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Abstract. Given an ample real Hermitian holomorphic line bundle L over a real algebraic vari-
ety X , the space of real holomorphic sections of L˝d inherits a natural Gaussian probability
measure. We prove that the probability that the zero locus of a real holomorphic section s of L˝d

defines a maximal hypersurface tends to 0 exponentially fast as d goes to infinity. This extends to
any dimension a result of Gayet and Welschinger (2011) valid for maximal real algebraic curves
inside a real algebraic surface.

The starting point is a low degree approximation property which relates the topology of the real
vanishing locus of a real holomorphic section of L˝d with the topology of the real vanishing locus
a real holomorphic section of L˝d

0
for a sufficiently smaller d 0 < d . Such a statement is inspired

by the recent work of Diatta and Lerario (2022).

Keywords. Real algebraic varieties, random hypersurfaces, Betti numbers

1. Introduction

1.1. Real algebraic varieties and maximal hypersurfaces

Let .X; cX / be a real algebraic variety, that is, a complex (smooth, projective and connec-
ted) algebraic variety equipped with an antiholomorphic involution cX W X ! X , called
the real structure. For example, the projective space CP n equipped with the standard
conjugation conj is a real algebraic variety. More generally, the solutions of a system
of homogeneous real polynomial equations in n C 1 variables define a real algebraic
variety X inside CP n, whose real structure is the restriction of conj to X . The real
locus RX of a real algebraic variety is the set of fixed points of the real structure, that
is, RX D Fix.cX /. The real locus RX is either empty, or a finite union of n-dimensional
C1-manifolds, where n is the (complex) dimension of X . The study of the topology of
real algebraic varieties has been a central topic in real algebraic geometry since the works
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of Harnack and Klein on the topology of real algebraic curves [14,18] and Hilbert’s fam-
ous sixteenth problem [28]. A fundamental restriction on the topology of the real locus of
a real algebraic variety is given by the Smith–Thom inequality [25] which asserts that the
total Betti number of the real locus RX of a real algebraic variety is bounded from above
by the total Betti number of the complex locus:

nX
iD0

dimHi .RX;Z=2/ �
2nX
iD0

dimHi .X;Z=2/: (1)

We will more compactly write b�.RX/� b�.X/, where b� denotes the total Betti number
(i.e. the sum of the Z=2-Betti numbers). For a real algebraic curve C , inequality (1) is
known as Harnack’s inequality [14,18] and reads b0.RC/ � g C 1, where g is the genus
of C . A real algebraic variety which realizes equality in (1) is called maximal.

In this paper, we will study maximal real algebraic hypersurfaces inside a fixed real
algebraic variety X . More precisely, we are interested in the following question: given a
real linear system of divisors in X , what is the probability of finding a divisor defining a
real algebraic maximal hypersurface? The goal of the paper is to show that real algebraic
maximal hypersurfaces are exponentially rare inside their linear system.

1.2. Real Hermitian line bundles and Gaussian measures

In order to answer the previous question, let � W .L; cL/ ! .X; cX / be an ample real
holomorphic line bundle over X , that is, an ample holomorphic line bundle L over X
equipped with a real structure cL such that � ı cL D cX ı � . We equip L with a smooth
real Hermitian metric h of positive curvature ! (we recall that real means c�Lh D Nh). We
denote by RH 0.X;Ld / the space of real global sections of L˝d D Ld , that is, the space
of holomorphic sections s 2H 0.X;Ld / such that s ı cX D cLd ı s. This space is naturally
equipped with an L2-scalar product defined by

hs1; s2iL2 D

Z
X

hd .s1; s2/
!^n

nŠ
(2)

for any pair of real global sections s1; s2 2 RH 0.X;Ld /, where hd is the real Hermitian
metric onLd induced by h. In turn, the L2-scalar product (2) naturally induces a Gaussian
probability measure �d defined by

�d .A/ D
1

p
�
Nd

Z
s2A

e
�ksk2

L2 ds (3)

for any open set A � RH 0.X; Ld /, where Nd is the dimension of RH 0.X; Ld / and ds
the Lebesgue measure induced by the L2-scalar product (2). The probability space we
will consider is then .RH 0.X;Ld /; �d /.

Example 1.1. When .X; cX / is the n-dimensional projective space and .L; cL; h/ is the
degree 1 real holomorphic line bundle equipped with the standard Fubini–Study met-
ric, then the vector space RH 0.X; Ld / is isomorphic to the space Rhom

d
ŒX0; : : : ; Xn� of
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degree d homogeneous real polynomials in nC 1 variables, and the L2-scalar product

is the one that makes the family ¹
q�

.nCd/Š
nŠ˛0Š���˛nŠ

�
X
˛0
0 � � �X

˛n
n º˛0C���C˛nDd of monomials an

orthonormal basis. A random polynomial with respect to the Gaussian probability meas-
ure induced by this scalar product is called a Kostlan polynomial.

1.3. Statement of the main results

The zero locus of a real global section sd of Ld is denoted by Zsd and its real locus
by RZsd . The total Betti number b�.Zsd / of Zsd has the asymptotics b�.Zsd / D
v.L/dn C O.dn�1/ as d !1, where v.L/ WD

R
X
c1.L/

n is called the volume of the
line bundle L (see, for example, [12, Lemma 3]). If the total Betti number b�.RZsd /
of the real locus of a sequence of real algebraic hypersurfaces has the same asymptotics,
then the hypersurfaces are called asymptotically maximal. The existence of asymptotically
maximal hypersurfaces is known in many cases, for example for real algebraic surfaces
[10, Theorem 5], for projective spaces [17] and for toric varieties [4, Theorem 1.3]. The
first main result of the paper shows that asymptotically maximal hypersurfaces are very
rare in their linear system. More precisely:

Theorem 1.2. Let .X; cX / be a real algebraic variety of dimension n and .L; cL/ be a
real Hermitian line bundle of positive curvature. Then there exists a positive a0 < v.L/
such that, for any a > a0,

�d ¹s 2 RH 0.X;Ld /; b�.RZs/ � ad
n
º D O.d�1/

as d !1.

The notation O.d�1/ stands for O.d�k/ for any k 2 N and the measure �d is the
Gaussian measure defined in (3). Note that we actually have more than “asymptotically
maximal hypersurfaces are very rare”. Indeed, asymptotically maximal hypersurfaces cor-
respond to the asymptotics b�.RZs/ D v.L/dn C O.dn�1/, while in Theorem 1.2 we
consider bigger subsets of RH 0.X;Ld / of the form b�.RZs/ � adn for v.L/ > a > a0.

For maximal real algebraic hypersurfaces, the rarefaction is even exponential. More
precisely:

Theorem 1.3. Let .X; cX / be a real algebraic variety of dimension n and .L; cL/ be a
real Hermitian line bundle of positive curvature. For any a > 0 there exists c > 0 such
that

�d ¹s 2 RH 0.X;Ld /; b�.RZs/ � b�.Zs/ � ad
n�1
º D O.e�c

p
d logd /

as d !1. Moreover, if the real Hermitian metric on L is analytic, one has the estimate

�d ¹s 2 RH 0.X;Ld /; b�.RZs/ � b�.Zs/ � ad
n�1
º D O.e�cd /:

Remark 1.4. The L2-scalar product on RH 0.X; Ld / also induces a Fubini–Study
volume on the linear system P.RH 0.X; Ld //. The sets considered in Theorems 1.2
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and 1.3 are cones in RH 0.X;Ld / and the volume (with respect to the Fubini–Study form)
of their projectivization coincides with the Gaussian measures estimated in Theorems 1.2
and 1.3.

Theorems 1.3 extends to any dimension a result of Gayet and Welschinger [10], in
which the authors prove, using the theory of laminary currents, that maximal real curves
are exponentially rare in a real algebraic surface. We stress that our techniques are differ-
ent from those of [10].

For Kostlan polynomials (see Example 1.1) Theorems 1.2 and 1.3 were proven by
Diatta and Lerario [9, Theorem 8] as a corollary of a low degree approximation property.
Here we adopt the same strategy: Theorems 1.2 and 1.3 will be consequences of a general
“approximation theorem” which states that, for some b < 1, with very high probability,
the zero locus of a real section of Ld is diffeomorphic to the zero locus of a real section
of Lbbdc, where bbdc is the greatest integer less than or equal to bd . More precisely:

Theorem 1.5. Let .X; cX / be a real algebraic variety and .L; cL/ be a real Hermitian
line bundle of positive curvature.

(i) There exists a positive b0 < 1 such that for any b0 < b < 1 the following holds: the
probability that, for a real section s of Ld , there exists a real section s0 of Lbbdc such
that the pairs .RX;RZs/ and .RX;RZs0/ are isotopic is 1 �O.d�1/ as d !1.

(ii) For any k 2 N there exists c > 0 such that the following holds: the probability
that, for a real section s of Ld , there exists a real section s0 of Ld�k such that the
pairs .RX;RZs/ and .RX;RZs0/ are isotopic is 1 � O.e�c

p
d logd / as d !1. If

moreover the real Hermitian metric on L is analytic, this probability is 1 �O.e�cd /
as d !1.

Assertion (i) (resp. (ii)) of Theorem 1.5, together with the Smith–Thom inequality (1)
and the asymptotics b�.Zsd / D v.L/d

n C O.dn�1/ for sd 2 RH 0.X; Ld /, will imply
Theorem 1.2 (resp. Theorem 1.3). It is also worth pointing out that assertions (i) and (ii) of
Theorem 1.5 are independent of each other, although their proofs, which will be sketched
in Section 4, are similar.

Remark 1.6. Theorem 1.5 implies not only that maximal hypersurfaces are rare, but
that “maximal configurations” are. For instance, we will show in Section 5 that in some
suitable real algebraic surfaces the probability that a real algebraic curve has a deep nest
of ovals is exponentially small (roughly speaking, a nest of ovals means several ovals
inside each other); see Theorems 5.3 and 5.7.

As mentioned earlier, when .X; cX / D .CP n; conj/, L D O.1/ and the Hermitian
metric on L equals the Fubini–Study metric (that is, the case of Kostlan polynomials,
see Example 1.1), a low degree approximation property was recently proven by Diatta
and Lerario [9] (see also [5]), so that Theorem 1.5 is a natural generalization of their
result. Actually, in [9] the authors prove a general low degree approximation property for
Kostlan polynomials: for instance, they prove that a degree d Kostlan polynomial can be
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approximated (in the sense of Theorem 1.5) by a degree b
p
d log d Kostlan polynomial,

b > 0, with probability 1 �O.d�a/, with a > 0 depending on b.
We stress that in [9], it is essential that the real algebraic variety considered is the

projective space and that the metric on O.1/ is the Fubini–Study metric (and not, for
instance, a small perturbation of it). Indeed, in this situation,

� the induced L2-scalar product on Rhom
d
ŒX0; : : : ;Xn� is invariant under the action of the

orthogonal group O.nC 1/, which acts on the variables X0; : : : ; Xn (equivalently, the
group O.nC 1/ acts by real holomorphic isometries on .CP n; conj/);

� there exists a canonical O.n C 1/-invariant decomposition Rhom
d
ŒX0; : : : ; Xn� DL

d�`22N Vd;`, where Vd;` is the space of homogeneous harmonic polynomials of
degree `, thanks to which it is possible to define projections of degree d polynomials
to lower degree ones.

These two properties, together with the classification [19] of theO.nC 1/-invariant scalar
products on Rhom

d
ŒX0; : : : ; Xn�, are fundamental for the proof of the results in [9]. This

is a very special feature of Kostlan polynomials and the reason why in our general case
some of the approximations of [9] cannot be obtained. Indeed,

� on a general real algebraic variety equipped with a Kähler metric ! the group of holo-
morphic isometries is trivial;

� given a real Hermitian holomorphic line bundle L! X there is no canonical decom-
position of RH 0.X;Ld /.

Hence, in order to obtain an approximation property for sections of line bundles on a gen-
eral real algebraic variety, we have to use a different strategy, which we will explain in
more detail in Section 1.4. In particular, in our proof, in contrast to the case of polynomi-
als [9], the complex locus of the varietyX (and not only the real one) plays a fundamental
role. Indeed, we will consider real subvarieties of X with empty real loci and we will
study the real sections of Ld that vanish along these subvarieties. These real sections are
the fundamental tool for our low degree approximation property.

In the proof of Theorem 1.5, we will also need to understand how much we can perturb
a real section s 2RH 0.X;Ld / without changing the topology of its real locus. This leads
us to study two quantities related to the discriminant R�d � RH 0.X; Ld /, that is, the
subset of sections which do not vanish transversally along RX . More precisely, we will
consider the volume (with respect to the Gaussian measure �d ) of tubular neighborhoods
of R�d and the “distance to the discriminant” function. Such quantities have already been
used in the case of Kostlan polynomials in [9, Section 4], but in our general framework
the lack of symmetries makes their computation more delicate and requires the use of the
Bergman kernel’s estimates along the diagonal [3, 21, 29].

In particular, denoting by distR�d .s/ the distance (induced by the L2-scalar
product (2)) from a section s to the discriminant R�d , we obtain the uniform estimate
(see Lemma 3.1)

distR�d .s/ D min
x2RX

�
ks.x/k2

hd

dn
C
krs.x/k2

hd

dnC1

�1=2
.�n=2 CO.d�1=2//
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as d !1. This estimate is a generalization of a result of Raffalli [23] who proved a sim-
ilar formula for polynomials (in that case, the formula is exact and not just asymptotic),
which was used in [9].

Finally, let us conclude this section by pointing out that, while in the present paper we
are interested in some rare events (that is, real algebraic hypersurfaces with rich topology),
the expected value EŒbi .RZsd /� of the i -th Betti number of RZsd is bounded from below
and from above by respectively ci;ndn=2 and Ci;ndn=2, for some positive constants 0 <
ci;n � Ci;n (see [11, 13]). Moreover, in the case of the 0-th Betti number (that is, the
number of connected components), it is known that limd!1

1

dn=2
EŒb0.RZsd /� exists

and is positive [22].

1.4. Idea of the proof of Theorem 1.5

In this section, we sketch the proof of assertion (ii) of Theorem 1.5; the proof of (i) is
similar.

We want to prove that, with very high probability, the real vanishing locus of a real
section s ofLd is ambient isotopic to the real vanishing locus of a real section s0 ofLd�k .

The first fact we will use is the existence of a real section � of Lk , for some suitable
even k 2 2N large enough, with the properties that � vanishes transversally and RZ� D;
(see Proposition 2.1). In order to obtain such a section � , we consider an integer m such
that Lm is very ample and ¹s1; : : : ; sN º is a basis of RH 0.X;Lm/. Then � is any general
small perturbation of the section

PN
iD1 s

˝2
i of L2m.

Let us define RHd;� to be the vector space of real global sections s 2 RH 0.X; Ld /

such that s vanishes along the vanishing locus Z� of � . We also denote by RH?
d;�

the
orthogonal complement of RHd;� with respect to the L2-scalar product defined in (2).
Then, for any section s 2 RH 0.X;Ld /, there exists a unique decomposition s D s?� C s

0
�

with s0� 2 RHd;� and s?� 2 RH?
d;�

.
The fundamental point, which we will prove in Section 2.2 using the theory of partial

Bergman kernels [7, 24], is that the “orthogonal component” s?� of s has a very small
C1-norm along the real locus RX . A geometric reason for this is that the space RH?

d;�
is

generated by the peak sections [26] which have a peak on Z� and, as Z� \RX D ;, the
pointwise C1-norm of these peak sections is very small along RX (indeed, a peak section
has a very small C1-norm on any compact set disjoint from its peak).

From the fact that s?� has a very small C1-norm along the real locus RX , we deduce
that s is a “small pertubation” of s0� ; Thom’s Isotopy Lemma would therefore imply that
the pairs .RX;RZs/ and .RX;RZs0� / are isotopic if s0� has a large enough C1-norm
along RX . This last implication can be translated in terms of distance from s0� to the
discriminant R�d , that is, the space of real sections which do not vanish transversally
along RX : if s0� is far enough from the discriminant, then the pairs .RX;RZs/ and
.RX;RZs0� / are isotopic.

Using the Bergman kernel, we are able to estimate the “distance to the discriminant”
function (Lemma 3.1). These estimates, together with an approach similar to [9, Sec-
tion 4], allow us to prove that, with very high probability, s0� is far enough from the
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discriminant, so that, with very high probability, the pairs .RX;RZs/ and .RX;RZs0� /
are isotopic (Lemmas 4.3 and 4.4).

Finally, we prove that the section s0� can be written as � ˝ s0 for some real sec-
tion s0 of Ld�k . In particular, as � does not have any real zero, we have the equality
RZs0� D RZs0 , which proves Theorem 1.5.

1.5. Organization of the paper

The paper is organized as follows.
In Section 2, we prove the existence of a real section � of Lk with empty real van-

ishing locus and then we will study the real sections of Ld which vanish along Z� . This
leads us to consider logarithmic and partial Bergman kernels in Section 2.2.

In Section 3, we study the geometry of the discriminant R�d � RH 0.X; Ld / and
compute several related quantities: its degree, the volume (with respect to the Gaussian
measure �d ) of tubular neighborhoods and the “distance to the discriminant” function.

In Section 4, we prove our main results, namely Theorems 1.2, 1.3 and 1.5.
Finally, in Section 5, we study the depth of the nests of real algebraic curves inside

some real algebraic surfaces, namely Hirzebruch surfaces (Theorem 5.3) and del Pezzo
surfaces (Theorem 5.7).

2. Sections vanishing along a fixed hypersurface

In this section, we prove the existence of a real global section � of Lk with empty real
vanishing locus and we study the real sections of Ld which vanish along Z� .

2.1. A global section with empty real vanishing locus

Let .L;cL/ be an ample real holomorphic line bundle over a real algebraic variety .X;cX /.
A real section of L is a global holomorphic section s of L such that s ı cX D cL ı s.

Proposition 2.1. There exists an even positive integer k0 such that for any even k � k0
there exists a real section � of Lk with the following properties: (i) � vanishes transvers-
ally and (ii) RZ� is empty.

Proof. Let m0 be the smallest integer such that Lm0 is very ample and set k0 D 2m0.
For any integer m � m0, fix a basis s1; : : : ; sNm of RH 0.X; Lm/ and consider the real
section s D

PNm
iD1 s

˝2
i ; which is a real section of L2m whose real vanishing locus is

empty. Note that any small perturbation of s inside RH 0.X; L2m/ will have empty real
vanishing locus, and the discriminant (i.e. the sections which do not vanish transversally)
is an algebraic hypersurface of RH 0.X; L2m/. We can then find a small perturbation �
of s which has the desired properties, namely � is a real global section of L2m vanishing
transversally and whose real vanishing locus is empty.
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Definition 2.2. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1, where k is
a fixed large enough integer, and let Z� be its vanishing locus. For any integer `, we will
write �` for the section �˝` ofLk`. For any integers d and `, letHd;�` be the subspace of
H 0.X;Ld / consisting of the sections which vanish alongZ� to order at least `. Similarly,
RHd;�` is the subspace of RH 0.X;Ld / of real sections which vanish along Z� to order
at least `.

Proposition 2.3. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1 for some
fixed k large enough. For any integers d and `, the space Hd;�` coincides with the space
of sections s 2H 0.X;Ld / such that s D �`˝ s0 for some s0 2H 0.X;Ld�k`/. Similarly,
RHd;�` coincides with the space of real sections s 2 RH 0.X;Ld / such that s D �` ˝ s0

for some s0 2 RH 0.X;Ld�k`/.

Proof. If a section s of H 0.X; Ld / is of the form s D �` ˝ s0 for some s0 2

RH 0.X; Ld�k`/, then s 2 Hd;�` (that is, s vanishes along Z� to order at least `).
Moreover, if such a section is real then s 2 RHd;�` . Let us now prove the other inclu-
sion. Let s 2 H 0.X;Ld / vanish along Z� to order at least `. We want to prove that there
exists s0 2 H 0.X; Ld�k/ such that s D �` ˝ s0. For this, let ¹Uiºi be a cover of X by
open subsets such that the line bundle L is obtained by gluing together the local models
¹Ui �Cºi using the maps fij W .Ui \Uj / 3 .x; v/�C 7! .x; gij .x/v/ 2 .Ui \Uj

�
�C,

where gij WUi \Uj !C� are holomorphic maps. Observe that, for any integer d , the line
bundleLd is obtained by gluing together the same local models ¹Ui �Cºi using the maps
f dij W .Ui \Uj / 3 .x;v/�C 7! .x;gdij .x/v/ 2 .Ui \Uj

�
�C. Using these trivializations,

a global section s of Ld is equivalent to the data of local holomorphic functions si on Ui
such that si D gdij sj on Ui \ Uj . We can then locally define the section s0 we are looking
for by setting s0i D si=�

`
i . Indeed, these are holomorphic functions because si vanishes

along the zero set of �i to order at least `. With this definition, it is straightforward to
check that the family ¹s0iºi glues together and defines a global section s0 of Ld�k` with
s D �` ˝ s0.

The proof for the real case follows from the complex case and from that fact that if s
and � are real sections, then s0 is also real.

2.2. L2-orthogonal complement to RHd;�` and C1-estimates

In this section, we equip L with a real Hermitian metric h with positive curvature and
consider the induced L2-scalar product on RH 0.X; Ld / given by (2). The main goal is
to study the real sections of Ld which are L2-orthogonal to the space RHd;�` defined in
Definition 2.2.

Definition 2.4 (C1-norm). LetK � X be a compact set. We define the C1.K/-norm of a
global section s ofLd to be kskC1.K/Dmaxx2K ks.x/khd Cmaxx2K krs.x/khd , where
k � khd is the norm induced by the Hermitian metric hd , r is the Chern connection on Ld

induced by h and krs.x/k2
hd
D
Pn
iD1 krvi s.x/k

2
hd

, with ¹v1; : : : ; vnº an orthonormal
basis of TxX .
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Remark 2.5. Recall that RHd;�` DHd;�` \RH 0.X;Ld /. The orthogonal complement
(with respect to the L2-scalar product given by (2)) of RHd;�` inside RH 0.X;Ld / coin-
cides with H?

d;�`
\ RH 0.X; Ld /. Here, H?

d;�`
is the orthogonal complement of Hd;�`

with respect to the L2-Hermitian product defined by

hs1; s2iL2 D

Z
X

hd .s1; s2/
!^n

nŠ
(4)

for any global sections s1; s2 2 H 0.X;Ld /.

Proposition 2.6. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1 for some
fixed k large enough. There exists a positive real number t0 such that, for any t 2 .0; t0/,
we have the uniform estimate k�kC1.RX/ D O.d�1/ as d ! 1 for any real section
� 2 RH?

d;�btdc
with k�kL2 D 1. Here, RHd;�btdc is as in Definition 2.2.

Proof. Let �1; : : : ; �md be an orthonormal basis of H?
d;�btdc

and s1; : : : ; sNd�md be an
orthonormal basis of Hd;�btdc (the Hermitian products are the ones induced by (4)). We
set

P?d .x/ D

mdX
iD1

k�i .x/k
2
hd

and P 0d .x/ D

Nd�mdX
iD1

ksi .x/k
2
hd
;

so that P?
d
CP 0

d
equals the Bergman function Pd (i.e. the value of the Bergman kernel on

the diagonal). The functionP 0
d

equals the partial Bergman kernel of order btdc associated
with the subvariety Z� (see [7]). By [7, Theorem 1.3], for any compact subset K of
X which is disjoint from Z� and for any r 2 N, there exists a positive real number
t0.K/ such that, for any t < t0.K/, one has kPd � P 0d kCr .K/ D O.d

�1/. Now, we have
P?
d
DPd �P

0
d

, so that, by choosingK DRX , which is disjoint fromZ� by construction
of � , we obtain kP?

d
kCr .RX/ D O.d

�1/ as long as t < t0 D t0.RX/. This implies that
for any t < t0 and any � 2 H?

d;�btdc
with k�kL2 D 1, one has k�kC1.RX/ D O.d�1/,

and in particular this happens if � 2 RH?
d;�btdc

.

Proposition 2.7. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1 for some
fixed k large enough. There exists c > 0 .depending on k/ such that we have the uniform
estimate k�kC1.RX/ DO.e

�c
p
d logd / for any real section � 2 RH?

d;�
with k�kL2 D 1. If

the real Hermitian metric on L is analytic, then we have the uniform estimate k�kC1.RX/
D O.e�cd / for any real section � 2 RH?

d;�
with k�kL2 D 1.

Proof. The proof follows the same idea as that of Proposition 2.6. Let �1; : : : ; �md be
an orthonormal basis of H?

d;�
and s1; : : : ; sNd�md be an orthonormal basis of Hd;� (the

Hermitian products are the ones induced by (4)). We set P?
d
.x/ D

Pmd
iD1 k�i .x/k

2
hd

and

P 0
d
.x/ D

PNd�md
iD1 ksi .x/k

2
hd

, so that P?
d
C P 0

d
equals the Bergman function Pd . The

function P 0
d

is called the logarithmic Bergman kernel associated with the subvariety Z�
(see [24]). For this kernel, we have, for any r 2 N, the estimates

kPd � P
0
d kCr .K/ D O.e

�c
p
d logd / (5)
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and, in the analytic case,

kPd � P
0
d kCr .K/ D O.e

�cd /; (6)

where K is a fixed compact set disjoint from Z� . For a proof of these estimates, one
can follow line for line the proof of [24, Theorem 3.4] (stating that for any sequence
of compact sets Kd whose distance from Z� is greater than .log d/=

p
d , one has

kPd � P
0
d
kCr .Kd / D O.d

�1/) and just replace there:

� the sequence of compact sets Kd by a fixed compact set K;

� the C r -norm at a point zd 2 Kd (depending on d ) of a peak section [26] peaking at
Z� (which isO.d�1/ if dist.Kd ;Z� / > .logd/=

p
d ) by the C r -norm at a fixed point

z 2K (not depending on d ) of a peak section peaking atZ� . In this case, the latter C r -
norm isO.e�c

p
d logd / (and evenO.e�cd / if the metric on L is analytic). This last fact

is a standard and direct consequence of the exponential decay of the Bergman kernel,
which can be found for instance in [15, Theorem 1.1 and Corollary 1.4].

Let us continue the proof of the proposition. By definition, we have P?
d
D Pd � P

0
d

,
so that, by the estimate (5) for K D RX , which is disjoint from Z� by construction
of � , we obtain kP?

d
kCr .RX/ D O.e�c

p
d logd /. This implies that for any � 2 H?

d;�
,

with k�kL2 D 1, one has k�kC1.RX/ D O.e�c
p
d logd /, and in particular this happens if

� 2 RH?
d;�

. Similarly, using the estimate (6) for the analytic case, we have k�kC1.RX/ D
O.e�cd / for any � 2 RH?

d;�
with k�kL2 D 1.

3. Geometry of the discriminant: distance, degree and volume

Let R�d � RH 0.X; Ld / denote the discriminant, that is, the subset of sections which
do not vanish transversally along RX . In this section, we will study and compute several
quantities related to the discriminant: its degree, the volume (with respect to the Gaussian
measure �d ) of tubular conical neighborhoods (see Definition 3.3) and the “distance to
the discriminant” function.

As in the previous section, we equip L with a real Hermitian metric h with posit-
ive curvature and consider the induced L2-scalar product on RH 0.X; Ld / given by (2).
Given s 2 RH 0.X; Ld /, the next lemma gives us an explicit formula for the distance
from s to the discriminant R�d . This distance is computed with respect to the L2-scalar
product, that is,

distR�d .s/ WD min
�2R�d

ks � �kL2 :

In the case of polynomials, the distance has already been computed by Raffalli [23]
and used in [9].

Lemma 3.1 (Distance to the discriminant). Let .L; cL/ be a real Hermitian ample line
bundle over a real algebraic variety X of dimension n. Denote by k � khd the Hermitian
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metric on Ld induced by a Hermitian metric h on L with positive curvature. Then, as
d !1, we have the uniform estimate

distR�d .s/ D min
x2RX

�
ks.x/k2

hd

dn
C
krs.x/k2

hd

dnC1

�1=2
.�n=2 CO.d�1=2//:

Proof. We will follow the approach of [23, Section 3] which we combine with Bergman
kernel estimates along the diagonal [3, 8, 21, 29]. Let us define R�d;x to be the linear
subspace of real sections which do not vanish transversally to x, that is,

R�d;x D ¹s 2 RH 0.X;Ld / W s.x/ D 0 and rs.x/ D 0º:

Let us fix some notations:

� We fix once for all an orthonormal basis s1; : : : ; sNd of RH 0.X; Ld / (with respect
to the L2-scalar product (2)). We denote by S.x/ the vector .s1.x/; : : : ; sNd .x// 2
.RLdx /

Nd .

� We will also fix an orthonormal basis ¹ @
@x1
; : : : ; @

@xn
º of TxRX (the Riemannian metric

is the one induced by the curvature form ! of the real Hermitian line bundle .L; h/).

� Let r be a connection on Ld which is metric, real and such that, if we read the con-
nection r using real normal coordinates around x and the real normal trivialization
of Ld over a neighborhood of x, then we obtain the trivial connection (see [20, Sec-
tion 3.1] for the definition of real normal coordinates and real normal trivialization and
[20, Section 3.3] for the existence of such a connection; in the following, we will not use
explicitly the properties of these normal coordinates or of the normal trivializations).

� We denote by rj the covariant derivative along @
@xj

on Ld with respect to the connec-
tion r, that is, rj D r@=@xj .

� For a real section s, we will write s.x/� 2 .RLdx /
� to denote the linear function on RLdx

defined by RLdx 3 e 7! hdx .s.x/; e/.

� We will denote by M the .n C 1/ � Nd matrix with entries in RLdx whose n C 1
lines are S.x/; r1S.x/; : : : ; rnS.x/, where rjS.x/ D .rj s1.x/; : : : ; rj sNd .x// 2

.RLdx /
Nd . Note that, for d large enough, the matrix M has maximal rank. Indeed,

for d large enough and for any v 2 TxRX , one can find a real section �1 such that
�1.x/ ¤ 0 and a real section �2 such that rv�2.x/ ¤ 0 (such sections always exist for
large d by positivity of L).

� Finally, we denote byM t theNd � .nC 1/matrix with entries in .RLdx /
� whose nC 1

columns are S�.x/;r1S�.x/; : : : ;rnS�.x/, where

rjS
�.x/ D ..rj s1.x//

�; : : : ; .rj sNd .x//
�/:

Using these notations, a real holomorphic section s D
P
i aisi lies in R�d;x if and only

if s.x/ D 0 and rj s.x/ D 0 for any j 2 ¹1; : : : ; nº. Equivalently, it lies in R�d;x if and
only Ma D 0 where a D .a1; : : : ; aNd /

t 2 RNd and the multiplication is the standard
matrix multiplication.
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We now compute dist.s;R�d;x/ for any s 2 RH 0.X; Ld /. By definition, the dis-
tance dist.s;R�d;x/ equals minsC�2R�d;x k�kL2 ; that is, it equals the L2-norm of a
section � which is orthogonal to R�d;x and such that sC � 2R�d;x . Writing sD

P
i aisi

and � D
P
i bisi , the last condition reads M.a C b/ D 0, where a D .a1; : : : ; aNd /

t ,
b D .b1; : : : ; bNd /

t and the multiplication is the standard matrix multiplication. The
condition “� is orthogonal to R�d;x” can be written as “there exists ˛ 2 .RLdx /

nC1

such that b D M t˛”. Putting together these two conditions, we obtain M.a CM t˛/ D

Ma CMM t˛ D 0. Now, let A D MM t , which is an .n C 1/ � .n C 1/ matrix with
entries in RLdx ˝ .RL

d
x /
� D End.RLdx /. Recall that, for d large enough, the matrix M

has maximal rank and so A is invertible, and A�1 is the .nC 1/ � .nC 1/ matrix with
entries in End..RLdx /

�/ such that AA�1 D A�1A D Diag.IdRLdx
/, the diagonal matrix

with IdRLdx
along the diagonal.

Then, for d large enough, we have ˛D�A�1Ma, so that b D�M tA�1Ma. We then
obtain

dist2.s;R�d;x/ D k�k2L2 D kbk
2
D kM tA�1Mak2

D atM t .A�1/tMM tA�1Ma

D atM t .A�1/tMa: (7)

Observe now that A is the following .nC 1/ � .nC 1/ matrix:26664
hS.x/; S�.x/i hr1S.x/; S

�.x/i � � � hrnS.x/; S
�.x/i

hS.x/;r1S
�.x/i hr1S.x/;r1S

�.x/i � � � hrnS.x/;r1S
�.x/i

:::
:::

: : :
:::

hS.x/;rnS
�.x/i hr1S.x/;rnS

�.x/i � � � hrnS.x/;rnS
�.x/i

37775
where the notation hS.x/;S�.x/i stands for

PNd
iD1 si .x/˝ si .x/

� 2 End.RLdx /, the nota-
tion hS.x/;rjS�.x/i stands for

PNd
iD1 si .x/˝ .rj si .x//

� 2 End.RLdx / and so on for the
other terms.

Note that the quantities hS.x/; S�.x/i, hriS.x/; S�.x/i, hS.x/; riS�.x/i and
hriS.x/; rjS

�.x/i equal the Bergman kernel and its first derivatives at .x; x/. The
asymptotics of these quantities are well-known (see, for instance, [3, 8, 21, 29]). In our
case, we are in the same setting as in [20, Corollary 3.8], so we have

hS.x/; S�.x/i D
dn

�n
.IdRLdx

CO.d�1//;

hriS.x/; S
�.x/i D O.dn�1=2/;

hS.x/;riS
�.x/i D O.dn�1=2/;

hriS.x/;rjS
�.x/i D O.dn/ for i ¤ j;

hriS.x/;riS
�.x/i D

dnC1

�n
.IdRLdx

CO.dn//;

as d !1. As a consequence, as d !1, the matrix A equals
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266664
dn

�n
IdRLdx

CO.dn�1/ O.dn�1=2/ � � � O.dn�1=2/

O.dn�1=2/ dnC1

�n
IdRLdx

CO.dn/ � � � O.dn/

:::
:::

: : :
:::

O.dn�1=2/ O.dn/ � � �
dnC1

�n
IdRLdx

CO.dn/

377775

D

266664
dn

�n
IdRLdx

0 � � � 0

0 dnC1

�n
IdRLdx

� � � 0

:::
:::

: : :
:::

0 0 � � �
dnC1

�n
IdRLdx

377775 .IdCO.d�1=2//;
so that A�1 equals

A�1 D

266664
d�nIdRLdx

0 � � � 0

0 d�n�1IdRLdx
� � � 0

:::
:::

: : :
:::

0 0 � � � d�n�1IdRLdx

377775 .�nIdCO.d�1=2//:

In particular, recalling the definition of the matrix M and the vector a given above, we
find that (7) equals �

ks.x/k2
hd

dn
C
krs.x/k2

hd

dnC1

�
.�n CO.d�1=2//:

Taking the minimum over x 2 RX , we obtain the result.

Lemma 3.2 (Degree of the discriminant). Let .L; cL/ be a real ample line bundle over
a real algebraic variety X of dimension n and denote by R�d the discriminant in
RH 0.X; Ld /. Then there exists a homogeneous real polynomial Qd vanishing on R�d
and such that deg.Qd / D .nC 1/

R
X
c1.X/

ndn CO.dn�1/.

Proof. Let �d � H 0.X;Ld / be the (complex) discriminant. First, note that if s 2 R�d
then s 2 �d , so that if we find a real polynomial vanishing on �d , then it will vanish
also on R�d . We will now find a polynomial vanishing along�d and estimate its degree.
Since �d is a cone in H 0.X; Ld /, the degree of �d equals the number of intersection
points of a generic line  in P .H 0.X; Ld // with P .�d /. We remark that a line  in
P .H 0.X;Ld // induces a Lefschetz pencil u WX Ü CP 1 sending x 2X to Œs1.x/ W s2.x/�
2 CP 1, where s1 and s2 are two distinct sections lying on  . Now, the cardinality of
 \P .�d / corresponds exactly to the number of singular fibers of the Lefschetz pencil u.
By [1, Proposition 2.3], we have deg.P .�d // D .n C 1/

R
X
c1.X/

ndn C O.dn�1/. In
particular, there exists a homogeneous polynomial Qd of degree deg.P .�d // vanishing
on�d . Also, if s 2�d , then cL ı s ı cX 2�d , so that�d is a real algebraic hypersurface
in H 0.X; Ld / (with respect to the natural real structure s 7! cLd ı s ı cX ). It is then
possible to choose the polynomial Qd to be real.
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Definition 3.3. A tubular conical neighborhood of R�d is a tubular neighborhood
of R�d in RH 0.X;Ld / which is also a cone (that is, if s is in the neighborhood, then �s
is also in the neighborhood, for any � 2 R�).

To define a tubular conical neighborhood of R�d , it is enough to define its trace on
the unit sphere Sd WD ¹s 2 RH 0.X; Ld / W kskL2 D 1º. We denote by S�d the trace of
the discriminant on Sd , that is, S�d D Sd \R�d . The next lemma estimates the volume
of very small tubular conical neighborhoods of the discriminant R�d , namely tubular
conical neighborhoods whose trace on Sd is of the form ¹s 2 Sd W dist.s; S�d / < rd º

for rd a sequence of real numbers which goes to zero at least as d�2n. For the case
of Kostlan polynomials, that volume has already been estimated by Diatta and Lerario
[9, Proposition 4].

Lemma 3.4 (Volume of tubular conical neighborhoods). Let .L; cL/ be a real Hermitian
ample line bundle over a real algebraic variety .X; cX / of dimension n. Then there exists
a positive constant c .not depending on d/ such that, for any sequence rd satisfying
rd � cd

�2n, one has

�d ¹s 2 RH 0.X;Ld / W distR�d .s/ � rdkskL2º D O.rdd
2n/:

Here, �d is the Gaussian probability measure defined in (3).

Proof. We start with a standard remark about Gaussian measures on Euclidean spaces:
if Sd is the unit sphere in RH 0.X; Ld /, and �d the probability measure induced by its
volume form (i.e. for any A � Sd , �d .A/ D Vol.A/Vol.Sd /�1), then the Gaussian meas-
ure of every cone Cd in RH 0.X; Ld / equals �d .Cd \ Sd /. We apply this remark to the
tubular conical neighborhood Cd D ¹distR�d .s/ � rdkskL2º and find that its Gaussian
measure equals �d ¹s 2 Sd W dist.s; S�d / � rd º, where S�d denote the trace of the dis-
criminant on Sd . By Lemma 3.2, for d large enough, there exists a polynomial of degree
bounded by 2.nC 1/

R
X
c1.X/

ndn whose zero locus contains S�d . We are thus under
the hypothesis of [6, Theorem 21.1], which gives us

�d ¹s 2 Sd W dist.s; S�d / � rd º � cNddnrd (8)

for some constant c > 0, whereNd D dimRH 0.X;Ld /. By the Riemann–Roch Theorem,
we have Nd D O.dn/, so that the right-hand side of (8) is O.rdd2n/. The lemma then
follows from the fact that the �d -measure of the set ¹s 2 Sd W dist.s;S�d /� rd º appearing
in (8) equals the Gaussian measure of its cone. This implies

�d ¹s 2 RH 0.X;Ld / W distR�d .s/ � rdkskL2º D O.rdd
2n/;

which concludes the proof.

4. Proof of the main results

In this section, we prove our main results, Theorems 1.2, 1.3 and 1.5. We will use the
notations of the previous sections, in particular we consider an ample Hermitian real
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holomorphic line bundle .L; cL; h/ over a real algebraic variety .X; cX / and we denote
by �d the Gaussian measure on RH 0.X;Ld / defined in (3).

Notation 4.1. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1, for some
fixed k large enough. Let d and ` be two positive integers and let RHd;�` be as in
Definition 2.2. For any real section s 2 RH 0.X; Ld / there exists a unique decomposi-
tion s D s?

�`
C s0

�`
with s0

�`
2 RHd;�` and s?

�`
2 RH?

d;�`
(the orthogonal is with respect

to the L2-scalar product defined in (2)).

Proposition 4.2. Let � 2 RH 0.X; Lk/ be a section given by Proposition 2.1 for some
fixed k large enough.

(i) There exists a positive real number t0 such that for any t 2 .0; t0/ the following holds.
Let C > 0 and r 2 N. For any wd � Cd�r , there exists d0 2 N such that for any
d � d0 and any s 2 RH 0.X;Ld /, we have

ks?
�btdckC1.RX/ < wdkskL2 :

(ii) There exist positive constants c1 and c2 such that, for any sequence wd �

c1e
�c2
p
d logd and any s 2 RH 0.X;Ld /, we have

ks?� kC1.RX/ < wdkskL2 :

If the real Hermitian metric on L is analytic, then the last estimate is true for any
sequence wd � c1e�c2d .

Here, s?� and s?
�btdc

are given by Notation 4.1.

Proof. Let us prove (i). Fix t0 given by Proposition 2.6 and take t < t0. Fix a sequencewd
with wd � Cd�r for some fixed C > 0 and r 2 N.

Let s 2 RH 0.X;Ld /. The L2-norm of the section .kskL2/�1s
?

�btdc
is smaller than 1,

so, by Proposition 2.6 there exists a constant cr > 0 (not depending on d ) such that

.kskL2/
�1
ks?
�btdckC1.RX/ � crd

�r�1;

which is strictly smaller than wd for d large enough. This proves (i). The proof of (ii)
follows the same lines, using Proposition 2.7 instead of Proposition 2.6.

Following [9, Proposition 3], we now estimate how much we can perturb a real section
without changing the topology of its zero locus.

Lemma 4.3. There exists a positive integer d0 such that for any d � d0 and any real
section s 2 RH 0.X; Ld / n R�d , the following holds. For any real global section s0 2
RH 0.X;Ld / such that

ks � s0kC1.RX/ <
dn=2

4�n=2
distR�d .s/;

the pairs .RX;RZs/ and .RX;RZs0/ are isotopic.
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Proof. By Lemma 3.1, there exists d0 such that for any d � d0 one has

distR�d .s/ < 2�
n=2 min

x2RX

�
ks.x/k2

hd

dn
C
krs.x/k2

hd

dnC1

�1=2
:

In particular, for any d � d0, the inequality ks � s0kC1.RX/ <
dn=2

4�n=2
distR�d .s/ implies

ks � s0kC1.RX/ <
1

2
min
x2RX

�
ks.x/k2

hd
C
krs.x/k2

hd

d

�1=2
: (9)

Now, denoting ı.s/ WD minx2RX .ks.x/k
2
hd
C krs.x/k2

hd
=d/1=2 and following the lines

of [9, Proposition 3], we find that inequality (9) implies that the pairs .RX;RZs/ and
.RX;RZs0/ are isotopic.

Lemma 4.4. Let � 2RH 0.X;Lk/ be a section given by Proposition 2.1 for some fixed k
large enough. Then we have the following estimates as d !1:

(i) There exists t0 > 0 such that, for any t 2 .0; t0/, we have

�d

²
s 2 RH 0.X;Ld / W ks?

�btdckC1.RX/ <
dn=2

4�n=2
distR�d .s/

³
D 1 �O.d�1/:

(ii) There exists a positive c > 0 such that

�d

²
s 2 RH 0.X;Ld / W ks?� kC1.RX/ <

dn=2

4�n=2
distR�d .s/

³
D 1 �O.e�c

p
d logd /:

Moreover, if the real Hermitian metric on L is analytic, then the last measure is even
1 �O.e�cd /.

Proof. First, note that, by Proposition 3.4, for any m 2 N, setting rd D d�2n�m, one has

�d ¹s 2 RH 0.X;Ld / W distR�d .s/ > rdkskL2º D 1 �O.d
�m/: (10)

Also, by Proposition 4.2 (i), there exists a positive t0 such that, for any t < t0, any
integer r , any sequence wd of the form C2d

�r and any d large enough, we have

�d ¹s 2 RH 0.X;Ld / W ks?
�btdckC1.RX/ < wdkskL2º D 1: (11)

Putting together (10) and (11), we see that, for any such sequences rd and wd ,

�d

²
s 2 RH 0.X;Ld / W ks?

�btdckC1.RX/ <
wd

rd
distR�d .s/

³
D 1 �O.d�m/: (12)

By choosing wd D dbn=2c

4�n=2
rd , we then find that for any m 2 N,

�d

²
s 2 RH 0.X;Ld / W ks?

�btdckC1.RX/ <
d bn=2c

4�n=2
distR�d .s/

³
D 1 �O.d�m/ (13)

which implies (i). The proof of (ii) follows the same lines, using Proposition 4.2 (ii) and
setting rd D d�2ne�c2

p
d logd , where c2 is given by Proposition 4.2 (ii).
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We can now prove Theorems 1.5, 1.2 and 1.3.

Proof of Theorem 1.5. To prove (i), let � 2 RH 0.X; Lk/ be a section given by Propos-
ition 2.1 for some fixed k large enough. We want to prove that there exists b0 < 1 such
that for any b > b0, the measure

�d ¹s2RH 0.X;Ld / W9s02RH 0.X;Lbbdc/ such that .RX;RZs/� .RX;RZs0/º (14)

is 1 � O.d�1/, as d ! 1, where � means isotopy. Let t0 > 0 be given by Propos-
ition 4.4 (i) and set b0 D 1 � kt0. Then, for any b > b0 there exists t < t0 such that
bbdc � d � kbtdc. Fix such b and t . For any s 2 RH 0.X;Ld /, let s D s?

�btdc
C s0

�btdc

be the orthogonal decomposition given by Notation 4.1. By Lemma 4.3, if the C1.RX/-
norm of s�btdc is smaller than dn=2

4�n=2
distR�d .s/, then .RX;RZs/ � .RX;RZs0

�btdc
/.

This implies that the measure (14) is greater than the Gaussian measure of the set²
s 2 RH 0.X;Ld / W ks?

�btdckC1.RX/ <
dn=2

4�n=2
distR�d .s/

³
; (15)

which in turn, by Proposition 4.4 (i), is 1 � O.d�1/. We have thus proven that
.RX;RZs/ � .RX;RZs0

�btdc
/ with probability 1 �O.d�1/. Now, s0

�btdc
2 RHd;�btdc

which implies, by Proposition 2.3, that there exists s0 2 RH 0.X; Ld�kbtdc/ such that
s0
�btdc

D �btdc ˝ s0. Assertion (i) then follows from the fact that the real zero locus of
s0
�btdc

coincides with the real zero locus of s0. Indeed, the latter equals RZ� [RZs0 , and
this is equal to RZs0 because RZ� D ;.

The proof of (ii) follows the same lines, using the orthogonal decomposition s D
s?� C s

0
� and Proposition 4.4 (ii).

Proof of Theorem 1.2. Recall that we want to prove that there exists a0 < v.L/ such that,
for any a > a0,

�d ¹s 2 RH 0.X;Ld / W b�.RZs/ < ad
n
º D 1 �O.d�1/

as d !1. Let a0 WD
R
X
c1.L/

nbn0 , where b0 is given by Theorem 1.5 (i), and let a > a0.
By Theorem 1.5 (i), for any b > b0, the real zero locus of a global section s is dif-

feomorphic to the real zero locus of a global section s0 of Lbbdc with probability 1 �
O.d�1/. Now, by the Smith–Thom inequality (1), the total Betti number b�.RZs0/ of the
real zero locus a generic section s0 of Lbbdc is smaller than or equal to b�.Zs0/, which, by
[12, Lemma 3], has the asymptotics b�.Zs0/D

R
X
c1.L/

n.bbdc/n CO.dn�1/. In partic-
ular, with probability 1�O.d�1/, the total Betti number b�.RZs/ of the real zero locus
of a section s of Ld is smaller than

R
X
c1.L/

n.bbdc/n C �dn for any � > 0 as d !1.
Choosing � small enough, we can find 1 > b > b0 such that

R
X
c1.L/

nbn C � < a, which
implies the result.

Proof of Theorem 1.3. We want to prove that, for any a > 0, there exists c > 0 such that

�d ¹s 2 RH 0.X;Ld / W b�.RZs/ < b�.Zs/ � ad
n�1
º D 1 �O.e�c

p
d logd /

as d !1 (and also the similar estimate with 1 �O.e�cd / on the right-hand side if the
real Hermitian metric on L is analytic).
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The total Betti number of the zero locus Zs of a generic section s of Ld has the
asymptotics

b�.Zs/ D

Z
X

c1.L/
ndn �

Z
X

c1.L/
n�1
^ c1.X/d

n�1
CO.dn�2/ (16)

as d !1, where c1.X/ is the first Chern class of X . (This is a classical estimate which
follows from the adjunction formula and the Lefschetz hyperplane section theorem. The
proof follows the lines of [12, Lemma 3], by just taking care of the second term of the
asymptotics which can be derived using [12, Lemma 2].)

Similarly, for any k 2 N, the zero locus of a generic section s0 of Ld�k satisfies

b�.Zs0/ D

Z
X

c1.L/
ndn �

�Z
X

c1.L/
n�1
^ c1.X/C nk

Z
X

c1.L/
n

�
dn�1 CO.dn�2/

(17)
as d !1. Choose once and for all an integer k large enough such that nk

R
X
c1.L/

n > a.
In particular, by (16) and (17), the zero loci of generic sections s and s0 of Ld and Ld�k

satisfy
b�.Zs0/ < b�.Zs/ � ad

n�1 (18)

as d !1. Now, by Theorem 1.5 (ii), the probability that the real zero locus of a sec-
tion s of Ld is diffeomorphic to the real zero locus of a section s0 of Ld�k equals
1�O.e�c

p
d logd / (or 1�O.e�cd / if the real Hermitian metric on L is analytic). By the

Smith–Thom inequality and (18), this implies that the probability of the event “the total
Betti number of the real zero locus of a section s ofLd is smaller than b�.Zs/� adn�1” is
1 �O.e�c

p
d logd / (or 1 �O.e�cd / if the real Hermitian metric on L is analytic), which

proves the theorem.

5. Real curves in algebraic surfaces and depth of nests

In this section, we study the nests defined by a random real algebraic curve inside a real
algebraic surface. We will focus on two examples: Hirzebruch surfaces (Section 5.1) and
del Pezzo surfaces (Section 5.2). The main results of the section (Theorems 5.3 and 5.7)
say that, within these families of surfaces, real algebraic curves with deep nests are rare,
in the spirit of Theorems 1.2 and 1.3. In order to define what “deep nests” means in this
context, we need to prove some bounds on the depth of nests (Propositions 5.2 and 5.5)
which are well known to experts. These bounds play the same role as the Smith–Thom
inequality (1) plays in Theorems 1.2 and 1.3. Theorems 5.3 and 5.7 will also follow from
our low degree approximation (Theorem 1.5).

Definition 5.1. Let S be a real algebraic surface and let M be a connected component of
the real part RS .

� An oval in M is an embedded circle S1 ,!M which bounds a disk.

� Suppose thatM is not diffeomorphic to the sphere S2. Then two ovals form an injective
pair if one of them is contained in the disk bounded by the other. A nest N in M is a
collection of ovals such such that each pair of ovals in the collection is an injective pair.
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� Suppose that M is diffeomorphic to S2. Then a nest N in M is a collection of ovals
such that each connected component of M nN is either a disk or an annulus.

� The number of ovals which form a nest is called the depth of the nest.

5.1. Nests in Hirzebruch surfaces

A Hirzebruch surface S is a compact complex surface which admits a holomorphic
fibration over CP 1 with fiber CP 1. Given a Hirzebruch surface S , there exists a pos-
itive integer n such that S is isomorphic to the projective bundle P.OCP 1.n/˚ OCP 1/

over CP 1 (see for example [2]). We will denote such a Hirzebruch surface by †n. Note
that each Hirzebruch surface is simply connected, †0 is isomorphic to CP 1 � CP 1,
and †1 to CP 2 blown-up at a point.

The Hirzebruch surface †n admits a natural real structure cn, which we fix from now
on, such that R†n is diffeomorphic to a torus if n is even and to a Klein bottle if n is odd
(see, for instance, [27, p. 7]).

We denote by Fn any fiber of the natural fibration †n ! CP 1 and by Bn the section
P.OCP 1.n/˚ ¹0º/ of this fibration. Note that Bn is a real algebraic curve and Fn can be
chosen to be a real algebraic curve. The homology classes ŒFn� and ŒBn� form a basis of
H2.†n;Z/, with ŒFn� � ŒFn� D 0, ŒFn� � ŒBn� D 1 and ŒBn� � ŒBn� D n, where “�” denotes
the intersection product of H2.†n;Z/.

The second homology groupH2.†n;Z/ can be identified with the Picard group of†n.
We say an algebraic curve in †n realizes the class .a; b/ (or is of bidegree .a; b/) if its
homology class equals aŒFn� C bŒBn�. If a; b > 0, then the divisor associated with the
class .a; b/ is an ample divisor.

Proposition 5.2. Let .†n; cn/ be a real Hirzebruch surface and let a; b be two positive
integers. Then the depth of a nest of a real algebraic curve in the class .a; b/ is no greater
than b=2.

Proof. Let C be a real curve of bidegree .a; b/ with a; b > 0. Let N be a nest in RC of
depth l and choose a point p inside the innermost oval and a point q outside the outer oval
of the nest. We can choose p and q so that they lie in the same fiber Fn of the fibration
†n! CP 1 and such that the real locus of RFn intersects the nest transversally. The real
locus of the fiber RFn intersects each of the l ovals of the nest in at least two points, so
that RFn \N � 2l . On the other hand, by Bézout’s theorem, we have

RFn \N � ŒFn� � ŒC � � b;

hence the result.

Theorem 5.3. Let .†n; cn/ be a real Hirzebruch surface and a and b be two positive
integers.

(i) There exists a positive ˇ0 < bb=2c such that for any ˇ 2 .ˇ0; bb=2c/, the probability
that a real algebraic curve of bidegree .da;db/ has a nest of depth� ˇd isO.d�1/.
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(ii) For any k 2 N there exists a positive constant c such that the probability that a
real algebraic curve of bidegree .da; db/ has a nest of depth � bdb=2c � k equals
O.e�c

p
d logd /.

Proof. Notice that as a probability space, we take the linear system associated with the
divisor of bidegree .a; b/, rather than the space of real sections of the associated line
bundle. As noticed in Remark 1.4, these two probability spaces are equivalent for our
purpose.

By Theorem 1.5 (i), the real locus of a real algebraic curve of bidegree .da; db/ is
ambient isotopic to the real locus of a real algebraic curve of bidegree .bdtac;bdtbc/with
probability 1�O.d�1/, where t0 < t < 1 for some t0. From this, using Proposition 5.2,
we find that with probability 1�O.d�1/, the depth of a nest of a real algebraic curve of
bidegree .da; db/ is at most bdtb=2c. Setting ˇ0 D bt0b=2c, we obtain (i).

The proof of (ii) follows the same lines, by using Theorem 1.5 (i).

5.2. Nests in del Pezzo surfaces

An algebraic surface S is called a del Pezzo surface if the anticanonical bundle K�S is
ample. We will say that a real algebraic curve inside S is of class d if it belongs to the
real linear system defined by the real divisor �dKS , where d 2 N.

The degree of a del Pezzo surface is the self-intersection of the canonical class KS .

Notation 5.4. We denote bymS the smallest value of�H �KS , whereH is a real divisor
such that �H �KS � 1 � 2.

When S has degree � 3, choosing H D �KS we can see that mS is no greater than
the degree of S .

Proposition 5.5. Let .S; cS / be a real del Pezzo surface of degree � 3, with non-empty
real locus. Then the depth of a nest in a real algebraic curve of class d is at most dmS=2.

Proof. Let mS be the smallest value of �H � KS , where H is a real divisor such that
�H �KS � 1 � 2. Fix such an H .

LetZ be a real algebraic curve of class d and letN be a nest in RZ of depth l . Choose
generic points p and q such that p is inside the innermost oval and q is outside the outer
oval of the nest (if the connected component M where the nest is located is a sphere,
then M nN is exactly two disks, and one of the ovals bordering one of these disks is the
innermost oval and the other is the outer one). By [16], there exists a real rational curve C
of classH whose real locus passes through p and q. This curve intersects each oval of the
nest in at least two points, so thatN \RC � 2l . On the other hand, by Bézout’s theorem,
we have RC \N � �dKs �H D dmS , hence the result.

Remark 5.6. The same statement and proof also work for many degree 2 del Pezzo sur-
faces (always using a real rational curve passing through two points, whose existence
is ensured by the positivity of certain Welschinger invariants [16]). However, there exist
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degree 2 del Pezzo surfaces for which such curves may not exist, as explained in [16, Sec-
tion 2.3]. To avoid explaining these differences, we have preferred to restrict ourselves to
del Pezzo surfaces of degree � 3.

Theorem 5.7. Let .S; cS / be a del Pezzo surface of degree� 3 with non-empty real locus.

(i) There exists a positive ˛0 < bmS=2c such that for any ˛ 2 .˛0; bmS=2c/, the prob-
ability that a real curve of class d has a nest of depth � ˛d is O.d�1/.

(ii) For any k 2 N there exists a positive constant c such that the probability that a real
curve of class d has a nest of depth � bdmS=2c � k is O.e�c

p
d logd /.

Remark 5.8. The degree of a del Pezzo surface is at least 1 and at most 9. The only
degree 9 del Pezzo surface is the projective plane CP 2, and in this particular case The-
orem 5.7 follows from [9, Theorem 9].

Proof of Theorem 5.7. The proof follows the lines of the proof of Theorem 5.3, using
Proposition 5.5 instead of Proposition 5.2.
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[29] Zelditch, S.: Szegő kernels and a theorem of Tian. Int. Math. Res. Notices 1998, 317–331
Zbl 0922.58082 MR 1616718

https://zbmath.org/?q=an:1326.14139
https://mathscinet.ams.org/mathscinet-getitem?mr=3245138
https://zbmath.org/?q=an:1348.14138
https://mathscinet.ams.org/mathscinet-getitem?mr=3187930
https://zbmath.org/?q=an:1408.14187
https://mathscinet.ams.org/mathscinet-getitem?mr=3474455
https://zbmath.org/?q=an:08.0438.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1509883
https://zbmath.org/?q=an:1462.32024
https://mathscinet.ams.org/mathscinet-getitem?mr=4216567
https://zbmath.org/?q=an:1351.14035
https://mathscinet.ams.org/mathscinet-getitem?mr=3372187
https://zbmath.org/?q=an:1180.14055
https://mathscinet.ams.org/mathscinet-getitem?mr=2404951
https://zbmath.org/?q=an:08.0302.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1509892
https://zbmath.org/?q=an:0788.60069
https://mathscinet.ams.org/mathscinet-getitem?mr=1246137
https://zbmath.org/?q=an:1412.53079
https://mathscinet.ams.org/mathscinet-getitem?mr=3917219
https://zbmath.org/?q=an:1135.32001
https://mathscinet.ams.org/mathscinet-getitem?mr=2339952
https://zbmath.org/?q=an:1358.60057
https://mathscinet.ams.org/mathscinet-getitem?mr=3522141
https://arxiv.org/abs/1404.7253
https://zbmath.org/?q=an:1480.32005
https://mathscinet.ams.org/mathscinet-getitem?mr=4293939
https://zbmath.org/?q=an:0137.42503
https://mathscinet.ams.org/mathscinet-getitem?mr=0200942
https://mathscinet.ams.org/mathscinet-getitem?mr=1064867
https://mathscinet.ams.org/mathscinet-getitem?mr=2111893
https://zbmath.org/?q=an:0394.57001
https://mathscinet.ams.org/mathscinet-getitem?mr=498591
https://zbmath.org/?q=an:0922.58082
https://mathscinet.ams.org/mathscinet-getitem?mr=1616718

	1. Introduction
	1.1. Real algebraic varieties and maximal hypersurfaces
	1.2. Real Hermitian line bundles and Gaussian measures
	1.3. Statement of the main results
	1.4. Idea of the proof of Theorem 1.5
	1.5. Organization of the paper

	2. Sections vanishing along a fixed hypersurface
	2.1. A global section with empty real vanishing locus
	2.2. ==========` =`S`S="8000L2-orthogonal complement to RH_d,σℓ and ==========` =`S`S="8000C1-estimates

	3. Geometry of the discriminant: distance, degree and volume
	4. Proof of the main results
	5. Real curves in algebraic surfaces and depth of nests
	5.1. Nests in Hirzebruch surfaces
	5.2. Nests in del Pezzo surfaces

	References

