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Abstract. In this paper we study the dynamics of an incompressible viscous fluid evolving in an
open-top container in two dimensions. The fluid mechanics are dictated by the Navier—Stokes equa-
tions. The upper boundary of the fluid is free and evolves within the container. The fluid is acted
upon by a uniform gravitational field, and capillary forces are accounted for along the free bound-
ary. The triple-phase interfaces where the fluid, air above the vessel, and solid vessel wall come
in contact are called contact points, and the angles formed at the contact point are called contact
angles. The model that we consider integrates boundary conditions that allow for full motion of the
contact points and angles. Equilibrium configurations consist of quiescent fluid within a domain
whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy
functional, subject to a fixed mass constraint. The equilibrium contact angles can take on any values
between 0 and & depending on the choice of capillary parameters. The main thrust of the paper is
the development of a scheme of a priori estimates that show that solutions emanating from data suf-
ficiently close to the equilibrium exist globally in time and decay to equilibrium at an exponential
rate.
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1. Introduction

1.1. Equations of motion

The purpose of this paper is to study the dynamics of a viscous incompressible fluid
occupying an open-top vessel in two dimensions. The vessel is modeled as a bounded,
connected, open subset V C R? obeying the following pair of assumptions. First, we
posit that the vessel’s top is a rectangular channel by assuming that

Vip:=VN{yeR? |y 20} ={y eR* | L <y <L,0<y, <L} (LD
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Fig. 1. Empty vessels. Fig. 2. Vessels with fluid.

for some given distances £, L > 0. Note that L is the height of the channel, while 2/ is its
width. The second assumption on the vessel is that its boundary, 3V C R2, is C? away
from the corner points (££, L). We will use the notation

Vo 1= VN {y € R? | y, <0} (1.2)

to denote the bottom portion of the vessel, on which we place no further geometric restric-
tions. We refer to Figure 1 for two examples of vessels of the type considered here.

The fluid is assumed to occupy the vessel in such a way that Vi, is filled by the
fluid, while Vi, is only partially filled, resulting in a free boundary where the fluid meets
the air above the vessel. For each time ¢ > 0, this boundary is taken to be the graph of
a function (-, ¢) : (=€, £) — (0, co) subject to the constraint that {(+¥€,¢) < L. The
physical meaning of this constraint is that the fluid is assumed not to spill over the edges
of the vessel. Note, though, that we allow for the possibility that ¢(x,?) > L for some
x € (—£,£) and t > 0, which corresponds to the fluid extending past the vessel’s top away
from the edges. The points where the fluid, vessel, and air meet are (£, {(££,¢)) and
are called the contact points.

In mathematical terms, we assume that the fluid occupies the time-dependent open set

Q)= VomU{y eR? | =L <y <£,0<y, <l(y1.1)} 1.3)
We will write
S() ={y €R? | |y1] < €and yo = {(y1.0)} C IQ(r) (14)
for the moving fluid-vapor interface and
3(t) = 0Q2(r) \ () (1.5)

for the moving fluid-solid interface. See Figure 2 for an example of two fluid domains in
different types of vessels.

The fluid’s state is determined at each time by its velocity and pressure functions,
(u, P) : Q(t) — R? x R, for which the associated viscous stress tensor is given by
S(P,u): Q(t) = R?*2 via

S(P,u) := PI — uDu, (1.6)
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where [ is the 2 x 2 identity, i > 0 is the fluid viscosity, and the symmetrized gradient is
Du = Du + (Du)T . Extending the divergence operator to act on S in the usual way, we
see that div S(P,u) = VP — uAu — uVdivu.

In order to state the equations of motion, we first need to enumerate several terms
that affect the dynamics. The fluid is assumed to be of unit density and acted on by a
uniform gravitational field pointing straight down with strength g > 0. Surface tension is
accounted for, and we write 0 > 0 for the tension coefficient along the fluid-vapor inter-
face, which is the graph of {(-, ¢). The parameter 8 > 0 is the inverse slip length, which
will appear in Navier’s slip condition on the vessel side walls. The energetic parameters
Ysvs Vst € R measure the free-energy per unit length associated to the solid-vapor and
solid-fluid interaction, respectively, and are the analogs of o for the other interfaces. We
define

[v] == vsv = ¥st; (1.7)
and we assume that [y] and o satisfy the classical Young relation [44]:
IIyIl/o < 1. (1.8)

Finally, we define the contact point velocity response function # : R — R to be a C?
increasing diffeomorphism such that % (0) = 0.

We can now state the equations of motion that govern the dynamics of the unknown
triple (u, P, ¢) fort > O:

ou+u-Vu+ VP —puAu=0 in Q(2),

divu =0 in Q(z),

S(P,u)yv = gtv—aH()v on X (1),
(S(P,u)v—PBu)-t=0 on X(t), (1.9
u-v=_0 on X(2),

0:C =us—u10y,¢ on X(1),

W @iL(xL0) = [y] F oﬁ(ﬂ,r)

where v the outward-pointing unit normal, 7 is the associated unit tangent, and

01§ )
H =0 ——=— 1.10
O =0 (110

is the mean-curvature operator. The first two equations in (1.9) are the incompressible
Navier—Stokes equations for a fluid of unit density. The third equation is the balance of
stress on the free surface, which is also called the dynamic boundary condition. Note that
in principle the gravitational forcing term —ge, should appear as a bulk force in the first
equation, but by shifting the pressure unknown via P — P + gx, we have shifted gravity
to a surface term, as it is more convenient in this form. The fourth and fifth equations in
(1.9) constitute the Navier-slip condition; in contrast with the no-slip condition, the Navier
condition allows for fluid slip along the fluid-solid interface, at the expense of generating
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a stress that acts against the motion. The sixth equation in (1.9) is called the kinematic
equation, as it tracks how the free surface function changes due to the fluid velocity. The
final equation in (1.9), which is essential in our analysis and will be discussed more later
in Section 2.2, is the contact point response equation.

The problem (1.9) is an evolution equation and must be augmented with two pieces
of initial data:

(1) the initial free surface, ¢(-,0) : (—£,£) — (0, c0), which determines the initial fluid
domain 2(0),

(2) the initial fluid velocity ug : 2(0) — R2, which satisfies divuo = 0 in (0) and
ug - v = 0on XZ;(0).

As usual for the incompressible Navier—Stokes system, the initial pressure does not need
to be specified. The initial mass of the fluid is denoted by

£
My = |Q(0)| = |Voum| + Miop, where M, = /z {(y1,0) dy;. (1.11)

The fluid’s mass is conserved in time due to the combination of the kinematic boundary
condition and the solenoidal condition for u from (1.9):

d d L L
—|2(¢) =—/ =/ a =/ u-v:/ divu = 0. (1.12)
dll | dt —eé —t & 03 Q@)

1.2. Equilibria
A steady state equilibrium solution to (1.9) corresponds to setting u(y,t) =0, P(y,t) =
Py e R, and ¢(y1,t) = Lo(y1) with {p and Py solving

gCo - 0%@0) =Py on (=L, 0),

31§0 =
By a slight abuse of notation, solutions to (1.13) are called equilibrium capillary surfaces.
Note that the boundary condition specifies the cosine of the angle formed by the graph at
the endpoints. The constant pressure Py is not arbitrary; indeed, it is uniquely determined
by specifying the mass in Vo, at equilibrium, i.e. prescribing

(1.13)

¢
M, = /Zfo(h)dyb (1.14)
To see this, we use (1.13) to compute
2P, /éP fz(z 5 (6o)) = gM Iibo My —2[]
0= 0= g6o—O0 0)) =8 — 0 =& —41Y1
) —t T F (01607 = .
(1.15)
which in turn implies that
Mo — 2
Py = M_ (1.16)

20
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The equations (1.13) are the Euler-Lagrange equations associated to constrained min-
imizers of the energy functional .# : W11((—{, £)) — R defined via

)4
7@ = [ (5162 + oV THTEF) - pIC@ + 2.

subject to the mass constraint My, = ff ¢ . In this framework the pressure Py is under-
stood as the Lagrange multiplier associated to this constraint. We now state an existence
result for equilibrium capillary surfaces. For a detailed proof we refer, for instance, to
[21, Appendix E], which is a one-dimensional version of results found in the book of
Finn [16].

Theorem 1.1. There exists a constant My;n > 0 such that if Miop > Muyin then there exists
a unique solution o € C*°([—L, £]) to (1.13) that satisfies (1.14) with Py given by (1.16).
Moreover, §y is even, minj—g ¢1 o > 0, and if .7 is given by (1.17), then I ({o) < (V)
forall yy € WY (=L, €)) such that [*, ¢ = My,

Throughout the rest of the paper we make the following two crucial assumptions on
the parameters.

(1) We assume that My, > My, in order to have an equilibrium &g as in Theorem 1.1.

(2) We assume that the parameter L > 0, the height of the rectangular channel Vi,
satisfies the condition {o(£{) < L, which means the fluid is not just about to spill
over the top of the vessel.

1.3. Previous work and origins of the model (1.9)

The contact lines (or contact points in two dimension) that form at triple junctions between
three distinct phases (fluid, solid, and vapor phases in the present paper) have been a sub-
ject of intense study since the pioneering work of Young [44] in 1805. For an exhaustive
overview we refer to de Gennes [12]. Here we will content ourselves with a terse review.

The story began with the study of equilibrium configurations by Young [44],
Laplace [26], and Gauss [17], who discovered the underlying variational principle for .
described above and in Theorem 1.1 (though, obviously, the theorem is restated in the
modern language of Sobolev spaces). A key byproduct of this work is that the angle
formed between the solid wall and the fluid (through the vapor phase), which is known as
the equilibrium contact angle Oeq (see Figure 3), is related to the free energy parameters
Vsts Vsv, and o via Young’s equation

cos(eg) = LV IV, (1.18)
o o
Note that this manifests in (1.13) through the equations for d; (o at the endpoints.

The dynamic behavior of a contact line or point is significantly more delicate. For
instance, including a dynamic contact point in a fluid-solid-vapor model presents chal-
lenges to standard modeling assumptions made when working with viscous fluids. Indeed,
the free boundary kinematics (which may be rewritten as ;¢ = u - v+/1 + |V¢|?) and the
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Fig. 3. Equilibrium contact angle.

typical no-slip boundary conditions for viscous fluids (¥ = 0 at the fluid-solid interface)
are incompatible: combining the two leads to the prediction that 9, = 0 at the contact
points, i.e. that the fluid is pinned at its initial position on the solid. A moment’s experi-
mentation with an everyday coffee cup reveals this prediction to be nonsensical, and we
are led to abandon the no-slip condition in favor of another boundary condition that allows
for motion of the contact point.

The surveys of Dussan [14] and Blake [5] provide a thorough discussion of the efforts
of physicists and chemists in determining the dynamics of a contact point. The general
picture is that the dynamic contact angle, 04y, and the equilibrium angle, 8.4, are related
via

Va = F(COS(Gdyn) - COS(Qeq))v (1.19)

where 1, is the contact point velocity (along the solid) and F is some increasing func-
tion such that F'(0) = 0. The assumptions on F enforce the experimentally observed fact
that the slip of the contact line acts to restore the equilibrium angle (see Figure 4). Equa-
tions of the form (1.19), but with different forms of F, have been derived in a number of
ways. Blake-Haynes [6] arrived at (1.19) through thermodynamic and molecular kinet-
ics arguments. Cox [10] used matched asymptotic analysis and hydrodynamic arguments.
Ren-E [36] derived (1.19) from thermodynamic principles applied to constitutive equa-
tions. Ren—E [35] also performed molecular dynamics simulations and found an equation
of the form (1.19). These simulations also indicated that the slip of the fluid along the
solid obeys the well-known Navier-slip condition

u-v=0 and S(P,u)v-t=pPu-t (1.20)

for some parameter 8 > 0. The system (1.9) studied in the present paper synthesizes the
Navier-slip boundary conditions (1.20) with the general form of the contact point equation
(1.19). Indeed, the last equation in (1.9) may be rewritten as

01¢

V1+101g?

W (Va) =#(0:0) =[y] Fo (££€.1) = 0(cos(Bayn) — cos(6eq)),  (1.21)
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(A) geq < edyn (B) eeq > edyn

Fig. 4. The same dynamic fluid configuration, with the dynamic contact angle 64y, marked in blue,
but with different equilibrium contact angles .y, marked in red. In configuration (A) the condition
Oeq < Bayn in (1.19) results in a downward pointing contact point velocity. In configuration (B) the
condition feq > Ogyn in (1.19) results in an upward-pointing contact point velocity. In both cases,
the resulting motion acts to return the dynamic angle to the equilibrium one.

which is (1.19) with the convenient reformulation # = o F ~!. It should be noted that we
have only recorded the form of the contact line model appropriate for our 2D vessel-type
domains. The model can also be formulated in three dimensions and in more general
domains, but is necessarily more complicated to state due to the higher-dimensional
geometry.

Given the numerous derivations of (1.19), we believe that its integration into the model
(1.9) along with the Navier-slip condition yields a good general model for describing the
dynamics of a viscous fluid with dynamic contact points and contact angles. A goal of
this article is to provide further evidence for the validity of the model by proving that
the equilibrium capillary surfaces are asymptotically stable, or more precisely, that suffi-
ciently small perturbations of the equilibria give rise to global-in-time solutions that return
to equilibrium exponentially fast as time diverges to infinity. In recent previous work [21]
we proved this in the much simpler case in which the Navier—Stokes equations in (1.9)
were replaced by the Stokes equations, which yields a sort of quasi-static evolution. The
second author and Wu [42] proved corresponding results for the Stokes droplet problem in
which the vessel configuration is replaced with a droplet sitting atop a flat substrate, and
with Zheng [45] established local existence results. The Navier—Stokes problem presents
numerous challenges compared to the Stokes problem, but we will delay a discussion of
these to Section 2.2.

To the best of our knowledge, there are no other prior results in the literature related
to models in which the full fluid mechanics are considered alongside dynamic contact
points and contact angles. However, there are results with a subset of these features.
Schweizer [38] studied a 2D Navier—Stokes problem with a fixed contact angle of
/2. Bodea [8] studied a similar problem with fixed /2 contact angle in 3D channels
with periodicity in one direction. Kniipfer—Masmoudi [23, 24] studied the dynamics of
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a 2D drop with fixed contact angle when the fluid is assumed to be governed by Darcy’s
law. Related analysis of the fully stationary Navier—Stokes system with free, but unmov-
ing boundary, was carried out in 2D by Solonnikov [40] with contact angle fixed at 7,
by Jin [22] in 3D with angle 7r/2, and by Socolowsky [39] for 2D coating problems with
fixed contact angles. For inviscid fluids there has been recent progress on models with
floating or emerging solids but without dynamic laws for the contact angle of the form
(1.19): see Lannes [27], de Poyferré [13], and Bocchi [7]. A simplified droplet model
without fluid coupling was studied by Feldman—Kim [15], who proved asymptotic stabil-
ity using gradient flow techniques. It is worth noting that much work has also been done
on contact points in simplified thin-film models; we refer to the survey by Bertozzi [4] for
an overview.

We conclude this overview of the model with some stability heuristics. Sufficiently
regular solutions to (1.9) obey the energy-dissipation equation

d 1 ,
a( /Q MR dr £ S G r)))

+L(t)E|Du(x,t)| dx+/ t lu(x,t)|> dx + Z 0:8(al,. )W (3:¢(akl,1)) =0,

mo 2 o= (1.22)

where .# is the energy functional from (1.17). This identity may be derived in the usual
way by dotting the first equation in (1.9) by u, integrating by parts over €2(¢), and employ-
ing the other equations. The temporally differentiated term in parentheses is the physical
energy, comprising the fluid’s kinetic energy (the first term) and the gravity-capillary
potential energy (the second term). The three remaining terms are the dissipation due
to viscosity (the first term), slip along fluid-solid interface (the second), and slip along
the contact point (the third). Crucially, the assumptions on % imply that z%# (z) > 0 for
z # 0, which means the contact point dissipation term provides positive definite control
of 9;¢ at the contact point. Thus, the dissipation has a sign and serves to decrease the
energy. Since the equilibrium configuration ¥ = 0, p = 0, { = {p is the unique global
minimizer of the energy, (1.22) formally suggests that global-in-time solutions will con-
verge to the equilibrium as # — oco. We will prove that this is indeed the case, provided
that the initial data are sufficiently close to the equilibrium configuration, and we will
show that such solutions must decay to equilibrium exponentially.

1.4. Problem reformulation

In order to analyze the system (1.9) it is convenient to reformulate the problem in a fixed
open set. The stability heuristic given above suggests that for large time, the fluid domain
should not differ much from the equilibrium domain, which suggests that we employ it
as the fixed open set. To this end we consider ¢y € C*°([—£, £]) from Theorem 1.1 and
define the equilibrium domain Q C R? via

Qi=VmU{x eR?| - <x; <Land 0 < x5 < &o(x1)). (1.23)
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Note that 9Q is C? away from the contact points (&£, {o(££)), but that & has corner
singularities there, so dS2 is only Lipschitz globally. Depending on the choice of the cap-
illary parameters o, ysy, and yy¢, the angles formed at the contact points can take on any
value between 0 and .

We decompose the boundary Q2 = ¥ U ¥, where

Yi={xeR?| -l <x; <landxs = &(x1)} and I := IQ\X. (1.24)

The set X is the equilibrium free surface, while X denotes the “sides” of the equilib-
rium fluid configuration. We will write x € Q as the spatial coordinate in the equilibrium
domain. We will write

No = (=910, 1) (1.25)

for the nonunit normal vector field on X.

In our analysis we will assume that the free boundary is a small perturbation of the
equilibrium interface by introducing the perturbation 7 : (—£,£) x Rt — R and positing
that

$(x1,1) = Golxr) + nlxr, 7). (1.26)

We will need to define an extension of 7 that gains regularity. To this end we first choose E
to be a bounded linear extension operator that maps C™((—£, £)) to C™(R) for all 0 <
m < 5and WSP((—£,£)) to WSP(R) forall 0 <s <5and 1 < p < co (such a map is
readily constructed with the help of higher order reflections, Vandermonde matrices, and
a cutoff function — see, for instance, [28, Exercise 7.24] for integer regularity, but non-
integer regularity follows then by interpolating). In turn, we define the extension of 7 to
be the function 7 : {x € R? | x, < Eto(x1)} x Rt — R given by

N(x,1) = PEn(x1, x2 — Edo(x1).1), (1.27)

where J is the lower Poisson extension defined by (B.9). Note that although 7(-, ?) is a
priori defined in the unbounded set {x € R? | x, < E{o(x;)}, in practice we will only
ever use its restriction to the bounded set Q C {x € R? | x; < E{o(x1)}.

Choose ¢ € C*°(R) such that ¢(z) =0forz < %min Coand ¢(z) =z forz > %min o.
We combine ¢ and the extension 7 to define a map from the equilibrium domain to the
moving domain €2(¢):

¢ (x2)
olx1)

It is readily verified that the map & satisfies the following properties:

(1) ®(x1, So(x1), 1) = (x1, §ol(x1) + n(x1, 1)) = (x1,§(x1, 1)), and hence ®(X, 1) =
(1),

(2) ®(x,t) = x for x € Vi, i.e. the map is the identity in the bottom portion of the
vessel and thus only distorts the upper rectangular channel Vi,

(3) D(L,x2,1) = (€, x2 + P (x2)7(£L, x2)/Lo(£L)), and hence (X N {x; = £,
x2 = 0},1) = Es(1) N{y1 = £L, y» = 0}.

QLoxm- (xl,xz + F](x,t)) = D(x,t) = (y1, y2) € Q2). (1.28)
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Moreover, if 7 is sufficiently small (in an appropriate Sobolev space), then the mapping ®
will be a C! diffeomorphism of © onto £2(¢) that maps the components of 32 to the
corresponding components of d€2(¢).

We will use ® to reformulate (1.9) in 2, but first it is convenient to introduce some
notation. We write

(1 0 . (1 —AK
vq>_(A J) and A= (VO _(0 K) (1.29)
for
w I
W=f, A= Waij— —0ad1 8o, J=1+W82f;+¢—n, K=J"1' (130)
So So Co

Note that the Jacobian of our coordinate transformation is exactly J = det V®.

Provided that @ is a diffeomorphism (which will always be satisfied in our analy-
sis), we can reformulate (1.9) by using ® to change coordinate systems. This results in a
PDE system that has the benefit of being posed in a fixed set but the downside of being
significantly more nonlinear. In the new system the PDE becomes

du — MWK u +u-Vyu 4+ divg Sp(P,u) =0 in Q,

divgu =0 in 2,

SA(PAYN = (g — s H ()N on s,
dn=u-N on X, (1.31)
(Sa(Pu)-v—Pu)-t=0 on X,

u-v=0 on X,
W(@n(£L.1) = [y] F a\/ﬁw(ﬂ,o,

where { = {o + 71 and
N = (=018, 1) = No — (317, 0) (1.32)

is the nonunit normal to the moving free boundary. Here we have written the differential
operators V4, div4, and A 4 with their actions given by (V4 f); := o#;;0; f, divy X 1=
Aij0; Xi, and Ay f = divy V4 f for appropriate f and X. The vector field u - V 4u
has components (v - Vqu); := ujA;rdru;. We also write S4(P,u) = PI — uD 4u for
the stress tensor, where I the 2 x 2 identity and (D 4u);; = A;x0xu; + Ajrdru; is the
symmetric #-gradient. Note that if we extend div4 to act on symmetric tensors in the
natural way, then div 4 S4 (P, u) = V4 P — wA 4u for vector fields satisfying div 4 u = 0.

Now that we have reformulated our PDE system in a fixed domain, it is convenient
to make a final modification by rewriting (1.31) as a perturbation of the equilibrium con-
figuration. In other words, we posit that the solution has the special form u = 0 + u,
P = Py + p, ¢ = ¢y + n for new unknowns (u, p, n). In order to record the perturbed
equations, we first need to introduce some notation.

To begin, we use a Taylor expansion in z to write

y+z _ y z
Tyt 2P AP e R0 0
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where R € C*®(R?) is given by

P =2+ )
Ry, z) = 3———— 5. 1.34
.2) /0 A+l +spr® (139
By construction,
d 0 d
i o N R, D), (135)

L+ 0152 (1419182 (1 +10150[2)3/2

which then allows us to use (1.13) to compute

017
(14 19180]2)3/2

)-—am(ﬁ(mzmalm) (1.36)

8¢ —oH() = (g0 —0H (%)) + gn — 031( ) — 001 (R (0180, 917))

01n

= Po+ —08(———————
OTETTON (T 9120 2)372

and

01¢

V01212

FoR (0180, 1) (£L, 1) = F

00180
(1+19180/)1/2
001N
(14]9180[2)3/2

0011

%o A+ 19150 )2

(£, )=[y] F () F (£L,1)

(£6,)FoR(D1L0, d1n)(£L, 7). (1.37)

Next, we compute
divgy Sy (P, u) = divg Su(p,u) in 2,
S4(P,u)N = Sxp(p,u) N + PgN on X, (1.38)
Sa(P,u)v -t =Syu(p,u)-t on Xs.

Finally, we expand the velocity response function inverse % € C2?(R). Since ¥ is
increasing, we may set
kK =#'0)>0. (1.39)

We then define the perturbation W eC 2(R) as
N 1
W(z)=-W(z)—z. (1.40)
K

We now insert the expansions (1.36)—(1.38) and (1.40) into (1.31). This yields the
following equivalent PDE system for the perturbed unknowns (u, p, n):

du — MWK u +u-Vyu 4+ divg Syp(p,u) =0 in 2,

divoau =0 in 2,

Sa(p)N = [gn— 091 (Grateymz + R@1%o, 1m)]¥ on T,

n=u-N on X, (1.41)
(Sa(pu)-v—PBu)-t=0 on X

u-v=>0 on X,

k(2L 1) + k¥ (n(£L,1)) = %(MW + R(D180, I1m)) (£, 1).
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It is in this form that we will study the problem. Throughout the paper we assume that
Mo, > My is specified as in the discussion after Theorem 1.1. For the data to (1.41) we
then have:

(1) the initial free surface 1o, which we assume satisfies
¢
/ no =0 (1.42)
—L

so that the equilibrium mass, M., matches the initial mass, i.e.

£
/l(éo +10) = Miqp, (1.43)

(2) the initial velocity ug : Q — R?, which we assume satisfies divy, uo = 0 as well as
the boundary conditions u#g - v = 0 on X,.

2. Main results and discussion

2.1. Energy and dissipation functionals and other notation
In order to state our main result, we must first introduce some notation.

Equilibrium angles and regularity parameters: We begin by introducing the supplemen-
tary equilibrium contact angle

Weq = T — Oeq € (0, 1), 2.1

which is useful as it determines the angles created at the contact points in the fluid domain
at equilibrium (see Figure 3). This angle, which can take on any value between 0 and 7
depending on the choice of the capillary parameters o, sy, and Y, plays an important role
in the elliptic regularity theory associated to €2, as it determines the possible regularity
gain. For the Stokes problem with boundary conditions related to those we use in (1.41),
the regularity is related to the following parameter, computed by Orlt—Sindig [33]:

Emax = 5max(a)eq) =min{l,—1+ n/weq} € (0,1]. (2.2)

For a parameter 0 < ¢ < gnax < 1 we set

qe = 2 € (1,2). (2.3)
2—¢

Note that 0 < e— < &4 < gmax(w) implies that
Qe < deq < Qemuy- (2.4)

Then [33] shows that the regularity available for the velocity in the associated Stokes
problem cannot reach W 2-4emax
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With en,x in hand, we fix three parameters «, e—, 4 such that

o [1—ep &4 —e_ e—+1
O<o<e. <éep < é&mx, @ <min 7 3 , &4

For brevity we also write

4+ =qe, and g- =q._ (2.6)

in the notation established in (2.3). We will crucially use these parameters to track regu-
larity in this paper.

Norms: We write W”’(I‘;Rk) forT e{Q,2,%},0<seR, 1 <p<oo,and1 <
k € N for the usual Sobolev spaces of R¥-valued functions on these sets. In particular,
Wo-r(T; R¥) = L?(T; R¥). When k = 1 we typically write W*?(T') = W*?(T; R).
When p = 2 we write H*(I'; R¥) = W2(I"; R¥). For the sake of brevity, we typically
write our norms as || - ||ws.», suppressing the domain I" and the codomain R¥. We employ
this notation whenever it is clear from the context what the domain and codomain are;
in situations where there is ambiguity (typically due to the evaluation of bulk-defined
functions on ¥ or X via trace operators) we will include the domain in the norm notation.
Next we define a useful pairing for the contact points that gives a contact point norm: we
set

[/ gle = f(=0g(=0) + f(Og®) and [fl¢ =[] fle 2.7)

Energy and dissipation functionals: We define the following energy and dissipation func-
tionals. For 0 < k < 2 we define the natural energy and dissipation via

v =197 ull7 2+ 195 nl3  and  Dyx =195l + 1105 ul 72, + 05 017, (28)

where [-]¢ is as in (2.7). We also set

2 2
& = Z Eix and Dy = Z Dy 2.9)
k=0 k=0

Then the full energy is

2 2 2,112 2 2
& = ull2ay + 100l zp ez + 107ulizr0 + 121G, 10y + 1921172

F 1135170y + 1860137210 —ara + 18701171 (2.10)

and the full dissipation is

2

D =Dy + [ull oy + 1802520 + Y 1050 NG+ 121310y + 19021510
k=0

2
k
Y NN+ 100y + 10600+ 1030112
k=0

@2.11)
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Universal constants and Einstein summation: A generic constant C > 0 will be called
universal if it depends on €2, the dimension, or any of the parameters of the problem,
but not on the solution or the initial data. In the usual manner, we allow the value of
these constants to change from one estimate to the next. We employ the notation a < b
to mean that ¢ < Cb for a universal constant C > 0, and we write a =< b to mean that
a < b < a. From time to time we will use the Einstein convention of implicitly summing
over repeated indices in vector and tensor expressions.

2.2. Main results and discussion

Our main result is an a priori estimate for solutions to (1.41) that shows that if solutions
exist in a time horizon [0, T') and have sufficiently small energy, then in fact the dissi-
pation is integrable on [0, 7") and the energy decays exponentially. Moreover, we have
quantitative estimates in terms of the data.

Theorem 2.1. Let weq € (0, ) be given by (2.1), 0 < eypax < 1 be given by (2.2), and
suppose that a, e_, and e satisfy (2.5). Suppose that & and D are defined with these
parameters via (2.10) and (2.11), respectively. Then there exists a universal constant 0 <
80 < 1 such that if a solution to (1.41) exists on the time horizon [0, T) for 0 < T < oo
and obeys the estimate

sup &(7) < o, (2.12)

0<t<T

then there exist universal constants C, A > 0 such that

T
sup e*&(t) +/ D(t)dt < C&(0). (2.13)
o<t<T 0

Note that we prove the theorem for vessel domains V of the form described at the start
of Section 1.1, in which Vi, consists of a rectangular channel Viop. It will be clear in the
proof that the theorem remains valid for vessels that do not possess a bottom component,
Voun. That is, the theorem also holds if the vessel is itself a rectangular channel: V = Vi,p.
Moreover, the theorem will also remain true in vessels in which Vi, is not globally C?
but is instead C? away from finitely many Lipschitz corners with interior angles less
than 7. However, the presence of the rectangular channel is essential in our analysis;
when this is removed, as studied in [42] for quasi-static droplet evolution, the problem
becomes significantly more challenging.

The a priori estimates of this theorem may be coupled to a local existence theory that
verifies the small energy condition is satisfied, provided the data are small enough and all
necessary compatibility conditions are satisfied. To keep the present paper of reasonable
length, we will neglect to develop this local existence theory here and instead develop it
elsewhere. Such a theory will be developed on the basis of the a priori estimates proved
here in the same way that [45] develops the local theory for the Stokes version of (1.41)
based on the a priori estimates for the Stokes system that we developed in [21]. Assuming
the local existence theory, we may combine it with our a priori estimates to deduce the
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existence of global-in-time decaying solutions as in the following theorem. This provides
further evidence that the contact dynamics relation (1.19) together with the Navier-slip
boundary conditions yields a good model of contact points in fluids.

Theorem 2.2. Let weq € (0, ) be given by (2.1), 0 < emax < 1 be given by (2.2), and
suppose that a, e_, and e satisfy (2.5). Suppose that & and D are defined with these
parameters via (2.10) and (2.11), respectively. There exists a universal constant 0 < §; < 1
such that if §(0) < &1, then there exists a unique global solution triple (u, p,n) to (1.41)
on the time horizon [0, 00) such that

sup e“e:(t)+/ D(t)dt < C&(0), (2.14)
0

0<t<oo
where C, A > 0 are universal constants.

In [21] we proved analogous results for the Stokes version of (1.9) (the terms d,u + u -
Vu in the first equation are neglected), so it is prudent to begin the discussion of our cur-
rent results by comparing and contrasting the Stokes and Navier—Stokes problems and the
difficulties they present. For both problems, an examination of the control provided by the
basic energy-dissipation relation (1.22) (the kinetic energy term in the energy is removed
for the Stokes problem) reveals that neither the energy nor the dissipation provide enough
control to close a scheme of a priori estimates. Hence, we are forced to analyze solutions
in a higher regularity context, and it is here that it becomes clear that the geometry of
the fluid domain is the central difficulty. Indeed, the first issue it causes is that even after
reformulation in a fixed domain as in (1.41), the only differential operators compatible
with the domain are time derivatives. We then need a strategy for bootstrapping from
energy-dissipation control of the time derivatives to higher spatial regularity via elliptic
estimates.

It is at this point that we encounter the fundamental difficulty in analyzing the contact
point problem. Both the moving domain €2(#) and the equilibrium domain €2 have corners
at the contact points, and thus the boundary is at most globally Lipschitz. In such domains
it is well-known that the corners can harbor singularities in the solutions to elliptic equa-
tions. For the Stokes problem in 2 with Navier-slip boundary conditions, the work of
Orlt-Sindig [33] shows that the velocity cannot even belong to W2:4emax | where &y 1S
determined by the equilibrium angle as in (2.2) and ¢, € (1,2) is then given by (2.3).
Consequently, regardless of how many temporal derivatives we gain basic control of, there
is a fundamental barrier to the spatial regularity gain we can hope to achieve.

In closing a scheme of a priori estimates for (1.41), the mandate then becomes to
make due with what is available and close with little spatial regularity. In our work on
the Stokes problem [21], we do this by crucially exploiting a version of the normal trace
estimate for the viscous stress. This allows us to get a dissipative estimate for K 3%n
in H~1/2, where X is the gravity-capillary operator associated to &y (see (8.3)). With this
in hand, we take advantage of the contact point boundary condition (the last equation in
(1.41)) in two essential ways. First, this condition is responsible for providing a dissipative
estimate of [337],. Second, this condition serves as a boundary condition compatible with
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the elliptic operator X, which couples with the aforementioned dissipative control to yield
an H3/? estimate for 927 in terms of the dissipation. This estimate then serves as the
starting point for a chain of elliptic estimates in weighted L2-based Sobolev spaces that
allow us to close for the Stokes problem. Here the choice of L2-based weighted spaces
is convenient as it maintains consistency with the L2-based estimates coming from the
energy and dissipation.

For the Navier—Stokes problem considered in the present paper, the convective term
d;u + u - Vu precludes the use of the normal trace estimate for the twice time-differ-
entiated problem since neither the energy nor the dissipation provides control of 33u in
this case. We are thus forced to seek another mechanism for obtaining a sufficiently high
regularity estimate for 37, which we need to kick start the chain of elliptic gains. This is
the central difficulty in dealing with the contact point Navier—Stokes system (1.41).

The principal technical achievement of this paper is the development of a scheme of
a priori estimates that exchanges the full H3/2 estimate used for the Stokes problem for
a slightly weaker estimate in H3/27%_ where o is given by (2.5). Fortunately, this is just
barely sufficient to kick start the elliptic gain and allow us to close. In order to execute
this, we have had to switch from weighted L2-based Sobolev spaces to unweighted L9-
based spaces for values of g just below the maximal value g, . This yields key technical
advantages in dealing with several nonlinear terms.

2.3. Technical overview and layout of paper

We now turn our attention to a brief technical overview of our methods, which we provide
in a rough sketch form meant to highlight the main ideas while suppressing certain techni-
cal complications. The starting point of our scheme of a priori estimates is a version of the
energy dissipation relation (1.22) for (1.41). We need versions of this for the solution and
its time derivatives up to order 2. These are recorded in Section 3. Upon differentiating
(1.41) we produce commutators, so we end up with an energy dissipation relation roughly
of the form

d
Eg” + g[)“ = JV, (215)

where &, and D, are as in (2.9) and .4 represents nonlinear interactions arising due to
the commutators. Section 3 also contains a number of other basic estimates.

To advance from the basic control provided by &, and Dy to higher spatial regularity
estimates we need elliptic estimates for a Stokes problem related to (1.41). We develop
these in Section 4 within the context of L9-based spaces instead of the weighted 1.2-based
spaces we employed in [21]. Here the main technical problem is associated to the upper
bound on the regularity gain available due to the corner singularities in 2. An interesting
feature of our main result, Theorem 4.7, is that it treats the triple (v, Q, &) as the elliptic
unknown, but £ only appears on the boundary.

With the elliptic estimates and (2.15) in hand, we may identify most of the nonlinear
terms that need to be estimated in order to close our scheme. Due to the limited spatial
regularity, these estimates are fairly delicate and require a good deal of care. In particular,
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in dealing with .4 in (2.15), we need structured estimates of the form
| A <C&8D forsomeh >0, (2.16)

where & and D are the full energy and dissipation from (2.10) and (2.11), in order to
have any hope closing with (2.15). In Section 5 we record a host of nonlinear interaction
estimates of this form. In Section 6 we record similar estimates but in terms of the energy
functional instead of the dissipation.

Section 7 records estimates of the nonlinear terms that appear in applying the elliptic
estimates from Theorem 4.7. An interesting feature of these is that the upper bound of
regularity identified by Orlt—Sindig [33] yields an open interval (0, g, ) of possible
integrability exponents. We take advantage of this by using two different exponents 0 <
q— < g+ < g, asin(2.5), with g4 associated to the nondifferentiated problem and ¢_
associated to the once differentiated problem. The parameter g_ can be made arbitrarily
close to ¢, , but the tiny increase we get in advancing to g4+ plays an essential role in
Proposition 7.11, which highlights how delicate the nonlinear estimates are.

As mentioned above, the key to starting the elliptic gains is an estimate of 377, but the
normal trace argument we used in [21] to estimate this term in H 3/2 is unavailable for
the present problem. In place of the normal trace technique, we instead employ a delicate
argument using test functions in the weak formulation of the twice time-differentiated
problem, together with the dissipative estimate of [8?77]@. This is delicate for two rea-
sons. First, we have very poor spatial regularity at that level of time derivative, so we
must be careful with how the test function interacts with the solution. Second, we aim
to achieve estimates for the fractional regularity of 27, but in the weak formulation we
find 927 interacting with the test function on (—¢, £) via an H !-type inner product with
the equilibrium free surface function {y appearing as a weight (see (8.1)). The standard
Fourier-analytic tricks that one would try on a torus or full space do not work here due to
the finite extent of (—£, £) and the weight. We are thus led to replace the standard Fourier
tricks with the functional calculus associated to the gravity-capillary operator X, defined
by (8.3), which provides a scale of custom Sobolev spaces measuring fractional regularity
in terms of the eigenfunctions of J . This allows us to build test functions that can pro-
duce higher fractional regularity estimates for d?7. Unfortunately, despite major effort,
we were unable to derive an exact H>/? estimate for 927. The obstacles are primarily due
to the technical complications that arise from the criticality of A '/? in one dimension.

We develop this functional calculus in Section 8. It provides us with the ability to
make sense of fractional powers of J, which is essential in our test function method for
deriving the needed estimate. The scale of custom Sobolev spaces we use are defined in
terms of the eigenfunctions of K, but we characterize them in terms of standard Sobolev
spaces in Theorem 8.23 when the regularity parameter satisfies 0 < s < 2. A serious
technical complication in our test function / functional calculus method is that we would
like to exploit an equivalence of the form

(@0, K222 5 = 1027112320 (2.17)
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where (-,-);,x is as in (8.1) and « satisfies (2.5), but we cannot guarantee that
K1/2e 921 € H' in our functional framework. To get around this, for j € N and s > 0
we introduce the operators Djs. in Section 8.7. These are approximations of the fractional
differential operators D* := J*/2 formed by projecting onto the first j eigenfunctions
of K in the spectral representation of D*. The eigenfunctions are smooth up to the bound-
ary, so they work nicely when replaced on the left side of (2.17). We then aim to recover
the desired control by working with these operators and sending j — oo.

In Section 9 we carry out the details of our test function / functional calculus method
to derive the estimate for 92 in H3/27%. Along the way we also use similar methods to
derive a couple other useful estimates for , d;7, and d; p. These all serve as enhancements
to the basic energy-dissipation estimate (2.15) since they are given in similar form.

In Section 10 we complete the proof of Theorem 2.1. We combine an integrated form
of (2.15) with the enhancement estimates to form the core estimates in energy dissipation
form. These are then coupled to the elliptic estimates to gain spatial regularity. We then
employ our array of nonlinear estimates to derive an estimate of the form

t
&(1) +/ D <E@s) (2.18)

forall0 <s <t < T, and from this we complete the proof with a version of Gronwall’s
inequality, Proposition B.6.

Appendix A records the lengthy forms of various nonlinearities and commutators.
Appendix B contains a number of useful tools from analysis that are used throughout the
paper, including product and composition estimates, estimates for the Poisson extension,
and the Bogovskil operator.

3. Basic tools

In this section we record a number of basic identities and estimates associated to the
problem (1.41).

3.1. Energy-dissipation relation

Upon applying temporal derivatives to (1.41) and keeping track of the essential transport
terms, we arrive at the following general linearization:

Btv—atﬁ%K82v+u-VAerdivASA(q,v):F‘ in 2,
divgv = F? in 2,

d
SA((I,U)JV:[gé—aal(W+F3)]dv+F4 on X,
0:E—v-N=FS on X, (3.1
(Salg,v)-v—pBv)-t=F° on X,
v-v=20 on X,

ad
K E(EL, 1) = %(W + F3)(xL,1) —kF.
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We will mostly be interested in this problem for v = 0%u, & = 9% and ¢ = 9¥ p, in which
case the forcing terms have the special form given in Appendix A.

We now aim to record the weak formulation of (3.1). First, we will need to intro-
duce some useful bilinear forms. Suppose that 7 is given and that 4, J, K, and N are
determined as in (1.30) and (1.32). We define

(u,v)) :=/Q%DAM:DA1)J+/Z Bu-t)y(w-1)J, (u,v)o :=/Qu-vJ. (3.2)

With these in hand we can formulate an integral version of (3.1).

Lemma 3.1. Suppose that u, p, n are given and satisfy (1.41). Further suppose that
(v, q, &) are sufficiently regular and solve (3.1). Then for sufficiently regular test func-
tions w satisfying w - v = 0 on X we have

(0:v, Jw) + (—8,77?1(821} +u-Vyuv, w) + (v, w)) — (¢,divyg w)o
0 0

=/ Fl-wJ—/ J(w-1)F>
Q ES

¢ 01§ 3 4
[ (s (g 7)o s ) o

and

(0rv, Jw) + (—3;7)?1(821) +u-Vuv, w) + (v, w)) — (g,divg w)o
0 0

+E w- Nz +«[0:5 w- N
I

=/F1-wJ—[ J(w-r)FS—/ (0F30,(w-N)+F*w)—«[w-N, F']g,  (3.4)
Q PN —L

where [-, ¢ is defined in (2.7) and k > 0 is as in (1.39).

Proof. Upon taking the dot product of the first equation in (3.1) with Jw and integrating
over €2, we arrive at the identity

o:v, Jw) + —atﬁgKazv—i—u-V,A,v,w + 1 =1 (3.5)
e
0 0

where we have written
1::/ divy S4(g,v)-wJ and 11::[ Fl.owJ. (3.6)
Q Q

In expanding the term / we will employ a pair of identities that are readily verified through
elementary computations, using the definitions of J, 4, and N from (1.30) and (1.32):
first,

0k (JAjr) =0 foreach j; (3.7
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and, second,

Jv on X,
J AV = (3.8)
1+|81§0|2 on Z

From (3.7) and an integration by parts, we can write

I= [Q 0 (J Ak S (g, v wi = /Q T A B ws S (g V)i + /3 (A (Sa(g. W)
=1+ 1. (3.9)

The term I, is readily rewritten using the definition of S4 (¢, v) (given just below (1.32)):
e : :
I = ED'A’U :DpwJ —gdivg wd. (3.10)
Q
To handle I, we use the first equation in (3.8) to see that

/ (JAD) - (Sa (g v)w) = f v (Sa(g.v)w) = / Jw - (Salq. v)v)
Es .

)N )N

=/ J(ﬂ(v-r)(w-f)—i—w-th), (3.11)

s

and the second equality in (3.8) to see that

14

/ (JAV) - (Salq. v)w) = / (Salq. v)N) - w
)] 4

¢ »
= /e(gg(w'ﬂ)_oal(w+F3)w'c/V+F4~w)_ (3.12)

Since 02 = X U X, we then have

12=/ J(Bw-)(w-7)+w-TF°)

s

+ /Z (gé(w - N) —aal(L + F3)w N + F*. w). (3.13)
— (1 + [8160[2)3/2

Upon combining (3.10) and (3.13) with (3.5) and recalling the definition of ((-, -)) from
(3.2), we deduce that (3.3) holds.

It remains to show that (3.3) can be rewritten as (3.4). To this end, we integrate by
parts and use the equations in (3.1) to rewrite

/4—08 (L+F3)w-a\f
o\ 418102372

[k F3)o N _hE s N
_/—e A+ I ) M=o g g H17 )0 M)

L

—£
(3.14)
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with
U S s) S (ed,E (@) + K FT (@) (w - N (al
"((1+|algo|2)3/2+F L azZﬂ(K £(al) + kF7 (@) (w - N (al))

= > k(- N@))w- N(@b) +k(w- N @) (Fo(al) + F'(@b)). (3.15)
a==+1

Combining (3.14) and (3.15) with (3.3) and rearranging then yields (3.4). [

The most natural use of Lemma 3.1 occurs with w = v, but we will record a slight
variant of this. This results in the following fundamental energy-dissipation identity.

Theorem 3.2. Suppose that { = o + 1 is given and A and N are determined in terms
of ¢ as in (1.30) and (1.32). Suppose that (v, q,£) satisfy (3.1) and that (-,t) € Hg (Q; R?)
is sufficiently regular for the following expression to be well-defined. Then

d |v|? /‘(g 2 0 |01E? ) / )
£ g s 2 st Y gy
dt(/g SR A CLE Y TR NNCICEY R A
+%/ |D,A,v|2./+/ /3J|v-‘c|2+K[atS,3tE]g
Q X

:/(Fl'vJ—l—qJ(Fz—divAw))—/ J(-1)F?
Q

0160, F
(1419180]?)3/2

—/ v-at(Jw)+( atn(pKBzv—i-u Vv, a)) —i—((v,a)))—/ FloJ. (3.16)
Q Go Q

V4
‘/ ("F381(v-av>+F4-v—g5F6— )—K[vw,ﬂ]emazzfﬂ
)

Proof. We use v — w as a test function in Lemma 3.1 to see that

(0sv, Jv) + (—Btﬁ?Kazv 4+ u-Vuv, v) + ((v,v) — (g, divgv)o + (§,v- N1,z
0 0

+ k[0:&,v - N]g
)4
=/F1-vJ—/ J(v-r)FS—/ oF30,(v-N)+ F* v —«[v-N,F],
Q >N —L

+ (0;v, Jw) + (—am{ Kov +u-Vyv, a)) + (v, w)) — (g,div w)o —/ FloJ.
0 Q
(3.17)
First note that

((v,v)):/ |DM|21+/ BJ|v -] (3.18)
Q DIN

Next, we expand

2 2
<atv,1v)=— '”' /a J'”' (3.19)
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Using the identities (3.7) and (3.8), we may integrate by parts to compute

2

/( aﬂ’] K82v+u VA”)‘JU:/ |l)| ( Jle(A,u—i-az(atn(b))
) q 2

vl

|v|2 v 2
+ | ————0n+u-N)+ Ju-v—. (3.20)
= 2y/T+ [3150]2 5, 2
Since d;p =u-N on X, u-v = 0on X, and div, u = 0, we arrive at the equality
2 9.1
/( 8,n¢K82v+u-VAv)-Jv=/ |v—82( tn¢). (3.21)
So e 2 )
We then compute
] i
J =1+82(@), 0 9 ( ’W) 9, J, (3.22)
) )
which shows that
d 2
(0sv, Jv) + (—8,ﬁ£K32v+u-V,A,v,v) = —/ ﬁJ. (3.23)
E() 0 dt Q 2

On the other hand, we may use (3.1) to compute

Ev-Mis=(0,E—F%x

V4 2 L 6
= g2 _L) _/ Fo M 24
_at(/—z S a2 ) L T i Y
(g.divg v)o — (¢, divg w)o =/ gJ(F? —divy ), (3.25)
Q
[0:€.v - N]g = [0:€,0:&]¢ — [0:. Fy. (3.26)

Then (3.16) follows by plugging (3.18) and (3.23)—(3.26) into (3.17) and noting that

(0, Jo) = i/ Jv'a)—/ v-0;(Jw). (3.27)
dt Q Q

Next we record an application of this to (1.41).

Corollary 3.3. Suppose that (u, p,n) solve (1.41), and consider the function @ given by
(A.16). Then

d 1 2 ¢ 2 |31’7|2 ¢
d[(/ s+ [ S+ (1+|31§0|2)3/2+/_e0@(81§0,3177))
+3/ |DM|2J+f BJ|u-t)? + k[dn]? = —k[u- N, @] (3.28)
Q =

Proof. From (1.41) we see that v = u, ¢ = p, and £ = 7 solve (3.1) with F* = 0 for
i #3,7and F3 = R(0:%o.017n), F7 = # (3,n). The identity (3.28) then follows by
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applying Theorem 3.2 with w = 0 and noting that in this case

L 14 L
—/ oF3,(v-N) = —/ 00;00Q(0,¢,01n) = —%[ 0@(0189,011). (3.29)
—£ —L —L

L]
Next we record the consequences of conservation of mass.
Proposition 3.4. If (u, p, n) solve (1.41), then
£
/_ea{nzo for0<j <3. (3.30)

Proof. Integrating the condition J div 4 u = 0 against J over 2 and using (3.7) and (3.8)
together with the divergence theorem shows that

d 4 L
—/ n:/ 3ﬂl=[ Jdivgu = 0. (3.31)
dr J —t Q
The result for 1 < j < 3 follows immediately from this, and for j = 0 it follows from the
assumption (1.42). [

3.2. Coefficient bounds

The smallness of the perturbation n will play an essential role in most of the arguments
in the paper, from guaranteeing that & is a diffeomorphism to enabling certain nonlinear
estimates. The following lemma records this smallness in a quantitative way.

Lemma 3.5. Let g4+ be as in (2.6). There exists a universal 0 <y < 1 such that if
0l 317440 <y, then the following hold for A defined by (1.29), A, J, K defined
by (1.30), and N and Ny defined by (1.32) and (1.25), respectively.

(1) We have the estimates

max {[[J — 1l|zoo, | K = 1]zoo, [AllLoo, [N = NollLee} < 5 and AL S 1.
(3.32)
(2) Foreveryu € H'(Q;R?) such thatu - v = 0 on X, we have
b [+ 2 [ wp <l [ s+ p [ el
4 Ja 2 Js, 2 Ja =,
< u/ |Du|? +2ﬁ[ Ju|? (3.33)
Q ol

(3) The map ® defined by (1.28) is a diffeomorphism.

Proof. The first and third items follow from standard product estimates, Proposition B.4,
and the Sobolev embeddings. The second item is a simple modification of [18, Proposi-
tion 4.3]. [
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3.3. M as a multiplier

It will be useful to define the following matrix in terms of 7:
M =KVd = (JAT), (3.34)

where +4 is asin (1.29) and J and K are as in (1.30). We will view this matrix as inducing
a linear map via multiplication. Our first result records the boundedness properties of this
map.

Proposition 3.6. Let M be given by (3.34) and suppose that 1 < g <2/(1 —e4). Then
we have the inclusions M € L(W14(Q;R?)) and M, 9, M € £(L91(Q;R?)) as well as
the estimates

IM¢lwra <A+ VEltlwra and [MElLa +118:ME|La < (1 + VE)¢lza.

(3.35)
Proof. First note that
IMSllwra < [IMIIEH Lo + [IMIIVEL] Lo + [IVMIE] g
SIMIzelElwra + [IVMIE] - (3.36)
It is easy to see that
IMllzee £ 1+ ilwree <14 VE, (3.37)

which handles the first term on the right. For the second we need to use Holder’s inequal-
ity, and we must break to cases.
In the first case we assume that ¢ is subcritical, i.e. 1 < g < 2. Then
1— 4 1 _ 1— E4 1

1
2 T 2 iz

< (3.38)

1
q b
so we can bound

[IVMIE] Ly SIVM I p2ra-e0 18l e S 1l 2r0-e 0 I lwra S VE [Elwa. (3.39)

In the second case we assume criticality, i.e. ¢ = 2. Then by the critical Sobolev embed-
ding,

VML) 2 S IVMI2ia-e 18l 27es S il 2 IElwr2 S VE I Iwa.
(3.40)
In the third case we assume supercriticality, i.e. 2 < ¢ < 2/(1 — &4). Then

VMIE] Lo SIVM 20—l llzoe Sl 270-c0 1w S VE IEllwra. (34D
Thus, in any case we have

vMig|,, < VeEltlwra. (3.42)
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and the first estimate follows. To prove the second estimate we simply note that by Theo-
rem 3.8,

IM 2o + 18:M oo S 1+ [llwrce + [3:illlp1ce S 1+ VE. (3-432

The matrix M plays an important role in switching from the operator div to div4. We
record this information in the following.

Proposition 3.7. Let M be given by (3.34) and 1 < q < 2/(1 — e4). Then the following
hold for u € WH4(Q;R?):
(1) divu = p ifand only if div4y(Mu) = Kp.
2) u-v=0o0n 3% ifand only if (Mu) -v = 0on X.
B) u-No=(Mu)-NonZ.
Proof. We compute, using (3.7):

div(M ') = 9; (J Ajjvi) = JAi;0jv; = J divg v. (3.44)
Hence, upon setting M u = v we see that

divu = p ifandonlyif divga(Mu) = Kp. (3.45)

This proves the first item. For the second note that

T Kv on{x e€dQ|x; ==L x>0},
KVod'y = (3.46)
v on {x € IQ | xo < 0},

so on X, we have

Mu-v=0 < u-(KV®Tv) =0 < u-v=0. (3.47)
Finally, for the third item we compute on X:

JANy =N, so N = K(A)'N =KVOTWN, (3.48)
which implies that

u-No=u-KV®TN = KVdu-N = Mu-N. (3.49)
| |

3.4. Various bounds

In subsequent parts of the paper we will need to repeatedly employ various L estimates
for u, p, 1 and their derivatives in terms of either ~/& or ~/D, defined respectively in
(2.10) and (2.11). Thus, we now turn to recording a precise catalog of such estimates,
which are available due to the control provided by & and £ and various auxiliary esti-
mates. In order to efficiently record this catalog, we will use tables of the following form:

Function= f f Vf V2f V3f

10 00 a b c

tro co— e
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The top row indicates that the first column labels the function under consideration, and the
subsequent columns give the ¢ for which the derivatives indicated in the top row belong
to LZ. In this notation ¢ = oo indicates L°°, while co— indicates inclusion in L4 for all
1 < g < oo (with bounds that diverge as ¢ — oo as in the critical Sobolev inequality), and
an empty cell indicates no estimate available. The set on which the L4 norm is evaluated
is always understood to be the “natural” set on which the function is defined: 2 for u, p,
1, and (—£, £) for n. The notation tr indicates that the function under consideration is the
trace onto either ¥ or X. For example, if we state that the above sample table records
estimates in terms of ~/& , and ¢ is defined in €2, then this indicates that

Il + IVelLa@ + IVl Lo + IV ¢lLe@) < VE. (3.50)
ltrellpacsy + lltrellLeasz) < Cq\/g forall 1 < ¢ < oo, (3.51)

where C; — oo as ¢ — oo, and
ltr VollLe + lltr VollLes, < VE. (3.52)

With this notation established, we now turn to recording the catalogs. We begin with
the estimates in terms of the energy.

Theorem 3.8. The following three tables record the L bounds for u, p, n and their
derivatives in terms of the energy V&, as defined in (2.10).

Vf V2 f V3f
2/(1 —&4) 2/2—e4)
4/2—e-)

Function = f
u

atu
8%u
tru

/(1 —eq)

g 8 ™8 3|~

trosu

Function = f f i V2 f v3f
p 2/(1—eq) 2/(2—ey)
atp 2
wp  1/(—ep)

V2 f vif
1/(1—e4)

<
~

Function = f
n
01
o7n
]
¢ 1)
i
tri
tr 8177}
tr 3%77

2/(1—e4) 2/2—ey)
4/2— (e~ —a))

1/(1—¢4)

883838882328~
v g3 =33 w38
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Proof. The estimates for u, p, n and their derivatives follow directly from the standard
Sobolev embeddings and trace theorems, together with the definition of &. The estimates
for 7 at its derivatives follow similarly, except that we also employ Proposition B.4 to
account for the regularity gains arising from the appearance of the Poisson extensions
in the definition of 7. |

Next we record the catalog of estimates in terms of the dissipation.

Theorem 3.9. The following three tables record the LY bounds for u, p, n and their
derivatives in terms of the dissipation v/ D, as defined in (2.11).

Function = f f Vf v2f V3f
u o0 2/(1—e4) 2/Q2—eq)
dru 00 2/(1—e-) 2/2—¢-)
8%14 00— 2
tru 00 1/ —eq)
trosu 0 1/(1 —e-)
trdu 00—
Function = f f Vf v2f v3f
p 2/(0—e4) 2/2-e4)
I p 2/(0—e-) 2/(2—e-)
tr p 1/(1—e4)
trds p 1/(1—e2)
Function = f f Vf v2f v3f
U] 00 00 1/(1—¢4)
s 00 00 1/(1 —e2)
3%7] 00 1/a
8?17 1/
] 00 00 2/(0—e4) 2/(2—e4)
0:7) 00 00 2/(1—e-) 2/2—¢-)
8%1‘7 00 2/a 2/(1+ )
30 2/a 2/(1 + 2a)
try 00 00 1/(1 —eq)
trosn 00 00 1/(1—e-)
trG%F) 00 1/a
trd37 l/a

Proof. The estimates for u, p, n and their derivatives follow directly from the standard
Sobolev embeddings and trace theorems, together with the definition of . The estimates
for n at its derivatives follow similarly, except that we also employ Proposition B.4 to
account for the regularity gains arising from the appearance of the Poisson extensions #
in the definition of 7. ]
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4. Elliptic theory for Stokes problems

In this section we record some elliptic theory for the Stokes problem. We begin with
analysis of a model problem in 2D cones and then build to a theory in the domain 2 given
by (1.23). The material here roughly mirrors the material in [21, Section 5], except that
here we work in L4-based spaces without weights rather than L2-based weighted spaces.

4.1. Analysis in cones

Given an opening angle w € (0, &), we define the infinite 2D cone
Ko ={xeR?|r>0andf € (—/2,—1/2 + w)}, (4.1

where r and @ are the usual polar coordinates in R? with the set {§ = —m/2} chosen to
coincide with the negative x, axis. We define two parts of 0K, via

I ={xeR?|r>0andh = —n/2},

) 4.2)
'y ={xeR°|r>0and 0 = —7/2 + w}.

Next we introduce a special matrix-valued function. Suppose that U : K, — R?*? is
a map satisfying the following four properties. First, 2 is smooth on K, and 2 extends
to a smooth function on K, \ {0} and a continuous function on K,,. Second, 2 satisfies
the following for all @, b € N:

lim sup |(rd,) 235 [A(r, O)AT (r,0) — I]| = 0,
r—>00€[—n/2,—n/2+w]

lim sup |(r8,)“82[%1,-j (r,0)0;Asx (r,0)]| =0 fork €{1,2},
r—00€[—n/2,—n/2+w]

lim sup |(rd,)*35[A(r, 0) — 11| = 0,

r—00¢e[-7/2,~1/2+w] 4.3)

lirr(l) (ro) A, )y —v] =0 forby = —7/2,—7/2 + w,
r—

lim, (ra)*[(2v @ AT Av)t + Av)t @ AT (Av))(r,00) — 1] =0
for g = —n/2,—n/2 + w

where again (r, 6) denote polar coordinates and (zy, 22)l = (z3, —z1). Third, the matrix
AAT is uniformly elliptic on K,,. Fourth, det 2 = 1 and 0;(A;;) =0fori =1,2.

The matrix 2 serves to determine the coefficients in a variant of the Stokes problem
in the cone K,,. This problem, which we call the 2-Stokes problem, reads

divg Ser(Q,v) = G! in K,
divgr v = G2 in K,
v-Av = G3 on I'y,
puDgvAv - (Av)t = G4 onTly,

(4.4)
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where the operators divgy and Sg are defined in the same way as divy and S4. When
A = I, all of the above assumptions are trivially satisfied, and we arrive at the usual
Stokes problem
divS(Q,v) = G! inK,,
divv = G? in Ky,
4.5)
v =G3 on Iy,
pDvv-1 =G} onTs.

The purpose of the assumptions in (4.3) is to guarantees that the problems (4.4) and (4.5)
have the same elliptic regularity properties.

Next we introduce a parameter depending on the cone’s opening angle that determines
how much regularity is gained in these Stokes problems. Given w € (0, &) we define

Emax(w) = min{l,—1 + 7/w} € (0, 1]. (4.6)
We can now state the elliptic regularity for these Stokes problems.

Theorem 4.1. Let w € (0, w) and enax (w) be as in (4.6). Let 0 < § < enax(w) and set

2

Suppose that U satisfies the four properties stated above and that the data G', G2, Gi,
Gi for the problem (4.5) satisfy

G'eL%(K,).G*e W95 (K,),G3 e W?1/45:95(I'y), G4 e WIV/45:95(I'y)  (4.8)

as well as the compatibility condition

/ G2=/ G1+[ G3. 4.9)
Ko . _

Suppose that (v, Q) € H'(K,) x H°(K) satisfy divqg v = G?, v - Ay = Gi on I'y,
and
n . 1 o ()t s Q)+
—Dg[v:]D)g[w—leVg)Iwzf G -w+ giw - ——— + gw-
/Kw 2 Ko r, [2v] r_ |2Av|
(4.10)

forallw € {w € H'(Ky,) | w- (Av) = 0 on I'+}). Finally, suppose that v, Q and all of
the data G' are supported in K, N B[0, 1]. Then v € W% (K,) N H'*3(K,), O €
Wl4s(K,) N H®(K,), and

[vliw2as + lvllgi+s + 11Qllwras + Qs
1 2 3 3
SNG llLas + 1167 wr.as + G2l y2-17a5.a5 + 1G L lyr2-1/a5.05
+ ||Gi||W1—l/q5.q5 + ||Gi||W1—l/qs,qg- (4-11)
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Proof. In the case 2 = I the result is proved in [33, Corollary 4.2] when Gi = 0 and
Gi = 0 and in [32, Theorem 3.6] in the general case. The choice of gs is determined
by the eigenvalues of an operator pencil associated to (4.5), which may be found in the
“G-G eigenvalue computations” of [33] (with y; = y» = 7/2). These results show that
these eigenvalues for the Stokes problem (4.5) in the cone K, are 1 + nx/w forn € Z,
which leads to the constraint ¢ < 2/(2 — emax(@)) in W24 x W14 estimates. However,
Theorem 8.2.1 of [25], together with the assumptions on 2, guarantees that the operator
pencils that determine the regularity of (4.4) coincide with those of (4.5), so the estimates
of [33] and [32] remain valid for the 2-Stokes problem. [

4.2. The Stokes problem in Q

We now study the following Stokes problem in €2, as defined by (1.23):

divS(Q,v) =G' inQ,
divv = G2 in 2,
v.v:Gi OHE,
(4.12)
pDvv-t=G% onZ,
‘U‘VZGE Onzsa
uDvv -7 = G* on Xg.

Consider 0 < § < enmax (defined by (2.2) in terms of weq from (2.1)) and g5 = 2/(2 — 6)
€ (1,2). We will study this problem with data belonging to the space X5, which we define
as the space of 6-tuples

(G'.G*,G3,G2,G1.G?)
€ L5 (Q)x W45 (Q)x W2 1/98:05 () x W2 1/45:05 (5) x W1~ 1/48:05 () x W1~ 1/45:45 (5,)
(4.13)

/Gzzf G1+/ G3. (4.14)
Q z )N

We endow this space with the obvious norm

such that

I(G'.G*.G}.G2.G},GH)lzs = G |Las + 1G? I yras + G2l y2—1/a5.05
+ ||G3||W2—1/t13-t13 + ”Ginwl—l/qg.qg + ”Gillwl—l/qgﬂg- (415)
We have the following weak existence result, which works without constraint on

5 €(0,1).

Theorem 4.2. Assume that (G!, G2, Gi, G3, Gi, Gi) € Xg forany 0 < § < 1. Then

there exists a unique pair (v, Q) € H'(Q) x ISIO(Q) that is a weak solution to (4.12) in
the sense that divv = G2, v-v = G3 on 0Q, and

/(ﬁDv:Dw—Qcﬁvw)Z/ Gl.w+/Gi(w.r)+/ G*(w-1) (4.16)
Q 2 Q ) N
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forallw € {w € HY(Q) | w-v = 0 on dQ}. Moreover,
ol 4+ 10122 S (G, G, G3.G2,GL.G2)| %, (4.17)

Proof. The argument is standard and does not use the higher-regularity structure of Xj.
See, for instance, [21, Theorem 5.3]. [

For second-order regularity we do need the constraints on § in order to use Theo-
rem4.1.

Theorem 4.3. Let eyax € (0, 1] be given by (2.2), and 0 < § < emax. Let (G, G2, G3,
G3, Gi, G*) € X5, and let (v, Q) € H(Q) x I-OIO(Q) be the weak solution to (4.12)

constructed in Theorem 4.2. Then v € W24 (Q) N H'1(Q), 0 € WH4s(Q) N I-C}‘S(Q),
and

lvlly2as + vl gi+s + 1Qllyras + 1Q1gs S 1(G'.G*.G1.G>.GL.G)|%,.
(4.18)

Proof. The argument used in [21, Theorem 5.5] works in the present case as well, except
that we use the estimates of Theorem 4.1 in place of the estimates from [21]. [

In what follows it will be useful to rephrase Theorem 4.3 as follows. For 0 < § < &pax
we define the operator

Ty - (W>%(Q) N H'™(Q)) x (W4 (Q) N HY (Q)) — % (4.19)
via
Ts(v, Q) = (div S(Q.v),divv,v-n|s,v-n|s, uDvn - 1|, uDon -tz ). (4.20)
We may then deduce the following from Theorems 4.2 and 4.3.

Corollary 4.4. Let eyax be as in (2.2). If 0 < § < emax, then the operator Ty defined by
(4.19) and (4.20) is an isomorphism.

4.3. The A-Stokes problem in Q2

Next we consider a version of the Stokes problem with coefficients that depend on a given
function 7 € W3~1/45:95 with 0 < § < &yax. The function n determines the coefficients
A, J, and N via (1.30) and (1.32), and we study the system

divy S4(Q.,v) = G! in 2,
Jdivy v = G? in 2,
- N/|No| = G3 3,
v- N/l OL oo 421
uDgvN - T /|No|* = GL on X,
v-Jv=G3 on X,
uDyov -7 = G* on Xg.
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Note here that N' = Ny — d1ne; for Ny, given by (1.25), the outward normal vector on X
and T = Ty + d1ne, for Ty = e + 018pe2 the associated tangent vector.
We begin our analysis of this problem by introducing the operator

Tsln) : (W9 (Q) N H'T(Q)) x (W ()N ﬁ"”(sz)) — Xg (4.22)

given by

Ts[n(v, Q) = (divg S4(Q,v), J divgv,v- N/|No| |z, v JV]s,,
D4 N - T /| No |5, uDyvv - 7l5,).  (4.23)

The map Tj[n], which encodes the solvability of (4.21), is an isomorphism under a
smallness assumption on 7.

Theorem 4.5. Let e, be as in (2.2). Let 0 < § < ey and g5 = 2/(2 — §). There exists
ay > 0 such that if ||n|ly3-1/45.a5 < V. then the operator Ts[n] defined by (4.22) and
(4.23) is well-defined and yields a bounded isomorphism.

Proof. We divide the proof into steps.

Step 1: Setup. First note that

N
/Jdivszf J,Av-vzf—-v—k/ Jv-v, (4.24)
Q B1o) s [Nol 5,

which establishes the compatibility between the second and third terms needed for T[]
to map into Xg.

Now assume that y < 1 is as small as in Lemma 3.5. We write T5[n](v,q) = Ts (v, Q)
— 5 (v, Q) where Ty is defined by (4.4) and § denotes the linear map with components

§' (v, 0) = divi_4 Sa (0. v) — div uDy_4(v),
§2() = divi_4 v + (1 — J)divy v,
F3(0) = (1 4 (0180)>) ™ /?[d1yu1],
L) = (1 +(3180)*) ™ [4D1-avNo - To (4.25)
— (D AvNg - e2 —Dyver - To) + 1(317)°Dgvey - €3],
g3 =(1-Jyw-v,
§*(v) = uDy_pvv - 7.
Since both Ts[n] and Ts enforce the compatibility between the second and third terms,
§ does as well. Then the equation Ts[n](v, Q) = G := (G',G*,G3,G3, G}, G?) is

equivalent to

Ts(v, Q) =G+ 8§, Q). (4.26)

Step 2: '§ boundedness. We now claim that

16 (w. Dllzs < Inllys-17as.95 v ll2as + 1Qlg1.as)- (4.27)
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We proceed term by term.
¢! estimate. We need to bound §' (v, Q) in L9 (Q). We estimate the first term via
Idivi—a SA(Q, V)llLas < IVilllLoe(IVQllLas + V0] Las)

+ IVl V2l 2/a- (1@ Nl 2/a-s + [Vl 2/a-5)
S ||77||W3—1/qs»qs(”U”quzs + ||Q||W1.q5)- (4.28)

Similarly, we estimate the second term as
Idiv uDr—a(W)llzes < [VlLee | D?vlizas + V27l 2a-5 [Vl 270
< ||77||W3—1/qs,q5 ||U||W2~qs- (4.29)

Combining these two, we deduce that

191w, Q)llLas < 10l wa-1/as5.a5 (0llyp2.a5 + 1Qllyras)- (4.30)
g2 estimate. We need to bound §2(v) in W 195 (Q). For the first term,
ldivi—a vliras < IVl lollyza + 1927l 2a-0 Vol L2ra-5
< ||U||W3—1/qsﬂs ||U||W2~‘15- (4.31)
Similarly, for the second term we bound
1(1=) div vl 105 S IVifllzoe [0l p2.as + A+ Vo) V7] L2705 |Vl L2/a-5)
< ||77||W3—1/05~05 ||U||W2~45~ (4.32)

Combining these, we deduce that

||§2(v)||W1,q5 < ||77||W3—1/f13~f13 ||U||W2ﬂs- (4.33)

g j’_ estimate. We need to bound ﬁ_f_ (v) in W2~1/45:95 (). For this we use the trace char-
acterization of boundary norms and the fact that W?2:95 (Q) is an algebra to estimate
||§-?-(U)||W2—1/qsyqs(z;) < 191770 ||W2s48(9) < N0177v1lly2.05 )
< ||81ﬁ||W2~03(Q)||U||W2~613(Q)
< ||77||W3-qa(9)||U||W2sf15(gz)

< ||77||W3—1/qs,qa(9)||v||W2vfls Q)" (4.34)

63 estimate. We need to bound §3 (v) in W2~1/4595 (). Since v is determined by X,

which is C2, we can argue as with &7 to estimate

||§E(U)||W2—l/qs’05(z) <= J)U”WZJI&(E) < ||ﬁ||W3:qs(Q)||v||W2~¢13(gz)

< ||77||W3*1/q5v45 (Q)”U”W2~‘18 Q- (4.35)
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ﬁi estimate. We need to bound §*(v) in W171/45:45 (%), Recall that Ny = —0,{oe;
+ e5 and Ty = e + 91{pe; are smooth, so we can bound
||§i(v)||wl—1/qqus():) < ”ID)I—AU”Wl—l/qs»qs(z) + ||3177DAU||W1—1/45~45():)
+ 1@ Dav]l 1170505 (zy- (4.36)

We then use the trace characterization again to bound

ID7—avllyi-1/a5.05 5y + 1011D AV yr1-1/05.95 (5
S ID7—savlipras ) + 1017104V 105 ()
S IViVoliLes @) + IV2iVolLas @) + IVIV0l Las @)
< IVilllzs lvlly2.as + 1Vl z270-9 V0| 2708
< ||77||W3—1/q¢s~%(gz)||U||W2sf18(gz)‘ (4.37)

Similarly,

1@ 2D 1170595 5y S NODZD A0l y105

S IVilzeollvllp2.as HIVillLee [Vl 2ra-5 Vol 2ra-s

< ||77||W3—1/05~q5(g2)||U||W2~¢15(Q)- (4.38)
Combining these shows that

1L )l 1-1/a5.95 gy S Il ys=1/95.05 @ 1Vl w2.95 (2)- (4.39)
* estimate. We need to bound €% (v) in W1~1/45-45 (). Since v and 7 are determined
by I and are thus C? we can estimate in exactly the same way as above:
||gf(v)||W1—l/‘ls~45(zs) = ”DI—%U”WI—I/‘/&%@S) < ||DI—AU||W1~45(Q)

S IViVollLas @) + IV2iVollLas @ + IVVZ0]L9s @)

S IVileeellvlw2.as + IVl L270-5 VUil L2/0-5

< Inllys—1/as.a5 @) 1V lw2.95 ) (4.40)
Synthesis. Combining the above estimates shows that the bound (4.27) holds.
Step 3: Isomorphism. The map Ty is an isomorphism, so (4.26) is equivalent to the fixed

point problem

(v, 0)=T; (G + 9 (v, Q) =: V(v, Q) (4.41)

for U a map from Z := (W24 (Q) N H'+5(Q)) x (Wsl’q‘S (Q) N H%(Q)) to itself. From
(4.27) we have

W (1, Q1) — ¥(v2, Q2)lz < Cllnllys-1/as.a5 1 T lopll(v1, Q1) — (v2. Q2)lIz.
(4.42)
Hence, if y is sufficiently small, then W is a contraction and thus there exists a unique
(v, Q) solving (4.26) for every G. In turn, this means that Ts[n] is an isomorphism with
this choice of y. ]



Stability of contact lines in fluids 1479

4.4. The A-Stokes problem in Q with B # 0

As the next step we modify the boundary conditions in (4.21) to include the Navier-slip
friction term on the vessel walls. The new system is

divyg S (Q,v) = G! in 2,
Jdivg v = G? in 2,
- N/|No| = G3 X,
v N/l "L oo (4.43)
UDgvN - T [|No|* = G onX,
v-Jv=G3 on I,
uDgvv-t+ Bv-1=G* on X,

where 8 > 0 is the Navier-slip friction coefficient.
We have the following existence result.

Theorem 4.6. Let ey, be as in (2.2). Let 0 < § < emax, 45 = 2/ (2 — 8), and suppose that
||'7”§V3—‘/‘16-‘15 <y, where y is as in Theorem 4.5. If (G, G2, Gi, G3, Gi, G*) e %3,
then there exists a unique

(v, 0) € (W29 (Q) N H'3(Q)) x (W% (@) n H(Q)) (4.44)
solving (4.43). Moreover, the solution obeys the estimate

Wllw2as + 10l gres + 1Qllwras +11Q1gs < (G, G G, G2 GL. G|z,
(4.45)

Proof. Define the operator R : (W29 () N H'*5(Q)) x (W, % () n HE(Q)) — %5
via
R(v,q) = (0,0,0,0,0,Bv - v|x,), (4.46)

which is bounded and well-defined since v - v € W?271/45:95 (%), Standard Sobolev theory
shows that the embedding W2~1/4s-1s (%) < W1~1/45:95 (%) is compact, so R is a
compact operator. Theorem 4.5 tells us that the operator Tg[#] is an isomorphism, so the
compactness of R implies that T5[n] + R is a Fredholm operator. We claim that this map
is injective. Once this is proved, the Fredholm alternative implies that the map is also
surjective and hence is an isomorphism.

To prove the claim we assume (75[n] + R)(v, Q) = 0, i.e. (4.43) holds with all the
G' terms vanishing. We multiply the first equation in (4.43) by J v and integrate by parts,
arguing as in Lemma 3.1, to arrive at the identity

[ Lt} WRIEY, +/ Blv- 2] = 0. (4.47)
Q2 5,
Thus v = 0, but then 0 = V4 Q0 = AVQ = 0, which implies, since 4 is invertible (via

Lemma 3.5), that Q is constant. Since Q € H? we then find that Q = 0. This proves the
claim. ]
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4.5. The A-Stokes problem in Q with boundary equations for &

We finally have the tools needed to address the desired problem, which synthesizes the
A-Stokes system in € with boundary conditions on ¥ involving a new unknown &:

div 4 SA(Q,U)ZGl in Q,
Jdivg v = G? in 2,
v-N/|MNo| = G2 onY,
SAQ N = [¢6—001 (G2 +GO)IN+GLT+G'N on X,  (448)
v-Jv = G3 on X,
(S4(Q.v)v—PBv)-T = G4 on X,

01§ _ 7
Foarmm (£ = G4

We have the following existence result for (4.48).

Theorem 4.7. Let ey,0x be as in (2.2). Let 0 < § < emax, 45 = 2/(2 — 8), and suppose that
”’7”%/3—1/4545 <y, where y is as in Theorem 4.5. If (G, G2, Gi, G3, Gj'_, G*) € ¥,
and G®,9,G® € W'~1/4595 (%), and Gi € R, then there exists a unique

(v,0.6) € (W29 (Q) N H'*5(Q)) x (W, (Q) N H3(Q)) x W3~ V445(%)  (4.49)
solving (4.48). Moreover, the solution obeys the estimate
[vliw2as + Ivllgi+s + 1Qlw1as + 1Qlms + Illys-1/as.05

SIGY.G?.G.G?.GL.GY)x; + G| + 101G 1214505 + [G71F
(4.50)

2
wl—1/as.as

where we recall that |-, -] is defined in (2.7).
Proof. First note that since | N | = |T|,

01§

420N = [gg _"81(0 P

+ GG)}N +GIiT +G°N  (45])

is equivalent to
N 01§ 6) 5
S JO)N - —— = —00| ——F——++G G 4.52
W@ s = st ot (e + 0°) |+ @52)

and 5
T _ gtV
[-Mol? T Nol?

Note that the same sort of argument used in the proof of Theorem 4.5 shows that

i
T Mo 2

SA(Q, V)N -

(4.53)

S G wr-as.as (4.54)

=
wl-as-as
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since |||l y3-1/45.45 < 1. We may then use Theorem 4.6 to produce the pair (v, Q) solving

div S4(Q,v) = G! in €,
Jdivgv = G? in 2,
v NN = G3 on X,
/I OL e 455)
uD g N - T /| No| =G+|N0|2 on X,
v-Jv=G2 on X,
uDgvv -t 4+ Bv-1v=—-G* on X,

and obeying the estimates (4.45). With this (v, Q) in hand we then have a solution to
(4.48) as soon as we find £ solving

01t
8 _“al((l T |811§0|2)3/2) = S4(@. )N

on X subject to the boundary conditions

+00,G%—G? (4.56)

0

The estimate (4.45) guarantees that Sy (g, v)N - % € W1-1/4545(%), and the usual

elliptic theory provides a unique £ € W3~1/45:95 (%) satisfying (4.56) and (4.57) and
obeying the estimate

N 6
||S||W1—1/qs~qs S |(Sa(Q.v)N - |N|2 iy as + ||31G ||W1—1/q5.q5
+ ||G5||W1,1/qsyqs + [G7]7. (4.58)
Then (4.50) follows by combining (4.45) and (4.58). ]

Remark 4.8. Theorem 4.7 requires Q to have vanishing average and produces
a generic 7. It is a simple matter to shift this result to 1 having vanishing average with
generic Q.

5. Nonlinear estimates I: interaction terms, dissipative form

In this section we begin our study of the estimates available for the nonlinearities that
appear in the system (1.41) and its derivatives. Here we focus on the interaction terms
as they appear in Theorem 3.2 and on deriving estimates in terms of the dissipation
functional. In order to avoid tedious restatements of the same hypothesis, we assume
throughout this section that a solution to (1.41) exists on the time horizon (0, T') for
0 < T < oo and obeys the small-energy estimate

sup &(t) < y? < 1, (5.1)

0<t<T

where y € (0, 1) is as in Lemma 3.5. In particular, this means that the estimates of Lemma
3.5 are available, and we will use them often without explicit reference.
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5.1. General interaction functional estimates

We begin by studying the terms involving F!, F* and F* in Theorem 3.2. The structure
of these is not particularly delicate, so we can derive general dual estimates in which the
particular form of the test function is irrelevant.

We begin by studying F.

Proposition 5.1. Suppose that F is as defined in either (A.1) or (A.8). Then

‘/ Jw- F!
Q

Proof. We will present the proof only in the more involved case that F! is defined by
(A.8), which corresponds to two temporal derivatives. The case (A.1), which corresponds
to one temporal derivative, follows from a simpler and easier argument. There are fifteen
terms appearing in (A.8), and we will deal with them one at a time, proving that each
can be estimated in the stated form. For the sake of brevity, throughout the proof we will
repeatedly make use of four essential tools without explicitly referring to them: Holder’s
inequality, the standard Sobolev embeddings for w € H (), the fact that & < 1, and the
catalogs of L? estimates given in Theorems 3.8 and 3.9. For the latter we will always use
the following ordering convention: the ordering in expressions of the form

< wlgi (V€ + VD forallw e H (). (5.2)

abc < AVEND and ab'c < AVDE (5.3)

implies that we bound a < A, use Theorem 3.8 to bound b < V€ and ¢/ < &, and use
Theorem 3.9 to estimate ¢ < v/ and b’ < +/D. In other words, the order of appearance
of & and P on the right side corresponds to the order on the left and indicates which of
Theorems 3.8 and 3.9 is being used implicitly.

Term —2divy, 4 S (9; p, u). We first bound

/Q Jw - (=2divy, 4 S (9: p, 3:“))’
< /Q [l 18, AV, p| + V20,ul)
+ /Q |w||0;A| |VA|(|0: p| + |VOsu|) =: T +1I.  (5.4)

‘We then bound

I < lwlig2re—18:llwr.oo (IV3e pll2ra—ens + IV20eull L2r0-c)

S llwlgi VEVD, (5.5)
I < wll 27—+ 100l w00 |11l y2.270—0 (10e pll L270-e—) + [V Orull p2/0—c-))
< )1 €VD. (5.6)

Combining these shows that this term can be estimated as stated.
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Term 2 div 4 Dy, 49,u. We first bound

‘/ Jw - 2udivy Dy, 40:u)
Q

< / |w||vam||va,u|+f | 84| V29,

Q Q
=1 +1I. (5.7
‘We then bound

I < lwllpa/ceo (Mllw227a-e— + 100l w2.270-e-) [V ull Lasa—em
S lwlm VOVE, (5.8)
11 5 ||[wl g2/e— 0eillwr.oo | V20eull 2re-e S W] 1 VEVD. (5.9)
Combining these shows that this term can be estimated as stated.

Term — diVa%.A, S4(p,u). We first bound

| - div o Satp)

< /QleIafo%l(IVpIJrIVzul)Jerlelf’?o‘*vlIW%IIWI
=: I +II. (5.10)
Then we estimate

I < wllp2rep—e (13eillwr2re + 187 0llw12/) 1V pll 21— + VUl 270-640)

< wlg VOVE, (5.11)
I 5wl 27— (10: 71l w1 .27a 4+ 1077l w1.2/0) 17l 22700 | VUl 27064
< wlgivVOE. (5.12)

Combining these shows that this term can be estimated as stated.

Term 21 divy, 4 Dy, 4u. We first estimate

/QJW'(zﬂdiVa,.A,Damu) < /Q|w||ata4>|2|v2u|+/Q|w||ata«||vam||w|

=1 +1I (5.13)
We then bound
I S lwllp2re4 107l 51.00 1Vl 27010 S lwll g1 €YD, (5.14)
'S wll p2re—+ep 197 llwr.0o (17l w2.2/0-22) + (97l w2.2/a-e-) VUl 270-64)
< |wl g1 VEVDVE. (5.15)

Combining these shows that this term can be estimated as stated.

Term p divy D 2 AU We initially estimate

‘/ Jw - (pudivy DafA”)
Q

sf |w||a§A||v2u|+[ |w| |[VO?A| |Vu| =: T + II.
Q Q
(5.16)



Y. Guo, 1. Tice 1484

Then we bound

I < llwlp2req—o (el + 197l p1.2/e) V2l 270

< wlg VOVE, (5.17)
I S lwll 27— (10: 71l w2.2704+0 + 1077l w2.2/a4+0) | VUl 27064
< wlg vVOVE. (5.18)

Combining these shows that this term can be estimated as stated.

Term —2u - V;, 40,u. For this term we bound

/ Jw - (2u - Vy, 40,u)
Q

< /Q ol ] 13, A] [V,

S w2 llulizee |9: 0w .o [VOrullL2

< wlg VEVDVE. (5.19)

Term —20;u - V 40,u. We bound

/ Jw - (20;u - V40su)
Q

S /Q lw| [0;ul [VIu| < lwllp2l|0:ulLeel|VOru| L2
< Jwllgi VEVD. (5.20)

Term —20;u - Vj, 4u. We bound

[ Jw - (20;u - Vy, 4ut)
Q

s[g|w||atu||am| IVl

S w2 10zullLoe 10l wi.co [ VUl 2
S lwllg EVD. (5.21)

Term —u - VB%AM. We estimate

s[g|w||u||a?o«| Vul

— 2=
S llwllp2ra-o ullLes (19:0llwr.2sa + 19771l w1.2/0) |Vl 2

< lwllg VEVDVE. (5.22)

Term —9%u - V4u. We estimate

)/ Jw - (u- Vg 4u)
Q t

‘/ Jw-(aﬁu-VeA,u)
Q

s/ Jw| 62 [V
Q

< lwll p2re 197ull 211 Vel 27060

< Jwlgi VOVE. (5.23)
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Term 20; F]%Btl(azf),u. For this term we bound

/ Jw - (ZatﬁgatKazatu)
Q %o

s/ (] 18,7 8 K| [Vdul
Q
< Tl 13l oe [8eillp .00 [V 2

S w1 €Y. (5.24)

Term 28t nc Kd,0,u. We estimate

/ Jw - (zafﬁﬁKazatu)
Q %o

s/ o [627] [V,
< w2 1327l oo [ Ve

< lw| g VOVE. (5.25)

Term 28tr]§ 0; Kou. We bound

/ (28?77 ¢ 0y Kazu)
Q %o

s/ lw| 18271 18, K| [Vl
< N llz2 1827 oo [8s il 1,00 | Va2

< wlgVDE. (5.26)

Term 917 77; Kd,u. We estimate
3 ¢ <
3,% Kdu )| < lela AVl < lwl orey 1877l 2 11 Vul 2ra-e.)
§||w||H1x/ DVE. (5.27)

Term 0, ﬁ%B%Kazu. For the final term we bound

/Jw-(atﬁ§a$Kazu) < [ wllol K1 9u
Q 0

< llwllz2ra-e [1edllzoe (10w 2re + 1977wt 270) | Vel 2

< lwllg VEVDVE. (5.28)

Next we study the F# nonlinearity.

Proposition 5.2. Suppose that F 4is defined as in either (A.4) or (A.11). Then

L
‘/ w- F*
—L

Proof. We will present the proof only in the more involved case that F* is defined by
(A.11), which corresponds to two temporal derivatives. The case (A.4), which corresponds
to one temporal derivative, follows from a simpler and easier argument. There are eleven

< lwllgi (V€ + VD forallw e H (). (5.29)
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terms appearing in (A.11), and we will deal with them mostly one at a time, with just a bit
of grouping. We will prove that each can be estimated in the stated form. For the sake of
brevity, throughout the proof we will repeatedly make use of five essential tools without
explicitly referring to them: Holder’s inequality, standard trace estimates for H !(2), the
standard Sobolev embeddings for H'(2) and H/2((—£, £)), the fact that & < 1, and the
catalogs of LY estimates given in Theorems 3.8 and 3.9. For the latter we will again use
the ordering convention described at the start of the proof of Proposition 5.1.

Term 2Dy, 40, uN. We bound

I4 J4
Uﬁ/xw @a, 00| 5 [ w0419

< ”w”Ll/«?—(E)”atn”Wl.Oo”Vatu”]dl/(lfs—)(z)
< lwllg VEVD. (5.30)

Term ;UD)B% AuN. We estimate

Y4
s/ Jw| [62.4] | Vul
—L

¢
‘/ w '/,LDB%AMJV
—L
< IIw||L1/<s+—a>(z)(||3m||Wm/a+||3??7”Wm/a)IIWIILI/u—w(E)
< lwlg VOVE. (5.31)
Term pDj, 4u0d; N. We bound

L L
V@'” V|5 [l 4] 9 3100

<l ey gy I8l oo IVull 171 gy 1Dl oe

< wlg €VD. (5.32)

910 .
I(W)]a,w. We estimate

[ o200 (i) oo
w- —O' _—
LT U jarL0 )2 ) |

L
< /[|w|<|a,n| T 1910,n] 4+ 1820,71) 1919,

S Hwlipe— g llenllwa1/a-e 1913 nllLoe < lwlg1 VOVE.  (5.33)

Term [2gd,;n — 200

Term 0;0,[R (910, d17)]9;N. For this term we initially expand
910¢[R(3180, d1m)] = 91[32R (180, 917)910: 7]

0;R(0180. 0
= D 0, -+ ROt D)
n 020y R (9180, d11)

017

3119350010,7. (5.34)
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This and Proposition A.1 then allow us to bound

¢
'/—z w - 81[8,[$(31§0,3m)1]3zﬂ‘

12 L
< /(lwl 1818111 1817] 1979, 7| +/[|w| 181811 [831]1310,7]

L
+ [ lwllosdunl Byl 90,n] = 1 411 411 (5.35)
—£
We then bound
I 5 wllgie g 11mlzeeldinllzee 130:ml L1/0 s < wlg1€VD,  (5.36)
I < wllver g 101301200 10701 170 -c0 < w1 EVD, (5.37)
IS w22y 191970 1010l 2 < 1wl €/ D. (5.38)
Combining these then shows that this term can be estimated as stated.

Term —2S4(9; p, 0, u)d,;N. We estimate

L
< /e 1wl(13, | + V3,u])|313,7]

L
'/ —2U)'S¢A,(atp, 3,u)8tN
—L

S llwlipe— g U0 pllpa-eo gy + IVOrullpra—e— ) 10: 917l Loo
< lwlg VOVE. (5.39)

i
Term [gn — o&l(m)]afﬂ. We bound

[
—¢ (141015232 )]

2
S lwllpes-o g lInlly2aa-e0 191970 L17a

< wlgi VEVD. (5.40)

L
< /lel(lnl T 100l + [82n])[8,02n)

Term 91 [R(91¢o, d11)]0?N. To handle this term we expand

0;R (0180, 017) 9y R(3180,011)

01[R (3180, 011n)] = i (01m)?

d1ndin + Lo(01m)?.  (5.41)

This and Proposition A.1 then allow us to bound

L L
‘/ew-alm(alzo,am)]a%av < /e o 802011171 [920] + 19101?)

S Mwll /ey e gy 191971l e (1917 oo 1311 1ra—e o + 181l Loo 19171l L1/0—64)

S wlgp vVOE. (5.42)
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Term —S,4(p,u)d?N. For the final term we estimate

Y4 Y4
'—/ W Sa(ps )N s/£|w|(|p|+|w|)|ala%n|

—L

S Nwll e gy (1PN ra-ep gy + VU700 5181870l L1/

< wllg VEVD. (5.43)

Finally, we study the F> nonlinearity.

Proposition 5.3. Suppose that F> is given by either (A.5) or (A.12). Then

/E J(w-1)F°

Proof. As in the proof of Propositions 5.1 and 5.2, we will only prove the result in the
harder case of two temporal derivatives, which occurs when F? is given by (A.12). Then
F3 consists only of two terms.

Using the bounds in Theorems 3.8 and 3.9 (once more with the ordering convention
described at the start of the proof of Proposition 5.1) together with the Sobolev embed-
dings and trace estimates, we estimate the first term in F 3 via

< wllgi VEVD forallw € HY(Q). (5.44)

'/ J(w-1)2ubDy, 40:uv - 1)
PIN

< wllpi/e— sy 10:nllw .00z IVOrull p1/a-coy(ny S wlla VEVD. (549

5/2 | 13 A| [ V3l

Similarly, we bound the second term via

'L J(w - t)(uDa%Auv - T)

< [l Al 1vul
)N
S wll e g, UBeillwre s,y + 1877l wr1a@ )Vl ra-ep s,
< wlg VOVE. (5.46)
These bounds can then be combined to conclude that the stated estimate holds. [

We synthesize the results of Propositions 5.1, 5.2, and 5.3 into the following result.

Theorem 5.4. Consider the functional H'(Q) > w + (¥, w) € R defined by

14
(?,w):/ Fl-wJ—/ F4-w—/ J(w-1)F?3, (5.47)
Q

—L s

where F1, F*, F> are defined either by (A.1), (A.4), and (A.5) or else by (A.8), (A.11),
and (A.12). Then

HF . w)| < wlg (V€ + VD forallw e HY(Q). (5.48)

Proof. This follows immediately from Propositions 5.1-5.3. ]



Stability of contact lines in fluids 1489

5.2. General interaction functional estimates II: pressure term

We next turn our attention to the term F? appearing in Theorem 3.2. We again derive a
general dual estimate.

Theorem 5.5. Suppose that F? is given by either (A.2) or (A.9). Then

‘/Q JYF?

Proof. Again, we will only prove the result in the harder case of two temporal derivatives,
which occurs when F2 is given by (A.9). In this case F2 only consists of two terms.

From the bounds in Theorems 3.8 and 3.9 (again using the ordering convention
described at the start of the proof of Proposition 5.1) together with Holder’s inequality
and the fact that 2 has finite measure, we bound the first term via

SNl 2VDVE forally € LA(Q). (5.49)

'/ Ty divys 4 u 5/ [y | [02A] |[Vu|
Q ! Q

S L2 3eillwr2re + 187 llwr2re) IVl 2rae o 1] 2706 4~

Syl vVDVeE. (5.50)

For the second term we argue similarly to estimate

'[ Jl/deiVatA 8tu
Q

ilJWWNHW&M
< 122 180l 00 [ V0] 2
Sl vVEVD. (5.51)

Upon combining these, we arrive at the stated bound. ]

5.3. Special interaction estimates I: velocity terms

The F3 nonlinear interaction term in Theorem 3.2 requires greater care than we have used
above. Indeed, we will not derive general dual estimates, but will instead derive estimates
that take careful advantage of the structure of the test function. When two time derivatives
are applied, the F3 nonlinearity from (A.10) has the form

F? = 92[R(318o. 917)]
= 9:R (0180, 01131870 + 92 R (3180, 917)(313,1)°, (5.52)

where R is as in (1.34). For the purposes of estimating F> we will write

Fu-N=0dn—FC. (5.53)
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We may then decompose the relevant interaction term in Theorem 3.2 as

¢
—/ 0F331(8fu - N)
—L

)4

L
=-—[ mamwﬁmmmaanamn—/’oamwﬁmmmaaan6

¢ ¢
—/[Uaiﬂ(alio,3177)(313;‘77)2313?77—/ 002 R (3180, 011)(010,m)>01 F°

= I +1+HI+1V. (5.54)

We will handle each of these separately, starting with 7.

Proposition 5.6. Let I be as in (5.54). Then

<VeD, (5.55)

d b4 P 32 2
'I-i-d—/ Uazeﬂ(alfo,alﬂ)| : z’/|

2
‘/ 00, R(&lé'o, 8177)|8 8 77| S \/_8” (5.56)

Proof. The key feature of [ is the appearance of the total time derivative 91971791937,
which allows us to write

L 2 b4
010 d
I = —/ 03zﬁ(31§0,3177)3t—| il = ——/ 00;R(3180,917)
¢ 2 dt J_y

|91 3 nl?

£ 2
+/ 00> R (318, 011) a,n| ! t”' . (557)
—

Using Theorems 3.8 and 3.9 (with the ordering convention described in the proof of
Proposition 5.1) in conjunction with Proposition A.1, we then estimate

2 l

L/oyﬂ@gmmmaaﬂlgm < [ 1oadunl psa2aP 5 Jondenleos o
<SVED (5.58)

and

wa| ¢ 2

03 R(0180,017) ——— , 191] 10107 01> < 1917llzee 101077117 > < VEee,.
(5.59)
These are the stated bounds. n

Next we deal with the term 11.

Proposition 5.7. Let I be as given in (5.54). Then

1| < €D. (5.60)
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Proof. We begin by writing F® = —209,110,;n7 — u13;3%n in order to expand

L
0; R (0180, 0
/Uﬂamala%zalazmalam

— 011

/1Z 0; R (0180, 017)
+ [ oAl
¢ d1n

1l =

3119197120,u1079,n

¢
0, R(01¢p, 0
+[ o (0180, 01m)

¢
. B 31’7313%7131%313?'7"'[Kﬁazﬁ(alé'o,317))313%”13%3?'7
_ 1 _

=:1I) + 1l + 15 + 14. 5.61)

To estimate these terms we will use Theorems 3.8 and 3.9 (with the ordering convention
described in the proof of Proposition 5.1), Proposition A.1, the ordering 0 <2« < e_ <&y
assumed in (2.5), and Holder’s inequality. This yields the bounds

L
mns/|mmwamwmmwmm

< 191nll2oo 191970l L1/e 191912l 1/1-eo0 () 101171 oo

< JVE DVE, (5.62)

L
mﬂs/|mmwaM@mw%m

< 19unllzoe 19107 nll L1/ 13rell oo 2y 18332 il L1 /1o

< VEVDVEVD, (5.63)
L
1115 5/ 1011 18187 n17181u] < 119177llLo0 119197 117 10 1100 170100 5,
<JVEDVE. (5.64)

For 114 we note that 9, 32702921 is a total derivative, so we can integrate by parts and use
the fact that u; = 0 at the endpoints to see that

l J4
01 8 01 3
|II4|= 08232(81&,,8117)1418 | | '—/60'3 [8 R(Bléo,aln)u ]| |
¢
0, R(018o, 0
= )/;60[%{;)1”)317731% + 2R (910, d1m) T nus
2 2 12
n 3yaz<‘73(318§0r;3177)315081W1]|3132,77| . (5.65)
1

We may then use the same tools listed above to estimate

|14 S/ 18187012 (19171 1812e] + 19T ] [u] + [317] |u])

S 101970117 1o (1917l oo 101 2]l 1/ —epg) T 10371l 170> ]l oo (xy
+ 1910l llullzeo(z)) S DE. (5.66)
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Combining these bounds then yields the stated estimate. ]
The term /11 is next.

Proposition 5.8. Let III be as given in (5.54). Then we have the bounds

d V4
'111+ E/ 002 R(D180,011)(19,1)20,0%n| S (VE + €)D, (5.67)
—L

L
’/ZUB;R(E)IZO,3177)(313t77)2313?77 < \/Egu- (5.68)

Proof. We begin by pulling a time derivative out of the integral:
¢
11l = — / O‘aie(R(a] é'(), 31 T])(al at 7])281 8?7’)
—L

d b4 L
= —E/ZUagﬁ(alfo,3177)(313:71)2313%+/60323(3150,3171)(313z77)3313?71

L
+ [ o RO 02000 (5.69)
—¢

We then employ Theorems 3.8 and 3.9 (with the ordering convention described in the
proof of Proposition 5.1) and Proposition A.1 to bound

¢
‘[6 03 R(9180. 311)(319:1)>91977

L
< /e|alam|3|818%n| < 1101917001019 mllo0 101927 L1/e S ED (5.70)

and

¢
'/e 02 R (180, 911)2019,7]9197 9|

¢
< [{ 1810:m1 19197 01> < 1919, mllLo 19197011710 S VED.  (5.71)

Upon combining these, we arrive at the first stated estimate.
To derive the second estimate we first note that standard Sobolev embeddings and
interpolation show that if € H3/2((—£, ()) then

1019 e < 101 lgire < I lmse < IV Iv I, (5.72)

Applying this with ¥ = 9,71 and again using Theorem 3.8 and Proposition A.l with the
definitions of & (see (2.10)) and &, (see (2.9)), we bound

¢ ¢
‘[Zgaﬁﬁ(alﬁo,31’7)(313t77)2313?7} < [13 1910:m1210107n| < (010,717 41101977l 2

< ldenlg 0l g2 12nlg < VEVEVE, (5.73)

which is the second stated estimate. [
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Finally, we handle the term V.
Proposition 5.9. Let IV be as given in (5.54). Then
V| < (& + 63 D. (5.74)

Proof. We first write F® = —20,1u,0;0;n — ulalafr] in order to split
4
W = [ R0 0010000 Drs0100)

12
+ /e O'aie(R(alCo, 81r/)(818,n)281(u1818f17) =: IV1 + IV2. (575)

Then Theorems 3.8 and 3.9 (with the ordering convention described in the proof of
Proposition 5.1) and Proposition A.1 allow us to estimate

14
(V1] < /Z 1913712 (1819,u] 91,7 + |9,u] [879,n])

<1919l Z o0 (19101l L1/ e () [1919e | oo + 10l ooy 18302 L1/1-e)) < ED.

(5.76)
To handle 1V, we further expand
14
IV2 = /Zo‘aﬁeﬂ(a];o, 3177)(818;7})28114]818?7’}
4
+ / 08?:‘/2(81&), 817})(818[7})21418%3?7} =:1V3 +1Vy4. (5.77)
—L

The term IV3 can be estimated as IV was, recalling from (2.5) that ¢ < e— < 4

¢
[1V3] < /[|313t77|2|3174| 10107n] S 1910:7lIF 0 011l 1/0-c ) 10107l L1/70 S ED.
- (5.78)

On the other hand, for V4 we need to integrate by parts again, using the fact that u,
vanishes at the endpoints:

12
IV, = —/ea[agm(ago, 91 (910,m)>01u1 + 202 R (9180, d17)919,7979,u1 01977

¢
- /20[333(31%, A1m)93n + 0,92 R (3180, 311)9380](319:m)*u10,197n =: IVs + IV
(5.79)

These terms can then be estimated as above:

L
11Vs| < /e(|ala,n|2|alu| T 1913n] 1329, ] ) 8,827

S (1918enl1Z o0 19124 L1700 5y F 19187l 00 19795 L1/ —e el oo () 19197 1l 1/

<(EVD + VEJDVEWVD (5.80)
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and

V4 </ (0] + Dlard,nPhul 9102
< (1l /a0 + D137 e full ooy 101970l 21/0 S (VE + 1DED.  (5.81)
The stated estimate then follows by combining all of these. ]

Now that we have controlled /-IV in (5.54) we can record a unified estimate.

Theorem 5.10. Let F3 be given by (A.10). Then

L
'—/ 0F331(82u - N)
—t

33 2
/[oa R(01 80, 3y 121021

+ 032 R (3180, 31’7)(313177)2313?’7”
S(VE+E+6¥)D (582
and

L
| ”' <JVEE. (583

' / [oa R (0180 917) +oaﬁ=ﬂ(alzo,am)(@ﬁm)zala?n}

Proof. The results follow from combining (5.54) with Propositions 5.6-5.9. ]

A similar and simpler result holds for F3 when only one time derivative is applied as
in (A.3). We will record it without proof.

Theorem 5.11. Let F3 be given by (A.3). Then

2
‘—/ 0F33,(0%u- N)| S (V€ +6)D. (5.84)
—

5.4. Special interaction estimates II: free surface terms

The term involving F¢ and F7 in Theorem 3.2 also require a delicate treatment. We
record these now, starting with F 6

Theorem 5.12. We have the estimate

310219, F©
?nF° + L <JVED 5.85
'/ [g T |alzo|2)3/2} Ve 489
when F© is given by (A.13), and
310:n0, F6
d,nF° + <JVED 5.86
V [g & (1+|31§0|2)3/2} & -89

when FO is given by (A.6).
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Proof. We begin by using the definition of F¢ in (A.13) to split

T2 019701 F° _ Co 2 2
» gornF +OW = _l(gatn(—Zazmalaﬂl)+gat77(—u1313t’7))

L 2 14 2 2
318“’]81(—28;111818;7’]) / 818tr]81(—u1818t77)
=:1+1+1l.

/_/’ (1 + [0:18012)%7 NN NNDEE o

(5.87)

We will estimate these three terms using Theorems 3.8 and 3.9 (with the ordering conven-
tion described in the proof of Proposition 5.1) and Holder’s inequality. For / we directly
estimate

L
1] < /Z 1201(19 110, + [ 131027])

S N9F 0l L2 (1902l oo (21919 mll 2 + Nl ooz 19187 7]l 2)

< VD (VEVD + VEVD). (5.88)
Similarly, for II we apply the product rule and estimate (recalling (2.5))
y4
1| < /z 101871(1018,u] 1918, n + |91 078,7])

S 112 nll /e (191302l 17 —eo ) 1918l Lo + (191 | oo () 1973, L171-e))

< VO NVDOVE + VEND). (5.89)

On the other hand, for /II we expand with the product rule and then integrate by parts and
exploit the vanishing of u; at the endpoints:

mz_/foala%nalulala%n+/f oal( s )|ala%n|2
—¢ (14101532 (1419180232 2

- 3/6 10,92512 (119 ! - duy (5.90)
— 2 ) I T 0060232 ) T (1t 101202 ) '

In this form we can estimate with the same tools as above, crucially using that 2« < €4,
to see that

1) < /_i 18097017 (Jul + 131ul) < 18097007 17e ull 17040 5y S DVE. (5.91)
Combining these then provides the stated bound. ]
Next we record the F7 bound.
Theorem 5.13. We have the estimate
0%u- N, F7)| S VED (5.92)
when F7 is given by (A.14), and
B N, F7lel S VED (5.93)
when F7 is given by (A.7).
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Proof. Once more we only record the proof in the harder case when F7 is given by (A.14).
We begin by estimating

\F7| < 17 @) 1830] + |77 @em)] |92 9]%. (5.94)

Since ||9;7||zec < v/€ < 1, we can bound

N 1 z
|7 (z)| = a'/o W"(rydr| < |z| forz € [—|0:nllLoe, [|0¢7] Loo]. (5.95)

From this, basic trace theory, and the bound Zi:l max.g |8]tC n| < v/ D we then estimate
max | F7| 5 max(9,n]197 1l +19701%) S VO (19enll g1 + 1971l 1) S VOVE. (5.96)

From this and the fact that [07u - ], = [03n]¢ < +/D, we deduce that
0%u - N, F7)y| S VEVD[*u- N, S VE D, (5.97)
which is the stated estimate. ]

We conclude with two more estimates involving the free surface function. The first is
for a term involving the function @ from (A.16) that appears in Corollary 3.3.

Theorem 5.14. Let @ be the smooth function defined by (A.16). Then

V4
/Eo@(alzo,am) < Vel (5.98)

Proof. According to Proposition A.1 and Theorem 3.8, we have

‘/_i 0@(01L0.i7)| < /_i B0 < onllzelnlZ: < VEInlG,.  (5.99)
This is the stated estimate. ]
Our final estimate involves the term WA, as defined in (1.40).
Theorem 5.15. We have
- N A @emlel < 13enll g [ - N (5.100)

Proof. The definition of # € C? in (1.40) shows that |7/}(Z)| < z2 for |z| < 1. Since
d;n = u - N at ££, we can use standard trace theory to deduce the stated bound:

- N A @mlel S Y alu- N@l.0)?|0m(@l, 0] S 19l [u- N]F. (5.101)
a==+1 u
6. Nonlinear estimates II: interaction terms, energetic form

In this section we continue our study of the nonlinear interaction terms appearing in The-
orem 3.2. However, the focus now is on estimates in terms of the energy functional. Once
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more, in order to avoid tedious restatements of the same hypothesis, we assume through-
out this section that a solution to (1.41) exists on the time horizon (0, T) for 0 < T < oo
and obeys the small-energy estimate

sup (1) <y? <1, (6.1)
0<t<T

where & is as in (2.10) and y € (0, 1) is as in Lemma 3.5. Again, this means that the
estimates of Lemma 3.5 are available.

6.1. General interaction functional estimates

We begin by deriving general dual estimates for the terms involving F!, F#, and F? in
terms of the energy functional. First we consider F!.

Proposition 6.1. Suppose that F is as defined by (A.1). Then

V Jw- F!
Q

Proof. The term F 1 as defined by (A.1), contains six separate terms. We will estimate
each of these, employing Holder’s inequality and Theorem 3.8 repeatedly and without
explicit reference.

S wlgi (€ +€%?) forallw € HY(Q). (6.2)

Term —divy, 4 S (p,u). We first bound

/Q Jw - (—divy, 4 Sa(p,u))

s/ﬂ|w||am|<|vm+|v2u|)
+/Q|w||8t<f\>||V<A|(|p|+|Vu|) =: 1 +1I. (6.3)

‘We then estimate

15 1wl 2/es 10:lwro (1Y Pl 2/ + 1920l 2r6-e0) S Iwllg1 €, (6.4)
I 2wl e 10enllw e 17l 2.2/a-e 0 (PNl 2700 + VUl p27a-64))
S w1 832, 6.5)
The combination of these estimates shows this term can be estimated as stated.

Term p div 4 Dy, 4u. We first bound

‘/ Jw - (ndivg Dy, 4u) S/ |w||8tA||V2u|+/ lw[|VosA||Vul=:1+1I. (6.6)
Q Q Q

For I we bound

I < wll2req 10e oo VUl 2r0e 40 < w1 €. (6.7)
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For Il we use (2.5)toseethat) <e_ —a < land0 <2e4 +6_ —a < 2,50

11 < wllpa/cey+e——a (17l w2.47e—c——an + [10:71l w2472~ VUl 2/0-64)
S lwllg €. (6.8)

Combining these then shows that this term can be estimated as stated.

Term —u - Vj, 4u. We bound

/ Jw - (—u - Vy, 4u)
Q

s/ | ] 3, A] [Vl
Q
< wll gzl [8:ill oo | Vullzz < Jwlli €32, (69)

Term —0,u - Vu. We estimate

/ Jw - (—0su - Vau)
Q

RN
Q
< wllpar@eq+enr|0culpase—en VUl 2700 S w1 &, (6.10)

Term 977 £ K 9,u. We bound
/Jw-(afﬁfKazu)
Q 0

Term 8,7’;%8,1(82% We bound

< /Q ] [9777] [Vul < llwllLa 877l L4 Vull 2

< Jlwlig16. (6.11)

/ Jw- (atﬁgatl(azu)
Q $o

S/Qlelatﬁl 19, K] V|

S lwllz2l8elzoo 19 ill oo | Vallz S lwlg1 €37 (6.12)
|

Our next result concerns energetic estimates for F4.

Proposition 6.2. Suppose that F* is defined by (A.4). Then

Proof. The term F*, as defined by (A.4), contains four separate terms. We will estimate
each of these, employing Holder’s inequality, trace estimates, and Theorem 3.8 repeatedly
and without explicit reference.

S Nwlgi (€ + €%?) forallw € HY(Q). (6.13)

Term pDj, 4uN. We bound

Y4
< /£|w||atw| IVl

J4
' [, )

S Nl 1/es gy I8enllroo V0l 1/ac gy S Tl €. (6.14)
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Term (gn — oal(mw?‘W))atﬂ. We estimate

[T
—t (14 18180[2)%/2

< ||w||L1/€+(E)”n”WZ.l/(l—s_;,_)||817}||W1.oo < ||w||H18 (615)

L
< /elwl(lnl T 0un] + 1320D)8,01 1

Term —0 9 [R (9180, d171)]9; N. We first expand
31[R (D180, d11)] = 3y R (0180, 11770 + 3 R(1 L0, d11)37n (6.16)

and then use Proposition A.1 in order to estimate

L
' / o (—aalwalco,am)]am‘

L L
< /4 [l 1171913, +/e ol (8] [82n] [818,m| = T + 1. (6.17)

Then we bound
I 5 iz 101nlIZee 1919enl 22 S w1 €. (6.18)
I S Nl 1/es g 1B1mllzee 1830l 1/a-e 1810l Loe S w1 €3/, (6.19)
Upon combining these, we find that this term can be estimated as stated.

Term —S4(p,u)d; N. We bound

L
< /(|w|(|p| - 1Val) 8,017

L
'/_e W (—Sa(p.u)d )

Slhwll ey gy UIPlprra-ep gy + VUl pra—eo ) 1910emllLee S w1 €. (6.20)

L]
Next we study the term F>.
Proposition 6.3. Suppose that F? is given by (A.5). Then
‘/ Jw - -1)F?| < |w|g1 & forallw e HY(Q). (6.21)
ES

Proof. Using trace estimates and the Sobolev embeddings together with Theorem 3.8, we
bound

' [

s/ | 13, A| V]
N
S N0l vep gy 10l IVl e s,y S 0l €. (622)

This is the stated bound. [
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We combine the above estimates into the following theorem, which is the analog of
Theorem 5.4.

Theorem 6.4. Consider the functional H'(Q) > w + (¥, w) € R defined by

(?,w):/ Fl-wJ—/e F4-w—/ J(w-7)F>, (6.23)
Q —L )N
where F1, F*, F> are defined via (A.1), (A.4), and (A.5), respectively. Then

HF . w)| S |wlgi (€ + &2 forallw e HY(RQ). (6.24)
Proof. This follows immediately from Propositions 6.1-6.3. ]

6.2. General interaction functional with free surface terms
Next we turn our attention to a general estimate involving the free surface and F3.

Theorem 6.5. Suppose that F3 is given by (A.3). Then we have the estimate

'/e( 9 n(w - N) — 00 (%Hﬂ)w-,}v)
8T T+ 10:1602)77

S (1 + VOl gsr+e——wr|wlgr forallw e HY(Q).  (6.25)

Proof. The first term is easy to deal with:

/.

The second and third terms require more work.
Lets =1 — (e~ —a) € (0, 1), which requires that

/ 19en] [w] S 9enll2llwllzzsy S [9mll2llwlmrg).  (6.26)

) S_3+8_—Ol
272 2

6.27)

Using this and Proposition B.§ we may estimate

8 aﬂ’] 3
'/ ((1 FRENADTER )w'”v'

(o

1+ |814°0|2)3/2
Since o is smooth, Proposition B.3 shows that

” 019
(1419180[>)3/?

+ ||F3||H1—x/2) lw-N|gs2. (6.28)
Hl—s/2

SN0l sz S 10enllg2—sr2 = 190l g3r2+c——r/2.
H1—s/2
(6.29)
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To handle the term
= 0;[R(9180. 1] = 9:R (9180, 917)d19,7] (6.30)
we first use the fact that H'~5/2((—£, £)) is an algebra to bound
IF3 [ g1-sr2 S 1182 R (@180, 01m) || gr1—s/2 (10181 gr1-s/2 (6.31)
and then we use Proposition B.9 with f(x,z) = d,R(d1{o(x), z) to estimate
10;R (0180, 01 | gri-sr2 S 10170 g1-s/2, (6.32)

which yields (again using (6.27))

||F3||H1—S/2 5 ”n”H3/2+(57—a)/2||atT’]||H3/2+(sf—a)/2. (633)
However,
3 e_ — 3
- < Z 6.34
> > =3 +et (6.34)
and

1 2- 1 3 11 1 3
ST e e )= — (3o ——2—el). (633
2 2 1 q

so we have the embedding
W34+ (=, 0)) < HY2Te+((=L,0)). (6.36)
Then (6.33) and (6.36) tell us that
1> gi-sr2 S VE 13l g3/2+e——arra. (6.37)

Next we use Proposition B.3 (with 1/2 + &4 > max {1/2, 5/2}), the usual trace esti-
mate, the embedding (6.36), and the bound & < 1 to see that

lw - Nlgsn S NNl gares lwlgen S 4+ Il ganre) Wl
SU+VOlwlg g < lwlgr.  (6.38)

Combining this with (6.29) and (6.37), we conclude that
S A+ VOl gar+e——wrlwlg .

01041 3 .
‘/ ((1+|alzo|2>3/2” )w y
(6.39)

which completes the proof. |

7. Nonlinear estimates III: elliptic estimate terms

In this section we complete our study of the nonlinear terms coming from (1.41) by turn-
ing our attention to elliptic estimates. More precisely, we study the terms appearing in
applications of Theorem 4.7. As in the previous two sections, we assume throughout this
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section that a solution to (1.41) exists on the time horizon (0, T) for 0 < 7" < oo and
obeys the small-energy estimate

sup (1) <y? <1, (7.1)

0<t<T

where & isasin (2.10) and y € (0, 1) is as in Lemma 3.5. This means that the estimates of
Lemma 3.5 are available for use, and we will use them often without explicit reference.

7.1. No time derivatives

We begin with the elliptic estimates we will need for the problem (1.41), i.e. when no
temporal derivatives are applied. When we compare (1.41) and (4.48) we get

Gl

—0;u + 8,?]?K32u —u-Vau, G*=0,
0

G = /Il G=0, Gi=0, G'=o, 72

G>=0, G®=R(31%0.01m). G’ =adm+ R (014, 01n).

This dictates the form of the estimates we need.
We begin with the bounds for Glin (7.2).

Proposition 7.1. We have the bound

S loaullzz + VE (ullzz + 19emlgn).  (73)

H—Btu + S,F)glﬁ)zu —u-Vau
ZO L9+

Proof. The bound ||0;ul|p e+ <||0:u| 2 follows from the fact that g+ <2. Using Holder’s
inequality and Theorem 3.8 we then bound

e - Vaullgos S |l [Vul por S 1Vl 2ra0-e0 ullz2 S VE [l g2, (7.4)

and (also using Proposition B.4)

The result follows by combining these. ]

8177]21(82“
%o

., Sl V] oy SIVHl 20— 10602 S VEBenllan . (T-5)
L

We continue with the bounds for G in (7.2).
Proposition 7.2. Let Ny be given by (1.25). Then
|8en/I1Nol | 217040y < 18enllgr3r2-a- (7.6)

Proof. First note that
1 1

|Nol /1 + [910]2

is smooth, and we may thus bound

(7.7)

” 9:n/|No| H wrVarar < 0enlly2-17a4.ay - (7.8)
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Next note that (2.5) implies that 2 + ¢4+ < 1, so

1 2 3
P, S A R (7.9)
. 2 2 =2
and 1 2 2 113
o iTE ety 1 (2,5 (7.10)
0t 2 2 2712 2

These parameter bounds and the Sobolev embeddings show that
H3270 (£, 0)) — W 1a+2/Cates) (g, 0)) s W2TV0+0+ (=L, 0)).  (7.11)
This allows us to estimate
1871l 2170y 0y S 1970|372 (7.12)
and the result follows by combining these bounds. ]
Our next result records the bounds for G° in (7.2).
Proposition 7.3. Let R be as defined in (1.34). Then
191 [R (@180, d1mllyy1-1/7aras S VE Nl 3170y s (7.13)
Proof. We compute
31[R (0180, 01m)] = 3y R(310, 917)370 + 02 R (3180, 017)077. (7.14)
We then use this with the product estimate from (7.68) to bound
191[R (3180, 1]l 11744 .ay
< 19y R(@180. 1)l yy1.ay 19750l 117040

+ 19z R (@180, Nl gty 19771 117040
S 10y R(@180. 01l y1a4 + 102 R @180, 01 1.0y Il 3170y 0y - (7.15)

On the other hand, Proposition A.1 and Theorem 3.8 allow us to bound

19y R(@180, M)l 1.y S N91llzoe (1317l pos + 1030l L0+ ) S VE Imlly2as

(7.16)
19: R (@180, h1m)llypr.as S N01mllpas + 193nllLes S VE. (7.17)
The result follows by combining these and recalling that 3 — 1 /g4 > 2. ]

Finally, we record the bounds for G in (7.2).

Proposition 7.4. Let R be as in (1.34). Then

[R(120. 01m]e < VE Inlly2.ar - (7.18)
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Proof. From trace theory, Theorem 3.8, and Proposition A.1 we may estimate

[R(D180. 01m)]e S [R(@180, D10 llypras S N91nllzee(101nllLa+ + 193] 9+)
< Ve nly2as - (7.19)

This is the stated estimate. [

7.2. One time derivative

We now turn our attention to the elliptic estimates for the once time differentiated prob-
lem. In order to apply Theorem 4.7, we are led to consider the following G terms for
F1-F7 given by (A.1)~(A.7):

G'=F'-0%u+ a,ﬁ;ﬁKaza,u —u-Vy4du, G?>=JF?,
0

T
G2 = (02n—F®/|No|, G2 =0, G}=F* T G* = F5, (7.20)
G> = F*. N G®=F3 G =«d?n+«F’

I e

We begin by estimating the G! term from (7.20).
Proposition 7.5. Let F! be given by (A.1). Then

“Fl +3tﬁ?K828,u—u-V,A,8tu < (V€ +6)VD. (7.21)
0

Li—

Proof. We will estimate term by term using Holder’s inequality and the bounds from
Theorems 3.8 and 3.9, once more using the ordering scheme used in the proof of Propo-
sition 5.1. Combining the estimates of each term then yields the stated estimate. Recall
from (2.5) that 0 < 2o < ¢— < g4, which in particular means that

2 2

_ = < ={q+. 7.22
q e 2 e q+ (7.22)

Term divy, 4 S4(p,u). First note that

1- 1- 1 2—e_ 1
i e (7.23)
2 2 00 2 q-—

Using this and (7.22) we can then bound

Idiva, 4 Sa(p.u)llLa- < |10 Al [VAI(p|+ [VuD | om + [[18:AI(V Pl + [VZuD]| Lo
S 0enllwreellnlly227a-pp (Pl 27a-00 + VUl 270-64))
+ 1192 7llwr.00 IV Pl o+ + V0] Lo+
<EVD +VEVD. (7.24)
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Term p div 4 Dy, 4u. For this term note that

l—e- 1—e4 2—6_ 1
+ < = —, (7.25)
2 2 2 q-—

This and (7.22) allow us to bound

¢ diva Do, arellza- < [V A Vul || g + [18:AVul] o

< UTlw22ra—e) + 18edillw2.2ra-e) | VUl 2ra—epr + 13:7 w10 VUl o+

S VOVeE +VEVD. (7.26)
Term u - Vj, 4u. We simply use (7.22) to bound
e - Vo, aullza— < |1l 10 ANVl | oo Slullzoo 18: 7 prco | Vulpor SEVD.  (727)
Term d;u - V4u. Again we use (7.22) to bound

19,2 - VoaullLa— < {19l |Vul| o S 10l | Vull ey S VOVE.  (7.28)
Term 8?17%[(8214. Again we use (7.22) to bound

afﬁfKazu

%o

Term 8,?)%8, Kdru. Once more (7.22) let us us bound

Term 8,7’7%K828,u. Since

< 1920l 1Vul| oe S 1027l Vullpar S VDVE.  (7.29)
La—

8tr_]£8tK82u
%o

S 1810 KT IVul | Lae S N10eilloo 10 llp1.c0 | Vaull Lot
La—

< EVD. (7.30)

=— (7.31)

we can bound

3,7)£K823tu
%o

< 19:al 1Vul] Loe S 10cAllLoe VO Ul 270-0) < VEVD.
La—
(7.32)

Term u - V4 0,u. For this term we use (7.31) again to bound

- Vadeulzo- < Jlul [VOull| o < lullzeollVOull2r0-e0r < VEVD.  (1.33)
| |

Next we estimate the G2 term from (7.20).
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Proposition 7.6. Let F? be given by (A.2). Then
ITF?|p1a- < (VE + E)VD. (7.34)
Proof. We begin by noting that JF? = —J divy, 4 u, so
1 F?wra— S 1T divg, s ullza— + [V(J diva, 4 w)]|La-. (7.35)

We will estimate each of these terms with Holder’s inequality and the bounds from The-
orems 3.8 and 3.9, again using the ordering scheme used in the proof of Proposition 5.1.
For the first we use the fact that g— < g4 to bound

1/ diva, o= S 104 [Vul| oo S 10:illwrcc [ Vullpor S VEVD.  (7.36)
For the second term we expand with the product rule and note that (2.5) implies

- - 2o 1 - l—e. 2—e_ 1
o 2T and e L B N
2 2 2 4 2 2 2 T4

which allows us to bound

IV diva, aw)llza— < [IVI 180 A V]| oo+ [ VO ANVl | Lo+ 100 AVl |

S Illy22ra—e o [10e7 w00 [Vull 27 -6
+ (llw22ra-e) + [10:7llw2.2/a-e) VUl 270 -2

+ 19 7illwr.o00 | V2| oy < EVD + VOVE + VEVD < (VE +EVD.  (1.38)
Combining these bounds then yields the stated estimate. ]
The next result records the bounds for the G3 term from (7.20).
Proposition 7.7. Let F° be given by (A.6). Then
[ @20 = F)/INollya-1/a-a- S 1870013720 + VEVD. (7.39)

Proof. Firstrecall that N = —0d;pe; + €3, SO
1 1

= (7.40)
|=A[0| \/1 +|81§0|2
is smooth, and we may thus bound
[ @2n—FO) /1Nl | yo-1/a—am S 1020 = FCllwa-1/a—a—. (7.41)
Next note that (2.5) implies that 2« + e_ < 1, so
LI S el R (7.42)
-——=2- = — < -—« .
q-— 2 2 72
and 1 2 2 1 1/3
Szt rere D (2o, (7.43)
q-— 2 2 2 1\2 2
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and so these parameter bounds and the Sobolev embeddings show that
H327%((—,£)) — W2 Va=2/CQate) (g g)) s W2Va=4=((=L,0)). (7.44)
This allows us to estimate
187 nllw2-1/0—a— S 1870l pr3/2-a- (7.45)

For the F® = —u1d19,7 term we use the fact that W2~1/4—4—((—¢, {)) is an algebra
in conjunction with trace theory and the definitions of & and O in (2.10) and (2.11),
respectively, to bound

IFlw2-17a—a— < lullw2=1/a—a— 2y 10180l w2-17a—a-
< ullpaa— 130l ws-1/a—a— < VEND. (7.46)
Combining these then yields the stated bound. |
Next we bound the the G* and G terms from (7.20).
Proposition 7.8. Let F* and F> be given by (A.4) and (A.5), respectively. Then
T

1712

s N

: |N|2 + ”Fs”Wl_l/q_‘q_

wl=1/a—.a—

[

+|F

wl=1/a—.a—

<(VE+&VD. (147)

Proof. Recall that & and D are as defined in (2.10) and (2.11). We begin with the F> =
uDy, 4uv - T term. We use trace theory, the product rule, Theorems 3.8 and 3.9, and (7.37)
to bound

IF>llw1=1/0-.a-
S Dy, attllwi.a— (g
S |10 Al VUl | Lo+ [[IVO: A VUl || oo + [[10:4] [Vul| 0
S 0enllwr.ce VUl Lo+

+ (Illw22ra-c-) + 187l w2270Vl 210 + 13cAllwr.00 [Vl Lot

<SVEVD + VOVE + VEVD. (7.48)
We next turn our attention to the F# term. First note that since
T (1,9180 + 011) N o (=918o —din, 1)

= , N =(=01—01n,1),
[T12 1410160 + 917)? (=010 = Bum. 1)

|N2 143180 + 011>
(7.49)
we have
T

72 + [ Mlwra- S1+VE S (7.50)

Wla—

|
wl.a— |N|2
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This allows us to employ Theorem B.3 with 1 > max {1/¢g_,1 — 1/g_} to estimate

HF“.L + | F*. ad
|T|2 wl—-1/q—.q— |=N|2 wl—-1/q—.q—
<F4) /( 7 + i )<IIF“|| tgae. (15])
TP e T NTIVP e ) =00 T

We will then estimate the F* norm on the right term by term to arrive at the stated esti-
mate.

Term Dy, 4uN. For this term we first use Theorem B.3 and trace theory to bound

1Dy, AN ly1-1/a—a— < Do, attllwi-1/a—a— ) IV [ wr1.a—
S IDa, attllwrra— @) IV lw1.a-- (7.52)

Using this, (7.50), and the estimate from (7.48), we deduce that
| Dy, gt N pi-1/a—a- < VEVD. (7.53)
Term gnd; N. For this term we use Theorem B.3 to bound

gnde N llwi-1/a—a— < [Mllwr.a- 11010l w1-1/4—a—
< Inllwra=l3enllwa-1/a—a— S VEVD. (7.54)

Term —o0; (M&W)a +M. We begin by expanding with the product rule and using
the fact that ¢ is smooth to bound

o )|
00| ————— |, N
H 1((1 + 19180232 ) " Wwi—1/a—.q—
S N01m013enllwr-1/a—a— + 1930919 mllp1-1/a—a—.  (1.55)

Then Theorem B.3 and the fact that 2 < 3 — 1/¢4+ and g— < g4 allows us to bound

1011019:nllw1-1/a—a— < 010llwr.a—11010:nllw1-1/a-.a-
< Inllwz.a=13enlwa-1/0-.0- < VEVD. (7.56)

Similarly, Theorem B.3 and the bounds ¢ < ¢+ and 3 — 1/¢_— < 3 — 1/¢4+ imply that

1037010, nllw1-1/a—a— SN030w1-1/a—a— 1010:llw1.a— S 0llws—17a—.a— 130l w20
Slnllys-1/agay 10emllw2a SVEVD. (7.57)

Combining these then shows that

)| v
00| ————— |9 N < VEVND. 7.58
H ? 1((1+ EXEEE) A Ve (7.58)
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Term —0 91 (R(918o, d171))d; N. For this term we first expand
91(R (0180, 011)) = 8, R(180, 011370 + 0 R (180, d11)d3n (7.59)
and then use Theorem B.3 to bound
091 (R(3180, 01m) e N [l pr1-1/4—.a—

< 119y R(D180. 01107 %0 llw1.a— 1910:nllw1-1/0—.a-
+ 10: R (0180, d1m)lw1.a— 10370100l w1-1/4—a—.  (7.60)

The fact that W 14— ((—£, £)) is an algebra, Proposition A.1, and Theorem 3.8 then show
that

18y R (3180, 013 ollwia— S 10y R(D10. I lwra— S 10111 o + 1930llLa—
< 181nl3 00 + 11ll 3170400 S VE (7.61)
and

19:R(180. 1M lw1.o— < 1917l + 1930l La— S 101mllZee + 0l 317010y S VE.
(7.62)
Combining these with (7.57) then shows that

081 (R (D180, 100N | wi-1/a—a— < VE (10:llw2-1/a—.a + VEND)

< (Ve +6)VO. (7.63)
Term —S4(p,u)d; N. For this term we use Theorem B.3, trace theory, the bound
1- 1—- 2-2 2—¢e_ 1
e e e e (7.64)
2 2 2 2 q-

and Holder’s inequality to estimate

[Sa(p, w)d: N llwr1-1/4—a— < ||S<A(PvM)”Wl—l/q—ﬂ—(z)||313t71||W1’47
S ISa(p. W llwra— @) 19 nllw2.a-
< (Ipllwra- + llullwz.a— + [IVALVUl| Lo )10l 20—
S (Iplyras + lullgzar + 10ly22/a-e01Vull p27a-e ) [0enllwr2.a-

< (Ve +6)Vo. (7.65)

The next result records the estimates for the G® term from (7.20).

Proposition 7.9. Let F3 be as in (A.3). Then

101 F3|li-1/a—a- < (V€ + E)VD. (7.66)
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Proof. We begin by expanding
I F? = 010:[R(010,011)] = 0;9y R(3180, 0113700107
+ 9ZR(9180.011m)91N010:n + 3R (180, 01m) 370, := 1 + I+ 1. (7.67)
Since 1 > max {1/g—,1 — 1/q;} we can use Theorem B.3 to bound
leylwi-1/a—a— < lellwra- ¥ llwi-17a-a-, (7.68)

and we will apply this to handle each of I, 11, and III.
We begin with I by using (7.68) twice together with the fact that g— < g4 to bound

I ll1-1/a—a— < 1820y R (3180, 1) [l 1.a— 193800100l 1—1/7a—.a—
<1029y R (3180, 010l 1.a— 19780 lw1.a= 1019 nllwr1—1/a—a—
< 1020y R(010. 911 10— VD. (7.69)

For II we also use (7.68) twice and g— < g+ to see that
112l 1-1/0-.a— < 192 R @180, 1)l w1.a- 119709131 1ll 11/

< N02R @180, 31 llwr.a— 10301l 1—1/a—.a— 191l 1.0
< 192R (D180, 011) [l w1.0- VEVD. (7.70)

For III we only apply (7.68) once to see that

| w1=1/-a— < 1182 R (@180, 010 lw1.a— 103950l wr1-1/a— 0
< 119:R (@180, 1)l 10— VD. (7.71)

It remains to handle the &R terms in these estimates. For this we use Proposition A.1
to bound

102R (@120, 01 lwra— S 1+ 191nllwra— S 1+ [nllwza- S 1+VE  (7.72)
and
1920y R (@180, 01l wr.a— + 19 R(@1%0, him)llwra— S Inllwza- S VE.  (7.73)
Combining these bounds with the above, we deduce that
191 F3lly1-1/0-0- S (VE + E)VD, (7.74)
as desired. ]

Finally, we bound the G’ term from (7.20).
Proposition 7.10. Let F7 be as defined by (A.14). Then

[kF"; < VEVD. (7.75)
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Proof. The definition of # € C?in (1.40) shows that |7/A’(z)| < z for |z| £ 1. From this,
standard trace theory, and the definition of E and £ in (2.10) and (2.11), respectively, we
may then bound

beF")e 5 max |9l 1930 < 10711 z11 [0 mle S VEVD. (7.76)
L

7.3. Two time derivatives

We will not apply Theorem 4.7 to the twice time differentiated problem. However, we
will need the following pair of estimates, which are in the same spirit as the above elliptic
estimates. The first gives estimates of F2 from (A.9).

Proposition 7.11. Let F? be given by (A.9). Then

||JF2||L4/(3—25+) <é&, (7.77)
IJF?|p2/0-) S VEND, (7.78)
10: (JF?)||La— < (VE + 6)VD. (7.79)
Proof. First note that (2.5) requires that 0 < 3 —2e4 < 1,0 <1 —(e4 — @) < 1, and
1 +e_ 4 4
g4 < ., hence < . (7.80)
2 3—2e4 T 2—¢_

Also, from (A.9) we have
F? = —divyz  u —2divy, 4 dru. (7.81)
Then from Theorems 3.8 and 3.9 and Holder’s inequality we can bound
I divye 4 ull pa/c—2e) S 197 Al |VM|||L4/(3—28+> N ||8$A||L4”Vu”L2/(l—£+)
< (Bedillwrs + 197 7llw 1) Vull 2700 S € (7.82)
and, also using (7.80),

1] diva, 4 drull, a/c—26) < |1 diva, 4 deullparc—ery < |10 Al VUl 4/0mee)
S0l [VOrullpase—eoy < 6. (7.83)
Thus, (7.77) holds.
To prove (7.78) we argue similarly, first noting that (2.5) tells us that

2 2
< .
1—e_ 1—(e4—)

0 <éer—e_—a, so l—(ex—a) < l—e_, so (7.84)

Thus,

IIJ diVa?,A ullp2sa—emy S|J diva%A ull270-c4—an < |||3?A| |Vu”|L2/(1—(£+—O())

SN2l L2ra [Vl 2ra-c4) S (Bt iillp 270 + 1027 w1.2/e) | Vil 2/0-c 1) S VDVE
(7.85)
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and

17 diva, 4 01l p2ra—e—y S 19041 IVOeul | 2/a—ery S 1eTllw1.c0 VOl p270-c0)

< VEVD, (7.86)

and (7.78) follows.
Finally, note that

10, (JF2)| < |03 A] | Vu| + |02A4] [Vasul + |9, A V2l

+ 10, J[(107A] [Vu| + (9, 4] [VO,u]), (7.87)
while (2.5) tellsus that 0 < ¢4 — 2 < 1,
—e_ l—e_ 142 -2 _ 1
E+—¢ , SO e_<ée;—2w, SO £ + + Ol:l—&r a<1_8_:_,
2 2 2 2 2 q-
(7.88)
and 1 1 2 1
o= (7.89)

2 + 2 2 q-’
so we may again use Theorems 3.8 and 3.9 and Holder’s inequality to see that
19¢(JF?)]| -

S N9 Al L2200 [ VUl 27— + 187 AN L2 [ VUl 2o + 18 AllLoo | VOFull 2
10 llw1.00 (107 Al L2 [Vl 2ra-c) + 1A Loo [V Orul L210-6-))
< (el g + 1077l + 1077l wr2/0+200) V' E
+ (10e7ll e + 19771 g1 + 1077 w1.00) VD
+VE (il g + 177 1 + 1877l wr.00) VD
< VOVE+ VEVD + EVD. (7.90)
Then (7.79) follows. [ ]
Next we provide a bound for F® from (A.13).
Proposition 7.12. Let F° be given by (A.13) and N be given by (1.32). Then
IFCll 1720 S VEVD, (7.91)
|07 Nl g1/2-een S 1+ VOOl g1 (7.92)

Proof. According to (A.13), Theorem B.3 with % + &4 > max {%, % — a}, and trace the-
ory we have

IFOl 1720 S 10u1819:1l|gg1/2- + 1181977l 172«
S 1Beurlgr2-agldrdenl grove + lurll giroter g 191830l 1720

< 19l gi-aq@ylldenllgaave + lurll gr+er 1070l g3o—a. (7.93)
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Note that
1 2—e_ 12+8, 3 1 13 1 3 (7.94)
- = - = ————¢_ |=——=(3———=—¢e_], .
2 2 1 2 2 qg- 1 q- 2
and 1 2 1 1 1
—&y
- = ——2-=1-= = ———=2-(1 s 7.95
3= @ e = ok ey) (7.95)

so the Sobolev embeddings show that

W3V (=L, £)) <> H3/>*= (=L, 1)), (7.96)
W2+ (Q) — H'T*+(Q). (7.97)
Hence,
190l g3rate— S N0enllws-17a—a— < VE, (7.98)
el iy ) < ltlly2aq S VE. (7.99)

Moreover, since ] —a < 1and 2 < 2/(1 — e_) we can use Theorem 3.9 to bound
9rurll gr1-e () < 10:urllgr < VD. (7.100)
Thus, upon combining all of these, we deduce that

[FC 120 < VOVE +VEVD, (7.101)

as desired.
For the second estimate we use the fact that H '/2((—£, £)) is an algebra in conjunction
with trace theory and the embedding (6.36):

1072 - N Nl 1720y = 107w - (1, =0180) | 172,09y + 107u2017 1| 1172 0y
S 107ullgr1/2¢s) (1 + 19171l g1/2)
S 107ull g1 @) (1 + 0lly3-17a4-a)

S 107ull g (1 + VE). (7.102)
| |

8. Functional calculus of the gravity-capillary operator

In this section we record some essential properties of the gravity-capillary operator, X,
associated to the equilibrium ¢g : [—£, £] — R from Theorem 1.1, with gravitational coef-
ficient g > 0 and surface tension o > 0. In particular, we develop the functional calculus
associated to K with Neumann-type boundary conditions, we study a scale of custom
Sobolev spaces built in terms of the eigenfunctions of K, and we consider some useful
approximations of the fractional differential operator D* = JK /2.
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8.1. Basic spaces and the gravity-capillary operator

We write the inner products on L2((—£,£)) = H°((—¢,{)) and H'((—{, £)) via

01901 Y
[g‘“” ST |alzo|2)3/2] ®-D

It is clear from the properties of o stated in Theorem 1.1 that the latter generates a norm
equivalent to the standard one on H!((—£, £)) and thus generates the standard topology.
Recall from (2.7) that for pairs ¢, ¢ : {—£, £} — R we write

@, ¥]e = o(=OY (=0 + o)y (£) and [p]e = V[p, ¢le, 8.2)

and we will often slightly abuse this notation by writing [¢, ¥]; when either ¢ or ¥ is a
function on (—£, £) with well-defined traces, in which case the understanding is that the
map on {—{, £} is defined by the trace.

The inner product gives rise to the following elliptic operator, which we call the
gravity-capillary operator associated to {o:

14

¢
(@, ¥)o,z = /_ZW// and (¢, ¥)1,z ;:/

—L

d1p )
Ko = —0d{| —MM8M8M8 ). 8.3
vi=se “‘((1+|81¢o|2)3/2 83

The associated boundary operators are

Y (£0)
(1 + 15 (D232
and we write By : {—{,{} — R via By (££)B+v¥. Then KX and B intertwine our choice
of inner products on L2((—£, £)) and H'((—£, £)) via

(@ ¥z = (Ko, ¥)ox + [By, e forg, ¢ € C*([~¢, L)) (8.5)

We now aim to study the properties of K and 8. We begin with a version of the Riesz
representation.

Theorem 8.1. The map § : H' (=€, £)) — [H'((—€, 0)]* defined via (§¢, V) =
(¢, ¥)1,x is an isomorphism.

By =+ (8.4)

Proof. This is the Riesz representation theorem. ]

Next we construct a functional related to the form [-, -],.

Lemma 8.2. Suppose that hy € R and that we view h : {—{, £} — R via h(£{) = h4.
Then the map H'((—{,£)) 3 ¥ > [h, V] is bounded and linear.

Proof. This follows immediately from the standard trace estimate max {|y ({)|, | (—€)|}
Sl n

We can now consider weak solutions to the problem

{sto:ﬁ

8.6
S0 h (8.6)
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when f € [H'((—£,£))]* and h : {—€, £} — R via h(£) = h+. Theorem 8.1 allows us
to define the weak solution to (8.6) as the unique ¢ € H'((—£, £)) determined by

(. V)iz = (L V) +[h ] forally € H'((=L,0)). (8.7)

Note that according to (8.5) any classical (or even strong, i.e. H 2y solution is a weak
solution in the above sense. Moreover, Theorem 8.1 and Lemma 8.2 easily imply that

lellis < 1/ ey + [hle- (8.8)
We next show that if f = 0 then the weak solution is smooth up to the boundary.
Theorem 8.3. Let hy € R. Then the following hold:
(1) There exists a unique ¢ € H'((—£, L)) such that
(@ ¥z = [h.y]e forally € H'((-L.0). (8.9)
2) ¢ € H™((—£,)) for eachm € N, and
lolam < [ (8.10)
3) ¢ € C=([—£, 1)), and ¢ is a classical solution to

{J<<p =0 in(=L,0),

(8.11)
Bip =hy.

Proof. The first item follows from Lemma 8.2 and Theorem 8.1. Now consider the func-
tion z € C*°([—£, £]) given by

1
zX) )= ———— 8.12
(AT ®12

and note that there exists a constant zg > 0 such that

z(x) > zo forallx € [-£,1]. (8.13)

The function z allows us to conveniently rewrite

14

s = [ GV Fren) foraly e HU(LD). 814

Let yy € C°((—£, £)) and note that the bound (8.13) implies that y = vy/z € C°((—£,{))
C H'((—¢,)). Plugging this y into (8.9) shows that (¢, x)1.x = [h, x]¢ = 0. Thus

o (A2 )] [fro-Soem2)] o

and upon rearranging we find that

/ o'y = / _(_—(p +g- )w forall y € C2((—¢,0)). (8.16)
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The definition of weak derivatives then tells us that ¢’ is weakly differentiable, and

4

V4

"

I
" = —Zgw’ + g~ e L2((—¢, 1)), (8.17)

where the latter inclusion follows from the fact that ¢ € H!((—£,£)), z € C®([—£, £]),
and the estimate (8.13). Thus ¢ € H?((—£, £)), and we may estimate

lellmz < lellgt < [l (8.18)

Since z'/z, g/z € C*°(|—£, £]) we deduce from (8.17) and a simple induction argu-
ment that, in fact, ¢ € H™((—£, £)) for all m € N and

l@llm < Cmlh]e (8.19)

for a constant Cy,, depending on m. Hence ¢ € C*°([—£, £]). Returning now to (8.9), we
find, upon using ¥ € C*°([—£, £]) and integrating by parts, that

L
¥l = (9. ¥)1s = /_ Koy + (8.0 (8.20)

for all € C°°([—£, £]). This immediately implies the identity (8.11). L]
Next we consider elliptic regularity for (8.6) with f # 0.

Theorem 8.4. Let hy € R and f € H™((—X, £)) for some m € N. Suppose that ¢ €
HY((—£, L)) is the unique weak solution to (8.6). Then ¢ € H™2((—L, L)), and

@l gm+z < NS llm + [hle. (8.21)

Moreover, ¢ is a strong solution to (8.6).

Proof. First note that H™((—£,£)) — H°((—{,£)) — (H'((—£,£)))*, where in the last
embedding we inject H? into (H !)* in the standard way via

L
(9. ¥} = /e oV = (9. ¥)ox forpe H(=L.0) and y € H' (L. 0)).  (8.22)
Consequently, we can use Theorem 8.1 to solve for a unique ¢; € H'((—£, £)) satisfying

(o1, ¥)1,2 = (L ¥)o.x (8.23)

and obeying the estimate

leillezr < I ey < IS Nlro- (8.24)

On the other hand, Theorem 8.3 provides us with a unique ¢, € C*°([—£, £]) satisfying

(@2, 9)x = [h, ¥l forally € H' (=L, 0)). (8.25)
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The theorem tells us that
lo2llgx < Ck[h]e forallk € N. (8.26)

By the uniqueness of weak solutions, we know that ¢ = ¢; + @,. To conclude we must
only show that ¢; € H™2((—£, £)) and

lerllgm+a < S . (8.27)

Let z € C*®°([—{, £]) be as in the proof of Theorem 8.3. For ¥ € C°((—{, {)) we
have y = ¥/z € CX((—£, {)), and so we can use y € H'((—¢, {)) as a test function in
(8.23); after rearranging, we find that

4 4 1
[ =] (-Zei+e2 L)y forany cczi-ten.  ©29
¥4 — z z z

From the definition of weak derivatives we then find that ¢] is weakly differentiable, and

z’ ¥1 S
o = =S¢ + 8= + = € L32((—¢, 1)), (8.29)
z z oz
which implies that ¢; € H?((—£, £)) and
leillg2 < lerllgr + 1/ 2 < 1 llgo- (8.30)

This proves (8.27) when m = 0. When m > 1 we use a finite iteration in (8.29) to bootstrap
from ¢; € H?((—{,{)) to ¢, € H™T2((—L, £)). Along the way we readily deduce that
(8.27) holds. Thus the desired inclusion and estimates for ¢, hold for all m € N. [

8.2. Eigenfunctions of the gravity-capillary operator
The map
HO((—£,0) > f > ¢r € H'((—L,0)) cC H°((—£,0)), (8.31)

where ¢ is uniquely determined by

(0. ¥)1,x = (f.¥)ox forally € H'((—L,0)), (8.32)

is easily seen to be compact and symmetric, so the usual spectral theory of compact sym-
metric operators (see, for instance, [34, Chapter VI]) allows us to produce sequences
{wi ey € C([—¢, £]) and {A;}72, C (0, 00) such that the following hold:

(1) {wg}3,, forms an orthonormal basis of L2((—¢,0)).

) {wr/~ Ak } e forms an orthonormal basis of H 1((—£, £)) relative to the inner prod-
uct (+,*)1,x.

(3) Ao = g and wy = 1/v/2L.

@) {Ar}zZ, is nondecreasing, and Ay — 0o as k — oo.
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(5) Foreach k € N we have

(8.33)

Jka = )Lkwk in (—K,E),
c(Bj:'LUk = 0.

In other words, wy, is the kth eigenfunction of the operator K with associated eigen-
value A, > g.

We next introduce the notation for “Fourier” coefficients relative to this basis.

Definition 8.5. Fora function f € H°((—{,¢)) we define the map / : N — R via f (k) =
(f, wi)o,x. The values of f are called the Fourier coefficients of f .

We have the following version of Parseval’s theorem for this basis.

Proposition 8.6. The following hold:
(1) Forall f.g € H°((—£, L)) we have

(foz =Y fl)gk) and |fI3s=>D If0OP. (834

k=0 k=0

(2) Forall f,g € H'((—£, 1)) we have

(fors =Y MfK)gk) and |fI3s=D MlfKP. (839

k=0 k=0

Proof. The first item follows from the fact that {wg}72, is an orthonormal basis of
HO((—£, £)). The second follows from the fact that {wy / VAk e, is an orthonormal

basis of H'((—(.€)) and (wg. f)1,5 = Ax(wi. o,z = A f (k) for f € HI((—L.0)).

|
8.3. Sobolev spaces for the gravity-capillary operator
In what follows we will often make reference to the vector space
M
W = span{wg}rey = {Z apWwy ‘ M e N anday,...,ay € R}, (8.36)

k=0

the set of finite linear combinations of basis elements. Clearly, W C C*°([—£, £]). We
now define a special scale of Sobolev spaces built from the eigenfunctions of XK.

Definition 8.7. Let s € R and recall that W = span {wg }22 .

(1) Foru,v € W C L?((—{,{)) we define

[e.]

V)55, = Y A w)o s (v, widos = Y Api(k)d(k), (8.37)
k=0 k=0

”2 s = (U, u)g

which is clearly an inner product with associated norm |ju 5
% ;
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(2) We define the Hilbert space
Hiy (=L, 0)) = completion gps (W). (8.38)
(3) We define
o0
2(N) = {f:N—>]R‘ZAi|f(k)|2<oo}, (8.39)
k=

which is clearly a Hilbert space when endowed with the obvious inner product.
We now characterize these spaces.

Theorem 8.8. The following are equivalent for s € R:
(1) u € H5 (=L, 0)).

(2) There exists i € £2(N) such thatu = g, i(k)wg, where the series converges with
respect to the norm || - || 5,

In either case we have ||u ||';(;< = ||la ||l?.

Proof. Suppose that u € J¢3.((—£,£)). Then there exist {u },_o S W such that u,, — u
in 5 ((—£, £)) as m — oo. For each m we may then write

Um = Y am(k)wg. (8.40)
k=0

where {a;, (k)}2; C R vanishes for all but finitely many k. Then

oo
et =13y, = D Alam(k) = a; (R, (8.41)
’ k=0
and hence
lam(k) —aj(k)|* < A" |um — u; ||§€5< forallk e NT. (8.42)

This implies that for each k € N, {a,,(k)}5—, is a Cauchy sequence in R, and hence we
may define a : N — R via a(k) = limy,—0 am (k).
Now, for each K € N we may estimate

K K
D Akla()P = lim A lam (k)
k=0 k=0

o0
< limsup » " A} |am (k)[* = lim sup ||u,,,||§€5c = ||u||§€5c. (8.43)

m—00 m—>00
k=0

Upon sending K — oo we then deduce that a € £2(N). For m € N we then set v, =
Y r_oa(k)wg € W. Then form > j > 0 we have

m
lvm = villZey, = D Aplato)l?, (8.44)
k=j+1
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which implies that {v, }gr— is a Cauchy sequence in #5.((—£, £)), and hence converges

to
o0

v=Y a(kyw € H5 (L. 0)). (8.45)
k=0

Moreover,
m [ee)
I01Zes, = Nim_JlomllZes = lim > 2ila(o)l®> = Y Afla(o)P = llalf,.  (8.46)
k=0 k=0

Let ¢ > 0 and choose M € N such that j,m > M imply that |Ju; — Mm||5(§< <e.
Then for each K € N and m > M we have

K K
> Ajlatk) —am®)P = lim " A¢la; (k) — am (k)|
k=0 7% =0

o0
< lim sup Z Adlaj (k) — am(k)|?

j—oo k=0
= limsup [[u; — uml|Zps < &> (8.47)
j—oo *

Sending K — oo, we then find that m > M implies that

i Ala(k) — am(k)> < €. (8.48)
k=0
For any fixed m we have
o0
lm = 0I5, = lim {lum — vk |55 = I;)ma(k) —am(K). (8:49)

Then for m > M we find that
lttm = vllses, < e, (8.50)

and consequently u,, — v as m — oco. Thus u = v. This completes the proof that (1)=(2).

We now turn to the proof of the converse. Suppose that u = Y g ti(k)wy for
il € £2(N). Form € N we define u,, = >y tl(k)wg € W. Then up, — u as m — oo
by assumption, and so u € J3-((—£, £)). Moreover,

m
letmllZes, = D Axla) (8.51)
k=0
and hence
o0
ey = tim w3 = > ALK = ). (8.52)
k=0 ]
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This theorem suggests some notation.

Definition 8.9. To each u € J5.((—¢,€)) we associate a unique element i € £2(N) such
that u = 52 (k)wy and [Juze5, = 2.

Now we characterize the duals of the spaces we have built.
Theorem 8.10. Let s € R. Then the map J : H;°((—L, £)) — (H5 ((—L, £)))* defined
by

e ¢]

(Ju,v) Z k)b (k) (8.53)

is well-defined and is an isometric isomorphism. Consequently, we have a canonical iden-
tification

(H3c (=€, 0))" = I3 (L. 0)). (8.54)

Proof. The linearity of J is trivial. The boundedness follows from the estimate
(o)
(o)l = |34 Pat0n?560| < lale, 191z = Il ol (855
Suppose that Ju = 0 for some u € J;*. Then
oo
=Y a(k)i(k) forallv e Jt5. (8.56)
k=0

We may choose v = w; € #5 ((—¢,{)) for each j € N, and then ¥(k) = ;;, which
means that
0=u(j) forall j € N. (8.57)

Then ||u|| 3. = 0, and so u = 0, from which we deduce that J is injective.
Now suppose that F' € (#3 ((—¢, £)))*. Then we may define Fe (£2(N))* via

(F,0) = (F,v). (8.58)

Since we have the canonical identification (£2(N))* = ¢2 _(N) we then deduce that there
exists i € £2,(N) such that

(F,b) = Z k)i (k). (8.59)

Lettingu = Y poo ti(k)wg € H3 (=L, £)), we find that
(F,v) = (ﬁ,ﬁ) = (Ju,v) forallv e #Hj((—L, 1)), (8.60)

and hence F = Ju. Thus J is surjective.
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It remains only to show that J is an isometry. For this we compute

o0
ITullges,y» = sup (Ju,v) = sup Y a(k)d(k)

ol es, <1 I9ll,2<1 =g

= Nl g2y = llllgz, = llullsess- (8.61)

With this result in hand we can describe the map u +> & more explicitly.

Theorem 8.11. The following hold for s € R:

(D) Ifs = 0and u € H3.((—€,0)), thenti(k) = (u, wy) 2 forall k > 0.

() Ifs <0andu € #5 (=€, L)), thenti(k) = (u,wi) for all k > 0, which is well-defined
since wy € H3°((—L, L)) and H5.((—L,£)) = (H ;' (=€, 0))*.

Proof. If s > 0 and u € #H3.((—L.€)), then u € L*((—¢,£)). Since u = Y g, ti(k)wg
with the series converging in 3. ((—¢, £)) and hence in L? we may then compute

(o)
wown)ge = (Y aGwy we) , =), (8.62)
j=0
This proves the first item.
Now assume that s < 0 and u € #H3.((—¢, £)). Then Theorem 8.10 tells us that

o

(u,we) = Y a(j)8jk = (k) (8.63)
j=0
which proves the second item. ]

We now record the nesting properties of these Sobolev spaces.

Theorem 8.12. Fors,t € R withs <t we have % ((—L.£)) S H5. (¢, L)) and
1
[l 5. < WH”HJ(},C forallu € K (=, 0)). (8.64)

Proof. This follows immediately from the definition of the norms on these spaces. ]

Next we record some finer information about these spaces. In fact, this result is the
key link to the usual theory of Sobolev spaces.

Theorem 8.13. The following hold:
(1) H% (=L, 0)) = L*((—£.0)) and ||ullo,z = ]l g, for all u & L2((—£.0)).
(2) Hje(—L.0)) = H' ((—€,0)) and |lu|1,z = [l g1 for all u & H'((—L,0)).
(3) Let2 <m € N. Then
HIR(—€,0) ={ue H™(—L,0) | (KDu) (£ =0for 0<r <m/2—1}, (8.65)

where X© = I and XtV = XKD, Moreover, || - ||]g=l77l< and || - ||gm are equiva-
lent on these spaces.
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Proof. The first two assertions follow easily from the properties of the eigenfunctions
{wk 7oy s0 we will only prove the third item. Throughout the proof we let X™ denote
the space on the right side of (8.65). We proceed by induction, starting with the base cases
m=2andm = 3.

First consider the case m = 2. Suppose that u € #H %((—Z, £)). We may then define
the function U = Y_p= o Akt (k)wg, which belongs to J(’gc((—ﬁ, 0)) = L2((—¢,{)) since

o0
10172 = D0 aeitk)? = Jlull3s < oo (8.66)
k=0

Since u € J€}< ((—£, £)) we also know that for v € H((—(, £)),

01,5 = Y Md)dk) = Y Uk)d(k) = (U,v)o,z, (8.67)
k=0 k=0

and hence u is a weak solution to the problem

{JCu =U in(=L,1), (568

Bru = 0.

The elliptic regularity of Theorem 8.4 then tells us that u € H?((—{,{)) and |Ju||g2 <
U2 = ||u||J{3(, from which we deduce that Jfgc((—ﬁ, 0)) € X2

Now suppose that u € X 2. Then clearly Ku € L?, and we may compute

o0 o0 o0
hell3s < 1 Kulz0 = D 1(Kuwdosl? =D 1w, Kweos* = D Aplah)[?
k=0 k=0 k=0

= [lu (8.69)

2
J%.
from which we deduce that X2 C # 56((—6, £)). A similar argument works for m = 3;
we omit the details for brevity. This establishes the base cases m = 2 and m = 3.
Suppose now that the result has been proved for all 2 < k < m for some m > 3. Let
u € J(’;’é“((—@, £)). Using the same U as above, we find that [|U || gpm—1 = [[u| jpm+1,
K K

ﬁmil.We

then use elliptic regularity as above to see that u € X" *! and |lu||gm+1 < U gm—1 =
2] gm+1, which in turn shows that HEF((—L,0) € X™TL,

On the other hand, if u € X™*! then elliptic regularity and the induction hypothesis
show that

and so the induction hypothesis tells us that U € X™~! with ||U || gep—1 < U

(e 9] o
BalZpen = Kl s = D 20 (Kt wido,s? = Y AP |, Kwedo,s
k=0 k=0
o0
= 2 AP = Il (8.70)
k=0 ’

We then deduce that X"+ € JERF1((—L, 0)).
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The principle of induction now tells us that J% ((—¢, £)) = X™ for all m > 2 and that
the norms || - || gern and || - ||ggm are equivalent on these spaces. |

Theorem 8.12 shows that we have the nesting #% ((—¢,£)) € H5((—£.,€)) fors < 1.
In fact, we can show more.

Theorem 8.14. Suppose that s,t € R with s < t. Ifu € 5 (=L, £)) N Hi((—L, L)),
thenu € H5 ((—€,0)) foralls <r <t, and

0 1-6
lolleg, < Nl el (8.71)

for 8 € [0, 1] given by
r=s604+1t(1-0). (8.72)

Proof. The result is trivial if r = s or r = ¢, so we may assume that s < r < t. We know
that i € £2(N) N £3(N). For K > 1 we may use Holder’s inequality to estimate

X K
Z )L]rc|12(k)|2 = Z Azs|ﬁ(k)|2011(cl—9)t|ﬁ(k)|2(1_0)
k=0 k=0

( K
k=0

00
k=0

NP - tanz)
= (X AlatorR) (3 lador)
k=0
0, -6
< (XA 1ar) (Y A1a0R) ™ =l ) Gl ). 873)
k=0

Upon sending K — oo we find that u € J#3.((—¢,¢)) and

o0
ll5r = D Ml < (Ilullﬁg%)e(llullﬁg%)l_e. (8.74)
( k=0 ’
The result follows by taking square roots. ]

8.4. Functional calculus

We can use the eigenvalues to define a functional calculus of K. First we need some
notation.

Definition 8.15. Write X5 = {A¢ | kK > 0} C [g, 00). For r € R define the space

B (Sx) ={f :Sx > R || f]lzr < o0} (8.75)
where ol
1/l = sup 20 (8.76)
XZAO X

This is easily shown to be a Banach space. Similarly, for » € R define
BY(Sx) = {f € B (Sa0) | Jim | f(0)l/x" =0}, (8.77)
X—>00

which is again easily shown to be a Banach space.
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Now we define a functional calculus of K on the spaces J3. ((—¢, £)).

Definition 8.16. Lets e R andr € R.For f € B"(Zx) andu € J€5<+2’((—€,€)) define

SO =" f)ak)wy. (8.78)

k=0
The next result records the key properties of these operators.

Theorem 8.17. Let s e R and r € R. For f € B"(Zx) and u € J@CH’ ((—=£,2)) let
f(K)u be as defined above. Then the following hold.:

(1) f(K): HE (L. 0)) — H5((—L, ) is bounded and linear:

(2) f(X) is self-adjoint in the sense that if u,v € J(;g”r ((—£,2)), then

(f(FOu, v)ges. = (u, f(K)v)ges, . (8.79)
(3) The map
B'(Zx) 3> [+ f(K) € LA (L. 0): Hie (L. 0))) (8.80)
is bounded and linear.
@) I f € BY(Sg0), then £(K): JF2 (—L.0)) — H3, (—L.0)) is a compact operator

Proof. The first three assertions are elementary, so we will only prove the fourth. To do
so we will show that f(K) is the limit (in the operator norm topology) of a sequence
of finite rank operators (see, for instance, [34, Chapter VI]). To this end, for each j > 0
define Fj : JE527((—€,€)) — H35.((—L. 0)) via

J
Fju=Y" f(Aoi(k)w. (8.81)

k=0

It is clear that each F; is bounded, linear, and of finite rank. Also, for u € J(’;C“r ((—2,9))
and j > 0 we have

oo ) A 2
1= O, = 3 10w PldP = s YO e @)
k=j+1 k>j+1 k K
and hence
0P

| Fj —f(J{)llé(ﬂjgrzr;%% < sup (8.83)

— 2
) T hzj AL

From this and the inclusion f € B} (X 5 ) we deduce that F; — f(X) in éﬁ(](’jg’zr; Hie),
and hence f(JK) is compact. |

One of the most important uses of this result is the following corollary.

Corollary 8.18. Ifs.t € Rand s < t, then H}.((—, L)) CC H5 ((—L.1)).
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We have the following variant of elliptic regularity in the spaces J3 ((—¢, £)).

Theorem 8.19. Let s € [0, 00) and suppose that f € J5.((=¢€,0)). If u € Jf}( (—=£,0)
is the weak solution to Xu = f and Bu = 0, i.e.

u,v)1x = (fiv)os forallve H'((—(,L)), (8.84)

then u € J(’;C+2((—Z,K)). Moreover, ||u||%5€+z = || f Il ses,- Hence X : Jf;é‘z((—@,@)) —

H5 (=L, L)) is an isometric isomorphism.
Proof. We have

f) = (frwos = ,wp)r s = (W, )1z = Ax(wi, uos = A (4, Wi )o,s

= Aei(k). (8.85)

Thus 00 00 .
”u||§€.v+2 = Z:?&frzlft(k)l2 = X:?tilf(k)l2 = ||f||,27{§<~ (8.86)
X k=0 k=0 n

8.5. Interpolation theory and its consequences

Here we write (X, Y)g,, for 6 € [0,1] and 1 < p < oo for the real interpolation of the
spaces X, Y with parameters 6, p. See [3] or [43], for instance, for the precise definition.
We record a basic result.

Theorem 8.20. Lets,t € Rwiths #t. ForO <6 <landr = (1 —0)s + 0t we have
(L3(N). £ (N))g.2 = LZ(N). (8.87)
Proof. This follows immediately from [3, Theorem 5.4.1]. [
By combining this with Theorem 8.8 we immediately deduce the following.
Corollary 8.21. Lets,t € Rwiths #t. For0 <0 < landr = (1 —0)s + 0t we have
(F5e(—£.0)). He (. 0))p.z = Hie(—L, D). (8.88)
Next we present a useful application of interpolation theory.
Lemma 8.22. If's > 0, then #3.((—¢,{)) — H*((—¢,0)).
Proof. We may view Theorem 8.13 as saying that, for m € N, the identity maps
I HR((—L,0) — L*(—£,0) and [ :HZT((—€,0) — H"T((—£.0) (8.89)

are bounded linear operators. We can then interpolate and use Corollary 8.21 and the
interpolation properties of standard Sobolev spaces (see, for instance, [3,43]) to deduce
thatfor0 <s < 1,

(0, 0) = (Hg (=0, 0), Ky (€, 0))s.2
— (H™((—€,0), H" 1 (=L, 0))s2 = H" (=L, 0)). (8-902
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In fact, we can do quite a bit better when 0 < s < 2. Before stating the following result
we recall (see [29]) that

Hod?((—£.0) = (HO((—€, ), H} (—£, O)1/2,2. 8.91)
Hod? (=, 0)) C HY2((—£,8)) = (HO((=€, 0)), H' (£, ©))1/2.2- (8.92)
Theorem 8.23. For 0 <t < 1 we have H'((—(,)) = H}.((—¢, L)) with norm equiva-

lence || f |lgr =< ||f||5€3< Moreover, for s € (0, 1) we have

Hs((=£,0)) if0<s<1/2,
JS (=0, 0)=1 {f € H¥>((—L,0) | [ e Hy> (L, £))} if s=1/2, (8.93)
(fEeH™ (=L, 0)| f e HJ(=L,0)}  if 1/2<s<]1,

and we have the norm equivalence

||f||21+5 lfO<S<1/2.
H
£ ’ 2 .
1S 12es = 3 112+ Jo 52 dxif s = 1/2, (8.94)
||f||,2v.11+s+||f/||%13 if1/2<s < 1.

Proof. The assertion for ¢ = 0, 1 is proved in Theorem 8.13, and for 0 < ¢ < 1 it follows
from this theorem, Corollary 8.21, and standard Sobolev interpolation:

H'((—£,0)) = (H°((=£,0), H' (=4, )12
= (Hge(=.0). H e (€. 0))r.2 = Hic (=L, 0)). (8.95)
We now prove the assertion for s € (0, 1). Define the map F : L?((—{,{)) x R —
H'((—¢,0)) via

P

F(g.v) =v +/ g(r)dt. (8.96)
¥4

Ifge H}((—{,€)) and v € R, then F(g,v) € L?((—¢,£)) and F(g,v)' =g € H} ((—(.,0)).
From this and Theorem 8.13 we deduce that

F e L(L*((—4,0) x R: Hc (=€, 0)) N L(Hg (L. 0) x R; Hic (L. 0)). (8.97)
Hence, upon interpolating, we find that for s € (0, 1)
F e L(X° xR H;((—€,0))), (8.98)

where we have written X = (L2((—£,{)), Hy ((—£,{)))s,> for brevity.
Next consider the map D defined by f + Df = f’. Theorem 8.13 tells us that

D € £(Hj (=L, 0); L2 (=L, 0)) N L(H5 (=L, )); Hy (=L, ))). (8.99)
Upon interpolating again and using Corollary 8.21, we find that

D € (I ((—L.0); X*). (8.100)
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For s € (0, 1) define the Hilbert space
Y ={f e H'"(-L.0) | [ € X} (8.101)

with norm || 1%, = [l £ 12,14, + [l /% According to (8.100) and Lemma 8.22, we
have the continuous inclusion J;"*((—¢, £)) € Y '*5. On the other hand, if f € Y!**,
then (f/, f(—£)) € X* x R, and by (8.98) we find that

f=F(f' f(=0) € Hz((—L.0)).

Hence, we have the continuous inclusion Y115 C # }C‘H ((—£, £)). We deduce that we
have the algebraic and topological identity

H(—€,0) =Y foralls € (0,1). (8.102)
To conclude, we recall the standard interpolation facts
H*((—1£,0)) if0<s <1/2,

XS = (LA((—€.0). Hy (=0, 0))2,s = { Hod>((—€,0)) ifs =1/2, (8.103)
HS((C.0)  ifl1/2<s<]1.

If 0 < s < 1/2 then we have the norm equivalence
||f||§€;c+s NS Wores + 1 Vs ey = I I (8.104)
and so }:‘s((—ﬁ, £)) = H'T5((—£, £)). The result follows from this and the characteri-
zation of Hyd?*((—€. £)) in (8.91). -
As a byproduct of this result we get the following Sobolev embeddings.
Theorem 8.24. For s € [0, 2] we have
L20=29((=¢, ) if s €[0,1/2),
LP((—£,0)) forallpe[l,o0) ifs=1/2,
He (0. 0) = 2 CP*((—L,0) fora=5s—1/2 ifse(1/2,3/2), (8.105)

ClY(=L.0) foralla €[0.1) if s =3/2,
Cy*((—L,0) fora=5-3/2 ifse(3/2,2].

Moreover, for s € [1,3/2] we have

W 12/(=25) (—g 1)) if s €[1,3/2),

(8.106)
WLP((—L,0)) forall p e[l,00) ifs=3/2.

Hy (=L, 0) — {

Proof. These are immediate consequences of Theorem 8.23 and the standard Sobolev
embeddings of H5((—£,{)) for0 <s < 2. |
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8.6. Bilinear boundedness, integration by parts

Suppose that ¢, ¢ € W and let s € [0, 1]. We then have

o0

(@ V)1s =Y pR) (k) = A0k P (k) = (K0, K ™ Y)on.  (8.107)

k=0 k=0
Consequently, for any s, € [0, 1],
(K0, KXK' ¥)os = (K'o, XK' " ¥)os, (8.108)

which we can view as a sort of fundamental integration-by-parts result in the sense that we
can arbitrarily shift powers of K from one term to the next so long as the overall power
sums to unity. Working in W is obviously too restrictive, but we can extend by density to
get a generalized version of integration by parts for all fractional orders.

Theorem 8.25. Let B : W x W — R be the bilinear map defined via
B(p,¥) = (K. ¥)o,z = (9. ¥)1,5 = (¢, KV¥)o,z. (8.109)
Then B extends to a bounded bilinear map B : J{’;Cs X J(’;C(l_s) — R foreach s € [0, 1].
Proof. This follows directly from the identity
B(p.y) = (K'0. X' Y)ox forg.y e W, (8.110)

which allows us to bound

[B(¢. V)| = 0l 25 1Vl gp201-)- (8.111)
Using this and the density of W in # 36 for all # > 0 proves the result. ]
8.7. The operators D}
We now turn our attention to the operators D" := K" 2 for r > 0, as defined by the

functional calculus from Definition 8.15. We will need to introduce some finite approxi-
mations, D]’- , defined by

J
Diu =Y APk we. (8.112)
k=0

It is easy to see that this is well-defined for every u € L?((—{, £)) = ‘%,(7)6 ((—¢£,¢)) and
that in this case Dfu € W C ("5 Hj (=€, £)) C C([—€, {]).

Let us now study some properties. The first result tells us that D l’ is like an approxi-
mation of r derivatives.

Proposition 8.26. Let j € N. Then the following hold:

(1) If 0 <rq,7r2,51,82 € Rsatisfyr1 + 51 = ra + s, then

1D} fllgesy = I fllgesz  forall f € L2((=£,£)). (8.113)
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) If0 <r €R, then

1D} fllz <1/ lses,  and |fll e, = Aim, 1D} fllp2 forall fedy (=€, 0)).
(8.114)

Proof. For the first item we compute

||D”f||2u—zx“|x”/2 (k)2 = Zx”u’“f(knz—||D’2f||%2. (8.115)

k=0
In turn this shows that
r 0 d r £ 2 1/2
1D} fllz2 = 1§ fllsese = (32261 f0)R) (8.116)
from which the second item follows. [

Next we consider how D ]’ interacts with functions of average zero.

Lemma 8.27. If f € L*((—{.0)) satisfies [, f =0, then [*, D} f =0 forall r >0
and j € N,

Proof. Since wg = 1/+/2£ we see that f_el f = 0if and only if f(O) = 0. In this case
5;7(0) = 0 as well, and the result follows. |

Next we prove an integration by parts formula.

Lemma 8.28. Let 0 < r,s,t,p € R be such that r = s + t. Then for j € N, [ €
L2((—€,0)), and g € 5‘65{ ((—£,2)) we have

(Dj 1. 8) e, = (D} f. D} &) ges. - (8.117)
Proof. We simply compute

(D} )5 = D XD} (R)gh) = 347" f gty = 3 Mgn f hox/*ath)

k=0 k=0

k=0
Z (k)D’g(k)_ (D} /.Djg) s - (8.118)
k=0 |

Remark 8.29. In this paper the most useful instances of Lemma 8.28 occur with p €
{0, 1}. Indeed, the lemma shows that if 0 < r = s + ¢ and f € L%((—¢,{)), then

4 )2
/ Dj fg :/ D$ fDig forall g € L*>((—L.£)) = H3((L. L)) (8.119)
—L —L
and

(D} f.&)x = (Dj f.Djg)x forallg e H'((—L.0) = Hz((—L,0)). (8.120)
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We conclude with a dual estimate.
Proposition 8.30. Let0 <r <1/2,0<s <3/2, and j € N. Then
D} H((—4.0) — H™' (. 0)) = (Hg((—¢,0))" (8.121)
is a bounded linear operator.
Proof. According to the results in [29, Chapter 1] and Theorem 8.23 we have
Hy((—£,0) = H (-, 0)) = Hj((—L, 0)). (8.122)
This and Theorem 8.10 then show that
Hy (=€, 0) = (Hg (=, 0)))" = H"((=¢,0)) (8.123)

with equality of norms. Hence, for f € H*™"((—{,{)) = 3" ((—£, {)) (which again
follows by Theorem 8.23), we again use Theorem 8.10 together with Cauchy—Schwarz to
compute

j
I1D5 flla= =< I1Dj fllgesr = IID; fllgey ) = sup 22 f g
K K ~

lgl2<1 =g

J
= s Y AT F0A 2 k) < 1 f laeger S IS s (8.124)
g e%51k=0

This proves the boundedness assertion, and linearity is trivial. ]

9. Enhancement estimates

Our goal in this section is to record enhancement estimates for the dissipation and energy
that are derived through energy-type arguments rather than elliptic estimates. We will gain
some dissipative control of 7, d,n, and 8%77, and we will gain energetic control of d; p.

9.1. Prerequisites

Recall for a real parameter 0 < s < 1 the fractional differential operator D = KX/ and
its finite approximations D/S. for j € N, as defined in Section 8.7. The next result gives an
existence result for a Neumann-type problem involving D]s..

Proposition 9.1. Lets € Rand j,k € Nwith0 <k <2and 0 <s < 1. Then there exists
¥ Q2 — R solving
—Ay =0 in 2,
Wy = (D5 n)/|No| on %, 9.1)
Y =0 on X,
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where v is the unit normal for the fixed domain Q2 and its nonunit counterpart is Ny, i.e.
v = No/|No|. Moreover,

1Vl S 10Fnlas-12 W a2 S NP5l 120 196W e S 107 ll -2,
(9.2)

Proof. To begin, we note that Proposition 3.4 and Lemma 8.27 imply that

4 14
LD;3$U|NO|—1 = /KDjs-Bltcn = /ealt‘n =0. 9.3)

Consequently, the compatibility condition needed to produce a unique weak solution
VS H 1(Q) to (9.1) is satisfied. Since the domain Q has convex corners, the H? solv-
ability theory is available for (9.1) (see, for instance, [25]). This, the elementary H 1 weak
estimate, and Proposition 8.30 then show that

k k
1V lgr S I1DjoEnllg—1/2 < 1050l gs—1/2,
k k
1l < 1D59; 0l gp12 < D071l g1 2. (9.4)
k+1 k+1
10: ¥ |1 < ||D]S'at+ Ma—12 <195 0] gs—1/2,

from which the result follows. [

9.2. Dissipative enhancement for 1

We begin by considering dissipation enhancement estimates for 7. To this end let i be as
in Proposition 9.1 with k = 0. This proposition and Proposition 3.7 show that if we set
w = M V1, then w is a valid choice of a test function in Lemma 3.1 and

divag w = divy MVYy = KAy = 0. 9.5)

We will use this w as a test function in Lemma 3.1 to produce an essential dissipation
estimate.

Theorem 9.2. Let @ € (0, 1) be given by (2.5), and 0 < T < oo. There exists a universal
0 < 8« < 1 such that if supg<, .1 € (1) < 8x, then for every 0 < v <t < T we have

t t
f ”7]”23/2—0{ < €i0(7) + Ei0(1) +/ Di,0, 9.6)

where &, o and Do are as in (2.8).

Proof. We begin by assuming that §, < y2, where y € (0, 1) is as in Lemma 3.5. In
particular, this means that the estimates of Lemma 3.5 are available in what follows.

Lets = 1 — 2« € [0, 1), which means that 3/2 —a = 1 + s/2. For a fixed j € N we
let ¢ solve (9.1) with data Din/|Np|. Then Proposition 9.1 provides the estimates

W lar < nllgs—rae W la2 S 1D50l g1 19 e < 19enllgs—rr2. 97
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Note that since 0 < s < 1 we can define p = (1 — s5)/2 € (0, 1/2], which satisfies

1 s
= =1+ . 9.8
stets *t3 9.8)
This, Theorem 8.23, and Proposition 8.26 then provide the useful equivalence
1D}l = 105 nllyes, = 1Dl gerjze0 = NS0l gr1s2eo. (99)
We use w = M V¢ from above in Lemma 3.1 to arrive at the identity
_¢
(O;u, Jw) + —atné—Kazu +u-Viu,w
0

0

+ (e, w) + O w - Nz + k3, w - N
L

=_/ GRO(w-N).  (9.10)
L

We will deal with these term-by-term.
For the first term we note that M = KV ® for ® the flattening map, and so

Q

:i/ u.vww—/u.wbva,w—/ u-3,(VOVy.  (9.11)
dt Q Q Q

Using the bound & < 1, the definition of @ in (1.28), and (9.7), we may then estimate

S IV@lLeelullolylly S IV Plzee ull golnllzs—1r2 < lullgollnll e

/Qu-VCDVw

< €io. 9.12)

where &) ¢ is the natural energy at the nondifferentiated level, as defined in (2.8). Simi-
larly,

S lullzo ey + 10 1)

S lullgoCnllgrsr2 + 19:mllgrsr2). - (9.13)

'_/ u.vwa,w—/ u-0,(Vo)Vy
Q Q

For the second term we write

(—8,77?K82u +u-Vuu, w) = (—3,77?1(8214 +u-Vuu, VCDVW) . (9.14)
0 0 0 0

From this and the bounds & < 1 and (9.7) we may then estimate

_¢
‘(—fhng—ol@zu +u- VA,U,U)) Sl llae < llullglinllg (9.15)

0
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For the third term we use the H? estimate from (9.7) to bound

(. w)] = %'/ﬂ IDaw:DAMIY)| < il 1 g2 < ll 1 D]l gergz - (9.16)
To handle the fourth term we first note that on X,
w-N=MVYy-N=Vy- N = |No|dp¥y = Djn. (9.17)
Using this, Lemma 8.28, and (9.9) we can rewrite the fourth term as

2 2 2
(mw- Nz = Diniz = (DJS-/ U,D;-/ M,z = ||D,s-/ 7I||=2;€5C = ||D,s'7l||§€;€/2+p-

(9.18)
Then for the fifth term we can use trace theory and Theorem 8.23 to bound
l[0cn. Dynlel < [Benlel Dinllgiro+o = [Benlell Dinll 17240 (9.19)

Finally, we examine the nonlinear term on the right side of (9.10). We start by using
Proposition B.8, which is available since 0 < s < 1, to estimate

14
’/ oR1 D
—t

S Dl r-s2 Rl gssa- (9:20)

Next we note that
R(y.z)  02R(.2) 1Ry, 2)
> , and ———
z z z
are well-defined and bounded by Proposition A.1. Thus R(91g, d17)/0d17 is well-defined
and satisfies

81(3(31%,317))) _ 91 R (3180, 011)3% 80 n (3253(31%,3177) B R(alio,aln)) 2

o1 o1n a1 @z )T
(9.22)

9.21)

which in turn means that for any 1 < g < oo,

IR@180. 81m)/ 17l wra < 11mllze + 11910z = [91nllwra < Inllw2a.  (9:23)

This allows us to use Theorem B.3 and the embedding W19+((—{, {)) —
HY2te+/2((—¢, £)) to estimate

RN s = 1010R(3180, d1m) /0110l /2 S N910ll grs/2 R (180, d1m) /01m|l ga+e 2
S 191l gsr2[|R@180. ) /0nllyr.ar < 010l gsr2linlly2.as - (9.24)

Assembling these estimates and employing Theorem 8.23 and the definition of & from
(2.10) then shows that

S0 nlg-s2Inllgieslnlly2ar < I0l72 Ve (9.25)

¢
'/ oRI1Din
—{
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We now combine all of these estimates to deduce that

d
D511 y2e0 + 7 [ - OVY
< Wallgo Qlgeevre -+ Wenlse2) + s 1D g1

+ Denle| Dl o120 + 1131452V E- (9.26)
Then for 0 < 7 <t < T we can integrate this inequality to see that
t
[ D5 s+ [ a0 vOVRI0)
T K Q
t
< /Q(u -VOVY)(z) +/ lwll zroUlnllzgs—172 4+ 19:0l grs—1/2)
T

t t t
+ [ Tl D5y + [ Benled Do + [ Ml s0VE 027
T “ T “ T

We then use (9.12) and Cauchy’s inequality to deduce from this that
1 t t
3 | 1D 500 % 800(0) + 000 + [ TullgoWlgs-12 + 1enls-112
T B T

t t
4 [y + Dy + [ 1l VE. 9.28)
T T
Note that from (9.8), Proposition 8.26, and Theorem 8.23 we have
jlggo ||D,S'77||§€}</2+p = ||ﬂ||§€}c+s/2 = ||77||§.11+s/2~ 9.29)

We then send j — oo and use this and Fatou’s lemma to see that
1 t t
3 [ 1 < Eua®) + €000+ [ TulgoUnlgs-r + 1denllgv2)
T T

t t
4 / (el + Benl?) + / 11142 VE. 9.30)

Since s — 1/2 < 1 + s/2 we can then use Cauchy’s inequality once more in addition to
the smallness & < §, for some universal 5« > 0 to conclude that

1 t t
Z/ 11171452 S E10(2) + Euo(t) +/ (el o + Il golldenll gs—1/2)
T T

t
+/ww;+wmb (9.31)

Finally, we use the equation 0,7 = u - N = u - (—01p, 1) — 11017, Theorem B.3, and
the fact that & < 1 to estimate

0enll =172 S Mullgs—172(L 4+ 101nll 1) < lullas < llullgr 9-32)
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Plugging this into (9.31) then shows that
1 t t
3 [ 1 % Ea0) + 8000+ [l + o)
T T

t
= &0(7) + Eio(t) + f D0, (9.33)

which is the desired bound since 1 4+ 5/2 = 3/2 — «. |

9.3. Dissipative enhancement for 0,1 and 0?1
We now turn our attention to enhanced dissipation estimates for d,7 and afr)

Theorem 9.3. Leto € (0, 1) be given by (2.5), and 0 < T < oc. Letk € {1,2}. There exists
a universal 0 < 84 < 1 such that if supo<, .1 € () < 8x, thenforevery0 <t <t <T we
have

/ 19% '7||H3/2 o S Eik(T) + &k (1) +/ (D + ED). (9.34)

Proof. We will give the proof only in the harder case k = 2. The case k = 1 follows from
a similar, simpler argument. To begin, we assume that 8, < y2, where y € (0, 1) is as in
Lemma 3.5. In particular, this means that the estimates of Lemma 3.5 are available.

We begin in essentially the same way as in the proof of Theorem 9.2. Let s = 1 —
2a € [0, 1), which means that 3/2 —a =1 + 5/2. Alsolet p = (1 —s)/2 so that 1/2 +
p+s=1+4s/2. Forafixed j € N we let ¥ solve (9.1) with data D;afn/|wo|. Then
Proposition 9.1 provides the estimates

Wl SN0 nllgs—12. ¥z S 1D587 77”(;1(1/2’ 10l grr S 10370 grs—1/2.
(9.35)

Note thats —1/2 =1/2 —2a < 1/2 — «, so the latter term is controlled by the dissipation
(see (2.11)). Then Proposition 3.34 lets us use Lemma 3.1 with w = M V1 to see that

(3u, Jw) + (—8tﬁ?K828fu +u - Vg o?u, w) + (%u, w)) + (?n,w- N5
0
+ K[B?n, w- N

L
=/ Fl-wJ—/ J(w-f)Fs—/ oF30,(w-N)+F*w—«[w-N,F]g.  (9.36)
Q N L

Here the forcing terms on the right are as defined in Appendix A. Arguing as in the proof
of Theorem 9.2, we estimate all of the terms on the left of (9.36) to arrive at

f 3224 V@Vl/f < ||32u||H0||3 T]”Hl < 8”2, (937)

where &, is as defined in (2.8), and

1D} 87 ﬂllﬂlmp 7 / O - VOVY < |197ull o (1970l 172 + 1970 rs-1/2)

+ 07l g1 1070l gz + (70l OFnll sz + (F . MVY),  (9.38)
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where, as shorthand, we have written

(?,MVW):/QFI-MW/M—/E J(MVy-1)F?

14
—/ o(F30,(MVy-N)+F*MVy)—[MVy-N,Fl;.  (9.39)
—L

We now estimate ¥, breaking it into three separate pieces. For the first piece we use
Theorem 5.4, Proposition 3.7, and (9.35) to estimate

'/ F' (MVy)J — /e F4-(MV1p)—/E J(MVY)-1)F3
SIMVY g (€ + f)f
SV la2(E + VWD 5 |Dj7nl 1/2(€ + VEIVD.  (9.40)
Next we handle the F3 term. According to (A.10) we have
F3 [,R(algo,aln)] = 0, R (0180, 011)0,0° i+ 82!R(81§0,81n)(8 ;). (9.41)

On the other hand, we know that MVy - N = D]s- 3?n on X. Combining these, and
employing Proposition B.8, we can estimate

12
V oF33(MVy - JV)‘

1(D 9210 R (310, 9170107 9|+ 0

/ d1(D39 2R (D180, 911)(d10,1m)?

< IID 3 20l 1521192 R (@180, 91187l /2
+ 105970l 1521102 R (3180 31m) (913:m)* | grsr2. (9:42)

L1 11 ey
=4+ = (9.43)
2 ¢+ 1\2772

so the Sobolev embeddings imply that W -4+ ((—¢, £)) < H1+e+)/2((—¢, £)) and

Note that

W2EH(=€.0) = HETH2(=0,0) — HPP7(=€,0) = H'TP2((=L.0).
(9.44)
These and Theorem B.3 then imply that
1102 R (9180, 011)0107 (M sz < 1101 th 1M gs721102 R (9180, 010 || gra+e 2
<120l 145721192 R (@180, 1) [l 1.0 (9.45)

and
[02R (D180, 01m)(310:m)* [l grsr2 S 1@13:m) | gs/2 102 R (D180, D1m) || ya+e )2

<1913l grs/2 19191l yya+e021197 R (3180, 1) 1.0
S 19l 2.0, 192R(180. 010l 1.0 - (9.46)
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Since the terms involving R involve an integer derivative count, we can employ Proposi-
tion A.1 to estimate

19z R @180, 1)l 1.y + 192 R @180, 31m) | rag < Il 2 (9:47)

Hence,

V4
‘ / ZoF3al<Mw-w> SN0 s Il 2o+ 1070l r1eer2 196mI1, 2.y Il 20
S N020012 14 VE + 1020] 1452 EVD. (9.48)

Lastly, we handle the F” term, again using MV - N = D737 on . Then (A.14)
and standard trace theory show that

KMV - N F7| = k|[D3020, 7 @:m)d3n + #7 (0:) (@20)*]c]
S IDS 7| pr—s/2 max 1 @mdin + #" @) (@n)?].  (9.49)

According to Theorem 3.8, ”at””q‘) < V& < 1, so we may estimate

~ 1 z
IW’(2)|=&' | 7w siel torz € panleo.lomlcol. ©50)

This and trace theory then provide the bound
maXIVf/ @i+ 7" @) (07n)°] S max([d;7] 9701 + 187n%)

< VOullaenlg + 18205 £ VEVDI,  (9.51)

where &, and D, are as defined in (2.9). Hence,

KMV - N, Flo| S 1020 gr1+s2 vV &1V Dy (9.52)
Upon plugging the estimates (9.40), (9.48), and (9.52) into (9.39), we deduce that

(F MV S 197007145/2VE + 1970l 1452V EVD (9.53)

Inserting this into (9.38), integrating in time from 7 to ¢, and using (9.37) then shows that

[ U050 5 6020 + €000 + [ 2ol + 100l
/ (197ull gt + [B7 )17 nll 145/

/ 02012102 VE + 020l 514572 VEND). (9.54)
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We then send j — oo and argue as in the proof of Theorem 9.2 to deduce from this that
t t
/ ||8%n||i11+s/2 < Euz(r) + Eua(?) +/ 18720l o (107 nll grs—1/2 + 1197 0l grs—1/2)
T T
t
+ [l + B
T

t
+ / 110201121 44/>VE + 1020l gr1+52VEV D). (9.55)

Finally, we use Cauchy’s inequality, the fact that s — 1/2 < 1/2, and the assumption that
& < 8, for a universal 0 < 6, < 1 to absorb the ||8%77||12,_11+S/2 terms from the right to the
left, which yields

1 t t
5/ ||3%'l||§.11+x/2 < Eiz(7) + Eia(1) +/ Dy + ED. (9.56)
T T

This then provides the desired estimate since 1 4+ 5/2 = 3/2 — «. |

9.4. Energetic enhancement for 0; p

We now turn our attention to an estimate that provides L2 control of 9, p in terms of the
energy.

Theorem 9.4. Let 0 < T < oo and suppose that supg, .1 &(1) < y2, where y € (0,1)
is as in Lemma 3.5. Then

19:pllL> S 18l e + 187ull2 + 10enl a2t sz + € + €3/, (9.57)
Proof. Let Y € H?(R) solve
—Ay =0;p inQ,

Y =0 on X, (9.58)
Y =0 on X,

which exists and enjoys H? regularity since £ has convex corners. Moreover,

1¥llz2 < 110:pllL2- (9.59)

Proposition 3.7 shows that if we set w = M V1, then w is a valid choice of a test function
in Lemma 3.1,
divgy w = divy MVYy = KAY = Ko, p, (9.60)

and we have the bound
lwligr < 1Y lla2 < 10:pl L2 9.61)



Y. Guo, 1. Tice 1540

Using this w in (3.3) of Lemma 3.1, we find that

(B?M, Jw) + (—B,ﬁ?l(azatu +u-Vyuoru, w) + ((0ru, w)) — (0¢ p, divy w)g
0 0

:/QFI-wJ—/sJ(w-t)Fs—/_igatTI(w'eN)

010:7 3) 4
—ody ([ — 2T L P3N+ Fw 9.62
l(a IENAGER 062

with F1, F3, F* and F° given by (A.1), (A.3), (A.4), and (A.5), respectively, but
@up.divawno = [ Jopdvaw= [ BipP =lopli 069
According to Theorem 6.4, we have the bound

/Fl'“”‘f Jw-)F5 + F*-w| < (6 + 8Y2) iy < (€ + Y29, pll,2,
Q ES

(9.64)

while Theorem 6.5 shows that

Y4
0107 3) )
d - N)—00y| —mM8MmM+ F N
/—z(g (- N)—a 1((1+|alzo|2)3/2+ v

S 0l gsrz+e—ar2|wlgr S 180l g3/2+e——wr2l|0epli2. (9-65)

On the other hand, we have the bounds

@ )] < [8eullgr lwllar < 100l 130 pll 2. (9.66)
(02w, Jw)| < 102ull2wllze < 132ull,2 18, pll.2. 9.67)

and

(—8tﬁ?K323tu 4+ u-Vyosu, w)
0

0
S wllz2(0:qllLee [VOrulp2 + llullLec|8rullr2) < 19:pll26.  (9-68)

Plugging the estimates (9.64)—(9.68) into (9.62) and using (9.63), we deduce that

192172 S 19:pll2 (100l grn + 1070l 2 + 10cmll a2tz + € +E¥2). (9.69)
Then (9.57) follows immediately from this. ]

10. A priori estimates

In this section we present the proof of our main a priori estimates, Theorem 2.1.

10.1. A key construction

We need one more technical tool to close our a priori estimates, namely the construction
of a useful w to use in Theorem 3.2. We present the construction of such an @ now.
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Proposition 10.1. Let0 < T < oo and suppose that supy_, .7 €(t) < y2, wherey € (0,1)
is as in Lemma 3.5. Let F? be given by (A.9) and let (-)q denote the spatial average on S,

() —L/ (10.1)
gl =1q7 . ¢ :

Then there exists  : Q x [0, T) — R? satisfying the following:
(1) w(-,1t) € H&(Q;Rz)foro <t<T,and

ie.

Jdivyw = JF? — (JF?)q. (10.2)
(2) w obeys the estimates

||CU||W1~4/(3*28+> <6, ||w||W01,2/(178—) + 0wl 27— < (\/E—i- EVD.
[0)
(10.3)

(3) We have the interaction estimates

/ Pulow
Q

‘/ d?ud, (Ja))‘ ‘( K8282u—|—u V407U, a))

< 632 (10.4)

+](0?u, a)))l—i-‘/ JFlw '
< (VE+6)D. (105

0

Proof. Recall from Proposition 3.7 that
divu = ¢ < divg(Mu) = K¢ < Jdivga(Mu) = ¢. (10.6)
This means that if we first solve
divo = JF? — (JF?)gq, (10.7)

then w = M o satisfies (10.2).
Let Bg denote the Bogovskii operator from Proposition B.5. Then we will define

@ = Ba(JF? — (JF?)gq). (10.8)

The essential point is that the Bogovskii operator is a linear map that commutes with time
derivatives and satisfies

Bq € ;C(Zq (2); Wol’q(Q; R?)) foralll < g < oo (10.9)
and div Bge = ¢. Then our desired vector field is given by

w=Mid=MBg(JF?>— (JF?g). (10.10)
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According to Propositions 7.11 and (10.9) we have the bounds

ol 147G-260) S €, @12/ S VEVD, [0:@] 10— < (VE + E)VD.
A + W, W,

(10.11)
Then Proposition 3.6, together with (10.11) and the fact that & < 1, shows that

||a)||W1.4/(3—2s+) <6, ||a)||W01,z/(1—s_) < VEVD. (10.12)
0
and (since e < g4 implies2/(1 —e_) <2/(1 —e4))
0:wlp2/a—e—) S0 MD|p2/0-20) + | MO 12/(1—6)
S+ Ve (@l 2/a-ey + 10:01l2/0-5-))
<(1+ \/E)(uaanwol.zm_g,) + 18:0lly.0-) < (V€ + VD, (10.13)

where in the third inequality we have also used the Sobolev embeddings. Then (10.3)
follows from (10.12) and (10.13).

It remains only to prove the interaction estimates stated in the third item. For each of
these we will use the estimates (10.3) together with the bounds from Theorems 3.8 and
3.9. Indeed,

/ Fulow
Q

which is (10.4). For the first part of (10.5) we bound

'/ afuat(Ja))
Q

< /Q 87ul o] < [97ull2llol2 S lolyrae-2eplldful . < €32,

(10.14)

s/g2|a%u|<|va,ﬁ||w|+|atw|>

S N97ull2 (18,7l w.oo @l L2 + 10rw]l2)

< VO (VEVEVD + VEVD) < (VE +6)D. (10.15)

Next we bound
S (10e7llzoe + ulleo) VOTul 2 0| L2

< VEVDVEND <€D, (10.16)

which is the second estimate in (10.5). Then we bound

‘(—8,7??1(828?14 +u- V,A,afu, a))
0

0

|(@2u. )| < 12ullgillolgr < 1%ullgilollyiza-—e S VOVEVD,  (10.17)

which is the third estimate in (10.5). For the final term in (10.5) we use Proposition 5.1 to
bound

U JFl-a)' < lolg (VE + E)VD < VEVD (VE + 6)VD. (10.18)
Q

This completes the proof of (10.5). ]
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10.2. Main a priori estimate
We now have all of the tools needed to prove our main a priori estimate.

Proof of Theorem 2.1. Assume initially that §y < y2, where y € (0, 1) is from Lemma 3.5.
We divide the rest of the proof into several steps.

Step 1: Lowest level energy-dissipation estimates. Corollary 3.3 tells us that

ail ) 3/ Sl S s / Q(9180,0
dl(/s;z |M| +/;e2|77| + ) (1+|81§0|2)3/2 + _[0’ ( 1{0 17]))
+ %/ IDul*J +/ BJ|u-s|*> + k(3] = —K[u - N H @mle.  (10.19)
Q s

We integrate this and use Lemma 3.5 to deduce that

V4 t
E10(0) + /_ 7@, (e + / Do

L t
S 6000 + [ 0@ 0o + [ el VA @l (1020)
- s
Theorem 5.14 says that
)4
‘/ZU(Q(alfo, | < VeI < Ve & (10.21)
and Theorem 5.15 says that
- N H @m)lel S 10emll g1 [0:m)} S VE Do (10.22)
so if & < 8o with 8¢ sufficiently small, then (10.20) implies that
t
E,0(2) +/ Dio < Eiols). (10.23)
N
Then Theorem 9.2 says
t t
/ ||77||§{3/2—a < Eiols) + Eio(?) +/ Dio (10.24)
s N

and we may enhance the previous bound to

t
E,0(1) +/ (D0 + ||'7||§13/2—a) < €iols) (10.25)
N

forall0<s <t <T.

Step 2: Energy-dissipation estimates for one temporal derivative. Theorem 3.2 applied
with (v, ¢, &) = (d;u, d; p, 3,n) and w = 0 gives the identity

d |8,u|2 /e g 2, O |313t77|2 )
() gl AP S 0 0 /A B
dt(/g 2 L2 S T e

+ %/Q |DA8,u|2J +/ BJ|0su -s|2 —i—K[B?n]? = (F1,(0su, d;p,d;m))  (10.26)
s
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for

(F1,(0su,0; p, 0r1)) =/(F1 -8tuJ+3,pJF2)—[ J(@u-s)F>
Q

s

12 6
319,101 F
—/ (0F3al(atu.w)+F4-a,u—ga,r,F6— 19 1%1 )
—L

70+ [0:50[2)72
—k[du- N, F'lg + k[07n, FO). (10.27)

Integrating and using Lemma 3.5 then shows that
En1(t) + St D1 < 8nals) + /St<?1, (0ru,d;p, 0¢m)). (10.28)
Theorems 5.4, 5.5,5.11, 5.12, and 5.13 then show that
(1, (9o, 0 p, 9:m))| S VE D, (10.29)
and hence we have the bound
Ena (1) + /t Dy S Euals) + /t Ve . (10.30)
s s

Step 3: Energy-dissipation estimates with two temporal derivatives. Theorem 3.2 applied
with (v, g, &) = (0%u, 32 p, 3°n) and w from Proposition 10.1 (which guarantees that @
can be used in Theorem 3.2) yields

d |07u|? tg 2 191077 2
Ly g S L/ L— 7 9
dt (/Q 2 +/—e 2| ol +3 2 (14 19180[2)%/? /sz o a))

—/ D 0% u > J+/ BJ|07u - s> + k[0;n]]

= (72, G 03m) + [ RplUF)a +(F0) (103D
where (-} denotes the spatial average as in Proposition 10.1,
(Fa, (32u,02n)) = / F! -BfuJ—/ J(%u - s)F?
Q poN

L 2 F6
—/ (aF3al(a§u “N) + F*- 9%u — geFS — 919i 791 )
—t

(1 +19180]?)%/2
—«[0*u- N, F']y + «[03n, FO], (10.32)

and

(73, 0) = _/sz 8%u -0 (Jw) + (—3,77?0[(328?14 +u- VABfu,a))

0

+ (07u, w)) —/ FloJ. (10.33)
Q
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Theorems 5.4, 5.10, 5.12, and 5.13 show that

t
/(ﬁz,(afu,afn)) <JVeo. (10.34)

For the second term we rewrite

/ #p(JF?)q = i((JF%/ atp) —MJF%/ dp=Lh—D (1035
Q dt Q Q dt

We then use Proposition 7.11 to bound
1] < 10cpll2 (T F)al < €32 (1036)
and (since 3;(JF2)q = (0, (JF?))q)
|12] 5 119 pllz210:( F?)o| S VDVEVD. (10.37)
Finally, the interaction estimates of Proposition 10.1 show that
(%3, 0)| £ VED. (10.38)

Combining all the above then shows that

€12(1) — ()Y + / " Dus < Eua(s) + (E()Y2 + / ‘VED. (1039

Step 4: Synthesized energy-dissipation estimates. We sum (10.25), (10.30), and (10.39)
to see that

6.0) = €02 + [ (Dt 120 S 6 + €D+ [ VED. (10.40)

Subsequently, we sum the estimates provided by Theorem 9.3 with k = 1 and k = 2 to
deduce the enhancement estimate

/ ||at’7||H3/2 I ’I||H3/2 —o S Eils) + Eu(?) +/ (D +VED).,  (10.41)

and upon combining this with (10.40) we find that

€1(0) — (€1 + / (i>n+Z||a Myso-a)  €6) + €6)Y + [ VED.
(10.42)

Step 5: Elliptic dissipation enhancements. We now combine the estimates of Propositions
7.5=7.10 with Theorem 4.7, applied with v = d,u, Q = d;p,and § = d;nand § = ¢_, to
see that

19:2ll 20— + 10 pllwra— + 10cnllwa-1/a—a— S 197ullLa— + 1077l gr3/2-0 +VEVD
(10.43)
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Similarly, we combine the estimates of Propositions 7.5-7.10 with Theorem 4.7, applied
withv =u, Q = p,and £ = nand § = &, to see that

lellyzar + 1PN yrar + Inllya-i/arar S U0tllpes + 19:m]gar2-a + VEVD.
(10.44)
Since g— < g4+ < 2 we can then bound

l02ulo + 1920y < 103ull?2 + 10,ul22 < Dy (10.45)
As such, we can combine these with (10.42) to deduce that
. 2
6.0)~ €W+ [ (Dt Y 105 lEs)
s k=0
' 2 2 2
[ s+ 10y + 1001y
t
+/ (I10eullFy2qe + 1921510 + 1001531 /00— )
s
t
< 8u(s) + (8(5))%? +/ Ve . (10.46)
S
Next we sweep up the missing terms in . Note that for 0 < k < 2 we have

Ity —oku . v = FOF, (10.47)

where F%0 = 0, F%! is given by (A.6), and F%2 is given by (A.13), and in any case
F%* vanishes at the endpoints +£; consequently,

2 2
D 1w N =D [0 0l < D (10.48)
k=0 k=0

Similarly, using (10.47) with k = 2 in conjunction with Proposition 7.12, we find that

10301212 S 102 N 2112 0y + IF O 0/ < 102]21 + ED < Dy + ED.
(10.49)
Combining these with (10.46) then leads to the estimate

&i(t) — (6(1)*? + /t D L&)+ (E(s)% + /t VED, (10.50)

and in turn we see that if & < §, for sufficiently small universal §¢, then we can absorb
the last term on the right into the left side and deduce that

&) — (8()** + / ‘D < 84(s) + (8(s))%2. (10.51)

Step 6: Energetic enhancement through dissipation integration. We now integrate the
dissipation to improve the energetic estimates with Proposition B.7:
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t
||3t77(t)||§{3/2+(s_—a)/2 < ||at77(s)||§{3/2+<e_—a)/2 +/ (”8177”%13/2-&-8_ + ||a%7]||§13/2—a)
N

t
SO 123724 —ersa + / D (10.52)
N

and

t
196131 4es2 < 1971402 +/ (WBeulFyr e + 197ulZ0)
s

G (1053
We can then combine these with (10.51) to deduce that
&) — (6(1)*? + /t D < E(s) + (8(s))%/? (10.54)
s
for y
€ 1= & + 19l e 2 + 101773/ 24 (a2 (10.55)

Step 7: Elliptic energy enhancement. Propositions 7.1-7.4 and Theorem 4.7, applied to
(v, Q,8) = (u, p,n) and § = &4, show that

lull 2oy +1Plyras + I0llys-17apap S N0cull2 + 10l g3/2- + € < Vé te.
(10.56)
Theorem 9.4 provides the estimate

18 pllz2 S 10wl grn + 102l 2 + 19:nll r3/24e——arz + € + E¥2 S VE + € + €2,
(10.57)
Squaring these and summing with &, then shows that

£ <6 +8%2 (10.58)
and so if & < §y, with 8o made smaller than another universal constant if need be, then
€ =§. (10.59)
Plugging this into (10.54) shows that
@) — (£(1))*? + /t D < E(s) + (8(s))2. (10.60)

s

Step 8: Conclusion. Taking 8¢ again to be smaller than a universal constant if necessary,
we can absorb the £3/2 terms in (10.60), resulting in the inequality

t
&(t) +/ D < 8(s) (10.61)

for 0 < s < t. Note that & < D, so & is integrable on (0, 7). We can then apply the
Gronwall-type estimate of Proposition B.6 to see that & decays exponentially: there exists
a universal A > 0 such that

(1) <eE(0) forallo<t<T. (10.62)
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Also, taking s = 0in (10.61) and sending t — T shows that

T
/ D < €(0). (10.63)
0

Combining the previous two estimates completes the proof. ]

Appendix A. Nonlinearities

In this appendix we record the form of the commutators that arise in applying 8’; to (1.41)
as well as some estimates for the function R defined by (1.34).

A.l. Nonlinear commutator terms when k = 1

When 9, is applied to (1.41) this results in the following terms appearing in (3.1) for
k=1,2:

Fl = —divy, 4 Sa(p.u) + pndivy Dy, au —u - Vi, 4u — 0,u - V4u

+ 077 ¢ L Koou + 9,7j— ¢ 9; Kdou, (A.1)
Co Co
F? = —divy, 4 u, (A.2)
3 = 9,[R (010, 017)]. (A.3)
F* = uDy, AuN
]
+ |:gn o 1(W + R(91o. 31’])) - S,A(P,U)]at«/\/, (A.4)
F? = uDy, puv - 7, (A5)
FS=u -0;N =—u0,0;7, (A.6)
T=# @), (A7)

Observe that F© vanishes at £ since u; vanishes there.

A.2. Nonlinear commutator terms when k = 2
When 8% is applied to (1.41), this results in the following terms appearing in (3.1):
F' = —2divy, 4 Sa (9, p, d;u) + 2 divy Dy, 40,u

— diVa?A Sa(p,u) +2udivy, 4 Dy, au + pdivey D8$A”

—2u - Vy, 40:u —20,u - Vuoru —20,u - Vo, gu —u - VB%Au — 8?14 -Vau

+ 28,;7? 0; Kd20;u + 20 n? Kdd,u + 28%:7? 9; Kdou

+ 037 Zb Kd,u + amgb 2K dyu, (A.8)
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F? = —divge , u —2divy, 4 du, (A.9)
F? = 37[R(3180, hin)], (A.10)
F* = 2uDy, 40 uN + /‘Da,?,;\,”dv + uDs, Aud; N

200 200 (s R G 1)) ~ 2501, |0 ¥
o0 (s + RGu0)) - Sapw [FN.
F> =2MD31A8,uv-t+uD3%Auv-r, (A.12)
F® =20,u-0;N +u-0?N = —20,u;010;n —uy 0,971, (A.13)
F7 =" @m)din + #"0:m @), (A.14)

Once more, note that F° vanishes at ¢ since u; and 9,u; vanish there.

A3 Rand @
Recall that R is given by (1.34). The following records some essential estimates for it.

Proposition A.1. The mapping R € C®(R?) defined by (1.34) obeys the following esti-

mates:

(y,szl)lglR2|: Z% /oz RO ds| + ‘R(Zyz! 2 azeﬂ;y’Z) + 8)"71(2)]’2)
RG]+ 2RO B ROD| | gy )
+ M‘ + |8§8y3¥(y,z)|1| < 00. (A.15)

Proof. These bounds follow from elementary calculus, so we omit the details. ]

We also record here the definition of a special map related to R. We define @ €
C*®(R?) via

Q(y,z) ::/0 R(y,r)dr, so %(y,z)zeﬂ(y,z). (A.16)

Appendix B. Miscellaneous analysis tools

In this appendix we record a host of analytic results that are used throughout the paper.

B.1. Product estimates

We begin with some useful product estimates. First we recall a fact about Besov spaces.
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Proposition B.1. Ifs > 0and 1 < p,q < oo, then B, ,(R™) N L>°(R") is an algebra,
and

Ifelsy, < Iflleelglsy, + 11/ 155, €]z (B.1)

In particular, if s > n/p then By ,(R") < L*°(R") and hence B, ,(R") is a Banach
algebra.

Proof. There are many proofs: see, for instance, [1 1, Proposition 1.4.3], [31, Proposition
6.2], or [37, Theorem 2]. [

Then we can prove the supercritical product estimate.

Theorem B.2. Suppose 1 < p < oo, r > 0ands >max{n/p,r}. Then for p € WP (R")
and y € WP (R™) we have oy € H" (R") and

lewllwre < l@llwsr ¥ llwr.e. (B.2)

Proof. Note first that for r > n/p the space W"P(R") = B}, ,(R") is an algebra, and so
the stated result is trivial. We may thus reduce to the case 0 < r < n/p.
If r = 0, then

levler < llellzell¥lr < cllellwse ¥ |Le (B.3)
by virtue of the standard supercritical embedding W*?(R") — C [;) (R™). On the other
hand, since W*?(R") = B, ,(R") is an algebra for s > n/p,

levllws.r < llelws ¥ llws.». (B.4)

Thus, if we define the operator T;, via T, = @, then Ty, € £(L? (R")) N L(WP(R"))
with

ITollewr < llellwsr. N Tollewsry S ll@llws.r. (B.5)

Standard interpolation theory (see, for instance, [43]) then implies that T, € £ (WP (R"))
forall 0 < r < s, and

1Tollewrry < l@llwrr. (B.6)

This is equivalent to the stated estimate when 0 < r < n/p. ]

This result may be extended to bounded domains through the use of extension opera-
tors.

Theorem B.3. Let @ # Q C R” be bounded and open with Lipschitz boundary (or an
open interval whenn = 1). If 1 < p < oo, r > 0, and s > max {n/p,r}, then

I fgllwrr@) < I f llwsr@ligllwr.r(g)- (B.7)
Proof. 1If E is the Stein extension operator (see, for instance, [41]), then

| fellwrr) S NEfEEIwrr@®ry S IESflws.e@®m)llEgllwr.r®n)
S lwsrellgllwrr@)- (B.8)
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B.2. Poisson extension

Let b > 0. Given a Schwartz function f : R — R, we define its Poisson extension P f :
R x (—b,0) — R via

P s = [ fopememinia (B.9)
R

The following records some basic properties of this map.

Proposition B.4. Let 0 < b < oo. The following hold:

(1) &P extends to a bounded linear operator from LP (R) to L? (R x (—b, 0)) for each
l <p=oo.

(2) P extends to a bounded linear operator from HS~V/2(R) to H*(R x (—=b,0)) for all
s>1/2.

(3) Let 1 < p < oo. Then P extends to a bounded linear operator from W*=1/2:P(R) to
WSP(R x (—=b,0)) forall2 < s € R.

Proof. The first item follows from the fact that J” can be represented by convolution
with the Poisson kernel, Young’s inequality, and the fact that b is finite. The second item
follows from simple calculations with the Fourier representation (B.9): for instance, see
[19, Lemma A.5]. For the third item we note that & f* satisfies the Dirichlet problem

{A:szo inR2 = {x € R? | x, < 0}, B.10)

Pf=f ondR2.

Suppose that f € W*=1/2:P(R) for 2 < k € N, then standard trace theory shows that
there exists F € W*?(R2) such that F = f on dR2. Then g = P f — F satisfies the
boundary value problem

{Ag = —AF € Wk=2P(R2) inR2 = {x € R? | x, < 0}, B

g = 0 on BRE
The L?-elliptic theory (see, for instance, [2]) then shows that for each x € R,
g llwx.ro_(x.00,6)) < Ck, p.OYUIF lwr.oo_(x,00,26)) T 18120 ((x,0).260))
(B.12)

where we have written Q_((x,0),r) = (x —r,x 4+ r) x (=r, 0) for the lower half-cube.
Writing
R x (=b.0) = | J 0-((n.0).D), (B.13)

nez

we deduce from this and the simple overlap geometry of these cubes that

”g”Wk»”(]Rx(—b,o)) = C(kvp’b)(||F||Wk~p(Rx(—2b,O)) + IgllLr®x(—26,0)-  (B.14)
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However, from the first item (applied with 25 in place of b) and trace theory we know that

lgllLr ®x(—26,00) < 1P fllLr®x(=26,0)) + I FllLr ®x(—26,0)) S IS lwk=1/0.0®)>

(B.15)
and hence
lgllwx.r®x=b,0y) < IS lwr=1/p.0m)- (B.16)
In turn, we deduce that
P fllwk.r ®x=b.0y) < NS lwk=17p.0@)- (B.17)

The previous estimate shows that J extends to a bounded linear map from
Wk=1/p.r(R) to W*k-P(R x (—b,0)) forevery 2 <k € N and 1 < p < oco. Then standard
interpolation theory shows that it extends to a bounded linear operator between the same
spaces with k replaced by 2 < s € R, and this is the third item. ]

B.3. The Bogovskii operator

The Bogovskii operator [9] gives an explicit right inverse to the divergence operator via
a singular integral operator. The operator may be readily defined in Lipschitz domains
and avoids many of the technical difficulties encountered in using PDE-based methods to
construct such right inverses. We record some properties of this operator now.

Proposition B.5. Let Q@ C R? be given by (1.23), and let 1 < p < oo. There exists a
locally integrable function Ggq : Q x Q — R? such that the integral operator

Baf(x) = /Q Galx.y) f(v) dy (B.18)

is well-defined for f € L4 (Q)={f € L1(Q)] fQ f = 0} and satisfies the following:
(1) Bgq is a bounded linear map from % (RQ) to Wol’p (2 R?).
Q) If f € LYQ), thenu = Bo f € W, P (Q: R?) satisfies

{divu =f inQ,

(B.19)
u=20 on 9092.

Proof. See [9] for the original construction or [1, Chapter 2] for a more detailed treatment.
[ ]

B.4. Gronwall variant
We now record a variant of the classical Gronwall inequality, based on a result in [30].

Proposition B.6. Let 0 < T < oo and suppose that x : [0, T) — [0, 00) is integrable.
Further suppose that there exists o > 0 such that

t
x(1) ~|—/ x(r)dr <ax(s) forall0<s<t<T. (B.20)
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Then
x(t) <min{2,ave} e /®x0) forall0<t <T. (B.21)
Proof. First note that (B.20) provides the trivial estimate
x(t) <ax(0) forall0 <t <T. (B.22)
Now fix 0 < t < T and define the absolutely continuous function y : [0, ¢] — [0, co) via
y(s) = f; x(r) dr. Then (B.20) implies that
y(s) <ax(s) = —ay(s) forae.0<s <t (B.23)
and so the standard Gronwall estimate and (B.20) imply that
t
y(s) < e™3%y(0) = e_s/“/ x(r)dr <e™%/%x(0) forall0 <s <1. (B.24)
0
We then integrate (B.20) over s € [¢/2, ¢] and use this estimate to see that
t t t
-x(t) = / x(t)ds < a/ x(s)ds = ay(t/2) < ae™/?9x(0), (B.25)
2 t/2 t/2
and hence 5
x(t) < T“e—’/@“)x(()) forall0 <7 <T. (B.26)
Combining (B.22) and (B.26), we deduce that
2
x(t) < min {a, Tae_t/(z"‘)}x(O) forall0 <t < T. (B.27)

The result then follows from this after noting that

a<t= 270667”(2“) <2e7HCY and 0<t<a=a<ae/?e7/CY  (B28)

which means that

2
min {a, Tae"/(za)} <min{2,a/e}e /%Y forallt > 0.

B.5. Estimates via temporal derivatives

Next we record a result about how temporal derivatives and interpolation.

(B.29)

Proposition B.7. Let T denote either Q or (—{,£). Suppose that f € L*>((0,T); H; ("))
and 8; f € L>((0,T); H2(I")) for 0 < s5 <syand 0 < T < 0o. Then fors = (sy + 52)/2

we have f € C°([0,T); H*(T")), and

LF Oz < 1F@llFs +/ (SO Esy + 100 f () Fys2) dr
forall0 <t <t<T.

Proof. See, for instance, [20, Lemma A.4].

(B.30)
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B.6. Fractional integration by parts
Here we record a sort of fractional integration-by-parts estimate.

Proposition B.8. Let 0 < s < 1. Then

'/_ialfg

Proof. Since 0 < s < 1 we have (see, for instance, [29]) H*/2((—£,£)) = Hg/z((—ﬁ, 0)).
Next we note that

S W i-sr2liglgsra- (B.3D)

91 € LILX((=4, ) HTH((=0,£)) N L(H (=L, 0)); L* (=L, 0))). (B.32)

Since L? = (L?)* = (HJ)* and H™! = (H,)* we may then use interpolation theory to
find that

01 € L(H", L?)152.05 (L*, H ) 1g/2.0) = L(H' (=, 0); H*/2 (=L, 0))).

(B.33)
Using this, we may then estimate
¢
‘/[ /g = N0 fllg—s2liglmsz S NS Nm=sr2 &l prss2- (B.34)
- |

B.7. Composition in H*((—£, {))
The following result provides a useful composition estimate in fractional Sobolev spaces.
Proposition B.9. Let f : (—{,{) xR — R be C' and

(If(x,Z)I + 101/ (x.2)]

sup sup B

z€eR |x|<t

1)) < M <o (B.35)
Then for every 0 < s < 1 there exists a constant C = C(s,£) > 0 such that if u €
H*((—£,2)) then f(-,u) € H*((—,£)) and

IfCollas < CM |Jullas. (B.36)

Proof. Let u € H%((—£, £)). We use the difference quotient characterization of
H?((—£, 1)), which shows that

I/ Coallzs = IfCalla + Lf Co)lgs. (B.37)
where ¢ .
[f(x,u(x)) — f(y.u(y))]
[fCow)lgs = /_Z /_[ T dx dy. (B.38)

To handle these, note that by (B.35), for x, y € (—£, £) we have

| Ce u()] = Mu(x)] (B.39)
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and
Yd
S = Fae) = [ (e + (= 0y + (0= 0ut) di
0
1
= (x — y)/0 81f(tx + (A =t)y,tu(x)+ (1 - t)u(y)) dt

1
+ (u(x) — u(y))/0 A f(tx + (A —1)y. tu(x)+ (1— t)u(y)) dt, (B.40)

SO
|f G u(x) = fr u(y)] = Mlx = y[(Ju(y)] + [u)) + Mux) —u(y)]. (B4

These allow us to bound
IfCal72 < MP|[ul7, (B.42)

and (using Tonelli’s theorem and the fact that s < 1)

2 . 2
e <2 [ [ (o enor o+ OO dray

|x—y[i+2s |
< C(s, OM?||ull7>+2M>[ul}s (B.43)
for a constant C(s, £) > 0. Upon combining these we find that (B.36) holds. |
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