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Abstract. In this paper we study the dynamics of an incompressible viscous fluid evolving in an
open-top container in two dimensions. The fluid mechanics are dictated by the Navier–Stokes equa-
tions. The upper boundary of the fluid is free and evolves within the container. The fluid is acted
upon by a uniform gravitational field, and capillary forces are accounted for along the free bound-
ary. The triple-phase interfaces where the fluid, air above the vessel, and solid vessel wall come
in contact are called contact points, and the angles formed at the contact point are called contact
angles. The model that we consider integrates boundary conditions that allow for full motion of the
contact points and angles. Equilibrium configurations consist of quiescent fluid within a domain
whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy
functional, subject to a fixed mass constraint. The equilibrium contact angles can take on any values
between 0 and � depending on the choice of capillary parameters. The main thrust of the paper is
the development of a scheme of a priori estimates that show that solutions emanating from data suf-
ficiently close to the equilibrium exist globally in time and decay to equilibrium at an exponential
rate.

Keywords. Contact point dynamics, Navier–Stokes equations, free boundary problems

1. Introduction

1.1. Equations of motion

The purpose of this paper is to study the dynamics of a viscous incompressible fluid
occupying an open-top vessel in two dimensions. The vessel is modeled as a bounded,
connected, open subset V � R2 obeying the following pair of assumptions. First, we
posit that the vessel’s top is a rectangular channel by assuming that

Vtop WD V \ ¹y 2 R2 j y2 � 0º D ¹y 2 R2 j �` < y1 < `; 0 � y2 < Lº (1.1)

Yan Guo: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
guoy@dam.brown.edu

Ian Tice: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh,
PA 15213, USA; iantice@andrew.cmu.edu

Mathematics Subject Classification (2020): Primary 35Q30; Secondary 35R35, 76D45, 35B40,
76E17, 47A60

https://creativecommons.org/licenses/by/4.0/
mailto:guoy@dam.brown.edu
mailto:iantice@andrew.cmu.edu


Y. Guo, I. Tice 1446

Vessel 1 Vessel 2

Vbtm Vbtm

Vtop Vtop

Fig. 1. Empty vessels.
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Fig. 2. Vessels with fluid.

for some given distances `;L > 0. Note that L is the height of the channel, while 2` is its
width. The second assumption on the vessel is that its boundary, @V � R2, is C 2 away
from the corner points .˙`; L/. We will use the notation

Vbtm WD V \ ¹y 2 R2 j y2 � 0º (1.2)

to denote the bottom portion of the vessel, on which we place no further geometric restric-
tions. We refer to Figure 1 for two examples of vessels of the type considered here.

The fluid is assumed to occupy the vessel in such a way that Vbtm is filled by the
fluid, while Vtop is only partially filled, resulting in a free boundary where the fluid meets
the air above the vessel. For each time t � 0, this boundary is taken to be the graph of
a function �.�; t / W .�`; `/ ! .0;1/ subject to the constraint that �.˙`; t/ � L. The
physical meaning of this constraint is that the fluid is assumed not to spill over the edges
of the vessel. Note, though, that we allow for the possibility that �.x; t/ > L for some
x 2 .�`; `/ and t � 0, which corresponds to the fluid extending past the vessel’s top away
from the edges. The points where the fluid, vessel, and air meet are .˙`; �.˙`; t// and
are called the contact points.

In mathematical terms, we assume that the fluid occupies the time-dependent open set

�.t/ D Vbtm [ ¹y 2 R2 j �` < y1 < `; 0 < y2 < �.y1; t /º: (1.3)

We will write

†.t/ D ¹y 2 R2 j jy1j < ` and y2 D �.y1; t /º � @�.t/ (1.4)

for the moving fluid-vapor interface and

†s.t/ D @�.t/ n†.t/ (1.5)

for the moving fluid-solid interface. See Figure 2 for an example of two fluid domains in
different types of vessels.

The fluid’s state is determined at each time by its velocity and pressure functions,
.u; P / W �.t/ ! R2 � R, for which the associated viscous stress tensor is given by
S.P; u/ W �.t/! R2�2 via

S.P; u/ WD PI � �Du; (1.6)
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where I is the 2 � 2 identity, � > 0 is the fluid viscosity, and the symmetrized gradient is
Du D DuC .Du/T . Extending the divergence operator to act on S in the usual way, we
see that divS.P; u/ D rP � ��u � �r divu.

In order to state the equations of motion, we first need to enumerate several terms
that affect the dynamics. The fluid is assumed to be of unit density and acted on by a
uniform gravitational field pointing straight down with strength g > 0. Surface tension is
accounted for, and we write � > 0 for the tension coefficient along the fluid-vapor inter-
face, which is the graph of �.�; t /. The parameter ˇ > 0 is the inverse slip length, which
will appear in Navier’s slip condition on the vessel side walls. The energetic parameters
sv; sf 2 R measure the free-energy per unit length associated to the solid-vapor and
solid-fluid interaction, respectively, and are the analogs of � for the other interfaces. We
define

JK WD sv � sf; (1.7)

and we assume that JK and � satisfy the classical Young relation [44]:

jJKj=� < 1: (1.8)

Finally, we define the contact point velocity response function W W R! R to be a C 2

increasing diffeomorphism such that W .0/ D 0.
We can now state the equations of motion that govern the dynamics of the unknown

triple .u; P; �/ for t > 0:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

@tuC u � ruCrP � ��u D 0 in �.t/;

divu D 0 in �.t/;

S.P; u/� D g�� � �H .�/� on †.t/;

.S.P; u/� � ˇu/ � � D 0 on †s.t/;

u � � D 0 on †s.t/;

@t� D u2 � u1@y1� on †.t/;

W .@t�.˙`; t// D JK� � @1�p
1Cj@1� j2

.˙`; t/

(1.9)

where � the outward-pointing unit normal, � is the associated unit tangent, and

H .�/ WD @1

�
@1�p

1C j@1�2j

�
(1.10)

is the mean-curvature operator. The first two equations in (1.9) are the incompressible
Navier–Stokes equations for a fluid of unit density. The third equation is the balance of
stress on the free surface, which is also called the dynamic boundary condition. Note that
in principle the gravitational forcing term �ge2 should appear as a bulk force in the first
equation, but by shifting the pressure unknown via P 7! P C gx2 we have shifted gravity
to a surface term, as it is more convenient in this form. The fourth and fifth equations in
(1.9) constitute the Navier-slip condition; in contrast with the no-slip condition, the Navier
condition allows for fluid slip along the fluid-solid interface, at the expense of generating
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a stress that acts against the motion. The sixth equation in (1.9) is called the kinematic
equation, as it tracks how the free surface function changes due to the fluid velocity. The
final equation in (1.9), which is essential in our analysis and will be discussed more later
in Section 2.2, is the contact point response equation.

The problem (1.9) is an evolution equation and must be augmented with two pieces
of initial data:

(1) the initial free surface, �.�; 0/ W .�`; `/! .0;1/, which determines the initial fluid
domain �.0/,

(2) the initial fluid velocity u0 W �.0/ ! R2, which satisfies div u0 D 0 in �.0/ and
u0 � � D 0 on †s.0/.

As usual for the incompressible Navier–Stokes system, the initial pressure does not need
to be specified. The initial mass of the fluid is denoted by

M0 WD j�.0/j D jVbtmj CMtop; where Mtop D

Z `

�`

�.y1; 0/ dy1: (1.11)

The fluid’s mass is conserved in time due to the combination of the kinematic boundary
condition and the solenoidal condition for u from (1.9):

d

dt
j�.t/j D

d

dt

Z `

�`

� D

Z `

�`

@t� D

Z
†.t/

u � � D

Z
�.t/

divu D 0: (1.12)

1.2. Equilibria

A steady state equilibrium solution to (1.9) corresponds to setting u.y; t/ D 0, P.y; t/ D
P0 2 R, and �.y1; t / D �0.y1/ with �0 and P0 solving8<:g�0 � �H .�0/ D P0 on .�`; `/;

� @1�0p
1Cj@1�0j2

.˙`/ D ˙JK:
(1.13)

By a slight abuse of notation, solutions to (1.13) are called equilibrium capillary surfaces.
Note that the boundary condition specifies the cosine of the angle formed by the graph at
the endpoints. The constant pressure P0 is not arbitrary; indeed, it is uniquely determined
by specifying the mass in Vtop at equilibrium, i.e. prescribing

Mtop D

Z `

�`

�0.y1/ dy1: (1.14)

To see this, we use (1.13) to compute

2`P0 D

Z `

�`

P0 D

Z `

�`

.g�0 � �H .�0// D gMtop � �
@1�0p

1C j@1�0j2

ˇ̌̌̌`
�`

D gMtop � 2JK;

(1.15)
which in turn implies that

P0 D
gMtop � 2JK

2`
: (1.16)
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The equations (1.13) are the Euler–Lagrange equations associated to constrained min-
imizers of the energy functional I W W 1;1..�`; `//! R defined via

I .�/ D

Z `

�`

�
g

2
j�j2 C �

p
1C j�0j2

�
� JK.�.`/C �.�`//; (1.17)

subject to the mass constraint Mtop D
R `
�`
�. In this framework the pressure P0 is under-

stood as the Lagrange multiplier associated to this constraint. We now state an existence
result for equilibrium capillary surfaces. For a detailed proof we refer, for instance, to
[21, Appendix E], which is a one-dimensional version of results found in the book of
Finn [16].

Theorem 1.1. There exists a constantMmin � 0 such that ifMtop >Mmin then there exists
a unique solution �0 2 C1.Œ�`; `�/ to (1.13) that satisfies (1.14) with P0 given by (1.16).
Moreover, �0 is even, minŒ�`;`� �0 > 0, and if I is given by (1.17), then I .�0/ � I . /

for all  2 W 1;1..�`; `// such that
R `
�`
 DMtop.

Throughout the rest of the paper we make the following two crucial assumptions on
the parameters.

(1) We assume that Mtop > Mmin in order to have an equilibrium �0 as in Theorem 1.1.

(2) We assume that the parameter L > 0, the height of the rectangular channel Vtop,
satisfies the condition �0.˙`/ < L, which means the fluid is not just about to spill
over the top of the vessel.

1.3. Previous work and origins of the model (1.9)

The contact lines (or contact points in two dimension) that form at triple junctions between
three distinct phases (fluid, solid, and vapor phases in the present paper) have been a sub-
ject of intense study since the pioneering work of Young [44] in 1805. For an exhaustive
overview we refer to de Gennes [12]. Here we will content ourselves with a terse review.

The story began with the study of equilibrium configurations by Young [44],
Laplace [26], and Gauss [17], who discovered the underlying variational principle for I

described above and in Theorem 1.1 (though, obviously, the theorem is restated in the
modern language of Sobolev spaces). A key byproduct of this work is that the angle
formed between the solid wall and the fluid (through the vapor phase), which is known as
the equilibrium contact angle �eq (see Figure 3), is related to the free energy parameters
sf, sv, and � via Young’s equation

cos.�eq/ D
sf � sv

�
D �

JK
�
: (1.18)

Note that this manifests in (1.13) through the equations for @1�0 at the endpoints.
The dynamic behavior of a contact line or point is significantly more delicate. For

instance, including a dynamic contact point in a fluid-solid-vapor model presents chal-
lenges to standard modeling assumptions made when working with viscous fluids. Indeed,
the free boundary kinematics (which may be rewritten as @t� D u � �

p
1C jr�j2) and the
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eq

eq

Fig. 3. Equilibrium contact angle.

typical no-slip boundary conditions for viscous fluids (u D 0 at the fluid-solid interface)
are incompatible: combining the two leads to the prediction that @t� D 0 at the contact
points, i.e. that the fluid is pinned at its initial position on the solid. A moment’s experi-
mentation with an everyday coffee cup reveals this prediction to be nonsensical, and we
are led to abandon the no-slip condition in favor of another boundary condition that allows
for motion of the contact point.

The surveys of Dussan [14] and Blake [5] provide a thorough discussion of the efforts
of physicists and chemists in determining the dynamics of a contact point. The general
picture is that the dynamic contact angle, �dyn, and the equilibrium angle, �eq, are related
via

Vcl D F.cos.�dyn/ � cos.�eq//; (1.19)

where Vcl is the contact point velocity (along the solid) and F is some increasing func-
tion such that F.0/ D 0. The assumptions on F enforce the experimentally observed fact
that the slip of the contact line acts to restore the equilibrium angle (see Figure 4). Equa-
tions of the form (1.19), but with different forms of F , have been derived in a number of
ways. Blake–Haynes [6] arrived at (1.19) through thermodynamic and molecular kinet-
ics arguments. Cox [10] used matched asymptotic analysis and hydrodynamic arguments.
Ren–E [36] derived (1.19) from thermodynamic principles applied to constitutive equa-
tions. Ren–E [35] also performed molecular dynamics simulations and found an equation
of the form (1.19). These simulations also indicated that the slip of the fluid along the
solid obeys the well-known Navier-slip condition

u � � D 0 and S.P; u/� � � D ˇu � � (1.20)

for some parameter ˇ > 0. The system (1.9) studied in the present paper synthesizes the
Navier-slip boundary conditions (1.20) with the general form of the contact point equation
(1.19). Indeed, the last equation in (1.9) may be rewritten as

W .Vcl/ D W .@t�/ D JK� �
@1�p

1C j@1�j2
.˙`; t/ D �.cos.�dyn/� cos.�eq//; (1.21)
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�dyn
�eq

Vcl

(A) �eq < �dyn

�dyn
�eq

Vcl

(B) �eq > �dyn

Fig. 4. The same dynamic fluid configuration, with the dynamic contact angle �dyn marked in blue,
but with different equilibrium contact angles �eq, marked in red. In configuration (A) the condition
�eq < �dyn in (1.19) results in a downward pointing contact point velocity. In configuration (B) the
condition �eq > �dyn in (1.19) results in an upward-pointing contact point velocity. In both cases,
the resulting motion acts to return the dynamic angle to the equilibrium one.

which is (1.19) with the convenient reformulation W D �F �1. It should be noted that we
have only recorded the form of the contact line model appropriate for our 2D vessel-type
domains. The model can also be formulated in three dimensions and in more general
domains, but is necessarily more complicated to state due to the higher-dimensional
geometry.

Given the numerous derivations of (1.19), we believe that its integration into the model
(1.9) along with the Navier-slip condition yields a good general model for describing the
dynamics of a viscous fluid with dynamic contact points and contact angles. A goal of
this article is to provide further evidence for the validity of the model by proving that
the equilibrium capillary surfaces are asymptotically stable, or more precisely, that suffi-
ciently small perturbations of the equilibria give rise to global-in-time solutions that return
to equilibrium exponentially fast as time diverges to infinity. In recent previous work [21]
we proved this in the much simpler case in which the Navier–Stokes equations in (1.9)
were replaced by the Stokes equations, which yields a sort of quasi-static evolution. The
second author and Wu [42] proved corresponding results for the Stokes droplet problem in
which the vessel configuration is replaced with a droplet sitting atop a flat substrate, and
with Zheng [45] established local existence results. The Navier–Stokes problem presents
numerous challenges compared to the Stokes problem, but we will delay a discussion of
these to Section 2.2.

To the best of our knowledge, there are no other prior results in the literature related
to models in which the full fluid mechanics are considered alongside dynamic contact
points and contact angles. However, there are results with a subset of these features.
Schweizer [38] studied a 2D Navier–Stokes problem with a fixed contact angle of
�=2. Bodea [8] studied a similar problem with fixed �=2 contact angle in 3D channels
with periodicity in one direction. Knüpfer–Masmoudi [23, 24] studied the dynamics of



Y. Guo, I. Tice 1452

a 2D drop with fixed contact angle when the fluid is assumed to be governed by Darcy’s
law. Related analysis of the fully stationary Navier–Stokes system with free, but unmov-
ing boundary, was carried out in 2D by Solonnikov [40] with contact angle fixed at � ,
by Jin [22] in 3D with angle �=2, and by Socolowsky [39] for 2D coating problems with
fixed contact angles. For inviscid fluids there has been recent progress on models with
floating or emerging solids but without dynamic laws for the contact angle of the form
(1.19): see Lannes [27], de Poyferré [13], and Bocchi [7]. A simplified droplet model
without fluid coupling was studied by Feldman–Kim [15], who proved asymptotic stabil-
ity using gradient flow techniques. It is worth noting that much work has also been done
on contact points in simplified thin-film models; we refer to the survey by Bertozzi [4] for
an overview.

We conclude this overview of the model with some stability heuristics. Sufficiently
regular solutions to (1.9) obey the energy-dissipation equation

d

dt

�Z
�.t/

1

2
ju.x; t/j2 dx CI .�.�; t //

�
C

Z
�.t/

�

2
jDu.x; t/j2 dx C

Z
†s.t/

ˇ

2
ju.x; t/j2 dx C

X
aD˙1

@t�.a`; t/W .@t�.a`; t// D 0;

(1.22)

where I is the energy functional from (1.17). This identity may be derived in the usual
way by dotting the first equation in (1.9) by u, integrating by parts over�.t/, and employ-
ing the other equations. The temporally differentiated term in parentheses is the physical
energy, comprising the fluid’s kinetic energy (the first term) and the gravity-capillary
potential energy (the second term). The three remaining terms are the dissipation due
to viscosity (the first term), slip along fluid-solid interface (the second), and slip along
the contact point (the third). Crucially, the assumptions on W imply that zW .z/ > 0 for
z ¤ 0, which means the contact point dissipation term provides positive definite control
of @t� at the contact point. Thus, the dissipation has a sign and serves to decrease the
energy. Since the equilibrium configuration u D 0, p D 0, � D �0 is the unique global
minimizer of the energy, (1.22) formally suggests that global-in-time solutions will con-
verge to the equilibrium as t !1. We will prove that this is indeed the case, provided
that the initial data are sufficiently close to the equilibrium configuration, and we will
show that such solutions must decay to equilibrium exponentially.

1.4. Problem reformulation

In order to analyze the system (1.9) it is convenient to reformulate the problem in a fixed
open set. The stability heuristic given above suggests that for large time, the fluid domain
should not differ much from the equilibrium domain, which suggests that we employ it
as the fixed open set. To this end we consider �0 2 C1.Œ�`; `�/ from Theorem 1.1 and
define the equilibrium domain � � R2 via

� WD Vbtm [ ¹x 2 R2 j �` < x1 < ` and 0 < x2 < �0.x1/º: (1.23)
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Note that @� is C 2 away from the contact points .˙`; �0.˙`//, but that � has corner
singularities there, so @� is only Lipschitz globally. Depending on the choice of the cap-
illary parameters � , sv, and sf, the angles formed at the contact points can take on any
value between 0 and � .

We decompose the boundary @� D † t†s, where

† WD ¹x 2 R2 j �` < x1 < ` and x2 D �0.x1/º and †s WD @�n†: (1.24)

The set † is the equilibrium free surface, while †s denotes the “sides” of the equilib-
rium fluid configuration. We will write x 2 � as the spatial coordinate in the equilibrium
domain. We will write

N0 D .�@1�0; 1/ (1.25)

for the nonunit normal vector field on †.
In our analysis we will assume that the free boundary is a small perturbation of the

equilibrium interface by introducing the perturbation � W .�`; `/ �RC! R and positing
that

�.x1; t / D �0.x1/C �.x1; t /: (1.26)

We will need to define an extension of � that gains regularity. To this end we first chooseE
to be a bounded linear extension operator that maps Cm..�`; `// to Cm.R/ for all 0 �
m � 5 and W s;p..�`; `// to W s;p.R/ for all 0 � s � 5 and 1 � p <1 (such a map is
readily constructed with the help of higher order reflections, Vandermonde matrices, and
a cutoff function – see, for instance, [28, Exercise 7.24] for integer regularity, but non-
integer regularity follows then by interpolating). In turn, we define the extension of � to
be the function N� W ¹x 2 R2 j x2 � E�0.x1/º �RC ! R given by

N�.x; t/ D PE�.x1; x2 �E�0.x1/; t/; (1.27)

where P is the lower Poisson extension defined by (B.9). Note that although N�.�; t / is a
priori defined in the unbounded set ¹x 2 R2 j x2 � E�0.x1/º, in practice we will only
ever use its restriction to the bounded set � � ¹x 2 R2 j x2 � E�0.x1/º.

Choose � 2C1.R/ such that �.z/D 0 for z� 1
4

min�0 and �.z/D z for z� 1
2

min�0.
We combine � and the extension N� to define a map from the equilibrium domain to the
moving domain �.t/:

� 3 x 7!

�
x1; x2 C

�.x2/

�0.x1/
N�.x; t/

�
WD ˆ.x; t/ D .y1; y2/ 2 �.t/: (1.28)

It is readily verified that the map ˆ satisfies the following properties:

(1) ˆ.x1; �0.x1/; t/ D .x1; �0.x1/ C �.x1; t // D .x1; �.x1; t //, and hence ˆ.†; t/ D
†.t/,

(2) ˆ.x; t/ D x for x 2 Vbtm, i.e. the map is the identity in the bottom portion of the
vessel and thus only distorts the upper rectangular channel Vtop,

(3) ˆ.˙`; x2; t / D .˙`; x2 C �.x2/ N�.˙`; x2/=�0.˙`//, and hence ˆ.†s \ ¹x1 D ˙`;

x2 � 0º; t / D †s.t/ \ ¹y1 D ˙`; y2 � 0º.



Y. Guo, I. Tice 1454

Moreover, if � is sufficiently small (in an appropriate Sobolev space), then the mappingˆ
will be a C 1 diffeomorphism of � onto �.t/ that maps the components of @� to the
corresponding components of @�.t/.

We will use ˆ to reformulate (1.9) in �, but first it is convenient to introduce some
notation. We write

rˆ D

�
1 0

A J

�
and A WD .rˆ�1/T D

�
1 �AK

0 K

�
(1.29)

for

W D
�

�0
; A D W @1 N� �

W

�0
@1�0 N�; J D 1CW @2 N�C

�0 N�

�0
; K D J�1: (1.30)

Note that the Jacobian of our coordinate transformation is exactly J D detrˆ.
Provided that ˆ is a diffeomorphism (which will always be satisfied in our analy-

sis), we can reformulate (1.9) by using ˆ to change coordinate systems. This results in a
PDE system that has the benefit of being posed in a fixed set but the downside of being
significantly more nonlinear. In the new system the PDE becomes8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

@tu � @t N�WK@2uC u � rAuC divA SA.P; u/ D 0 in �;

divA u D 0 in �;

SA.P; u/N D .g� � �H .�//N on †;

@t� D u �N on †;

.SA.P; u/ � � � ˇu/ � � D 0 on †s;

u � � D 0 on †s;

W .@t�.˙`; t// D JK� � @1�p
1Cj@1� j2

.˙`; t/;

(1.31)

where � D �0 C � and
N D .�@1�; 1/ D N0 � .@1�; 0/ (1.32)

is the nonunit normal to the moving free boundary. Here we have written the differential
operators rA, divA, and �A with their actions given by .rAf /i WD Aij @jf , divAX WD

Aij @jXi , and �Af D divA rAf for appropriate f and X . The vector field u � rAu

has components .u � rAu/i WD ujAjk@kui . We also write SA.P; u/ D PI � �DAu for
the stress tensor, where I the 2 � 2 identity and .DAu/ij D Aik@kuj CAjk@kui is the
symmetric A-gradient. Note that if we extend divA to act on symmetric tensors in the
natural way, then divASA.P;u/DrAP ���Au for vector fields satisfying divA uD 0.

Now that we have reformulated our PDE system in a fixed domain, it is convenient
to make a final modification by rewriting (1.31) as a perturbation of the equilibrium con-
figuration. In other words, we posit that the solution has the special form u D 0 C u,
P D P0 C p, � D �0 C � for new unknowns .u; p; �/. In order to record the perturbed
equations, we first need to introduce some notation.

To begin, we use a Taylor expansion in z to write

y C z

.1C jy C zj2/1=2
D

y

.1C jyj2/1=2
C

z

.1C jyj2/3=2
CR.y; z/; (1.33)
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where R 2 C1.R2/ is given by

R.y; z/ D

Z z

0

3
.s � z/.s C y/

.1C jy C sj2/5=2
ds: (1.34)

By construction,

@1�

.1C j@1�j2/1=2
D

@1�0

.1C j@1�0j2/1=2
C

@1�

.1C j@1�0j2/3=2
CR.@1�0; @1�/; (1.35)

which then allows us to use (1.13) to compute

g� � �H .�/ D .g�0 � �H .�0//C g� � �@1

�
@1�

.1C j@1�0j2/3=2

�
� �@1.R.@1�0; @1�//

D P0 C g� � �@1

�
@1�

.1C j@1�0j2/3=2

�
� �@1.R.@1�0; @1�// (1.36)

and

JK� �
@1�p

1C j@1�j2
.˙`; t/D JK�

�@1�0

.1C j@1�0j2/1=2
.˙`/�

�@1�

.1C j@1�0j2/3=2
.˙`; t/

��R.@1�0; @1�/.˙`; t/ D �
�@1�

.1Cj@1�0j2/3=2
.˙`; t/��R.@1�0; @1�/.˙`; t/: (1.37)

Next, we compute

divA SA.P; u/ D divA SA.p; u/ in �;

SA.P; u/N D SA.p; u/N C P0N on †;

SA.P; u/� � � D SA.p; u/� � � on †s:

(1.38)

Finally, we expand the velocity response function inverse W 2 C 2.R/. Since W is
increasing, we may set

� D W 0.0/ > 0: (1.39)

We then define the perturbation OW 2 C 2.R/ as

OW .z/ D
1

�
W .z/ � z: (1.40)

We now insert the expansions (1.36)–(1.38) and (1.40) into (1.31). This yields the
following equivalent PDE system for the perturbed unknowns .u; p; �/:8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

@tu � @t N�WK@2uC u � rAuC divA SA.p; u/ D 0 in �;
divA u D 0 in �;
SA.p; u/N D

�
g� � �@1

�
@1�

.1Cj@1�0j2/3=2
CR.@1�0; @1�/

��
N on †;

@t� D u �N on †;
.SA.p; u/ � � � ˇu/ � � D 0 on †s

u � � D 0 on †s;

�@t�.˙`; t/C � OW .�.˙`; t// D ��
�

@1�

.1Cj@1�0j2/3=2
CR.@1�0; @1�/

�
.˙`; t/:

(1.41)
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It is in this form that we will study the problem. Throughout the paper we assume that
Mtop >Mmin is specified as in the discussion after Theorem 1.1. For the data to (1.41) we
then have:

(1) the initial free surface �0, which we assume satisfiesZ `

�`

�0 D 0 (1.42)

so that the equilibrium mass, Mtop, matches the initial mass, i.e.Z `

�`

.�0 C �0/ DMtop; (1.43)

(2) the initial velocity u0 W �! R2, which we assume satisfies divA0 u0 D 0 as well as
the boundary conditions u0 � � D 0 on †s.

2. Main results and discussion

2.1. Energy and dissipation functionals and other notation

In order to state our main result, we must first introduce some notation.

Equilibrium angles and regularity parameters: We begin by introducing the supplemen-
tary equilibrium contact angle

!eq D � � �eq 2 .0; �/; (2.1)

which is useful as it determines the angles created at the contact points in the fluid domain
at equilibrium (see Figure 3). This angle, which can take on any value between 0 and �
depending on the choice of the capillary parameters � , sv, and sf, plays an important role
in the elliptic regularity theory associated to �, as it determines the possible regularity
gain. For the Stokes problem with boundary conditions related to those we use in (1.41),
the regularity is related to the following parameter, computed by Orlt–Sändig [33]:

"max D "max.!eq/ D min ¹1;�1C �=!eqº 2 .0; 1�: (2.2)

For a parameter 0 < " � "max < 1 we set

q" D
2

2 � "
2 .1; 2/: (2.3)

Note that 0 < "� < "C < "max.!/ implies that

q"� < q"C < q"max : (2.4)

Then [33] shows that the regularity available for the velocity in the associated Stokes
problem cannot reach W 2;q"max .
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With "max in hand, we fix three parameters ˛; "�; "C such that

0 < ˛ < "� < "C < "max; ˛ < min
²
1 � "C

2
;
"C � "�

2

³
; "C �

"� C 1

2
: (2.5)

For brevity we also write

qC D q"C and q� D q"� (2.6)

in the notation established in (2.3). We will crucially use these parameters to track regu-
larity in this paper.

Norms: We write W s;p.�IRk/ for � 2 ¹�;†; †sº, 0 � s 2 R, 1 � p � 1, and 1 �
k 2 N for the usual Sobolev spaces of Rk-valued functions on these sets. In particular,
W 0;p.�IRk/ D Lp.�IRk/. When k D 1 we typically write W s;p.�/ D W s;p.�IR/.
When p D 2 we write H s.�IRk/ D W s;2.�IRk/. For the sake of brevity, we typically
write our norms as k � kW s;p , suppressing the domain � and the codomain Rk . We employ
this notation whenever it is clear from the context what the domain and codomain are;
in situations where there is ambiguity (typically due to the evaluation of bulk-defined
functions on† or†s via trace operators) we will include the domain in the norm notation.
Next we define a useful pairing for the contact points that gives a contact point norm: we
set

Œf; g�` D f .�`/g.�`/C f .`/g.`/ and Œf �` D
p
Œf; f �`: (2.7)

Energy and dissipation functionals: We define the following energy and dissipation func-
tionals. For 0 � k � 2 we define the natural energy and dissipation via

EÎ;kDk@
k
t uk

2
L2
Ck@kt �k

2
H1

and DÎ;kDk@
k
t uk

2
H1
Ck@kt uk

2
L2.†s/

CŒ@kC1t ��2` ; (2.8)

where Œ��` is as in (2.7). We also set

EÎ D

2X
kD0

EÎ;k and DÎ D

2X
kD0

DÎ;k : (2.9)

Then the full energy is

E D kuk2
W 2;qC

C k@tuk
2
H1C"�=2

C k@2t uk
2
H0
C kpk2

W 1;qC
C k@tpk

2
L2

C k�k2
W 3�1=qC;qC

C k@t�k
2
H3=2C."��˛/=2

C k@2t �k
2
H1
; (2.10)

and the full dissipation is

D D DÎ C kuk
2

W 2;qC
C k@tuk

2
W 2;q�

C

2X
kD0

Œ@kt u �N �2` C kpk
2

W 1;qC
C k@tpk

2
W 1;q�

C

2X
kD0

k@kt �k
2
H3=2�˛

C k�k2
W 3�1=qC;qC

C k@t�k
2
W 3�1=q�;q�

C k@3t �k
2
H1=2�˛

:

(2.11)
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Universal constants and Einstein summation: A generic constant C > 0 will be called
universal if it depends on �, the dimension, or any of the parameters of the problem,
but not on the solution or the initial data. In the usual manner, we allow the value of
these constants to change from one estimate to the next. We employ the notation a . b

to mean that a � Cb for a universal constant C > 0, and we write a � b to mean that
a . b . a. From time to time we will use the Einstein convention of implicitly summing
over repeated indices in vector and tensor expressions.

2.2. Main results and discussion

Our main result is an a priori estimate for solutions to (1.41) that shows that if solutions
exist in a time horizon Œ0; T / and have sufficiently small energy, then in fact the dissi-
pation is integrable on Œ0; T / and the energy decays exponentially. Moreover, we have
quantitative estimates in terms of the data.

Theorem 2.1. Let !eq 2 .0; �/ be given by (2.1), 0 < "max � 1 be given by (2.2), and
suppose that ˛, "�, and "C satisfy (2.5). Suppose that E and D are defined with these
parameters via (2.10) and (2.11), respectively. Then there exists a universal constant 0 <
ı0 < 1 such that if a solution to (1.41) exists on the time horizon Œ0; T / for 0 < T � 1
and obeys the estimate

sup
0�t<T

E.t/ � ı0; (2.12)

then there exist universal constants C; � > 0 such that

sup
0�t<T

e�tE.t/C

Z T

0

D.t/ dt � CE.0/: (2.13)

Note that we prove the theorem for vessel domains V of the form described at the start
of Section 1.1, in which Vtop consists of a rectangular channel Vtop. It will be clear in the
proof that the theorem remains valid for vessels that do not possess a bottom component,
Vbtm. That is, the theorem also holds if the vessel is itself a rectangular channel: V D Vtop.
Moreover, the theorem will also remain true in vessels in which Vbtm is not globally C 2

but is instead C 2 away from finitely many Lipschitz corners with interior angles less
than � . However, the presence of the rectangular channel is essential in our analysis;
when this is removed, as studied in [42] for quasi-static droplet evolution, the problem
becomes significantly more challenging.

The a priori estimates of this theorem may be coupled to a local existence theory that
verifies the small energy condition is satisfied, provided the data are small enough and all
necessary compatibility conditions are satisfied. To keep the present paper of reasonable
length, we will neglect to develop this local existence theory here and instead develop it
elsewhere. Such a theory will be developed on the basis of the a priori estimates proved
here in the same way that [45] develops the local theory for the Stokes version of (1.41)
based on the a priori estimates for the Stokes system that we developed in [21]. Assuming
the local existence theory, we may combine it with our a priori estimates to deduce the
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existence of global-in-time decaying solutions as in the following theorem. This provides
further evidence that the contact dynamics relation (1.19) together with the Navier-slip
boundary conditions yields a good model of contact points in fluids.

Theorem 2.2. Let !eq 2 .0; �/ be given by (2.1), 0 < "max � 1 be given by (2.2), and
suppose that ˛, "�, and "C satisfy (2.5). Suppose that E and D are defined with these
parameters via (2.10) and (2.11), respectively. There exists a universal constant 0< ı1<1
such that if E.0/ � ı1, then there exists a unique global solution triple .u; p; �/ to (1.41)
on the time horizon Œ0;1/ such that

sup
0�t<1

e�tE.t/C

Z 1
0

D.t/ dt � CE.0/; (2.14)

where C; � > 0 are universal constants.

In [21] we proved analogous results for the Stokes version of (1.9) (the terms @tuC u �
ru in the first equation are neglected), so it is prudent to begin the discussion of our cur-
rent results by comparing and contrasting the Stokes and Navier–Stokes problems and the
difficulties they present. For both problems, an examination of the control provided by the
basic energy-dissipation relation (1.22) (the kinetic energy term in the energy is removed
for the Stokes problem) reveals that neither the energy nor the dissipation provide enough
control to close a scheme of a priori estimates. Hence, we are forced to analyze solutions
in a higher regularity context, and it is here that it becomes clear that the geometry of
the fluid domain is the central difficulty. Indeed, the first issue it causes is that even after
reformulation in a fixed domain as in (1.41), the only differential operators compatible
with the domain are time derivatives. We then need a strategy for bootstrapping from
energy-dissipation control of the time derivatives to higher spatial regularity via elliptic
estimates.

It is at this point that we encounter the fundamental difficulty in analyzing the contact
point problem. Both the moving domain�.t/ and the equilibrium domain� have corners
at the contact points, and thus the boundary is at most globally Lipschitz. In such domains
it is well-known that the corners can harbor singularities in the solutions to elliptic equa-
tions. For the Stokes problem in � with Navier-slip boundary conditions, the work of
Orlt–Sändig [33] shows that the velocity cannot even belong to W 2;q"max , where "max is
determined by the equilibrium angle as in (2.2) and q"max 2 .1; 2/ is then given by (2.3).
Consequently, regardless of how many temporal derivatives we gain basic control of, there
is a fundamental barrier to the spatial regularity gain we can hope to achieve.

In closing a scheme of a priori estimates for (1.41), the mandate then becomes to
make due with what is available and close with little spatial regularity. In our work on
the Stokes problem [21], we do this by crucially exploiting a version of the normal trace
estimate for the viscous stress. This allows us to get a dissipative estimate for K@2t �

inH�1=2, where K is the gravity-capillary operator associated to �0 (see (8.3)). With this
in hand, we take advantage of the contact point boundary condition (the last equation in
(1.41)) in two essential ways. First, this condition is responsible for providing a dissipative
estimate of Œ@3t ��`. Second, this condition serves as a boundary condition compatible with
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the elliptic operator K , which couples with the aforementioned dissipative control to yield
an H 3=2 estimate for @2t � in terms of the dissipation. This estimate then serves as the
starting point for a chain of elliptic estimates in weighted L2-based Sobolev spaces that
allow us to close for the Stokes problem. Here the choice of L2-based weighted spaces
is convenient as it maintains consistency with the L2-based estimates coming from the
energy and dissipation.

For the Navier–Stokes problem considered in the present paper, the convective term
@tu C u � ru precludes the use of the normal trace estimate for the twice time-differ-
entiated problem since neither the energy nor the dissipation provides control of @3t u in
this case. We are thus forced to seek another mechanism for obtaining a sufficiently high
regularity estimate for @2t �, which we need to kick start the chain of elliptic gains. This is
the central difficulty in dealing with the contact point Navier–Stokes system (1.41).

The principal technical achievement of this paper is the development of a scheme of
a priori estimates that exchanges the full H 3=2 estimate used for the Stokes problem for
a slightly weaker estimate in H 3=2�˛ , where ˛ is given by (2.5). Fortunately, this is just
barely sufficient to kick start the elliptic gain and allow us to close. In order to execute
this, we have had to switch from weighted L2-based Sobolev spaces to unweighted Lq-
based spaces for values of q just below the maximal value q"max . This yields key technical
advantages in dealing with several nonlinear terms.

2.3. Technical overview and layout of paper

We now turn our attention to a brief technical overview of our methods, which we provide
in a rough sketch form meant to highlight the main ideas while suppressing certain techni-
cal complications. The starting point of our scheme of a priori estimates is a version of the
energy dissipation relation (1.22) for (1.41). We need versions of this for the solution and
its time derivatives up to order 2. These are recorded in Section 3. Upon differentiating
(1.41) we produce commutators, so we end up with an energy dissipation relation roughly
of the form

d

dt
EÎ CDÎ D N ; (2.15)

where EÎ and DÎ are as in (2.9) and N represents nonlinear interactions arising due to
the commutators. Section 3 also contains a number of other basic estimates.

To advance from the basic control provided by EÎ and DÎ to higher spatial regularity
estimates we need elliptic estimates for a Stokes problem related to (1.41). We develop
these in Section 4 within the context ofLq-based spaces instead of the weightedL2-based
spaces we employed in [21]. Here the main technical problem is associated to the upper
bound on the regularity gain available due to the corner singularities in �. An interesting
feature of our main result, Theorem 4.7, is that it treats the triple .v;Q; �/ as the elliptic
unknown, but � only appears on the boundary.

With the elliptic estimates and (2.15) in hand, we may identify most of the nonlinear
terms that need to be estimated in order to close our scheme. Due to the limited spatial
regularity, these estimates are fairly delicate and require a good deal of care. In particular,
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in dealing with N in (2.15), we need structured estimates of the form

jN j � CE�D for some � > 0; (2.16)

where E and D are the full energy and dissipation from (2.10) and (2.11), in order to
have any hope closing with (2.15). In Section 5 we record a host of nonlinear interaction
estimates of this form. In Section 6 we record similar estimates but in terms of the energy
functional instead of the dissipation.

Section 7 records estimates of the nonlinear terms that appear in applying the elliptic
estimates from Theorem 4.7. An interesting feature of these is that the upper bound of
regularity identified by Orlt–Sändig [33] yields an open interval .0; q"max/ of possible
integrability exponents. We take advantage of this by using two different exponents 0 <
q� < qC < q"max as in (2.5), with qC associated to the nondifferentiated problem and q�
associated to the once differentiated problem. The parameter q� can be made arbitrarily
close to q"max , but the tiny increase we get in advancing to qC plays an essential role in
Proposition 7.11, which highlights how delicate the nonlinear estimates are.

As mentioned above, the key to starting the elliptic gains is an estimate of @2t �, but the
normal trace argument we used in [21] to estimate this term in H 3=2 is unavailable for
the present problem. In place of the normal trace technique, we instead employ a delicate
argument using test functions in the weak formulation of the twice time-differentiated
problem, together with the dissipative estimate of Œ@3t ��`. This is delicate for two rea-
sons. First, we have very poor spatial regularity at that level of time derivative, so we
must be careful with how the test function interacts with the solution. Second, we aim
to achieve estimates for the fractional regularity of @2t �, but in the weak formulation we
find @2t � interacting with the test function on .�`; `/ via an H 1-type inner product with
the equilibrium free surface function �0 appearing as a weight (see (8.1)). The standard
Fourier-analytic tricks that one would try on a torus or full space do not work here due to
the finite extent of .�`; `/ and the weight. We are thus led to replace the standard Fourier
tricks with the functional calculus associated to the gravity-capillary operator K , defined
by (8.3), which provides a scale of custom Sobolev spaces measuring fractional regularity
in terms of the eigenfunctions of K . This allows us to build test functions that can pro-
duce higher fractional regularity estimates for @2t �. Unfortunately, despite major effort,
we were unable to derive an exactH 3=2 estimate for @2t �. The obstacles are primarily due
to the technical complications that arise from the criticality of H 1=2 in one dimension.

We develop this functional calculus in Section 8. It provides us with the ability to
make sense of fractional powers of K , which is essential in our test function method for
deriving the needed estimate. The scale of custom Sobolev spaces we use are defined in
terms of the eigenfunctions of K , but we characterize them in terms of standard Sobolev
spaces in Theorem 8.23 when the regularity parameter satisfies 0 � s � 2. A serious
technical complication in our test function / functional calculus method is that we would
like to exploit an equivalence of the form

.@2t �;K
1=2�˛@2t �/1;† � k@

2
t �k

2
H3=2�˛

(2.17)
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where .�; �/1;† is as in (8.1) and ˛ satisfies (2.5), but we cannot guarantee that
K1=2�˛@2t � 2 H

1 in our functional framework. To get around this, for j 2 N and s � 0
we introduce the operators Ds

j in Section 8.7. These are approximations of the fractional
differential operators Ds WD Ks=2 formed by projecting onto the first j eigenfunctions
of K in the spectral representation ofDs . The eigenfunctions are smooth up to the bound-
ary, so they work nicely when replaced on the left side of (2.17). We then aim to recover
the desired control by working with these operators and sending j !1.

In Section 9 we carry out the details of our test function / functional calculus method
to derive the estimate for @2t � in H 3=2�˛ . Along the way we also use similar methods to
derive a couple other useful estimates for �; @t�, and @tp. These all serve as enhancements
to the basic energy-dissipation estimate (2.15) since they are given in similar form.

In Section 10 we complete the proof of Theorem 2.1. We combine an integrated form
of (2.15) with the enhancement estimates to form the core estimates in energy dissipation
form. These are then coupled to the elliptic estimates to gain spatial regularity. We then
employ our array of nonlinear estimates to derive an estimate of the form

E.t/C

Z t

s

D . E.s/ (2.18)

for all 0 � s � t < T , and from this we complete the proof with a version of Gronwall’s
inequality, Proposition B.6.

Appendix A records the lengthy forms of various nonlinearities and commutators.
Appendix B contains a number of useful tools from analysis that are used throughout the
paper, including product and composition estimates, estimates for the Poisson extension,
and the Bogovskiı̆ operator.

3. Basic tools

In this section we record a number of basic identities and estimates associated to the
problem (1.41).

3.1. Energy-dissipation relation

Upon applying temporal derivatives to (1.41) and keeping track of the essential transport
terms, we arrive at the following general linearization:8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

@tv � @t N�
�
�0
K@2v C u � rAv C divA SA.q; v/ D F

1 in �;

divA v D F
2 in �;

SA.q; v/N D
�
g� � �@1

�
@1�

.1Cj@1�0j2/3=2
C F 3

��
N C F 4 on †;

@t� � v �N D F
6 on †;

.SA.q; v/ � � � ˇv/ � � D F
5 on †s;

v � � D 0 on †s;

�@t�.˙`; t/ D ��
�

@1�

.1Cj@1�0j2/3=2
C F 3

�
.˙`; t/ � �F 7:

(3.1)
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We will mostly be interested in this problem for v D @kt u, � D @kt � and q D @kt p, in which
case the forcing terms have the special form given in Appendix A.

We now aim to record the weak formulation of (3.1). First, we will need to intro-
duce some useful bilinear forms. Suppose that � is given and that A, J , K, and N are
determined as in (1.30) and (1.32). We define

..u; v// WD

Z
�

�

2
DAu W DAvJ C

Z
†s

ˇ.u � �/.v � �/J; .u; v/0 WD

Z
�

u � vJ: (3.2)

With these in hand we can formulate an integral version of (3.1).

Lemma 3.1. Suppose that u; p; � are given and satisfy (1.41). Further suppose that
.v; q; �/ are sufficiently regular and solve (3.1). Then for sufficiently regular test func-
tions w satisfying w � � D 0 on †s we have

h@tv; Jwi C

�
�@t N�

�

�0
K@2v C u � rAv;w

�
0

C ..v; w// � .q; divAw/0

D

Z
�

F 1 � wJ �

Z
†s

J.w � �/F 5

�

Z `

�`

�
g�.w �N / � �@1

�
@1�

.1C j@1�0j2/3=2
C F 3

�
w �N C F 4 � w

�
(3.3)

and

h@tv; Jwi C

�
�@t N�

�

�0
K@2v C u � rAv;w

�
0

C ..v; w// � .q; divAw/0

C .�; w �N /1;† C �Œ@t�; w �N �`

D

Z
�

F 1 �wJ�

Z
†s

J.w ��/F 5�

Z `

�`

.�F 3@1.w �N /CF 4 �w/��Œw �N ; F 7�`; (3.4)

where Œ�; ��` is defined in (2.7) and � > 0 is as in (1.39).

Proof. Upon taking the dot product of the first equation in (3.1) with Jw and integrating
over �, we arrive at the identity

h@tv; Jwi C

�
�@t N�

�

�0
K@2v C u � rAv;w

�
0

C I D II (3.5)

where we have written

I WD

Z
�

divA SA.q; v/ � wJ and II WD
Z
�

F 1 � wJ: (3.6)

In expanding the term I we will employ a pair of identities that are readily verified through
elementary computations, using the definitions of J , A, and N from (1.30) and (1.32):
first,

@k.JAjk/ D 0 for each j I (3.7)
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and, second,

JA� D

´
J� on †s;

N =
p
1C j@1�0j2 on †:

(3.8)

From (3.7) and an integration by parts, we can write

I D

Z
�

@k.JAjkSA.q; v/ij /wiD

Z
�

�JAjk@kwiSA.q; v/ijC

Z
@�

.JA�/ � .SA.q; v/w/

WD I1 C I2: (3.9)

The term I1 is readily rewritten using the definition of SA.q; v/ (given just below (1.32)):

I1 D

Z
�

�

2
DAv W DAwJ � q divAwJ: (3.10)

To handle I2 we use the first equation in (3.8) to see thatZ
†s

.JA�/ � .SA.q; v/w/ D

Z
†s

J� � .SA.q; v/w/ D

Z
†s

Jw � .SA.q; v/�/

D

Z
†s

J
�
ˇ.v � �/.w � �/C w � �F 5

�
; (3.11)

and the second equality in (3.8) to see thatZ
†

.JA�/ � .SA.q; v/w/ D

Z `

�`

.SA.q; v/N / � w

D

Z `

�`

�
g�.w �N / � �@1

�
@1�

.1C j@1�0j2/3=2
C F 3

�
w �N C F 4 � w

�
: (3.12)

Since @� D †s [†, we then have

I2 D

Z
†s

J
�
ˇ.v � �/.w � �/C w � �F 5

�
C

Z `

�`

�
g�.w �N / � �@1

�
@1�

.1C j@1�0j2/3=2
C F 3

�
w �N C F 4 � w

�
: (3.13)

Upon combining (3.10) and (3.13) with (3.5) and recalling the definition of ..�; �// from
(3.2), we deduce that (3.3) holds.

It remains to show that (3.3) can be rewritten as (3.4). To this end, we integrate by
parts and use the equations in (3.1) to rewriteZ `

�`

��@1

�
@1�

.1C j@1�0j2/3=2
C F 3

�
w �N

D

Z `

�`

�
@1�

.1C j@1�0j2/3=2
C F 3

�
@1.w �N / � �

�
@1�

.1C j@1�0j2/3=2
C F 3

�
.w �N /

ˇ̌̌̌`
�`

(3.14)
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with

��

�
@1�

.1C j@1�0j2/3=2
C F 3

�
.w �N /

ˇ̌̌̌`
�`

D

X
aD˙1

.�@t�.a`/C �F
7.a`//.w �N .a`//

D

X
aD˙1

�.v �N .a`//.w �N .a`//C �.w �N .a`//.F 6.a`/C F 7.a`//: (3.15)

Combining (3.14) and (3.15) with (3.3) and rearranging then yields (3.4).

The most natural use of Lemma 3.1 occurs with w D v, but we will record a slight
variant of this. This results in the following fundamental energy-dissipation identity.

Theorem 3.2. Suppose that � D �0 C � is given and A and N are determined in terms
of � as in (1.30) and (1.32). Suppose that .v;q;�/ satisfy (3.1) and that!.�; t /2H 1

0 .�IR
2/

is sufficiently regular for the following expression to be well-defined. Then

d

dt

�Z
�

J
jvj2

2
C

Z `

�`

�
g

2
j�j2 C

�

2

j@1�j
2

.1C j@1�0j2/3=2

�
�

Z
�

Jv � !

�
C
�

2

Z
�

jDAvj
2J C

Z
†s

ˇJ jv � � j2 C �Œ@t�; @t��`

D

Z
�

.F 1 � vJ C qJ.F 2 � divA !// �

Z
†s

J.v � �/F 5

�

Z `

�`

�
�F 3@1.v �N /CF 4 �v�g�F 6��

@1�@1F
6

.1Cj@1�0j2/3=2

�
��Œv �N ; F 7�`C�Œ@t�; F

6�

�

Z
�

v � @t .J!/C

�
�@t N�

�

�0
K@2v C u � rAv; !

�
0

C ..v; !// �

Z
�

F 1!J: (3.16)

Proof. We use v � ! as a test function in Lemma 3.1 to see that

h@tv; J vi C

�
�@t N�

�

�0
K@2v C u � rAv; v

�
0

C ..v; v// � .q; divA v/0 C .�; v �N /1;†

C �Œ@t�; v �N �`

D

Z
�

F 1 � vJ �

Z
†s

J.v � �/F 5 �

Z `

�`

�F 3@1.v �N /C F 4 � v � �Œv �N ; F 7�`

C h@tv; J!i C

�
�@t N�

�

�0
K@2v C u � rAv; !

�
0

C ..v; !// � .q; divA !/0 �

Z
�

F 1!J:

(3.17)

First note that
..v; v// D

Z
�

jDAvj
2J C

Z
†s

ˇJ jv � � j2: (3.18)

Next, we expand

h@tv; J vi D
d

dt

Z
�

jvj2

2
�

Z
�

@tJ
jvj2

2
: (3.19)
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Using the identities (3.7) and (3.8), we may integrate by parts to computeZ
�

�
�@t N�

�

�0
K@2v C u � rAv

�
� Jv D

Z
�

jvj2

2

�
�J divA uC @2

�
@t N��

�0

��
C

Z
†

jvj2

2
p
1C j@1�0j2

.�@t�C u �N /C

Z
†s

Ju � �
jvj2

2
: (3.20)

Since @t� D u �N on †, u � � D 0 on †s, and divA u D 0, we arrive at the equalityZ
�

�
�@t N�

�

�0
K@2v C u � rAv

�
� Jv D

Z
�

jvj2

2
@2

�
@t N��

�0

�
: (3.21)

We then compute

J D 1C @2

�
N��

�0

�
; so @2

�
@t N��

�0

�
D @tJ; (3.22)

which shows that

h@tv; J vi C

�
�@t N�

�

�0
K@2v C u � rAv; v

�
0

D
d

dt

Z
�

jvj2

2
J: (3.23)

On the other hand, we may use (3.1) to compute

.�; v �N /1;† D .�; @t� � F
6/1;†

D @t

�Z `

�`

g

2
j�j2 C

�

2

j@1�j
2

.1C j@1�0j2/3=2

�
�

Z `

�`

g�F 6 C �
@1�@1F

6

.1C j@1�0j2/3=2
; (3.24)

.q; divA v/0 � .q; divA !/0 D

Z
�

qJ.F 2 � divA !/; (3.25)

Œ@t�; v �N �` D Œ@t�; @t��` � Œ@t�; F
6�`: (3.26)

Then (3.16) follows by plugging (3.18) and (3.23)–(3.26) into (3.17) and noting that

h@tv; J!i D
d

dt

Z
�

Jv � ! �

Z
�

v � @t .J!/: (3.27)

Next we record an application of this to (1.41).

Corollary 3.3. Suppose that .u; p; �/ solve (1.41), and consider the function Q given by
(A.16). Then

d

dt

�Z
�

1

2
J juj2 C

Z `

�`

g

2
j�j2 C

�

2

j@1�j
2

.1C j@1�0j2/3=2
C

Z `

�`

�Q.@1�0; @1�/

�
C
�

2

Z
�

jDAuj
2J C

Z
†s

ˇJ ju � � j2 C �Œ@t��
2
` D ��Œu �N ; OW .@t�/�`: (3.28)

Proof. From (1.41) we see that v D u, q D p, and � D � solve (3.1) with F i D 0 for
i ¤ 3; 7 and F 3 D R.@1�0; @1�/, F 7 D OW .@t�/. The identity (3.28) then follows by
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applying Theorem 3.2 with ! D 0 and noting that in this case

�

Z `

�`

�F 3@1.v �N / D �

Z `

�`

�@t�Q.@1�; @1�/ D �
d

dt

Z `

�`

�Q.@1�0; @1�/: (3.29)

Next we record the consequences of conservation of mass.

Proposition 3.4. If .u; p; �/ solve (1.41), thenZ `

�`

@
j
t � D 0 for 0 � j � 3. (3.30)

Proof. Integrating the condition J divA uD 0 against J over� and using (3.7) and (3.8)
together with the divergence theorem shows that

d

dt

Z `

�`

� D

Z `

�`

@t� D

Z
�

J divA u D 0: (3.31)

The result for 1 � j � 3 follows immediately from this, and for j D 0 it follows from the
assumption (1.42).

3.2. Coefficient bounds

The smallness of the perturbation � will play an essential role in most of the arguments
in the paper, from guaranteeing that ˆ is a diffeomorphism to enabling certain nonlinear
estimates. The following lemma records this smallness in a quantitative way.

Lemma 3.5. Let qC be as in (2.6). There exists a universal 0 <  < 1 such that if
k�k

W 3�1=qC;qC �  , then the following hold for A defined by (1.29), A; J; K defined
by (1.30), and N and N0 defined by (1.32) and (1.25), respectively.

(1) We have the estimates

max ¹kJ � 1kL1 ; kK � 1kL1 ; kAkL1 ; kN �N0kL1º �
1
2

and kAkL1 . 1:

(3.32)

(2) For every u 2 H 1.�IR2/ such that u � � D 0 on †s we have

�

4

Z
�

jDuj2 C
ˇ

2

Z
†s

juj2 �
�

2

Z
�

jDAuj
2J C ˇ

Z
†s

J ju � � j2

� �

Z
�

jDuj2 C 2ˇ

Z
†s

juj2 (3.33)

(3) The map ˆ defined by (1.28) is a diffeomorphism.

Proof. The first and third items follow from standard product estimates, Proposition B.4,
and the Sobolev embeddings. The second item is a simple modification of [18, Proposi-
tion 4.3].
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3.3. M as a multiplier

It will be useful to define the following matrix in terms of �:

M D Krˆ D .JAT /�1; (3.34)

where A is as in (1.29) and J andK are as in (1.30). We will view this matrix as inducing
a linear map via multiplication. Our first result records the boundedness properties of this
map.

Proposition 3.6. Let M be given by (3.34) and suppose that 1 � q � 2=.1 � "C/. Then
we have the inclusions M 2 L.W 1;q.�IR2// and M; @tM 2 L.Lq.�IR2// as well as
the estimates

kM�kW 1;q . .1C
p

E/k�kW 1;q and kM�kLq C k@tM�kLq . .1C
p

E/k�kLq :

(3.35)

Proof. First note that

kM�kW 1;q .
jM j j�j

Lq
C
jM j jr�j

Lq
C
jrM j�

Lq

. kMkL1k�kW 1;q C
jrM j�

Lq
: (3.36)

It is easy to see that
kMkL1 . 1C kN�kW 1;1 . 1C

p
E; (3.37)

which handles the first term on the right. For the second we need to use Hölder’s inequal-
ity, and we must break to cases.

In the first case we assume that q is subcritical, i.e. 1 � q < 2. Then

1 � "C

2
C

1

q�
D
1 � "C

2
C
1

q
�
1

2
<
1

q
; (3.38)

so we can boundjrM j�
Lq

. krMk
L2=.1�"C/

k�kLq� . k N�k
L2=.1�"C/

k�kW 1;q .
p

E k�kW 1;q : (3.39)

In the second case we assume criticality, i.e. q D 2. Then by the critical Sobolev embed-
ding,jrM j�

L2
. krMk

L2=.1�"C/
k�k

L2="C
. k N�k

L2=.1�"C/
k�kW 1;2 .

p
E k�kW 1;q :

(3.40)
In the third case we assume supercriticality, i.e. 2 < q � 2=.1 � "C/. ThenjrM j�

Lq
.krMk

L2=.1�"C/
k�kL1 .k N�k

L2=.1�"C/
k�kW 1;q .

p
E k�kW 1;q : (3.41)

Thus, in any case we havejrM j�
Lq

.
p

E k�kW 1;q ; (3.42)
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and the first estimate follows. To prove the second estimate we simply note that by Theo-
rem 3.8,

kMkL1 C k@tMkL1 . 1C kN�kW 1;1 C k@t N�kW 1;1 . 1C
p

E: (3.43)

The matrix M plays an important role in switching from the operator div to divA. We
record this information in the following.

Proposition 3.7. Let M be given by (3.34) and 1 � q � 2=.1 � "C/. Then the following
hold for u 2 W 1;q.�IR2/:

(1) divu D p if and only if divA.Mu/ D Kp.

(2) u � � D 0 on †s if and only if .Mu/ � � D 0 on †s.

(3) u �N0 D .Mu/ �N on †.

Proof. We compute, using (3.7):

div.M�1v/ D @j .JAij vi / D JAij @j vi D J divA v: (3.44)

Hence, upon setting Mu D v we see that

divu D p if and only if divA.Mu/ D Kp: (3.45)

This proves the first item. For the second note that

KrˆT � D

´
K� on ¹x 2 @� j x1 D ˙`; x2 � 0º;

� on ¹x 2 @� j x2 < 0º;
(3.46)

so on †s we have

Mu � � D 0 ” u � .KrˆT �/ D 0 ” u � � D 0: (3.47)

Finally, for the third item we compute on †:

JAN0 D N ; so N0 D K.A/
�1N D KrˆTN ; (3.48)

which implies that

u �N0 D u �Krˆ
TN D Krˆu �N DMu �N : (3.49)

3.4. Various bounds

In subsequent parts of the paper we will need to repeatedly employ various Lq estimates
for u, p, � and their derivatives in terms of either

p
E or

p
D , defined respectively in

(2.10) and (2.11). Thus, we now turn to recording a precise catalog of such estimates,
which are available due to the control provided by E and D and various auxiliary esti-
mates. In order to efficiently record this catalog, we will use tables of the following form:

Function D f f rf r2f r3f

' 1 a b c

tr' 1� e
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The top row indicates that the first column labels the function under consideration, and the
subsequent columns give the q for which the derivatives indicated in the top row belong
to Lq . In this notation q D 1 indicates L1, while1� indicates inclusion in Lq for all
1� q <1 (with bounds that diverge as q!1 as in the critical Sobolev inequality), and
an empty cell indicates no estimate available. The set on which the Lq norm is evaluated
is always understood to be the “natural” set on which the function is defined: � for u, p,
N�, and .�`; `/ for �. The notation tr indicates that the function under consideration is the
trace onto either † or †s. For example, if we state that the above sample table records
estimates in terms of

p
E , and ' is defined in �, then this indicates that

k'kL1.�/ C kr'kLa.�/ C kr
2'kLb.�/ C kr

3'kLc.�/ .
p

E; (3.50)

ktr'kLq.†/ C ktr'kLq.†s/ � Cq
p

E for all 1 � q <1; (3.51)

where Cq !1 as q !1, and

ktrr'kLe.†/ C ktrr'kLe.†s/ .
p

E: (3.52)

With this notation established, we now turn to recording the catalogs. We begin with
the estimates in terms of the energy.

Theorem 3.8. The following three tables record the Lq bounds for u, p, � and their
derivatives in terms of the energy

p
E , as defined in (2.10).

Function D f f rf r2f r3f

u 1 2=.1 � "C/ 2=.2 � "C/

@tu 1 4=.2 � "�/

@2t u 2

tru 1 1=.1 � "C/

tr @tu 1

Function D f f rf r2f r3f

p 2=.1 � "C/ 2=.2 � "C/

@tp 2

trp 1=.1 � "C/

Function D f f rf r2f r3f

� 1 1 1=.1 � "C/

@t� 1 1

@2t � 1 2

N� 1 1 2=.1 � "C/ 2=.2 � "C/

@t N� 1 1 4=.2 � ."� � ˛//

@2t N� 1 4

tr N� 1 1 1=.1 � "C/

tr @t N� 1 1

tr @2t N� 1 2
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Proof. The estimates for u, p, � and their derivatives follow directly from the standard
Sobolev embeddings and trace theorems, together with the definition of E . The estimates
for N� at its derivatives follow similarly, except that we also employ Proposition B.4 to
account for the regularity gains arising from the appearance of the Poisson extensions P

in the definition of N�.

Next we record the catalog of estimates in terms of the dissipation.

Theorem 3.9. The following three tables record the Lq bounds for u, p, � and their
derivatives in terms of the dissipation

p
D , as defined in (2.11).

Function D f f rf r2f r3f

u 1 2=.1 � "C/ 2=.2 � "C/

@tu 1 2=.1 � "�/ 2=.2 � "�/

@2t u 1� 2

tru 1 1=.1 � "C/

tr @tu 1 1=.1 � "�/

tr @2t u 1�

Function D f f rf r2f r3f

p 2=.1 � "C/ 2=.2 � "C/

@tp 2=.1 � "�/ 2=.2 � "�/

trp 1=.1 � "C/

tr @tp 1=.1 � "�/

Function D f f rf r2f r3f

� 1 1 1=.1 � "C/

@t� 1 1 1=.1 � "�/

@2t � 1 1=˛

@3t � 1=˛

N� 1 1 2=.1 � "C/ 2=.2 � "C/

@t N� 1 1 2=.1 � "�/ 2=.2 � "�/

@2t N� 1 2=˛ 2=.1C ˛/

@3t N� 2=˛ 2=.1C 2˛/

tr N� 1 1 1=.1 � "C/

tr @t N� 1 1 1=.1 � "�/

tr @2t N� 1 1=˛

tr @3t N� 1=˛

Proof. The estimates for u, p, � and their derivatives follow directly from the standard
Sobolev embeddings and trace theorems, together with the definition of D . The estimates
for N� at its derivatives follow similarly, except that we also employ Proposition B.4 to
account for the regularity gains arising from the appearance of the Poisson extensions P

in the definition of N�.
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4. Elliptic theory for Stokes problems

In this section we record some elliptic theory for the Stokes problem. We begin with
analysis of a model problem in 2D cones and then build to a theory in the domain� given
by (1.23). The material here roughly mirrors the material in [21, Section 5], except that
here we work in Lq-based spaces without weights rather than L2-based weighted spaces.

4.1. Analysis in cones

Given an opening angle ! 2 .0; �/, we define the infinite 2D cone

K! D ¹x 2 R2 j r > 0 and � 2 .��=2;��=2C !/º; (4.1)

where r and � are the usual polar coordinates in R2 with the set ¹� D ��=2º chosen to
coincide with the negative x2 axis. We define two parts of @K! via

�� D ¹x 2 R2 j r > 0 and � D ��=2º;

�C D ¹x 2 R2 j r > 0 and � D ��=2C !º:
(4.2)

Next we introduce a special matrix-valued function. Suppose that A W K! ! R2�2 is
a map satisfying the following four properties. First, A is smooth on K! and A extends
to a smooth function on NK! n ¹0º and a continuous function on NK! . Second, A satisfies
the following for all a; b 2 N:

lim
r!0

sup
�2Œ��=2;��=2C!�

j.r@r /
a@b� ŒA.r; �/A

T .r; �/ � I �j D 0;

lim
r!0

sup
�2Œ��=2;��=2C!�

j.r@r /
a@b� ŒAij .r; �/@jAik.r; �/�j D 0 for k 2 ¹1; 2º;

lim
r!0

sup
�2Œ��=2;��=2C!�

j.r@r /
a@b� ŒA.r; �/ � I �j D 0;

lim
r!0

.r@r /
aŒA.r; �0/� � �� D 0 for �0 D ��=2;��=2C !;

lim
r!0

.r@r /
a
��

A� ˝AT .A�/? C .A�/? ˝AT .A�/
�
.r; �0/ � I

�
D 0

for �0 D ��=2;��=2C !

(4.3)

where again .r; �/ denote polar coordinates and .z1; z2/? D .z2;�z1/. Third, the matrix
AAT is uniformly elliptic on K! . Fourth, det A D 1 and @j .Aij / D 0 for i D 1; 2:

The matrix A serves to determine the coefficients in a variant of the Stokes problem
in the cone K! . This problem, which we call the A-Stokes problem, reads8̂̂̂̂

<̂
ˆ̂̂:

divA SA.Q; v/ D G
1 in K! ;

divA v D G
2 in K! ;

v �A� D G3
˙

on �˙;

�DAvA� � .A�/? D G4
˙

on �˙;

(4.4)
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where the operators divA and SA are defined in the same way as divA and SA. When
A D I2�2 all of the above assumptions are trivially satisfied, and we arrive at the usual
Stokes problem 8̂̂̂̂

<̂
ˆ̂̂:

divS.Q; v/ D G1 in K! ;

div v D G2 in K! ;

v � � D G3
˙

on �˙;

�Dv� � � D G4
˙

on �˙:

(4.5)

The purpose of the assumptions in (4.3) is to guarantees that the problems (4.4) and (4.5)
have the same elliptic regularity properties.

Next we introduce a parameter depending on the cone’s opening angle that determines
how much regularity is gained in these Stokes problems. Given ! 2 .0; �/ we define

"max.!/ D min ¹1;�1C �=!º 2 .0; 1�: (4.6)

We can now state the elliptic regularity for these Stokes problems.

Theorem 4.1. Let ! 2 .0; �/ and "max.!/ be as in (4.6). Let 0 < ı < "max.!/ and set

qı D
2

2 � ı
2 .1; 2/: (4.7)

Suppose that A satisfies the four properties stated above and that the data G1; G2; G3
˙
;

G4
˙

for the problem (4.5) satisfy

G1 2Lqı .K!/;G
2
2W 1;qı .K!/;G

3
˙ 2W

2�1=qı ;qı .�˙/;G
4
˙ 2W

1�1=qı ;qı .�˙/ (4.8)

as well as the compatibility conditionZ
K!

G2 D

Z
�C

G3C C

Z
��

G3�: (4.9)

Suppose that .v; Q/ 2 H 1.K!/ �H
0.K!/ satisfy divA v D G

2, v � A� D G3
˙

on �˙,
andZ
K!

�

2
DAv WDAw �Q divAwD

Z
K!

G1 �wC

Z
�C

G 4Cw �
.A�/?

jA�j
C

Z
��

G 4�w �
.A�/?

jA�j

(4.10)

for all w 2 ¹w 2 H 1.K!/ j w � .A�/ D 0 on �˙º. Finally, suppose that v;Q and all of
the data Gi are supported in NK! \ BŒ0; 1�. Then v 2 W 2;qı .K!/ \ H

1Cı.K!/, Q 2
W 1;qı .K!/ \H

ı.K!/, and

kvkW 2;qı C kvkH1Cı C kQkW 1;qı C kQkHı

. kG1kLqı C kG2kW 1;qı C kG
3
�kW 2�1=qı;qı C kG

3
CkW 2�1=qı;qı

C kG4�kW 1�1=qı;qı C kG
4
CkW 1�1=qı;qı : (4.11)
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Proof. In the case A D I the result is proved in [33, Corollary 4.2] when G3
˙
D 0 and

G4
˙
D 0 and in [32, Theorem 3.6] in the general case. The choice of qı is determined

by the eigenvalues of an operator pencil associated to (4.5), which may be found in the
“G-G eigenvalue computations” of [33] (with �1 D �2 D �=2). These results show that
these eigenvalues for the Stokes problem (4.5) in the coneK! are˙1C n�=! for n 2 Z,
which leads to the constraint q < 2=.2 � "max.!// in W 2;q �W 1;q estimates. However,
Theorem 8.2.1 of [25], together with the assumptions on A, guarantees that the operator
pencils that determine the regularity of (4.4) coincide with those of (4.5), so the estimates
of [33] and [32] remain valid for the A-Stokes problem.

4.2. The Stokes problem in �

We now study the following Stokes problem in �, as defined by (1.23):8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

divS.Q; v/ D G1 in �;

div v D G2 in �;

v � � D G3C on †;

�Dv� � � D G4C on †;

v � � D G3� on †s;

�Dv� � � D G4� on †s:

(4.12)

Consider 0 < ı < "max (defined by (2.2) in terms of !eq from (2.1)) and qı D 2=.2 � ı/
2 .1; 2/. We will study this problem with data belonging to the space Xı , which we define
as the space of 6-tuples

.G1; G2; G3C; G
3
�; G

4
C; G

4
�/

2Lqı .�/�W 1;qı .�/�W 2�1=qı ;qı .†/�W 2�1=qı ;qı .†s/�W
1�1=qı ;qı .†/�W 1�1=qı ;qı .†s/

(4.13)

such that Z
�

G2 D

Z
†

G3C C

Z
†s

G3�: (4.14)

We endow this space with the obvious norm

k.G1; G2; G3C; G
3
�; G

4
C; G

4
�/kXı D kG

1
kLqı C kG

2
kW 1;qı C kG

3
CkW 2�1=qı;qı

C kG3�kW 2�1=qı;qı C kG
4
CkW 1�1=qı;qı C kG

4
�kW 1�1=qı;qı : (4.15)

We have the following weak existence result, which works without constraint on
ı 2 .0; 1/.

Theorem 4.2. Assume that .G1; G2; G3C; G
3
�; G

4
C; G

4
�/ 2 Xı for any 0 < ı < 1. Then

there exists a unique pair .v;Q/ 2 H 1.�/ � VH 0.�/ that is a weak solution to (4.12) in
the sense that div v D G2, v � � D G3 on @�, andZ

�

�
�

2
Dv W Dw �Q divw

�
D

Z
�

G1 � w C

Z
†

G4C.w � �/C

Z
†s

G4�.w � �/ (4.16)
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for all w 2 ¹w 2 H 1.�/ j w � � D 0 on @�º. Moreover,

kvkH1 C kQkL2 . k.G1; G2; G3C; G
3
�; G

4
C; G

4
�/kXı : (4.17)

Proof. The argument is standard and does not use the higher-regularity structure of Xı .
See, for instance, [21, Theorem 5.3].

For second-order regularity we do need the constraints on ı in order to use Theo-
rem 4.1.

Theorem 4.3. Let "max 2 .0; 1� be given by (2.2), and 0 < ı < "max. Let .G1; G2; G3C;

G3�; G
4
C; G

4
�/ 2 Xı , and let .v; Q/ 2 H 1.�/ � VH 0.�/ be the weak solution to (4.12)

constructed in Theorem 4.2. Then v 2W 2;qı .�/\H 1Cı.�/,Q 2W 1;qı .�/\ VH ı.�/,
and

kvkW 2;qı C kvkH1Cı C kQkW 1;qı C kQkHı . k.G1; G2; G3C; G
3
�; G

4
C; G

4
�/kXı :

(4.18)

Proof. The argument used in [21, Theorem 5.5] works in the present case as well, except
that we use the estimates of Theorem 4.1 in place of the estimates from [21].

In what follows it will be useful to rephrase Theorem 4.3 as follows. For 0 < ı < "max

we define the operator

Tı W
�
W 2;qı .�/ \H 1Cı.�/

�
�
�
W
1;qı
ı

.�/ \ VH ı.�/
�
! Xı (4.19)

via

Tı.v;Q/ D
�
divS.Q; v/; div v; v � nj†; v � nj†s ; �Dvn � � j†; �Dvn � � j†s

�
: (4.20)

We may then deduce the following from Theorems 4.2 and 4.3.

Corollary 4.4. Let "max be as in (2.2). If 0 < ı < "max, then the operator Tı defined by
(4.19) and (4.20) is an isomorphism.

4.3. The A-Stokes problem in �

Next we consider a version of the Stokes problem with coefficients that depend on a given
function � 2 W 3�1=qı ;qı with 0 < ı < "max. The function � determines the coefficients
A; J , and N via (1.30) and (1.32), and we study the system8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

divA SA.Q; v/ D G
1 in �;

J divA v D G
2 in �;

v �N =jN0j D G
3
C on †;

�DAvN � T =jN0j
2 D G4C on †;

v � J� D G3� on †s;

�DAv� � � D G
4
� on †s:

(4.21)
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Note here that N DN0 � @1�e1 for N0, given by (1.25), the outward normal vector on†
and T D T0 C @1�e2 for T0 D e1 C @1�0e2 the associated tangent vector.

We begin our analysis of this problem by introducing the operator

Tı Œ�� W
�
W 2;qı .�/ \H 1Cı.�/

�
�
�
W
1;qı
ı

.�/ \ VH ı.�/
�
! Xı (4.22)

given by

Tı Œ��.v;Q/ D
�
divA SA.Q; v/; J divA v; v �N =jN0j j†; v � J�j†s ;

�DAvN � T =jN0j
2
j†; �DAv� � � j†s

�
: (4.23)

The map Tı Œ��, which encodes the solvability of (4.21), is an isomorphism under a
smallness assumption on �.

Theorem 4.5. Let "max be as in (2.2). Let 0 < ı < "max and qı D 2=.2� ı/. There exists
a  > 0 such that if k�kW 3�1=qı;qı <  , then the operator Tı Œ�� defined by (4.22) and
(4.23) is well-defined and yields a bounded isomorphism.

Proof. We divide the proof into steps.

Step 1: Setup. First note thatZ
�

J divA v D

Z
@�

JA� � v D

Z
†

N

jN0j
� v C

Z
†s

J� � v; (4.24)

which establishes the compatibility between the second and third terms needed for Tı Œ��
to map into Xı .

Now assume that  < 1 is as small as in Lemma 3.5. We write Tı Œ��.v; q/D Tı.v;Q/
� G .v;Q/ where Tı is defined by (4.4) and G denotes the linear map with components

G 1.v;Q/ D divI�A SA.Q; v/ � div�DI�A.v/;

G 2.v/ D divI�A v C .1 � J / divA v;

G 3C.v/ D .1C .@1�0/
2/�1=2Œ@1�v1�;

G 4C.v/ D .1C .@1�0/
2/�1Œ�DI�AvN0 � T0

� �@1�.DAvN0 � e2 �DAve1 � T0/C �.@1�/
2DAve1 � e2�;

G 3� D .1 � J /v � �;

G 4�.v/ D �DI�Av� � �:

(4.25)

Since both Tı Œ�� and Tı enforce the compatibility between the second and third terms,
G does as well. Then the equation Tı Œ��.v; Q/ D G WD .G1; G2; G3C; G

3
�; G

4
C; G

4
�/ is

equivalent to
Tı.v;Q/ D G C G .v;Q/: (4.26)

Step 2: G boundedness. We now claim that

kG .v;Q/kXı . k�kW 3�1=qı;qı .kvkW 2;qı C kQkW 1;qı /: (4.27)
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We proceed term by term.

G 1 estimate. We need to bound G 1.v;Q/ in Lqı .�/. We estimate the first term via

kdivI�A SA.Q; v/kLqı . kr N�kL1.krQkLqı C kr2vkLqı /
C kr N�kL1kr

2
N�kL2=.1�ı/.kQkL2=.1�ı/ C krvkL2=.1�ı//

. k�kW 3�1=qı;qı .kvkW 2;qı C kQkW 1;qı /: (4.28)

Similarly, we estimate the second term as

kdiv�DI�A.v/kLqı . kr N�kL1kD2vkLqı C kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı kvkW 2;qı : (4.29)

Combining these two, we deduce that

kG 1.v;Q/kLqı . k�kW 3�1=qı;qı .kvkW 2;qı C kQkW 1;qı /: (4.30)

G 2 estimate. We need to bound G 2.v/ in W 1;qı .�/. For the first term,

kdivI�A vkW 1;qı . kr N�kL1kvkW 2;qı C kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı kvkW 2;qı : (4.31)

Similarly, for the second term we bound

k.1�J / divA vkW 1;qı . kr N�kL1kvkW 2;qıC.1Ckr N�kL1/kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı kvkW 2;qı : (4.32)

Combining these, we deduce that

kG 2.v/kW 1;qı . k�kW 3�1=qı;qı kvkW 2;qı : (4.33)

G 3C estimate. We need to bound G 3C.v/ inW 2�1=qı ;qı .†/. For this we use the trace char-
acterization of boundary norms and the fact that W 2;qı .�/ is an algebra to estimate

kG 3C.v/kW 2�1=qı;qı .†/ . k@1 N�v1kW 2;qı .�/ . k@1 N�v1kW 2;qı .�/

. k@1 N�kW 2;qı .�/kvkW 2;qı .�/

. k N�kW 3;qı .�/kvkW 2;qı .�/

. k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.34)

G 3� estimate. We need to bound G 3C.v/ in W 2�1=qı ;qı .†/. Since � is determined by †s,
which is C 2, we can argue as with G 3C to estimate

kG 3�.v/kW 2�1=qı;qı .†/ . k.1 � J /vkW 2;qı .†/ . k N�kW 3;qı .�/kvkW 2;qı .�/

. k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.35)
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G 4C estimate. We need to bound G 4.v/ in W 1�1=qı ;qı .†/. Recall that N0 D �@1�0e1
C e2 and T0 D e1 C @1�0e2 are smooth, so we can bound

kG 4C.v/kW 1�1=qı;qı .†/ . kDI�AvkW 1�1=qı;qı .†/ C k@1�DAvkW 1�1=qı;qı .†/

C k.@1�/
2DAvkW 1�1=qı;qı .†/: (4.36)

We then use the trace characterization again to bound

kDI�AvkW 1�1=qı;qı .†/ C k@1�DAvkW 1�1=qı;qı .†/

. kDI�AvkW 1;qı .�/ C k@1 N�DAvkW 1;qı .�/

. kr N�rvkLqı .�/ C kr2 N�rvkLqı .�/ C kr N�r2vkLqı .�/

. kr N�kL1kvkW 2;qı C kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.37)

Similarly,

k.@1�/
2DAvkW 1�1=qı;qı .†/ . k.@1 N�/2DAvkW 1;qı .�/

. kr N�k2L1kvkW 2;qıCkr N�kL1kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.38)

Combining these shows that

kG 4C.v/kW 1�1=qı;qı .†/ . k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.39)

G 4� estimate. We need to bound G 4�.v/ inW 1�1=qı ;qı .†s/. Since � and � are determined
by †s and are thus C 2 we can estimate in exactly the same way as above:

kG 4�.v/kW 1�1=qı;qı .†s/
D kDI�AvkW 1�1=qı;qı .†s/

. kDI�AvkW 1;qı .�/

. kr N�rvkLqı .�/ C kr2 N�rvkLqı .�/ C kr N�r2vkLqı .�/

. kr N�kL1kvkW 2;qı C kr
2
N�kL2=.1�ı/krvkL2=.1�ı/

. k�kW 3�1=qı;qı .�/kvkW 2;qı .�/: (4.40)

Synthesis. Combining the above estimates shows that the bound (4.27) holds.

Step 3: Isomorphism. The map Tı is an isomorphism, so (4.26) is equivalent to the fixed
point problem

.v;Q/ D T �1ı .G C G .v;Q// DW ‰.v;Q/ (4.41)

for‰ a map fromZ WD .W 2;qı .�/\H 1Cı.�//� .W
1;qı
ı

.�/\ VH ı.�// to itself. From
(4.27) we have

k‰.v1;Q1/ �‰.v2;Q2/kZ � Ck�kW 3�1=qı;qı kT
�1
ı kopk.v1;Q1/ � .v2;Q2/kZ :

(4.42)
Hence, if  is sufficiently small, then ‰ is a contraction and thus there exists a unique
.v;Q/ solving (4.26) for every G. In turn, this means that Tı Œ�� is an isomorphism with
this choice of  .
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4.4. The A-Stokes problem in � with ˇ ¤ 0

As the next step we modify the boundary conditions in (4.21) to include the Navier-slip
friction term on the vessel walls. The new system is8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

divA SA.Q; v/ D G
1 in �;

J divA v D G
2 in �;

v �N =jN0j D G
3
C on †;

�DAvN � T =jN0j
2 D G4C on †;

v � J� D G3� on †s;

�DAv� � � C ˇv � � D G
4
� on †s;

(4.43)

where ˇ > 0 is the Navier-slip friction coefficient.
We have the following existence result.

Theorem 4.6. Let "max be as in (2.2). Let 0 < ı < "max, qı D 2=.2� ı/, and suppose that
k�k2

W 3�1=qı;qı
<  , where  is as in Theorem 4.5. If .G1; G2; G3C; G

3
�; G

4
C; G

4
�/ 2 Xı ,

then there exists a unique

.v;Q/ 2
�
W 2;qı .�/ \H 1Cı.�/

�
�
�
W
1;qı
ı

.�/ \ VH ı.�/
�

(4.44)

solving (4.43). Moreover, the solution obeys the estimate

kvkW 2;qı C kvkH1Cı C kQkW 1;qı C kQkHı . k.G1; G2; G3C; G
3
�; G

4
C; G

4
�/kXı :

(4.45)

Proof. Define the operator R W .W 2;qı .�/ \H 1Cı.�// � .W
1;qı
ı

.�/ \ VH ı.�//! Xı
via

R.v; q/ D .0; 0; 0; 0; 0; ˇv � �j†s/; (4.46)

which is bounded and well-defined since v � � 2W 2�1=qı ;qı .†s/. Standard Sobolev theory
shows that the embedding W 2�1=qı ;1ı .†s/ ,! W 1�1=qı ;qı .†s/ is compact, so R is a
compact operator. Theorem 4.5 tells us that the operator Tı Œ�� is an isomorphism, so the
compactness of R implies that Tı Œ��CR is a Fredholm operator. We claim that this map
is injective. Once this is proved, the Fredholm alternative implies that the map is also
surjective and hence is an isomorphism.

To prove the claim we assume .Tı Œ��C R/.v;Q/ D 0, i.e. (4.43) holds with all the
Gi terms vanishing. We multiply the first equation in (4.43) by Jv and integrate by parts,
arguing as in Lemma 3.1, to arrive at the identityZ

�

�

2
jDAvj

2J C

Z
†s

ˇjv � � j2J D 0: (4.47)

Thus v D 0, but then 0 D rAQ D ArQ D 0, which implies, since A is invertible (via
Lemma 3.5), that Q is constant. Since Q 2 VH ı we then find that Q D 0. This proves the
claim.
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4.5. The A-Stokes problem in � with boundary equations for �

We finally have the tools needed to address the desired problem, which synthesizes the
A-Stokes system in � with boundary conditions on † involving a new unknown �:8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

divA SA.Q; v/ D G
1 in �;

J divA v D G
2 in �;

v �N =jN0j D G
3
C on †;

SA.Q; v/N D
�
g���@1

�
@1�

.1Cj@1�0j2/3=2
CG6

��
NCG4CT CG5N on †;

v �J� D G3� on †s;

.SA.Q; v/��ˇv/�� D G
4
� on †s;

�� @1�

.1Cj@1�0j2/3=2
.˙`/ D G7

˙
:

(4.48)

We have the following existence result for (4.48).

Theorem 4.7. Let "max be as in (2.2). Let 0 < ı < "max, qı D 2=.2� ı/, and suppose that
k�k2

W 3�1=qı;qı
<  , where  is as in Theorem 4.5. If .G1; G2; G3C; G

3
�; G

4
C; G

4
�/ 2 Xı ,

and G5; @1G6 2 W 1�1=qı ;qı .†/, and G7
˙
2 R, then there exists a unique

.v;Q;�/2
�
W 2;qı .�/\H 1Cı.�/

�
�
�
W
1;qı
ı

.�/\ VH ı.�/
�
�W 3�1=qı ;qı .†/ (4.49)

solving (4.48). Moreover, the solution obeys the estimate

kvkW 2;qı C kvkH1Cı C kQkW 1;qı C kQkHı C k�kW 3�1=qı;qı

. k.G1; G2; G3C; G
3
�; G

4
C; G

4
�/kXı C kG

5
k
2

W 1�1=qı;qı
C k@1G

6
k
2

W 1�1=qı;qı
C ŒG7�2` ;

(4.50)

where we recall that Œ�; ��` is defined in (2.7).

Proof. First note that since jN j D jT j,

SA.Q; v/N D

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2
CG6

��
N CG4CT CG5N (4.51)

is equivalent to

SA.Q; v/N �
N

jN j2
D

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2
CG6

��
CG5 (4.52)

and

SA.Q; v/N �
T

jN0j
2
D G4C

jN j2

jN0j
2
: (4.53)

Note that the same sort of argument used in the proof of Theorem 4.5 shows thatG4C jN j2jN0j
2


W 1�qı;qı

. kG4CkW 1�qı;qı (4.54)
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since k�kW 3�1=qı;qı � 1. We may then use Theorem 4.6 to produce the pair .v;Q/ solving8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

divA SA.Q; v/ D G
1 in �;

J divA v D G
2 in �;

v �N =jN0j D G
3
C on †;

�DAvN � T =jN0j
2 D G4C

jN j2

jN0j
2 on †;

v � J� D G3� on †s;

�DAv� � � C ˇv � � D �G
4
� on †s;

(4.55)

and obeying the estimates (4.45). With this .v; Q/ in hand we then have a solution to
(4.48) as soon as we find � solving

g� � �@1

�
@1�

.1C j@1�0j2/3=2

�
D SA.Q; v/N �

N

jN j2
C �@1G

6
�G5 (4.56)

on † subject to the boundary conditions

��

�
@1�

.1C j@1�0j2/3=2
C F 3

�
.˙`/ D G7˙: (4.57)

The estimate (4.45) guarantees that SA.q; v/N �
N

jN j2
2 W 1�1=qı ;qı .†/, and the usual

elliptic theory provides a unique � 2 W 3�1=qı ;qı .†/ satisfying (4.56) and (4.57) and
obeying the estimate

k�kW 1�1=qı;qı .
SA.Q; v/N �

N

jN j2


W 1�1=qı;qı

C k@1G
6
kW 1�1=qı;qı

C kG5k
W
1�1=qı;qı

C ŒG7�2` : (4.58)

Then (4.50) follows by combining (4.45) and (4.58).

Remark 4.8. Theorem 4.7 requires Q to have vanishing average and produces
a generic �. It is a simple matter to shift this result to � having vanishing average with
generic Q.

5. Nonlinear estimates I: interaction terms, dissipative form

In this section we begin our study of the estimates available for the nonlinearities that
appear in the system (1.41) and its derivatives. Here we focus on the interaction terms
as they appear in Theorem 3.2 and on deriving estimates in terms of the dissipation
functional. In order to avoid tedious restatements of the same hypothesis, we assume
throughout this section that a solution to (1.41) exists on the time horizon .0; T / for
0 < T � 1 and obeys the small-energy estimate

sup
0�t<T

E.t/ � 2 < 1; (5.1)

where  2 .0; 1/ is as in Lemma 3.5. In particular, this means that the estimates of Lemma
3.5 are available, and we will use them often without explicit reference.
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5.1. General interaction functional estimates

We begin by studying the terms involving F 1, F 4, and F 5 in Theorem 3.2. The structure
of these is not particularly delicate, so we can derive general dual estimates in which the
particular form of the test function is irrelevant.

We begin by studying F 1.

Proposition 5.1. Suppose that F 1 is as defined in either (A.1) or (A.8). Thenˇ̌̌̌Z
�

Jw � F 1
ˇ̌̌̌

. kwkH1.
p

E C E/
p

D for all w 2 H 1.�/: (5.2)

Proof. We will present the proof only in the more involved case that F 1 is defined by
(A.8), which corresponds to two temporal derivatives. The case (A.1), which corresponds
to one temporal derivative, follows from a simpler and easier argument. There are fifteen
terms appearing in (A.8), and we will deal with them one at a time, proving that each
can be estimated in the stated form. For the sake of brevity, throughout the proof we will
repeatedly make use of four essential tools without explicitly referring to them: Hölder’s
inequality, the standard Sobolev embeddings for w 2H 1.�/, the fact that E � 1, and the
catalogs of Lq estimates given in Theorems 3.8 and 3.9. For the latter we will always use
the following ordering convention: the ordering in expressions of the form

abc . A
p

E
p

D and ab0c0 . A
p

D E (5.3)

implies that we bound a . A, use Theorem 3.8 to bound b .
p

E and c0 . E , and use
Theorem 3.9 to estimate c .

p
D and b0 .

p
D . In other words, the order of appearance

of E and D on the right side corresponds to the order on the left and indicates which of
Theorems 3.8 and 3.9 is being used implicitly.

Term �2 div@tA SA.@tp; @tu/. We first boundˇ̌̌̌Z
�

Jw � .�2 div@tA SA.@tp; @tu//

ˇ̌̌̌
.
Z
�

jwj j@tAj.jr@tpj C jr
2@tuj/

C

Z
�

jwj j@tAj jrAj.j@tpj C jr@tuj/ DW I C II: (5.4)

We then bound

I . kwkL2="� k@t N�kW 1;1

�
kr@tpkL2=.2�"�/ C kr

2@tukL2=.2�"�/
�

. kwkH1
p

E
p

D ; (5.5)

II . kwk
L2=."�C"C/

k@t N�kW 1;1k N�k
W 2;2=.1�"C/.k@tpkL2=.1�"�/ C kr@tukL2=.1�"�//

. kwkH1E
p

D : (5.6)

Combining these shows that this term can be estimated as stated.
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Term 2� divA D@tA@tu. We first boundˇ̌̌̌Z
�

Jw � .2� divA D@tA@tu/

ˇ̌̌̌
.
Z
�

jwj jr@tAj jr@tuj C

Z
�

jwj j@tAj jr
2@tuj

DW I C II: (5.7)

We then bound

I . kwkL4=.3"�/.k N�kW 2;2=.1�"�/ C k@t N�kW 2;2=.1�"�//kr@tukL4=.2�"�/

. kwkH1
p

D
p

E; (5.8)

II . kwkL2="� k@t N�kW 1;1kr
2@tukL2=.2�"�/ . kwkH1

p
E
p

D : (5.9)

Combining these shows that this term can be estimated as stated.

Term � div@2tA SA.p; u/. We first boundˇ̌̌̌Z
�

Jw �.� div@2tA SA.p; u//

ˇ̌̌̌
.
Z
�

jwj j@2tAj.jrpjCjr
2uj/C

Z
�

jwj j@2tAj jrAj jruj

DW ICII: (5.10)

Then we estimate

I . kwk
L2=."C�˛/

.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /.krpkL2=.2�"C/ C kr
2uk

L2=.2�"C/
/

. kwkH1
p

D
p

E; (5.11)

II . kwk
L2=.2"C�˛/

.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /k N�kW 2;2=.1�"C/krukL2=.1�"C/

. kwkH1
p

D E: (5.12)

Combining these shows that this term can be estimated as stated.

Term 2� div@tA D@tAu. We first estimateˇ̌̌̌Z
�

Jw � .2� div@tA D@tAu/

ˇ̌̌̌
.
Z
�

jwj j@tAj
2
jr
2uj C

Z
�

jwj j@tAj jr@tAj jruj

DW I C II: (5.13)

We then bound

I . kwk
L2="C

k@t N�k
2
W 1;1kr

2uk
L2=.2�"C/

. kwkH1E
p

D ; (5.14)

II . kwk
L2=."�C"C/

k@t N�kW 1;1.k N�kW 2;2=.1�"�/ C k@t N�kW 2;2=.1�"�//krukL2=.1�"C/

. kwkH1
p

E
p

D
p

E: (5.15)

Combining these shows that this term can be estimated as stated.

Term � divA D@2tAu. We initially estimateˇ̌̌̌Z
�

Jw � .� divA D@2tAu/

ˇ̌̌̌
.
Z
�

jwj j@2tAj jr
2uj C

Z
�

jwj jr@2tAj jruj DW I C II:

(5.16)
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Then we bound

I . kwk
L2=."C�˛/

.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /kr2ukL2=.2�"C/

. kwkH1
p

D
p

E; (5.17)

II . kwk
L2=."C�˛/

.k@t N�kW 2;2=.1C˛/ C k@2t N�kW 2;2=.1C˛//krukL2=.1�"C/

. kwkH1
p

D
p

E: (5.18)

Combining these shows that this term can be estimated as stated.

Term �2u � r@tA@tu. For this term we boundˇ̌̌̌Z
�

Jw � .2u � r@tA@tu/

ˇ̌̌̌
.
Z
�

jwj juj j@tAj jr@tuj

. kwkL2kukL1k@t N�kW 1;1kr@tukL2

. kwkH1
p

E
p

D
p

E: (5.19)

Term �2@tu � rA@tu. We boundˇ̌̌̌Z
�

Jw � .2@tu � rA@tu/

ˇ̌̌̌
.
Z
�

jwj j@tuj jr@tuj . kwkL2k@tukL1kr@tukL2

. kwkH1
p

E
p

D : (5.20)

Term �2@tu � r@tAu. We boundˇ̌̌̌Z
�

Jw � .2@tu � r@tAu/

ˇ̌̌̌
.
Z
�

jwj j@tuj j@tAj jruj

. kwkL2k@tukL1k@t N�kW 1;1krukL2

. kwkH1E
p

D : (5.21)

Term �u � r@2tAu. We estimateˇ̌̌̌Z
�

Jw � .u � r@2tAu/

ˇ̌̌̌
.
Z
�

jwj juj j@2tAj jruj

. kwkL2=.1�˛/kukL1.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /krukL2

. kwkH1
p

E
p

D
p

E: (5.22)

Term �@2t u � rAu. We estimateˇ̌̌̌Z
�

Jw � .@2t u � rAu/

ˇ̌̌̌
.
Z
�

jwj j@2t uj jruj

. kwk
L2="C

k@2t ukL2krukL2=.1�"C/

. kwkH1
p

D
p

E: (5.23)
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Term 2@t N�
�
�0
@tK@2@tu. For this term we boundˇ̌̌̌Z

�

Jw �

�
2@t N�

�

�0
@tK@2@tu

�ˇ̌̌̌
.
Z
�

jwj j@t N�j j@tKj jr@tuj

. kwkL2k@t N�kL1k@t N�kW 1;1kr@tukL2

. kwkH1E
p

D : (5.24)

Term 2@2t N�
�
�0
K@2@tu. We estimateˇ̌̌̌Z
�

Jw �

�
2@2t N�

�

�0
K@2@tu

�ˇ̌̌̌
.
Z
�

jwj j@2t N�j jr@tuj

. kwkL2k@2t N�kL1kr@tukL2

. kwkH1
p

D
p

E: (5.25)

Term 2@2t N�
�
�0
@tK@2u. We boundˇ̌̌̌Z

�

Jw �

�
2@2t N�

�

�0
@tK@2u

�ˇ̌̌̌
.
Z
�

jwj j@2t N�j j@tKj jruj

. kwkL2k@2t N�kL1k@t N�kW 1;1krukL2

. kwkH1
p

D E: (5.26)

Term @3t N�
�
�0
K@2u. We estimateˇ̌̌̌Z

�

Jw �

�
@3t N�

�

�0
K@2u

�ˇ̌̌̌
.
Z
�

jwj j@3t N�j jruj . kwkL2="C k@
3
t N�kL2krukL2=.1�"C/

. kwkH1
p

D
p

E: (5.27)

Term @t N�
�
�0
@2tK@2u. For the final term we boundˇ̌̌̌Z

�

Jw �

�
@t N�

�

�0
@2tK@2u

�ˇ̌̌̌
.
Z
�

jwj j@t N�j j@
2
tKj jruj

. kwkL2=.1�˛/k@t N�kL1.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /krukL2

. kwkH1
p

E
p

D
p

E: (5.28)

Next we study the F 4 nonlinearity.

Proposition 5.2. Suppose that F 4 is defined as in either (A.4) or (A.11). Thenˇ̌̌̌Z `

�`

w � F 4
ˇ̌̌̌

. kwkH1.
p

E C E/
p

D for all w 2 H 1.�/. (5.29)

Proof. We will present the proof only in the more involved case that F 4 is defined by
(A.11), which corresponds to two temporal derivatives. The case (A.4), which corresponds
to one temporal derivative, follows from a simpler and easier argument. There are eleven
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terms appearing in (A.11), and we will deal with them mostly one at a time, with just a bit
of grouping. We will prove that each can be estimated in the stated form. For the sake of
brevity, throughout the proof we will repeatedly make use of five essential tools without
explicitly referring to them: Hölder’s inequality, standard trace estimates for H 1.�/, the
standard Sobolev embeddings forH 1.�/ andH 1=2..�`; `//, the fact that E � 1, and the
catalogs of Lq estimates given in Theorems 3.8 and 3.9. For the latter we will again use
the ordering convention described at the start of the proof of Proposition 5.1.

Term 2�D@tA@tuN . We boundˇ̌̌̌Z `

�`

2�w � .D@tA@tu/.N /

ˇ̌̌̌
.
Z `

�`

jwj j@tAj jr@tuj

. kwkL1="� .†/k@t�kW 1;1kr@tukL1=.1�"�/.†/

. kwkH1
p

E
p

D : (5.30)

Term �D@2tAuN . We estimateˇ̌̌̌Z `

�`

w � �D@2tAuN

ˇ̌̌̌
.
Z `

�`

jwj j@2tAj jruj

. kwk
L1=."C�˛/.†/

.k@t�kW 1;1=˛Ck@2t �kW 1;1=˛ /krukL1=.1�"C/.†/

. kwkH1
p

D
p

E: (5.31)

Term �D@tAu@tN . We boundˇ̌̌̌Z `

�`

w � �D@tAu@tN

ˇ̌̌̌
.
Z `

�`

jwj j@tAj jruj j@1@t�j

. kwk
L1="C .†/

k@t�kW 1;1kruk
L1=.1�"C/.†/

k@t@1�kL1

. kwkH1E
p

D : (5.32)

Term Œ2g@t� � 2�@1.
@1@t�

.1Cj@1�0j2/3=2
/�@tN . We estimateˇ̌̌̌Z `

�`

w �

�
2g@t� � 2�@1

�
@1@t�

.1C j@1�0j2/3=2

��
@tN

ˇ̌̌̌
.
Z `

�`

jwj.j@t�j C j@1@t�j C j@
2
1@t�j/j@1@t�j

. kwkL1="� .†/k@t�kW 2;1=.1�"�/k@1@t�kL1 . kwkH1
p

D
p

E: (5.33)

Term @1@t ŒR.@1�0; @1�/�@tN . For this term we initially expand

@1@t ŒR.@1�0; @1�/� D @1Œ@zR.@1�0; @1�/@1@t��

D
@zR.@1�0; @1�/

@1�
@1�@

2
1@t�C @

2
zR.@1�0; @1�/@

2
1�@1@t�

C
@z@yR.@1�0; @1�/

@1�
@1�@

2
1�0@1@t�: (5.34)
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This and Proposition A.1 then allow us to boundˇ̌̌̌Z `

�`

w � @1
�
@t ŒR.@1�0; @1�/�

�
@tN

ˇ̌̌̌
.
Z `

�`

jwj j@1@t�j j@1�j j@
2
1@t�j C

Z `

�`

jwj j@1@t�j j@
2
1�j j@1@t�j

C

Z `

�`

jwj j@1@t�j j@1�j j@1@t�j DW I C II C III: (5.35)

We then bound

I . kwkL1="� .†/k@1@t�kL1k@1�kL1k@21@t�kL1=.1�"�/ . kwkH1E
p

D ; (5.36)

II . kwk
L1="C .†/

k@1@t�k
2
L1k@

2
1�kL1=.1�"C/ . kwkH1E

p
D ; (5.37)

III . kwkL2.†/k@1@t�k2L1k@1�kL2 . kwkH1E
p

D : (5.38)

Combining these then shows that this term can be estimated as stated.

Term �2SA.@tp; @tu/@tN . We estimateˇ̌̌̌Z `

�`

�2w � SA.@tp; @tu/@tN

ˇ̌̌̌
.
Z `

�`

jwj.j@tpj C jr@tuj/j@1@t�j

. kwkL1="� .†/.k@tpkL1=.1�"�/.†/ C kr@tukL1=.1�"�/.†//k@t@1�kL1

. kwkH1
p

D
p

E: (5.39)

Term Œg� � �@1.
@1�

.1Cj@1�0j2/3=2
/�@2tN . We bound

ˇ̌̌̌Z `

�`

w �

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2

��
@2tN

ˇ̌̌̌
.
Z `

�`

jwj.j�j C j@1�j C j@
2
1�j/j@1@

2
t �j

. kwk
L1=."C�˛/.†/

k�k
W 2;1=.1�"C/k@1@

2
t �kL1=˛

. kwkH1
p

E
p

D : (5.40)

Term @1ŒR.@1�0; @1�/�@
2
tN . To handle this term we expand

@1ŒR.@1�0; @1�/� D
@zR.@1�0; @1�/

@1�
@1�@

2
1�C

@yR.@1�0; @1�/

.@1�/2
@21�0.@1�/

2: (5.41)

This and Proposition A.1 then allow us to boundˇ̌̌̌Z `

�`

w � @1ŒR.@1�0; @1�/�@
2
tN

ˇ̌̌̌
.
Z `

�`

jwj j@1@
2
t �j.j@1�j j@

2
1�j C j@1�j

2/

. kwk
L1=."C�˛/.†/

k@1@
2
t �kL1=˛ .k@1�kL1k@

2
1�kL1=.1�"C/ C k@1�kL1k@1�kL1=.1�"C//

. kwkH1
p

D E: (5.42)
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Term �SA.p; u/@
2
tN . For the final term we estimateˇ̌̌̌

�

Z `

�`

w � SA.p; u/@
2
tN

ˇ̌̌̌
.
Z `

�`

jwj.jpj C jruj/j@1@
2
t �j

. kwk
L1=."C�˛/.†/

.kpk
L1=.1�"C/.†/

C kruk
L1=.1�"C/.†/

/k@1@
2
t �kL1=˛

. kwkH1
p

E
p

D : (5.43)

Finally, we study the F 5 nonlinearity.

Proposition 5.3. Suppose that F 5 is given by either (A.5) or (A.12). Thenˇ̌̌̌Z
†s

J.w � �/F 5
ˇ̌̌̌

. kwkH1
p

E
p

D for all w 2 H 1.�/. (5.44)

Proof. As in the proof of Propositions 5.1 and 5.2, we will only prove the result in the
harder case of two temporal derivatives, which occurs when F 5 is given by (A.12). Then
F 5 consists only of two terms.

Using the bounds in Theorems 3.8 and 3.9 (once more with the ordering convention
described at the start of the proof of Proposition 5.1) together with the Sobolev embed-
dings and trace estimates, we estimate the first term in F 5 viaˇ̌̌̌Z
†s

J.w � �/.2�D@tA@tu� � �/

ˇ̌̌̌
.
Z
†s

jwj j@tAj jr@tuj

. kwkL1="� .†s/
k@t N�kW 1;1.†s/

kr@tukL1=.1�"�/.†s/
. kwkH1

p
E
p

D : (5.45)

Similarly, we bound the second term viaˇ̌̌̌Z
†s

J.w � �/.�D@2tAu� � �/

ˇ̌̌̌
.
Z
†s

jwj j@2tAj jruj

. kwk
L1=."C�˛/.†s/

.k@t N�kW 1;1=˛.†s/
C k@2t N�kW 1;1=˛.†s/

/kruk
L1=.1�"C/.†s/

. kwkH1
p

D
p

E: (5.46)

These bounds can then be combined to conclude that the stated estimate holds.

We synthesize the results of Propositions 5.1, 5.2, and 5.3 into the following result.

Theorem 5.4. Consider the functional H 1.�/ 3 w 7! hF ; wi 2 R defined by

hF ; wi D

Z
�

F 1 � wJ �

Z `

�`

F 4 � w �

Z
†s

J.w � �/F 5; (5.47)

where F 1; F 4; F 5 are defined either by (A.1), (A.4), and (A.5) or else by (A.8), (A.11),
and (A.12). Then

jhF ; wij . kwkH1.
p

E C E/
p

D for all w 2 H 1.�/. (5.48)

Proof. This follows immediately from Propositions 5.1–5.3.
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5.2. General interaction functional estimates II: pressure term

We next turn our attention to the term F 2 appearing in Theorem 3.2. We again derive a
general dual estimate.

Theorem 5.5. Suppose that F 2 is given by either (A.2) or (A.9). Thenˇ̌̌̌Z
�

J F 2
ˇ̌̌̌

. k kL2
p

D
p

E for all  2 L2.�/. (5.49)

Proof. Again, we will only prove the result in the harder case of two temporal derivatives,
which occurs when F 2 is given by (A.9). In this case F 2 only consists of two terms.

From the bounds in Theorems 3.8 and 3.9 (again using the ordering convention
described at the start of the proof of Proposition 5.1) together with Hölder’s inequality
and the fact that � has finite measure, we bound the first term viaˇ̌̌̌Z
�

J div@2tA u

ˇ̌̌̌
.
Z
�

j j j@2tAj jruj

. k kL2.k@t N�kW 1;2=˛ C k@2t N�kW 1;2=˛ /krukL2=.1�"C/k1kL2=."C�˛/

. k kL2
p

D
p

E: (5.50)

For the second term we argue similarly to estimateˇ̌̌̌Z
�

J 2 div@tA @tu
ˇ̌̌̌

.
Z
�

j j j@tAj jr@tuj

. k kL2k@t N�kW 1;1kr@tukL2

. k kL2
p

E
p

D : (5.51)

Upon combining these, we arrive at the stated bound.

5.3. Special interaction estimates I: velocity terms

The F 3 nonlinear interaction term in Theorem 3.2 requires greater care than we have used
above. Indeed, we will not derive general dual estimates, but will instead derive estimates
that take careful advantage of the structure of the test function. When two time derivatives
are applied, the F 3 nonlinearity from (A.10) has the form

F 3 D @2t ŒR.@1�0; @1�/�

D @zR.@1�0; @1�/@1@
2
t �C @

2
zR.@1�0; @1�/.@1@t�/

2; (5.52)

where R is as in (1.34). For the purposes of estimating F 3 we will write

@2t u �N D @
3
t � � F

6: (5.53)
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We may then decompose the relevant interaction term in Theorem 3.2 as

�

Z `

�`

�F 3@1.@
2
t u �N /

D �

Z `

�`

�@zR.@1�0; @1�/@1@
2
t �@1@

3
t � �

Z `

�`

�@zR.@1�0; @1�/@1@
2
t �@1F

6

�

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

3
t � �

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1F

6

DW I C II C III C IV: (5.54)

We will handle each of these separately, starting with I .

Proposition 5.6. Let I be as in (5.54). Thenˇ̌̌̌
I C

d

dt

Z `

�`

�@zR.@1�0; @1�/
j@1@

2
t �j

2

2

ˇ̌̌̌
.
p

E D ; (5.55)ˇ̌̌̌Z `

�`

�@zR.@1�0; @1�/
j@1@

2
t �j

2

2

ˇ̌̌̌
.
p

E EÎ: (5.56)

Proof. The key feature of I is the appearance of the total time derivative @1@2t �@1@
3
t �,

which allows us to write

I D �

Z `

�`

�@zR.@1�0; @1�/@t
j@1@

2
t �j

2

2
D �

d

dt

Z `

�`

�@zR.@1�0; @1�/
j@1@

2
t �j

2

2

C

Z `

�`

�@2zR.@1�0; @1�/@1@t�
j@1@

2
t �j

2

2
: (5.57)

Using Theorems 3.8 and 3.9 (with the ordering convention described in the proof of
Proposition 5.1) in conjunction with Proposition A.1, we then estimateˇ̌̌̌Z `

�`

�@2zR.@1�0; @1�/@1@t�
j@1@

2
t �j

2

2

ˇ̌̌̌
.
Z `

�`

j@1@t�j j@1@
2
t �j

2 . k@1@t�kL1k@1@2t �k
2
L2

.
p

E D (5.58)

andˇ̌̌̌Z `

�`

�@zR.@1�0; @1�/
j@1@

2
t �j

2

2

ˇ̌̌̌
.
Z `

�`

j@1�j j@1@
2
t �j

2 . k@1�kL1k@1@2t �k
2
L2

.
p

EEÎ:

(5.59)
These are the stated bounds.

Next we deal with the term II.

Proposition 5.7. Let II be as given in (5.54). Then

jIIj . ED : (5.60)
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Proof. We begin by writing F 6 D �2@tu1@1@t� � u1@1@2t � in order to expand

II D
Z `

�`

�
@zR.@1�0; @1�/

@1�
@1�@1@

2
t �2@1@tu1@1@t�

C

Z `

�`

�
@zR.@1�0; @1�/

@1�
@1�@1@

2
t �2@tu1@

2
1@t�

C

Z `

�`

�
@zR.@1�0; @1�/

@1�
@1�@1@

2
t �@1u1@1@

2
t �C

Z `

�`

�@zR.@1�0; @1�/@1@
2
t �u1@

2
1@
2
t �

DW II1 C II2 C II3 C II4: (5.61)

To estimate these terms we will use Theorems 3.8 and 3.9 (with the ordering convention
described in the proof of Proposition 5.1), Proposition A.1, the ordering 0< 2˛ < "� < "C
assumed in (2.5), and Hölder’s inequality. This yields the bounds

jII1j .
Z `

�`

j@1�j j@1@
2
t �j j@1@tuj j@1@t�j

. k@1�kL1k@1@2t �kL1=˛k@1@tukL1=.1�"�/.†/k@1@t�kL1

.
p

E D
p

E; (5.62)

jII2j .
Z `

�`

j@1�j j@1@
2
t �j j@tuj j@

2
1@t�j

. k@1�kL1k@1@2t �kL1=˛k@tukL1.†/k@
2
1@t�kL1=.1�"�/

.
p

E
p

D
p

E
p

D ; (5.63)

jIII3j .
Z `

�`

j@1�j j@1@
2
t �j

2
j@1uj . k@1�kL1k@1@2t �k

2
L1=˛
k@1ukL1=.1�"C/.†/

.
p

E D
p

E: (5.64)

For II4 we note that @1@2t �@
2
1@
2
t � is a total derivative, so we can integrate by parts and use

the fact that u1 D 0 at the endpoints to see that

jII4jD
ˇ̌̌̌Z `

�`

�@zR.@1�0; @1�/u1@1
j@1@

2
t �j

2

2

ˇ̌̌̌
D

ˇ̌̌̌
�

Z `

�`

�@1Œ@zR.@1�0; @1�/u1�
j@1@

2
t �j

2

2

ˇ̌̌̌
D

ˇ̌̌̌Z `

�`

�

�
@zR.@1�0; @1�/

@1�
@1�@1u1 C @

2
zR.@1�0; @1�/@

2
1�u1

C
@y@zR.@1�0; @1�/@

2
1�0

@1�
@1�u1

�
j@1@

2
t �j

2

2

ˇ̌̌̌
: (5.65)

We may then use the same tools listed above to estimate

jII4j .
Z `

�`

j@1@
2
t �j

2.j@1�j j@1uj C j@
2
1�j juj C j@1�j juj/

. k@1@2t �k
2
L1=˛

�
k@1�kL1k@1ukL1=.1�"C/.†/ C k@

2
1�kL1=.1�"C/kukL1.†/

C k@1�kL1kukL1.†/
�

. DE: (5.66)
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Combining these bounds then yields the stated estimate.

The term III is next.

Proposition 5.8. Let III be as given in (5.54). Then we have the boundsˇ̌̌̌
III C

d

dt

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

2
t �

ˇ̌̌̌
. .
p

E C E/D ; (5.67)ˇ̌̌̌Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

2
t �

ˇ̌̌̌
.
p

E EÎ: (5.68)

Proof. We begin by pulling a time derivative out of the integral:

III D �
Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

3
t �

D �
d

dt

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

2
t �C

Z `

�`

�@3zR.@1�0; @1�/.@1@t�/
3@1@

2
t �

C

Z `

�`

�@2zR.@1�0; @1�/2@1@t�j@1@
2
t �j

2: (5.69)

We then employ Theorems 3.8 and 3.9 (with the ordering convention described in the
proof of Proposition 5.1) and Proposition A.1 to boundˇ̌̌̌Z `

�`

�@3zR.@1�0; @1�/.@1@t�/
3@1@

2
t �

ˇ̌̌̌
.
Z `

�`

j@1@t�j
3
j@1@

2
t �j . k@1@t�k

2
L1k@1@t�kL1k@1@

2
t �kL1=˛ . ED (5.70)

andˇ̌̌̌Z `

�`

�@2zR.@1�0; @1�/2@1@t�j@1@
2
t �j

2

ˇ̌̌̌
.
Z `

�`

j@1@t�j j@1@
2
t �j

2 . k@1@t�kL1k@1@2t �k
2
L1=˛

.
p

E D : (5.71)

Upon combining these, we arrive at the first stated estimate.
To derive the second estimate we first note that standard Sobolev embeddings and

interpolation show that if  2 H 3=2..�`; `// then

k@1 kL4 . k@1 kH1=4 . k kH5=4 . k k1=2
H1
k k

1=2

H3=2
: (5.72)

Applying this with  D @t� and again using Theorem 3.8 and Proposition A.1 with the
definitions of E (see (2.10)) and EÎ (see (2.9)), we boundˇ̌̌̌Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1@

2
t �

ˇ̌̌̌
.
Z `

�`

j@1@t�j
2
j@1@

2
t �j . k@1@t�k

2
L4
k@1@

2
t �kL2

. k@t�kH1k@t�kH3=2k@2t �kH1 .
p

EÎ

p
E
p

EÎ; (5.73)

which is the second stated estimate.
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Finally, we handle the term IV .

Proposition 5.9. Let IV be as given in (5.54). Then

jIVj . .E C E3=2/D : (5.74)

Proof. We first write F 6 D �2@tu1@1@t� � u1@1@2t � in order to split

IV D
Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1.2@tu1@1@t�/

C

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1.u1@1@

2
t �/ DW IV1 C IV2: (5.75)

Then Theorems 3.8 and 3.9 (with the ordering convention described in the proof of
Proposition 5.1) and Proposition A.1 allow us to estimate

jIV1j .
Z `

�`

j@1@t�j
2
�
j@1@tuj j@1@t�j C j@tuj j@

2
1@t�j

�
. k@1@t�k2L1

�
k@1@tukL1=.1�"�/.†/k@1@t�kL1Ck@tukL1.†/k@

2
1@t�kL1=.1�"�/

�
. ED :

(5.76)

To handle IV2 we further expand

IV2 D
Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2@1u1@1@

2
t �

C

Z `

�`

�@2zR.@1�0; @1�/.@1@t�/
2u1@

2
1@
2
t � DW IV3 C IV4: (5.77)

The term IV3 can be estimated as IV1 was, recalling from (2.5) that ˛ < "� < "C:

jIV3j .
Z `

�`

j@1@t�j
2
j@1uj j@1@

2
t �j . k@1@t�k

2
L1k@1ukL1=.1�"C/.†/k@1@

2
t �kL1=˛ . ED :

(5.78)

On the other hand, for IV4 we need to integrate by parts again, using the fact that u1
vanishes at the endpoints:

IV4 D �
Z `

�`

�
�
@2zR.@1�0; @1�/.@1@t�/

2@1u1 C 2@
2
zR.@1�0; @1�/@1@t�@

2
1@t�u1

�
@1@

2
t �

�

Z `

�`

�
�
@3zR.@1�0; @1�/@

2
1�C @y@

2
zR.@1�0; @1�/@

2
1�0
�
.@1@t�/

2u1@1@
2
t �DW IV5C IV6:

(5.79)

These terms can then be estimated as above:

jIV5j .
Z `

�`

�
j@1@t�j

2
j@1uj C j@1@t�j j@

2
1@t�j juj

�
j@1@

2
t �j

.
�
k@1@t�k

2
L1k@1ukL1=.1�"C/.†/Ck@1@t�kL1k@

2
1@t�kL1=.1�"�/kukL1.†/

�
k@1@

2
t �kL1=˛

..E
p

D C
p

E
p

D
p

E/
p

D (5.80)
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and

jIV6j .
Z `

�`

.j@21�j C 1/j@1@t�j
2
juj j@1@

2
t �j

� .k@21�kL1=.1�"C/ C 1/k@1@t�k
2
L1kukL1.†/k@1@

2
t �kL1=˛ . .

p
E C 1/ED : (5.81)

The stated estimate then follows by combining all of these.

Now that we have controlled I–IV in (5.54) we can record a unified estimate.

Theorem 5.10. Let F 3 be given by (A.10). Thenˇ̌̌̌
�

Z `

�`

�F 3@1.@
2
t u �N /

C
d

dt

Z `

�`

�
�@zR.@1�0; @1�/

j@1@
2
t �j

2

2
C �@2zR.@1�0; @1�/.@1@t�/

2@1@
2
t �

�ˇ̌̌̌
. .
p

E C E C E3=2/D (5.82)

andˇ̌̌̌Z `

�`

�
�@zR.@1�0; @1�/

j@1@
2
t �j

2

2
C�@2zR.@1�0; @1�/.@1@t�/

2@1@
2
t �

�ˇ̌̌̌
.
p

E EÎ: (5.83)

Proof. The results follow from combining (5.54) with Propositions 5.6–5.9.

A similar and simpler result holds for F 3 when only one time derivative is applied as
in (A.3). We will record it without proof.

Theorem 5.11. Let F 3 be given by (A.3). Thenˇ̌̌̌
�

Z `

�`

�F 3@1.@
2
t u �N /

ˇ̌̌̌
. .
p

E C E/D : (5.84)

5.4. Special interaction estimates II: free surface terms

The term involving F 6 and F 7 in Theorem 3.2 also require a delicate treatment. We
record these now, starting with F 6.

Theorem 5.12. We have the estimateˇ̌̌̌Z `

�`

�
g@2t �F

6
C �

@1@
2
t �@1F

6

.1C j@1�0j2/3=2

�ˇ̌̌̌
.
p

E D (5.85)

when F 6 is given by (A.13), andˇ̌̌̌Z `

�`

�
g@t�F

6
C �

@1@t�@1F
6

.1C j@1�0j2/3=2

�ˇ̌̌̌
.
p

E D (5.86)

when F 6 is given by (A.6).



Stability of contact lines in fluids 1495

Proof. We begin by using the definition of F 6 in (A.13) to splitZ `

�`

�
g@2t �F

6
C �

@1@
2
t �@1F

6

.1C j@1�0j2/3=2

�
D

Z `

�`

�
g@2t �.�2@tu1@1@t�/C g@

2
t �.�u1@1@

2
t �/
�

C

Z `

�`

�
@1@

2
t �@1.�2@tu1@1@t�/

.1C j@1�0j2/3=2
C

Z `

�`

�
@1@

2
t �@1.�u1@1@

2
t �/

.1C j@1�0j2/3=2
DW I C II C III:

(5.87)

We will estimate these three terms using Theorems 3.8 and 3.9 (with the ordering conven-
tion described in the proof of Proposition 5.1) and Hölder’s inequality. For I we directly
estimate

jI j .
Z `

�`

j@2t �j
�
j@tuj j@1@t�j C juj j@1@

2
t �j
�

. k@2t �kL2
�
k@tukL1.†/k@1@t�kL2 C kukL1.†/k@1@

2
t �kL2

�
.
p

D .
p

E
p

D C
p

E
p

D/: (5.88)

Similarly, for II we apply the product rule and estimate (recalling (2.5))

jIIj .
Z `

�`

j@1@
2
t �j
�
j@1@tuj j@1@t�j C j@tuj j@

2
1@t�j

�
. k@1@2t �kL1=˛

�
k@1@tukL1=.1�"�/.†/k@1@t�kL1 C k@tukL1.†/k@

2
1@t�kL1=.1�"�/

�
.
p

D .
p

D
p

E C
p

E
p

D/: (5.89)

On the other hand, for III we expand with the product rule and then integrate by parts and
exploit the vanishing of u1 at the endpoints:

III D �
Z `

�`

�
@1@

2
t �@1u1@1@

2
t �

.1C j@1�0j2/3=2
C

Z `

�`

�@1

�
u1

.1C j@1�0j2/3=2

�
j@1@

2
t �j

2

2

D
�

2

Z `

�`

j@1@
2
t �j

2

�
u1@1

�
1

.1C j@1�0j2/3=2

�
�

@1u1

.1C j@1�0j2/3=2

�
: (5.90)

In this form we can estimate with the same tools as above, crucially using that 2˛ < "C,
to see that

jIIIj .
Z `

�`

j@1@
2
t �j

2.juj C j@1uj/ . k@1@2t �k
2
L1=˛
kuk

W 1=.1�"C/.†/
. D
p

E: (5.91)

Combining these then provides the stated bound.

Next we record the F 7 bound.

Theorem 5.13. We have the estimate

jŒ@2t u �N ; F 7�`j .
p

E D (5.92)

when F 7 is given by (A.14), and

jŒ@tu �N ; F 7�`j .
p

E D (5.93)

when F 7 is given by (A.7).
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Proof. Once more we only record the proof in the harder case whenF 7 is given by (A.14).
We begin by estimating

jF 7j . j OW 0.@t�/j j@3t �j C j OW
00.@t�/j j@

2
t �j

2: (5.94)

Since k@t�kL1 .
p

E . 1, we can bound

j OW 0.z/j D
1

˛

ˇ̌̌̌Z z

0

W 00.r/ dr

ˇ̌̌̌
. jzj for z 2 Œ�k@t�kL1 ; k@t�kL1 �: (5.95)

From this, basic trace theory, and the bound
P3
kD1 max˙` j@kt �j .

p
D we then estimate

max
˙`
jF7j. max

˙`
.j@t�j j@

3
t �jCj@

2
t �j

2/.
p

D .k@t�kH1Ck@
2
t �kH1/.

p
D
p

E: (5.96)

From this and the fact that Œ@2t u �N �` D Œ@
3
t ��` .

p
D , we deduce that

jŒ@2t u �N ; F 7�`j .
p

E
p

D Œ@2t u �N �` .
p

E D ; (5.97)

which is the stated estimate.

We conclude with two more estimates involving the free surface function. The first is
for a term involving the function Q from (A.16) that appears in Corollary 3.3.

Theorem 5.14. Let Q be the smooth function defined by (A.16). Thenˇ̌̌̌Z `

�`

�Q.@1�0; @1�/

ˇ̌̌̌
.
p

E k�k2
H1

(5.98)

Proof. According to Proposition A.1 and Theorem 3.8, we haveˇ̌̌̌Z `

�`

�Q.@1�0; @1�/

ˇ̌̌̌
.
Z `

�`

j@1�j
3 . k@1�kL1k�k2H1 .

p
E k�k2

H1
: (5.99)

This is the stated estimate.

Our final estimate involves the term OW , as defined in (1.40).

Theorem 5.15. We have

jŒu �N ; OW .@t�/�`j . k@t�kH1 Œu �N �2` : (5.100)

Proof. The definition of OW 2 C 2 in (1.40) shows that j OW .z/j . z2 for jzj . 1. Since
@t� D u �N at˙`, we can use standard trace theory to deduce the stated bound:

jŒu �N ; OW .@t�/�`j .
X
aD˙1

˛ju �N .a`; t/j2j@t�.a`; t/j . k@t�kH1 Œu �N �2` : (5.101)

6. Nonlinear estimates II: interaction terms, energetic form

In this section we continue our study of the nonlinear interaction terms appearing in The-
orem 3.2. However, the focus now is on estimates in terms of the energy functional. Once
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more, in order to avoid tedious restatements of the same hypothesis, we assume through-
out this section that a solution to (1.41) exists on the time horizon .0; T / for 0 < T � 1
and obeys the small-energy estimate

sup
0�t<T

E.t/ � 2 < 1; (6.1)

where E is as in (2.10) and  2 .0; 1/ is as in Lemma 3.5. Again, this means that the
estimates of Lemma 3.5 are available.

6.1. General interaction functional estimates

We begin by deriving general dual estimates for the terms involving F 1, F 4, and F 5 in
terms of the energy functional. First we consider F 1.

Proposition 6.1. Suppose that F 1 is as defined by (A.1). Thenˇ̌̌̌Z
�

Jw � F 1
ˇ̌̌̌

. kwkH1.E C E3=2/ for all w 2 H 1.�/: (6.2)

Proof. The term F 1, as defined by (A.1), contains six separate terms. We will estimate
each of these, employing Hölder’s inequality and Theorem 3.8 repeatedly and without
explicit reference.

Term � div@tA SA.p; u/. We first boundˇ̌̌̌Z
�

Jw � .� div@tA SA.p; u//

ˇ̌̌̌
.
Z
�

jwj j@tAj.jrpj C jr
2uj/

C

Z
�

jwj j@tAj jrAj.jpj C jruj/ DW I C II: (6.3)

We then estimate

I . kwk
L2="C

k@t N�kW 1;1.krpk
L2=.2�"C/

C kr
2uk

L2=.2�"C/
/ . kwkH1E; (6.4)

II . kwk
L1="C

k@t N�kW 1;1k N�k
W 2;2=.1�"C/.kpkL2=.1�"C/ C krukL2=.1�"C//

. kwkH1E3=2: (6.5)

The combination of these estimates shows this term can be estimated as stated.

Term � divA D@tAu. We first boundˇ̌̌̌Z
�

Jw � .�divA D@tAu/

ˇ̌̌̌
.
Z
�

jwj j@tAj jr
2ujC

Z
�

jwj jr@tAj jrujDW I C II: (6.6)

For I we bound

I . kwk
L2="C

k@t N�kW 1;1kr
2uk

L2=.2�"C/
. kwkH1E: (6.7)



Y. Guo, I. Tice 1498

For II we use (2.5) to see that 0 < "� � ˛ < 1 and 0 < 2"C C "� � ˛ < 2, so

II . kwk
L4=.2"CC"��˛/

.k N�kW 2;4=.2�."��˛// C k@t N�kW 2;4=.2�."��˛///krukL2=.1�"C/

. kwkH1E: (6.8)

Combining these then shows that this term can be estimated as stated.

Term �u � r@tAu. We boundˇ̌̌̌Z
�

Jw � .�u � r@tAu/

ˇ̌̌̌
.
Z
�

jwj juj j@tAj jruj

. kwkL2kukL1k@t N�kW 1;1krukL2 . kwkH1E3=2: (6.9)

Term �@tu � rAu. We estimateˇ̌̌̌Z
�

Jw � .�@tu � rAu/

ˇ̌̌̌
.
Z
�

jwj j@tuj jruj

. kwk
L4=.2"CC"�/

k@tukL4=.2�"�/krukL2=.1�"C/ . kwkH1E: (6.10)

Term @2t N�
�
�0
K@2u. We boundˇ̌̌̌Z

�

Jw �

�
@2t N�

�

�0
K@2u

�ˇ̌̌̌
.
Z
�

jwj j@2t N�j jruj . kwkL4k@
2
t N�kL4krukL2

. kwkH1E: (6.11)

Term @t N�
�
�0
@tK@2u. We boundˇ̌̌̌Z

�

Jw � .@t N�
�

�0
@tK@2u/

ˇ̌̌̌
.
Z
�

jwj j@t N�j j@tKj jruj

. kwkL2k@t N�kL1k@t N�kW 1;1krukL2 . kwkH1E3=2: (6.12)

Our next result concerns energetic estimates for F 4.

Proposition 6.2. Suppose that F 4 is defined by (A.4). Thenˇ̌̌̌Z `

�`

w � F 4
ˇ̌̌̌

. kwkH1.E C E3=2/ for all w 2 H 1.�/. (6.13)

Proof. The term F 4, as defined by (A.4), contains four separate terms. We will estimate
each of these, employing Hölder’s inequality, trace estimates, and Theorem 3.8 repeatedly
and without explicit reference.

Term �D@tAuN . We boundˇ̌̌̌Z `

�`

w � .�D@tAuN /

ˇ̌̌̌
.
Z `

�`

jwj j@tr�j jruj

. kwk
L1="C .†/

k@t�kW 1;1kruk
L1=.1�"C/.†/

. kwkH1E: (6.14)
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Term .g� � �@1.
@1�

.1Cj@1�0j2/3=2
//@tN . We estimate

ˇ̌̌̌Z `

�`

w �

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2

��
@tN

ˇ̌̌̌
.
Z `

�`

jwj.j�j C j@1�j C j@
2
1�j/j@t@1�j

. kwk
L1="C .†/

k�k
W 2;1=.1�"C/k@t�kW 1;1 . kwkH1E: (6.15)

Term ��@1ŒR.@1�0; @1�/�@tN . We first expand

@1ŒR.@1�0; @1�/� D @yR.@1�0; @1�/@
2
1�0 C @zR.@1�0; @1�/@

2
1� (6.16)

and then use Proposition A.1 in order to estimateˇ̌̌̌Z `

�`

w � .��@1ŒR.@1�0; @1�/�@tN /

ˇ̌̌̌
.
Z `

�`

jwj j@1�j
2
j@1@t�j C

Z `

�`

jwj j@1�j j@
2
1�j j@1@t�j DW I C II: (6.17)

Then we bound

I . kwkL2.†/k@1�k2L1k@1@t�kL2 . kwkH1E; (6.18)

II . kwk
L1="C .†/

k@1�kL1k@
2
1�kL1=.1�"C/k@1@t�kL1 . kwkH1E3=2: (6.19)

Upon combining these, we find that this term can be estimated as stated.

Term �SA.p; u/@tN . We boundˇ̌̌̌Z `

�`

w � .�SA.p; u/@tN /

ˇ̌̌̌
.
Z `

�`

jwj.jpj C jruj/j@t@1�j

.kwk
L1="C .†/

.kpk
L1=.1�"C/.†/

C kruk
L1=.1�"C/.†/

/k@1@t�kL1.kwkH1E: (6.20)

Next we study the term F 5.

Proposition 6.3. Suppose that F 5 is given by (A.5). Thenˇ̌̌̌Z
†s

J.w � �/F 5
ˇ̌̌̌

. kwkH1E for all w 2 H 1.�/. (6.21)

Proof. Using trace estimates and the Sobolev embeddings together with Theorem 3.8, we
boundˇ̌̌̌Z
†s

J.w � �/.�D@tAu� � �/

ˇ̌̌̌
.
Z
†s

jwj j@tAj jruj

. kwk
L1="C .†s/

k@t N�kW 1;1kruk
L1=.1�"C/.†s/

. kwkH1E: (6.22)

This is the stated bound.
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We combine the above estimates into the following theorem, which is the analog of
Theorem 5.4.

Theorem 6.4. Consider the functional H 1.�/ 3 w 7! hF ; wi 2 R defined by

hF ; wi D

Z
�

F 1 � wJ �

Z `

�`

F 4 � w �

Z
†s

J.w � �/F 5; (6.23)

where F 1; F 4; F 5 are defined via (A.1), (A.4), and (A.5), respectively. Then

jhF ; wij . kwkH1.E C E3=2/ for all w 2 H 1.�/. (6.24)

Proof. This follows immediately from Propositions 6.1–6.3.

6.2. General interaction functional with free surface terms

Next we turn our attention to a general estimate involving the free surface and F 3.

Theorem 6.5. Suppose that F 3 is given by (A.3). Then we have the estimateˇ̌̌̌Z `

�`

�
g@t�.w �N / � �@1

�
@1@t�

.1C j@1�0j2/3=2
C F 3

�
w �N

�ˇ̌̌̌
. .1C

p
E/k@t�kH3=2C."��˛/=2kwkH1 for all w 2 H 1.�/. (6.25)

Proof. The first term is easy to deal with:ˇ̌̌̌Z `

�`

g@t�w � N

ˇ̌̌̌
.
Z `

�`

j@t�j jwj . k@t�kL2kwkL2.†/ . k@t�kL2kwkH1.�/: (6.26)

The second and third terms require more work.
Let s D 1 � ."� � ˛/ 2 .0; 1/, which requires that

2 �
s

2
D
3

2
C
"� � ˛

2
: (6.27)

Using this and Proposition B.8 we may estimateˇ̌̌̌Z `

�`

�@1

�
@1@t�

.1C j@1�0j2/3=2
C F 3

�
w �N

ˇ̌̌̌
.
� @1@t�

.1C j@1�0j2/3=2


H1�s=2

C kF 3kH1�s=2

�
kw �N kH s=2 : (6.28)

Since �0 is smooth, Proposition B.3 shows that @1@t�

.1C j@1�0j2/3=2


H1�s=2

. k@1@t�kH1�s=2 . k@t�kH2�s=2 D k@t�kH3=2C."��˛/=2 :

(6.29)
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To handle the term

F 3 D @t ŒR.@1�0; @1�/� D @zR.@1�0; @1�/@1@t� (6.30)

we first use the fact that H 1�s=2..�`; `// is an algebra to bound

kF 3kH1�s=2 . k@zR.@1�0; @1�/kH1�s=2k@1@t�kH1�s=2 (6.31)

and then we use Proposition B.9 with f .x; z/ D @zR.@1�0.x/; z/ to estimate

k@zR.@1�0; @1�/kH1�s=2 . k@1�kH1�s=2 ; (6.32)

which yields (again using (6.27))

kF 3kH1�s=2 . k�kH3=2C."��˛/=2k@t�kH3=2C."��˛/=2 : (6.33)

However,
3

2
C
"� � ˛

2
�
3

2
C "C (6.34)

and

1

2
D
2 � "C

2
�
1

1

�
2C

"C

2
�
3

2
� "C

�
D

1

qC
�
1

1

�
3 �

1

qC
�
3

2
� "C

�
; (6.35)

so we have the embedding

W 3�1=qC;qC..�`; `// ,! H 3=2C"C..�`; `//: (6.36)

Then (6.33) and (6.36) tell us that

kF 3kH1�s=2 .
p

E k@t�kH3=2C."��˛/=2 : (6.37)

Next we use Proposition B.3 (with 1=2C "C > max ¹1=2; s=2º), the usual trace esti-
mate, the embedding (6.36), and the bound E � 1 to see that

kw �N kH s=2 . kN k
H1=2C"C

kwkH s=2 . .1C k�k
H3=2C"C

/kwkH1=2.†/

. .1C
p

E/kwkH1.�/ . kwkH1 : (6.38)

Combining this with (6.29) and (6.37), we conclude thatˇ̌̌̌Z `

�`

�@1

�
@1@t�

.1C j@1�0j2/3=2
C F 3

�
w �N

ˇ̌̌̌
. .1C

p
E/k@t�kH3=2C."��˛/=2kwkH1 ;

(6.39)
which completes the proof.

7. Nonlinear estimates III: elliptic estimate terms

In this section we complete our study of the nonlinear terms coming from (1.41) by turn-
ing our attention to elliptic estimates. More precisely, we study the terms appearing in
applications of Theorem 4.7. As in the previous two sections, we assume throughout this
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section that a solution to (1.41) exists on the time horizon .0; T / for 0 < T � 1 and
obeys the small-energy estimate

sup
0�t<T

E.t/ � 2 < 1; (7.1)

where E is as in (2.10) and  2 .0; 1/ is as in Lemma 3.5. This means that the estimates of
Lemma 3.5 are available for use, and we will use them often without explicit reference.

7.1. No time derivatives

We begin with the elliptic estimates we will need for the problem (1.41), i.e. when no
temporal derivatives are applied. When we compare (1.41) and (4.48) we get

G1 D �@tuC @t N�
�

�0
K@2u � u � rAu; G2 D 0;

G3C D @t�=jN0j; G3� D 0; G4C D 0; G4� D 0;

G5 D 0; G6 D R.@1�0; @1�/; G7 D ˛@t�˙R.@1�0; @1�/:

(7.2)

This dictates the form of the estimates we need.
We begin with the bounds for G1 in (7.2).

Proposition 7.1. We have the bound�@tuC @t N� ��0K@2u � u � rAu


LqC

. k@tukL2 C
p

E .kukL2 C k@t�kH1/: (7.3)

Proof. The bound k@tukLqC .k@tukL2 follows from the fact that qC<2. Using Hölder’s
inequality and Theorem 3.8 we then bound

ku � rAukLqC .
juj jruj

LqC
. kruk

L2=.1�"C/
kukL2 .

p
E kukL2 ; (7.4)

and (also using Proposition B.4)@t N� ��0K@2u

LqC

.
j@t N�j jrujLqC.kruk

L2=.1�"C/
k@t N�kL2.

p
E k@t�kH1 : (7.5)

The result follows by combining these.

We continue with the bounds for G3 in (7.2).

Proposition 7.2. Let N0 be given by (1.25). Then@t�=jN0j

W 2�1=qC;qC . k@t�kH3=2�˛ : (7.6)

Proof. First note that
1

jN0j
D

1p
1C j@1�0j2

(7.7)

is smooth, and we may thus bound@t�=jN0j

W 2�1=qC;qC . k@t�kW 2�1=qC;qC : (7.8)
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Next note that (2.5) implies that 2˛ C "C < 1, so

2 �
1

qC
D 2 �

2 � "C

2
D 1C

"C

2
�
3

2
� ˛ (7.9)

and
1

qC
D
2 � "C

2
�
2˛ C "C

2
D
1

2
�
1

1

�
3

2
� ˛ � 1 �

"C

2

�
: (7.10)

These parameter bounds and the Sobolev embeddings show that

H 3=2�˛..�`; `// ,! W 2�1=qC;2=.2˛C"C/..�`; `// ,! W 2�1=qC;qC..�`; `//: (7.11)

This allows us to estimate

k@2t �kW 2�1=qC;qC . k@2t �kH3=2�˛ ; (7.12)

and the result follows by combining these bounds.

Our next result records the bounds for G6 in (7.2).

Proposition 7.3. Let R be as defined in (1.34). Then

k@1ŒR.@1�0; @1�/�kW 1�1=qC;qC .
p

E k�k
W 3�1=qC;qC (7.13)

Proof. We compute

@1ŒR.@1�0; @1�/� D @yR.@1�0; @1�/@
2
1�0 C @zR.@1�0; @1�/@

2
1�: (7.14)

We then use this with the product estimate from (7.68) to bound

k@1ŒR.@1�0; @1�/�kW 1�1=qC;qC

. k@yR.@1�0; @1�/kW 1;qC k@
2
1�0kW 1�1=qC;qC

C k@zR.@1�0; @1�/kW 1;qC k@
2
1�kW 1�1=qC;qC

. k@yR.@1�0; @1�/kW 1;qC C k@zR.@1�0; @1�/kW 1;qC k�kW 3�1=qC;qC : (7.15)

On the other hand, Proposition A.1 and Theorem 3.8 allow us to bound

k@yR.@1�0; @1�/kW 1;qC . k@1�kL1.k@1�kLqCCk@21�kLqC / .
p

E k�k
W 2;qC ;

(7.16)

k@zR.@1�0; @1�/kW 1;qC . k@1�kLqC C k@21�kLqC .
p

E: (7.17)

The result follows by combining these and recalling that 3 � 1=qC > 2.

Finally, we record the bounds for G7 in (7.2).

Proposition 7.4. Let R be as in (1.34). Then

ŒR.@1�0; @1�/�` .
p

E k�k
W 2;qC : (7.18)
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Proof. From trace theory, Theorem 3.8, and Proposition A.1 we may estimate

ŒR.@1�0; @1�/�` . kR.@1�0; @1�/kW 1;qC . k@1�kL1.k@1�kLqC C k@21�kLqC /

.
p

E k�k
W 2;qC : (7.19)

This is the stated estimate.

7.2. One time derivative

We now turn our attention to the elliptic estimates for the once time differentiated prob-
lem. In order to apply Theorem 4.7, we are led to consider the following Gi terms for
F 1–F 7 given by (A.1)–(A.7):

G1 D F 1 � @2t uC @t N�
�

�0
K@2@tu � u � rA@tu; G2 D JF 2;

G3C D .@
2
t � � F

6/=jN0j; G3� D 0; G4C D F
4
�

T

jT j2
; G4� D F

5;

G5 D F 4 �
N

jN j2
; G6 D F 3; G7 D �@2t �C �F

7:

(7.20)

We begin by estimating the G1 term from (7.20).

Proposition 7.5. Let F 1 be given by (A.1). ThenF 1 C @t N� ��0K@2@tu � u � rA@tu


Lq�

. .
p

E C E/
p

D : (7.21)

Proof. We will estimate term by term using Hölder’s inequality and the bounds from
Theorems 3.8 and 3.9, once more using the ordering scheme used in the proof of Propo-
sition 5.1. Combining the estimates of each term then yields the stated estimate. Recall
from (2.5) that 0 < 2˛ < "� < "C, which in particular means that

q� D
2

2 � "�
<

2

2 � "C
D qC: (7.22)

Term div@tA SA.p; u/. First note that

1 � "C

2
C
1 � "C

2
C

1

1
�
2 � "�

2
D

1

q�
: (7.23)

Using this and (7.22) we can then bound

kdiv@tA SA.p; u/kLq� .
j@tAj jrAj.jpj C jruj/


Lq�
C
j@tAj.jrpj C jr2uj/Lq�

. k@t N�kW 1;1k N�k
W 2;2=.1�"C/.kpkL2=.1�"C/ C krukL2=.1�"C//

C k@t N�kW 1;1.krpkLqC C kr
2ukLqC /

. E
p

D C
p

E
p

D : (7.24)
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Term � divA D@tAu. For this term note that

1 � "�

2
C
1 � "C

2
�
2 � "�

2
D

1

q�
: (7.25)

This and (7.22) allow us to bound

k� divA D@tAukLq� .
jr@tAj jrujLq� C j@tAj jr2ujLq�

. .k N�kW 2;2=.1�"�/ C k@t N�kW 2;2=.1�"�//krukL2=.1�"C/ C k@t N�kW 1;1kr
2ukLqC

.
p

D
p

E C
p

E
p

D : (7.26)

Term u � r@tAu. We simply use (7.22) to bound

ku � r@tAukLq�.
juj j@tAjjrujLq�.kukL1k@t N�kW 1;1krukLqC.E

p
D : (7.27)

Term @tu � rAu. Again we use (7.22) to bound

k@tu � rAukLq� .
j@tuj jrujLq� . k@tukL1krukLqC .

p
D
p

E: (7.28)

Term @2t N�
�
�0
K@2u. Again we use (7.22) to bound@2t N� ��0K@2u


Lq�

.
j@2t N�j jrujLq� . k@2t N�kL1krukLqC .

p
D
p

E: (7.29)

Term @t N�
�
�0
@tK@2u. Once more (7.22) let us us bound@t N� ��0 @tK@2u


Lq�

.
j@t N�j j@tKj jrujLq� . k@t N�kL1k@t N�kW 1;1krukLqC

. E
p

D : (7.30)

Term @t N�
�
�0
K@2@tu. Since

1 � "�

2
�
2 � "�

2
D

1

q�
(7.31)

we can bound@t N� ��0K@2@tu

Lq�

.
j@t N�j jr@tujLq� . k@t N�kL1kr@tukL2=.1�"�/ .

p
E
p

D :

(7.32)

Term u � rA@tu. For this term we use (7.31) again to bound

ku � rA@tukLq� .
juj jr@tujLq� . kukL1kr@tukL2=.1�"�/ .

p
E
p

D : (7.33)

Next we estimate the G2 term from (7.20).
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Proposition 7.6. Let F 2 be given by (A.2). Then

kJF 2kW 1;q� . .
p

E C E/
p

D : (7.34)

Proof. We begin by noting that JF 2 D �J div@tA u, so

kJF 2kW 1;q� . kJ div@tA ukLq� C kr.J div@tA u/kLq� : (7.35)

We will estimate each of these terms with Hölder’s inequality and the bounds from The-
orems 3.8 and 3.9, again using the ordering scheme used in the proof of Proposition 5.1.
For the first we use the fact that q� < qC to bound

kJ div@tA ukLq� .
j@tAj jrujLq� . k@t N�kW 1;1krukLqC .

p
E
p

D : (7.36)

For the second term we expand with the product rule and note that (2.5) implies

1 � "C

2
C
1 � "C

2
�
2 � "�

2
D

1

q�
and

1 � "C

2
C
1 � "�

2
�
2 � "�

2
D

1

q�
; (7.37)

which allows us to bound

kr.J div@tAu/kLq� .
jrJ j j@tAj jrujLq�Cjr@tAj jrujLq�Cj@tAj jr2ujLq�

. k N�k
W 2;2=.1�"C/k@t N�kW 1;1kruk

L2=.1�"C/

C .k N�kW 2;2=.1�"�/ C k@t N�kW 2;2=.1�"�//krukL2=.1�"C/

C k@t N�kW 1;1kr
2ukLqC . E

p
D C

p
D
p

E C
p

E
p

D . .
p

E C E/
p

D : (7.38)

Combining these bounds then yields the stated estimate.

The next result records the bounds for the G3 term from (7.20).

Proposition 7.7. Let F 6 be given by (A.6). Then.@2t � � F 6/=jN0j

W 2�1=q�;q�

. k@2t �kH3=2�˛ C
p

E
p

D : (7.39)

Proof. First recall that N D �@1�0e1 C e2, so

1

jN0j
D

1p
1C j@1�0j2

(7.40)

is smooth, and we may thus bound.@2t � � F 6/=jN0j

W 2�1=q�;q�

. k@2t � � F
6
kW 2�1=q�;q� : (7.41)

Next note that (2.5) implies that 2˛ C "� < 1, so

2 �
1

q�
D 2 �

2 � "�

2
D 1C

"�

2
�
3

2
� ˛ (7.42)

and
1

q�
D
2 � "�

2
�
2˛ C "�

2
D
1

2
�
1

1

�
3

2
� ˛ � 1 �

"�

2

�
; (7.43)
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and so these parameter bounds and the Sobolev embeddings show that

H 3=2�˛..�`; `// ,! W 2�1=q�;2=.2˛C"�/..�`; `// ,! W 2�1=q�;q�..�`; `//: (7.44)

This allows us to estimate

k@2t �kW 2�1=q�;q� . k@2t �kH3=2�˛ : (7.45)

For the F 6 D �u1@1@t� term we use the fact that W 2�1=q�;q�..�`; `// is an algebra
in conjunction with trace theory and the definitions of E and D in (2.10) and (2.11),
respectively, to bound

kF 6kW 2�1=q�;q� . kukW 2�1=q�;q� .†/k@1@t�kW 2�1=q�;q�

. kukW 2;q� k@t�kW 3�1=q�;q� .
p

E
p

D : (7.46)

Combining these then yields the stated bound.

Next we bound the the G4 and G5 terms from (7.20).

Proposition 7.8. Let F 4 and F 5 be given by (A.4) and (A.5), respectively. ThenF 4 � T

jT j2


W 1�1=q�;q�

C

F 4 � N

jN j2


W 1�1=q�;q�

C kF 5kW 1�1=q�;q�

. .
p

E C E/
p

D : (7.47)

Proof. Recall that E and D are as defined in (2.10) and (2.11). We begin with the F 5 D
�D@tAu� � � term. We use trace theory, the product rule, Theorems 3.8 and 3.9, and (7.37)
to bound

kF 5kW 1�1=q�;q�

. kD@tAukW 1;q� .�/

.
j@tAj jrujLq� C jr@tAj jrujLq� C j@tAj jr2ujLq�

. k@t N�kW 1;1krukLqC

C .k N�kW 2;2=.1�"�/ C k@t N�kW 2;2=.1�"�//krukL2=.1�"C/ C k@t N�kW 1;1kr
2ukLqC

.
p

E
p

D C
p

D
p

E C
p

E
p

D : (7.48)

We next turn our attention to the F 4 term. First note that since

T

jT j2
D

.1; @1�0 C @1�/

1C j@1�0 C @1�j2
; N D .�@1�0 � @1�; 1/;

N

jN j2
D

.�@1�0 � @1�; 1/

1C j@1�0 C @1�j2
;

(7.49)
we have  T

jT j2


W 1;q�

C

 N

jN j2


W 1;q�

C kN kW 1;q� . 1C
p

E . 1: (7.50)
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This allows us to employ Theorem B.3 with 1 > max ¹1=q�; 1 � 1=q�º to estimateF 4 � T

jT j2


W 1�1=q�;q�

C

F 4 � N

jN j2


W 1�1=q�;q�

. kF 4kW 1�1=q�;q�

� T

jT j2


W 1;q�

C

 N

jN j2


W 1;q�

�
. kF 4kW 1�1=q�;q� : (7.51)

We will then estimate the F 4 norm on the right term by term to arrive at the stated esti-
mate.

Term �D@tAuN . For this term we first use Theorem B.3 and trace theory to bound

k�D@tAuN kW 1�1=q�;q� . kD@tAukW 1�1=q�;q� .†/kN kW 1;q�

. kD@tAukW 1;q� .�/kN kW 1;q� : (7.52)

Using this, (7.50), and the estimate from (7.48), we deduce that

k�D@tAuN kW 1�1=q�;q� .
p

E
p

D : (7.53)

Term g�@tN . For this term we use Theorem B.3 to bound

kg�@tN kW 1�1=q�;q� . k�kW 1;q� k@1@t�kW 1�1=q�;q�

. k�kW 1;q� k@t�kW 2�1=q�;q� .
p

E
p

D : (7.54)

Term ��@1. @1�

.1Cj@1�0j2/3=2
/@tN . We begin by expanding with the product rule and using

the fact that �0 is smooth to bound��@1� @1�

.1C j@1�0j2/3=2

�
@tN


W 1�1=q�;q�

. k@1�@1@t�kW 1�1=q�;q� C k@
2
1�@1@t�kW 1�1=q�;q� : (7.55)

Then Theorem B.3 and the fact that 2 < 3 � 1=qC and q� < qC allows us to bound

k@1�@1@t�kW 1�1=q�;q� . k@1�kW 1;q� k@1@t�kW 1�1=q�;q�

. k�kW 2;q� k@t�kW 2�1=q�;q� .
p

E
p

D : (7.56)

Similarly, Theorem B.3 and the bounds q� < qC and 3 � 1=q� < 3 � 1=qC imply that

k@21�@1@t�kW 1�1=q�;q� .k@21�kW 1�1=q�;q� k@1@t�kW 1;q� .k�kW 3�1=q�;q� k@t�kW 2;q�

.k�k
W 3�1=qC;qC k@t�kW 2;q� .

p
E
p

D : (7.57)

Combining these then shows that��@1� @1�

.1C j@1�0j2/3=2

�
@tN


W 1�1=q�;q�

.
p

E
p

D : (7.58)



Stability of contact lines in fluids 1509

Term ��@1.R.@1�0; @1�//@tN . For this term we first expand

@1.R.@1�0; @1�// D @yR.@1�0; @1�/@
2
1�0 C @zR.@1�0; @1�/@

2
1� (7.59)

and then use Theorem B.3 to bound

k�@1.R.@1�0; @1�//@tN kW 1�1=q�;q�

. k@yR.@1�0; @1�/@
2
1�0kW 1;q� k@1@t�kW 1�1=q�;q�

C k@zR.@1�0; @1�/kW 1;q� k@
2
1�@1@t�kW 1�1=q�;q� : (7.60)

The fact that W 1;q�..�`; `// is an algebra, Proposition A.1, and Theorem 3.8 then show
that

k@yR.@1�0; @1�/@
2
1�0kW 1;q� . k@yR.@1�0; @1�/kW 1;q� .

j@1�j2Lq� C k@21�kLq�
. k@1�k2L1 C k�kW 3�1=qC;qC .

p
E (7.61)

and

k@zR.@1�0; @1�/kW 1;q� . k@1�kLq� Ck@21�kLq� . k@1�k2L1 Ck�kW 3�1=qC;qC .
p

E:

(7.62)
Combining these with (7.57) then shows that

k�@1.R.@1�0; @1�//@tN kW 1�1=q�;q� .
p

E .k@t�kW 2�1=q�;q� C
p

E
p

D/

. .
p

E C E/
p

D : (7.63)

Term �SA.p; u/@tN . For this term we use Theorem B.3, trace theory, the bound

1 � "C

2
C
1 � "C

2
D
2 � 2"C

2
<
2 � "�

2
D

1

q�
; (7.64)

and Hölder’s inequality to estimate

kSA.p; u/@tN kW 1�1=q�;q� � kSA.p; u/kW 1�1=q�;q� .†/k@1@t�kW 1;q�

. kSA.p; u/kW 1;q� .�/k@t�kW 2;q�

.
�
kpkW 1;q� C kukW 2;q� C

jrAj jruj

Lq�

�
k@t�kW 2;q�

. .kpk
W 1;qC C kukW 2;qC C kN�kW 2;2=.1�"C/krukL2=.1�"C//k@t�kW 2;q�

. .
p

E C E/
p

D : (7.65)

The next result records the estimates for the G6 term from (7.20).

Proposition 7.9. Let F 3 be as in (A.3). Then

k@1F
3
kW 1�1=q�;q� . .

p
E C E/

p
D : (7.66)
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Proof. We begin by expanding

@1F
3
D @1@t ŒR.@1�0; @1�/� D @z@yR.@1�0; @1�/@

2
1�0@1@t�

C @2zR.@1�0; @1�/@
2
1�@1@t�C @zR.@1�0; @1�/@

2
1@t� WD I C II C III: (7.67)

Since 1 > max ¹1=q�; 1 � 1=q1º we can use Theorem B.3 to bound

k' kW 1�1=q�;q� . k'kW 1;q� k kW 1�1=q�;q� ; (7.68)

and we will apply this to handle each of I , II, and III.
We begin with I by using (7.68) twice together with the fact that q� < qC to bound

kIkW 1�1=q�;q� . k@z@yR.@1�0; @1�/kW 1;q� k@
2
1�0@1@t�kW 1�1=q�;q�

. k@z@yR.@1�0; @1�/kW 1;q� k@
2
1�0kW 1;q� k@1@t�kW 1�1=q�;q�

. k@z@yR.@1�0; @1�/kW 1;q�

p
D : (7.69)

For II we also use (7.68) twice and q� < qC to see that

kIIkW 1�1=q�;q� . k@2zR.@1�0; @1�/kW 1;q� k@
2
1�@1@t�kW 1�1=q�;q�

. k@2zR.@1�0; @1�/kW 1;q� k@
2
1�kW 1�1=q�;q� k@1@t�kW 1;q�

. k@2zR.@1�0; @1�/kW 1;q�

p
E
p

D : (7.70)

For III we only apply (7.68) once to see that

kIIIkW 1�1=q�;q� . k@zR.@1�0; @1�/kW 1;q� k@
2
1@t�kW 1�1=q�;q�

. k@zR.@1�0; @1�/kW 1;q�

p
D : (7.71)

It remains to handle the R terms in these estimates. For this we use Proposition A.1
to bound

k@2zR.@1�0; @1�/kW 1;q� . 1C k@1�kW 1;q� . 1C k�kW 2;q� . 1C
p

E (7.72)

and

k@z@yR.@1�0; @1�/kW 1;q� C k@zR.@1�0; @1�/kW 1;q� . k�kW 2;q� .
p

E: (7.73)

Combining these bounds with the above, we deduce that

k@1F
3
kW 1�1=q�;q� . .

p
E C E/

p
D ; (7.74)

as desired.

Finally, we bound the G7 term from (7.20).

Proposition 7.10. Let F 7 be as defined by (A.14). Then

Œ�F 7�` .
p

E
p

D : (7.75)
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Proof. The definition of OW 2 C 2 in (1.40) shows that j OW 0.z/j . z for jzj . 1. From this,
standard trace theory, and the definition of E and D in (2.10) and (2.11), respectively, we
may then bound

Œ�F 7�` . max
˙`
j@t�j j@

2
t �j . k@t�kH1 Œ@

2
t ��` .

p
E
p

D : (7.76)

7.3. Two time derivatives

We will not apply Theorem 4.7 to the twice time differentiated problem. However, we
will need the following pair of estimates, which are in the same spirit as the above elliptic
estimates. The first gives estimates of F 2 from (A.9).

Proposition 7.11. Let F 2 be given by (A.9). Then

kJF 2k
L4=.3�2"C/

. E; (7.77)

kJF 2kL2=.1�"�/ .
p

E
p

D ; (7.78)

k@t .JF
2/kLq� . .

p
E C E/

p
D : (7.79)

Proof. First note that (2.5) requires that 0 < 3 � 2"C < 1, 0 < 1 � ."C � ˛/ < 1, and

"C �
1C "�

2
; hence

4

3 � 2"C
�

4

2 � "�
: (7.80)

Also, from (A.9) we have

F 2 D � div@2tA u � 2 div@tA @tu: (7.81)

Then from Theorems 3.8 and 3.9 and Hölder’s inequality we can bound

kJ div@2tA ukL4=.3�2"C/ .
j@2tAj jrujL4=.3�2"C/ . k@2tAkL4krukL2=.1�"C/

. .k@t N�kW 1;4 C k@2t N�kW 1;4/kruk
L2=.1�"C/

. E (7.82)

and, also using (7.80),

kJ div@tA @tukL4=.3�2"C/ . kJ div@tA @tukL4=.2�"�/ .
j@tAj jr@tujL4=.2�"�/

. k@t N�kW 1;1kr@tukL4=.2�"�/ . E: (7.83)

Thus, (7.77) holds.
To prove (7.78) we argue similarly, first noting that (2.5) tells us that

0 < "C�"��˛; so 1�."C�˛/ < 1�"�; so
2

1�"�
<

2

1�."C�˛/
: (7.84)

Thus,

kJ div@2tA ukL2=.1�"�/ . kJ div@2tA ukL2=.1�."C�˛// .
j@2tAj jrujL2=.1�."C�˛//

. k@2tAkL2=˛krukL2=.1�"C/ . .k@t N�kW 1;2=˛Ck@2t N�kW 1;2=˛ /krukL2=.1�"C/ .
p

D
p

E

(7.85)
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and

kJ div@tA @tukL2=.1�"�/ .
j@tAj jr@tujL2=.1�"�/ . k@t N�kW 1;1kr@tukL2=.1�"�/

.
p

E
p

D ; (7.86)

and (7.78) follows.
Finally, note that

j@t .JF
2/j . j@3tAj jruj C j@

2
tAj jr@tuj C j@tAj jr@

2
t uj

C j@tJ j
�
j@2tAj jruj C j@tAj jr@tuj

�
; (7.87)

while (2.5) tells us that 0 < "C � 2˛ < 1,

˛ <
"C�"�

2
; so "�<"C�2˛; so

1�"�

2
C
1C2˛

2
D 1�

"C�2˛

2
< 1�

"�

2
D

1

q�
;

(7.88)
and

1 � "�

2
C
1

2
D
2 � "�

2
D

1

q�
; (7.89)

so we may again use Theorems 3.8 and 3.9 and Hölder’s inequality to see that

k@t .JF
2/kLq�

. k@3tAkL2=.1C2˛/krukL2=.1�"C/ Ck@
2
tAkL2kr@tukL2=.1�"�/ Ck@tAkL1kr@

2
t ukL2

Ck@t N�kW 1;1.k@2tAkL2krukL2=.1�"C/ Ck@tAkL1kr@tukL2=.1�"�//

. .k@t N�kH1 Ck@
2
t N�kH1 Ck@

3
t N�kW 1;2=.1C2˛//

p
E

C .k@t N�kH1 Ck@
2
t N�kH1 Ck@t N�kW 1;1/

p
D

C
p

E .k@t N�kH1 Ck@
2
t N�kH1 Ck@t N�kW 1;1/

p
D

.
p

D
p

E C
p

E
p

D C E
p

D : (7.90)

Then (7.79) follows.

Next we provide a bound for F 6 from (A.13).

Proposition 7.12. Let F 6 be given by (A.13) and N be given by (1.32). Then

kF 6kH1=2�˛ .
p

E
p

D ; (7.91)

k@2t u �N kH1=2..�`;`// . .1C
p

E/k@2t ukH1 : (7.92)

Proof. According to (A.13), Theorem B.3 with 1
2
C "˙ > max ¹1

2
; 1
2
� ˛º, and trace the-

ory we have

kF 6kH1=2�˛ . k@tu1@1@t�kH1=2�˛ C ku1@1@2t �kH1=2�˛
. k@tu1kH1=2�˛.†/k@1@t�kH1=2C"� C ku1kH1=2C"C .†/k@1@

2
t �kH1=2�˛

. k@tu1kH1�˛.�/k@t�kH3=2C"� C ku1kH1C"C .�/k@
2
t �kH3=2�˛ : (7.93)
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Note that

1

2
D
2 � "�

2
�
1

1

�
2C

"�

2
�
3

2
� "�

�
D

1

q�
�
1

1

�
3 �

1

q�
�
3

2
� "�

�
; (7.94)

and
1

2
D
2 � "C

2
�
1

2
.2 � 1 � "C/ D

1

qC
�
1

2
.2 � .1C "C//; (7.95)

so the Sobolev embeddings show that

W 3�1=q�;q�..�`; `// ,! H 3=2C"�..�`; `//; (7.96)

W 2;qC.�/ ,! H 1C"C.�/: (7.97)

Hence,

k@t�kH3=2C"� . k@t�kW 3�1=q�;q� .
p

E; (7.98)

ku1kH1C"C .�/ . kuk
W 2;qC .

p
E: (7.99)

Moreover, since 1 � ˛ < 1 and 2 < 2=.1 � "�/ we can use Theorem 3.9 to bound

k@tu1kH1�˛.�/ . k@tu1kH1 .
p

D : (7.100)

Thus, upon combining all of these, we deduce that

kF 6kH1=2�˛ .
p

D
p

E C
p

E
p

D ; (7.101)

as desired.
For the second estimate we use the fact thatH 1=2..�`;`// is an algebra in conjunction

with trace theory and the embedding (6.36):

k@2t u �N kH1=2..�`;`// D k@
2
t u � .1;�@1�0/kH1=2..�`;`// C k@

2
t u2@1�kH1=2..�`;`//

. k@2t ukH1=2.†/.1C k@1�kH1=2/

. k@2t ukH1.�/.1C k�kW 3�1=qC;qC /

. k@2t ukH1.1C
p

E/: (7.102)

8. Functional calculus of the gravity-capillary operator

In this section we record some essential properties of the gravity-capillary operator, K ,
associated to the equilibrium �0 W Œ�`; `�! R from Theorem 1.1, with gravitational coef-
ficient g > 0 and surface tension � > 0. In particular, we develop the functional calculus
associated to K with Neumann-type boundary conditions, we study a scale of custom
Sobolev spaces built in terms of the eigenfunctions of K , and we consider some useful
approximations of the fractional differential operator Ds DKs=2.
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8.1. Basic spaces and the gravity-capillary operator

We write the inner products on L2..�`; `// D H 0..�`; `// and H 1..�`; `// via

.';  /0;† WD

Z `

�`

' and .';  /1;† WD

Z `

�`

�
g' C �

@1'@1 

.1C j@1�0j2/3=2

�
: (8.1)

It is clear from the properties of �0 stated in Theorem 1.1 that the latter generates a norm
equivalent to the standard one on H 1..�`; `// and thus generates the standard topology.
Recall from (2.7) that for pairs '; W ¹�`; `º ! R we write

Œ';  �` D '.�`/ .�`/C '.`/ .`/ and Œ'�` D
p
Œ'; '�`; (8.2)

and we will often slightly abuse this notation by writing Œ';  �` when either ' or  is a
function on .�`; `/ with well-defined traces, in which case the understanding is that the
map on ¹�`; `º is defined by the trace.

The inner product gives rise to the following elliptic operator, which we call the
gravity-capillary operator associated to �0:

K' WD g' � �@1

�
@1'

.1C j@1�0j2/3=2

�
: (8.3)

The associated boundary operators are

B˙ D ˙
 0.˙`/

.1C j�00.˙`/j
2/3=2

; (8.4)

and we write B W ¹�`; `º!R via B .˙`/B˙ . Then K and B intertwine our choice
of inner products on L2..�`; `// and H 1..�`; `// via

.';  /1;† D .K'; /0;† C ŒB'; �` for '; 2 C 2.Œ�`; `�/. (8.5)

We now aim to study the properties of K and B. We begin with a version of the Riesz
representation.

Theorem 8.1. The map J W H 1..�`; `// ! ŒH 1..�`; `//�� defined via hJ';  i D
.';  /1;† is an isomorphism.

Proof. This is the Riesz representation theorem.

Next we construct a functional related to the form Œ�; ��`.

Lemma 8.2. Suppose that h˙ 2 R and that we view h W ¹�`; `º ! R via h.˙`/ D h˙.
Then the map H 1..�`; `// 3  7! Œh;  �` is bounded and linear.

Proof. This follows immediately from the standard trace estimate max ¹j .`/j; j .�`/jº
. k k1;†:

We can now consider weak solutions to the problem´
K' D f;

B' D h;
(8.6)
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when f 2 ŒH 1..�`; `//�� and h W ¹�`; `º ! R via h.˙`/ D h˙. Theorem 8.1 allows us
to define the weak solution to (8.6) as the unique ' 2 H 1..�`; `// determined by

.';  /1;† D hf; i C Œh;  �` for all  2 H 1..�`; `//: (8.7)

Note that according to (8.5) any classical (or even strong, i.e. H 2) solution is a weak
solution in the above sense. Moreover, Theorem 8.1 and Lemma 8.2 easily imply that

k'k1;† . kf k.H1/� C Œh�`: (8.8)

We next show that if f D 0 then the weak solution is smooth up to the boundary.

Theorem 8.3. Let h˙ 2 R. Then the following hold:

(1) There exists a unique ' 2 H 1..�`; `// such that

.';  /1;† D Œh;  �` for all  2 H 1..�`; `//: (8.9)

(2) ' 2 Hm..�`; `// for each m 2 N, and

k'kHm . Œh�`: (8.10)

(3) ' 2 C1.Œ�`; `�/, and ' is a classical solution to´
K' D 0 in .�`; `/;

B˙' D h˙:
(8.11)

Proof. The first item follows from Lemma 8.2 and Theorem 8.1. Now consider the func-
tion z 2 C1.Œ�`; `�/ given by

z.x/ D
1

.1C j�00.x/j
2/3=2

(8.12)

and note that there exists a constant z0 > 0 such that

z.x/ � z0 for all x 2 Œ�`; `�: (8.13)

The function z allows us to conveniently rewrite

.';  /1;† D

Z `

�`

.z'0 0 C g' / for all  2 H 1..�`; `//: (8.14)

Let 2C1c ..�`;`// and note that the bound (8.13) implies that �D =z 2C1c ..�`;`//
� H 1..�`; `//. Plugging this � into (8.9) shows that .'; �/1;† D Œh; ��` D 0: Thus

0 D

Z `

�`

�
z'0

�
 

z

�0
C g'

�
 

z

��
D

Z `

�`

�
'0 0 �

z0

z
'0 C g'

�
 

z

��
; (8.15)

and upon rearranging we find thatZ `

�`

'0 0 D

Z `

�`

�

�
�
z0

z
'0 C g

'

z

�
 for all  2 C1c ..�`; `//: (8.16)
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The definition of weak derivatives then tells us that '0 is weakly differentiable, and

'00 D �
z0

z
'0 C g

'

z
2 L2..�`; `//; (8.17)

where the latter inclusion follows from the fact that ' 2 H 1..�`; `//, z 2 C1.Œ�`; `�/,
and the estimate (8.13). Thus ' 2 H 2..�`; `//, and we may estimate

k'kH2 . k'kH1 . Œh�`: (8.18)

Since z0=z; g=z 2 C1.Œ�`; `�/ we deduce from (8.17) and a simple induction argu-
ment that, in fact, ' 2 Hm..�`; `// for all m 2 N and

k'kHm � CmŒh�` (8.19)

for a constant Cm depending on m. Hence ' 2 C1.Œ�`; `�/. Returning now to (8.9), we
find, upon using  2 C1.Œ�`; `�/ and integrating by parts, that

Œh;  �` D .';  /1;† D

Z `

�`

K' C ŒB'; �` (8.20)

for all  2 C1.Œ�`; `�/. This immediately implies the identity (8.11).

Next we consider elliptic regularity for (8.6) with f ¤ 0.

Theorem 8.4. Let h˙ 2 R and f 2 Hm..�`; `// for some m 2 N. Suppose that ' 2
H 1..�`; `// is the unique weak solution to (8.6). Then ' 2 HmC2..�`; `//, and

k'kHmC2 . kf kHm C Œh�`: (8.21)

Moreover, ' is a strong solution to (8.6).

Proof. First note thatHm..�`; `// ,!H 0..�`; `// ,! .H 1..�`; `///�; where in the last
embedding we inject H 0 into .H 1/� in the standard way via

h';  i� D

Z `

�`

' D .';  /0;† for ' 2H 0..�`; `// and  2H 1..�`; `//: (8.22)

Consequently, we can use Theorem 8.1 to solve for a unique '1 2H 1..�`; `// satisfying

.'1;  /1;† D .f;  /0;† (8.23)

and obeying the estimate

k'1kH1 . kf k.H1/� . kf kH0 : (8.24)

On the other hand, Theorem 8.3 provides us with a unique '2 2C1.Œ�`;`�/ satisfying

.'2;  /1;† D Œh;  �` for all  2 H 1..�`; `//: (8.25)
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The theorem tells us that

k'2kHk � Ck Œh�` for all k 2 N: (8.26)

By the uniqueness of weak solutions, we know that ' D '1 C '2. To conclude we must
only show that '1 2 HmC2..�`; `// and

k'1kHmC2 . kf kHm : (8.27)

Let z 2 C1.Œ�`; `�/ be as in the proof of Theorem 8.3. For  2 C1c ..�`; `// we
have � D  =z 2 C1c ..�`; `//, and so we can use � 2 H 1..�`; `// as a test function in
(8.23); after rearranging, we find thatZ `

�`

'01 
0
D �

Z `

�`

�
�
z0

z
'01 C g

'1

z
�
f

z

�
 for all  2 C1c ..�`; `//: (8.28)

From the definition of weak derivatives we then find that '01 is weakly differentiable, and

'001 D �
z0

z
'01 C g

'1

z
C
f

z
2 L2..�`; `//; (8.29)

which implies that '1 2 H 2..�`; `// and

k'1kH2 . k'1kH1 C kf kL2 . kf kH0 : (8.30)

This proves (8.27) whenmD 0. Whenm� 1we use a finite iteration in (8.29) to bootstrap
from '1 2 H

2..�`; `// to '1 2 HmC2..�`; `//. Along the way we readily deduce that
(8.27) holds. Thus the desired inclusion and estimates for '1 hold for all m 2 N.

8.2. Eigenfunctions of the gravity-capillary operator

The map
H 0..�`; `// 3 f 7! 'f 2 H

1..�`; `// �� H 0..�`; `//; (8.31)

where 'f is uniquely determined by

.'f ;  /1;† D .f;  /0;† for all  2 H 1..�`; `//; (8.32)

is easily seen to be compact and symmetric, so the usual spectral theory of compact sym-
metric operators (see, for instance, [34, Chapter VI]) allows us to produce sequences
¹wkº

1
kD0
� C1.Œ�`; `�/ and ¹�kº1kD0 � .0;1/ such that the following hold:

(1) ¹wkº1kD0 forms an orthonormal basis of L2..�`; `//.

(2) ¹wk=
p
�kº
1
kD0

forms an orthonormal basis ofH 1..�`; `// relative to the inner prod-
uct .�; �/1;†.

(3) �0 D g and w0 D 1=
p
2`.

(4) ¹�kº1kD0 is nondecreasing, and �k !1 as k !1.
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(5) For each k 2 N we have ´
Kwk D �kwk in .�`; `/;

B˙wk D 0:
(8.33)

In other words, wk is the kth eigenfunction of the operator K with associated eigen-
value �k � g.

We next introduce the notation for “Fourier” coefficients relative to this basis.

Definition 8.5. For a function f 2H 0..�`;`//we define the map Of WN!R via Of .k/D
.f; wk/0;†. The values of Of are called the Fourier coefficients of f .

We have the following version of Parseval’s theorem for this basis.

Proposition 8.6. The following hold:

(1) For all f; g 2 H 0..�`; `// we have

.f; g/0;† D

1X
kD0

Of .k/ Og.k/ and kf k20;† D

1X
kD0

j Of .k/j2: (8.34)

(2) For all f; g 2 H 1..�`; `// we have

.f; g/1;† D

1X
kD0

�k Of .k/ Og.k/ and kf k21;† D

1X
kD0

�kj Of .k/j
2: (8.35)

Proof. The first item follows from the fact that ¹wkº1kD0 is an orthonormal basis of
H 0..�`; `//. The second follows from the fact that ¹wk=

p
�kº
1
kD0

is an orthonormal
basis of H 1..�`; `// and .wk ; f /1;† D �k.wk ; f /0;† D �k Of .k/ for f 2 H 1..�`; `//.

8.3. Sobolev spaces for the gravity-capillary operator

In what follows we will often make reference to the vector space

W D span ¹wkº1kD0 D
° MX
kD0

akwk

ˇ̌̌
M 2 N and a0; : : : ; aM 2 R

±
; (8.36)

the set of finite linear combinations of basis elements. Clearly, W � C1.Œ�`; `�/. We
now define a special scale of Sobolev spaces built from the eigenfunctions of K .

Definition 8.7. Let s 2 R and recall that W D span ¹wkº1kD0.

(1) For u; v 2 W � L2..�`; `// we define

.u; v/Hs
K
D

1X
kD0

�sk.u;wk/0;†.v; wk/0;† D

1X
kD0

�sk Ou.k/ Ov.k/; (8.37)

which is clearly an inner product with associated norm kuk2
Hs

K

D .u; u/Hs
K
:
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(2) We define the Hilbert space

H s
K..�`; `// D completionHs

K
.W /: (8.38)

(3) We define

`2s .N/ D
°
f W N ! R

ˇ̌̌ 1X
kD0

�skjf .k/j
2 <1

±
; (8.39)

which is clearly a Hilbert space when endowed with the obvious inner product.

We now characterize these spaces.

Theorem 8.8. The following are equivalent for s 2 R:

(1) u 2 H s
K
..�`; `//.

(2) There exists Ou 2 `2s .N/ such that uD
P1
kD0 Ou.k/wk , where the series converges with

respect to the norm k � kHs
K
:

In either case we have kukHs
K
D k Ouk`2s :

Proof. Suppose that u 2H s
K
..�`; `//. Then there exist ¹umº1mD0 �W such that um! u

in H s
K
..�`; `// as m!1. For each m we may then write

um D

1X
kD0

am.k/wk ; (8.40)

where ¹am.k/º1kD1 � R vanishes for all but finitely many k. Then

kum � uj k
2
Hs

K
D

1X
kD0

�skjam.k/ � aj .k/j
2; (8.41)

and hence
jam.k/ � aj .k/j

2
� ��sk kum � uj k

2
Hs

K
for all k 2 NC: (8.42)

This implies that for each k 2 N, ¹am.k/º1mD0 is a Cauchy sequence in R, and hence we
may define a W N ! R via a.k/ D limm!1 am.k/.

Now, for each K 2 N we may estimate

KX
kD0

�skja.k/j
2
D lim
m!1

KX
kD0

�skjam.k/j
2

� lim sup
m!1

1X
kD0

�skjam.k/j
2
D lim sup

m!1
kumk

2
Hs

K
D kuk2

Hs
K
: (8.43)

Upon sending K !1 we then deduce that a 2 `2s .N/. For m 2 N we then set vm DPm
kD0 a.k/wk 2 W . Then for m > j � 0 we have

kvm � vj k
2
Hs

K
D

mX
kDjC1

�skja.k/j
2; (8.44)
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which implies that ¹vmº1mD0 is a Cauchy sequence in H s
K
..�`; `//, and hence converges

to

v D

1X
kD0

a.k/wk 2 H s
K..�`; `//: (8.45)

Moreover,

kvk2
Hs

K
D lim
m!1

kvmk
2
Hs

K
D lim
m!1

mX
kD0

�skja.k/j
2
D

1X
kD0

�skja.k/j
2
D kak2

`2s
: (8.46)

Let " > 0 and choose M 2 N such that j; m � M imply that kuj � umkHs
K
< ".

Then for each K 2 N and m �M we have

KX
kD0

�skja.k/ � am.k/j
2
D lim
j!1

KX
kD0

�skjaj .k/ � am.k/j
2

� lim sup
j!1

1X
kD0

�skjaj .k/ � am.k/j
2

D lim sup
j!1

kuj � umk
2
Hs

K
� "2: (8.47)

Sending K !1, we then find that m �M implies that

1X
kD0

�skja.k/ � am.k/j
2
� "2: (8.48)

For any fixed m we have

kum � vk
2
Hs

K
D lim
K!1

kum � vKk
2
Hs

K
D

1X
kD0

�skja.k/ � am.k/j
2: (8.49)

Then for m �M we find that
kum � vkHs

K
� "; (8.50)

and consequently um!v asm!1. Thus uDv. This completes the proof that .1/).2/.
We now turn to the proof of the converse. Suppose that u D

P1
kD0 Ou.k/wk for

Ou 2 `2s .N/. For m 2 N we define um D
Pm
kD0 Ou.k/wk 2 W . Then um ! u as m!1

by assumption, and so u 2 H s
K
..�`; `//. Moreover,

kumk
2
Hs

K
D

mX
kD0

�skj Ou.k/j
2 (8.51)

and hence

kuk2
Hs

K
D lim
m!1

kumk
2
Hs

K
D

1X
kD0

�skj Ou.k/j
2
D k Ouk2

`2s
: (8.52)
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This theorem suggests some notation.

Definition 8.9. To each u 2H s
K
..�`; `// we associate a unique element Ou 2 `2s .N/ such

that u D
P1
kD0 Ou.k/wk and kukHs

K
D k Ouk`2s .

Now we characterize the duals of the spaces we have built.

Theorem 8.10. Let s 2 R. Then the map J W H�s
K
..�`; `//! .H s

K
..�`; `///� defined

by

hJu; vi D

1X
kD0

Ou.k/ Ov.k/ (8.53)

is well-defined and is an isometric isomorphism. Consequently, we have a canonical iden-
tification

.H s
K..�`; `///

�
D H�sK ..�`; `//: (8.54)

Proof. The linearity of J is trivial. The boundedness follows from the estimate

jhJu; vij D
ˇ̌̌ 1X
kD0

�
�s=2

k
Ou.k/�

s=2

k
Ov.k/

ˇ̌̌
� k Ouk`2�sk Ovk`2s D kukH

�s
K
kvkHs

K
: (8.55)

Suppose that Ju D 0 for some u 2 H�s
K

. Then

0 D

1X
kD0

Ou.k/ Ov.k/ for all v 2 H s
K : (8.56)

We may choose v D wj 2 H s
K
..�`; `// for each j 2 N, and then Ov.k/ D ıkj , which

means that
0 D Ou.j / for all j 2 N: (8.57)

Then kukHs
K
D 0, and so u D 0, from which we deduce that J is injective.

Now suppose that F 2 .H s
K
..�`; `///�. Then we may define OF 2 .`2s .N//

� via

h OF ; Ovi D hF; vi: (8.58)

Since we have the canonical identification .`2s .N//
� D `2�s.N/ we then deduce that there

exists Ou 2 `2�s.N/ such that

h OF ; Ovi D

1X
kD0

Ov.k/ Ou.k/: (8.59)

Letting u D
P1
kD0 Ou.k/wk 2 H�s

K
..�`; `//, we find that

hF; vi D h OF ; Ovi D hJu; vi for all v 2 H s
K..�`; `//; (8.60)

and hence F D Ju. Thus J is surjective.
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It remains only to show that J is an isometry. For this we compute

kJuk.Hs
K
/� D sup

kvkHs
K
�1

hJu; vi D sup
k Ovk

`2s
�1

1X
kD0

Ou.k/ Ov.k/

D k Ouk.`2s /� D k Ouk`2�s D kukH
�s
K
: (8.61)

With this result in hand we can describe the map u 7! Ou more explicitly.

Theorem 8.11. The following hold for s 2 R:

(1) If s � 0 and u 2 H s
K
..�`; `//, then Ou.k/ D .u;wk/L2 for all k � 0.

(2) If s < 0 and u2H s
K
..�`;`//, then Ou.k/Dhu;wki for all k � 0, which is well-defined

since wk 2 H�s
K
..�`; `// and H s

K
..�`; `// D .H�s

K
..�`; `///�.

Proof. If s � 0 and u 2 H s
K
..�`; `//, then u 2 L2..�`; `//. Since u D

P1
kD0 Ou.k/wk

with the series converging in H s
K
..�`; `// and hence in L2 we may then compute

.u;wk/L2 D
� 1X
jD0

Ou.j /wj ; wk

�
L2
D Ou.k/: (8.62)

This proves the first item.
Now assume that s < 0 and u 2 H s

K
..�`; `//. Then Theorem 8.10 tells us that

hu;wki D

1X
jD0

Ou.j /ıjk D Ou.k/; (8.63)

which proves the second item.

We now record the nesting properties of these Sobolev spaces.

Theorem 8.12. For s; t 2 R with s � t we have H t
K
..�`; `// � H s

K
..�`; `// and

kukHs
K
�

1

�
.t�s/=2
1

kukH t
K

for all u 2 H t
K..�`; `//: (8.64)

Proof. This follows immediately from the definition of the norms on these spaces.

Next we record some finer information about these spaces. In fact, this result is the
key link to the usual theory of Sobolev spaces.

Theorem 8.13. The following hold:

(1) H0
K
..�`; `// D L2..�`; `// and kuk0;† D kukH0

K
for all u 2 L2..�`; `//.

(2) H1
K
..�`; `// D H 1..�`; `// and kuk1;† D kukH1

K
for all u 2 H 1..�`; `//.

(3) Let 2 � m 2 N. Then

Hm
K..�`;`//D¹u2H

m..�`;`// j .K.r/u/0.˙`/D0 for 0� r �m=2�1º; (8.65)

where K.0/ D I and K.rC1/ DKK.r/. Moreover, k � kHm
K

and k � kHm are equiva-
lent on these spaces.
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Proof. The first two assertions follow easily from the properties of the eigenfunctions
¹wkº

1
kD0

, so we will only prove the third item. Throughout the proof we let Xm denote
the space on the right side of (8.65). We proceed by induction, starting with the base cases
m D 2 and m D 3.

First consider the case m D 2. Suppose that u 2 H2
K
..�`; `//. We may then define

the function U D
P1
kD0 �k Ou.k/wk , which belongs to H0

K
..�`; `// D L2..�`; `// since

kU k2
L2
D

1X
kD0

j�k Ou.k/j
2
D kuk2

H2
K

<1: (8.66)

Since u 2 H1
K
..�`; `// we also know that for v 2 H 1..�`; `//,

.u; v/1;† D

1X
kD0

�k Ou.k/ Ov.k/ D

1X
kD0

OU.k/ Ov.k/ D .U; v/0;†; (8.67)

and hence u is a weak solution to the problem´
Ku D U in .�`; `/;

B˙u D 0:
(8.68)

The elliptic regularity of Theorem 8.4 then tells us that u 2 H 2..�`; `// and kukH2 �
kU kL2 D kukH2

K
, from which we deduce that H2

K
..�`; `// � X2.

Now suppose that u 2 X2. Then clearly Ku 2 L2, and we may compute

kuk2
H2
� kKuk2

H0
D

1X
kD0

j.Ku;wk/0;†j
2
D

1X
kD0

j.u;Kwk/0;†j
2
D

1X
kD0

�2kj Ou.k/j
2

D kuk2
H2

K

; (8.69)

from which we deduce that X2 � H2
K
..�`; `//. A similar argument works for m D 3;

we omit the details for brevity. This establishes the base cases m D 2 and m D 3.
Suppose now that the result has been proved for all 2 � k � m for some m � 3. Let

u 2 HmC1
K

..�`; `//. Using the same U as above, we find that kU kHm�1
K
D kuk

H
mC1
K

,

and so the induction hypothesis tells us that U 2 Xm�1 with kU kHm�1
K
� kU k

VHm�1
. We

then use elliptic regularity as above to see that u 2 XmC1 and kukHmC1 � kU kHm�1 D
kuk

H
mC1
K

, which in turn shows that HmC1
K

..�`; `// � XmC1.

On the other hand, if u 2 XmC1 then elliptic regularity and the induction hypothesis
show that

kuk2
HmC1

� kKuk2
Hm�1

D

1X
kD0

�m�1k j.Ku;wk/0;†j
2
D

1X
kD0

�m�1k j.u;Kwk/0;†j
2

D

1X
kD0

�mC1
k
j Ou.k/j2 D kuk2

H
mC1
K

: (8.70)

We then deduce that XmC1 � HmC1
K

..�`; `//.
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The principle of induction now tells us that Hm
K
..�`; `//DXm for allm� 2 and that

the norms k � kHm
K

and k � kHm are equivalent on these spaces.

Theorem 8.12 shows that we have the nesting H t
K
..�`; `//�H s

K
..�`; `// for s < t .

In fact, we can show more.

Theorem 8.14. Suppose that s; t 2 R with s < t . If u 2 H s
K
..�`; `// \H t

K
..�`; `//,

then u 2 H r
K
..�`; `// for all s � r � t , and

kukHr
K
� kuk�

Hs
K
kuk1��

H t
K

(8.71)

for � 2 Œ0; 1� given by
r D s� C t .1 � �/: (8.72)

Proof. The result is trivial if r D s or r D t , so we may assume that s < r < t . We know
that Ou 2 `2s .N/ \ `

2
t .N/. For K � 1 we may use Hölder’s inequality to estimate

KX
kD0

�rkj Ou.k/j
2
D

KX
kD0

��sk j Ou.k/j
2��

.1��/t

k
j Ou.k/j2.1��/

�

� KX
kD0

�skj Ou.k/j
2
��� KX

kD0

�tkj Ou.k/j
2
�1��

�

� 1X
kD0

�skj Ou.k/j
2
��� 1X

kD0

�tkj Ou.k/j
2
�1��

D .kuk2
Hs

K
/� .kuk2

H t
K

/1�� : (8.73)

Upon sending K !1 we find that u 2 H r
K
..�`; `// and

kuk2
Hr

K
D

1X
kD0

�rkj Ou.k/j
2
� .kuk2

Hs
K
/� .kuk2

H t
K

/1�� : (8.74)

The result follows by taking square roots.

8.4. Functional calculus

We can use the eigenvalues to define a functional calculus of K . First we need some
notation.

Definition 8.15. Write †K D ¹�k j k � 0º � Œg;1/. For r 2 R define the space

Br .†K/ D ¹f W †K ! R j kf kBr <1º (8.75)

where

kf kBr D sup
x��0

jf .x/j

xr
: (8.76)

This is easily shown to be a Banach space. Similarly, for r 2 R define

Br
0.†K/ D

°
f 2 Br .†K/

ˇ̌̌
lim
x!1

jf .x/j=xr D 0
±
; (8.77)

which is again easily shown to be a Banach space.
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Now we define a functional calculus of K on the spaces H s
K
..�`; `//.

Definition 8.16. Let s 2 R and r 2 R. For f 2Br .†K/ and u 2H sC2r
K

..�`; `// define

f .K/u D

1X
kD0

f .�k/ Ou.k/wk : (8.78)

The next result records the key properties of these operators.

Theorem 8.17. Let s 2 R and r 2 R. For f 2 Br .†K/ and u 2 H sC2r
K

..�`; `// let
f .K/u be as defined above. Then the following hold:

(1) f .K/ W H sC2r
K

..�`; `//! H s
K
..�`; `// is bounded and linear.

(2) f .K/ is self-adjoint in the sense that if u; v 2 H sC2r
K

..�`; `//, then

.f .K/u; v/Hs
K
D .u; f .K/v/Hs

K
: (8.79)

(3) The map

Br .†K/ 3 f 7! f .K/ 2 L.H sC2r
K

..�`; `//IH s
K..�`; `/// (8.80)

is bounded and linear.

(4) If f 2Br
0.†K/, then f .K/ WH sC2r

K
..�`;`//!H s

K
..�`;`// is a compact operator.

Proof. The first three assertions are elementary, so we will only prove the fourth. To do
so we will show that f .K/ is the limit (in the operator norm topology) of a sequence
of finite rank operators (see, for instance, [34, Chapter VI]). To this end, for each j � 0
define Fj W H sC2r

K
..�`; `//! H s

K
..�`; `// via

Fju D

jX
kD0

f .�k/ Ou.k/wk : (8.81)

It is clear that each Fj is bounded, linear, and of finite rank. Also, for u 2H sC2r
K

..�`; `//

and j � 0 we have

k.Fj �f .K//uk2
Hs

K
D

1X
kDjC1

�skjf .�k/j
2
j Ou.k/j2� sup

k�jC1

jf .�k/j
2

�2r
k

kuk2
H
sC2r
K

; (8.82)

and hence

kFj � f .K/k2
L.H

sC2r
K

IHs
K
/
� sup
k�jC1

jf .�k/j
2

�2r
k

: (8.83)

From this and the inclusion f 2Br
0.†K/we deduce that Fj ! f .K/ in L.H sC2r

K
IH s

K
/,

and hence f .K/ is compact.

One of the most important uses of this result is the following corollary.

Corollary 8.18. If s; t 2 R and s < t , then H t
K
..�`; `// �� H s

K
..�`; `//.
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We have the following variant of elliptic regularity in the spaces H s
K
..�`; `//.

Theorem 8.19. Let s 2 Œ0;1/ and suppose that f 2 H s
K
..�`; `//. If u 2 H1

K
..�`; `//

is the weak solution to Ku D f and Bu D 0, i.e.

.u; v/1;† D .f; v/0;† for all v 2 H 1..�`; `//; (8.84)

then u 2 H sC2
K

..�`; `//. Moreover, kuk
H
sC2
K

D kf kHs
K

. Hence K W H sC2
K

..�`; `//!

H s
K
..�`; `// is an isometric isomorphism.

Proof. We have

Of .k/ D .f; wk/0;† D .u;wk/1;† D .wk ; u/1;† D �k.wk ; u/0;† D �k.u;wk/0;†

D �k Ou.k/: (8.85)

Thus
kuk2

H
sC2
K

D

1X
kD0

�sC2
k
j Ou.k/j2 D

1X
kD0

�skj
Of .k/j2 D kf k2

Hs
K
: (8.86)

8.5. Interpolation theory and its consequences

Here we write .X; Y /�;p for � 2 Œ0; 1� and 1 � p � 1 for the real interpolation of the
spaces X; Y with parameters �; p. See [3] or [43], for instance, for the precise definition.
We record a basic result.

Theorem 8.20. Let s; t 2 R with s ¤ t . For 0 < � < 1 and r D .1 � �/s C � t we have

.`2s .N/; `
2
t .N//�;2 D `

2
r .N/: (8.87)

Proof. This follows immediately from [3, Theorem 5.4.1].

By combining this with Theorem 8.8 we immediately deduce the following.

Corollary 8.21. Let s; t 2 R with s ¤ t . For 0 < � < 1 and r D .1 � �/s C � t we have

.H s
K..�`; `//;H

t
K..�`; `///�;2 D H r

K..�`; `//: (8.88)

Next we present a useful application of interpolation theory.

Lemma 8.22. If s � 0, then H s
K
..�`; `// ,! H s..�`; `//.

Proof. We may view Theorem 8.13 as saying that, for m 2 N, the identity maps

I WHm
K..�`; `//!L2..�`; `// and I WHmC1

K
..�`; `//!HmC1..�`; `// (8.89)

are bounded linear operators. We can then interpolate and use Corollary 8.21 and the
interpolation properties of standard Sobolev spaces (see, for instance, [3, 43]) to deduce
that for 0 < s < 1,

I W HmCs
K

..�`; `// D .Hm
K..�`; `//;H

mC1
K

..�`; `///s;2

! .Hm..�`; `//;HmC1..�`; `///s;2 D H
mCs..�`; `//: (8.90)
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In fact, we can do quite a bit better when 0� s < 2. Before stating the following result
we recall (see [29]) that

H
1=2
00 ..�`; `// D .H

0..�`; `//;H 1
0 ..�`; `///1=2;2; (8.91)

H
1=2
00 ..�`; `// � H

1=2..�`; `// D .H 0..�`; `//;H 1..�`; `///1=2;2: (8.92)

Theorem 8.23. For 0 � t � 1 we have H t ..�`; `// D H t
K
..�`; `// with norm equiva-

lence kf kH t � kf kH t
K

. Moreover, for s 2 .0; 1/ we have

H1Cs
K

..�`; `//D

8̂̂<̂
:̂
H 1Cs..�`; `// if 0<s<1=2;

¹f 2H 3=2..�`; `// jf 02H
1=2
00 ..�`; `//º if sD1=2;

¹f 2H 1Cs..�`; `// jf 02H s
0 ..�`; `//º if 1=2<s<1;

(8.93)

and we have the norm equivalence

kf k2
H
1Cs
K

�

8̂̂<̂
:̂
kf k2

H1Cs
if 0 < s < 1=2:

kf k2
H3=2

C
R `
�`
jf 0.x/j2

`�jxj
dx if s D 1=2;

kf k2
H1Cs

C kf 0k2
H s
0

if 1=2 < s < 1:

(8.94)

Proof. The assertion for t D 0; 1 is proved in Theorem 8.13, and for 0 < t < 1 it follows
from this theorem, Corollary 8.21, and standard Sobolev interpolation:

H t ..�`; `// D .H 0..�`; `//;H 1..�`; `///t;2

D .H0
K..�`; `//;H

1
K..�`; `///t;2 D H t

K..�`; `//: (8.95)

We now prove the assertion for s 2 .0; 1/. Define the map F W L2..�`; `// � R!
H 1..�`; `// via

F.g; v/ D v C

Z x

�`

g.t/ dt: (8.96)

If g2H 1
0 ..�`;`// and v2R, then F.g;v/2L2..�`;`// and F.g;v/0Dg2H 1

0 ..�`;`//.
From this and Theorem 8.13 we deduce that

F 2 L.L2..�`; `// �RIH1
K..�`; `/// \L.H 1

0 ..�`; `// �RIH2
K..�`; `///: (8.97)

Hence, upon interpolating, we find that for s 2 .0; 1/

F 2 L.X s �RIH1Cs
K

..�`; `///; (8.98)

where we have written X s D .L2..�`; `//;H 1
0 ..�`; `///s;2 for brevity.

Next consider the map D defined by f 7! Df D f 0. Theorem 8.13 tells us that

D 2 L.H1
K..�`; `//IL

2..�`; `/// \L.H2
K..�`; `//IH

1
0 ..�`; `///: (8.99)

Upon interpolating again and using Corollary 8.21, we find that

D 2 L.H1Cs
K

..�`; `//IX s/: (8.100)



Y. Guo, I. Tice 1528

For s 2 .0; 1/ define the Hilbert space

Y 1Cs D ¹f 2 H 1Cs..�`; `// j f 0 2 X sº (8.101)

with norm kf k2
Y 1Cs

D kf k2
H1Cs

C kf 0k2Xs . According to (8.100) and Lemma 8.22, we
have the continuous inclusion H1Cs

K
..�`; `// � Y 1Cs . On the other hand, if f 2 Y 1Cs ,

then .f 0; f .�`// 2 X s �R, and by (8.98) we find that

f D F.f 0; f .�`// 2 H1Cs
K

..�`; `///:

Hence, we have the continuous inclusion Y 1Cs � H1Cs
K

..�`; `//. We deduce that we
have the algebraic and topological identity

H1Cs
K

..�`; `// D Y 1Cs for all s 2 .0; 1/: (8.102)

To conclude, we recall the standard interpolation facts

X s D .L2..�`; `//;H 1
0 ..�`; `///2;s D

8̂̂<̂
:̂
H s..�`; `// if 0 < s < 1=2;

H
1=2
00 ..�`; `// if s D 1=2;

H s
0 ..`; `// if 1=2 < s < 1:

(8.103)

If 0 < s < 1=2 then we have the norm equivalence

kf k2
H
1Cs
K

� kf k2
H1Cs

C kf 0k2H s..�`;`// � kf k
2
H1Cs

; (8.104)

and so H1Cs
K

..�`; `// D H 1Cs..�`; `//. The result follows from this and the characteri-
zation of H 1=2

00 ..�`; `// in (8.91).

As a byproduct of this result we get the following Sobolev embeddings.

Theorem 8.24. For s 2 Œ0; 2� we have

H s
K..�`; `// ,!

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

L2=.1�2s/..�`; `// if s 2 Œ0; 1=2/;

Lp..�`; `// for all p 2 Œ1;1/ if s D 1=2;

C
0;˛
b
..�`; `// for ˛ D s � 1=2 if s 2 .1=2; 3=2/;

C
0;˛
b
..�`; `// for all ˛ 2 Œ0; 1/ if s D 3=2;

C
1;˛
b
..�`; `// for ˛ D s � 3=2 if s 2 .3=2; 2�:

(8.105)

Moreover, for s 2 Œ1; 3=2� we have

H s
K..�`; `// ,!

´
W 1;2=.1�2s/..�`; `// if s 2 Œ1; 3=2/;

W 1;p..�`; `// for all p 2 Œ1;1/ if s D 3=2:
(8.106)

Proof. These are immediate consequences of Theorem 8.23 and the standard Sobolev
embeddings of H s..�`; `// for 0 � s � 2.



Stability of contact lines in fluids 1529

8.6. Bilinear boundedness, integration by parts

Suppose that '; 2 W and let s 2 Œ0; 1�. We then have

.'; /1;† D

1X
kD0

�k O'.k/ O .k/D

1X
kD0

�sk O'.k/�
1�s
k
O .k/D .Ks';K1�s /0;†: (8.107)

Consequently, for any s; t 2 Œ0; 1�,

.Ks';K1�s /0;† D .K
t';K1�t /0;†; (8.108)

which we can view as a sort of fundamental integration-by-parts result in the sense that we
can arbitrarily shift powers of K from one term to the next so long as the overall power
sums to unity. Working in W is obviously too restrictive, but we can extend by density to
get a generalized version of integration by parts for all fractional orders.

Theorem 8.25. Let B W W �W ! R be the bilinear map defined via

B.'; / D .K'; /0;† D .';  /1;† D .';K /0;†: (8.109)

Then B extends to a bounded bilinear map B W H2s
K
�H

2.1�s/

K
! R for each s 2 Œ0; 1�.

Proof. This follows directly from the identity

B.'; / D .Ks';K1�s /0;† for '; 2 W; (8.110)

which allows us to bound

jB.'; /j � k'kH2s
K
k k

H
2.1�s/

K

: (8.111)

Using this and the density of W in H t
K

for all t � 0 proves the result.

8.7. The operators Dr
j

We now turn our attention to the operators Dr WD Kr=2 for r � 0, as defined by the
functional calculus from Definition 8.15. We will need to introduce some finite approxi-
mations, Dr

j , defined by

Dr
j u D

jX
kD0

�
r=2

k
Ou.k/wk : (8.112)

It is easy to see that this is well-defined for every u 2 L2..�`; `// D H0
K
..�`; `// and

that in this case Dr
j u 2 W �

T
s�0 H s

K
..�`; `// � C1.Œ�`; `�/.

Let us now study some properties. The first result tells us that Dr
j is like an approxi-

mation of r derivatives.

Proposition 8.26. Let j 2 N. Then the following hold:

(1) If 0 � r1; r2; s1; s2 2 R satisfy r1 C s1 D r2 C s2, then

kD
r1
j f kHs1

K
D kD

r2
j f kHs2

K
for all f 2 L2..�`; `//. (8.113)
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(2) If 0 � r 2 R, then

kDr
j f kL2 �kf kHr

K
and kf kHr

K
D lim
j!1

kDr
j f kL2 for all f 2H r

K..�`; `//.

(8.114)

Proof. For the first item we compute

kD
r1
j f k

2

H
s1
K

D

jX
kD0

�
s1
k
j�
r1=2

k
Of .k/j2 D

jX
kD0

�
s2
k
j�
r2=2

k
Of .k/j2 D kD

r2
j f k

2

H
s2
K

: (8.115)

In turn this shows that

kDr
j f kL2 D kD

0
j f kHr

K
D

� jX
kD0

�rkj
Of .k/j2

�1=2
; (8.116)

from which the second item follows.

Next we consider how Dr
j interacts with functions of average zero.

Lemma 8.27. If f 2 L2..�`; `// satisfies
R `
�`
f D 0, then

R `
�`
Dr
j f D 0 for all r � 0

and j 2 N.

Proof. Since w0 D 1=
p
2` we see that

R `
�`
f D 0 if and only if Of .0/ D 0. In this case

1Dr
j f .0/ D 0 as well, and the result follows.

Next we prove an integration by parts formula.

Lemma 8.28. Let 0 � r; s; t; � 2 R be such that r D s C t . Then for j 2 N, f 2
L2..�`; `//, and g 2 H

�

K
..�`; `// we have

.Dr
j f; g/H�

K
D .Ds

j f;D
t
jg/H�

K
: (8.117)

Proof. We simply compute

.Dr
j f; g/H�

K
D

1X
kD0

�
�

k
1Dr
j f .k/ Og.k/D

jX
kD0

�
�Cr=2

k
Of .k/ Og.k/D

jX
kD0

�
�

k
�
s=2

k
Of .k/�

t=2

k
Og.k/

D

1X
kD0

�
�

k
1Ds
j f .k/

bDt
jg.k/D .D

s
j f;D

t
jg/H�

K
: (8.118)

Remark 8.29. In this paper the most useful instances of Lemma 8.28 occur with � 2
¹0; 1º. Indeed, the lemma shows that if 0 � r D s C t and f 2 L2..�`; `//, thenZ `

�`

Dr
j fg D

Z `

�`

Ds
j fD

t
jg for all g 2 L2..�`; `// D H0

K..`; `// (8.119)

and

.Dr
j f; g/1;† D .D

s
j f;D

t
jg/1;† for all g 2 H 1..�`; `// D H1

K..�`; `//: (8.120)
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We conclude with a dual estimate.

Proposition 8.30. Let 0 � r � 1=2, 0 � s < 3=2, and j 2 N. Then

Ds
j W H

s�r ..�`; `//! H�r ..�`; `// D .H r
0 ..�`; `///

� (8.121)

is a bounded linear operator.

Proof. According to the results in [29, Chapter 1] and Theorem 8.23 we have

H r
0 ..�`; `// D H

r ..�`; `// D H r
K..�`; `//: (8.122)

This and Theorem 8.10 then show that

H�rK ..�`; `// D .H r
0 ..�`; `///

�
D H�r ..�`; `// (8.123)

with equality of norms. Hence, for f 2 H s�r ..�`; `// D H s�r
K

..�`; `// (which again
follows by Theorem 8.23), we again use Theorem 8.10 together with Cauchy–Schwarz to
compute

kDs
j f kH�r � kD

s
j f kH�rK

D kJDs
j f k.Hr

K
/� D sup

k Ogk
`2r
�1

jX
kD0

�
s=2

k
Of .k/ Og.k/

D sup
k Ogk

`2r
�1

jX
kD0

�
.s�r/=2

k
Of .k/�

r=2

k
Og.k/ � kf kHs�r

K
. kf kH s�r : (8.124)

This proves the boundedness assertion, and linearity is trivial.

9. Enhancement estimates

Our goal in this section is to record enhancement estimates for the dissipation and energy
that are derived through energy-type arguments rather than elliptic estimates. We will gain
some dissipative control of �, @t�, and @2t �, and we will gain energetic control of @tp.

9.1. Prerequisites

Recall for a real parameter 0 � s < 1 the fractional differential operator Ds DKs=2 and
its finite approximationsDs

j for j 2 N, as defined in Section 8.7. The next result gives an
existence result for a Neumann-type problem involving Ds

j .

Proposition 9.1. Let s 2 R and j; k 2N with 0 � k � 2 and 0 � s < 1. Then there exists
 W �! R solving 8̂̂<̂

:̂
�� D 0 in �;

@� D .D
s
j @
k
t �/=jN0j on †;

@� D 0 on †s;

(9.1)
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where � is the unit normal for the fixed domain � and its nonunit counterpart is N0, i.e.
� D N0=jN0j. Moreover,

k kH1 . k@kt �kH s�1=2 ; k kH2 . kDs
j @
k
t �kH1=2

K

; k@t kH1 . k@kC1t �kH s�1=2 :

(9.2)

Proof. To begin, we note that Proposition 3.4 and Lemma 8.27 imply thatZ
†

Ds
j @
k
t �jN0j

�1
D

Z `

�`

Ds
j @
k
t � D

Z `

�`

@kt � D 0: (9.3)

Consequently, the compatibility condition needed to produce a unique weak solution
 2 VH 1.�/ to (9.1) is satisfied. Since the domain � has convex corners, the H 2 solv-
ability theory is available for (9.1) (see, for instance, [25]). This, the elementaryH 1 weak
estimate, and Proposition 8.30 then show that

k kH1 . kDs
j @
k
t �kH�1=2 . k@kt �kH s�1=2 ;

k kH2 . kDs
j @
k
t �kH1=2

K

. kDs
j @
k
t �kH1=2

K

;

k@t kH1 . kDs
j @
kC1
t �kH�1=2 . k@kC1t �kH s�1=2 ;

(9.4)

from which the result follows.

9.2. Dissipative enhancement for �

We begin by considering dissipation enhancement estimates for �. To this end let  be as
in Proposition 9.1 with k D 0. This proposition and Proposition 3.7 show that if we set
w DMr , then w is a valid choice of a test function in Lemma 3.1 and

divAw D divAMr D K� D 0: (9.5)

We will use this w as a test function in Lemma 3.1 to produce an essential dissipation
estimate.

Theorem 9.2. Let ˛ 2 .0; 1/ be given by (2.5), and 0 < T �1. There exists a universal
0 < ı� < 1 such that if sup0�t<T E.t/ � ı�, then for every 0 � � � t < T we haveZ t

�

k�k2
H3=2�˛

. EÎ;0.�/C EÎ;0.t/C

Z t

�

DÎ;0; (9.6)

where EÎ;0 and DÎ;0 are as in (2.8).

Proof. We begin by assuming that ı� < 2, where  2 .0; 1/ is as in Lemma 3.5. In
particular, this means that the estimates of Lemma 3.5 are available in what follows.

Let s D 1� 2˛ 2 Œ0; 1/, which means that 3=2� ˛ D 1C s=2. For a fixed j 2 N we
let  solve (9.1) with data Ds

j �=jN0j. Then Proposition 9.1 provides the estimates

k kH1 . k�kH s�1=2 ; k kH2 . kDs
j �kH1=2

K

; k@t kH1 . k@t�kH s�1=2 : (9.7)
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Note that since 0 � s < 1 we can define � D .1 � s/=2 2 .0; 1=2�, which satisfies

1

2
C �C s D 1C

s

2
: (9.8)

This, Theorem 8.23, and Proposition 8.26 then provide the useful equivalence

kD
s=2
j �kH1 � kD

s=2
j �kH1

K
D kDs

j �kH1=2C�

K

� kDs
j �kH1=2C� : (9.9)

We use w DMr from above in Lemma 3.1 to arrive at the identity

h@tu; Jwi C

�
�@t N�

�

�0
K@2uC u � rAu;w

�
0

C ..u;w//C .�; w �N /1;† C �Œ@t�;w �N �`

D �

Z `

�`

�R@1.w �N /: (9.10)

We will deal with these term-by-term.
For the first term we note that M D Krˆ for ˆ the flattening map, and so

h@tu; JMr i D

Z
�

@tu � rˆr 

D
d

dt

Z
�

u � rˆr �

Z
�

u � rˆr@t �

Z
�

u � @t .rˆ/r : (9.11)

Using the bound E � 1, the definition of ˆ in (1.28), and (9.7), we may then estimateˇ̌̌̌Z
�

u � rˆr 

ˇ̌̌̌
. krˆkL1kuk0k k1 . krˆkL1kukH0k�kH s�1=2 . kukH0k�kH1

. EÎ;0; (9.12)

where EÎ;0 is the natural energy at the nondifferentiated level, as defined in (2.8). Simi-
larly,ˇ̌̌̌
�

Z
�

u � rˆr@t �

Z
�

u � @t .rˆ/r 

ˇ̌̌̌
. kukH0.k kH1 C k@t kH1/

. kukH0.k�kH s=2 C k@t�kH s=2/: (9.13)

For the second term we write�
�@t N�

�

�0
K@2uC u � rAu;w

�
0

D

�
�@t N�

�

�0
K@2uC u � rAu;rˆr 

�
0

: (9.14)

From this and the bounds E � 1 and (9.7) we may then estimateˇ̌̌̌�
�@t N�

�

�0
K@2uC u � rAu;w

�
0

ˇ̌̌̌
. kukH1k kH1 . kukH1k�kH1 : (9.15)
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For the third term we use the H 2 estimate from (9.7) to bound

j..u;w//j D
�

2

ˇ̌̌̌Z
�

JDAu WDA.Mr /

ˇ̌̌̌
. kukH1k kH2 . kukH1kDs

j �kH1=2

K

: (9.16)

To handle the fourth term we first note that on †,

w �N DMr �N D r �N0 D jN0j@� D D
s
j �: (9.17)

Using this, Lemma 8.28, and (9.9) we can rewrite the fourth term as

.�; w �N /1;† D .�;D
s
j �/1;† D .D

s=2
j �;D

s=2
j �/1;† D kD

s=2
j �k2

H1
K

D kDs
j �k

2

H
1=2C�

K

:

(9.18)
Then for the fifth term we can use trace theory and Theorem 8.23 to bound

j�Œ@t�;D
s
j ��`j . Œ@t��`kD

s
j �kH1=2C� D Œ@t��`kD

s
j �kH1=2C�

K

: (9.19)

Finally, we examine the nonlinear term on the right side of (9.10). We start by using
Proposition B.8, which is available since 0 < s < 1, to estimateˇ̌̌̌Z `

�`

�R@1D
s
j �

ˇ̌̌̌
. kDs

j �kH1�s=2kRkH s=2 : (9.20)

Next we note that

R.y; z/

z2
;

@2R.y; z/

z
; and

@1R.y; z/

z2
(9.21)

are well-defined and bounded by Proposition A.1. Thus R.@1�0; @1�/=@1� is well-defined
and satisfies

@1

�
R.@1�0; @1�/

@1�

�
D
@1R.@1�0; @1�/@

2
1�0

@1�
C

�
@2R.@1�0; @1�/

@1�
�

R.@1�0; @1�/

.@1�/2

�
@21�;

(9.22)
which in turn means that for any 1 � q � 1,

kR.@1�0; @1�/=@1�kW 1;q . k@1�kLq C k@21�kLq D k@1�kW 1;q � k�kW 2;q : (9.23)

This allows us to use Theorem B.3 and the embedding W 1;qC..�`; `// ,!

H 1=2C"C=2..�`; `// to estimate

kRkH s=2 D k@1�R.@1�0; @1�/=@1�kH s=2 . k@1�kH s=2kR.@1�0; @1�/=@1�kH .1C"C/=2
. k@1�kH s=2kR.@1�0; @1�/=@1�kW 1;qC . k@1�kH s=2k�kW 2;qC : (9.24)

Assembling these estimates and employing Theorem 8.23 and the definition of E from
(2.10) then shows thatˇ̌̌̌Z `

�`

�R@1D
s
j �

ˇ̌̌̌
. kDs

j �kH1�s=2k�kH1Cs=2k�kW 2;qC . k�k2
H1Cs=2

p
E: (9.25)
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We now combine all of these estimates to deduce that

kDs
j �k

2

H
1=2C�

K

C
d

dt

Z
�

u � rˆr 

. kukH0.k�kH s�1=2 C k@t�kH s�1=2/C kukH1kDs
j �kH1=2

K

C Œ@t��`kD
s
j �kH1=2C�

K

C k�k2
H1Cs=2

p
E: (9.26)

Then for 0 � � � t < T we can integrate this inequality to see thatZ t

�

kDs
j �k

2

H
1=2C�

K

C

Z
�

.u � rˆr /.t/

.
Z
�

.u � rˆr /.�/C

Z t

�

kukH0.k�kH s�1=2 C k@t�kH s�1=2/

C

Z t

�

kukH1kD
s
j �kH1=2

K

C

Z t

�

Œ@t��`kD
s
j �kH1=2C�

K

C

Z t

�

k�k2
H1Cs=2

p
E: (9.27)

We then use (9.12) and Cauchy’s inequality to deduce from this that

1

2

Z t

�

kDs
j �k

2

H
1=2C�

K

. EÎ;0.�/C EÎ;0.t/C

Z t

�

kukH0.k�kH s�1=2 C k@t�kH s�1=2/

C

Z t

�

.kuk2
H1
C Œ@t��

2
`/C

Z t

�

k�k2
H1Cs=2

p
E: (9.28)

Note that from (9.8), Proposition 8.26, and Theorem 8.23 we have

lim
j!1

kDs
j �k

2

H
1=2C�

K

D k�k2
H
1Cs=2

K

� k�k2
H1Cs=2

: (9.29)

We then send j !1 and use this and Fatou’s lemma to see that

1

2

Z t

�

k�k2
H1Cs=2

. EÎ;0.�/C EÎ;0.t/C

Z t

�

kukH0.k�kH s�1=2 C k@t�kH s�1=2/

C

Z t

�

.kuk2
H1
C Œ@t��

2
`/C

Z t

�

k�k2
H1Cs=2

p
E: (9.30)

Since s � 1=2 � 1C s=2 we can then use Cauchy’s inequality once more in addition to
the smallness E � ı� for some universal ı� > 0 to conclude that

1

4

Z t

�

k�k2
H1Cs=2

. EÎ;0.�/C EÎ;0.t/C

Z t

�

.kuk2
H0
C kukH0k@t�kH s�1=2/

C

Z t

�

.kuk2
H1
C Œ@t��

2
`/: (9.31)

Finally, we use the equation @t� D u � N D u � .�@1�0; 1/ � u1@1�, Theorem B.3, and
the fact that E � 1 to estimate

k@t�kH s�1=2 . kukH s�1=2.1C k@1�kH1/ . kukH s . kukH1 : (9.32)
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Plugging this into (9.31) then shows that
1

4

Z t

�

k�k2
H1Cs=2

. EÎ;0.�/C EÎ;0.t/C

Z t

�

.kuk2
H1
C Œ@t��

2
`/

D EÎ;0.�/C EÎ;0.t/C

Z t

�

DÎ;0; (9.33)

which is the desired bound since 1C s=2 D 3=2 � ˛.

9.3. Dissipative enhancement for @t� and @2t �

We now turn our attention to enhanced dissipation estimates for @t� and @2t �.

Theorem 9.3. Let ˛ 2 .0;1/ be given by (2.5), and 0< T �1. Let k 2 ¹1;2º. There exists
a universal 0 < ı� < 1 such that if sup0�t<T E.t/ � ı�, then for every 0 � � � t < T we
have Z t

�

k@kt �k
2
H3=2�˛

. EÎ;k.�/C EÎ;k.t/C

Z t

�

.DÎ C ED/: (9.34)

Proof. We will give the proof only in the harder case k D 2. The case k D 1 follows from
a similar, simpler argument. To begin, we assume that ı� < 2, where  2 .0; 1/ is as in
Lemma 3.5. In particular, this means that the estimates of Lemma 3.5 are available.

We begin in essentially the same way as in the proof of Theorem 9.2. Let s D 1 �

2˛ 2 Œ0; 1/, which means that 3=2 � ˛ D 1C s=2. Also let � D .1 � s/=2 so that 1=2C
� C s D 1C s=2. For a fixed j 2 N we let  solve (9.1) with data Ds

j @
2
t �=jN0j. Then

Proposition 9.1 provides the estimates

k kH1 . k@2t �kH s�1=2 ; k kH2 . kDs
j @
2
t �kH1=2

K

; k@t kH1 . k@3t �kH s�1=2 :
(9.35)

Note that s � 1=2D 1=2� 2˛ < 1=2� ˛, so the latter term is controlled by the dissipation
(see (2.11)). Then Proposition 3.34 lets us use Lemma 3.1 with w DMr to see that

h@3t u; Jwi C

�
�@t N�

�

�0
K@2@

2
t uC u � rA@

2
t u;w

�
0

C ..@2t u;w//C .@
2
t �;w �N /1;†

C �Œ@3t �;w �N �`

D

Z
�

F 1 �wJ �

Z
†s

J.w ��/F 5�

Z `

�`

�F 3@1.w �N /CF 4 �w��Œw �N ; F 7�`: (9.36)

Here the forcing terms on the right are as defined in Appendix A. Arguing as in the proof
of Theorem 9.2, we estimate all of the terms on the left of (9.36) to arrive atˇ̌̌̌Z

�

@2t u � rˆr 

ˇ̌̌̌
. k@2t ukH0k@

2
t �kH1 . EÎ;2; (9.37)

where EÎ;2 is as defined in (2.8), and

kDs
j @
2
t �k

2

H
1=2C�

K

C
d

dt

Z
�

@2t u � rˆr . k@2t ukH0.k@
2
t �kH s�1=2 C k@

3
t �kH s�1=2/

C k@2t ukH1k@
2
t �kH1Cs=2 C Œ@

3
t ��`k@

2
t �kH1Cs=2 C hF ;Mr i; (9.38)



Stability of contact lines in fluids 1537

where, as shorthand, we have written

hF ;Mr i D

Z
�

F 1 �Mr J �

Z
†s

J.Mr ��/F 5

�

Z `

�`

�.F 3@1.Mr �N /CF 4 �Mr /� ŒMr �N ; F 7�`: (9.39)

We now estimate F , breaking it into three separate pieces. For the first piece we use
Theorem 5.4, Proposition 3.7, and (9.35) to estimateˇ̌̌̌Z
�

F 1 � .Mr /J �

Z `

�`

F 4 � .Mr / �

Z
†s

J..Mr / � �/F 5
ˇ̌̌̌

. kMr kH1.E C
p

E/
p

D

. k kH2.E C
p

E/
p

D . kDs
j @
2
t �kH1=2

K

.E C
p

E/
p

D : (9.40)

Next we handle the F 3 term. According to (A.10) we have

F 3 D @2t ŒR.@1�0; @1�/� D @zR.@1�0; @1�/@1@
2
t � C @

2
zR.@1�0; @1�/.@1@t�/

2: (9.41)

On the other hand, we know that Mr � N D Ds
j @
2
t � on †. Combining these, and

employing Proposition B.8, we can estimateˇ̌̌̌Z `

�`

�F 3@1.Mr �N /

ˇ̌̌̌
� �

ˇ̌̌̌Z `

�`

@1.D
s
j @
2
t �/@zR.@1�0; @1�/@1@

2
t �

ˇ̌̌̌
C�

ˇ̌̌̌Z `

�`

@1.D
s
j @
2
t �/@

2
zR.@1�0; @1�/.@1@t�/

2

ˇ̌̌̌
. kDs

j @
2
t �kH1�s=2k@zR.@1�0; @1�/@1@

2
t �kH s=2

C kDs
j @
2
t �kH1�s=2k@

2
zR.@1�0; @1�/.@1@t�/

2
kH s=2 : (9.42)

Note that
1

2
D

1

qC
�
1

1

�
1

2
C
"C

2

�
(9.43)

so the Sobolev embeddings imply that W 1;qC..�`; `// ,! H .1C"C/=2..�`; `// and

W 2;qC..�`; `// ,! H .3C"C/=2..�`; `// ,! H 3=2�˛..�`; `// D H 1Cs=2..�`; `//:

(9.44)
These and Theorem B.3 then imply that

k@zR.@1�0; @1�/@1@
2
t �kH s=2 . k@1@2t �kH s=2k@zR.@1�0; @1�/kH .1C"C/=2

. k@2t �kH1Cs=2k@zR.@1�0; @1�/kW 1;qC (9.45)

and

k@2zR.@1�0; @1�/.@1@t�/
2
kH s=2 . k.@1@t�/2kH s=2k@2zR.@1�0; @1�/kH .1C"C/=2

. k@1@t�kH s=2k@1@t�kH .1C"C/=2k@
2
zR.@1�0; @1�/kW 1;qC

. k@t�k2
W 2;qC

k@2zR.@1�0; @1�/kW 1;qC : (9.46)
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Since the terms involving R involve an integer derivative count, we can employ Proposi-
tion A.1 to estimate

k@zR.@1�0; @1�/kW 1;qC C k@
2
zR.@1�0; @1�/kW 1;qC . k�k

W 2;qC : (9.47)

Hence,ˇ̌̌̌Z `

�`

�F 3@1.Mr �N /

ˇ̌̌̌
. k@2t �k

2
H1Cs=2

k�k
W 2;qCCk@

2
t �kH1Cs=2k@t�k

2

W 2;qC
k�k

W 2;qC

. k@2t �k
2
H1Cs=2

p
E C k@2t �kH1Cs=2E

p
D : (9.48)

Lastly, we handle the F 7 term, again using Mr �N D D2
j @
2
t � on †. Then (A.14)

and standard trace theory show that

j�ŒMr �N ; F 7�`j D �jŒD
s
j @
2
t �;
OW 0.@t�/@

3
t �C

OW 00.@t�/.@
2
t �/

2�`j

. kDs
j @
2
t �kH1�s=2 max

˙`
j OW 0.@t�/@

3
t �C

OW 00.@t�/.@
2
t �/

2
j: (9.49)

According to Theorem 3.8, k@t�kC0
b

.
p

E . 1; so we may estimate

j OW 0.z/j D
1

˛

ˇ̌̌̌Z z

0

W 00.r/ dr

ˇ̌̌̌
. jzj for z 2 Œ�k@t�kC0 ; k@t�kC0 �: (9.50)

This and trace theory then provide the bound

max
˙`
j OW 0.@t�/@

3
t �C

OW 00.@t�/.@
2
t �/

2
j . max

˙`
.j@t�j j@

3
t �j C j@

2
t �j

2/

.
p

DÎ.k@t�kH1 C k@
2
t �kH1/ .

p
EÎ

p
DÎ; (9.51)

where EÎ and DÎ are as defined in (2.9). Hence,

j�ŒMr �N ; F 7�`j . k@2t �kH1Cs=2
p

EÎ

p
DÎ: (9.52)

Upon plugging the estimates (9.40), (9.48), and (9.52) into (9.39), we deduce that

jhF ;Mr ij . k@2t �k
2
H1Cs=2

p
E C k@2t �kH1Cs=2

p
E
p

D : (9.53)

Inserting this into (9.38), integrating in time from � to t , and using (9.37) then shows thatZ t

�

kDs
j @
2
t �k

2

H
1=2C�

K

. EÎ;2.�/C EÎ;2.t/C

Z t

�

k@2t ukH0.k@
2
t �kH s�1=2 C k@

3
t �kH s�1=2/

C

Z t

�

.k@2t ukH1 C Œ@
3
t ��`/k@

2
t �kH1Cs=2

C

Z t

�

.k@2t �k
2
H1Cs=2

p
E C k@2t �kH1Cs=2

p
E
p

D/: (9.54)
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We then send j !1 and argue as in the proof of Theorem 9.2 to deduce from this thatZ t

�

k@2t �k
2
H1Cs=2

. EÎ;2.�/C EÎ;2.t/C

Z t

�

k@2t ukH0.k@
2
t �kH s�1=2 C k@

3
t �kH s�1=2/

C

Z t

�

.k@2t ukH1 C Œ@
3
t ��`/k@

2
t �kH1Cs=2

C

Z t

�

.k@2t �k
2
H1Cs=2

p
E C k@2t �kH1Cs=2

p
E
p

D/: (9.55)

Finally, we use Cauchy’s inequality, the fact that s � 1=2 < 1=2, and the assumption that
E � ı� for a universal 0 < ı� � 1 to absorb the k@2t �k

2
H1Cs=2

terms from the right to the
left, which yields

1

2

Z t

�

k@2t �k
2
H1Cs=2

. EÎ;2.�/C EÎ;2.t/C

Z t

�

DÎ C ED : (9.56)

This then provides the desired estimate since 1C s=2 D 3=2 � ˛.

9.4. Energetic enhancement for @tp

We now turn our attention to an estimate that provides L2 control of @tp in terms of the
energy.

Theorem 9.4. Let 0 < T � 1 and suppose that sup0�t<T E.t/ � 2, where  2 .0; 1/
is as in Lemma 3.5. Then

k@tpkL2 . k@tukH1 C k@2t ukL2 C k@t�kH3=2C."��˛/=2 C E C E3=2: (9.57)

Proof. Let  2 H 2.�/ solve 8̂̂<̂
:̂
�� D @tp in �;

 D 0 on †;

@� D 0 on †s;

(9.58)

which exists and enjoys H 2 regularity since � has convex corners. Moreover,

k kH2 . k@tpkL2 : (9.59)

Proposition 3.7 shows that if we setw DMr , thenw is a valid choice of a test function
in Lemma 3.1,

divAw D divAMr D K� D K@tp; (9.60)

and we have the bound
kwkH1 . k kH2 . k@tpkL2 : (9.61)
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Using this w in (3.3) of Lemma 3.1, we find that

h@2t u; Jwi C

�
�@t N�

�

�0
K@2@tuC u � rA@tu;w

�
0

C ..@tu;w// � .@tp; divAw/0

D

Z
�

F 1 � wJ �

Z
†s

J.w � �/F 5 �

Z `

�`

g@t�.w �N /

� �@1

�
@1@t�

.1C j@1�0j2/3=2
C F 3

�
w �N C F 4 � w (9.62)

with F 1, F 3, F 4, and F 5 given by (A.1), (A.3), (A.4), and (A.5), respectively, but

.@tp; divAw/0 D

Z
�

J@tp divAw D

Z
�

j@tpj
2
D k@tpk

2
L2
: (9.63)

According to Theorem 6.4, we have the boundˇ̌̌̌Z
�

F 1 � wJ �

Z
†s

J.w � �/F 5 C F 4 � w

ˇ̌̌̌
. .E C E3=2/kwkH1 . .E C E3=2/k@tpkL2 ;

(9.64)
while Theorem 6.5 shows thatˇ̌̌̌Z `

�`

�
g@t�.w �N / � �@1

�
@1@t�

.1C j@1�0j2/3=2
C F 3

�
w �N

�ˇ̌̌̌
. k@t�kH3=2C."��˛/=2kwkH1 . k@t�kH3=2C."��˛/=2k@tpkL2 : (9.65)

On the other hand, we have the bounds

j..@tu;w//j . k@tukH1kwkH1 . k@tukH1k@tpkL2 ; (9.66)

jh@2t u; Jwij . k@
2
t ukL2kwkL2 . k@2t ukL2k@tpkL2 ; (9.67)

andˇ̌̌̌�
�@t N�

�

�0
K@2@tuC u � rA@tu;w

�
0

ˇ̌̌̌
. kwkL2.k@t N�kL1kr@tukL2 C kukL1k@tukL2/ . k@tpkL2E: (9.68)

Plugging the estimates (9.64)–(9.68) into (9.62) and using (9.63), we deduce that

k@tpk
2
L2

. k@tpkL2
�
k@tukH1Ck@

2
t ukL2Ck@t�kH3=2C."��˛/=2CECE3=2

�
: (9.69)

Then (9.57) follows immediately from this.

10. A priori estimates

In this section we present the proof of our main a priori estimates, Theorem 2.1.

10.1. A key construction

We need one more technical tool to close our a priori estimates, namely the construction
of a useful ! to use in Theorem 3.2. We present the construction of such an ! now.
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Proposition 10.1. Let 0< T �1 and suppose that sup0�t<T E.t/� 2, where  2 .0;1/
is as in Lemma 3.5. Let F 2 be given by (A.9) and let h�i� denote the spatial average on�,
i.e.

hgi� D
1

j�j

Z
�

g: (10.1)

Then there exists ! W � � Œ0; T /! R2 satisfying the following:

(1) !.�; t / 2 H 1
0 .�IR

2/ for 0 � t < T , and

J divA ! D JF
2
� hJF 2i�: (10.2)

(2) ! obeys the estimates

k!k
W
1;4=.3�2"C/

0

. E; k!k
W
1;2=.1�"�/
0

C k@t!kL2=.1�"�/ . .
p

E C E/
p

D :

(10.3)

(3) We have the interaction estimatesˇ̌̌̌Z
�

@2t uJ!

ˇ̌̌̌
. E3=2 (10.4)

andˇ̌̌̌Z
�

@2t u@t .J!/

ˇ̌̌̌
C

ˇ̌̌̌�
�@t N�

�

�0
K@2@

2
t uCu�rA@

2
t u; !

�
0

ˇ̌̌̌
Cj..@2t u; !//jC

ˇ̌̌̌Z
�

JF 1�!

ˇ̌̌̌
. .
p

E C E/D : (10.5)

Proof. Recall from Proposition 3.7 that

divu D ' ” divA.Mu/ D K' ” J divA.Mu/ D ': (10.6)

This means that if we first solve

div N! D JF 2 � hJF 2i�; (10.7)

then ! DM N! satisfies (10.2).
Let B� denote the Bogovskiı̆ operator from Proposition B.5. Then we will define

N! D B�.JF
2
� hJF 2i�/: (10.8)

The essential point is that the Bogovskiı̆ operator is a linear map that commutes with time
derivatives and satisfies

B� 2 L. VLq.�/IW
1;q
0 .�IR2// for all 1 < q <1 (10.9)

and div B�' D '. Then our desired vector field is given by

! DM N! DMB�.JF
2
� hJF 2i�/: (10.10)
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According to Propositions 7.11 and (10.9) we have the bounds

k N!k
W
1;4=.3�2"C/

0

. E; k N!k
W
1;2=.1�"�/
0

.
p

E
p

D ; k@t N!kW 1;q�
0

. .
p

E C E/
p

D :

(10.11)
Then Proposition 3.6, together with (10.11) and the fact that E � 1, shows that

k!k
W
1;4=.3�2"C/

0

. E; k!k
W
1;2=.1�"�/
0

.
p

E
p

D : (10.12)

and (since "� < "C implies 2=.1 � "�/ < 2=.1 � "C/)

k@t!kL2=.1�"�/ . k@tM N!kL2=.1�"�/ C kM@t N!kL2=.1�"�/

. .1C
p

E/.k N!kL2=.1�"�/ C k@t N!kL2=.1�"�/
0

/

. .1C
p

E/.k N!k
W
1;2=.1�"�/
0

C k@t N!kW 1;q�
0

/ . .
p

E C E/
p

D ; (10.13)

where in the third inequality we have also used the Sobolev embeddings. Then (10.3)
follows from (10.12) and (10.13).

It remains only to prove the interaction estimates stated in the third item. For each of
these we will use the estimates (10.3) together with the bounds from Theorems 3.8 and
3.9. Indeed,ˇ̌̌̌Z

�

@2t uJ!

ˇ̌̌̌
.
Z
�

j@2t uj j!j . k@
2
t ukL2k!kL2 . k!k

W 1;4=.3�2"C/k@
2
t ukL2 . E3=2;

(10.14)
which is (10.4). For the first part of (10.5) we boundˇ̌̌̌Z

�

@2t u@t .J!/

ˇ̌̌̌
.
Z
�

j@2t uj.jr@t N�j j!j C j@t!j/

. k@2t ukL2.k@t N�kW 1;1k!kL2 C k@t!kL2/

.
p

D .
p

E
p

E
p

D C
p

E
p

D/ . .
p

E C E/D : (10.15)

Next we boundˇ̌̌̌�
�@t N�

�

�0
K@2@

2
t uC u � rA@

2
t u; !

�
0

ˇ̌̌̌
. .k@t N�kL1 C kukL1/kr@

2
t ukL2k!kL2

.
p

E
p

D
p

E
p

D . ED ; (10.16)

which is the second estimate in (10.5). Then we bound

j..@2t u; !//j . k@
2
t ukH1k!kH1 . k@2t ukH1k!kW 1;2=.1�"�/ .

p
D
p

E
p

D ; (10.17)

which is the third estimate in (10.5). For the final term in (10.5) we use Proposition 5.1 to
bound ˇ̌̌̌Z

�

JF 1 � !

ˇ̌̌̌
. k!kH1.

p
E C E/

p
D .

p
E
p

D .
p

E C E/
p

D : (10.18)

This completes the proof of (10.5).
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10.2. Main a priori estimate

We now have all of the tools needed to prove our main a priori estimate.

Proof of Theorem 2.1. Assume initially that ı0 � 2, where  2 .0;1/ is from Lemma 3.5.
We divide the rest of the proof into several steps.

Step 1: Lowest level energy-dissipation estimates. Corollary 3.3 tells us that

d

dt

�Z
�

1

2
J juj2 C

Z `

�`

g

2
j�j2 C

�

2

j@1�j
2

.1C j@1�0j2/3=2
C

Z `

�`

�Q.@1�0; @1�/

�
C
�

2

Z
�

jDAuj
2J C

Z
†s

ˇJ ju � sj2 C �Œ@t��
2
` D ��Œu �N ; OW .@t�/�`: (10.19)

We integrate this and use Lemma 3.5 to deduce that

EÎ;0.t/C

Z `

�`

�Q.@1�0; @1�.t//C

Z t

s

DÎ;0

. EÎ;0.s/C

Z `

�`

�Q.@1�0; @1�.s//C

Z t

s

�jŒu �N ; OW .@t�/�`j: (10.20)

Theorem 5.14 says thatˇ̌̌̌Z `

�`

�Q.@1�0; @1�/

ˇ̌̌̌
.
p

E k�k2
H1

.
p

E EÎ;0; (10.21)

and Theorem 5.15 says that

jŒu �N ; OW .@t�/�`j . k@t�kH1 Œ@t��2` .
p

E DÎ;0; (10.22)

so if E � ı0 with ı0 sufficiently small, then (10.20) implies that

EÎ;0.t/C

Z t

s

DÎ;0 . EÎ;0.s/: (10.23)

Then Theorem 9.2 saysZ t

s

k�k2
H3=2�˛

. EÎ;0.s/C EÎ;0.t/C

Z t

s

DÎ;0 (10.24)

and we may enhance the previous bound to

EÎ;0.t/C

Z t

s

.DÎ;0 C k�k
2
H3=2�˛

/ . EÎ;0.s/ (10.25)

for all 0 � s � t � T .

Step 2: Energy-dissipation estimates for one temporal derivative. Theorem 3.2 applied
with .v; q; �/ D .@tu; @tp; @t�/ and ! D 0 gives the identity

d

dt

�Z
�

J
j@tuj

2

2
C

Z `

�`

g

2
j@t�j

2
C
�

2

j@1@t�j
2

.1C j@1�0j2/3=2

�
C
�

2

Z
�

jDA@tuj
2J C

Z
†s

ˇJ j@tu � sj
2
C �Œ@2t ��

2
` D hF1; .@tu; @tp; @t�/i (10.26)



Y. Guo, I. Tice 1544

for

hF1; .@tu; @tp; @t�/i D

Z
�

.F 1 � @tuJ C @tpJF
2/ �

Z
†s

J.@tu � s/F
5

�

Z `

�`

�
�F 3@1.@tu �N /C F 4 � @tu � g@t�F

6
� �

@1@t�@1F
6

.1C j@1�0j2/3=2

�
� �Œ@tu �N ; F 7�` C �Œ@

2
t �; F

6�: (10.27)

Integrating and using Lemma 3.5 then shows that

EÎ;1.t/C

Z t

s

DÎ;1 . EÎ;1.s/C

Z t

s

hF1; .@tu; @tp; @t�/i: (10.28)

Theorems 5.4, 5.5, 5.11, 5.12, and 5.13 then show that

jhF1; .@tu; @tp; @t�/ij .
p

E D ; (10.29)

and hence we have the bound

EÎ;1.t/C

Z t

s

DÎ;1 . EÎ;1.s/C

Z t

s

p
E D : (10.30)

Step 3: Energy-dissipation estimates with two temporal derivatives. Theorem 3.2 applied
with .v; q; �/ D .@2t u; @

2
tp; @

2
t �/ and ! from Proposition 10.1 (which guarantees that !

can be used in Theorem 3.2) yields

d

dt

�Z
�

J
j@2t uj

2

2
C

Z `

�`

g

2
j@2t �j

2
C
�

2

j@1@
2
t �j

2

.1C j@1�0j2/3=2
�

Z
�

J@2t u � !

�
C
�

2

Z
�

jDA@
2
t uj

2J C

Z
†s

ˇJ j@2t u � sj
2
C �Œ@3t ��

2
`

D hF2; .@
2
t u; @

2
t �/i C

Z
�

@2tphJF
2
i� C hF3; !i (10.31)

where h�i� denotes the spatial average as in Proposition 10.1,

hF2; .@
2
t u; @

2
t �/i D

Z
�

F 1 � @2t uJ �

Z
†s

J.@2t u � s/F
5

�

Z `

�`

�
�F 3@1.@

2
t u �N /C F 4 � @2t u � g�F

6
� �

@1@
2
t �@1F

6

.1C j@1�0j2/3=2

�
� �Œ@2t u �N ; F 7�` C �Œ@

3
t �; F

6�; (10.32)

and

hF3; !i D �

Z
�

@2t u � @t .J!/C

�
�@t N�

�

�0
K@2@

2
t uC u � rA@

2
t u; !

�
0

C ..@2t u; !// �

Z
�

F 1!J: (10.33)
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Theorems 5.4, 5.10, 5.12, and 5.13 show thatˇ̌̌̌Z t

s

hF2; .@
2
t u; @

2
t �/i

ˇ̌̌̌
.
p

E D : (10.34)

For the second term we rewriteZ
�

@2tphJF
2
i� D

d

dt

�
hJF 2i�

Z
�

@tp

�
� @t hJF

2
i�

Z
�

@tp DW
d

dt
I1 � I2: (10.35)

We then use Proposition 7.11 to bound

jI1j . k@tpkL2 jhJF 2i�j . E3=2 (10.36)

and (since @t hJF 2i� D h@t .JF 2/i�)

jI2j . k@tpkL2 j@t hJF 2i�j .
p

D
p

E
p

D : (10.37)

Finally, the interaction estimates of Proposition 10.1 show that

jhF3; !ij .
p

E D : (10.38)

Combining all the above then shows that

EÎ;2.t/ � .E.t//
3=2
C

Z t

s

DÎ;2 . EÎ;2.s/C .E.s//
3=2
C

Z t

s

p
E D : (10.39)

Step 4: Synthesized energy-dissipation estimates. We sum (10.25), (10.30), and (10.39)
to see that

EÎ.t/� .E.t//
3=2
C

Z t

s

.DÎCk�k
2
H3=2�˛

/. EÎ.s/C .E.s//
3=2
C

Z t

s

p
E D : (10.40)

Subsequently, we sum the estimates provided by Theorem 9.3 with k D 1 and k D 2 to
deduce the enhancement estimateZ t

s

k@t�k
2
H3=2�˛

C k@2t �k
2
H3=2�˛

. EÎ.s/C EÎ.t/C

Z t

s

.DÎ C
p

ED/; (10.41)

and upon combining this with (10.40) we find that

EÎ.t/ � .E.t//
3=2
C

Z t

s

�
DÎ C

2X
kD0

k@kt �k
2
H3=2�˛

�
. EÎ.s/C .E.s//

3=2
C

Z t

s

p
E D :

(10.42)

Step 5: Elliptic dissipation enhancements. We now combine the estimates of Propositions
7.5–7.10 with Theorem 4.7, applied with v D @tu,Q D @tp, and � D @t� and ı D "�, to
see that

k@tukW 2;q� Ck@tpkW 1;q� Ck@t�kW 3�1=q�;q� . k@2t ukLq� Ck@
2
t �kH3=2�˛C

p
E
p

D :

(10.43)
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Similarly, we combine the estimates of Propositions 7.5–7.10 with Theorem 4.7, applied
with v D u, Q D p, and � D � and ı D "C, to see that

kuk
W 2;qC C kpkW 1;qC C k�kW 3�1=qC;qC . k@tukLqC C k@t�kH3=2�˛ C

p
E
p

D :

(10.44)
Since q� < qC < 2 we can then bound

k@2t uk
2
Lq� C k@tuk

2
LqC

. k@2t uk
2
L2
C k@tuk

2
L2

. DÎ: (10.45)

As such, we can combine these with (10.42) to deduce that

EÎ.t/ � .E.t//
3=2
C

Z t

s

�
DÎ C

2X
kD0

k@kt �k
2
H3=2�˛

�
C

Z t

s

�
kuk2

W 2;qC
C kpk2

W 1;qC
C k�k2

W 3�1=qC;qC

�
C

Z t

s

�
k@tuk

2
W 2;q�

C k@tpk
2
W 1;q�

C k@t�k
2
W 3�1=q�;q�

�
. EÎ.s/C .E.s//

3=2
C

Z t

s

p
E D : (10.46)

Next we sweep up the missing terms in D . Note that for 0 � k � 2 we have

@kC1t � � @kt u �N D F
6;k ; (10.47)

where F 6;0 D 0, F 6;1 is given by (A.6), and F 6;2 is given by (A.13), and in any case
F 6;k vanishes at the endpoints˙`; consequently,

2X
kD0

Œ@kt u �N �2` D

2X
kD0

Œ@kC1t ��2` � DÎ: (10.48)

Similarly, using (10.47) with k D 2 in conjunction with Proposition 7.12, we find that

k@3t �k
2
H1=2�˛

. k@2t u �N k
2
H1=2..�`;`//

CkF 6;2k2
H1=2�˛

. k@2t uk
2
H1
C ED . DÎC ED :

(10.49)
Combining these with (10.46) then leads to the estimate

EÎ.t/ � .E.t//
3=2
C

Z t

s

D . EÎ.s/C .E.s//
3=2
C

Z t

s

p
E D ; (10.50)

and in turn we see that if E � ı0 for sufficiently small universal ı0, then we can absorb
the last term on the right into the left side and deduce that

EÎ.t/ � .E.t//
3=2
C

Z t

s

D . EÎ.s/C .E.s//
3=2: (10.51)

Step 6: Energetic enhancement through dissipation integration. We now integrate the
dissipation to improve the energetic estimates with Proposition B.7:
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k@t�.t/k
2
H3=2C."��˛/=2

. k@t�.s/k2H3=2C."��˛/=2 C
Z t

s

.k@t�k
2
H3=2C"�

C k@2t �k
2
H3=2�˛

/

. k@t�.s/k2H3=2C."��˛/=2 C
Z t

s

D (10.52)

and

k@tu.t/k
2
H1C"�=2

. k@tu.s/k2H1C"�=2 C
Z t

s

.k@tuk
2
H1C"�

C k@2t uk
2
H1
/

. k@tu.s/k2H1C"�=2 C
Z t

s

D : (10.53)

We can then combine these with (10.51) to deduce that

QE.t/ � .E.t//3=2 C

Z t

s

D . QE.s/C .E.s//3=2 (10.54)

for
QE WD EÎ C k@tuk

2
H1C"�=2

C k@t�k
2
H3=2C."��˛/=2

: (10.55)

Step 7: Elliptic energy enhancement. Propositions 7.1–7.4 and Theorem 4.7, applied to
.v;Q; �/ D .u; p; �/ and ı D "C, show that

kuk
W 2;qC C kpkW 1;qC C k�kW 3�1=qC;qC . k@tukL2 C k@t�kH3=2�˛ C E .

p
QE C E:

(10.56)
Theorem 9.4 provides the estimate

k@tpkL2 . k@tukH1 Ck@2t ukL2 Ck@t�kH3=2C."��˛/=2 C E C E3=2 .
p
QE C E C E3=2:

(10.57)
Squaring these and summing with EÎ then shows that

E . QE C E3=2 (10.58)

and so if E � ı0, with ı0 made smaller than another universal constant if need be, then

E � QE: (10.59)

Plugging this into (10.54) shows that

E.t/ � .E.t//3=2 C

Z t

s

D . E.s/C .E.s//3=2: (10.60)

Step 8: Conclusion. Taking ı0 again to be smaller than a universal constant if necessary,
we can absorb the E3=2 terms in (10.60), resulting in the inequality

E.t/C

Z t

s

D . E.s/ (10.61)

for 0 � s � t . Note that E . D , so E is integrable on .0; T /. We can then apply the
Gronwall-type estimate of Proposition B.6 to see that E decays exponentially: there exists
a universal � > 0 such that

E.t/ . e��tE.0/ for all 0 � t < T: (10.62)
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Also, taking s D 0 in (10.61) and sending t ! T shows thatZ T

0

D . E.0/: (10.63)

Combining the previous two estimates completes the proof.

Appendix A. Nonlinearities

In this appendix we record the form of the commutators that arise in applying @kt to (1.41)
as well as some estimates for the function R defined by (1.34).

A.1. Nonlinear commutator terms when k D 1

When @t is applied to (1.41) this results in the following terms appearing in (3.1) for
k D 1; 2:

F 1 D � div@tA SA.p; u/C � divA D@tAu � u � r@tAu � @tu � rAu

C @2t N�
�

�0
K@2uC @t N�

�

�0
@tK@2u; (A.1)

F 2 D � div@tA u; (A.2)

F 3 D @t ŒR.@1�0; @1�/�; (A.3)

F 4 D �D@tAuN

C

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2
CR.@1�0; @1�/

�
� SA.p; u/

�
@tN ; (A.4)

F 5 D �D@tAu� � �; (A.5)

F 6 D u � @tN D �u1@1@t�; (A.6)

F 7 D OW 0.@t�/@
2
t �: (A.7)

Observe that F 6 vanishes at˙` since u1 vanishes there.

A.2. Nonlinear commutator terms when k D 2

When @2t is applied to (1.41), this results in the following terms appearing in (3.1):

F 1 D �2 div@tA SA.@tp; @tu/C 2� divA D@tA@tu

� div@2tA SA.p; u/C 2� div@tA D@tAuC � divA D@2tAu

� 2u � r@tA@tu � 2@tu � rA@tu � 2@tu � r@tAu � u � r@2tAu � @
2
t u � rAu

C 2@t N�
�

�0
@tK@2@tuC 2@

2
t N�
�

�0
K@2@tuC 2@

2
t N�
�

�0
@tK@2u

C @3t N�
�

�0
K@2uC @t N�

�

�0
@2tK@2u; (A.8)
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F 2 D � div@2tA u � 2 div@tA @tu; (A.9)

F 3 D @2t ŒR.@1�0; @1�/�; (A.10)

F 4 D 2�D@tA@tuN C �D@2tAuN C �D@tAu@tN

C

�
2g@t� � 2�@1

�
@1@t�

.1C j@1�0j2/3=2
C@t ŒR.@1�0; @1�/�

�
� 2SA.@tp; @tu/

�
@tN

C

�
g� � �@1

�
@1�

.1C j@1�0j2/3=2
CR.@1�0; @1�/

�
� SA.p; u/

�
@2tN ; (A.11)

F 5 D 2�D@tA@tu� � � C �D@2tAu� � �; (A.12)

F 6 D 2@tu � @tN C u � @
2
tN D �2@tu1@1@t� � u1@1@

2
t �; (A.13)

F 7 D OW 0.@t�/@
3
t �C

OW 00.@t�/.@
2
t �/

2: (A.14)

Once more, note that F 6 vanishes at˙` since u1 and @tu1 vanish there.

A.3. R and Q

Recall that R is given by (1.34). The following records some essential estimates for it.

Proposition A.1. The mapping R 2 C1.R2/ defined by (1.34) obeys the following esti-
mates:

sup
.y;z/2R2

�ˇ̌̌̌
1

z3

Z z

0

R.y; s/ ds

ˇ̌̌̌
C

ˇ̌̌̌
R.y; z/

z2

ˇ̌̌̌
C

ˇ̌̌̌
@zR.y; z/

z

ˇ̌̌̌
C

ˇ̌̌̌
@yR.y; z/

z2

ˇ̌̌̌
C j@2zR.y; z/j C

ˇ̌̌̌
@2yR.y; z/

z2

ˇ̌̌̌
C

ˇ̌̌̌
@z@yR.y; z/

z

ˇ̌̌̌
C j@3zR.y; z/j

C

ˇ̌̌̌
@2y@zR.y; z/

z

ˇ̌̌̌
C j@2z@yR.y; z/j

�
<1: (A.15)

Proof. These bounds follow from elementary calculus, so we omit the details.

We also record here the definition of a special map related to R. We define Q 2

C1.R2/ via

Q.y; z/ WD

Z z

0

R.y; r/ dr; so
@Q

@z
.y; z/ D R.y; z/: (A.16)

Appendix B. Miscellaneous analysis tools

In this appendix we record a host of analytic results that are used throughout the paper.

B.1. Product estimates

We begin with some useful product estimates. First we recall a fact about Besov spaces.
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Proposition B.1. If s > 0 and 1 � p; q � 1, then Bsp;q.R
n/ \ L1.Rn/ is an algebra,

and
kfgkBsp;q . kf kL1kgkBsp;q C kf kBsp;qkgkL1 : (B.1)

In particular, if s > n=p then Bsp;q.R
n/ ,! L1.Rn/ and hence Bsp;q.R

n/ is a Banach
algebra.

Proof. There are many proofs: see, for instance, [11, Proposition 1.4.3], [31, Proposition
6.2], or [37, Theorem 2].

Then we can prove the supercritical product estimate.

Theorem B.2. Suppose 1 < p <1, r > 0 and s >max ¹n=p; rº. Then for ' 2W s;p.Rn/
and  2 W r;p.Rn/ we have ' 2 H r .Rn/ and

k' kW r;p . k'kW s;pk kW r;p : (B.2)

Proof. Note first that for r > n=p the space W r;p.Rn/ D Brp;p.R
n/ is an algebra, and so

the stated result is trivial. We may thus reduce to the case 0 < r � n=p.
If r D 0, then

k' kLp � k'kL1k kLp � ck'kW s;pk kLp (B.3)

by virtue of the standard supercritical embedding W s;p.Rn/ ,! C 0
b
.Rn/. On the other

hand, since W s;p.Rn/ D Bsp;p.R
n/ is an algebra for s > n=p,

k' kW s;p . k'kW s;pk kW s;p : (B.4)

Thus, if we define the operator T' via T' D ' , then T' 2L.Lp.Rn//\L.W s;p.Rn//
with

kT'kL.Lp/ . k'kW s;p ; kT'kL.W s;p/ . k'kW s;p : (B.5)

Standard interpolation theory (see, for instance, [43]) then implies that T'2L.W r;p.Rn//
for all 0 < r < s, and

kT'kL.W r;p/ . k'kW r;p : (B.6)

This is equivalent to the stated estimate when 0 < r � n=p.

This result may be extended to bounded domains through the use of extension opera-
tors.

Theorem B.3. Let ; ¤ � � Rn be bounded and open with Lipschitz boundary (or an
open interval when n D 1). If 1 < p <1, r > 0, and s > max ¹n=p; rº, then

kfgkW r;p.�/ . kf kW s;p.�/kgkW r;p.�/: (B.7)

Proof. If E is the Stein extension operator (see, for instance, [41]), then

kfgkW r;p.�/ . kEfEgkW r;p.Rn/ . kEf kW s;p.Rn/kEgkW r;p.Rn/

. kf kW s;p.�/kgkW r;p.�/: (B.8)
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B.2. Poisson extension

Let b > 0. Given a Schwartz function f W R! R, we define its Poisson extension Pf W

R � .�b; 0/! R via

Pf .x1; x2/ D

Z
R

Of .�/e2�j�jx2e2�ix1�d�: (B.9)

The following records some basic properties of this map.

Proposition B.4. Let 0 < b <1. The following hold:

(1) P extends to a bounded linear operator from Lp.R/ to Lp.R � .�b; 0// for each
1 � p � 1.

(2) P extends to a bounded linear operator from H s�1=2.R/ to H s.R � .�b; 0// for all
s � 1=2.

(3) Let 1 < p <1. Then P extends to a bounded linear operator from W s�1=p;p.R/ to
W s;p.R � .�b; 0// for all 2 � s 2 R.

Proof. The first item follows from the fact that P can be represented by convolution
with the Poisson kernel, Young’s inequality, and the fact that b is finite. The second item
follows from simple calculations with the Fourier representation (B.9): for instance, see
[19, Lemma A.5]. For the third item we note that Pf satisfies the Dirichlet problem´

�Pf D 0 in R2� D ¹x 2 R2 j x2 < 0º;

Pf D f on @R2�:
(B.10)

Suppose that f 2W k�1=p;p.R/ for 2 � k 2 N, then standard trace theory shows that
there exists F 2 W k;p.R2�/ such that F D f on @R2�. Then g D Pf � F satisfies the
boundary value problem´

�g D ��F 2 W k�2;p.R2�/ in R2� D ¹x 2 R2 j x2 < 0º;

g D 0 on @R2�:
(B.11)

The Lp-elliptic theory (see, for instance, [2]) then shows that for each x 2 R,

kgkW k;p.Q�..x;0/;b//
� C.k; p; b/.kF kW k;p.Q�..x;0/;2b//

C kgkLp.Q�..x;0/;2b///;

(B.12)

where we have written Q�..x; 0/; r/ D .x � r; x C r/ � .�r; 0/ for the lower half-cube.
Writing

R � .�b; 0/ D
[
n2Z

Q�..nb; 0/; b/; (B.13)

we deduce from this and the simple overlap geometry of these cubes that

kgkW k;p.R�.�b;0// � C.k; p; b/.kF kW k;p.R�.�2b;0// C kgkLp.R�.�2b;0///: (B.14)
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However, from the first item (applied with 2b in place of b) and trace theory we know that

kgkLp.R�.�2b;0// � kPf kLp.R�.�2b;0// C kF kLp.R�.�2b;0// . kf kW k�1=p;p.R/;

(B.15)
and hence

kgkW k;p.R�.�b;0// . kf kW k�1=p;p.R/: (B.16)

In turn, we deduce that

kPf kW k;p.R�.�b;0// . kf kW k�1=p;p.R/: (B.17)

The previous estimate shows that P extends to a bounded linear map from
W k�1=p;p.R/ toW k;p.R� .�b; 0// for every 2 � k 2N and 1 < p <1. Then standard
interpolation theory shows that it extends to a bounded linear operator between the same
spaces with k replaced by 2 � s 2 R, and this is the third item.

B.3. The Bogovskiı̆ operator

The Bogovskiı̆ operator [9] gives an explicit right inverse to the divergence operator via
a singular integral operator. The operator may be readily defined in Lipschitz domains
and avoids many of the technical difficulties encountered in using PDE-based methods to
construct such right inverses. We record some properties of this operator now.

Proposition B.5. Let � � R2 be given by (1.23), and let 1 < p < 1. There exists a
locally integrable function G� W � ��! R2 such that the integral operator

B�f .x/ D

Z
�

G�.x; y/f .y/ dy (B.18)

is well-defined for f 2 VLq.�/ D ¹f 2 Lq.�/ j
R
�
f D 0º and satisfies the following:

(1) B� is a bounded linear map from VLq.�/ to W 1;p
0 .�IR2/.

(2) If f 2 VLq.�/, then u D B�f 2 W
1;p
0 .�IR2/ satisfies´

divu D f in �;

u D 0 on @�:
(B.19)

Proof. See [9] for the original construction or [1, Chapter 2] for a more detailed treatment.

B.4. Gronwall variant

We now record a variant of the classical Gronwall inequality, based on a result in [30].

Proposition B.6. Let 0 < T � 1 and suppose that x W Œ0; T /! Œ0;1/ is integrable.
Further suppose that there exists ˛ > 0 such that

x.t/C

Z t

s

x.r/ dr � ˛x.s/ for all 0 � s � t < T: (B.20)
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Then
x.t/ � min ¹2; ˛

p
eº e�t=.2˛/x.0/ for all 0 � t < T: (B.21)

Proof. First note that (B.20) provides the trivial estimate

x.t/ � ˛x.0/ for all 0 � t < T: (B.22)

Now fix 0 < t < T and define the absolutely continuous function y W Œ0; t �! Œ0;1/ via
y.s/ D

R t
s
x.r/ dr . Then (B.20) implies that

y.s/ � ˛x.s/ D �˛ Py.s/ for a.e. 0 � s � t (B.23)

and so the standard Gronwall estimate and (B.20) imply that

y.s/ � e�s=˛y.0/ D e�s=˛
Z t

0

x.r/ dr � e�s=˛x.0/ for all 0 � s � t: (B.24)

We then integrate (B.20) over s 2 Œt=2; t � and use this estimate to see that

t

2
x.t/ D

Z t

t=2

x.t/ ds � ˛

Z t

t=2

x.s/ ds D ˛y.t=2/ � ˛e�t=.2˛/x.0/; (B.25)

and hence
x.t/ �

2˛

t
e�t=.2˛/x.0/ for all 0 � t < T: (B.26)

Combining (B.22) and (B.26), we deduce that

x.t/ � min
²
˛;
2˛

t
e�t=.2˛/

³
x.0/ for all 0 � t < T: (B.27)

The result then follows from this after noting that

˛ � t )
2˛

t
e�t=.2˛/ � 2e�t=.2˛/ and 0 � t < ˛) ˛ � ˛e1=2e�t=.2˛/; (B.28)

which means that

min
²
˛;
2˛

t
e�t=.2˛/

³
� min ¹2; ˛

p
eº e�t=.2˛/ for all t � 0: (B.29)

B.5. Estimates via temporal derivatives

Next we record a result about how temporal derivatives and interpolation.

Proposition B.7. Let � denote either� or .�`; `/. Suppose that f 2 L2..0; T /IH s
1 .�//

and @tf 2L2..0;T /IH s2.�// for 0� s2 � s1 and 0 < T �1. Then for s D .s1C s2/=2
we have f 2 C 0.Œ0; T /IH s.�//, and

kf .t/k2H s � kf .�/k
2
H s C

Z t

�

.kf .r/k2H s1 C k@tf .r/k
2
H s2 / dr (B.30)

for all 0 � t � � < T .

Proof. See, for instance, [20, Lemma A.4].
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B.6. Fractional integration by parts

Here we record a sort of fractional integration-by-parts estimate.

Proposition B.8. Let 0 < s < 1. Thenˇ̌̌̌Z `

�`

@1fg

ˇ̌̌̌
. kf kH1�s=2kgkH s=2 : (B.31)

Proof. Since 0 < s < 1 we have (see, for instance, [29])H s=2..�`; `//DH
s=2
0 ..�`; `//.

Next we note that

@1 2 L.L2..�`; `//IH�1..�`; `/// \L.H 1..�`; `//IL2..�`; `///: (B.32)

Since L2 D .L2/� D .H 0
0 /
� and H�1 D .H 1

0 /
� we may then use interpolation theory to

find that

@1 2 L..H 1; L2/1�s=2;2I .L
2;H�1/1�s=2;2/ D L.H 1�s=2..�`; `//IH�s=2..�`; `///:

(B.33)
Using this, we may then estimateˇ̌̌̌Z `

�`

@1fg

ˇ̌̌̌
� k@1f kH�s=2kgkH s=2 . kf kH1�s=2kgkH s=2 : (B.34)

B.7. Composition in H s..�`; `//

The following result provides a useful composition estimate in fractional Sobolev spaces.

Proposition B.9. Let f W .�`; `/ �R! R be C 1 and

sup
z2R

sup
jxj<`

�
jf .x; z/j C j@1f .x; z/j

jzj
C j@2f .x; z/j

�
�M <1: (B.35)

Then for every 0 < s < 1 there exists a constant C D C.s; `/ > 0 such that if u 2
H s..�`; `// then f .�; u/ 2 H s..�`; `// and

kf .�; u/kH s � CMkukH s : (B.36)

Proof. Let u 2 H s..�`; `//. We use the difference quotient characterization of
H s..�`; `//, which shows that

kf .�; u/k2H s � kf .�; u/k
2
L2
C Œf .�; u/�2H s ; (B.37)

where

Œf .�; u/�2H s D

Z `

�`

Z `

�`

jf .x; u.x// � f .y; u.y//j2

jx � yj1C2s
dx dy: (B.38)

To handle these, note that by (B.35), for x; y 2 .�`; `/ we have

jf .x; u.x//j �M ju.x/j (B.39)
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and

f .x; u.x// � f .y; u.y// D

Z 1

0

d

dt
f
�
tx C .1 � t /y; tu.x/C .1 � t /u.y/

�
dt

D .x � y/

Z 1

0

@1f
�
tx C .1 � t /y; tu.x/C .1 � t /u.y/

�
dt

C .u.x/ � u.y//

Z 1

0

@2f
�
tx C .1 � t /y; tu.x/C .1 � t /u.y/

�
dt; (B.40)

so

jf .x; u.x// � f .y; u.y//j �M jx � yj.ju.y/j C ju.x/j/CM ju.x/ � u.y/j: (B.41)

These allow us to bound
kf .�; u/k2

L2
�M 2

kuk2
L2

(B.42)

and (using Tonelli’s theorem and the fact that s < 1)

Œf .�; u/�2H s � 2M
2

Z `

�`

Z `

�`

�
jx�yj2

jx�yj1C2s
.2ju.y/j2C2ju.x/j2/C

ju.x/�u.y/j2

jx�yj1C2s

�
dx dy

� C.s; `/M 2
kuk2

L2
C2M 2Œu�2H s (B.43)

for a constant C.s; `/ > 0. Upon combining these we find that (B.36) holds.
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