
© 2022 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 26, 1255–1312 (2024) DOI 10.4171/JEMS/1308

Fan Qin

Bases for upper cluster algebras and tropical points

In memory of Kentaro Nagao

Received October 12, 2020; revised June 14, 2021

Abstract. It is known that many (upper) cluster algebras possess different kinds of good bases
which contain the cluster monomials and are parametrized by the tropical points of cluster Poisson
varieties. For a large class of upper cluster algebras (injective-reachable ones with full rank coeffi-
cients), we describe all of their bases with these properties. Moreover, we show the existence of the
generic basis for them. In addition, we prove that Bridgeland’s representation-theoretic formula is
effective for their theta functions (weak genteelness).

Our results apply to (almost) all known cluster algebras arising from representation theory or
higher Teichmüller theory, including quantum affine algebras, unipotent cells, double Bruhat cells,
skein algebras over surfaces, where we change the coefficients if necessary so that the full rank
assumption holds.
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1. Introduction

1.1. Background: good bases for cluster algebras

Cluster algebras are commutative algebras equipped with extra combinatorial data. Fomin
and Zelevinsky [26] invented these algebras as a combinatorial approach to the dual
canonical bases of the quantized enveloping algebras [45, 55, 56]. They conjectured
that the cluster monomials (certain monomials of generators) of some cluster algebras
are elements of the dual canonical bases of quantized enveloping algebras. Similarly,
an analogous conjecture due to Hernandez and Leclerc [42] expected that the cluster
monomials of some other cluster algebras correspond to simple modules of quantum
affine algebras. Inspired by these conjectures, there have been many works devoted to
relating cluster algebras, their bases and representation theory: [1,5,7,17,31–33,42,44,
47, 52, 64, 67, 68, 71].

On the other hand, to each cluster algebra A, one can associate geometric objects A
and X called the cluster K2 variety and cluster Poisson variety respectively [24]. The
upper cluster algebra U is defined to be the ring of regular functions over A. Furthermore,
(a weaker form1 of) a conjecture by Fock and Goncharov predicts that U possesses a
basis parametrized by the tropical points of X associated to the Langlands dual cluster
algebra [23]. Gross–Hacking–Keel–Kontsevich [41] recently verified it in many cases
and found that the conjecture does not always hold.

It is well known that the cluster algebra A is contained in the upper cluster algebra U

(Laurent phenomenon [26]), and they coincide in many cases, e.g. for many cluster
algebras arising from representation theory. In view of the above conjectures, it is nat-
ural to look for good bases of (upper) cluster algebras, where the meaning of “good”
depends on the context. Good bases in the literature can be divided into the following
three families (see Section 2 for the necessary definitions):

1Fock and Goncharov expect an additional stronger property that the basis should have positive
structure constants. For the moment, we do not know how to pick out such positive bases from the
candidates provided in our paper.
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(1) The generic basis in the sense of [19]: If the collection of “generic” cluster charac-
ters from a certain triangulated category is a basis, it is called the generic basis. The
existence of such bases is mostly known for the cluster algebras arising from unipo-
tent cells [32], in which case the basis coincides with the dual semicanonical basis of
Lusztig [57]. Also, its existence is preserved by source/sink extension [20]. Conjec-
turally, this family includes the bangle basis [21, 62] of cluster algebras arising from
surfaces, with the no punctured case treated in [29, 30].

(2) The common triangular basis in the sense of [71]: It is defined using some triangular
properties by [71] for “injective-reachable” quantum cluster algebras. Its existence is
known for the quantum cluster algebras arising from quantum affine algebras, where
it coincides with the basis consisting of the simple modules [71]. Also, its existence
is known for cluster algebras arising from unipotent cells, where it coincides with the
dual canonical basis [44, 46, 71]. Conjecturally, this family includes the band basis
[76] of cluster algebras arising from surfaces and the Berenstein–Zelevinsky acyclic
triangular bases [70, 72].

(3) The theta basis in the sense of [41]: It consists of the “theta functions” appearing
in the associated scattering diagram. It turns out to be a basis for injective-reachable
upper cluster algebras [41]. This family includes the greedy bases of cluster algebras
of rank 2 [14,54]. For cluster algebras arising from surfaces [62], the bracelet bases in
the sense of [62] are conjectured to be the theta bases. This conjecture will be verified
in an upcoming work by Travis Mandel and the author [58].

The bases listed above appear naturally in their own backgrounds.2 They are always
parametrized by the tropical points and contain all cluster monomials [41, 68, 71]. But
such good bases are known to be different even in easy toy models [75]. This surprising
phenomenon is the main motivation of this paper. As there exist different bases paramet-
rized by the tropical points (satisfying the Fock–Goncharov conjecture), the following
question arises naturally.

Question 1.1.1. How many bases are parametrized by the tropical points? How similar
and how different are they?

We shall give an answer for injective-reachable upper cluster algebras under the full
rank assumption (see Remark 1.2.6).

1.2. Main results and comments

Let I be a given set of vertices with a partition I D Iuf t If into unfrozen vertices and
frozen vertices. A seed t is a collection ..bij /i;j2I ; .xi /i2I /, where .bij / is a skew-

2The common triangular basis is related to the (dual) canonical basis in representation theory,
which is often thought to be the best basis for quantized enveloping algebras. The theta basis was
also said to be “canonical” in the original paper [41] and is very natural from a geometric point of
view.
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symmetrizable matrix and the xi are the cluster variables in t (distinguished generators of
A). Throughout the paper, we often make the following assumption; see Remark 1.2.6.

Assumption (Full rank assumption). zB.t/ WD .bik/i2I; k2Iuf is of full rank.

We will work with a base ring k, which will be k D Z for classical (upper) cluster
algebras and kD ZŒq˙1=2� for the quantum case, where q is a formal quantum parameter.

We have the lattice M ı.t/ ' ZI of Laurent multidegrees with the natural basis fi ,
the Laurent polynomial ring LP .t/ D kŒxi˙� D kŒM ı.t/�, where xfi WD xi , and the
(skew-)field of fractions F .t/ (see Section 2.5 for the quantum case). In [71], the author
introduced the dominance order �t on M ı.t/ such that g0 �t g if and only if g0 D
g C zB.t/ � n for some n 2 NIuf .

On the one hand, for any unfrozen vertex k 2 Iuf, there is an algorithm �k called
mutation which generates a new seed t 0 D �k.t/ from t . We use �C to denote the set
of seeds obtained by repeatedly applying mutations. In addition, there is a corresponding
isomorphism ��

k
W F .t 0/ ' F .t/ of (skew-)fields. We naturally extend these notions to

seeds t 0D E�t related by a sequence E� of mutations. Recall that the upper cluster algebra U

equals
T
t2�C LP .t/ where the fraction fields are identified.

On the other hand, on the tropical part, one has a tropical transformation (piecewise
linear map) �t 0;t W M ı.t/ ' M ı.t 0/. By identifying Laurent degrees g 2 M ı.t/ for all
seeds t 2 �C via the tropical transformations, we define the set Mı of tropical points3

to be the set of equivalence classes Œg�. The set Mı is equipped with many dominance
orders �t by comparing the representatives in each seed t . Given any set S of seeds
and any tropical point Œg� 2 Mı, dominance orders cut out a subset of tropical points,
Mı�S Œg� D ¹Œg

0� j Œg0� �t Œg� 8t 2 Sº

We say a Laurent polynomial z 2 LP .t/ is pointed at degree degt z D g 2 M ı.t/
(resp. copointed at codegree codegt z D g 2M ı.t/) if z has a unique �t -maximal (resp.
�t -minimal) Laurent monomial with degree g and coefficient 1. We say z 2U is pointed
at the tropical point Œg� if it is pointed at the representatives of Œg� at all seeds t 2 �C.

In this work, we restrict our attention to injective-reachable seeds t , which means that
there is a seed t Œ�1� such that, for some permutation � of Iuf, the cluster variables xi .t/
have degree degtŒ�1�.xi .t// D �f�.i/ modulo the frozen part ZIf .

All bases. Our first main result is a description of all bases parametrized by the tropical
points.

Theorem 1.2.1. Consider the classical case k D Z. Let U be an upper cluster algebra
with injective-reachable seeds t D E�tŒ�1� subject to the full rank assumption.

(1) For any collection � D ¹sŒg� 2 U j Œg� 2 Mıº such that each sŒg� is pointed at the
tropical point Œg�, � must be a k-basis of U containing all cluster monomials.

3We remark that Mı should not be confused with the fixed abstract lattice M ı used in [40].
The set Mı in our paper is viewed as the set of equivalence classes of Laurent degree lattices. In
particular, it does not have an additive structure.



Bases for upper cluster algebras and tropical points 1259

(2) There exists at least one such basis, which we choose and denote by Z D ¹zŒg�º.

(3) The set of all such bases � is parametrized as follows:Y
Œg�2Mı

k
Mı�

�C
Œg�
' ¹�º;

..bŒg�;Œg0�/Œg0�2Mı�
�C

Œg�
/Œg�2Mı 7! � D ¹sŒg� j Œg� 2Mıº;

where sŒg� D zŒg� C
P
Œg0�2Mı�

�C
Œg�
bŒg�;Œg0�zŒg0�. In addition, each set Mı�

�C
Œg� is

finite.

By this result, the three families of good bases in previous literature correspond to
three points in this (infinite) “moduli space” of bases. The quantum analog of Theorem
1.2.1 is discussed in Section 6.2. See also Remark 5.1.4 for bases that factor through
frozen variables.

Remark 1.2.2 (Deformation factors). The main theorem shows that the set of bases ¹�º
has a linear structure similar to that of the solution space of a non-homogeneous linear
system, and a general basis could be obtained from a special one by a linear deformation
controlled by the factors Mı�

�C
Œg�, which we call the deformation factors.

These deformation factors are new mathematical objects, and further questions arise
naturally; see Section 6.1. In particular, Conjecture 6.1.3 there would imply the open orbit
conjecture for unipotent subgroups (see [31]); see Remark 6.1.4.

In practice, instead of using the set Mı�
�C

Œg�, it would be easier to work with the
larger finite sets Mı�¹t;tŒ�1�ºŒg�. These larger sets can be easily controlled by comput-
ing the difference between the degrees and codegrees (called support dimensions, or
f -vectors following [28]) (Proposition 3.4.8). Correspondingly, in Theorem 5.1.2, we
describe the bases subject to the weaker condition: we require the basis elements to be
compatibly pointed at the seeds t; t Œ�1� rather than compatibly pointed at all seeds (see
Definition 3.4.2).

Next, we discuss how to choose one such basis for Theorem 1.2.1.

Generic bases. Assume that the seeds are skew-symmetric, i.e. their matrices are skew-
symmetric. It is naturally expected that the generic cluster characters give rise to bases of
many (upper) cluster algebras, called the generic bases. However, the existence of such
bases has been verified in limited cases, such as in [32].

Our second main result gives the existence of the generic basis at a high level of
generality, which provides a good choice for the special basis Z in Theorem 1.2.1.

Theorem 1.2.3 (Generic basis). Consider the classical case k D Z. Let t be a skew-
symmetric injective-reachable seed subject to the full rank assumption. Then the set of
localized generic cluster characters is a basis of U, called the generic basis.

Theorem 1.2.3 is a consequence of Theorem 4.3.1. The latter result is a general
criterion of independent interest, which states that if a collection of elements have well-
behaved degrees under mutations, then they form a basis.
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We refer the reader to Sections 5 and 6 for more precise statements, generalizations
and more details. Our results apply to (almost) all well-known cluster algebras arising
from representation theory or higher Teichmüller theory; see Remark 1.2.7. Note that a
change of coefficients will be needed for punctured surfaces; see Remark 1.2.6.

In particular, we obtain the existence of the generic basis with high generality, cov-
ering all previously known cases such as [32]. This result will be used in an upcoming
work [30] in studying generic bases of cluster algebras arising from surfaces.

Theta bases. For general seeds, a good choice for the special basis Z in Theorem 1.2.1
would be the theta basis [41] (see Section A.1).

Now, assume the seeds are skew-symmetric again. Our last result states that Bridge-
land’s representation-theoretic formula for many theta functions is effective (called weak
genteelness, see Section 6.3), which can be viewed as a pleasant property predicted by
Nagao’s work [63].

Theorem 1.2.4 (Weak genteelness). Take k D Z. Let t be a given skew-symmetric
injective-reachable seed. Then Bridgeland’s representation theoretic formula is effect-
ive for theta functions in the cluster scattering diagram. Moreover, the stability scattering
diagram and the cluster scattering diagram are equivalent.

Remark 1.2.5. [15] appeared soon after this work. Its results allow us to further under-
stand and strengthen the present work.

First, an explicit topology was constructed for the Laurent polynomial ring LP .t/

in [15, Section 2.2.2], which generalized the natural adic topology that we will use for
seeds of principal coefficients in Section 4.2. We omit the details but point out that, in
view of this topology, in Definition-Lemma 4.1.1, the dominance order decomposition is
convergent and the pointed set � is a topological basis.

Secondly and most importantly, for any skew-symmetric seed under the full rank
assumption, [15] constructed the quantum theta functions with strong properties. In par-
ticular, when the seed is injective-reachable, such functions form the quantum theta basis
for the quantum upper cluster algebra. The existence of such a basis is crucial for describ-
ing more quantum bases; see Section 6.2.

Remark 1.2.6 (Full rank assumption). It is worth noting that, if an initial seed t0 satisfies
the full rank assumption, so do all the seeds obtained from t0 by iterated mutations; see
[61, Theorem 3.1.2], [71, Proposition 5.1.4].

But the full rank assumption does not hold true for an arbitrary seed t D

..bij /i;j2I ; .xi //. Nevertheless, for studying many questions in cluster theory, one has the
freedom to change the coefficients so that the assumption becomes true (i.e. one changes
the set If of frozen vertices and the matrix .bij / but keep the principal part .bij /i;j2Iuf

unchanged).
A change of coefficients is justified by keeping important structures in cluster theory.

For example, the exchange graphs remain the same [8, Proposition 3]. Moreover, if one
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knows the cluster expansion of cluster variables for some coefficients under the full rank
assumption, then one can deduce the cluster expansion for all coefficients [27, Section 3].

Similarly, if a (quantum) cluster algebra subject to the full rank assumption possesses
a good basis (as in Remark 5.1.4), one can construct a spanning set for the corresponding
algebra with arbitrary coefficients, using the correction technique for pointed elements
([70, Section 9], [71, Section 4]). Moreover, under the full rank assumption, or the weaker
assumption that zB.t/RIuf

�0 is strictly convex (as used in [30]), the spanning set is again a
basis.

It is natural to ask whether the spanning set constructed above is always a basis for all
choices of coefficients. But, at this moment, very little is known about bases of (upper)
cluster algebras without the full rank assumption or the convexity assumption above.
Progress in this direction was made in [12], where it was shown that the set of cluster
monomials (usually a proper subset of the basis) is linearly independent.

Finally, a seed can be quantized if and only if the full rank assumption holds. Except
for punctured surfaces, the well-known cluster algebras listed in Remark 1.2.7 admit nat-
ural quantization and satisfy the full rank assumption. When the assumption fails, we have
to choose appropriate coefficients so that the assumption becomes true, a quantization can
be performed, and our results about bases become effective.

Remark 1.2.7 (Injective-reachable assumption). To derive the main results of this paper,
the injective-reachable assumption is imposed.

This assumption implies that the associated Jacobian algebra is finite-dimensional.
The converse is not necessarily true. A counterexample arising from a once-punctured
torus was studied in [68, Example 4.3].

The injective-reachable assumption is satisfied by the following well-known cluster
algebras:

� coordinate rings of unipotent cells [31, 33]: see [31, Section 13];

� level-l categories of representations of quantum affine algebras [42]: see [71, (52)];

� symmetric CGL extensions (including double Bruhat cells) [2, 39]: see [38, Main
theorem III];

� equivariant perverse coherent sheaves over affine Grassmannians: see [10, Theorem
3.1, Proposition 6.2];

� cluster algebras over marked surfaces (except once-punctured closed surfaces) [22,25]:
see [25, Proposition 7.10];

� PGLm (or SLm) local systems on marked surfaces (except once-punctured closed sur-
faces) [36, 37]: see [37, Theorem 1.2].

Key points in the proofs. As an important part of the paper, we give a systematic ana-
lysis of the tropical properties of upper cluster algebra elements, by which we mean how
their degrees and codegrees change under mutations. More precisely, we introduce the
notions of codegrees and support dimensions (Definitions 3.2.2, 3.4.1, 3.4.4). We also
introduce a linear map  tŒ�1�;t W M ı.t/ ! M ı.t Œ�1�/, which reverses the dominance
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orders and swaps degrees and codegrees at different seeds t , t Œ�1� (Definition 3.3.1,
Propositions 3.3.11, 3.3.12). Then we derive the equivalence between being compatibly
pointed at t; t Œ�1� (i.e., degrees are controlled by tropical transformations) and being
bipointed at t with the “correct” support dimension (Proposition 3.4.8). We arrive at the
following interesting observation.

Lemma 1.2.8 (Lemma 3.4.12). If an upper cluster algebra element Z and a cluster
monomial M share the same tropical property, then they are the same.

The parametrization of the set of bases (Theorem 1.2.1 (2)) is an application of the
above analysis.

As another important part of the paper, we prove a criterion for a given collection of
elements of an upper cluster algebra to be a basis (Theorem 4.3.1), which says that good
tropical properties suffice. This criterion immediately implies Theorem 1.2.1 (1) as well
as Theorem 1.2.3, since the generic cluster characters are known to have good tropical
properties [68, Theorem 1.3].

The criterion is proved by introducing and analyzing the dominance order decompos-
ition into the given collection (Definition-Lemma 4.1.1). A priori, the (possibly infinite)
decomposition depends on the chosen seed. We first show that the decomposition is inde-
pendent of the seed (Proposition 4.2.1); the proof is based on natural adic topologies
induced by principal coefficients in the sense of [27], and an application of the nilpotent
Nakayama Lemma (we learned the usefulness of that lemma from the inspirational work
[41]). Then we show that the decomposition is finite by using the injective-reachability
condition and conclude that the given collection is a basis.

Finally, we give a quick proof of Theorem 1.2.4 based on cluster theory and the trick
of constructing opposite scattering diagrams.

Remark 1.2.9. The analysis of tropical properties in this paper has turned out to be useful
in [69, 73]. In particular, the dominance order decomposition is used in [69], and the
codegrees are used in [73].

1.3. Contents

Section 2 contains the necessary preliminaries. A reader could skip the details and the
content familiar to him/her. But it is still recommended to read Section 2.1 which merges
symbols and notions of cluster algebras of two different styles [26, 41]. In addition, we
verify the equivalence between injective-reachability and the existence of green to red
sequences.

In Section 3, we define and study degrees, codegrees and support. These are the main
tools that will be used in this paper, which we develop by elementary manipulations on
Laurent polynomials/series.

In Section 4, we study the properties of�t -decompositions based on Section 3 and the
nilpotent Nakayama Lemma. This section provides direct proofs for Theorems 1.2.1 (1)
and 1.2.3.
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In Section 5, we present the main results, consequences and proofs based on Sections
3 and 4.

In Section 6, we discuss related topics such as deformation factors, quantized versions
of our results, a representation-theoretic formula for theta functions (weak genteelness),
and bases for partial compactification cases.

In Appendix A, we briefly review some content of [41] about scattering diagrams and
theta functions. Then we present two proofs of weak genteelness (Theorem 1.2.4). One is
conceptual following Nagao [63], and the other uses the construction of an opposite scat-
tering diagram. This section is independent of most of the paper, but provides definitions
and properties of theta functions.

2. Preliminaries

2.1. Basics of cluster mutations and tropicalization

Throughout this paper, we shall consider cluster algebras with geometric coefficients in
the sense of [27]. We define the notion of cluster algebra as in [27], but we follow the
nice presentation of [34]. Furthermore, our convention is compatible with the different
formalism of [34, 40], so that we can easily use results and arguments from those works.

We will work with a base ring k. We usually take k D Z for classical (upper) cluster
algebras and k D ZŒq˙1=2� for quantum (upper) cluster algebras, where q1=2 is a formal
quantum parameter. Unless otherwise specified, our arguments will be equally effective
for both the classical and quantum case.

Seeds and B-matrices. Given a set I D Iuf t If of vertices, the vertices in Iuf and If

are called unfrozen and frozen respectively. Suppose that there is a collection of integers
di > 0 and a matrix .bij /i;j2I such that

bij 2

´
Q; i; j 2 If;

Z; else;
bijdj D �bj idi :

Definition 2.1.1. A seed t is a collection ..bij .t//i;j2I ; .xi .t//i2I ; di ; I; Iuf/ with each
xi .t/ an indeterminate. The matrix zB.t/ WD .bik.t//i2I; k2Iuf is called the B-matrix asso-
ciated to t and the xi .t/ are the cluster variables.

For anymD .mi / 2 NIuf ˚ZIf , we call x.t/m WD
Q
i2I xi .t/

mi a .localized/ cluster
monomial in the seed t .

We usually fix di and Iuf � I , and write t D ..bij .t//; .xi .t/// for simplicity. The
symbol t will be omitted when the context is clear.

Let d denote the least common multiple of .di /i2I and define the Langlands dual
d_i WD d=di . Then d_i bij D �d

_
j bj i , and we say .bij / is skew-symmetrizable by the

diagonal matrix diag.d_i /. It follows that the principal part B WD .bij /i;j2Iuf of .bij / is
skew-symmetrizable as well.
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Conversely, suppose that we are given an I � Iuf integer matrix zB D .bij /i2I; j2Iuf

with principal part B , such that B is skew-symmetrizable by some diagonal matrix D D
diag.d 0

k
/k2Iuf , d

0
k
2 Z>0. We can make the following extension.

Lemma 2.1.2. We can find strictly positive integers d 0
f

, f 2 If, and extend the matrix
zB.t/ to an I � I integer matrix .bij .t// such that d 0ibij .t/ D �d

0
j bj i .t/.

Proof. Let d 0 denote the least common multiple of .d 0
k
/k2Iuf . We might choose d 0

f
D d 0;

bkf .t/ D �
d 0

d 0
k

bf k.t/, bff 0 D 0, for all f; f 0 2 If and k 2 Iuf.

Recall that a seed according to Fomin–Zelevinsky [26] takes the form . zB; .xi // with
a skew-symmetrizable principal part B . By Lemma 2.1.2, their seed could be extended to
our seed by choosing a matrix extension. The extra data in our definition arise from the
construction in [23, 40, 41].

We say the seed t is skew-symmetrizable (resp. skew-symmetric) if the matrix .bij .t//
is.

Lattices and �-matrices. Following [40, 41], let M ı.t/ denote a lattice with a Z-basis
¹fi .t/ j i 2 I º and N.t/ a lattice with a Z-basis ¹ei .t/ j i 2 Iufº. Define a pairing h ; i
betweenM ı.t/ andN.t/ by setting hfi .t/; ej .t/iD 1

di
ıij . LetNuf.t/ denote the sublattice

of N.t/ generated by ¹ek.t/ j k 2 Iufº.
Consider the Q-valued bilinear form ¹ ; º on N.t/ defined by bij D ¹ej .t/; ei .t/ºdi .

It turns out that ¹ ; º is skew-symmetric.

Definition 2.1.3. The �-matrix is defined to be

.�ij /i;j2I D .¹ei .t/; ej .t/ºdj /i;j2I :

Let p� denote the linear map from N.t/ to M ı.t/˝Q such that

p�.n/ D ¹n; º:

Denote vk.t/D p�.ek.t//D ¹ek.t/; º for k 2 Iuf. Then vk.t/D
P
i2I bikfi .t/ 2M

ı.t/.
We always assume that p�jNuf.t/ is injective, or equivalently that zB.t/ satisfies the full

rank assumption.
Let us consider the group ring (of characters) LP .t/ D kŒM ı.t/� D kŒ�m�m2Mı.t/

and the group ring (of cocharacters) kŒN.t/�D kŒ�n�n2N.t/. We consider the x-variables
xi .t/ D �

fi .t/, the Laurent monomials x.t/m D �m, and the y-variables yi .t/ D �ei .t/.
Similarly, we can define LP .t/ D kŒxf .t/�f 2If Œxi .t/

˙�i2Iuf and call it the (partially)
compactified Laurent polynomial ring.

The commutative product in LP .t/ will be denoted by � or omitted for simplicity. For
the quantum case (k D ZŒq˙1=2�), we also define the twisted product � in Section 2.5.

Note that, for kDZ, LP .t/˝C is the ring of regular functions on the split algebraic
torus .C�/I . And LP .t/˝ C is the ring of regular functions on the partial compactific-
ation .C�/Iuf � .C/If of .C�/I .
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Mutations. Let Œ �C denote max. ; 0/ and define Œ.gi /i2I �C D .Œgi �C/i2I for any vector
.gi /i2I . For any k 2 Iuf, we can define a seed t 0 D �kt by the following procedure.

We start by choosing a sign " 2 ¹C;�º, and define the I � I matrices zE" and zF" by

. zE"/ij D

8̂̂<̂
:̂
ıij ; k … ¹i; j º;

�1; i D j D k;

Œ�"; bik �C i ¤ k; j D k;

. zF"/ij D

8̂̂<̂
:̂
ıij ; k … ¹i; j º;

�1; i D j D k;

Œ"bkj �C i D k; j ¤ k:

Notice that zF 2" D IdIuf and zE2" D IdI . The Iuf � Iuf submatrix of zE" (principal part) is
denoted by E" and the Iuf � Iuf submatrix of zF" is denoted by F".

Next, define a lattice M ı.t 0/ with a basis ¹f 0i D fi .t
0/ºi2I and a lattice N.t 0/ with

a basis ¹e0i D ei .t
0/ºi2I , where we omit the symbol t from now on. We define lin-

ear isomorphisms �k;" W M ı.t 0/! M ı.t/ and �k;" W N.t 0/! N.t/ such that �k;".e0i / DP
j2I ej � .

zF"/j i and �k;".f 0i / D
P
j2I fj � .

zE"/j i , namely,

�k;".e
0
i / D

´
ei C Œ"bki �Cek ; i ¤ k;

�ek ; i D k;
(2.1)

�k;".f
0
i / D

´
fi ; i ¤ k;

�fk C
P
j Œ�"bjk �Cfj ; i D k:

(2.2)

Clearly, �k;� preserves the pairing h ; i. Further define a bilinear form ¹ ; º on N.t 0/ to
be induced by that on N.t/ via �k;". It is straightforward to check that the corresponding
matrix .b0ij /i;j2I D .¹e

0
j ; e
0
iºdi /i;j2I satisfies

b0ij D

´
�bij ; k 2 ¹i; j º;

bij C bik Œ"bkj �C C Œ�"bik �Cbkj ; k ¤ i; j:

Notice that the b0ij are independent of the choice of the sign ".
We define the mutated seed t 0 D �kt as ..b0ij /i;j2I ; .x

0
i /i2I /. Let us now relate the

cluster variables xi and x0i .
First, the maps �k;" induce isomorphisms between Laurent polynomial rings, which

are still denoted by �k;", such that

�k;".x
0
i / D

´
xi ; i ¤ k;

x�1
k

Q
j x

Œ�"bjk �C
j ; i D k;

�k;".y
0
i / D

´
yiy

Œ"bki �C
k

; i ¤ k;

y�1
k
; i D k:

Now consider the classical case kD Z for simplicity (see Section 2.5 for the quantum
case). Define the automorphisms �k;" on the fraction fields F .t/ D F .LP .t// and
F .kŒN.t/�/ respectively such that

�k;".xi / D

´
xi ; i ¤ k;

xk.1C x
"vk /�1; i D k;

�k;".yi / D

´
yi .1C y

"
k
/�bki ; i ¤ k;

yk ; i D k:

(2.3)
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Then it turns out that

�k;" ı �k;".x
0
i / D

´
xi ; i ¤ k;

x�1
k

Q
j x

Œ�"bjk �C
j .1C �"vk /; i D k;

�k;" ı �k;".y
0
i / D

´
yiy

Œ"bki �C
k

.1C y"
k
/�bki ; i ¤ k;

y�1
k
; i D k:

(2.4)

We observe that the compositions �k;" ı �k;" are independent of the choice of ". Let us
call them the mutation birational maps, and denote by ��

k
. The maps �k;" are called their

monomial parts and �k;" their Hamiltonian parts. One can show that the ��
k

give iso-
morphisms between the fraction fields, F .t 0/ ' F .t/ and F .kŒN.t 0/�/ ' F .kŒN.t/�/.

Given any two seeds t; t 0 such that t 0 D E�t for some mutation sequence E�, let E��

denote the mutation map from the fraction field F .t 0/ to F .t/ defined by composing
the corresponding mutation maps. Then we can denote LP .t/ \ LP .t 0/ D LP .t/ \

. E�
�
LP .t 0// and also LP .t/ \ LP .t 0/ D . E�

�1
/�LP .t/ \ LP .t 0/. Correspondingly,

for any z 2 . E��1/�LP .t/\LP .t 0/, the Laurent polynomial E��z 2LP .t/ is sometimes
also denoted by z for simplicity.

y-variables. Because p� is linear and �k;� preserves ¹ ; º and h ; i, we have

�k;".v
0
i / D

´
vi C Œ"bki �Cvk ; i ¤ k;

�vk ; i D k:

One can check that

��k;".�
vi / D

´
�vi�Œ"bki �Cvk .1C �"vk /�bki ; i ¤ k;

��vk ; i D k;

i.e. subject to the law given by (2.4). By abuse of notation, we define the Laurent
monomial yk D �vk , which equals

Q
i x

bik
i in LP .t/ under the commutative product.

The yk are still called the y-variables.

Tropicalization. We refer the reader to [23,40,41] for more details. Recall that hfi ; ej i D
ıij =di , bij D ¹ej ; eiºdi and bj i � dj�1 D�bij � d�1i , i; j 2 I . LetM.t/ denote the sublat-
tice of M ı.t/ with basis ¹e�i D difiº. Let N ı.t/ denote the sublattice of N.t/ with basis
¹dieiº. Then M.t/ is dual to N.t/ and N ı.t/ is dual to M ı.t/ under the pairing h ; i.

For any lattice L and its dual L�, we consider the split algebraic torus TL D
Spec ZŒL�� D Spec ZŒ�n�n2L� . Let .P;˚;˝/ be a given semifield and P � the mul-
tiplicative group. Let Qsf.L/ denote the semifield of subtraction-free rational functions
on TL. A tropical point in TL is defined to be a semifield homomorphism from Qsf.L/

to P . The set of tropical points in TL is denoted by TL.P /. One can show that TL.P / '
Homgroups.L

�; P �/ ' L ˝Z P
� so that any point m ˝Z p sends a subtraction-free

Laurent polynomial f D
P
n �

n 2 Qsf.L/ to˚np˝hm;ni 2 P (see [41]).
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We usually work with P D ZT D .Z;max. ; /;C/ or P D Zt D .Z;min. ; /;C/,
in which case P � D Zn¹0º and TL.P / ' L. We have �max.a; b/ D min.�a;�b/ for
a; b 2 Z. It follows that the map i W ZT ! Zt such that i.a/ D �a is an isomorphism
between the semifields ZT and Zt .

We will soon define the Langlands dual seed t_. By taking the tropicalization of the
corresponding mutation maps on TM.t_/ ' TMı.t/ with the tropical semifield P D ZT

[23], we obtain the following definition.

Definition 2.1.4 (Tropical transformation). Let t 0 D �kt be given seeds. The tropical
transformation �t 0;t W M ı.t/ ! M ı.t 0/ is the piecewise linear map such that, for any
g D

P
gifi 2M

ı.t/, its image g0 D
P
g0if

0
i D �t 0;t .g/ is given by

g0k D �gk ;

g0i D gi C Œbik.t/�CŒgk �C � Œ�bik.t/�CŒ�gk �C; i ¤ k:

For any two seeds t 0; t related by a mutation sequence E� D �kr � � � �k1 such that
t 0 D E�t , define �t 0;t to be the composition of the corresponding tropical transformations.
Then it is independent of the choice of E� because it is the tropicalization of the mutation
maps.

Langlands dual. Let us sketch the construction of the Langlands dual, although we will
not investigate the duality in depth.

Let us define the Langlands dual seed t_ D .bij .t
_/; .xi .t

_/// with strictly posit-
ive integers di .t_/ D d_i D

d
di

. We define N.t_/ to be the lattice N ı.t/ with basis
¹e_i WD dieiº endowed with the bilinear form ¹ ; º_ such that ¹ ; º_ D 1

d
¹ ; º, which

implies the definition bj i .t_/ WD �bij . Its dual lattice M.t_/ is then defined to be M ı.t/
spanned by the basis ¹.e_i /

� D .di /
�1e�i D fiº. Define M ı.t_/ to be the lattice spanned

by the basis ¹f _i WD
1
d_
i

.e_i /
� D

1
d
e�i º, and N ı.t_/ the lattice spanned by the basis

¹d_i e
_
i D deiº.

By construction, we have TMı.t/ D TM.t_/. Moreover, such identification commutes
with mutations [23, Lemma 1.11].

Cluster algebras and cluster varieties. Choose an initial seed t0. For any sequence
.k1; : : : ; kr / of unfrozen vertices, we have a sequence of sign-coherent vectors called
c-vectors, whose construction is technical and will be postponed to Section 2.2. Cor-
respondingly, we have a sequence ."1; : : : ; "r / of signs and the corresponding sequence
E� D �kr ;"r � � � �k1;"1 of mutations starting from t0 (read from right to left); see The-

orem 2.2.2. Unless otherwise specified, we always make this canonical choice of signs
for mutations, and omit the sign symbols "1; : : : ; "r for simplicity.

Let �C D �Ct0 denote the set of all seeds obtained from the initial seed by iterated
mutations (with the canonical choice of signs). For any t 2 �C, view its cluster variables
xi .t/ as elements in the (skew-)field of fractions LP .t0/ via the mutation maps.

In the following, we construct the classical cluster algebras using the commutative
product, and the quantum cluster algebras using the twisted product (see Section 2.5).
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Definition 2.1.5 (Cluster algebras). We define the (partially) compactified cluster algebra
as AD kŒxi .t/�i2I;t2�C , and the (localized) cluster algebra as ADA.t0/Œx

�1
f
�f 2If . We

define the (localized) upper cluster algebra as U D
T
t2�C LP .t/, where Laurent poly-

nomials at different seeds are identified via mutation maps.

In this paper, we shall focus on the cluster algebras A and upper cluster algebras U.
Let us explain geometric objects associated to U with the choice k D Z.

Definition 2.1.6. We define the cluster varieties to be A D
S
t2�C TN ı.t/ and X DS

t2�C TM.t/, where the tori are glued via mutation maps.

The Fock–Goncharov dual of a variety V D
S
TL is defined as V _ D

S
TL� . There-

fore, the dual of A is given by A_ D
S
t2�C TMı.t/ where the tori are glued by mutation

maps. Then A_ coincides with the variety X.t_0 / associated to the Langlands dual initial
seed t_0 . We observe that the ring of regular functions on A is just the upper cluster algebra
U (with k D Z).

Recall that the gluing map between TMı.t/ and TMı.t 0/ tropicalizes to �t;t 0 W

M ı.t/ 'M ı.t 0/. We define the set A.ZT / of tropical points to be the set of equivalence
classes in

F
t2�CM

ı.t/ under the identifications �t;t 0 , which we also denote by Mı. The
elements in Mı are denoted by Œg� for the representatives g 2M ı.t/.

2.2. Cluster expansions, c-vectors and g-vectors

Cluster variables have been shown to enjoy the Laurent phenomenon [26]. They can be
calculated by the Caldero–Chapoton type expansion formula for the classical case [6, 17]
and for the quantum case [41,77]. We summarize these properties using the commutative
product.

Theorem 2.2.1. For any seeds t D E�t0 2�
C
t0

and i 2 I , E��.xi .t// 2LP .t0/. Moreover,

E�
�
.xi .t// D x.t0/

gi .t/ �

� X
n2Nuf

�0.t0/

cnx.t0/
zB.t0/n

�
where gi .t/ 2M ı.t0/, c0 D 1, and cn 2 k for all n.

The vector gi .t/ is called the i -th (extended) g-vector of the seed t with respect to the
initial seed t0. Its principal part is prIuf

gi .t/, where prIuf
denotes the natural projection

from ZI to ZIuf . Let zG denote the I � Iuf matrix formed by the column vectors gt0
k
.t/,

k 2 Iuf, and G.t/ D Gt0.t/ its Iuf � Iuf submatrix called the G-matrix.
We extend the Iuf � Iuf matrix B.t0/ to the .Iuf t I

0
uf/ � Iuf matrix

zB.t0/
prin
D

�
B.t0/

IdIuf

�
with I 0uf D Iuf, called the matrix of principal coefficients. For any seed t D E�t0, we apply
the mutation sequence E� to the initial matrix zB.t0/prin and the resulting matrix takes the
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form
�
B.t/
C.t/

�
. The I 0uf � Iuf matrix C.t/ D C t0.t/ is called the C -matrix. The k-th column

vector of C.t/, denoted by ct0
k
.t/, is called the k-th c-vector.

Notice that the construction of c-vectors and g-vectors depends on the choice of the
initial seed t0. In addition, the c-vectors and principal g-vectors only depend on the prin-
cipal part B.t0/. When the context is clear, we often omit the symbol t0.

The following result is a consequence of [41, Theorem 5.11]; see also [65], [51, Sec-
tion 5.6].

Theorem 2.2.2. (1) The c-vectors are sign coherent, i.e., for any seed t and any k 2 Iuf,
we must have ck.t/ � 0 .all coordinates are non-negative/ or ck.t/ � 0.

(2) For any given mutation sequence E� D �ir � � � �i0 , denote ts D �is�1 � � � �i0 t0.
Choose "s to be the sign of the k-th c-vector ci .ts/. Then C.t/ D C.trC1/ D

Fi0;"0.t0/ � � �Fir ;"r .tr / and G.t/ D Ei0;"0.t0/ � � �Eir ;"r .tr /.

Recall that prIuf
denotes the natural projection from ZI to ZIuf .

Corollary 2.2.3. Given seeds t D E�t0 where t0 is any chosen initial seed, the c-vectors
ci .t/ of t form a Z-basis of ZIuf , and the principal g-vectors prIuf

gi .t/ form a basis
of ZIuf .

We can view extended g-vectors as principal g-vectors in the following way. View
the vertices I as unfrozen and add principal coefficients as in [27]. Then the previous
extended g-vectors become principal g-vectors. Consequently, , by extending the mat-
rix zG.t/ with unit column vectors fj , j 2 If, the matrix . zG.t/ j fj ; j 2 If/ equals
zEi0;"0.t0/ � � �

zEir ;"r .tr /.
It is useful to collect some facts about the matrices Ek;" and Fk;" [51, Section 5.6].
Let t_ denote the Langlands dual of t whose associated matrix satisfies bij .t_/ D

�bj i .t/. Let top denote the seed opposite to t such that bij .top/ D �bij .t/.

Proposition 2.2.4. Let t 0 D �kt for some k 2 Iuf. Let " be any sign.

(1) zB.t 0/ D zEk;".t/ � zB.t/ � Fk;".t/ for any sign ".

(2) zE2
k;"
D IdI and F 2

k;"
D IdIuf .

(3) We have
Ek;�".t

0/ D E�1k;".t/;

Fk;�".t
0/ D F �1k;" .t/;

Ek;".t
op/ D Ek;�".t/;

Fk;".t
op/ D Fk;�".t/:

(4) If D0 denotes the diagonal matrix diag.d 0
k
/k2Iuf , then ET

k;"
D0Fk;" D D

0.

(5) Ek;".t_/T D Fk;".t/.

(6) For any initial seed t0, we have G.t 0/ D G.t/ �Ek;sign.ck.t//.t/.

Proof. Claim (6) is a consequence of Theorem 2.2.2. The other claims can be obtained
from direct calculation.

The following result shows that zB. E�.top// D zB.. E�t/op/.
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Lemma 2.2.5. Let t D E�t0 where E� D �ir � � ��i0 . Then E�.� zB.t0// D �. E� zB.t0//.

Proof. Denote ts D �is�1 � � ��i0 t0. Choose any signs "s for the seeds ts .
We prove the claim by induction on the length of E� which equals r C 1. The case

r C 1 D 0 is trivial. Assume that we have shown the result for length r .
We have

�. E� zB.t0// D � zEir ;"r .tr /
zB.tr /Fir ;"r .tr / D

zEir ;"r .tr /
zB.top

r /Fir ;"r .tr /

D zEir ;�"r .t
op
r /
zB.top

r /Fir ;�"r .t
op
r / D �ir

zB.top
r /:

By induction hypothesis,

zB.top
r / WD �

zB.tr / D ��ir�1 � � ��i0
zB.t0/ D �ir�1 � � ��i0.�

zB.t0//:

Therefore, �. E� zB.t0// D �ir�ir�1 � � ��i0.� zB.t0// D E�.� zB.t0//.

Finally, we have the following duality between c-vectors and g-vectors.

Theorem 2.2.6 ([65, Theorem 1.2], [41]). For any seeds t D E�t0, we have

Gt0.t/T � C t
_
0 . E�t_0 / D IdIuf ;

C t0.t/ � C t
op
. E�
�1
.top// D IdIuf ;

Gt0.t/T D C .t
_/op

. E�
�1
..t_/op//:

When B.t0/T D �B.t0/, we have B.t_0 / D B.t0/, and so Gt0.t/T � C t0.t/ D IdIuf .

The g-vectors of a seed t 0 obey the tropical transformation �t;t0 where t; t0 are initial
seeds. More precisely, we have the following result.

Theorem 2.2.7 ([17, 41]). For any seeds t0; t; t 0 related by mutations, we have zGt .t 0/ D
�t;t0
zGt0.t 0/.

2.3. Injective-reachability and green to red sequences

Definition 2.3.1 ([71]). A seed t is said to be injective-reachable if there exists a seed
t 0 D E�t and a permutation � of Iuf such that the principal g-vector prIuf

gt
k
.t 0/ equals

� prIuf
f�.k/ for any k 2 Iuf, where fi is the i -th unit vector of M ı.t/ ' ZI .

In this case, we denote t 0 by t Œ1�, and t by t 0Œ�1�.

Note that the mutation sequence E� is not unique. We fix such a sequence once and for
all.

For any permutation � , let P� denote the Iuf � Iuf matrix such that .P� /ik D ıi;�.k/.
Then t is injective-reachable if and only ifG.t/D�P� for some � . Notice that P��1DPT� .

Notice that the seed t Œ1�, if it exists, is determined by t up to a permutation of Iuf.
Defining t Œd C 1� D t Œd �Œ1� and t Œd � 1� D t Œd �Œ�1�, we obtain a chain .t Œd �/d2Z of
seeds. In addition, if some t 2 �C is injective-reachable then all t 0 2 �C are injective-
reachable. See [71] for more details. We have the following notion following [50].
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Definition 2.3.2. For any seeds t 0 D E�t , the mutation sequence E� is said to be a green to
red sequence starting from t if ct

k
.t 0/ has negative sign for all k 2 Iuf.

Proposition 2.3.3. The injective-reachable condition is satisfied if and only if ct
k
.t 0/ D

�e�.k/ for any k 2 Iuf, where ek is the k-th unit vector of Nuf.t/ ' ZIuf , or equivalently
C.t/ D �P� . In addition, when C.t/ D �P� , we must have d 0

k
D d 0

�.k/
for any k 2 Iuf.

Proof. Denote t 0D E�t where E�D�ir � � ��i0 . Define ts D�is � � ��i0 t0, "s D sign.cis .ts//,
D0 D diag.d 0

k
/k2Iuf as before.

By Proposition 2.2.4 and Theorem 2.2.2, we have

D0 D ETir ;"r � � �E
T
i0;"0

D0Fi0;"0 � � �Fir ;"r D .Ei0;"0 � � �Eir ;"r /
TD0Fi0;"0 � � �Fir ;"r

D Gt .t 0/T �D0 � C t .t 0/:

If the injective-reachable condition is satisfied, then Gt .t 0/ D �P� . Therefore, D0 D
�PT�D

0C t .t 0/, and consequently C t .t 0/ D �D0�1P�D0, ctk.t
0/ D �

d 0
k

d 0
�.k/

e�.k/. Because

ct
k
.t 0/ are integer vectors, we must have d 0

k
D d 0

�.k/
and ct

k
.t 0/ D �e�.k/ for any k 2 Iuf.

Conversely, if C t .t 0/ D �P� then we can similarly show d 0
k
D d 0

�.k/
for all k 2 Iuf

and Gt .t 0/ D �P� .

Corollary 2.3.4. For any seeds t 0 D E�t , we have t 0 D t Œ1� if and only if E� is a green to
red sequence starting from t .

Proof. The “only if” part is a consequence of Proposition 2.3.3.
On the other hand, if E� is a green to red sequence, then ct

k
.t 0/ < 0 for all k. It defines a

chamber C t
0

D ¹m 2RI j ct
k
.t 0/ � prIuf

m � 0º in the cluster scattering diagram associated
to the initial seed t (Section A.1). But the chamber C t

0

contains the negative chamber
C� D .RIuf

�0/˚ RIf of the scattering diagram. Therefore, one must have C� D C t
0

, and
consequently C t .t 0/ D �P� for some � . The claim follows from Proposition 2.3.3.

2.4. Cluster categories

We refer the reader to [48, 67] for details of this section. A quiver zQ is a finite oriented
graph, which we assume to have no loops or 2-cycles throughout this paper. Denote its set
of vertices by I and of arrows by E. An ice quiver zQ is a quiver endowed with a partition
of its vertices, I D Iuf t If (unfrozen and frozen respectively). The full subquiver of zQ
supported on the unfrozen vertices Iuf is called the principal part and denoted by Q.

To any ice quiver zQ, we can associate an I � I skew-symmetric matrix .bij / such that
bij is the difference between the number of arrows from j to i and that from i to j . Its
I � Iuf submatrix and Iuf � Iuf submatrix are denoted by zB and B as before. Conversely,
to any I � I skew-symmetric integer matrix .bij /, we can associate an ice quiver zQ.

The path algebra C zQ is the C-algebra generated by paths of zQ whose multiplication
is given by path composition. C zQ has the maximal ideal m generated by the arrows a 2E.

Let bC zQ denote the completion. Choosing a linear combination zW 2 bC zQ of oriented
cycles called a potential, we can define its cyclic derivatives @a zW for any a 2E (see [16]).
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The ideal h@a zW ia2E of bC zQ has the closure h@a zW ia2E D
T
n>0.h@a

zW ia2E C mn/.
We define the completed Jacobian algebra associated to the quiver with potential to be

J. zQ; zW / D
bC zQ=h@a zW ia2I . By restricting the potential zW to the full subquiverQ (arrows

not contained in Q are sent to 0), we obtain the principal quiver with potential .Q;W /
and the corresponding Jacobian algebra J.Q;W /.

Let � D �. zQ; zW / denote the Ginzburg dg algebra (differential graded algebra) associ-

ated to . zQ; zW / [35]. Its homology is concentrated in negative degrees so thatH>0� D 0,
H 0� D J. zQ; zW /. Let per � denote the perfect derived category of � (smallest triangu-
lated category containing �), and Dfd� the full subcategory consisting of objects with
finite-dimensional total homology. Let † denote the shift functor.

The (generalized) cluster category C D C. zQ; zW / is defined to be the quotient category
per �=Dfd� [1]. Let � denote the natural projection. We further assume that J. zQ; zW / D
H 0� is finite-dimensional. Then the category C is a Hom-finite 2-Calabi–Yau trian-
gulated category, which means Hom.X; †Y / ' D Hom.Y; †X/. Furthermore, �� is a
cluster tilting object of C , i.e., HomC .��;†.��// D 0 and HomC .��;†X/ D 0 implies
X 2 add.��/. The subcategory of coefficient-free objects is defined to be the full subcat-
egory

?.†Tf/ D ¹X 2 C j Hom.X;†Tf/ D 0º

where Tf D
L
i2If

��i and �i denotes the i -th indecomposable projective of � .
From now on, we always assume that the potential zW is chosen to be non-degener-

ate [16]. Then we can mutate cluster tilting objects. The cluster category C associated
to . zQ; zW / provides a categorification for the cluster algebra associated to the initial
seed t0 D ..bij /; .xi // such that we associate to t 2 �C cluster tilting objects T .t/,
with T .t0/ D �� , and quivers with potential .. zQ.t/; zW .t// with zQ.t/ corresponding
to .bij .t//. Notice that Tf is a common summand for all T .t/, t 2 �C.

For any M 2 C and T D T .t/, we have an addT -approximation in C

T .1/ ! T .0/ !M ! †T .1/:

Let us identify the Grothendieck ring of add T with M ı.t/ ' ZI so that the iso-
class ŒTi � corresponds to the i -th unit vector fi . The index of X is defined to be
IndTM D ŒT .0/� � ŒT .1/�.

For convenience, we consider right modules unless otherwise specified. We define the
functor F such that

F W C ! J. zQ.t/; zW .t//-mod; X 7! Hom.T;†X/:

Its restriction ?.†Tf/ has image in J.Q.t/;W.t//-mod.

Definition 2.4.1 (Caldero–Chapoton formula). Consider the classical case k D Z. For
any given skew-symmetric seed t , the corresponding cluster tilting object T D T .t/, and
any coefficient-free object M 2 ?.†Tf/, the cluster character of M is defined to be the
Laurent polynomial in LP .t/:

CC t .M/ D x.t/IndTM
� X
n2Nuf

�0.t/

�.Grn FM/ � x.t/
zB �n
�
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where Grn FM is the submodule Grassmannian of the J.Q.t/;W.t//-module FM consist-
ing of n-dimensional submodules, and � denotes the topological Euler characteristic.

We also define CC t .FM/ D CC t .M/.
Let us recall the Calabi–Yau reduction in the sense of [43]; see [68, Section 3.3] for a

brief introduction.
Let .Tf/ denote the ideal of all morphisms of the cluster category C. zQ; zW / which factor

through Tf. Then the quotient ?.†Tf/=.Tf/ is naturally endowed with a structure of trian-
gulated category. Furthermore, ?.†Tf/=.Tf/ is equivalent to the cluster category C.Q;W /
associated to .Q;W /.

Let us use � to denote the Ginzburg algebra �Q;W and let T denote the corresponding
cluster tilting object in C.Q;W /. Then, under the above quotient and equivalence, any Tk
with k 2 Iuf is sent to T k .

Any objectM 2 ?.†Tf/ is sent to an objectM in C.Q;W /. By [68], the index ofM is
given by projection,

IndTM D prIuf
.IndTM/:

In particular, if we let Ik denote the indecomposable object in ?.†Tf/ which corresponds
to †.T k/ in C.Q;W /, then prIuf

IndT Ik D �fk . Notice that F†.T k/ is the k-th injective
module of J.Q;W /, which we also denote by Ik .

By [68], for any g 2 ZIuf , there exists some m 2 NIf depending on g such that, for a
generic morphism f 2 Hom.T Œ�g�C ; T Œg�CCm/ (see [66]), cone f belongs to 2 ?.†Tf/

and has no direct summand in add Tf. We define the generic cluster character associated
to g Cm to be LgCm D CC.conef /.

Theorem 2.4.2 ([68, Theorem 1.3]). For any skew-symmetric seeds t 0 D E�t , the generic
cluster characters satisfy

E�
�LtgCm D Lt

0

�t0;tgCm
:

2.5. Quantization

We briefly recall the necessary modification needed for the quantum case k D ZŒq˙1=2�.
Assume that a seed t satisfies the full rank assumption as before.

First, we endow the seed t with a quantum seed structure by choosing a compatible
Z-valued skew-symmetric bilinear form � on M ı.t/ and strictly positive integers d 0

k
,

k 2 Iuf. By compatibility, we mean

�.fi ; p
�ek/ D �ıi;kd

0
k ; 8i 2 I; k 2 Iuf:

For any seed t 0 D �kt , k 2 Iuf, the linear isomorphismM ı.t 0/'M ı.t/ via (2.2) induces
a bilinear form onM ı.t/, which we still denote by �. It follows from [3] that � is compat-
ible with t 0 as well. Repeatedly, we assign quantum seed structures to all seeds obtained
from t by iterated mutations.
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For any quantum seed t , we endow the Laurent polynomial ring LP .t/ with an extra
multiplication, called twisted product �, such that

xm � xm
0

D q
1
2�.m;m

0/xmCm
0

; 8m;m0 2M ı.t/:

Note that � becomes the commutative product � when we specialize q1=2 to 1.
Unless otherwise specified, we will choose this twisted product � as the multiplication

for the k-algebra LP .t/ instead of the commutative product �.
Similarly, we endow kŒN.t/� with the twisted product � such that

yn � yn
0

D q
1
2�.p

�n;p�n0/ynCn
0

; 8n; n0 2 Nuf.t/:

Then p� induces a k-algebra homomorphism from kŒN.t/� to LP .t/ commuting with
the twisted products.

Using the twisted product, we construct the skew-fields of fractions of LP .t/ and
kŒN.t/� and denote them by F .t/ D F .LP .t// and F .kŒN.t/�/ respectively. The clas-
sical automorphisms in (2.3) are quantized to the automorphisms �k;" such that, for i ¤ k,

�k;".xi / D xi ;

�k;".x
�1
k / D x�1k C x

�fkC"vk ;

�k;".yi / D yi �

jbki jX
sD0

�
jbki j

s

�
qk

y"sk ; bki � 0;

�k;".y
�1
i / D y�1i �

jbki jX
sD0

�
jbki j

s

�
qk

y"sk ; bki > 0;

�k;".yk/ D yk :

(2.5)

where we denote qk D q
1
2d
0
k , Œa�q D qa�q�a

q�q�1
for 0 ¤ a 2 N, Œ0�qŠ D 1, Œa�qŠ D

Œa�qŒa � 1�q � � � Œ1�q , and
�
a
b

�
q
D

Œa�q Š

Œb�q ŠŒa�b�q Š
.

As before, define quantum mutations ��
k

as the compositions �k;" ı �k;". Then they
are independent of the choice of the sign ", and such that, for i ¤ k,

��k.x
0
i / D xi ;

��k.x
0
k/ D x

�fkC
P
j Œ�bjk �Cfj C x�fkC

P
i Œbik �Cfi ;

��k.y
0
i / D yi �

jbki jX
sD0

�
jbki j

s

�
qk

ysk ; bki � 0;

��k..y
0
i /
�1/ D y�1i y

�bki
k
�

jbki jX
sD0

�
jbki j

s

�
qk

ysk ; bki > 0;

��k.y
0
k/ D y

�1
k :

(2.6)

We define the quantum (upper) cluster algebras as in Definition 2.1.5, using the quan-
tum mutations and twisted products in the construction.
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3. Bidegrees and support of Laurent polynomials

Let t D ..bij .t//i;j2I ; .xi .t//i2I / be a seed such that the I � Iuf matrix zB.t/ is of full
rank. Recall that

M ı.t/ ' ZI ; N.t/ ' ZI ; Nuf.t/ ' ZIuf ;

Nuf
�0.t/ ' NIuf ; Nuf

>0.t/ ' NIuf � ¹0º;

where the natural bases ofM ı.t/,N.t/ andNuf.t/ are denoted by ¹fi j i 2 I º, ¹ei j i 2 I º
and ¹ek j k 2 Iufº respectively. The pairing h ; i between M ı.t/ and N.t/ is such that
hfi ; ej i D

1
di
ıij . In addition, N.t/ is endowed with the skew-symmetric bilinear form

¹ ; º such that ¹ei ; ej º D d�1j bj i . We also have the linear map p� W Nuf.t/ ! M ı.t/

such that p�.n/ D ¹n; º, which turns out to be p�.n/ D zB.t/ � n under the identification
M ı.t/ ' ZI and Nuf.t/ ' ZIuf . Denote vk D p�.ek/ for k 2 Iuf. The vectors ¹vkºk2Iuf

are linearly independent by the full rank assumption on zB.t/.

3.1. Dominance order

The dominance order is the following partial order defined on M ı.t/.

Definition 3.1.1 (Dominance order [71, Definition 3.1.1]). For any given seed t and
g; g0 2 M ı.t/, we say g0 is dominated by g, denoted by g0 �t g, if g0 D g C p�.n/

for some n 2 Nuf
�0.t/. We write g0 �t g if g ¤ g0.

For any given g; � 2M ı.t/, we define the following subsets of M ı.t/:

M ı.t/�tg D ¹g
0
2M ı.t/ j g0 �t gº D g C p

�N
�0
uf .t/;

��tM
ı.t/ D ¹g0 2M ı.t/ j � �t g

0
º D � � p�N

�0
uf .t/;

��tM
ı.t/�tg D ¹g

0
2M ı.t/ j � �t g

0
�t gº D ��tM

ı.t/ \M ı.t/�tg :

Lemma 3.1.2 (Finite Interval Lemma, [71, Lemma 3.1.2]). For any �; g 2 M ı.t/, the
set ��tM

ı.t/�tg is finite. In particular, if � �t g and g �t �, we must have � D g as
elements in M ı.t/.

Proof. The claim follows from the assumption that zB.t/ is of full rank.

Recall that, for any two seeds t; t 0 2 �C, we have the tropical transformation �t 0;t W
M ı.t/! M ı.t 0/. By viewing �t 0;t as an identification, the set Mı of tropical points is
the set of equivalence classes. Moreover, the dominance order�t 0 is transported toM ı.t/
and Mı so that, for any g; h 2 M ı.t/, whenever �t 0;th �t 0 �t 0;t 0g, we define h �t 0 g
in M ı.t/ and Œg� �t 0 Œh� in Mı.

In general, for any given sets S; S 0 of seeds, we define

Mı�S Œg� D ¹Œg
0� 2Mı j Œg0� �t Œg�; 8t 2 Sº;

Œ���S0
Mı D ¹Œg0� 2Mı j Œ�� �t Œg

0�; 8t 2 S 0º;

Œ���S0
Mı�S Œg� D Œ���S0

Mı \Mı�S Œg�:

We have similar definitions for M ı.t/�Sg , ��S0M
ı.t/, and ��S0M

ı.t/�Sg .
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From now on, we use the symbols M ı.t/ and g 2 M ı.t/ if we want to specify a
special seed t , and Mı and Œg� 2Mı otherwise.

3.2. Formal Laurent series and bidegrees

The monoid algebra kŒNuf
�0.t/�D kŒ�n�n2Nuf

�0.t/ has a maximal ideal mD kŒNuf
>0.t/�.

The corresponding completion is denoted by 4kŒNuf
�0.t/�. The injective linear map p� W

Nuf.t/ ! M ı.t/ induces an embedding p� from kŒNuf
�.t/� to LP .t/ D kŒM ı.t/� D

kŒ�m�m2Mı.t/ such that p�.�n/ D �p
�.n/ for all n 2 Nuf.t/. We define the set of formal

Laurent series to be

2LP .t/ D LP .t/˝kŒNuf
�0.t/�

4kŒNuf
�0.t/�

where kŒNuf
�0.t/� is viewed as a subalgebra of kŒM ı.t/� via the embedding p�.

Then a formal Laurent series is a finite sum of elements of the type

a � x.t/g �
X

n2Nuf
�0.t/

bny.t/
n

where a; bn 2 k; g 2 M ı.t/, xi .t/ D �fi and yk D �p
�.ek/ D

Q
i x

bik
i by the embed-

ding p�.

Similarly, letting 6kŒ�Nuf
�0.t/� denote the completion of kŒ�Nuf

�0.t/� with respect
to its maximal ideal kŒ�Nuf

>0.t/�, we can define

BLP .t/ D LP .t/˝kŒ�Nuf
�0.t/�

6kŒ�Nuf
�0.t/�

Then any formal series z 2BLP .t/ is a finite sum of elements of the type

a � x.t/g �
X

n2�Nuf
�0.t/

bny.t/
n

where a; bn 2 k and g 2M ı.t/.
Let us postpone the discussion of the ring structure for the moment and give an intu-

itive definition of (co)degrees arising from the dominance order.

Definition 3.2.1 (Degree, pointed [71]). For any formal sum z D
P
g2Mı.t/ cgx.t/

g

where cg 2 k, if the set ¹g j cg ¤ 0º of Laurent degrees has a unique �t -maximal ele-
ment g, we say z has degree g with respect to t , and denote degt z D g.

If degt z D g and cg D 1, then z is said to be pointed at g.

A set is said to be pointed if it consists of elements pointed at various degrees.
We also need the following dual notion.

Definition 3.2.2 (Codegree, copointed). For any formal sum z D
P
g2Mı.t/ cgx.t/

g

where cg 2 k, if the set ¹g j cg ¤ 0º of Laurent degrees has a unique �t -minimal ele-
ment �, we say z has codegree � with respect to t , and denote codegt z D �.

If codegt z D � and c� D 1, then z is said to be copointed at �.
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Definition 3.2.3 (Bidegree, bipointed). For any formal sum z D
P
g2Mı.t/ cgx.t/

g , if
degt zD g and codegt zD � for some g;� 2M ı.t/, we say z has bidegree .�;g/, denoted
by bidegt z D .�; g/.

If z is further pointed at g and copointed at �, we say it is bipointed at .�; g/.

We have the following easy observation.

Lemma 3.2.4. If a formal sum z D
P
g2Mı.t/ cgx.t/

g has bidegree .�; g/, then the fol-
lowing claims are true:

(1) � �t g .

(2) z is a Laurent polynomial.

(3) z is a Laurent monomial if and only if � D g.

Proof. The claim follows from the definitions and the finiteness of ��tM
ı.t/�tg (Lem-

ma 3.1.2).

We will mainly be interested in Laurent polynomials. But sometimes our calculation
will be carried out for formal series. Let us look at these series in more detail. Recall that
we have identified kŒNuf.t/� as a subalgebra of kŒM ı.t/� via the embedding p�.

For any g 2 M ı.t/, the k-submodule xg � kŒNuf
�0.t/� � kŒM ı.t/� is a rank 1 free

module over the algebra kŒNuf
�0.t/�. We define its completion to be the rank 1 free

4kŒNuf
�0.t/�-module xg � 4kŒNuf

�0.t/�.
The subset P T t .g/ WD xg � .1 C kŒNuf

>0.t/�/ of xg � kŒNuf
�0.t/� is the set

of Laurent polynomials pointed at degree g. Let 4kŒNuf
>0.t/� denote the subset of

series in 4kŒNuf
�0.t/� with vanishing constant terms. Then the subset bP T t .g/ WD

xg.1 C 4kŒNuf
>0.t/�/ of xg � 4kŒNuf

�0.t/� is the set of formal Laurent series pointed at
degree g. Notice that we have P T t .g/ � bP T t .g/ �2LP .t/.

Similarly, the subset CP T t .�/ WD x� � .1 C kŒ�Nuf
>0.t/�/ of x� � kŒ�Nuf

�0.t/� is
the set of Laurent polynomials copointed at codegree �. In addition, we have the subset

of of x� �6kŒ�Nuf
�0.t/� consisting of the copointed formal Laurent series, BCP T t .�/ D

x� � .1C6kŒ�Nuf
>0.t/�/. Notice that we have CP T t .g/ �BCP T t .g/ �BLP .t/.

Finally, the subset BP T t .�; g/ WD P T t .g/ \ CP T t .�/ of kŒM ı.t/� is the set of
Laurent polynomials bipointed at bidegree .�; g/.

Lemma 3.2.5 (inverse). (1) For any pointed formal Laurent series u 2 bP T t .g/, where
g 2 M ı.t/, u has a multiplicative inverse v in the ring of formal Laurent series
2LP .t/. In addition, v belongs to bP T t .�g/.

(2) For any copointed element u0 2BCP T t .�/, where � 2M ı.t/, u0 has a multiplicative
inverse v0 in BLP .t/. In addition, v0 belongs to BCP T t .��/.

Proof. (1) u takes the form uD x.t/g �F , where F 2 1C 4kŒNuf
>0.t/�, and � denotes the

twisted product. Notice that F has a unique inverse F 0 2 1C 4kŒNuf
>0.t/� in 4kŒNuf

�0.t/�.
Then u has inverse v D F 0 � x.t/�g .

(2) The proof is similar to (1).
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Lemma 3.2.6 (product). (1) For any given series zg ; z� pointed at degree g and �

respectively, their product is a well defined series pointed at degree g C �.

(2) For any given series zg ; z� copointed at codegree g and � respectively, their product
is a well defined series copointed at codegree g C �.

Proof. (1) Notice that, to each Laurent degree g0 in the product, only finitely many
Laurent monomials of the pointed series zg and z� will contribute, because g0�Mı�g
and g0�Mı�� are finite by Lemma 3.1.2. Therefore, the product is well defined. In addi-
tion, it is pointed at degree g C � by direct computation.

(2) The proof is similar to that of (1).

3.3. Degrees and codegrees under mutation

Let t; t 0 be two seeds connected by a mutation sequence, t 0 D E�t . Recall that the lattice
M ı.t/ ' ZI has a natural basis ¹fi D fi .t/ j i 2 I º.

Definition 3.3.1 (Degree transformation). We define the linear map  t 0;t W M ı.t/ !
M ı.t 0/ such that

 t 0;t

�X
i2I

gifi

�
D

X
i2I

gi�t 0;t .fi /

for any .gi /i2I 2 ZI .

We have the following result (see Example 3.3.3).

Lemma 3.3.2. Let t 0 D �kt 2 �
C for some k 2 Iuf. Denote � D �t 0;t and  D  t 0;t .

Let e0
k

denote the k-th unit vector in Nuf.t
0/. For any i ¤ k 2 I and g 2M ı.t/, we have

 g � �g D Œ�gk �C zB
0e0
k

.

Proof. Note that, in the latticeM ı.t 0/, we have  .fk/ D degt
0

xk.t/ D �.fk/ D �f
0
k
C

Œbik �Cf
0
i ; see Definition 2.1.4. Direct calculation shows that, for any i ¤ k 2 I ,

.�g �  g/i D .gi C Œbik �CŒgk �C � Œ�bik �CŒ�gk �C/ � .gi C Œbik �Cgk/

D .Œbik �CŒgk �C � Œ�bik �CŒ�gk �C/ � Œbik �Cgk

D .Œbik �CŒgk �C � Œ�bik �CŒ�gk �C/ � Œbik �C.Œgk �C � Œ�gk �C/

D �Œ�bik �CŒ�gk �C C Œbik �CŒ�gk �C D bik Œ�gk �C D �b
0
ik Œ�gk �C:

Moreover, .�g/k D �gk D . g/k . We deduce that �g �  g D �. zB 0/ � Œ�gk �Ce0k .

Example 3.3.3. Choose a seed t such that I D Iuf D ¹1; 2º, zB D .bij / D
�
0 �1
1 0

�
. Take

any g D g1f1 C g2f2 2M ı.t/, g1; g2 2 Z.
First, take t 0D�1t . Then zB 0D� zB . We have �.g/D .�g1/f 01 C .g2C Œg1�C/f

0
2 (see

Definition 2.1.4). In particular,  .f1/ D �.f1/ D �f 01 C f
0
2 and  .f2/ D �.f2/ D f 02 .

It follows that  .g/ D g1 .f1/ C g2 .f2/ D .�g1/f
0
1 C .g1 C g2/f

0
2 . Therefore,

 g � �g D �Œ�g1�Cf
0
2 D Œ�g1�C

zB 0e01.
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Second, take t 0D�2t . Then zB 0D� zB . We have �.g/D .g1 � Œ�g2�C/f 01 C .�g2/f
0
2

(see Definition 2.1.4). In particular,  .f1/ D �.f1/ D f 01 and  .f2/ D �.f2/ D �f 02 . It
follows that  .g/ D g1 .f1/C g2 .f2/ D g1f 01 C .�g2/f

0
2 . Therefore,  g � �g D

Œ�g2�Cf
0
1 D Œ�g2�C

zB 0e02.

Remark 3.3.4 (Non-trivial monodromy). Recall that the maps �t 0;t are piecewise linear
and �t;t 0�t 0;t D �t;t D IdMı.t/. By contrast, the maps  t 0;t are linear, but at the cost that
 t;t 0 t 0;t ¤ IdMı.t/ in general.

It would be interesting to understand such non-trivial monodromy. We observe that
this monodromy for adjacent seeds agrees with the monodromy of signed mutations.

More precisely, take t as the initial seed and assume that t 0D�k;Ct for some unfrozen
vertex k. Note that b0

ik
D �bik for any i 2 I . Direct computations show that, for i ¤ k,

 t;t 0 t 0;t .fi / D fi ;
(3.1)

 t;t 0 t 0;t .fk/ D  t;t 0
�
�f 0k C

X
i

Œ�b0ik �Cf
0
i

�
D fk �

X
j

Œ�bjk �Cfj C
X
i

Œ�b0ik �Cf
0
i

D fk C
X
i

bikfi :

On the other hand, if we apply signed mutations �k;C twice on the initial seed t , we
obtain a seed t 00 D �k;C�k;C.t/. Let us compute �k;C�k;C WM ı.t 00/'M ı.t/. For i ¤ k,
we have

�k;C�k;C.f
00
i / D fi ; (3.2)

�k;C�k;C.f
00
k / D �k;C

�
�f 0k C

X
i

Œ�b0ik �Cf
0
i

�
D fk �

X
j

Œ�bjk �Cfj C
X
i

Œ�b0ik �Cf
0
i

D fk C
X
i

bikfi :

We deduce that  t;t 0 t 0;t D �k;C�k;C if we identify f 00i D fi for any i .
Note that the signed mutation monodromy �k;C�k;C was discussed in [40,

Remark 2.5].

Lemma 3.3.5.  t 0;t is bijective.

Proof. Identify M ı.t 0/ ' ZI so that f 0i is viewed as the i -th unit vector. Let prIuf
denote

the natural projection from ZI to ZIuf .
Denote gk.t I t 0/ D �t 0;tfk.t/ D  t 0;tfk.t/ 2M ı.t 0/. It follows from Corollary 2.2.3

that the principal g-vectors prIuf
gk.t I t

0/ with respect to the initial seed t 0, k 2 Iuf, form
a basis of ZIuf . Note that gj .t I t 0/ D f 0j for any frozen vertex j . It follows that gi .t I t 0/,
i 2 I , is a basis for ZI . In particular, the linear map  t 0;t is bijective.
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Notice that we have two inclusions LP .t/ � F .t/ and LP .t/ �2LP .t/. On the
one hand, the mutation map E�� is an isomorphism from the rational function field F .t 0/

to F .t/. On the other hand, we have E�
�
.kŒxi .t 0/�i / � LP .t/ �2LP .t/. In addition,

E�
�
.xi .t

0//, for each i , is a pointed Laurent polynomial in LP .t/, which is invertible
in 2LP .t/ by Lemma 3.2.5. Consequently, the mutation map E�

� induces an algebraic
homomorphism � W LP .t 0/!2LP .t/.

Our next observation shows that the linear map  t 0;t tracks the degree of a Laurent
monomial under change of seeds.

Lemma 3.3.6. For any t 0 D E�t , g0 2M ı.t 0/ and z D x.t 0/g
0

2 LP .t 0/, we have �.z/ 2
bP T t . t;t 0g

0/.

Proof. Notice that the map � identifies xi .t 0/ with a pointed Laurent polynomial in
P T t .degt xi .t 0//. Then Lemma 3.2.5 implies �xi .t 0/�1 2bP T t .�degt xi .t 0//. We obtain
the claim by taking the product of these pointed formal series (Lemma 3.2.6).

Lemma 3.3.7. (1) The map � is an embedding.

(2) If z 2 LP .t 0/ \ . E�
�
/�1LP .t/, then �.z/ D E�

�
.z/ 2 LP .t/.

Proof. (1) For any Laurent polynomial 0¤ zD
P
g02Mı.t 0/ bg0x.t

0/g
0

2LP .t/, bg0 2 k,

the image �.x.t 0/g
0

/ 22LP .t/ is pointed at degree  t;t 0g0. Since  t;t 0 is bijective, the
image �.z/ is a finite sum of pointed elements with distinct leading degrees. In particular,
�.z/ ¤ 0.

(2) Take any z D .x0/�d � F for some F 2 kŒM ı.t 0/�, d 2 NI . On the one hand, we
have �..x0/d / � �.z/ D �.F / in 2LP .t/. On the other hand, we have E��..x0/d / � E��.z/ D
E�
�
.F / in LP .t/. By definition of �, we have �..x0/d / D E�

�
..x0/d / and �.F / D E�

�
.F /

in LP .t/. The claim follows.

Using this embedding, we can identify any Laurent polynomial z 2 LP .t 0/ as a
formal Laurent series E��.z/ WD �.z/ in 2LP .t/, called the formal Laurent series expansion
of z with respect to the seed t , or (formal) Laurent expansion for short.

Remark 3.3.8 (Different expansion using codegrees). Notice that the Laurent polynomi-
als E��.xi .t//, i 2 I , are copointed (Proposition 3.4.13). Then we can construct a similar
embedding �0 from LP .t 0/ to BLP .t/ as a different formal series expansion.

Definition 3.3.9 (Tropical points as degrees). Given a formal Laurent series z 2 2LP .t0/

with degree g 2 M ı.t0/ such that, for any seeds t0 D E�t , E��z is a well defined formal
Laurent series in 2LP .t/ with degree degt E��z D �t;t0g 2 M

ı.t/. Then we say z has
degree Œg� 2Mı.

As before, denote yk.t/ D y.t/ek D x.t/
P
i bik.t/fi , k 2 Iuf, where ek is the k-th

unit vector in Nuf.t/ ' ZIuf and fi the i -th unit vector in M ı.t/ ' ZI . Apparently,
yk.t/ is a pointed Laurent polynomial in LP .t/ and we have degt yk.t/ D zB.t/ � ek DP
i2I bik.t/fi . It follows that for any n 2 Nuf.t/, we have degt .y.t/n/ D zB.t/ � n.
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The next result shows how c-vectors appear when one calculates the degree of
y-variables. This result is known for skew-symmetric seeds via the cluster category
approach [49, 51, 63].

Proposition 3.3.10 ([27, Proposition 3.13]). For any seeds t 0 D E�t and any k 2 Iuf, we
have degt E��yk.t 0/ D degt .y.t/c

t
k
.t 0// D zB.t/ � ct

k
.t 0/, where ct

k
.t 0/ is the k-th c-vector

of the seed t 0 with respect to the initial seed t .

Proof. We use the description of c-vectors and g-vectors by Theorem 2.2.2. Let the muta-
tion sequence E� be �ir � � ��i0 , and consider the seeds ts D �is�1 � � ��i0 t0 where t0 D t
and trC1 D t 0. Choose "s to be the sign of the k-th c-vector ci .ts/.

Recall that zB.t 0/D Eir ;"r .tr / � � �Ei0;"0.t0/ zB.t0/Fi0;"0.t0/ � � �Fir ;"r .tr /. Starting with
the product E��yk.t 0/, we have

degt E��yk.t
0/ D

X
i

degt E��xi .t
0/ � bik.t

0/ D zG.t 0/ � zB.t 0/ � ek

D Ei0;"0.t0/ � � �Eir ;"r .tr / �
�
Eir ;"r .tr / � � �Ei0;"0.t0/

zB.t0/Fi0;"0.t0/ � � �Fir ;"r .tr /
�
� ek

D zB.t0/ � Fi0;"0.t0/ � � �Fir ;"r .tr / � ek D
zB.t0/ � C

t0.trC1/ � ek D zB.t/ � c
t
k.t
0/:

Assume the cluster algebra is injective-reachable. Then for any seed t we have seeds
t Œ1� and t Œ�1� constructed from t by mutation sequences. The following crucial result
tells us that the linear map  tŒ�1�;t reverses the dominance order in t and t Œ�1�.

Proposition 3.3.11 (order reverse). Let t D E�tŒ�1� be an injective-reachable seed such
that C tŒ�1�.t/ D �P� for some permutation � of Iuf. Let �; g 2 M ı.t/. Then � D g C
zB.t/ � n for some n 2 Nuf.t/ if and only if �0 D g0 C zB.tŒ�1�/ � .�P� � n/ where �0 D
 tŒ�1�;t� and g0D tŒ�1�;tg. In particular, ��t g if and only if tŒ�1�;t��tŒ�1�  tŒ�1�;tg.

Proof. Notice that  tŒ�1�;t is a bijective linear map fromM ı.t/ toM ı.t Œ�1�/ by Lemma
3.3.5. The claim is equivalent to  tŒ�1�;t . zB.t/ � n/ D zB.tŒ�1�/ � .�P� � n/. Also, recall
that degt .y.t/n/ D zB.t/ � n.

Applying the linear map  tŒ�1�;t WM ı.t/!M ı.t Œ�1�/ and using Lemma 3.3.6 and
Proposition 3.3.10, we obtain

 tŒ�1�;t . zB.t/ � n/ D  tŒ�1�;t degt .y.t/n/ D
X
k

 tŒ�1�;t degt .yk.t// � nk

.Lemma 3.3.6/ D

X
k

degtŒ�1� E��.yk.t// � nk

.Proposition 3.3.10/ D

X
k

degtŒ�1� y.t Œ�1�/c
tŒ�1�

k
.t/
� nk

D degtŒ�1� y.t Œ�1�/C
tŒ�1�.t/�n

D zB.tŒ�1�/ � .�P� � n/:

We have the following consequence which tells us that the degree and codegree in t
and t Œ�1� swap.
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Proposition 3.3.12 (Degree/codegree swap). Let t D E�tŒ�1� be an injective-reachable
seed and let z 2 LP .t/ be such that E��z 2 LP .t Œ�1�/. Then z is copointed in LP .t/ at
codegree codegt zD � if and only if E��z is pointed in LP .t Œ�1�/ at degree degtŒ�1�. E��z/
D  tŒ�1�;t�.

Proof. Let z D
P
m2Mı.t/ bmx.t/

m be the Laurent expansion of z in LP .t/, where
only finitely many coefficients bm are non-zero. Taking the formal Laurent expansion
in 4LP .t Œ�1�/, we obtain E��z D

P
m2Mı.t/ E�

�
.bmx.t/

m/.

Each formal Laurent series E��.x.t/m/ in 4LP .t Œ�1�/ has degree tŒ�1�;tm by Lemma
3.3.6. On the one hand, z is copointed at � if and only if ¹m j bm ¤ 0º has a unique �t -
minimal element � and b� D 1. On the other hand, E��z is pointed at some degree g if
and only if ¹ tŒ�1�;tm j bm ¤ 0º has a unique �tŒ�1�-maximal element g D  tŒ�1�;t� and
b� D 1. Because  tŒ�1�;t reverses the order �t and �tŒ�1� by Proposition 3.3.11, these
two conditions are equivalent.

3.4. Support of bipointed Laurent polynomials

Definition 3.4.1 (Support). The support of any nD
P
nkek 2 Nuf.t/ is defined to be the

set suppn D ¹i 2 Iuf j ni ¤ 0º.
For any Laurent polynomial z 2 LP .t/ with bidegree .�; g/, its support dimension

suppDimt z is defined to be the unique element n 2 Nuf
�0.t/ such that � D g C p�n. We

define its support to be suppt z D supp.n/.

Recall that, for any seeds t 0 D E�t , the mutation map E�
� identifies F .t 0/ and F .t/,

and LP .t 0/ \LP .t/ denotes LP .t 0/ \ . E�
�
/�1LP .t/.

Definition 3.4.2. Let S be any given set of seeds connected by mutations. A Laurent
polynomial z 2

T
ti2S

LP .ti / is said to be compatibly pointed at the seeds in S if we
have z 2

T
t2S P T t .g.t// for some degrees g.t/ 2M ı.t/ such that g.t 0/D �t 0;tg.t/ for

all t; t 0 2 S .

Similarly, given any formal Laurent series z 2 2LP .t0/, t0 2 S , such that its formal
Laurent expansion in 2LP .t/ is well defined for all t 2 S (NOT always true). We can say
z is compatibly pointed at the seeds in S if z is pointed at degrees g.t/ 2M ı.t/ in 2LP .t/

such that g.t 0/ D �t 0;tg.t/ for all t; t 0 2 S .

Example 3.4.3. Let us give an example of an element z in the upper cluster algebra which
is NOT compatibly pointed at all seeds.

Consider the classical case kD Z. Take a type A2 cluster algebra whose initial seed t
consists of the initial cluster variables x1; x2 and the initial B-matrix B D

�
0 �1
1 0

�
. Denote

y1 D x2 and y2 D x�11 .
Applying the mutation �1 to t , we obtain a new seed t 0 D �1t with new variables

x01 D x�11 .1 C y1/ D x�11 .1 C x2/ and x02 D x2, B 0 D
�
0 1
�1 0

�
, y01 D .x02/

�1 D y�11 ,
y02 D x

0
1.
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Define z WD x1 � x01 D 1C x2 D 1C y1. Then z lies in the upper cluster algebra. It is
0-pointed at the seed t0, but its leading term comes from the contribution of x2 D x02 in
the seed t 0. In particular, it is not 0-pointed at the seed t 0, i.e. not compatibly pointed at
the seeds ¹t; t 0º.

Next, we define the “correct” support dimension for bipointed Laurent polynomials,
as we shall show in Proposition 3.4.8.

Definition 3.4.4. Let t be an injective-reachable seed and g 2 M ı.t/. If there exists
n 2 Nuf

�0.t/ such that

� D g C zB.t/ � n

where � D  �1
tŒ�1�;t

�tŒ�1�;tg, we define the support dimension associated to g to be

suppDimg D n

and the bidegree interval associated to g to be the following subset of M ı.t/:

BIg D ��tM
ı.t/�tg :

Let Œg� 2Mı be a tropical point. If for all t 2�C, g 2M ı.t/ has a support dimension,
where Œg� D g under the identification Mı ' M ı.t/, then we say that Œg� has support
dimensions.

Notice that the support dimension suppDimg is well defined if and only if
 �1
tŒ�1�;t

�tŒ�1�;tg �t g. It will turn out that it is always well defined by Proposition 5.1.5
and the existence of generic cluster characters (for skew-symmetric cases) or the existence
of theta functions (for skew-symmetrizable cases).

Remark 3.4.5. We claim that suppDimg and BIg do not depend on the choice of t Œ�1� up
to permutations � of Iuf. To see this, for any permutation � , we introduce the index rela-
belling operation � on the seed t which generates a new seed �tD..b�i;�j /i;j2I ; .x�i .t//.
Then � commutes with �t;t 0 ,  t;t 0 , and induces automorphisms on fraction fields which
commute with mutations. The claim follows from direct comparison between different
choices of t Œ�1� via the relabelling � .

The following result tells us that the subset Mı�¹t;tŒ�1�ºŒg� of tropical points could be
described by the inclusion of bidegree intervals. Notice that the inclusion gives a natural
partial order bounded from below, and it will be crucial when we construct bases later.

Proposition 3.4.6 (Inclusion property). Let t D E�tŒ�1� be an injective-reachable seed
and suppose g; g0 2M ı.t/ have support dimensions.

(1) If g0 �t g and �tŒ�1�;tg0 �tŒ�1� �tŒ�1�;tg, then BIg0 ¨ BIg . The converse is also true.

(2) Under the assumption in .1/, we haveM ı.t/�¹t;tŒ�1�ºg D ¹g
0 2M ı.t/ j BIg0 ¨ BIgº

for any g 2M ı.t/. In addition, M ı.t/�¹t;tŒ�1�ºg is finite.
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Proof. (1) By Proposition 3.3.11, the condition �tŒ�1�;tg0 �tŒ�1� �tŒ�1�;tg is equivalent to
 �1
tŒ�1�;t

�tŒ�1�;tg
0 �t  

�1
tŒ�1�;t

�tŒ�1�;tg. Because g; g0 have support dimensions, we have
g �  �1

tŒ�1�;t
�tŒ�1�;tg and g0 �t  �1tŒ�1�;t�tŒ�1�;tg

0. The claim follows from the definition
of the bidegree intervals BIg0 ; BIg .

(2) The first claim follows from (1). Noticing that BIg is finite by Lemma 3.1.2 and
g0 2 BIg for any g0 2M ı.t/�¹t;tŒ�1�ºg , the second claim follows.

Remark 3.4.7. It might be possible to generalize the notion of support dimensions by
removing the restriction n 2 Nuf

�0.t/. It is also an interesting question to write down the
mutation rule of these dimensions; see [28] for a formula for the support dimensions for
cluster variables (called f -vectors).

The following result gives an equivalence between being bipointed with the “correct”
support dimension and being compatibly pointed at t; t Œ�1�.

Proposition 3.4.8 (Compatibility and support dimensions). Consider seeds t D E�tŒ�1�

and a pointed Laurent polynomial z 2 P T t .g/, g 2M ı.t/.

(1) If z is compatibly pointed at seeds t; t Œ�1�, then g has a support dimension. Moreover,
z is bipointed with suppDim z D suppDimg in this case.

(2) If g has a support dimension and z2LP .t/ is bipointed with suppDimzDsuppDimg,
then z is compatibly pointed at the seeds t; t Œ�1�.

Proof. (1) By Proposition 3.3.12, we know that z 2 LP .t/ is copointed at codegree
 �1
tŒ�1�;t

degtŒ�1� E��z, which equals  �1
tŒ�1�;t

�tŒ�1�;tg because z is compatibly pointed at
the seeds t; t Œ�1�. The claims follow.

(2) By definition, z is bipointed at bidegree .g;  �1
tŒ�1�;t

�tŒ�1�;tg/. By Proposition
3.3.12, we know that E��z is pointed at degree �tŒ�1�;tg.

Recall that we have the following result which tells us that a finite decomposition of
pointed Laurent series is unitriangular.

Lemma 3.4.9 ([71, Lemma 3.1.10 (iii)]). Consider any finite linear decomposition of
pointed formal Laurent series u; zj in 2LP .t/, where zj have distinct degrees:

u D
X
0�j�r

bj zj ;

with r 2 N and bj 2 k. Then the decomposition must be �t -unitriangular, i.e., we can
reindex zj so that uD z0 C

P
1�j�r bj zj , with b0 D 1, degt z0 D degt u and degt zj �t

degt u for all j � 1.

We have better control of a finite decomposition of Laurent polynomials compatibly
pointed at t; t Œ�1� (or, equivalently, bipointed with correct support dimensions by Propos-
ition 3.4.8).
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Proposition 3.4.10 (decomposition). Consider seeds t D E�tŒ�1� and any finite decom-
position of pointed Laurent polynomials u; zj in LP .t/, where zj have distinct degrees:

u D
X
0�j�r

bj zj ;

with degt z0 D degt u and all coefficients bj non-zero. Further assume that all u; zj are
compatibly pointed at t; t Œ�1�. Then the following claims are true:

(1) All u; zj are bipointed.

(2) degt u D degt z0 and degt z0 �t degt zj for all j > 0.

(3) codegt u D codegt z0 and codegt zj �t codegt z0 for all j > 0.

(4) BIdegt zj ¨ BIdegt z0 for all j > 0.

(5) suppDim degt zj < suppDim degt z0 for all j > 0 in Nuf
�0.t/.

Proof. (1) Because u; zj are compatibly bipointed at t; t Œ�1�, we can apply Proposition
3.4.8. As consequences, degt u has suppDimu D suppDim degt u, u is bipointed at bide-
gree .degt u; �1

tŒ�1�;t
�tŒ�1�;t degt u/, all degt zj have suppDim zj D suppDim degt zj , and

all zj are bipointed at bidegree .degt zj ;  �1tŒ�1�;t�tŒ�1�;t degt zj /.
(2) This claim follows from Lemma 3.4.9.
(3) As degt uD degt z0, u and z0 must have the same codegree  �1

tŒ�1�;t
�tŒ�1�;t degt u

D �1
tŒ�1�;t

�tŒ�1�;t degt z0. Because uD
P
bj zj is a finite decomposition, the�t -minimal

Laurent degree codegt u of umust be the �t -minimal element of ¹codegt zj ;8j º. There-
fore, codegt zj �t codegt z0 for all j > 0.

(4) The claim follows from (2)–(3).
(5) By (4), for any j > 0, we have

degt z0 �t degt zj �t codegt zj �t codegt z0:

Therefore, there exist n1; n2; n3 2 Nuf
�0.t/ with n1; n3 ¤ 0 such that

degt zj D degt z0 C zB.t/n1;

codegt zj D degt zj C zB.t/n2;

codegt z0 D codegt zj C zB.t/n3:

We obtain suppDim zj D n2 < n1 C n2 C n3 D suppDim z0.

Conversely, by slightly changing the statement in Proposition 3.4.10, we describe a
finite sum of pointed Laurent polynomials with well controlled bidegrees.

Proposition 3.4.11 (combination). Consider seeds t D E�tŒ�1� and any Laurent polyno-
mials u; zj in LP .t/ such that we have

u D
X
0�j�r

bj zj
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with coefficients bj ¤ 0. Further assume that all zj are compatibly pointed at t; t Œ�1� and
their bidegrees satisfy BIdegt zj ¨ BIdegt z0 for all j > 0. Then u is compatibly pointed at t ,
t Œ�1�, bipointed at LP .t/ with bidegree .codegt z0; degt z0/, and has support dimension
suppDimu D suppDim z0.

Proof. By the inclusion assumption on bidegrees of zj , u must be bipointed at bidegree
.codegt z0; degt z0/ with suppDim u D suppDim z0. Because z0 is compatibly pointed at
t; t Œ�1�, degt z0 has suppDim degt z0 D suppDim z0 by Proposition 3.4.8. Consequently,
u is compatibly pointed at the seeds t; t Œ�1� by Proposition 3.4.8 (2).

Finally, we discuss properties of localized cluster monomials. Consider seeds t 0 D E�t

and a localized cluster monomial x.t 0/d where d 2 NIuf ˚ ZIf . Recall that its Laurent
expansion in LP .t/ is computed as E��x.t 0/d .

Lemma 3.4.12. If any z 2 LP .t/ has degree degt z D degt E��x.t 0/d and is compatibly
pointed at ¹t; t 0; t 0Œ�1�º, then z D E�

�
x.t 0/d .

Proof. We have degt
0

. E�
�1
/�z D �t 0;t degt z D �t 0;t degt E��x.t 0/d D d . Therefore,

. E�
�1
/�z and x.t 0/d have the same degree in LP .t 0/. Because they are compatibly poin-

ted at ¹t 0; t 0Œ�1�º, by Proposition 3.4.8, they have the same support dimension, which is
given by suppDim x.t 0/d D 0. Consequently, . E��1/�z D x.t 0/d .

It is natural to ask if we can extend the above property without the injective-reachab-
ility assumption.

The following property is known without this assumption.

Proposition 3.4.13 ([27, Proposition 5.3]). For every initial seed t0, the Laurent expan-
sion E��xi .t 0/d 2 LP .t/ is bipointed.

4. Properties of �t-decompositions

4.1. �t -decompositions

Consider a seed t D ..bij /i;j2I ; .xi /i2I / and a collection � D ¹sg j g 2M
ı.t/º �2LP .t/

such that sg is pointed at g. By definition, any z D
P
g2Mı.t/ bgx

g 22LP .t/ has finitely
many �t -maximal Laurent degrees. Similar to [71, Lemma 3.1.10 (i), Remark 3.1.8], we
can decompose z in terms of the pointed elements in S inductively via the partial order�t .

Definition-Lemma 4.1.1 (Dominance order decomposition). There exists a unique
decomposition

z D
X

g2Mı.t/

˛t .z/.g/ � sg ; ˛t .z/ 2 Homset.M
ı.t/; k/; (4.1)

in 2LP .t/ for some coefficient function ˛t .z/ such that the support supp.˛t .z// WD ¹g j
˛t .z/.g/ ¤ 0º has finitely many �t -maximal elements. We call it the �t -decomposition
of z into elements of � .
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Proof. Let g.j /, 1 � j � l , 0 ¤ j 2 N, denote the �t -maximal Laurent degrees of z. If
(4.1) holds, by comparing the Laurent monomials with�t -maximal degrees on both sides,
we deduce that the �t -maximal elements of supp.˛t .z// are exactly g.j /, 1 � j � l , and
their coefficients must be ˛t .z/.g.j // D bg.j/ .

Let us draw a directed graph G with vertices
S
1�j�l M

ı.t/�tg.j/ and, whenever
g0D gC zB � ek for some k 2 Iuf, we draw an arrow from g to g0. Then there is a (probably
length 0) path from g to g0 if and only if g0 �t g.

Notice that the source points of G are the leading degrees g.j /. Moreover, for any
vertex g0, there exist finitely many vertices g in G such that g0 �t g by the Finite Interval
Lemma 3.1.2. Then the decomposition coefficients for general vertices g 2 G are induct-
ively determined by travelling further away from the source points [71, Remark 3.1.8].

4.2. Change of seeds

We want to prove the desired property that the �t -decomposition is independent of the
seed t provided S satisfies some tropical properties. We learned from the inspirational
paper [41, Section 6] how to give a proof based on the nilpotent Nakayama Lemma.

The idea of the proof is straightforward for the principal coefficient cases in the sense
of [27]. Endow such (partially compactified) cluster algebras with natural adic topologies.
Then the nilpotent Nakayama Lemma provides a method to verify that a given collection
of elements is a basis. Our proof looks more technical because it treats general cases, and
we need to modify the calculation for the principal coefficient cases in the spirit of the
correction technique ([70, Section 9] or [71, Section 4]).

Let k 2 Iuf. We denote the mutated seed t 0 D �kt D ..b0ij /; .x
0
i //. Recall that we

have the tropical transformation � D �t 0;t WM ı.t/'M ı.t 0/. For any g 2M ı.t/, denote
g0 D �t 0;tg for brevity.

For simplicity, let us assume z 2LP .t/\LP .t 0/ and � � LP .t/\LP .t 0/, which
is sufficient for this paper. Further, assume that the collection � D ¹sg j g 2 M

ı.t/º is
compatibly pointed at the seeds t , t 0, i.e., sg is pointed at g0 in LP .t 0/. Then we have a
(possibly infinite) �t 0 -decomposition in LP .t 0/:

z D
X

g02Mı.t 0/

˛t 0.z/.g
0/ � sg ; ˛t 0.z/ 2 Homset.M

ı.t 0/;k/: (4.2)

The aim of this section is to prove the following result.

Proposition 4.2.1. We have

˛t .z/.g/ D ˛t 0.z/.g
0/ for all g 2M ı.t/.

In particular, � supp.˛t .z// D supp.˛t 0.z//.

Our strategy is to use the nilpotent Nakayama Lemma [59, Theorem 8.4] as in [41],
and compare the collection � with the natural basis of the type A1 cluster algebra
LP .t/ \LP .t 0/ using the tropical properties (Lemma 3.4.12).
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Lemma 4.2.2 (Nilpotent Nakayama Lemma). LetA denote a ring, m its nilpotent 2-sided
ideal such that mr D 0, and U a left A-module. For any subset S of U , if its image in
U=mU generates U=mU as an A=m-module, then S generates U as an A-module.

Proof. We learned the following proof from Matthew Emerton. By assumption, U D
AS CmU . Repeating the substitution, we get

U D AS Cm.AS CmU/
D AS Cm.AS Cm.AS CmU//
D � � �

D AS CmS Cm2S C � � � Cmr�1S CmrU

D AS CmS Cm2S C � � � Cmr�1S:

The claim follows.

To apply the Nakayama Lemma, we want to work with the m-adic topology where
the ideal m is generated by the y-variables. Correspondingly, it is convenient to add extra
principal framing frozen vertices I 0 D ¹i 0 j i ¤ k; i 2 Iufº, extending the vertex set I to
zI D I t I 0. Extend the matrix .bij /i;j2I to .bij /i;j2zI such that, for i ¤ k, i 2 Iuf,

bi 0;i D 1; bi;i 0 D �1;

and other entries are extended by zero. We obtain the principal framing seed tprin D

..bij /i;j2zI ; .xi /i2zI /, which is said to have (a modified version of) the principal coeffi-
cients in the sense of [27]. Then its mutated seed .tprin/0 WD �k.t

prin/ agrees with the
principal framing .t 0/prin of t 0.

When working with the quantum case kD ZŒq˙1=2�, we extend the compatible bilin-
ear form � on M ı.t/ to M ı.tprin/ by zero. The resulting bilinear form on M ı.tprin/, still
denoted by �, is compatible with tprin.

We have the natural embedding M ı.t/ ' M ı.t/ ˚ 0 � M ı.tprin/. Conversely, for
any zg from the extended degree lattice M ı.tprin/, denote its projection to M ı.t/ by g.
Denote �.t 0/prin;tprin zg D zg0.

Notice that the y-variables in tprin and t satisfy

yi .t
prin/ D

´
xi 0 � yi ; i ¤ k 2 Iuf;

yk ; i D k;

and the same formula holds for .t 0/prin and t 0. Define the grading gr. / on M ı.tprin/ such
that

gr.fi / D

´
1; i 2 I 0;

0; i … I 0;

and similarly

gr0.f 0i / D

´
1; i 2 I 0;

0; i … I 0;
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onM ı..t 0/prin/. Then � WM ı.tprin/'M ı..t 0/prin/ is homogeneous, i.e., gr.zg/D gr0.zg0/.
We have the following observation.

Lemma 4.2.3. If z�D zgC zB � n inM ı.tprin/ for some n 2N�0uf .t
prin/, then gr.z�/� gr.zg/.

Moreover, gr.z�/ > gr.zg/ if and only if ni > 0 for some i ¤ k, i 2 Iuf.

We have an induced grading gr on LP .tprin/ such that gr.xi / WD gr.fi / and similarly
gr0 on LP ..t 0/prin/.

The intersection Uk WD LP .tprin/ \ LP ..t 0/prin/ is the (type A1) upper cluster
algebra obtained from the initial seed tprin such that k is the only unfrozen vertex.
It is well known that it has the basis ¹mzg j zg 2 M ı.tprin/º where mzg are its local-
ized cluster monomials with degree zg. Recall that, for the classical case k D Z, mzg D
x zg.1C yk/

Œ�gk �C for this type A1 upper cluster algebra (see Section 2.5 for the quantum
case kDZŒq˙1=2�). In particular,mzg has homogeneous grading gr.zg/ in LP .tprin/. Sim-
ilarly, mzg has homogeneous grading gr0.zg0/ D gr.zg/ in LP ..t 0/prin/. Therefore, the two
gradings in LP .tprin/ and LP ..t 0/prin/ give the same grading on the algebra Uk .

Lemma 4.2.4. Let z 2 LP ..t 0/prin/ and decompose z D
P
zi into homogeneous parts

zi 2 LP ..t 0/prin/ of different gradings. Then ��
k
z 2 LP .tprin/ if and only if all ��

k
zi are

in LP .tprin/.

Proof. If z 2 LP .tprin/ \LP ..t 0/prin/, then we can decompose it into a finite sum z DP
˛zgmzg . Sincemzg are homogeneous, we find that zi D

P
gr.zg/Dgr.zi /

˛zgmzg . In particular,
zi 2 LP .tprin/ \LP ..t 0/prin/. The converse statement is trivial.

Take any zg 2 M ı.tprin/. Since sg 2 � is pointed at g, it takes the form sg D xg �

Fg..yi /i2Iuf/ where Fg. / is a multivariate polynomial with constant 1 and we use the
commutative product. Correspondingly, define szg WD x zg � Fg..yi .t

prin//i2Iuf/ and z� WD
¹szg j zg 2 M

ı.tprin/º. Note that szg belongs to LP .tprin/ and to LP ..t 0/prin/ [70, The-
orem 9.2].

Lemma 4.2.5. If zg0 D zg C zB.tprin/ � n in M ı.tprin/ for some 0 ¤ n 2 NIuf , then g0 D
g C zB.t/ � n.

Proof. The claim follows by taking the projection M ı.tprin/!M ı.t/.

Lemma 4.2.6. szg is compatibly pointed at the zg and zg0 at seeds tprin and .t 0/prin respect-
ively.

Proof. (i) Denote  D  t 0;t , z D  .t 0/prin;tprin for simplicity. By Lemma 3.3.2, we have
 g � g0 D . zB 0/ � Œ�gk �Ce

0
k

, where e0
k

denote the k-th unit vector in Nuf.t
0/. Similarly,

we have z zg � zg0 D zB..t 0/prin// � Œ�gk �Ce
0
k

.
(ii) Let ��

k
denote the mutation map from LP .t/ to LP .t 0/. For any Z DP

cny
n 2

4kŒN�0uf .t/�, we denote its evaluation Zj
ynDx zBn

by Z.x zBn/. Similarly, we
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denoteZ..x0/ zB
0n/DZj

.y0/nD.x0/ zB
0n forZ 2 4kŒN�0uf .t

0/�. Note that we have 4kŒN�0uf .t/�D

6kŒN�0uf .t
prin/� and 4kŒN�0uf .t

0/� D
7kŒN�0uf ..t

0/prin/�.
By assumption, sg is compatibly pointed at t and t 0. Then there exist F 2 kŒN�0uf .t/�

and G 2 kŒN�0uf .t
0/� with constant term 1 such that sg D xg � F.x

zBn/ and ��
k
sg D

.x0/g
0

�G..x0/
zB0n/.

Note that ��F and G�1 are well defined in 4kŒN�0uf .t
0/�. By (2.4) and (2.6), we

can write ��
k
.xg/ as .x0/ g �Q.x zBn/, where Q 2 4kŒN�0uf .t

0/� is a formal series in y0
k

.

Moreover, the mutation rules for x zBn and yn are the same. We deduce that��
k
.F.x

zBn//D

.��
k
F /..x0/

zB0n/. Then

��k.sg/ D .x
0/ g �Q..x0/

zB0n/ � ��k.F /..x
0/
zB0n/ D .x0/g

0

�G.x
zB0n/

(iii) It follows that

.Q � ��k.F / �G
�1/..x0/

zB0n/ D .x0/� g � .x0/g
0

D q˛.x0/� gCg
0

D q˛.x0/�
zB0Œ�gk �Ce

0
k :

Here, q D 1 for the classical case k D Z. For the quantum case k D ZŒq˙1=2�, we have
˛ D 1

2
�.� g; g0/.

We explicitly compute that

2˛ D �.g0 �  g; g0/ D �.g0;  g � g0/ D �g0k Œ�gk �Cd
0
k D gk Œ�gk �Cd

0
k :

Similarly, we have �.zg0 � z zg; zg0/ D zgk Œ�zgk �Cd 0k . Note that zgk D gk . We deduce that

.Q � ��k.F / �G
�1/..x0/

zB..t 0/prinn/ D q˛.x0/�
zB..t 0/prin/Œ�gk �Ce

0
k

D .x0/�
z zg
� .x0/zg

0

: (4.3)

(iv) Let us apply the mutation ��
k

to szg D x zg � F.x
zB.tprin/n/. Since Q only depends

on gk D zgk , we deduce that ��
k
.x zg/ D .x0/

z zg �Q..x0/
zB..t 0/prin/n/. Then (4.3) implies

��k.szg/ D .x
0/ zg �Q..x0/

zB..t 0/prin/n/ � ��k.F /..x
0/
zB..t 0/prin/n/

D .x0/zg
0

�G..x0/
zB..t 0/prin/n/:

In particular, ��
k
.szg/ is zg0-pointed.

Consider the following subalgebra of Uk :

Uk WD ¹z 2 Uk j z has no pole at xi 0 D 0; 8i 2 Iuf; i ¤ kº:

In fact, Uk is a locally compactified version of the cluster algebra where the frozen vari-
ables xi 0 , i 0 2 Iuf, are not invertible, and thus allows us to use the nilpotent Nakayama
Lemma. Define

C WD ¹zg 2M ı.tprin/ j .zg/i 0 � 0; 8i 2 Iuf; i ¤ kº:
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Lemma 4.2.7. If zg 2 C; then any z� �t zg is contained in C .

Proof. Notice that z� D zg C zB.tprin/ � n for n 2 NIuf , and all column vectors of zB.tprin/

have non-negative coordinates at I 0. The claim follows.

As a consequence, szg D x zg � Fzg..yi .tprin/i2Iuf/ 2 Uk if and only if zg 2 C .

Proposition 4.2.8. The set ¹mzg j zg 2 C º is a basis of Uk .

Proof. We have mzg D x zg � .1C yk/Œ�gk �C for the classical case k D Z. See Section 2.5
for the quantum case kD ZŒq˙1=2�. We deduce thatmzg has a pole at some xi 0 D 0 if and
only if zg … C .

For any z 2 Uk � Uk , we have a finite decomposition z D
P
bzgmzg in the basis

¹mzg j zg 2M
ı.t/º. Define the support G D ¹zg j bzg ¤ 0º.

Assume that GnC ¤ ;. Let � denote a �tprin -maximal element in GnC . Then m�
contributes a Laurent monomial bz�xz� with a pole at some xi 0 D 0. Since the zg from C do
not have a pole here, they do not contribute to the Laurent degree �. Since � is maximal,
other mzg appearing with zg … C do not contribute to this degree either. Therefore, z has
a pole here and does not belong to Uk . This contradiction shows that every z 2 Uk is a
finite linear combination of mzg , zg 2 C . The claim follows.

Define the graded polynomial ring A D kŒxi 0 �i 02I 0 with the grading gr.xi 0/ D 1

(endowed with the twisted product in the quantum case). Take its homogeneous decom-
positionAD

L
r2NA

r . It has the maximal ideal m WD
L
r>0A

r . Then m gives a nilpotent
ideal m in the quotient ring A�r WD A=

L
d�rC1A

d .
We take the homogeneous decomposition Uk D

L
r2N U

r
k

. It is an A-module such
that the action is given by multiplication. The quotient algebraU�r

k
DUk=

L
d�rC1U

d
k

is
anA�r -module, and it equals

L
0�d�r U

d
k

as a k-module. We have the natural projections
�r W Uk ! U r

k
as k-modules and ��r W Uk ! U�r

k
as algebras.

Lemma 4.2.9. For any zg 2 C , we have ��gr.zg/szg D �
gr.zg/szg D mzg .

Proof. By Lemma 4.2.3, the homogeneous part of szg in LP .tprin/ with minimal grading
has grading gr.zg/ and contains the leading term x zg . Similarly, the homogeneous part of
��
k
szg in LP ..t 0/prin/ with minimal grading has grading gr0.zg0/ D gr.zg/ and contains the

leading term .x0/zg
0

. By Lemma 4.2.4, these homogeneous parts of szg in LP .tprin/ and
LP ..t 0/prin/ respectively are related by mutation. We conclude that �gr.zg/szg is pointed at
zg, zg0 in LP .tprin/ and LP ..t 0/prin/ respectively.

Because �gr.zg/szg 2 LP .tprin/ is pointed at zg and has homogeneous grading, we have
�gr.zg/szg D x zg � F.yk.t

prin// for some polynomial F with constant term 1. Similarly,
in LP .t 0/ we have ��

k
.�gr.zg/szg/ D �

gr0.zg0/.��
k
szg/ D .x

0/zg
0

� G..yk..t
0/prin// for some

polynomial G with constant term 1. Therefore, it is pointed at zg and zg0 for the dominance
orders associated to the seeds of the (type A1) upper cluster algebra Uk , where k is the
only unfrozen vertex. By using Lemma 3.4.12, we deduce that �gr.zg/szg agrees with the
localized cluster monomial mzg of Uk .
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Lemma 4.2.10. For any r 2 N, ¹��rszg j zg 2 C; gr.zg/ � rº is a k-basis of U�r
k

.

Proof. First consider the case r D 0. For any zg 2 C , we have ��0szg D ��0.�gr.zg/szg/D

��0mzg . The claim follows from the fact that ¹mzg j gr.zg/ D 0; zg 2 C º is a k-basis of the
homogeneous component U 0

k
of Uk .

By the nilpotent Nakayama Lemma 4.2.2, ¹��rszg j zg 2 C º generates U�r
k

over A�r .
Notice that A�r acts on szg by multiplication. We observe that ¹��rszg j zg 2 C º in fact
generates U�r

k
over k. Because its non-zero elements have different leading terms, they

are linearly independent and form a k-basis.

Proof of Proposition 4.2.1. Denote C�r D ¹zg 2 C j gr.zg/� rº. Given any z 2Uk , there
exists some c 2 NI 0 such that z � xc 2 Uk . Then, up to any order r 2 N, we have a finite
decomposition inside the k-module U�r by Lemma 4.2.10:

��r .z � xc/ D
X
zg2C�r

˛�r .z � xc/.zg/ � ��rszg : (4.4)

By letting r tend toC1, the decomposition (4.4) becomes a possibly infinite decompos-
ition (which converges in the m-adic topology on the A-module Uk):

z � xc D
X
zg2C

˛.z � xc/.zg/ � szg : (4.5)

Meanwhile, we have a �tprin -decomposition with finitely many �tprin -leading terms
in LP .tprin/:

z � xc D
X
zg2C

˛.tprin/.z � x
c/.zg/ � szg ; (4.6)

and a �.t 0/prin -decomposition with finitely many �.t 0/prin -leading terms in LP ..t 0/prin/:

z � xc D
X
zg2C

˛..t 0/prin/.z � x
c/.zg0/ � szg : (4.7)

Recall that �tprin and �.t 0/prin imply the grading order by Lemma 4.2.3. It follows that
both decompositions (4.6), (4.7) agree with (4.5). To be more precise, we can compare
the decompositions as follows: taking the restrictions of both decompositions (4.6), (4.7)
to grading � r , they agree with the finite decomposition (4.4) by Lemma 4.2.10. If we let
r tend to C1, then the restrictions grow to the triangular decompositions (4.6), (4.7) by
Lemma 4.2.3, while (4.4) grows to (4.5).

Notice that szg�c D szg � x�c by construction. Dividing both sides of the decomposition
(4.5) by xc , we obtain ˛.z/.zg � c/ WD ˛.z � xc/.zg/ and

z D
X

zg�c2Mı.tprin/

˛.z/.zg � c/ � szg�c D
X
zg2Mı.t/

˛.z/.zg/ � szg ; (4.8)

which gives simultaneously the�tprin -decomposition in LP .tprin/ and the�.t 0/prin -decom-
position in LP ..t 0/prin/. We obtain ˛.tprin/.z/.zg/ D ˛..t 0/prin/.z/.zg

0/ D ˛.z/.zg/ for any
zg 2M ı.tprin/.
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Finally, let us return to the seeds t , t 0. Let pr denote the natural projection from ZItI
0

to ZI . It induces the k-linear map pr from LP .tprin/ to LP .t/ such that pr.x zg/ D xg ,
and similarly the k-linear map pr from LP ..t 0/prin/ to LP .t 0/ such that pr.x zg

0

/ D xg
0

.
We deduce the claim by applying the linear maps pr to the decomposition (4.8) and by
invoking Lemma 4.2.5.

4.3. Bases with tropical properties

We show that tropical properties of a collection � implies that it is a basis. Assume that t
is injective-reachable and denote t D E�tŒ�1�.

As in Section 4.2, we restrict ourselves to elements in upper cluster algebras to avoid
the difficulty of defining mutations for formal Laurent series.

Theorem 4.3.1. Assume that the full rank assumption holds. If a subset � of the upper
cluster algebra U.t/ is compatibly pointed at the seeds appearing along the mutation
sequence E� from t Œ�1� to t , then � is a basis of U.t/.

Proof. Let z 2 U. Working with the seed t , we have a �t -decomposition in 2LP .t/:

z D
X

˛t .z/.g/ � sg :

Notice that � remains pointed at the seed t Œ�1� by our assumption. Similarly, working
with the seed t Œ�1�, we have a �tŒ�1�-decomposition in 4LP .t Œ�1�/:

z D
X

˛tŒ�1�.z/.�tŒ�1�;tg/ � sg :

Since z and � are contained in the upper cluster algebra U.t/, the above decompositions
take place in LP .t/ and LP .t Œ�1�/ respectively.

By applying Proposition 4.2.1 for adjacent seeds along the sequence E� from t Œ�1� to t ,
we find that ˛t .z/.g/D ˛tŒ�1�.z/.�tŒ�1�;tg/, and �t;tŒ�1� supp.˛tŒ�1�.z//D supp.˛t .z//
D ¹g j ˛t .z/.g/ ¤ 0º.

Notice that supp.˛t .z// has finitely many �t -maximal elements which we denote
by g.i/, 1 � i � l , 0 ¤ l 2 N. Then any sg appearing satisfies degt sg D g �t g

.i/

for some i . Similarly, supp.˛tŒ�1�.z// has finitely many �tŒ�1�-maximal elements which
we denote by �tŒ�1�;th.j /, 1 � j � r , 0 ¤ r 2 N, for some h.j / 2 M ı.t/. Then any sg
appearing satisfies degtŒ�1� sg D �tŒ�1�;tg �tŒ�1� �tŒ�1�;th.j / D degtŒ�1� sh.j/ for some j .
By Proposition 3.3.11, this is equivalent to  �1

tŒ�1�;t
degtŒ�1� sg �t  �1tŒ�1�;t degtŒ�1� sh.j/ ,

i.e. codegt sg �t codegt sh.j/ by Definition 3.4.4 and Proposition 3.4.8 (1). It follows that
g �t codegt sg �t �.j / WD codegt sh.j/ .

Therefore, supp.˛t .z// is contained in
S
i;j .�.j/�tM

ı
�tg.i/

/. In particular, it is a
finite set by the Finite Interval Lemma 3.1.2.

Theorem 4.3.1 immediately implies Theorem 1.2.1 (1) and the existence of the generic
basis for an injective-reachable skew-symmetric seed t (Theorem 1.2.3); see Section 5.2
for more details.
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Remark 4.3.2. When we take � to be the collection of theta functions, this result recov-
ers Theorem A.1.5, originally proved in [41]. Their proof is based on a thorough study
of global monomials, tropical functions, convexity, boundedness of polytopes and EGM
arguments [41, Section 7 8]. Our proof is specific to the injective-reachable case, but more
direct and elementary.

Note that both works need the full rank assumption to obtain bases for the (upper)
cluster algebra.

5. Main results

As before, we assume that the seeds satisfy the full rank assumption throughout this sec-
tion.

5.1. Bases parametrized by tropical points

Lemma 5.1.1. Let t D E�tŒ�1� be an injective-reachable seed subject to the full rank
assumption,‚ �M ı.t/, and ZD ¹zg 2LP .t/ j g 2 ‚º is a collection of Laurent poly-
nomials such that the zg are compatibly pointed at t; t Œ�1� with degt zg D g. Let A‚

denote the free k-module
L
g2‚ k � zg . Then the following claims are true:

(1) Let � D ¹sg 2A‚ j g 2‚º be such that the sg satisfy degt sg D g and are compatibly
pointed at t; t Œ�1�. Then � is a k-basis of A‚.

(2) If g 2 ‚, sg 2 A‚ with degt sg D g and sg is compatibly pointed at t; t Œ�1�, then sg
has the following decomposition relative to ¹zg j g 2 ‚º:

sg D zg C
X

g02‚\Mı.t/�¹t;tŒ�1�ºg

bg;g0zg0 (5.1)

with bg;g0 2 k. In addition, ‚ \M ı.t/�¹t;tŒ�1�ºg is finite for all g 2 ‚.

(3) If � D¹sg 2A‚ j g 2‚º is such that the sg have decompositions into ¹zgº as in (5.1),
then the sg satisfy degt sg D g and are compatibly pointed at t; t Œ�1�. In particular,
¹sg j g 2 ‚º is a k-basis of A‚ by (1).

Notice that Lemma 5.1.1 gives a complete description of the bases � in (1) using the
special chosen basis Z and the transition rule in claim (2).

Proof. (2) For any g 2 ‚, because sg 2 A‚ and ¹zg j g 2 ‚º is a basis of A‚, sg has a
finite decomposition into ¹zgº:

sg D
X
0�i�r

bizgi

with coefficients bi ¤ 0. By assumption, sg ; zgi are compatibly pointed at t; t Œ�1�. Then
we can apply Proposition 3.4.10 to deduce that, by reindexing zgi , we have g0 D g,
b0 D 1, gi 2 ‚, BIgi ¨ BIg for any i > 0. Notice that the last condition is equivalent to
gi 2 M

ı.t/�t;tŒ�1�g by Proposition 3.4.6. Therefore, we obtain the claim on the decom-
position of sg . Finally, the sets ‚ \M ı.t/�t;tŒ�1�g are finite by Proposition 3.4.6.
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(1) Because the sg are pointed at different degrees, they are linearly independent by
Lemma 3.4.9. It suffices to verify that each zg , g 2 ‚, is a finite sum of elements from
¹sg j g 2 ‚º.

We use induction on the cardinality of the finite set ‚ \M ı.t/�¹t;tŒ�1�ºg . If it is an
empty set, we have zg D sg by (2).

Assume that the claim has been verified for all cardinalities no larger than d 2 N. Let
us check the case j‚ \M ı.t/�¹t;tŒ�1�ºg j D d C 1. Take any g0 2 ‚ \M ı.t/�¹t;tŒ�1�ºg .
By Proposition 3.4.6, we have

M ı.t/�t;tŒ�1�g0 D ¹g
00
2M ı.t/ j BIg00 ¨ BIg0º � ¹g00 2M ı.t/ j BIg00 ¨ BIgº

DM ı.t/�¹t;tŒ�1�ºg

and in addition ‚ \M ı.t/�t;tŒ�1�g0 ¤ ‚ \M
ı.t/�t;tŒ�1�g because only the right hand

side contains g0. Therefore, j‚\M ı.t/�t;tŒ�1�g0 j � d and zg0 is a finite sum of elements
of ¹sg j g 2 ‚º by our induction hypothesis. By (2), zg is a finite linear combination of
sg and zg0 , g0 2 ‚ \M ı.t/�¹t;tŒ�1�ºg , and the claim follows.

(3) follows from Proposition 3.4.11.

By applying Lemma 5.1.1 to injective-reachable upper cluster algebras, we obtain the
following consequences.

Theorem 5.1.2. Let t D E�tŒ�1� be an injective-reachable seed subject to the full rank
assumption. Consider the classical case k D Z.

(1) Any collection � D ¹sg 2 U j g 2 M ı.t/º such that the sg satisfy degt sg D g and
are compatibly pointed at t , t Œ�1� must be a k-basis of U.

(2) There exists at least one such basis, which we choose and denote by Z D ¹zŒg�º.

(3) The set of all such bases � is parametrized as follows:Y
g2Mı.t/

kM
ı.t/�¹t;tŒ�1�ºg ' ¹�º;

..bg;g0/g02Mı.t/�¹t;tŒ�1�ºg
/g2Mı.t/ 7! � D ¹sg j g 2M

ı.t/º;

where sg D zg C
P
g02Mı.t/�¹t;tŒ�1�ºg

bg;g0zg0 . In addition, each setM ı.t/�¹t;tŒ�1�ºg
is finite.

Proof. It suffices to show that there exists a collection Z D ¹zg j g 2M
ı.t/º in ¹�º that

is a basis of U. Then the claim follows from Lemma 5.1.1 where we take ‚ DM ı.t/.
If t is skew-symmetric, we can choose Z to be the collection of localized generic

cluster characters, which are known to be compatibly pointed at t 0 2 �C by [68, The-
orem 1.3]. Then, by Theorem 4.3.1, it is a basis. See Section 5.2 for more details.

For general t , we have the theta functions � tt;g for any g 2 M ı.t/, which are com-
patibly pointed at t 2 �C by [9, 41] (see Theorem A.1.4). Therefore, the set ¹� tt;g j g 2
M ı.t/º is a basis of U by Theorem 4.3.1 (alternatively, see Theorem A.1.5).

Recall that sŒg� 2 U, Œg� 2 Mı, is said to be pointed at Œg� if sŒg� is pointed at the
representative g 2M ı.t/ of Œg� in LP .t/ for all seeds t 2 �C.
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Theorem 5.1.3 (Theorem 1.2.1). Let t D E�tŒ�1� be an injective-reachable seed subject
to the full rank assumption. Consider the classical case k D Z.

(1) For any collection � D ¹sŒg� 2 U j Œg� 2 Mıº such that the sŒg� are pointed at the
tropical points Œg�, � must be a k-basis of U containing all cluster monomials.

(2) There exists at least one such basis, which we choose and denote by Z D ¹zŒg�º.

(3) The set of all such bases � is parametrized as follows:Y
g2Mı

k
Mı�

�C
Œg�
' ¹�º;

..bŒg�;Œg0�/Œg0�2Mı�
�C

Œg�
/Œg�2Mı 7! � D ¹sŒg� j Œg� 2Mıº;

where sŒg� D zŒg� C
P
Œg0�2Mı�

�C
Œg�
bŒg�;Œg0�zŒg0�. In addition, each set Mı�

�C
Œg� is

finite.

Proof. Notice that being compatibly pointed at �C is a stronger property than being
compatibly pointed at t; t Œ�1�. Theorem 5.1.2 gives a complete description of the bases
¹sg j g 2 M

ı.t/º such that the sg are compatibly pointed at t; t Œ�1�. Choose a basis Z

that is compatibly pointed at�C, where possible candidates include the theta basis or the
generic basis for skew-symmetric seeds (see the proof of Theorem 5.1.2).

Then the basis ¹sg j g 2M ı.t/º, where sg D zg C
P
g02Mı.t/�¹t;tŒ�1�ºg

bg;g0zg0 , sat-

isfies this stronger property if and only if degt
0

sg D �t 0;tg D degt
0

zg for all t 0, i.e. if
and only if degt

0

zg �t 0 degt
0

zg0 for any t 0 and g0 2M ı.t/�¹t;tŒ�1�ºg with non-vanishing
coefficient bg;g0 . This condition is equivalent to requiring all zg0 appearing to satisfy
g0 2M ı.t/�

�C
g . The parametrization of ¹�º follows.

Finally, � contains all cluster monomials by Lemma 3.4.12.

We can understand the bijection in Theorem 1.2.1 as a statement that the set of bases
with a choice of a special one is parametrized by the transition matrices, which are all
nilpotent lower ��C -triangular matrices with indices given by the tropical points.

Remark 5.1.4 (Basis and frozen factors). In cluster theory, it is often natural to look for
pointed bases that factor through the frozen variables, i.e. sg � xc D sgCc for c 2 ZIf (see
Definition 5.2.1). To adapt Theorem 1.2.1 to this, we simply impose the restriction that the
special basis Z factors through the frozen variables, and that the transition matrix satisfies
bgCc;g0Cc D bg;g0 . Possible candidates include the theta basis and the generic basis; see
the proof of Theorem 5.1.2.

Finally, let us give a description of the bases in terms of “correct” support dimensions,
which is more natural from the view of representation theory.

Proposition 5.1.5. Let t D E�tŒ�1� be an injective-reachable seed and g 2M ı.t/.

(1) suppDimg is well defined in Nuf
�0.t/.

(2) suppDimg only depends on the principal part prIuf
g and B.t/.
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Proof. (1) By Proposition 3.4.8, it suffices to find a Laurent polynomial zg 2LP .t/ with
degree g and compatibly pointed at t; t Œ�1�. One can take zg to be the theta function � tt;g
or the localized generic cluster character Lg in Section 5.2 for skew-symmetric t .

(2) We have seen in (1) that suppDimg can be realized as the support dimension of the
corresponding theta function or the localized generic cluster character. Then (2) follows
from the properties of such elements.

Theorem 5.1.6. Consider the classical case k D Z. Let t be an injective-reachable seed
subject to the full rank assumption and let � D ¹sg j g 2 M

ı.t/º be a collection of bi-
pointed elements of U. Then � is a basis of U whose elements sg are compatibly pointed
at t; t Œ�1� if and only if suppDim sg D suppDimg for all g.

Proof. This follows from Theorem 5.1.2 and Proposition 3.4.8.

5.2. The generic basis and its analog

Let us investigate the generic basis and analogous bases constructed from cluster charac-
ters. At this moment, generic quantum cluster characters are not defined in general, so we
restrict to the classical case k D Z.

Definition 5.2.1. Let t be a seed and ‚ a subset of M ı.t/. A set Z D ¹zg j g 2 ‚º of
pointed formal Laurent series, where degt zg D g, is said to factor through the frozen
variables xj , j 2 If, if for any g; g0 2 ‚ such that g0 D g C fj , we have zg0 D zg � xj .

In this case, we define the localization of Z to be the set ZŒx�1j �j2If D¹zg � x
m j g 2‚,

m 2 ZIfº.

Let t be an injective-reachable skew-symmetric seed. Take T to be the corresponding
cluster tilting object and identifyK0.addT /'M ı.t/' ZI . For any g 2 ZI , there exists
some m 2 ZIf depending on g such that LgCm is the generic cluster character of [68,
Section 3.4] (see Section 2.4). Define the localized generic cluster character Lg to be the
localization LgCm � x.t/�m.

Theorem 5.2.2 (Theorem 1.2.3). Let t be an injective-reachable skew-symmetric seed.
Then the set ¹Lg j g 2 M ı.t/º of localized generic cluster characters is a basis of U,
called the generic basis.

Proof. Recall that the generic cluster characters are known to be compatibly pointed at
all seeds by Plamondon [68, Theorem 1.3]. So are the localized generic cluster characters.
Thus, Theorem 4.3.1 provides a direct proof for the statement.

Alternatively, as an indirect proof, we use the fact that the theta basis exists ([41],
Theorem A.1.5) and choose it to be the special basis in the main theorem (Theorem 1.2.1).
Then the collection of the generic cluster characters is also a basis by the main theorem.

Let us discuss an analog of the generic basis, where the objects chosen are not neces-
sarily generic.
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Lemma 5.2.3. For any injective-reachable seeds t D E�tŒ�1�, assume that some g 2
M ı.t/ has a support dimension suppDim g. Then for any m 2 ZIf , g C m has support
dimension suppDim.g Cm/ D suppDimg.

Proof. For any k 2 Iuf, we have ��k t;t .gCm/D ��k t;t .g/C��k t;t .m/D ��k t;t .g/Cm.
Repeatedly applying tropical transformations along E�

�1 from t to t Œ�1�, we find that
�tŒ�1�;t .g Cm/ D �tŒ�1�;t .g/Cm. Because the map  �1

tŒ�1�;t
is linear, we obtain

 �1tŒ�1�;t�tŒ�1�;t .g Cm/ � .g Cm/ D  
�1
tŒ�1�;t�tŒ�1�;tg C  

�1
tŒ�1�;tm � g �m

D  �1tŒ�1�;t�tŒ�1�;tg � g

D zB.t/ � suppDimg:

The claim follows from the definition of support dimension.

Proposition 5.2.4. For any injective-reachable skew-symmetric seed t , every g 2M ı.t/
has support dimension given by that of the localized generic cluster character:
suppDimg D suppDim Lg .

Proof. It follows from [68, Theorem 1.3] that the generic cluster characters LgCm, g 2
ZIuf , m 2 ZIf , are compatibly pointed at t , t Œ�1�. This implies the claim for such g Cm
by Proposition 3.4.8. Finally, the claim holds for all g 2M ı.t/ by Lemma 5.2.3.

Theorem 5.2.5. Let t be an injective-reachable skew-symmetric seed. Denote ‚ D
¹IndTM j M 2 ?.†Tf/º where T is the cluster tilting object corresponding to t . Let
¹Mg j g 2 ‚º denote the set of any given objects in ?.†Tf/ such that IndTMg D g and
dimFMg D suppDim.g/. Then the set ¹CC.Mg/ j g 2 ‚ºŒx

�1
j �j2If of localized cluster

characters is a basis of the upper cluster algebra U.

Proof. By Lemma 5.2.6 below, for any g 2 M ı.t/ there is a localized cluster character
CC.MgCm/ � x

�m pointed at g such that gCm 2‚. The claim follows from Proposition
5.2.4 and Theorem 5.1.6.

Lemma 5.2.6. For any g 2 M ı.t/, there exists m 2 NIf such that g Cm D IndTX for
some X 2 ?.†Tf/

Proof. Consider the object Y D .
L
k2Iuf

T
Œgk �C
k

/ ˚ .
L
k2Iuf

I
Œ�gk �C
k

/. It follows that
IndT Y D prIuf

g Cm0 for some m0 2 ZIf . Then we can take m D .Œm0j �C/j2If and X D

Y ˚ .
L
j2If

T
Œ�m0

j
�C

j /.

By [2, Theorem 1.18], the cluster algebra A coincides with the upper cluster algebra
U when the initial quiver Q.t0/ is acyclic. The following result shows that a basis con-
sisting of cluster characters can be constructed quite easily in this case.

Corollary 5.2.7. Let t be a skew-symmetric seed and suppose the corresponding prin-
cipal quiver Q.t/ is acyclic. Let T denote the corresponding cluster tilting object.
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(1) Denote ‚ D ¹IndTM j M 2 ?.†Tf/º. Then for any choice of objects Mg 2
?.†Tf/

with IndTMg D g, the set ¹CC.Mg/ j g 2‚ºŒx
�1
j �j2If of localized cluster characters

is a basis of the cluster algebra A D U.

(2) Choose a pair .Vd ; m/ for each dimension vector d 2 NIuf and m 2 NI such that
Vd is a d -dimensional CQ.t/-module and supp m \ supp d D ;. Then the set
¹xmCC.Vd / j .Vd ; m/ as aboveºŒx�1j �j2If of localized cluster characters is a basis
of the cluster algebra A D U.

Proof. (1) Notice that ?.†Tf/ is a full subcategory of C. zQ; zW / and no morphism from
M 2 ?.†Tf/ to †Tk factors through Tf. We obtain, for any k 2 Iuf,

HomC
. zQ; zW/

.M;†Tk/ D Hom?.†Tf/=.Tf/
.M;†Tk/

D HomC.Q;W /.M;†T k/:

Therefore, the support dimension of CC.M/ equals that of CC.M/.
Let us work in C.Q;W /. Any objectM has an addT -approximation T .1/! T .0/!M .

By applying the functor F D Hom.T ;†. //, we obtain a long exact sequence

0! FM ! F†T .1/ ! F†T .0/ ! � � � :

Notice that †T .1/; †T .0/ are injective modules over the Jacobian algebra J.Q;W /.
BecauseQ is acyclic, we haveW D 0 and J.Q;W / agrees with the hereditary path algebra
CQ. As a consequence, we obtain a short exact sequence

0! FM ! F†T .1/ ! F†T .0/ ! 0:

It turns out that suppDimCC.M/ D dimFM only depends on the index IndTM .
Therefore, for any M 2 ?.†Tf/, dimFM D dimFMg D suppDim g where Mg is a

generic object of index IndTM . The claim follows from Theorem 5.2.5.
(2) In the proof of (1), set Vd D FM and d D dim Vd . Let R denote the matrix

whose column vectors are the dimension vectors of the injectives F.†Tk/, k 2 Iuf. Then
d D �R � prIuf

g. Since Q is acyclic, R is a unitriangular matrix after relabelling the
vertices. In particular, R is invertible. We can then deduce (2) from (1).

6. Related topics and discussion

As before, we assume that the seeds satisfy the full rank assumption in the following
discussion.

6.1. Deformation factors

Definition 6.1.1. The subset Mı�
�C

Œg� is called the deformation factor associated to Œg�.

We have seen in the main theorem (Theorem 1.2.1) that basis deformations are con-
trolled by the deformation factors Mı�

�C
Œg� , Œg� 2Mı. These factors are important for
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constructing the bases. It is therefore a natural question to understand them. One might
want to interpret these deformation factors in terms of homology in cluster category, or
representation theory (such as quiver representations or Lie theory), or tropical geometry.

As a first step, one might ask when the deformation factors are empty sets, i.e., one
cannot do a deformation. Recall that all bases in the construction share the localized
cluster monomials by Lemma 3.4.12. This immediately implies the following property.

Proposition 6.1.2. If g 2M ı.t/ is the maximal�t -degree of any localized cluster mono-
mial, then M ı.t/�

�C
g D ;.

This property is a supporting evidence for the following natural expectation.

Conjecture 6.1.3. Assume that t is skew-symmetric. If a generic object Mg for some
g 2M ı.t/ in the cluster category is rigid, then M ı.t/�

�C
g D ;.

Remark 6.1.4 (Open orbit conjecture). If Conjecture 6.1.3 is true, then all bases paramet-
rized by tropical points must share the same elements for the g-vectors corresponding to
rigid modules. In particular, if we consider the cluster algebras arising from the coordin-
ate rings of unipotent subgroups, then the generic bases (dual semicanonical bases) and
the dual canonical bases share such elements. Then we obtain the open orbit conjecture
for these coordinate rings (see [31]).

One might also study the cardinality jM ı.t/�
�C

g j.

Example 6.1.5 (Bases for Kronecker type). Take kD Z, I D Iuf D ¹1; 2º, and the initial
seed t0 such that B.t0/ D

�
0 �2
2 0

�
. Then y1 D x22 and y2 D x�21 , which in particular have

even degrees. Denote ı D .1;�1/, z D xı.1 C y2 C y1y2/. It is well known that the
corresponding upper cluster algebra U has the generic basis which consists of the cluster
monomials and zd , d � 1.

Notice that ı is invariant under tropical transformations. Then any pointed element
sdı 2 U parametrized by the tropical point dı must always have leading degree dı in
all seeds. One can deduce that a deformation from zd to sdı cannot involve any cluster
monomials. Also notice that sdı is pointed and �� dı has even degree whenever ��t dı.
We obtain

sdı D z
d
C

X
k�0; d�2k�0

bd�2kz
d�2k ; bd�2k 2 Z:

Therefore, the deformation factor has cardinality jM ı.t0/�tdı j D Œd=2� where Œ � denotes
the integer part.

An infinite family of bases in this Kronecker example is also found in [74] by using
Lie theory.

Finally, still working with the Kronecker Example 6.1.5, it is known that the triangular
basis (dual canonical basis) and theta basis (greedy basis) differ by taking the usual quiver
Grassmannians or the transverse quiver Grassmannians [11,18]. We expect that one might
relate the deformation factor to such a difference.
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6.2. Quantum bases

Theorems 1.2.1, 5.1.2, 5.1.6 are stated for the classical case k D Z. Let us consider their
analogs for the quantum case k D ZŒq˙1=2�.

Theorem 6.2.1. Consider the quantum case k D ZŒq˙1=2�. Assume the quantum seeds
are injective-reachable and satisfy the full rank assumption.

(1) The analog of Theorem 1.2.1 .1/ remains true.

(2) If the analog of Theorem 1.2.1 .2/ is true, then the analog of Theorem 1.2.1 .3/ is
true.

(3) If the analog of Theorem 5.1.2 .2/ is true, then the analogs of Theorems 5.1.2 and
5.1.6 are true.

Proof. The analog of Theorem 1.2.1 (1) is a direct consequence of Theorem 4.3.1.
Assume that a basis has been given by the analog of Theorem 1.2.1 (2) (resp.

5.1.2 (2)); the proof for the analog of Theorem 1.2.1 (3) (resp. 5.1.2) is the same as before.
More precisely, we use Lemma 5.1.1 by setting ‚ D M ı.t/ and A‚ D U the free k-
module spanned by the given basis.

As before, the analog of Theorem 5.1.6 is a consequence of Proposition 3.4.8 and the
analog of Theorem 5.1.2.

The obstruction appears in the analogs of Theorems 5.1.2 (2) and 1.2.1 (2), i.e. we do
not know a quantum basis Z inside a quantum upper cluster algebra. Thanks to [15], the
quantum theta functions provide such a basis for an injective-reachable skew-symmetric
seed t subject to the full rank assumption (see Remark 1.2.5). By [69], the dual canon-
ical basis provides another such basis when t arises from a quantum unipotent cell with
symmetrizable Cartan datum.

6.3. Weak genteelness

For skew-symmetric injective-reachable seeds, we have seen the existence of the generic
basis, which is constructed using representation theory. It is natural to ask if we can also
interpret the theta basis using representation theory in this case.

For a finite-dimensional Jacobian algebra J.Q;W /, Bridgeland has defined a represent-
ation-theoretic version of the scattering diagram called the stability scattering diagram,
for which some theta functions have a representation-theoretic formula [4]. This formula
is effective for theta functions appearing in upper cluster algebras if the stability scatter-
ing diagram is equivalent to the cluster scattering diagram of [41]. If the latter condition
holds, we say the quiver with potential is weakly genteel.

We refer the reader to Sections A.1–A.2 for the necessary definitions for the state-
ments below.

Theorem 6.3.1 (Theorem 1.2.4). Take kD Z. Let t be a skew-symmetric injective-reach-
able seed. Then Bridgeland’s representation-theoretic formula is effective for theta func-
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tions in the cluster scattering diagram. Moreover, the stability scattering diagram and the
cluster scattering diagram are equivalent.

The proof is given in Section A.2.

Conjecture 6.3.2. Let .Q;W / be any quiver with a generic potential such that the Jac-
obian algebra J.Q;W / is finite-dimensional. Then it is weakly genteel.

Here, by a generic potential, we mean a generic point in the space of all potentials in
the sense of [16]. In particular, it is assumed to be non-degenerate.

Conjecture 6.3.3. The Jacobian algebra J.Q;W / in Conjecture 6.3.2 is genteel.

Here, we take a generic potential from the space of all potentials [16]. It might be
possible to only assume that the potential W is non-degenerate. We can also generalize
the conjectures to the case when J.Q;W / has infinite dimension, for which we need to
modify the stability scattering diagram by working with nilpotent modules [63].

6.4. Partial compactification

In representation theory, it is often natural to work with a partially compactified upper
cluster algebra U, defined as the ring of regular functions over some partial compactific-
ation A of the cluster variety A. Correspondingly, it is natural to ask if the basis of U

gives rise to a basis of U, defined by choosing those basis elements without poles on the
boundary AnA.

For example, for some important cluster algebras arising from representation the-
ory, U coincides with the compactified cluster algebra A, and the boundary condition
demands the functions in U to have no pole at the frozen variables xj D 0, j 2 If.
Moreover, in such examples, for any j 2 If, there exists a seed t 2�C such that bjk.t/� 0
for any k 2 Iuf, called a seed optimized for xj following [41].

This is a difficult and widely open question in general. Consider the classical case
kDZ. [41, Section 9] gives an affirmative answer when one has enough optimized seeds,
for which a subset of theta functions forms a basis of U. Let ‚ denote the set of tropical
points parametrizing this subset.

Then U is a Z-module spanned by the basis ¹�g j g 2 ‚º. We can apply our
Lemma 5.1.1 and obtain many bases of U. As in the proof of Theorem 1.2.1, we
deduce that the set of bases of U compatibly pointed at seeds in �C is in bijection withQ
Œg�2‚ Z

‚\.Mı�
�C

Œg�/. Again, the restriction of the generic basis ¹Lzg j zg 2 ‚º is such
a basis.

Appendix A. Scattering diagrams

For simplicity, we assume that the seeds satisfy the full rank assumption so that the scatter-
ing diagrams and theta functions can be easily constructed, except in the proof of Theorem
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1.2.4. The construction for an arbitrary seed can be obtained by taking a projection from
the construction for the corresponding seed with principal coefficients [41].

A.1. Basics of scattering diagrams and theta functions

We refer the reader to the original paper of Gross–Hacking–Keel–Kontsevich [41] for
more details.

Let t0 be any chosen initial seed. Recall that we have an isomorphismN.t0/'ZI with
the natural basis ¹eiº which endows ZI with the bilinear form ¹ ; º, and an isomorphism
M ı.t0/ ' ZI with the natural basis ¹fiº. Define the Nuf

�0.t0/-graded Poisson algebra
ADZŒNuf

�0.t0/�D
L
n2Nuf

�0.t0/
y.t0/

n such that ¹y.t0/n;y.t0/n
0

ºD�¹n;n0ºy.t0/
nCn0 .

Let jnj WD
P
ni . Then g D A>0 is naturally a graded Lie algebra via its Poisson bracket.

Its completion yg is defined to be the inverse limit of g=
L
nW jnj>k gn, k > 0. Let G denote

the group exp yg defined via the Baker–Campbell–Hausdorff formula.
Recall that the matrix zB.t0/ gives us an embedding p� W ZIuf ! ZI such that

p�.ek/ D
P
i2I bikfi . Let A act linearly on 2LP .t0/ via the derivation ¹A; º

such that ¹y.t0/n; x.t0/mº D hm; nix.t0/mCp
�.n/. In particular, ¹y.t0/n; x.t0/p

�n0º D

�¹n; n0ºx.t0/
p�.n0Cn/, which explains the minus sign in the definition of A. By the

injectivity of p�, this induces a faithful action of G on 2LP .t0/.
A wall in M.t0/R D M.t0/ ˝ R is a pair .d; pd/ such that d is a codimension 1

rational polyhedral cone, d � n?0 for some primitive normal direction n0 2 NIuf , and the
wall crossing operator pd is in exp.y.t0/n0ZŒŒy.t0/n0 ��/ � G. The wall is said to be non-
trivial if pd is. A scattering diagram D is a collection of walls subject to some finiteness
condition in [41]. D cuts out many chambers in M.t0/R, among which we have two
special ones, C˙ WD .˙RIuf

�0/˚RIf .
Let C1;C2 be two chambers and  W Œ0; 1�! RI any smooth path from the interior

of C1 to that of C2. We first assume that  intersects transversely the interior of finitely
many walls di with normal direction ni 2 NI , 1 � i � r , at times t1 � � � � � tr , and
we define the wall crossing operator along  to be p WD p"rdr � � � p

"1
d1

where "i D
� sign h 0.ti /; ni i. Let �1 W Œ0; 1� ! RI denote the inverse path �1.t/ D .1 � t /.
Then p�1 D p�1 . We further define p for the case of infinitely many intersections as an
inverse limit [41].

We say D is consistent if p is always independent of the choice of  , which we
can denote by pC2;C1 . Two scattering diagrams are equivalent if they give the same p
for any  . The equivalence class of a consistent D is determined by pC�;CC [41, The-
orem 1.17], [53, 2.1.6].

A wall .d; pd/ with primitive normal direction n0 2 NIuf is said to be incoming if
p�.n0/ 2 d. Up to equivalence, for any collection Din of incoming walls, there exists a
unique consistent scattering diagram D such that Din �D and there is no incoming wall
in DnDin.

For any chosen base pointQ 2M.t0/R not contained in any non-trivial wall, the theta
function � t0Q;g , g 2 ZI , is a certain formal Laurent series in 2LP .t0/ which takes the form
x.t0/

g.1 C
P
n>0 cny.t0/

n/ with cn 2 Z. It has the property � t0Q0;g D p�
t0
Q;g for any
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path  fromQ toQ0. IfQ is a generic point in some chamber C , then � t0Q;g only depends
on the chamber, and we write � t0

C ;g
D �

t0
Q;g . We write �g D �

t0
CC;g

for simplicity.
Notice that to each seed t 2 �C one can associate a chamber C t . In particular, we

have C t0 D CC, and when t0Œ1� exists, C t0Œ1� D C�. So we can write � tt;g D �
t
C t ;g

.
Let Li2. / denote the dilogarithm function [41].

Definition A.1.1. Let t0 be an initial seed. The consistent scattering diagram D whose
incoming walls are .e?

k
; exp.�dkLi2.�y.t0/k///, k 2 Iuf, is called the cluster scattering

diagram associated to t0.

Consider cluster scattering diagrams from now on. Let us compare our tropical trans-
formations with those of [41]. By [41], for any k 2 Iuf, we have the tropical transformation
which preserves the theta functions,

Tk W Z
I
! ZI ; m D

X
mifi 7! mC Œmk �C

X
i

bikfi :

Consider the seed t 0 D �kt0. We identify M ı.t 0/ ' ZI ' M ı.t0/ so that the basis
elements f 0i D fi .t

0/ are given by (2.2) with the sign " D C:

f 0i D

´
fi ; i ¤ k;

�fk C
P
j Œ�bjk �Cfj ; i D k:

Lemma A.1.2. For anymD
P
mifi , the coordinates of its imagem0 D TkmD

P
m0if

0
i

are given by the tropical transformation �t 0;t0 .Definition 2.1.4/:

m0i D

8̂̂<̂
:̂
�mk ; i D k;

mi Cmk Œbik �C; i ¤ k; mk > 0;

mi Cmk Œ�bik �C; i D k; mk < 0:

Proof. By the mutation rule of f 0i , we have

m0 D
X

m0if
0
i D m

0
kf
0
k C

X
i W i¤k

m0if
0
i

D m0k

�
�fk C

X
i

Œ�bik �Cfi

�
C

X
i¤k

m0ifi

D .�m0k/fk C
X
i W i¤k

.m0i C Œ�bik �Cm
0
k/fi :

First assume mk � 0. By the transformation Tk , we have

m0 D mCmk
X
i

bikfi D mkfk C
X
i W i¤k

.mi C bikmk/fi :

Therefore, we obtain

m0k D �mk ;

m0i D mi C .bik C Œ�bik �C/mk D mi C Œbik �Cmk :
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Next, assume that mk < 0. By the transformation Tk , we have

m0 D m D mkfk C
X
i W i¤k

mifi :

Therefore, we obtain

m0k D �mk ; m0i D mi C Œ�bik �Cmk :

Theorem A.1.3 ([41]). For any t 2 �C and g 2 C t , the theta function �g is a localized
cluster monomial in the seed t . In particular, the cluster variable xi .t/ equals �gi .t/ in
2LP .t0/.

Theorem A.1.4. For any seeds t D E�t0, we have E��� tt;g D �
t0
t0;�t0;tg

for all g 2M ı.t/.

Proof. It seems that [41] does not present this result exactly in this way. Nevertheless,
it is known that theta functions are pointed at the tropical points by [41], and the claim
follows.

To prove the statement, one will need the “CPS Lemma” [9, Section 4] which says that
theta functions are sent to theta functions by wall crossings, as well as [41, Theorem 3.5,
Proposition 3.6, Proposition 4.3, Theorem 4.4]. These results together tell us the construc-
tion of theta functions is compatible with monomial automorphisms �k;� , Hamiltonian
automorphisms (wall-crossings) �k;� , and the tropical transformation Tk D ��k t0;t0 asso-
ciated to the mutation of the initial seeds. Then it is also compatible with mutations
because ��

k
D �k;��k;� .

Theorem A.1.5 ([41, Proposition 8.25]). Let t0 be an injective-reachable initial seed.
Then the theta functions �g , g 2M ı.t0/, are pointed Laurent polynomials in LP .t0/. In
addition, they form a basis of the upper cluster algebra U, called the theta basis.

Proof. Because t0 is injective-reachable, the cluster algebra has large cluster complex in
the sense of [41, Definition 8.23]. In particular, it satisfies the EGM condition (enough
global monomials). The claims follow from [41, Proposition 8.25].

A.2. Weak genteelness and the proofs

We shall show that, by combining known results from cluster theory, the scattering dia-
grams and some theta functions for skew-symmetric injective-reachable seeds have a
representation-theoretic description due to Bridgeland [4, Theorem 1.4]; see also [13].
Related definitions can be found in Section A.1.

Let t0 be an injective-reachable skew-symmetric initial seed subject to the full rank
assumption. We take the corresponding principal quiver with a non-degenerate potential
.Q;W /. We omit the symbol t0 for simplicity.

We take the stability scattering diagram D
.st/
uf constructed by integrating moduli of

semistable modules of J.Q;W / introduced in [4, Section 11] . The walls .d; pd/ of D
.st/
uf

live in Nuf.t0/
�
R D HomZ.Nuf.t0/;R/. We define the stability scattering diagram D.st/ to
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be the collection of walls .d ˚ RIf ; pd/ which live in M.t0/R. As in Section A.1, we
define the action4 of the Poisson algebra A D ZŒNIuf � on 2LP .t0/ such that ¹yn; xmº D
hm; nixmC

zBn. Then the corresponding group G and its action on 2LP .t0/ are given as in
Section A.1.

The scattering diagram D.st/ can be described via representation theory [4, Theor-
ems 1.1, 1.3]. Moreover, Bridgeland has the following description of theta functions
in D.st/ [4, Theorem 1.4]:

�
.st/;t0
Q;m D x

m
�

�X
K.n;m;Q/ � x

zB �n
�

where the base pointQ does not belong to any non-trivial wall,m 2NIuf , andK.n;m;Q/
is the Euler characteristic of the quotient module Grassmannian QuotnU.m;Q/ consisting
of n-dimensional quotient modules of a certain module U.m; Q/ in a tilted heart; see
[4, Section 8.4] for details. A representation-theoretic formula for other theta functions
is unknown at the moment. In particular, by taking Q to be a generic point in C� and
m D fi , the formula reads

�
.st/;t0
t0Œ1�;fi

D

´
xi � .

P
�.QuotnPi / � x

zB �n/; i 2 Iuf;

xi ; i 2 If;

where Pi , i 2 Iuf, corresponds to the i -th projective module of J.Q;W /.

Definition A.2.1 (Genteelness, [4]). We say the Jacobian algebra J.Q;W / is genteel if the
only modules V that are p�.dimV /-stable are the simples Sk , k 2 Iuf.

Let D denote the cluster scattering diagram associated to t0 (see Section A.1). The
following property is a weaker version of genteelness.

Definition A.2.2 (Weak genteelness). We say the Jacobian algebra J.Q;W / is weakly gen-
teel if D.st/ and D are equivalent.

Given a consistent scattering diagram D in RI , let us construct the opposite scattering
diagram Dop in RI (see Example A.2.7).

Recall thatADZŒyn�n2NIuf is a Poisson algebra such that ¹yn; yn
0

º D �¹n;n0ºynCn
0

and g D A>0 (see Section A.1). Define the opposite Poisson algebra Aop D ZŒyn� with
the Poisson bracket ¹ ; ºop D �¹ ; º and Lie algebra gop D A

op
>0. We have � W A ' Aop as

Z-modules such that �.yn/ D yn.

Lemma A.2.3. For any u; v; w 2 g such that expw D exp u � exp v we have exp �w D
exp �v � exp �u in Gop WD exp ygop.

Proof. The claim follows from the Baker–Campbell–Hausdorff formula which defines
the group multiplication on G and Gop.

4Our action is slightly different from the one in [4, Section 10.3] so that it is faithful.
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Let � denote the isomorphism m 7! �m on RI as well as the induced automorphism
�.xm/ D x�m on 5ZŒxm�m2ZI . The opposite scattering diagram Dop in RI is defined to
be the collection of walls .�d� n?d ; exp �u/ for any wall .d� n?d ; expu/ 2D. Given any
path  , let p

op
 denote the corresponding wall crossing operator in Dop.

Lemma A.2.4. (1) If p�1 D expw, then p
op
� D exp �w.

(2) Dop is consistent.

Proof. (1) For any given generic path  such that p D p"rdr � � � p
"1
d1

, the wall crossing
operator in Dop along � is

pop
� D exp.�"r � log pdr / � � � exp.�"1� log pd1/:

The claim follows from the equality p
�"1
d1
� � � p�"rdr

D p�1 D p�1 and Lemma A.2.3.
(2) The claim follows from (1) by taking all paths.

Proposition A.2.5. Let top
0 denote the seed opposite to t0 such that zB.top

0 / D �
zB and

we take the same strictly positive integers di . Let D.t0/ and D.t
op
0 / denote the cluster

scattering diagrams associated to t0; t
op
0 respectively. Then D.t

op
0 / is equivalent to the

opposite scattering diagram D.t0/
op, where we identifyM ı.t0/' ZI 'M ı.top

0 / so that
fi .t0/ 7! fi .t

op
0 / and N.t0/ ' ZI ' N.top

0 / so that ei .t0/ 7! ei .t
op
0 /.

Proof. Notice that the bilinear form on N.top
0 / is opposite to that of N.t0/ under the

identification. So we can view Aop and gop in the construction of D.t0/
op as A.top

0 / and
g.t

op
0 / associated to top

0 . Furthermore, D.t0/
op is consistent with the incoming walls being

.e?
k
; exp.�dkLi2.�yk///. Therefore, Dop.t0/ is equivalent to the cluster scattering dia-

gram D.t
op
0 /.

The actions of A and Aop on 5ZŒxm�m2ZI are defined as in Section A.1 using the
scattering diagrams associated to the seeds t0, top

0 respectively.

Lemma A.2.6. We have p
op
� .�x

m/ D �px
m for any path  .

Proof. Recall that the action of A satisfies ¹yn; xmº WD hm; nixmC zBn and the action of
Aop satisfies ¹yn;xmºop WD hm;nixm�

zB �n. Then we have ¹�yn;�xmºopD�hm;nix�m�
zBn

D �¹�yn; xmº. Therefore, exp.�w/.�xm/ D �.exp.�w/.xm//. The claim follows from
Lemma A.2.4 (1).

Example A.2.7. Let I D Iuf D ¹1; 2º and B.t0/ D
�
0 �1
1 0

�
, � D �B.t0/. The cluster

scattering diagram D DD.t0/ in M.t0/R D Rf1 ˚Rf2 ' R2 is given by

D D ¹.e?1 ; exp.�Li2.�y1/º; .e?2 ; exp.�Li2.�y2//; .R�0.1;�1/; exp.�Li2.�y1y2//º

where the Poisson bracket on A D ZŒy1; y2� satisfies ¹yi ; yj º D ��ijyiyj . By [41], we
have exp.�Li2.yn//.xm/ D xm.1C yn/hm;ni. Let  denote a path from CC to C�. One
checks that, for vi D zBei ,
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px1 D x1.1C x
v1 C xv1Cv2/;

px2 D x2.1C x
v2/;

p�1x
�1
1 D x

�1
1 .1C xv1/;

p�1x
�1
2 D x

�1
2 .1C xv2 C xv1Cv2/:

The opposite scattering diagram is given by

Dop
D ¹.e?1 ; exp.�Li2.�y1/º; .e?2 ; exp.�Li2.�y2//; .R�0.�1; 1/; exp.�Li2.�y1y2//º

and the Poisson bracket on Aop D ZŒy1; y2� satisfies ¹yi ; yj º D �ijyiyj . The opposite
seed top

0 has B.top
0 / D �B.t0/, �.t

op
0 / D �B.t

op
0 /. The corresponding cluster scattering

diagram is just Dop. One checks that

pop
�x
�1
1 D x

�1
1 .1C x�v1 C x�v1�v2/; pop

�x
�1
2 D x

�1
2 .1C x�v2/:

Proof of Theorem 1.2.4. We refer the reader to [4,41,63] for details of the related notions
below.

As in [41], replacing t0 by a principal coefficient seed tprin
0 by adding principal framing

vertices i 0 for all i 2 I if necessary, we first assume that the seed t0 satisfies the full rank
assumption.

Recall that the equivalence classes of the consistent scattering diagrams D, D.st/ are
determined by the respective wall crossing operators pt0Œ1�;t0 and p

.st/
t0Œ1�;t0

. Because G

acts faithfully on 6LP .M ı.t0//, it suffices to show that pt0Œ1�;t0 and p
.st/
t0Œ1�;t0

have the
same action.

Because D is a cluster scattering diagram, for any index i , ��fi agrees with the loc-
alized cluster variable

��fi D

´
x�1i �

P
n.�.Grn Ii / � x

zB �n/; i 2 Iuf;

x�1i ; i 2 If;

where Ii 2 C.Q;W / corresponds to the i -th injective module of the Jacobian algebra
J.Q;W / and fi denotes the i -th unit vector.

As a conceptual proof, we observe that the theta functions in D.st/.t/ can be calculated
by using tilting theory as in the work of Nagao [4, Section 8.3], [63]. Moreover, the
main result of Nagao [63] is the deduction of the Caldero–Chapoton type formula for
cluster monomials from tilting theory. By the main result of Nagao, the theta function
�
.st/
�fi

in D.st/ must agree with the localized cluster variable with degree �fi . Therefore,

we obtain pt0;t0Œ1�.x
�1
i / D ��fi D �

.st/
�fi
D p

.st/
t0;t0Œ1�

.x�1i / for any i 2 Iuf. The faithfulness

ofG implies pt0;t0Œ1� D p
.st/
t0;t0Œ1�

, and consequently pt0Œ1�;t0 D p
.st/
t0Œ1�;t0

. We refer the reader
to Mou’s upcoming work [60] for a detailed treatment (and a quantized version) in terms
of the Hall algebras.

Instead of re-examining the arguments of [63] in the setting of [4], we give an altern-
ative proof by using the scattering diagram Dop opposite to D.

Choose any generic smooth path  from CC to C� in RI . Assume pxk D xk � f .
Then p

op
�x
�1
k
D x�1

k
� �f by Lemma A.2.6. Because Dop ' D.t

op
0 / and � is a path

from C� to CC, we obtain the cluster expansion formula for cluster variables associated
to top

0 Œ1�:
pop
�x
�1
k D x

�1
k

X
n

�.Grn I
op
k
/ � x�

zBn
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where k 2 Iuf and I op
k

is the k-th injective module associated to the opposite algebra
J

op
.Q;W /

. By the natural isomorphism Quotn.Pk/ ' Grn I
op
k

, we obtain

pt0Œ1�;t0xk D pxk D xk

�X
n

�.QuotnPk/x
zBn
�
:

In addition, obviously pt0Œ1�;t0xi D xi for any i 2 If. Therefore, pt0Œ1�;t0 and p
.st/
t0Œ1�;t0

have

the same action on 2LP .t0/.
Finally, if the original seed t0 does not satisfy the full rank assumption and we have

worked with its principal coefficient seed tprin
0 as in [41], we can consider the natural pro-

jection proj from ZI.t
prin
0
/ to ZI.t0/ and the induced Z-linear projection proj from LP .t

prin
0 /

to LP .t/. By applying the projections, we recover the theta functions and scattering dia-
grams for t0 from those for tprin

0 ; see [41] for details. The desired claim follows.

Remark A.2.8. By [71], a seed is injective-reachable if and only if it is “projective-
reachable”. Recall that projective modules over J D J.Q;W / can be identified with inject-
ive modules over J op D J.Qop;W op/. We deduce that if t is injective-reachable, then so
is top. Consequently, if J is weakly genteel, then so is J op.
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