y � ya/x � .zy � zya/zyx � zya.zy � zya/x C g.t; x//

D �
�
.y � ya � zy C zya/yx C .yx � zyx/.zy � zya/C ya.y � ya � zy C zya/x

C .ya � zya/.zy � zya/x C g.t; x/
�

D �
�
.y � ya � zy C zya/yx C ya.y � ya � zy C zya/x

C .yx � ya;x � zyx C zya;x/.zy � zya/C h.t; x/
�
;

where

h.t; x/ D g.t; x/C .ya;x � zya;x/.zy � zya/C .ya � zya/.zy � zya/x :

Using Lemma 6.2, we find that, for � small,

ky � ya � zy C zyakX � Ckh.t; x/kW 1;1..0;T /IL2.0;L//: (6.26)

We have

k.y � ya; zy � zya/kX
(6.24)
� C�3=2; kya � zyakX � C�

�1=2
k' � z'kY ;
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and
kg.t; x/kW 1;1..0;T /IL2.0;L// � C�

1=2
k' � z'kY :

It follows that
kh.t; x/kW 1;1..0;T /IL2.0;L// � C�

1=2
k' � �kY ; (6.27)

which yields, by (6.26),

k.y � ya � zy C zya/.T; �/kY � C�
1=2
k' � �kY :

Assertion (6.23) follows.
We next consider the case kPMyT � w0kH3.0;L/ � 2ckyT kH3.0;L/. In fact, one can

reduce this case to the previous one as follows. Fix " > 0 small. By Lemma 5.3 and
Corollary 3.7, there exists v1 2 H 2

0 .0; "/ such that if y1 2 X (with T D ") is the solution
of (6.17) with u1 D v1 and y2 2 X is the solution of (6.18) with u2 D 0 then

y2."; �/ 2M n ¹0º:

Let u0;T be a control for which the corresponding solution in X of the linear system (6.9)
starts from yT .L � �/=� at 0 and arrives at 0 at time ", and set u1;T D v1, u2;T D 2v2
for some  > 0 to be defined later. Let y be the unique solution of the nonlinear KdV
system in the time interval ŒT; T C "� using the control

�u0.� � T /C �
1=2u1.� � T /C �u2.� � T /

with y.T; �/D yT .L� �/. By choosing  large enough, y0 and y.T C ";L� �/ satisfy the
setting of the previous case for the time interval Œ0; T C "� (instead of Œ0; T �). One now
considers the control (for the nonlinear KdV system) in the time interval Œ0;T C 2"�which
is equal to the one which brings y0 at time 0 to y.T C "; L � �/ at time T C " obtained
in the previous case in the time interval Œ0; T C "�, and is equal to �yx.2.T C "/ � t; 0/
for t 2 ŒT C "; T C 2"�. It is clear that the solution of the nonlinear KdV system at time
T C 2" is yT . The proof is completed by changing T C 2" to T .

Remark 6.6. A similar result to Theorem 6.1 also holds for y0;yT 2H 2.0;L/\H 1
0 .0;L/

and u2H 2=3.0;T /. More precisely, one has the following result. LetL>0, and k; l 2N�.
Let p be defined by (5.1). Assume that (6.2) holds, 2kC l 62 3N�, and the dimension of M

is 2. Given T > �=p, there exists "0 > 0 such that for y0; yT 2 H 2.0; L/ \H 1
0 .0; L/

with
k.y0; yT /kH2.0;L/ � "0;

there exists u 2 H 2=3.0; T / such that u.0/ D y00.L/,

kukH2=3.0;T / � Ck.y0; yT /k
1=2

H2
;

and the corresponding solution y 2 C.Œ0; T �IH 2.0; L// \ L2..0; T /IH 3Œ0; L�// of the
nonlinear system (1.1) with y.t D 0; �/ D y0 satisfies y.t D T; �/ D yT . This is comple-
mentary to Theorem 5.1. The only important modification in comparison with the proof of
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Theorem 6.1 is Lemma 6.4. Nevertheless, the method presented in its proof can be exten-
ded to cover the setting described here (initial and final datum in H 2.0; L/ \H 1

0 .0; 1/

and controls in H 2=3.0; T /). We also have

kyx.�; 0/kH2=3.0;T / � C
�
ky.0; �/kH2.0;L/ C kyx.�; L/kH2=3.0;T /

�
(6.28)

for solutions y 2 C.Œ0; T �IH 2.0; L// \ L2..0; T /IH 3Œ0; L�// of (1.1) with small norm.
Assertion (6.28) would follow from [12] applied to s D 2. Here is another way to see it.
Split y into two parts y1 and y2 where y1 is the solution of the linearized system with
zero initial data and y1;x.�; L/ D yx.�; L/. As in the proof of Lemma 4.4, one can prove

ky1;x.�; 0/kH2=3.0;T / � Ckyx.�; L/kH2=3.0;T /: (6.29)

Concerning y2, by considering yyx as a source term, similar to the proof of Lemma 4.6,
one can prove

ky2;x.�; 0/kH2=3.0;T / � C
�
ky.0; �/kH2.0;L/ C kyyxkL2..0;T /IH2.0;L//

�
: (6.30)

Since

kyyxkL2..0;T /IH2.0;L// � Ckyk
2
C.Œ0;T �IH2.0;L//\L2..0;T /IH3Œ0;L�//

.by the embedding theorem/

� C
�
ky.0; �/kH2.0;L/ C kyx.�; L/kH2=3.0;T /

�2
.by [12, Theorem 3.4] applied to s D 2/;

assertion (6.28) follows from (6.29) and (6.30). Therefore, the arguments using the back-
ward systems also work in this case.

Remark 6.7. The proof given in Theorem 6.1 can be easily extended to the case of
L 62 N to yield the small-time local controllability of (1.1) with initial and final datum
in H 3.0; L/ \H 1

0 .0; L/ (resp. H 2.0; L/ \H 1
0 .0; L/) and controls in H 1.0; T / (resp.

H 2=3.0; T /).

Remark 6.8. Let L 2 N . Assume that dim M is even and for all .k; l/ 2 N2
� such that

k > l � 1 and L D 1
2�

q
k2Cl2Ckl

3
, one has 2k C l 62 3N�. Then, using the same method

as in the proof of Theorem 6.1, and involving the ideas of [20], one can prove that system
(1.1)–(1.2) is controllable in time given in [20].

Remark 6.9. The mappings G and ƒ have their roots in [24] (see also [18]).

Remark 6.10. Lemma 6.4 is motivated by the Hilbert Uniqueness Method and inspired
by the construction of smooth controls (for different contexts, e.g. the context of the wave
equation) in [27]. The function � used there is inspired by [27]. Nevertheless, we cannot
take � D 0 near T as in [27]. We also add a large parameter � in the proof.
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Remark 6.11. In the proof of Lemma 6.5, we essentially use the fact that for all � > 0,
there exists v1 2 H 2

0 .0; �/ such that if y1 2 X is the solution of (6.17) with u1 D v1 and
y2 2 X is the solution of (6.18) with u2 D 0 then

y2.�; �/ 2M n ¹0º:

This is a consequence of Lemma 5.3 and Corollary 3.7. It is not clear to us how to use
a contradiction argument as in [18, 20, 24] to obtain such a function v1. This is why we
cannot implement the strategy of [18, 20, 24] to derive the local controllability for initial
and final datum inH 3.0;L/\H 1

0 .0;L/ with controls inH 1.0; T / for all critical lengths
and for small time when dim M D 1, and in finite time otherwise.

Remark 6.12. We emphasize that the way of implementing the fixed point argument for
ƒ presented in this paper is somewhat different from the one in [18]. We only apply the
fixed point arguments once, instead of twice, first for PM?ƒ and then for PMƒ, as in
[18]. The Brouwer fixed point theorem is not required in our analysis.

Appendix A. On symmetric functions of the roots of a polynomial

This is standard for people knowing algebraic functions [1, Ch. 8, §2], but for the sake
of completeness, we justify that an analytic symmetric function of the roots �j .z/ of
�3 C �C iz D 0 is an entire function.

Lemma A.1. Let .�1.z/; �2.z/; �3.z// be the three roots of �3 C � C iz D 0.
Let F W C3 ! C be holomorphic in C3 and symmetric, i.e., for every permuta-
tion � 2 S3, F.z�.1/; z�.2/; z�.3// D F.z1; z2; z3/. Then the function GW C 3 z 7!
F.�1.z/; �2.z/; �3.z// is entire.

Note that the ordering �1.z/; �2.z/; �3.z/ is not unique (and we could prove that we
cannot chose an ordering that makes any of the �j entire), but since F is symmetric, the
value F.�1.z/; �2.z/; �3.z// does not depend on the ordering.

Proof of Lemma A.1. Note that, for z0 ¤ ˙2=.3
p
3/, the discriminant of X3 C X C

iz is nonzero, and thus the roots of X3 C X C iz0 are simple. By the implicit
function theorem, there exists some complex neighborhood U of z0, some neighbor-
hood Vj of �j .z0/ (1 � j � 3), and three holomorphic functions �j WU ! Vj such that
�1.z/; �2.z/; �3.z/ are the three distinct roots. Since F is symmetric, it follows that
G.z/ D F.�1.z/; �2.z/; �3.z// and is therefore analytic in U . Consequently, G is ana-
lytic in C n ¹˙2=.3

p
3/º.

It then suffices to prove that G is continuous at ˙2=.3
p
3/. The roots �j .z/ are

continuous, even at ˙
p
4=27, in the sense that for every � > 0, there exists ı > 0

such that for every jz � z0j < ı, there exists some ordering of the �kj .z/ such that
j�k1.z/��1.z0/j C � � � C j�k3.z/��3.z0/j< � (this can be seen e.g. thanks to Cardano’s
formula). Thus G.z/ is continuous at z0 D ˙

p
4=27.
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Remark A.2. A variant of Lemma A.1 still holds for more general polynomial equations
P.z; �/ D 0, but we wanted to avoid some technicalities. The general case would be
a consequence of the fact that the solutions of P.z; �/ D 0 define a finite number of
algebraic functions [1, Ch. 8, §2].

Appendix B. On the real roots of H , the common roots of G and H , and the
behavior of jdet Qj

Lemma B.1. Let z 2 R.

(1) If z ¤ ˙2=.3
p
3/ and H.z/ D 0, then, for some k; l 2 N� with 1 � l � k, we have

L D 2�

q
k2CklCl2

3
and

z D �
.2k C l/.k � l/.2l C k/

3
p
3 .k2 C kl C l2/3=2

: (B.1)

Moreover,

�1.z/ D �
2�i

3L
.2k C l/; �2.z/ D �1.z/C

2�i

L
k; �3.z/ D �2.z/C

2�i

L
l;

(B.2)
and z is a simple zero of H .

(2) If z D ˙2=.3
p
3/ then

�1.z/ D �
i
p
3
; �2.z/ D �

i
p
3
; �3.z/ D ˙

2i
p
3
; (B.3)

z is not a zero of H , and z is a simple solution of the equation detQ.z/„.z/ D 0.

Proof. (1) By Remark 2.7, assertion (B.1) holds. Assertion (B.2) then follows from [38].
To prove that z is then a simple root ofH.z/D 0 in the case z ¤˙2=.3

p
3/, we proceed

as follows. We have

�j .z C "/ D �j .z/ �
i"

3�2j C 1
CO."2/:

It follows that

detQ.z C "/ D
3X

jD1

.�jC1.z C "/ � �j .z C "//e
��jC2.zC"/L

D

3X
jD1

�
�jC1.z/ � �j .z/ �

i"

3�2jC1 C 1
C

i"

3�2j C 1
CO."2/

�
e��jC2.z/L

�

�
1C

i"L

3�2jC2 C 1
CO."2/

�
:

Since
e��1.z/L D e��2.z/L D e��3.z/L;
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we derive

detQ.z C "/ D i"Le��1.z/L
3X

jD1

�jC1.z/ � �j .z/

3�2jC2.z/C 1
CO."2/: (B.4)

In what follows, for notational ease, we denote �j .z/ by �j . We have

3X
jD1

�jC1 � �j

3�2jC2 C 1
D
2�i

L

�
k

3�23 C 1
C

l

3�21 C 1
�

k C l

3�22 C 1

�
D
2�i

L

�
3k.�22 � �

2
3/

.3�23 C 1/.3�
2
2 C 1/

C
3l.�22 � �

2
1/

.3�21 C 1/.3�
2
2 C 1/

�
D

�
2�i

L

�2�
�

3kl.�2 C �3/

.3�23 C 1/.3�
2
2 C 1/

C
3kl.�2 C �1/

.3�21 C 1/.3�
2
2 C 1/

�
: (B.5)

Note that

.�2 C �1/.3�
2
3 C 1/ � .�2 C �3/.3�

2
1 C 1/

D .�1 � �3/C 3.�3 � �1/.�1�2 C �1�3 C �2�3/ D 2.�3 � �1/; (B.6)

since �1�2 C �1�3 C �2�3 D 1. From (B.4)–(B.6), we deduce that z is a simple root
of H.z/.

(2) We only consider the case z D 2=.3
p
3/; the other case follows similarly. By

(2.19) in the proof of Lemma 2.6, we have

�1.z C "/ D �
i
p
3
C

p
�i

31=4

p
� CO.�/;

�2.z C "/ D �
i
p
3
�

p
�i

31=4

p
� CO.�/; �3.z C �/ D

2i
p
3
CO.�/:

(B.7)

It follows that

detQ.z C "/ D �
2Li
p
3

p
�i

31=4

p
"CO."/:

Since„.zC "/D cC
p
" for some cC¤ 0 by (B.7), zD 2=.3

p
3/ is not a root ofH.z/D 0

and z is a simple root of detQ.z/„.z/ D 0. The proof is complete.

Lemma B.2. Let z 2 C be such that z ¤ ˙2=.3
p
3/. Assume that H.z/ D G.z/ D 0.

Then, for some k; l 2 N� with k � l � 1, we have

L D 2�

r
k2 C kl C l2

3
; (B.8)

and

z D �
.2k C l/.k � l/.2l C k/

3
p
3 .k2 C kl C l2/3=2

: (B.9)
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Proof. By Remark 2.7 (see also Lemma B.1), it suffices to prove that if z 2 C is such that
z ¤ ˙2=.3

p
3/, and H.z/ D G.z/ D 0, then z is real. Indeed, note that

detQ.z/ D .�1 � �3/.e��2L � e��3L/C .�3 � �2/.e��1L � e��3L/;

and
�P.z/ D .�1 � �3/.e

�2L � e�3L/C .�3 � �2/.e
�1L � e�3L/:

It follows that

jdetQ.z/j D 0 if and only if .�3 � �1/.e
.�3��2/L � 1/ D .�3 � �2/.e

.�3��1/L � 1/;

(B.10)
and

jP.z/j D 0 if and only if .�3 � �1/.e
�.�3��2/L � 1/ D .�3 � �2/.e

�.�3��1/L � 1/:

(B.11)
Solving the system ´P3

jD1 �j D 0;P3
jD1 �j�jC1 D 1;

(B.12)

in which �3 is a parameter, one has, with � D �3�23 � 4,

�1 D
��3 C

p
�

2
and �2 D

��3 �
p
�

2
:

This implies

˛ D ˛.�3/ D �3 � �1 D
3�3 �

p
�

2
; ˇ D ˇ.�3/ D �3 � �2 D

3�3 C
p
�

2
: (B.13)

Thus, if z is a common root of jdet Qj and jP j and �i .z/ ¤ �j .z/ for i ¤ j

(1 � i; j � 3), then, by (B.10) and (B.11),

.e˛L � 1/.e�ˇL � 1/ D .e�˛L � 1/.eˇL � 1/;

which is equivalent to

.e˛L � eˇL/.e˛L � 1/.eˇL � 1/ D 0:

This implies that either e˛L D eˇL, or e˛L D 1, or eˇL D 1. Since �1; �2; �3 are distinct,
it follows from (B.10) and (B.11) that

e˛L D eˇL D 1: (B.14)

We deduce from (B.13) that
3�3 2 2�iZ=L:

Since �33 C �3 D �iz, it follows that z is real. The proof is complete.
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Lemma B.3. There exist c; C > 0 and m0 2 N� such that

(1) for m 2 Z with jmj � m0, we have

jdetQ.z/j � Ce�cjzj
1=3

if =.z/ D ..2mC 1/�=.
p
3L//3I

(2) for z 2 C with jzj � m0 and j<.z/j � cjzj1=3, we have

jdetQ.z/j � Ce�cjzj
1=3

:

Proof. For z 2 C with large jzj, denote by �1; �2; �3 the roots of the equation

�3 C � D �iz;

with the convention <.�3/ � max ¹<.�1/;<.�2/º, and, with � D �3�23 � 4,

�1 D
��3 C

p
�

2
and �2 D

��3 �
p
�

2
:

This is possible since ´
�1 C �2 D ��3;

�1�2 D 1C �
2
3:

We have
j��13 detQ.z/e�3Lj D jf .�3/j;

where

f .�3/ WD
3�3 �

p
�

2�3
.e
3�3C

p
�

2 L
� 1/ �

3�3 C
p
�

2�3
.e
3�3�

p
�

2 L
� 1/: (B.15)

Since �3 is large, we have�
3 � i
p
3

2

��1
f .�3/ D Œ1CO.�

�2
3 /�.e

3Ci
p
3

2 �3LCO.�
�1
3
/
� 1/

� Œ1CO.��23 /�e
i'0.e

3�i
p
3

2 �3LCO.�
�1
3
/
� 1/; (B.16)

where '0 D �=3 since 3Ci
p
3

2
=3�i

p
3

2
D ei'0 .

(1) It suffices to prove, for z 2 C with =.z/ D ..2mC 1/�=.
p
3L//3 with large jmj

(m 2 Z), that
j��13 detQ.z/e�3Lj � 1: (B.17)

Assume that (B.17) does not hold. Then for somem 2Z with large modulus and for some
z 2 C with =.z/ D ..2mC 1/�=.

p
3L//3, we have

jf .�3/j � 1:

Since <.�3/ is positive and large, it follows that

je
3Ci
p
3

2 �3Lj D .1CO.��13 //je
3�i
p
3

2 �3Lj:
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One finds that if �3 D aC ib with a; b 2 R, then

a is large and jbj D O.��13 /: (B.18)

It follows that

e
3Ci
p
3

2 �3L D e
3aL
2 ei

p
3aL
2 eO.�

�1
3
/ and e

3�i
p
3

2 �3L D e
3aL
2 e�i

p
3aL
2 eO.�

�1
3
/:

Using (B.16), and the fact jf .�3/j � 1 and =.z/ D ..2mC 1/�=.
p
3L//3, we obtain a

contradiction. Hence (B.17) holds. The proof of (1) is complete.
(2) It suffices to prove (B.17) for z 2 C with jzj � m0 and j<.z/j � cjzj1=3 for some

c > 0. This indeed follows from the fact if jzj is large and jf .�3/j � 1, then (B.18) holds.
The proof is complete.
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