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Standard A -lattices, rigid C* tensor categories,
and (bi)modules

Quan Chen

Abstract. In this article, we construct a 2-shaded rigid C* multitensor category with canonical
unitary dual functor directly from a standard A-lattice. We use the notions of traceless Markov
towers and lattices to define the notion of module and bimodule over standard A-lattice(s), and we
explicitly construct the associated module category and bimodule category over the corresponding
2-shaded rigid C* multitensor category.

As an example, we compute the modules and bimodules for Temperley—Lieb—Jones standard
A-lattices in terms of traceless Markov towers and lattices. Translating into the unitary 2-category
of bigraded Hilbert spaces, we recover De Commer—Yamashita’s classification of 7&£¢ module
categories in terms of edge weighted graphs, and a classification of 7&£g bimodule categories in
terms of biunitary connections on square-partite weighted graphs.

As an application, we show that every (infinite depth) subfactor planar algebra embeds into the
bipartite graph planar algebra of its principal graph.

1. Introduction

Since Jones’ landmark article [22], the modern theory of subfactors has developed deep
connections to numerous branches of mathematics, including representation theory, cate-
gory theory, knot theory, topological quantum field theory, statistical mechanics, confor-
mal field theory, and free probability. The standard invariant of a type II; subfactor was
first defined as a standard A-lattice [38]. Since it has been reinterpreted as a planar alge-
bra [24] and a Q-system [30], or unitary Frobenius algebra object, in a rigid C* tensor
category [35].

The following theorem is a well-known folklore result. It is for instance mentioned
in this form in [1, Rem. 2.1]. A similar result with planar algebras in place of tensor
categories was announced in [27]. The folklore proof of this result makes use of Popa’s
subfactor reconstruction theorem [38, Thm. 3.1]. (Similarly, for a given standard A-lattice,
Jones proved in [24, Thm. 4.2.1] that one can construct a subfactor planar algebra by
passing through Popa’s subfactor reconstruction theorem [38, Thm. 3.1].) One primary
motivation of this paper is to give a direct argument without making a detour via subfac-
tors.
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Theorem (Folklore). There is a bijective correspondence between equivalence classes of
the following:

Pairs (+A, X) with # a 2-shaded rigid C* multiten-
= { sor category with a generator X, ie., 1y =1T® 17,

{Standard /\-lattices}
17,17 are simpleand X = 1T ® X ® 1~

A= (Aij)o<i<j

Equivalence on the left-hand side is unital *-isomorphism of standard A-lattices; equiv-
alence on the right-hand side is unitary equivalence between their Cauchy completions
which maps generator to generator.

Given (s, X), it is well known that one can obtain a standard A-lattice A by

. idyae ® End(XU@U—2k)) i = 2k,
bl idyawer+ny @ End()?al@(j_Zk_l)) i =2k+1,

where X is a dual of X and

Xalt®n :X®A7®X®
—_—

n tensorands

and similarly for X®"  The inclusion A;j C Aj j+1 sends x to x ® id, the inclusion
Ajy1,j C A;,j sends x to x. The Jones projections are defined using the canonical bal-
anced evaluation and coevaluation for X .

Going the other way directly is harder. Using [7, Def. 3.1], we construct a skeletal
(when d > 1) W*-category explicitly from A whose objects are [n, £] for n > 0 and
whose hom spaces can be identified with the algebras A; ;. We endow it with a tensor
structure using the 2-shift map in the standard A-lattice, which is a trace-preserving -
isomorphism S; ; : A;,j — Ait+2,j+2 [4, Cor. 2.8]. We call this skeletal category a planar
tensor category, and we provide a string diagram calculus to perform computations. The
Cauchy completion of this planar tensor category is the target 2-shaded rigid C* multiten-
sor category.

Given a standard A-lattice A, an A-module is a Markov tower as a standard A-module.
In more detail, let A = (A;,j)o<i<j<co be a standard A-lattice with Jones projection
{ei }i>1 and compatible conditional expectations. An A-module is a Markov tower of finite
dimensional von Neumann algebras (M} ),>o such that Ay, C M, together with condi-
tional expectations E; : M; — M;_; implemented by the Jones projections, which satisfy
the appropriate commuting square conditions.

My C M, c M, c --- C M, C
U U U U

AO’() C AO,I C Ao,z c - C Ao,n C
U U U

Al,l C A1,2 c - C Al,n C

We refer the reader to Definition 2.3 below for the complete definition.
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We warn the reader that our definition is slightly different from the original one from
[7, Def. 3.1]; our tower of algebras (Mp),>o does not necessarily have a Markov trace.
An important difference in our construction is that we do not use the trace, but rather the
commuting square of conditional expectations. In Section 3.3, by using this technique, we
are able to discuss arbitrary modules over a standard A-lattice instead of merely pivotal
modules.

We call an A-module standard if [M;, Ay;] = 0 for i < k < [. Similar techniques
used in our new proof of the Folklore theorem above, we obtain the following theorem.

Theorem A. There is a bijective correspondence between equivalence classes of the fol-

lowing:
Traceless Markov towers M = Pairs (M, Z) with M an indecomposable
(M;)i=o with dim(Mo) = 1as| _ | semisimple right 4-module C* category
standard right modules over a [ — | together with a choice of simple object
standard A-lattice 4 Z=zZ<1}

Equivalence on the left-hand side is x-isomorphism of traceless Markov towers as stan-
dard A-modules; equivalence on the right-hand side is unitary A-module equivalence on
Cauchy completions which maps the simple base object to simple base object.

Tracial Markov towers as standard A-modules correspond to pivotal A-module cate-
gories.

In Section 4, we discuss bimodules. Given two standard A-lattices A and B, we define
an A-B bimodule as a standard Markov lattice, which consists of a doubly indexed se-
quence M = (M; ;); j>o of finite dimensional von Neumann algebras with two sequences
of Jones projections (e;);>1 and (fj)j>1 where the following conditions hold.

(@) M;; C M; jy1and M; j; C M, ; are unital inclusions.

by M_;=(M;;, E%l ,€i+1)i>0 are Markov towers with the same modulus d¢ and
ei €My jforalli; M; _ = (M, ;, E%’r, Ji+1)j>0 are Markov towers with the
same modulus d; and f; € M; j4 forall j. We call M of modulus (do, dy).

Mii1,; C My,
U U
M; C  Mijn

(¢) The commuting square condition:

EM,r
i+1,j+1
Mit1,; <—— Miy1,j+1

M.l M1
Ei+1,;l lEi+l,j+1
M j ¢ M

i,j+1

. . . M,r M, _ M, M,r
1S a commuting square, i.e., El.,jJrl o El.’j = El.,jJrl o Ei+1,j+l'
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We require A?’% C M; o and By ; C My j for all i, j with conditional expectations
satisfying the appropriate commuting square conditions. Here, we take the opposite A-
lattice A°P of A, where A?f’j is the opposite algebra of A; ;, so the indices for A and B are
transposed.

U U U U @] U
Azp C Az C Mzog C M3; C Mip, C Miz C
@] @] U @] @] U
Ary C Ao C Mo C My C M, C M3z C
U U U U @] U
Aig C Ao C My C My C My, C Mz C
@] @] U @] U
Ago C Moo C Moy C Myp, C Mys C
U U @] U
Boo C Boyqy C Bop C Bosz C
U @] U

Biiy C Bip C Bz C

We call an A- B bimodule standard it [M; j, Ap 4] =0fori <q < p; [M; j, Bx;]=0,
for j <k <. Similar to the proof of the Folklore theorem and Theorem A above, we
obtain the following theorem.

Theorem B. There is a bijective correspondence between equivalence classes of the fol-

lowing:
Traceless Markov lattices M = Pairs (M, Z) with M an indecomposable
(M; )i, j=0 with dim(Mo) = 1| _ )semisimple C* A-8B bimodule category
as standard A-B bimodules over [ — ] together with a choice of simple object
standard A-lattices 4, B Z = 1; >Z < 1;;,

Equivalence on the left-hand side is x-isomorphism on the traceless Markov lattice as
a standard A-B bimodule; equivalence on the right-hand side is unitary A-3B bimod-
ule equivalence between their Cauchy completions which maps the simple base object to
simple base object.

Tracial Markov lattices as standard A- B bimodules correspond to pivotal A-8B bimod-
ule categories.

Examples. As a natural corollary from Theorem A, a Markov tower corresponds to a
Temperley—Lieb—Jones (7 £ ) module category. This result generalizes the pivotal mod-
ule case from [7, Thm. A.]. To translate our classification into that of [10] which uses fair
and balanced graphs, we obtain an elegant graphical version of a Markov tower using a W*
2-subcategory € (A, w) of bigraded Hilbert spaces BigHilb which is built from a fair and
balanced graph (A, w). Our approach is inspired by Ocneanu’s path algebras [12,21,36].
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The following diagram shows how these notions are related to each other in Section 5:

Section 5.6 }r balanced d -fair
1 bipartite graph (A, ®)

' indecomposable semisimple c* ! 2-subcategory € (K, evk) 1

| - |

' TLF(d)-module category M ' geition 5.7 | of BigHilb

As an application, in the unitary pivotal/tracial setting, we obtain the embedding the-
orem for (infinite depth) subfactor planar algebras (cf. [34]).

Theorem C. Every (infinite depth) subfactor planar algebra embeds in any bipartite
graph planar algebra of its principal graph with respect to a module category. In par-
ticular, it embeds in the bipartite graph planar algebra of its (dual) principal graph.

By Theorem B above, a Markov lattice corresponds to a TL$-T£ZF bimodule cat-
egory. By work-in-progress of Penneys—Peters—Snyder, pivotal TL$-TLZF bimodule
categories correspond to Ocneanu’s biunitary connections on associative square-partite
graphs with vertex weightings. For the non-pivotal case, the weighting on the square-
partite graph is the edge-weighting and we obtain the non-pivotal analog of a biunitary
connection. To translate between these classifications, we use the well-known fact that a
commuting square of finite dimensional von Neumann algebras gives a biunitary connec-
tion [12,21,36,41]. We then introduce a graphical version of a Markov lattice using a
W* 2-subcategory € (P) of BigHilb obtained from a biunitary connection ®. It turns out
that the biunitary connection ® corresponds to the bimodule associator of the bimodule
category. The following diagram shows how these notions are related to each other in
Section 6:

- ' balanced (dy, dy)-fair |
! Markov lattice M ! Section 6.4 ! . ( 0: 1) |
—_ v 2 T, 1 osquare-partite graph (A, o)
1 with modulus (dy, d;) P T . |
R R J 1 with biunitary connection © ,

Section 6.3 - TS T T T T
Section 4
cction I \ Isection ()2

P Y e
!

'indecomposable semisimple C* | I EAE
| TELI(do)-TLI (dr) D e 2-subcategory €(P) !

| bimodule category M '\ Section 6.5 Lo of Bighilb |

2. Standard A-lattices and tensor category

2.1. Traceless Markov tower and its properties

Definition 2.1. Let A C B be a unital inclusion of finite von Neumann algebras. A condi-
tional expectation E : M — N is a positive linear map satisfying the following conditions:
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(a) E(x)=xforallx € A,

(b) E(axb) =aE(x)bforalla,b € A, x € B.
Definition 2.2. Let C be a unital C*-algebra. We call a linear functional tr : C — C a
trace if it satisfies the following conditions:

(a) (tracial) tr(xy) = tr(yx), forall x,y € C.

(b) (positive) tr(x*x) > 0, forall x € C.

(c) (faithful) tr(x*x) = 0 if and only if x = 0.
In addition, we call tr unital if tr(1) = 1.

Definition 2.3. A traceless Markov tower M = (M, E,,, e,41)n>0 consists of a sequence
(My)n>o of finite dimensional von Neumann algebras, such that M,, is unitally included
in M, 4. For each n, there is a faithful conditional expectation E, : M,, — M, _; together
with a sequence of Jones projections e, € M, 41 for all n > 1, such that:

(M1) The projections (e,,) satisfy the Temperley—Lieb—Jones relations:
(TLJ1) €2 = e, = e forall n.
(TLJ2) [e;,e;] =O0for|i — j| > 1.

(TLJ3) There is a fixed constant called the modulus d > 0 such thate, e, +1¢, =
d~2e, for all n.

(M2) For all x € M,,, epxe, = Ep(x)ey.

M3) E,yi(ey) =d™2-1foralln > 1.

M4) (pull down) My, 416, = Mpey, foralln > 1.

In the following, all Markov towers are traceless unless stated otherwise.
Proposition 2.4. Some properties of a traceless Markov tower include:

(1) [x,ex] =0, forx € My, k >n + 1.

(2) The map M,, > x +— xe, € M4 is injective.

(3) Forx € My 11, d>E, 11(xey) is the unique element y € M, such that xe, = ye,,.

(4) Property (3) is equivalent to (M3).

(5) If x € My, and [x,e,] = 0, then x € M, _1. Together with (1), we have M,_, =
M, N {en}.

(6) enMpt1n = My—1€p.
Proof. (1)Forx € M, andk > n + 1, Ex(x) = x, E(x*) = x*, then
xer = Ep(x)ex = exxer = (exx™er)™ = (Ex(x™)er)™ = (x"ex)™ = exx.
2)If x € M, and xe,, = 0, then by (M3),
0= Ept1(xen) = xEng1(en) = d >x.

Thus, x — Xxe, is injective.
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(3) By (M4) and (2), the existence and uniqueness hold. Then by (M3),

Ent1(xen) = Ent1(ven) = yEny1(en) = d_zy’

50y = d?Epy1(xep).

(4) We first show that (3) implies (2). If x € M,, and xe,, = 0,then 0 = d2E, 1 (xe,) is
the unique element such that xe, =0=d2E,, . 1(xe,)e,. Therefore, x = d?E,, 1 1(xe,) =0.

Let x = e,, then we have d2E, 1 1(es)e, = ey. Since d?E,11(e,) and 1 € M, we
have d?E, 1(es) = 1 by (2).

(5) Since xe, = ey x,

E,(x)e, = epxe, = xeye, = xey.

Then by (2), E,,(x) = x, which implies x € M,,_;.
(6) By (M2) and (M4). n

We will explore more properties of traceless Markov towers in Section 5.

Remark 2.5. If there is a faithful tracial state tr,, on each M, with tr,4q |, = tr, and
E,, is the canonical trace-preserving conditional expectation forn = 1,2, ..., then M is
called a tracial Markov tower. Thus, tracial Markov towers defined in [7] are also traceless
Markov towers.

Example 2.6 (Markov tower without a trace). Let d >0 such that 2> 4. There is a unique
A € (0,3) such that d=2 = A(1 — ). Then dA + d(1 - 4) = d and 5 + g7 = d.
Let &;; denote the matrix units of M»(C),i,j =1,2,and 1 = 11 + €22 € M»(C).
Define E) : M(C)—>C by Ej(e11)=A, Ex(e22)=1—A and E (e12) = E(e21) =0.
It is clear that £ is a normal faithful conditional expectation and not tracial.
Define e) € M»(C) ® M»(C) by

ex=(1—-2A)e11 ®e11 + A2 @ €20 + VAL —A) (12 @ €12 + €21 @ €21),
and one can check that:

(a) ey is a projection.

(b) Ej(er) =d (11 +e2) =d2-1.

© (e®)(1®e;_x)(ea®1) =d?(e;®1)and (e, @ DN(1®e3)(e1-1 ® 1) =

d72(ej—y ®1).

Define id : M»(C) — M, (C) to be the identity map. Let M,, := M»(C)®". The inclu-
sion M,, C My 41 maps x to x ® id. Jones projection e3,4+1 = 192" @ e,y € M5y, 42 and
eanin = 192" @ ¢35 € My,i3,n =0,1,2,. ... The conditional expectation is defined
as follows:

Eppy1 = id®" M R E;, Ezpin =id®*" 2 @ Ey_;.
Now we build a Markov tower with modulus d and without a trace:

i _ 1 ®2
I My(C)®2 250 pp (€)@ E2Eh My(C)®F e
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2.2. Standard A-lattice and its properties

Definition 2.7 ([38]). Let A = (A4;,;)o<i<j<oo be a system of finite dimensional C* alge-
bras with 4; ; = C with unital inclusions 4; ; C A, fork <i,j <.

Aoo C Aoqx C Ao2 C Aoz C Aoa C

s

U U U U
A1n C A1p C A13 C A1s C
U U U
Azp C Az3 C Axs C
U U
Asz C Azs C
U
A4,4 C

Let El’ I A; j — Aj j—1 be the (horizontal) faithful conditional expectation, j =
1,2,...,i=0,...,j —1and Ell] : Ai,j — Ait1,; be the (vertical) faithful normal
conditional expectationi = 0,1,..., j =i 4+ 1,i +2,.... We also require that

(al) (commuting square condition)

Eir'
SJ+1
Ajj «—— Aijn

I !
Ei,jl lEi,j+l

Ai1,j G Adit1j+1
i+1,j+1

is a commuting square, i.e., Eilj oET =F Eile.

r o
ij+1 i+1,j+1

(a2) (existence of Jones A-projections)
There exists a sequence of Jones projections {e; };>1 in |_J,, Ao » such that

(bl) e € Aj_q g, for1 <i < j+1=<k.

(b2) The projections satisty the Temperley—Lieb—Jones relations:
(TLI1) e = e¢; = ef foralli.
(TLJ2) e;ej = eje; for|i — j| > 1.

(TLJ3) There is a fixed constant d > 0 called the modulus such that
eiejr1e; = d 2e; foralli.

(b3) ejxe; = Ef ;(x)ej, forx € Ajj.i+1=<].
(b4) ejxe; = Eil’j(x)e,-,forx €A j,i+1=].
(a3) (Markov conditions)
(cl) dimA; ; =dimA; j1iej =dimA; 4,741, fori < j.
(€2) EJ; ,(ej) = E]l._l,k(ej) =d 2, forj >i+1,k>j+1
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Then A = (A4;,;)o<i<j<oo is called a A-lattice of commuting squares. If there is a faithful
tracial state tr; ; on A; ; such that trj1,j |4, ; = trj j+1]4;; = tr;,j and El.'j, El.ll. are the
canonical trace-preserving conditional expectation, then A is called a tracial A-lattice.
Definition 2.8 ([38]). A A-lattice (4;,;)o<i<; is called a standard A-lattice if [A; j, Ak ]
= 0fori < j <k <. This condition is called the standard condition.

Remark 2.9. In the definition of (standard) A-lattice, we may not require a trace and the
conditional expectations are trace-preserving. In fact, the reader can construct an example
of (standard) A-lattice without a trace from Example 2.6 easily.

Warning. From now on, we will not further discuss the traceless standard A-lattices,
though the following statements do not require the trace at all!

Remark 2.10. Eachrow A; = (4;,;);>; is a Markov tower, i =0, 1,2, ...; each column
A = (Ai,j)?zj is a Markov tower, j = 1,2,.... From Proposition 2.4, we have

(1) Ifx € Aij, [x,ex] =0fork > j 4+ 1;[x,e] =0for1 <[ <i—1.

(2) Themap A; ; > x — xej € A; j+1 isinjective; themap A; ; > x — xe; € A;j_1,;
18 Injective.

(3) The Markov condition is equivalent to the pull-down condition:
(cly dE[;  (xej)ej = xej, forx € Aj jy1,j =1 >0.

(c2) dzEl.l_l,j(xe,-)e,- =xe;,forx e Aj_1,j,j =i > 1.

The following property was proved in [38, Prop. 1.4] by using the trace, here we
provide another proof without it.

Proposition 2.11. Let

Ag,o C A(),l C A()jz C A(),g C
U U U
Ain C A1p C A3 C

be a A-sequence of commuting squares, and define A; ; := A;—1,; N{e;—1} = A1,; N
{e1,...,ei—1), 2 <i < j.Then (A; j)o<i<j<oo is a A-lattice of commuting squares.

Proof. We construct A; ; and conditional expectation Eil_L it A;_1,; — A;,; by induc-
tion on 7, and show that Jones projections {e; +1,...,ej_1} C A; j fori +2 < j. Suppose
A;_y,; is constructed (or given) and {e;,...,ej_1} C A;_1,;, We define 4; ; := A;_1,; N
{ei—1}. Then clearly, {e;4+1....,€j—1} C A; ;.

According to Proposition 2.4 (5) and (6), foreach x € A;_; C A; 5, there exists a
¥ € A; ; such that

yei—1 = ej—1xei—1.

By Proposition 2.4 (2), A;—1,; > y = ye;—1 € A;_» j is injective, so y is unique for each
given x. This technique is often used in this section. We define Eil_1 j (x) := y. Now we
show that Eil_1 j is a faithful normal conditional expectation:
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/
(a) Itis clear that E;_, J

b EL, (") = EL, (0"

is linear, and E; (=1

El_| () eis1 = (eim1El_y (%)) = (ei—1xei—1)*

* l *
=€ 1X €1 = Ei_l,j(x )ei—1.

() E;_ 1](axb) =aFE!
then

i1 ](x)b fora,b € A; j: Note that [a,e;_1] = [b,e;—1] =0,
Eil_l,j(axb)eiﬂ = ¢;_1axbe;_1 = ae;_1xe;j_1b

= aEil_l’j (x)ej—1b = aEil_Lj (x)be; 1.
(d) El-l_l,j (x*x) > Eil—l,j (x)*EiI_l,j (x), which follows that El.l_l,j is positive:

E{_ ()" El_) j(x)ei1 = E{_; j(x)*ei1xei1 = ei1x™e;_1xe;

<ejx*xei_y = EL_, (x*x)ei_1,

i—1,j
) Eil_l,j (x*x) > E!_| ](x)* i—1,;(x) by applying the inductive hypothesis
that El.l_z, j is a positive conditional expectation and Eil_z’ j (ei_1) =d2-1.

(€) E!_, ;(x*x)=0ifandonlyif x = 0,ie., E/_, ; is faithful:

0= E{_, ;(x"X)eim1 = ejm1x*xei1 = (xei—1)*(xei—1),
which follows that xe;_; = 0. Note that 4;_; > x — xe;—1 € A;_» j is an

injection, so x = 0.

Then define E] ;| : Ai,j+1 — Aj,j as the restriction of E;_; ;,, on A; j11, which
is also a conditional expectation.
: igs 1 r —FT 1 .
Now we prove the commuting square condition E;_; ;0 E7_; .\ =E] oK, ; .
for x € Ai_15j+1,

El_ L (Bl ji(0)eimr = e E[_y 4 (X)ei-1,
Eir,j+1(Eil—1,j+1(x))ei—1 = Eir—l,j+1(Eil—l,Hl(x))ei_l

=E_, ]+1(Eil—1,j+l(x)ei—1)
= Ei_l,j+1(€i—1xei—1)

=¢€i—1 Eir_l,j_H (x)e;j—1.

Finally, we prove the Markov condition:

(@) dimA;; =dimA;—1,; N{e;—1}) =dimA;—1; N{ej—1} =dimA;—1 ;1.
(b) Ef; () =E]_ ;1 (e)) =d 1.

(c) E!

[ jleeir = eieieiy =d %eiy, 50 El_y (e;) =d ™ 1. "
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Corollary 2.12. Let (A;,;)i<j,i=0,1 be a A-sequence of commuting squares. If A; j :=
{er,....eici} MA; j, forall2 <i < j, then (A; j)o<i<; is a standard A-lattice if and
only if (Ai,j)i<j,i=o0,1 satisfies
[4o,1,A41,;]=0, V1<,
[AO,i’ Ai,j] =0, V2<i< ]
Now we define the opposite standard A-lattice, which will be used in Definition 4.5.

Definition 2.13. A°? = (A; ;)o<;<i is the opposite of A-lattice A if A = A;,;j as oppo-

site algebras, E pl =E];, EOp’ = El fori < j.

Example 2.14. The Temperley—Lieb—Jones algebra TLJ(d) forms a standard A-lattice
with the modulus d by letting A; ; = A; ij+1=C and 4; j =(ej+1,....ej—1) for j—i >2,
which is called a Temperley—Lieb—Jones standard A-lattice.

Example 2.15 ([38]). If A9 C A; is a unital inclusion of type II; subfactors with finite
index and A9 C A; C Ay C A3 C --- is the Jones tower from the basic construction,
then A4; ; := A} N A; forms a standard A-lattice, which is called the standard invariant of
Ag C A;.

2.3. The 2-shift map

In this section, we discuss an important type of *-isomorphism in a standard A-lattice, so-
called the 2-shift map [4]. Here we provide the definition by using conditional expectations
and Jones projections instead of tracial states and Pimsner—Popa basis.

For i,k > 0, define the following element of A; ;4. [ + 1 < i + 2k:

e}c 3=dk(k_l)(€k+i€k+i—1 coir1)@hktit1€k4iCnek42) €2k tim1€2k+i—2 " €k+i)-

For i, j, k > 0, define the following element of Aj ; 4ok, +1 <1 4+ j + 2k,

_ gk i ji+1 i+j
ej, =d ee ey .

Clearly,

-1 -1 i i i \2 i i i (i +
en=ey  =ep, ’ellc:e:),k’ ()" =(e)" = ¢, e},k(e;‘,k) eok’( k) e _ef)kj

Definition 2.16 (Multi-step condition expectation). Define the k-step horizontal condi-
tional expectation as

rk _ pr r T4, . s
E=El ;1 OF jo o0 E;tAij > Ajjg fork <j—i
and we have Elr o= El’ J,the k-step vertical conditional expectation as
Lk Loog. . . i 1
E;’; EH_k 1jOE g n o0kt Aij > Ajp fork < j—i

1,1 _ 1
and we have Ei,j = Ei,j.
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In particular, the trace is made by the composition of conditional expectations, i.e.,
EX IR o Bl == B[ T o Bl for0<k <j—i0<1<j—i.
Definition 2.17 (2-shift map). Define the 2-shift map S; ; : A; ; — Aijy2,j+2,1 < j by
Sij(x) = d21_2i+2Eil,j+2(e,-+1e,-+2---ejxej+1ej ceeiy1).
Proposition 2.18. The followings are the properties of the 2-shift map.
(1) S8;,j is well defined, i.e., S; j(x) € Aijq2,j42 forx € A; ;.
(2) S;,; is a unital x-isomorphism.
(3) (commuting parallelogram) S; ;_1 o El’] = El-’+2’j+2 08;,jand Siy1,j 0 Ellj =
Eil+2,j+2 0 Si,j.
“4) Si,_,-+1(x) = Si’j(x)forx S Ai’j and S,;l,_,' (x) = S,',j (x)forx [S A,"j.
(5) (shift) ei+]ei+2‘"€j+1X=Si’j(X)ei+]ei+2‘"€j+1f0rX§Ai,j. Taking adjqints,
Xejp1ej---ejp1=ejy1€j---ej1+15; j(x). In other word, e}_i’lx =8 (x)e]’-_ial.
(6) S;,; is trace-preserving.
(7) Si,j(ex) = exyo, wherei +1 <k < j—1.
Proof. (1) Note that S; ; (x) € A;+1,;+2, we shall show that El-l+l,j+2(Si’j x) =8, (x).
Since Ef+1’j+2(Si,j(x)) —8i,j(x) € Ajq1,j42 and the map A;41,j42 3 Y > Yej41 €
A; j42 is injective, we shall show that El-l+l,j+2(S,-,j (x))eir1 = Sij(x)ejy1.

Ez'l+1,j+2(Si,j (x))ei+1

=e;j1+15;,j(x)ei+1

_ 2j—2it2 I

=d~ eiv1E; jio(eit1€ita-ejxejrie; - eiy1)eit1
2j—2i

=d¥ e r1(eir1eit2ejxej e eiyy) (pull down)
2j—2i

=d“ " e 1ei42 - ejxej 1€ ey

2j—2i+2 rrl
= d¥TE;  o(eit1€iva - -ejxejpiej - eit)eiry  (pull down)
= Sij(x)eit1.

(2) For x € A;,;, we have [x, ej4+1] = 0. First, we show that S; ; is a homomorphism,
ie, S j(xy)=3S;;(x)S;;(y)forx,y € A; j. Note that the map A; 15 j4» C Aj41,j42
Yy = yeiy1 € A; j42 is injective, we shall prove that S; j(xy)e;+1 = S; ; (x)S;,; (¥)ei+1.

Si,j (X)Si,j (y)ei1
2j—2i+2 I
=dYTHTES (X E; jio(eit1eiyaccrejyejrie; s eit1)eit
2j—2i
=d“7S; j(X)eir1ei12- - ejyej 1€ eiqg (pull down)

2j—2i  32j-2i
=d¥ -d™ (ei+1€i+2---ejxejr1€j---eit1)(€it1€i+2° " €jyej11€j - €i+1)
(pull down)

_ g2j—2i+2 _ -2
=d“ €it1€i4+2 - ejXejr1ejyej 1€ - ejtq (exex+iex = d “ex)
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_ 2j-2i+2 _
=d” €i+1€i42 " €jXejr1€jej11yej - eit] ([y.ej+1] =0)

=d¥ e €40 ejxej 1Y) i
— dzj_2i€i+1€i+2"'ejxyej+lej @il
— d2j72i+2Eil’j+2(ei+lei+2 ceejxyejyie; “'€i+l)ei+1 (PUII dOWn)
=8;;(xy)eit1.

Next, S;,; is a *-homomorphism. Note that Ell it2 is a *-homomorphism, we have

*\ _ 32j—2i+2 ol *

Sij(x*) =d¥ Ejjio(eitieiya---ejxTej 1 - €it1)
o g2j—2i+2 7l *
=d~ Ej jia((eit1eiva---ejxejriej - eir1)”)

_ g2j—2i+2 pl*

=d~ E;iio(eiv1€ita--ejxejpi1e) - eiy1)

When x = 1,

-2
€i+1€i42 " €j€j+1€j -€j4] = d €i+1€j4+2°""€j_1€j€j 1 """ €41

2(i—j+2 2(i—J
==d (i—j+ )ei+lei+28i+l =d (@ ")€i+1~

Thus, S;,;(1) = dinl’j_‘_z(e,-H) = 1,i.e., S;,; is unital.

In order to prove that S ; is an isomorphism, we shall show S; ; is injective and
surjective.
If S; ; (x) = 0, then
2j—2i
0=3S;;(x)eiy1 =d / lei+lei+2"‘ejxej+lej 2|
2j—2i
=d* l(ei+lei+2"‘ej)xej+1(€i+1€i+2"‘ej)*»
which follows that xe; 1 = 0. Since the map A4; ; > y — ye;+1 € A;, j+1 is injective,
we have x = 0.
Note that dim 4; ; = dim A;11,j+1 = dim A; 45, ;12 < 00, so the injectivity implies
the surjectivity. Thus, S; ; is a unital *-isomorphism.
(3) Forx € A; j, Ef ;(x) € Aj j—1 and [E] ;(x).¢;] =0,
Si,j—10 Ef ;(x)
2j—2i ol
=d¥7HE; i (eivieiva e E] [(X)ejrre) - eitr)
2j—2i ol
=d*/ ’E,-,j+1(€i+1€i+2"'E,'r,j(x)é’jejHej "'€i+1)
2j—2i+2 ol
=q¥=2 E; jyi(eivieiva- E] ;(x)ej - eiy1)
2j—2i+2 ;1
=dYTHTE; i (eit1eiqncejxe e eit),
,
Ei+2,j+2 0 8i,j(x)
_ pr l ..
=Ei 5 j42°Ei{1 420 Si,j(x)

1 r .
=FEi 1, j+1°Ei 11,120 8i,;(x%) (commuting square)
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= de_ZiEil+1,j+1 0 Eir+1,j+2 0 Eil,j+2(ei+lei+2"‘ejxe.iﬂej “€it1)
= d2j_2iE1‘1+1,j+1 °© Eil,j+1 © Ej jialCitr€iva--ejxejr1ej - eit)
= dzj_ZiEil+l,j+l ° Ef,j+1(€i+lei+2"‘eJ'XEir,j+2(€j+l)ej rrreit)
= de_2i+2Eil+1,j+1 o E,'l,j+1(€i+1€i+2"'€jxej ceeit1)
= El 1 41(Sij—10 E[;(x)) (since S; j—1 0 EJ;(x) € Ait2,j+1)
= Si,j—l ¢} El-r,]- (X)
Thus, Si,j—l ] Eir,j = Eir+2’j+2 o Si,j.
Note that {¢;+1,...,e;—1} C A; ;, we have
Eil’j+2(ekxen) = ekEil’j_‘_z(x)e,, forallk,ne{i+1,...,j —1}. (%)

In order to prove that S;1,; o Ellj = EilJr2 o §;,j, by Remark 2.10 (2), we shall show
that S; 41,7 o El’j (X)ej42 = El?+2,j+2 08;,j(x)ejis forall x € A; ;.
Sit+1,j 0 E,l, (x)eit2

=d¥ 7 El jo(eiva ¢ ELj(X)ej 1 eiva)eisa

= dzf_Zi_zei+2---ejEf,j (x)ejt1---eiya, (pull down)
E1?+2,j+2 0 Si,j(x)eit2

_ g2j—2i+2 ! / . o . .
=d” Ei+2,j+2(Ei,j+2(el+l TrejXejt1 "'€z+1))€z+2

=d¥ M 26 HE!ly(eit1ei42ejxej i1 eiaeip)eiqa  (by (%))
= dzj_2i+2Ez'l,j+2(ei+26i+1ei+2 e @jXeji1 €428 +1€i42)

_ d2j_2i_2E,-l,j+2(€i+2 eejXej 1t eita)

= 4222 e ,..ejEl!,jJrz(x)ejJrl Ceeiy1€itn (by ()
=dY 22 ey e Ezl, (x)ej+1---€it1€i+2 (commuting square)

= Sit1,j © Ell] (x)ei+2.

Thus, S;41,; © El-l’j = E,'l+2 0 8ij-
(4) This is a particular case of (3) by the property of conditional expectation.
(5)Forx € A; j,[x,ej+1] =0,

Sij(x)eir1ei42-ejt1
_ 2j-2i+2 ]
=d~ E,',j+2(€i+1€i+2'"ejxej+1€j"'€i+2€i+1)ei+1€i+2"'€j+1
2j—2i

=d¥ 7 (eiy1€i42- - €jXejr1€) € 42€i41)€i12 " €j 4] (pull down)

_ d2_/—2i

-2
(€it1€it2-€jX)ejp1  €iya - €jt1

-2
(ererr1er = d “e;)

€i+1€j+2° "€ X€j+1

= €i+1€j+2 €€+ X.
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(6) By (3) and Definition 2.16.

261

(7) Note that the map A; 42,742 C Ajy1,j42 3 ¥y = Yeit1 € A; j42 18 injective, we

shall prove that S; ;(ex)e;+1 = exq2ei41. Fori +1 <k <j —1,
Sijlex)eivs = d¥2T2E! L (eiz1ei4a- - ejenej 1€ - eiy1)eis
=d¥ e 14" eejerej 416 eit (pull down)
= dzj_2i€i+1 © €k —1€kCk4+1€kCk+2 " €j€j41€f € 42€k 1" €i+]
(lei, ej] = Ofor |i — j| = 2)
=d* ey epor(ereriier)(€hta €jej41€)  Chpa)Chl  r €it1
=d* e epo1€kCriaChr1€k €t (eresr1e; = d ™ %ey)
=d* e reist o korerek1e Cig
= €k42€i+1 (ererx1e = d2ey)
[
Definition 2.19 (2n-shift map). Define S(") Aij — Aitan j+2n by
S,-(,'}) =S 12(n-1),j+2(n—1) © Si(z-_l) =Sit+2(—1),j+2(m—1) © Si+2(n—2),j+2(n—2) ©***° Si,j
to be the 2n-shift map.
Proposition 2.20. The followings are the properties of the 2n-shift map.
€))] S (") is a unital x-isomorphism.
2) (commuting parallelogram) S i(,};')—l o E] ]k = Eiern,j +2n ©8S ()
and Sl(:'_)l J El k_ Ellen j+an © S.(".),
3) S, (x) = 8" )(x) forx € Aijand S (x) = S (x) for x € A; ;.
(4) (shift) Forx € Ajj, ej_; X S(n)(x)eJ _i.n- By taking adjoint,
xe}ji’n =e;_ lnSl(r;)(x).
&) Si(f}) is trace-preserving.
Proof. (1), (2), (3), (5) follow from Proposition 2.18.
(4) First, we show that
e;fiz(ln_l)e;Jriz(l"_z)---e; 1% = (x)el+2(" D ]’+12(1n 2 --ej’:_i,1 for x € A; ;,
(x) l+2(n 1) ]l+12(ln 2) --e]’: i
= Sl+2(n 1),j+2(mn— 1)(5, j 1)(x))€;+,2(1n l)e]l+12(1n & "eji'—i,l
_ e;+12(1n I)S(n l)(x) z+2(n 2) "eji'—i,l

i+2(n—1) i+2(n-2)
Jj—i,1 Jj—i,1 a

i
'ej_i’lx.
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_ i+2(n—1) i+2(n—2) i o
Second, ej —in aj _in€isin i e llbj lnw1tha] im € Aiit2n and

bt € Aj jt2n, which will be showed below in Lemma 2.21 and 2.22. Then by the

Jj—in
standard condition, since x € 4; ; and S @) (x) € Ait2n,j+2n, we have

[5%)(x).a}_;,,) =0 and [x,b}_;,] =0,
which follows that
( ) ( ) +2(n—1) i+2(n-2) i
" ()C) —in . (x)a] —i,n jt —i, 1” ]l —i, ln : ; —i lbjl —i,n
(n) +2( D i+2(n-2) i
= ] lnStr;(x)el " ]l lln : ]l 11bjl —i,n
i i+2(n—1) l+2(n 2) i
; —i,n%j—i,1 j—i,1 : ]l —i, IXbl
i i+2(n—1) i+2(n— 2) i bz
j—i,n®j—i 1 Jj—i,1 € _i1bj—inX
= ej’_l,nx L]

2.4. String diagram explanation

In this section, we use the Temperley—Lieb—Jones (TLJ) string diagram to explain the
elements in A; ;, horizontal (right) and vertical (left) conditional expectations, the Jones
projections, 2n-shift maps and their properties.

In the following sections, we will use these diagrams to do the algebraic computa-
tion and readers may interpret these diagrams directly into the algebraic computations by
looking at the dictionary here.

(A1) Element x € A; ;. A, is a (rectangular) box space with j shaded/unshaded
strands where the left i strands are straight strands and together with a j — i box
space. We set the left part of left most strand to be always unshaded; the shading
on the left part of the j — i box space depends on the parity of i:

i i i j=i

j i i j—i

Remark. The reader shall understand the meaning of rectangular box and round
box of an element. And the shading type of an element is the shading on the left
of the round box.

(A2) Horizontal inclusion x € A; ; C A; j+1. The inclusion A; ; C A; j+1 means
adding one straight strand on the right and regarding the j — i box space in 4; ;
as a part of the j —i + 1 box space in A; ;4 together with the straight strand,
which does not change the shading type of the box space:



(A3)

(A4)

(A5)

(16)
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J 1 i J—it1

Vertical inclusion x € 4; j C A;—1,;. The inclusion 4; ; C A;_;,; means regard-
ing the right most straight strand together with the original j — i box space in
A; ; as a part of the j —i 4 1 box space in A;_1,;, which changes the shading
type of the box space:

If2i: If2 i
i—1 i-1
Jones projections:
7 : T
—1! — |
erk+1 =:4d ! ! | erxn+2=d ! !
o\ o\
2k 2k+1
0 _d—k: 0 P | z*_d—k: ~
k=4 L G =4 L Gk TE |
AR AVAVARY AVARTRN
ik i J k ik J

Remark. See the string diagram calculation of Jones projections in the Temper-
ley—Lieb—Jones algebra.

Horizontal (right) conditional expectation E; IE Ajj— Aij—1,x € Aij:

E[,(x)=d7)| x| =d™

j—1 i j—i—1

Vertical (left) conditional expectation Ezl; 1 Aij = Ait1,j, x € A; ;. The verti-
cal (left) conditional expectation is the left conditional expectation acting on the
left of the box space and then adding one straight strand on the left of the box
space, which changes the shading type of box space:
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2 ]i:Ej(x)=d”! =d!

2 4i:E (x)=d =d!

(A7) ejxe; = E’ (x)ej, forx € A;j,i +1=< j;eixe; = Eiljj(x)ei, for x € A; ;,
i+1<j:

1 a

5
|
|
l
-
l
|
l
|
i
|
|
|
(.

A W

j—1 i—1 Jj—i—1

(A8) Commuting square of conditional expectation: For x € 4; ;, Ell] o) El.’,j_H(x) =
l .
Eir+1,j+1 ° Ei,j-i—l(x)'

I _ _ I
EijoEfji(x) = =El 1 j10Ej (%)

i 1 Jj—i—2
(A9) E”H(ej) j 1k(e,) =d2l,forj>i+1,k>j+1.
A i
d=2, = d2 d=2 R
AN L
j-11 J i-11 1 i+1

(A10) Conditional expectation property E} ;(axb) = aE} ;(x)b, for x € A; j, a.b €
Ajj-1; Eiljj(axb) = aEil,j(x)b, forx € A;j, a,b e Ajy1;.




Standard A-lattices, rigid C* tensor categories, and (bi)modules 265

(A11) Standard condition: For x € A4; j, y € Ak with k > j, then we regard x, y as
elementsin 4;;, xy = yx.

(A12) Pull down condition
d?E];, (xej)ej = xej, forx € Ajjp1, j =1 > 0;

d?E!

,—1,j(xei)ei =xej,forx € Aj—1,;,j =i >1:

2n-shift map Si(r}) 2 Aij = Aiton,j+an: Forx € A,

i1 () = -

i 2n j—i 2nj
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(A14) Commuting parallelogram

Forx € Ai ;. 7 0 EPX(x) = Elfy om0 ST (1)
l k L,k
Forx € Ai ;. S{P 0 EXf(x) = Bl o 0n 0 S ")(x)

(n) .k .k (n)
Szr;—l ° Er (x) - - Elr-‘an ,j+2n © S " ()C)

2n  j—k

(n) Lk _ _ plk ()
5111 jo B (x) = =Ei'on 42 © S, " 7 (x)

2.5. Some useful lemmas

266

In this section, we are going to show some important lemmas. One can interpret the string

diagram computation into algebraic computation by the above dictionary.

T

:

|

LElaoad -

|

|

I L Aomon

i ik | Fﬂf
|
ARRNARY

iJj1 k—1

Lemma 2.21.

Lemma 2.22. For ) |_ kp, = Y\

re1 kg kp, kg, € Lo, and x € A; j, we have:
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Proof. By the above lemma. ]

These two lemmas are used in the proof of Proposition 2.20 (4).

Lemma 2.23.
i J i
‘u BN a \7/
I L= :
e @, | AV oY
ap j i ab j i
Proof.
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Proof.
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2.6. From standard A -lattice to pivotal planar tensor category

2.6.1. Planar tensor category.

Definition 2.25. A planar tensor category g is a 2-shaded rigid C* multitensor category
(see Definition 2.49) with the following properties.

(a) g is a 2-shaded category with objects [n, +], [n, —], n € Z>go, where 1T :=
[0, +], 17 := [0, —] are simple and the tensor unit 1 4, = 1™ @& 1=, which means
Ag is 2-shaded.

(b) Ay is a strict tensor category. The tensor product of objects are

m, N[N 20+ [2i + 1, +] [2i, -] [2i + 1, -]
[n, +] [2i +n,+] 0 0 2i +1+n,-]
[, -] 0 2i+14+n,+] [2i +n,-] 0

(c) oA is rigid. There is an involution () such that [2i, +] = [2i, %], [2i + 1, +] =

2i +1,-] andﬁ = id. For X € Ay, there exist

(1) evy : X®X — 1?, where ? = + if X is unshaded on the right, i.e., X =
1T ® X, ? = —if X is shaded on the right,ie., X =17 ® X;

(2) coevy : 17 — X ® X, where ? = + if X is unshaded on the left, ? = — if X
is shaded on the left.

such that

* (idy ® evy) o (coevy ® idy) = idy.

* (evx ®idg) o (idg ® coevy) = id .

* evg = (coevy)T and coevg = (coevy)T.

In other words, () is a unitary dual functor, which will be discussed in Sec-
tion 2.7.1.

Definition 2.26. We call a planar tensor category +q pivotal, if the left trace Tr;, and
right trace Trg defined as follows are faithful normal tracial. For X = [2k + 1, +] and
f € Ag(X — X),since [2k + 1, +] = [2k + 1, —], we define
evy o (idg ® f)o ev; =: Trp (f)id;+,
coev; o(f ®idg) ocoevy =: Trr(f)id;-.
We call Aq spherical if Trg(f) = Trr,(f) for all f. Similar for other three cases [2k, +],

[2k,—], and [2k + 1, —].
And there exists a d > 0 such that eV[, 9] © COCV[n 7] = d¥™. 17,7 =+,—.

Remark 2.27. The traces Try, Trg are defined in the sense of Definition 2.45.

Definition 2.28. The 2-shaded Temperley—Lieb—Jones multitensor category 7L J(d) is
a planar tensor category with the endomorphism spaces being 2-shaded Temperley—Lieb—
Jones algebras with modulus d, namely, End([n, +]) is a 2-shaded Temperley—Lieb—Jones
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algebra with n points on one side and unshaded on the left; End([r, —]) is a 2-shaded
Temperley—Lieb algebra with n points on one side and shaded on the left.

Remark 2.29. The morphisms in +4¢ are determined by its representation in endomor-
phism and its domain and range.

There is a canonical isomorphism ¢ : Ao ([m, +], [m + 2i, +]) — Ae(m + 1,7 —
[m + i, ?]) by Frobenius reciprocity, where ? = + if i is even and ? = — if i is odd.

m+i m+i m+i m+i i

¢ | # - ¢_1 | '_>
For morphism x € A([m, ?] — [n, ?]), we can write a triple (¢(x); [m, 7], [n, ?]) to
represent x, where ¢ (x) € End([2£, 7)), which is called the endomorphism representa-

tion part of x. In the following context, we simply write x instead of ¢ (x) in the triple
(x: [m. 7. [n, ).

2.6.2. From standard A-lattice to pivotal planar tensor category. We regard the ele-
ments in algebra A; ; as endomorphisms in the category and the idea in Remark 2.29 gives
us the way to represent the morphism by using its corresponding endomorphism, source
and target, then we can construct a pivotal planar tensor category from a given standard
A-lattice.

Definition 2.30. Let A = (A4, j)o<i<; be a standard A-lattice. We define a planar tensor
category ¢ from A as follows.

(a) The objects of A are the symbols [n, +], [n, —] forn € Zx.

(b) Given n > 0, define A¢([n, +] = [n, +]) := Ao,» and A¢([n, =] — [n,-]) :=
A1 p+1.Define 1 := [0, +] & [0, —].

(c) The identity morphism in g ([, +] — [1, +]) is 14,, and in Ao ([n,—] — [1n,—])
is 1A1,n+1’

(d) For (x;[n,+], [n + 2k, +]) (or (x;[n + 2k, +], [n, +])), we define the dag-
ger structure as (x; [n, +], [n + 2k, +])T := (x*; [n + 2k, +], [n, +]), where
X, x* € Ao n+k; for (x;[n,—], [n + 2k, —]) (or (x;[n + 2k, —], [n,—])), we define
(x;[n, =], [n + 2k, =] := (x*;[n + 2k, =], [n, —]), where x, x* € A} y1k+1-

(e) We define composition in six cases.

(C) (yi[n +2i, 4], [n +2i +2j,+]) o (x5 [n, +], [n + 2i, +])
= (dTE} i (vxe™ ) [, [n + 20 + 2, +]),
where x € Agn+i,y € Aon+2i+; and diEg’,;Jrzl.Jrj (yxel) € Aoptivt)-
(C2) (y;[n +2i +2/,+][n +2i,+]) o (x;[n, +], [n + 20 +2j,+])
= (diE(;z;ijszrj (yxe} ") n, +1, [n + 2i, +)),

i pritj n,*
where x € Ao pyitj.y € Aopt2i+, and d EO,n+2i+j (yxej,i ) € Aon+i-
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(C3) (yiln,+].In + 20 + 2/, +]) o (xi[n + 2i, +]. [n, +])
= (d'ye}; x;[n +2i, 4], [n + 20 + 2/, +)),
where x € Ao n4i,y € AO,n+i+j and diyez;*x € Aont2itj-
CH (ysln+2i, -] [n+2i +2j,=]o(x;[n,—],[n+2i,-])

= (diEI:ln+2i+j+1(yxe}1’:rl); [n,+].[n +2i +2j,+)]),

where x € Ay n4i4+1,Y € A1nt2i+,+1 and diE;:i,+2,-+j+1(yxef-,;rl) €
Al pvitj+1-
(€5 (yiln+2i+2j, -] n+2i,-])o(xi[n,—][n+2i +2j,-])
| it ] Floky, .
= (dlEI,lr;+12i+j+1(yxe_7,i )i [n, =), [n 421, —]),
where x € A1n+i+j+1,Y € A1,n+2i+j+1 and d‘Eﬁ;i’zl._i_jH(yer;Ll’*)e
Atntitr-

(CO) (y:[n.—).[n + 2 +2j.]) o (x: [n + 2., [n.-])
= (@ yelf " [+ 20 -] [+ 20+ 2).-).

Jsi
1 n+1,%
where x € Al,n+i+1,y S Al,n+i+j+1 and d’yej,i X € Al,n+2i+j+1~

If x € Ao([n + 2i,—] — [n,—]) and y € Ao([n, =] — [n + 2i + 2j,—]), we
define

yox:= diye;?fl’*x € Avptaitj+1 = Ao(ln +2i,—] = [n +2i +2j,-]).

We define the composition xT o yT := (y o x)T, which defines composition

eA)O([n +2i+2j,-]— [n—]) ® AO([n,—] — [n+2i,-])
— o([n +2i +2j,—] — [n +2i,—]).

According to [7, §3.4], the composition and dagger structure are well defined as
Markov tower, and 4 is a C* category.

Before we define the tensor product of morphisms, we use string diagrams to explain
the composition. The box space in the following diagram is always the endomorphism
representation of the corresponding morphism.

(ChH (€2

The string diagram of case (C4) comes from the string diagram of case (C1) by adding a
straight strand on the leftmost of the diagram and changing the shading. In the same way,
we obtain (C5) from (C2) and (C6) from (C3).
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Now we define the tensor product of morphisms.
X x®1;
(xi[m,+], [m+2i,+]),i <] (xe J’.”ii;[m—i-j +].[m +2i + j,+])
(x:[m, 4], [m +2i,+]),i > j  (xel™? Zpm o] m 20+ o +])
(i =] Im +2i, =)0 < j (xefyiim + jo—].fm +2i + j.—])
[m+j.—=][m+2i +j, -]

m—+1,%,

(xi[m, =] Im +2i, =], i > (xe;_} 7

Definition 2.31. x ® 1 and 1 ® y, x, y € Hom(+y):
First, we define x ® 1 as

X x®1;
(x;[m,+],[m +2i,+]),i <j (xjmil.;[m—i-j—f-] [m+2i +j,+)])
(x [m, 4], [m +2i,+]),i > j (xel”[m—i—] +].[m+2i + j,+])
xifm =) m 420, =)0 < (el m 4 j. =) Im A+ 20 + j, =)
(x;[m,—],[m +2i,-]),i > (xe

PN Im 4 =) Im 20+ )

Because of the shading, we define 1 ® y as:

y Iy ®y Lit1®y
il AL £ 2. +]) (S§he, 00 [0 + 20+, 0
[n+2i £2/,4])
(yiln.=).[n £2/.-) 0 (S ;[ + 21,

[n+2i £2j,-])

2i n 2i 1 n—1

<] i>]
Proposition 2.32. For x,y € Hom(Ap), * ® Do (1®y)=(1® y)o (x ® 1).

Proof. Here, we check the case (x;[m, +], [m + 2i, +]) and (y; [n, +], [n + 2/, +]),
where 2 | m (or (y;[n,—],[n + 2j,—])if 2  m) and n + j > i. We shall prove that
((xs [m, 41, m + 20, 4]) ® (1;[n + 2/, 4], [n + 2/, +]))
o ((1;[m,+]. [m,+]) ® (y:[n. +]. [n + 2/, +]))
= ((L:fm +2i, +].[m +2i, +]) @ (y: [n. +]. [n + 2/, +]))
o ((x:[m. +], [m +2i,+]) ® (1; [n, +]; [n. +])).
First, they both in A¢([m + n,+] — [m +n + 2i + 2j, +]).
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The right-hand side:

((1:0m + 20+, [m + 20, +]) ® (yi[n, +]. [0 + 2/, +1))
o((x:[m.+].[m + 2i, +]) ® (1: [n, +]: [n. +1)):

The left-hand side:
((xs[m. 41, Im +2i,+]) @ (L [n 4+ 2/, +]. [n + 2. +]))
o((1;[m, +], [m, +]) ® (y; [n, +1, [n + 2/, +])):
(HIfi <j,

273
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@ Ifi > j,

(A10)

LI R R |

Therefore, (x ® 1) o (1 ® y) = (1 ® y) o (x ® 1) in this case. The remaining cases
are left to the reader. ]

Definition 2.33 (Tensor product of morphisms). Definex ® y := (x ® 1) o (1 ® y).
We need to prove that the tensor product defined above is functorial and associative.

Proposition 2.34. The tensor product is associative and strict, i.e., for x, y,z € Hom(+Ay),
x®y®z=x®(y®2).

Proof. Here,we check the case (x;[m, +], [m + 2i, +]), (y;[n, +], [n + 2/, +]) and
(z:ll,—], [l +2k,—]),where2 |m,2 ynandn+ j >i,l +k>i+ j.Then(x ® y) ® z,
xQ@(y®z)eAy(m+n+1,+]—[m+n+1+2i +2j + 2k, +]).

By Proposition 2.32, the endomorphism representation parts of x ® y and y ® z are
defined in this way:
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Then (x ® y) ® z:

1i+k it+j

J

/\
11+k i+j

mn
4

=
®
2
by
=
<
=
<
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mi i nj j Il+kA=j

)

(A10)

E

mn 1l+k i+j

!
|
|
|
-
|
|
|
[
!
!
|
|
|
|
|
|
-
|
|
!
[
|
|
|
|

Therefore, (x ® y) ® z = x ® (¥ ® z) in this case. Readers can check the rest of the
cases by using the string diagram dictionary and the lemmas. ]

Proposition 2.35. For x, y € Hom(+y),
x0y)®1=x®1Do(y®1) and 1@ (x0y)=(1®x)o(1® y).
Proof. By our construction,
1®@xoy)=(10®x)c(1®Yy)

only uses the fact that the shift map is a x-homomorphism.
Asfor(xoy)® 1 =(x® 1) o (y ® 1), we check the case (x;[m, +], [m + 2i, +])
and (y; [m + 2i], [m + 2i 4+ 2j,+]), where n > i + j. Then

(xo0y)®1,, (x®1n)o(y®l,,)GAO([m+n,+]—>[m+n+2i+2j,+]).

Next, let us compare their endomorphism representation parts.
(xo0y)® 1y

I e S R
r--r-r-—"~"r-—"—Tr~—- - 71
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(x®1,)0(y ®1y):

J

‘nz
iJ 1¢

Only the straight strands are allowed in the blank.
Therefore, (x 0 y) ® 1 = (x ® 1) o (y ® 1) in this case. Readers can check the rest of

the cases by using the string diagram dictionary and the lemmas. ]
Corollary 2.36. The tensor product is functorial, i.e., for x,y,z, w € Hom(yp),
(xo0y)®(zZow)=(x®2)o(y@w).

Therefore, the tensor product in Definition 2.33 is well defined.
Next, we show that # has a pivotal structure.

Definition 2.37 (ev and coev). Note that [, +] ® [n, £] = 2n; £]; [n, +] ® [n, +] =
2n,+]if2 | nand 2n,—]if2 { n;[n,—] ® [n,—] = [2n,—]if 2 | n and [2n, +]if 2 } n.
Define

coevi, 41 : 17— [2n,+]=[n,+]®[n, +] as coev, 4] =(d":[0,+]. [2n.+]),
eV[n,+] - n. A, +]1=[2n,71—1° as eVi,, 4] =( J2n, 7, [07]) 7=+, if 2| n,
coevpy,—: 17 —=[2n,—]= n,—]®[n,—] as COEV[,, ] :( ":10,-], [Zn,—]),
eVt [, —1®[n,~] = 21,7 =17 asevp,_=(d";[2n,7],[0,7]), 2=—, if 2 | n.
Proposition 2.38. Ay is rigid.
Proof. First, we prove that
(idpr, 4] ® eVn,+1) © (coevy, 4] ® id[,,+7) = idp, 4.
Note that

idpy 4] ® eviy 4] = (S(”)(d”) 2n +n,+],[0 +n,+]) = (d";[3n, 4], [n, +])
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and

coevy,, ] ® idp, 4] = (d”e?n_n)’n; [0+n,+],[2n +n, +])
= (d"eg’n; [, +]. [3n, +])

Then by the composition case (C2), where i = 0, j = n,

(idpn,+] ® eV[n,+]) © (coev(y,+] ® id[y,+7)
= (d";B3n, +]. [0, +]) o (d"eg : [n, +], Bn, +])
= (d°Egn 5, ed neri) [0, 4], [n + 2, +])
= (d*"Eg5,(e0,): n. +]. [n. +])
= (

I;[n, 4], [n, +]) idp, 4
The other three cases are left to the reader. Therefore, Ay is rigid. [
Proposition 2.39. A is pivotal and spherical.

Proof. First, we prove that the right trace Trg is a normal faithful trace. Let X = [n, +].
Given (f;[n,+],[n,+]), f ® dp, 7= (f;[2n,+],[2n, +]), then

Trr(f) = coeV o (f ®idp57) © coeviy, 4+
= (d"; [2n, +1,10, +1) o (f: [2n, +], [2n, +]) 0 (@"; [0, +], [2n, +])
= (d": 20,41, [0, +]) o (d" Egl, (f - d"eg,): [0, +]. [2n, +])
= (d":[2n,+].[0.+]) o (f:[0, +]. [2n, +])
= (d°Eg,(feyg):[0. +1:[0. +])
= (tr(£): [0, +1. [0. +]).
The third equality uses Definition 2.30(e)(C1), where n = 0, i = n, j = 0; the forth
equality uses (19); the fifth equality uses (C2), wheren =i =0, j = n.
The case X = [n, —] is left to the reader.

Next, we prove that the left trace Trz is a normal faithful trace. Let X = [2n, +]. Given
(f: 20, +1. 120 +]). idggy 7 ® £ = (S3,(f): [4n. +]. [4n, +]), then

Trp (f) = eVjan,4] © (idm ® f)o eVEan,Jr]
= (@®":[4n. +1.10. +]) © (S¢2, (f): [4n. +]. [4n. +]) o (4>"; (0. +]. [4n. +])
a2 [4n, 41,10, +1) © (4> EG (S020(f) - d>"ef 5,): 0, 4], [4n, +])

= (
= (@4 d B (Eyan (S, ()ed 1) eqs,): [0 +1. 0. +])
(tr(f): [0, 41,10, +]).
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The last equality: note that g, = 1 and Eg5n 0 Eqan =tr= Ey>% o E(l)’,i'r’,, Séflz)n (f)e
Aoy 4n and Sét’z)n is trace-preserving, then
\2 ,2 0,
d*" - d° Egon (i (Soan(£)¢8 20)€0:3n)
= A1 (573, ())€0.2n)
)2 1,2 (n)

= d4nE£n,Zn © Egan (Soflzn(f)eg,zn)

= E52n (S$9,(f))  (by Proposition 2.20 (2))

= Egon(f) =u(f).

The cases X = [2n + 1, +], [n, —] are left to the reader.
Therefore, Trg = Try, is the trace, so #4¢ has a pivotal structure.
Moreover, by the composition case (C2), wherei =n =0, j = n,

eV[n, 1] © CoeVly, 4] = (d":[2n, +].[0, +]) o (d"; [0, +]. [2n, +])
= (d°Eg’,(d* ey s): [0, +]. [0, +1)
= (d*";[0,+].[0. +]) = d*" - 1T.
Similarly, CVm 0 COCV[p,—] = a2 .1 . u
Combining the above propositions, 4 constructed from a standard A-lattice is a piv-
otal planar tensor category.
2.7. From 2-shaded rigid C* multitensor category to standard A-lattice

In this section, we show the relation between the 2-shaded rigid C* multitensor category
and planar tensor category, and give the construction from the category to standard A-
lattice.

2.7.1. Rigid C* multitensor category. In this subsection, we are going to briefly review
the unitary dual functors in a rigid C* (multi)tensor category € [37].

Definition 2.40. [44,45] Recall that every object ¢ € € is dualizable, i.e., there is an
object ¢ € € together with morphisms ev, € €(¢c ® ¢ — l¢) and coev, € €(le — ¢ ® C)
satisfying the zigzag condition:

(ide ® eve) o (coev, ® id.) = id,,
(eve ® idz) o (id; ® coev,) = id;.
We also require that every object ¢ € € admits a predual object ¢ such that (c) = c.

Definition 2.41. A choice of dual for every object in € assembles into a dual functor
() : € = €™°P, which is a tensor functor with a canonical tensorator v, 5. To be precise,
for a morphism f € €(a — b), define

f = (evp ®idg) o (id; ® f ®idz) o (idj; ® coev,) : b —a.
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The tensorator v, 5 : a ® b — b ® a is defined as
Vap 1= (evg @ idggy) o (idz ® evp ® id, ® idggy) o (id;gj ® cOeVpey)-
Note that v is completely determined by ev and coev.

Proposition 2.42. Any two dual functors 61 and 62 are equivalent up to a unique nat-
ural isomorphism. Define ¢ : (-), — (), as follows: for ¢ € €,

Lo = (ev% ®idg ) o (ids, ® coevi).

Co coevé

Then we have ¢( f>) =§'aof_20§b_1 =¢(f), forall f € €(a — b).

Definition 2.43. [11] A pivotal structure on a rigid monoidal category € is a pair (). ),

where () is a dual functor and ¢ : id = (-) is a monoidal natural isomorphism. To be
precise, for all @, b € €, the following diagram commutes:

Definition 2.44 (Pivotal trace). Let l¢ = @;:1 1; be a decomposition into simples. For
¢ € €and f € €(c — c), define the left/right pivotal traces trz and tr‘fe 1 €(c —>c)—
C(le — le) = M,(C) by

trf(f) :=eveo (idg ® f) o (ids ® (pc_l) 0 COevg

tr‘l’;(f) = evz o (¢ ®id;) o (f ®id;) o coev,.

The traces are tracial and non-degenerate.
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Definition 2.45. Let p; € €(le — le) be the projection onto 1;,i = 1,2,...,r. We
define the M, (C)-valued traces Tri and Tr‘l'; by the formulas:

(Tr7. (), jidy, =7 (pi ® f ® p)).
(TiR(f)), jidy, =tz (pi ® f & pj).

Note that Tr7 and Tr are tracial, and Tr7 ( ) =TT forall f €€(c — o).
We call the pivotal structure ((-), ¢) spherical, if Tri (f)= Tr'l’; (f) forallce®€, f e
€(c — o).

Definition 2.46. For each ¢ € C, define Dimf, Dim‘f2 € M, (C) by
Dimf (c) := Trz (ide), Dim% (c) := Tr(;; (ide).

If ¢ is simple, then Dimi (c), Dim‘fe (c) have only one non-zero entry, which we denote
dim{ (c), dim%(c) respectively.

If the pivotal structure ((-), ¢) is spherical, Dim{ (¢) = Dim%(c) := Dim(c) for all
object c.

Definition 2.47. A dagger structure on a C-linear category is a collection of anti-linear
maps 1 : €(c — d) — €(d — c) for all ¢,d € € such that (f o g)" = g o f1 and
(fHT = f. Amorphism f : €(a — b) is called unitary if T = f~1.

A dagger (multi)tensor category is a (multi)tensor category equipped with a dagger
structure so that (f ® g)7 = fT ® g for all morphisms £, g, and all associator and
unitors are unitary.

Definition 2.48. A functor between dagger categories F : € — D is called a dagger
functor if F(f1) = F(f)' forall f € Hom(€).

Definition 2.49 (Rigid C* (multi)tensor category). A C* category is a dagger category
which is Cauchy complete and each endomorphism algebra is a C*-algebra, where the
dagger structure is compatible with the *-structure.

A C* (multi)tensor category is a dagger (multi)tensor category whose underlying dag-
ger category is C*.

A rigid C* (multi)tensor category is a C* (multi)tensor category equipped with a dual
functor. It is known that a rigid C* multitensor category is Cauchy complete if and only if
it is semisimple [31].

Proposition 2.50 (Unitary dual functor). Fix a dual functor () on a rigid C* (multi)tensor
category €, the followings are equivalent:

(1) () is a unitary dual functor, i.e., foralla,b € €, f € €(a — b), the tensorator
Vap is unitary and fT = f1.

(2) Defining ¢ = (coevz ® id3z) o (ide ® coevg) is a pivotal structure ¢ :id = ().

Proof. [42], see also [37, Prop. 3.9]. [
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Definition 2.51. Two unitary dual functors are called unitary equivalent, if the canonical
natural transformation ¢ from Proposition 2.42 is unitary, i.e., { is unitary for all ¢ € €.

Proposition 2.52. For a unitary dual functor (), the left/right pivotal traces have alter-
nate formulas:

¥ (f) = eve o (id: ® f)oev],
'y (f) = coevl o (f ®idz) o coeve.

Theorem 2.53 ([2], [37, Prop. 3.24]). For a rigid C* (multi)tensor category €, there exists
a unique unitary dual functor whose induced pivotal structure is spherical up to unitary
equivalence. In other words, the pivotal structure can be trivial, so that ev; = coev;r and

coevg = eVI forall c € €.

2.7.2. 2-shaded rigid C* multitensor category with a choice of the generator and
planar tensor category. Let 4 be a 2-shaded rigid C* multitensor category together
with 1 = 17 @ 17, where 17, 1™ are simple, and a generator X = 1™ ® X ® 1~. Here,
the generating means for any simple object P, it is a direct summand of X®” or X at®n
(defined below) for some n € Zxg.

Let (-) be a unitary dual functor that induced a spherical pivotal structure ¢. Note that
only (4, —) entry of Dim(X) is non-zero and we denote this number as dy to be the
modulus of category €.

Construction 2.54. We construct a planar tensor category # from (4, X ). By MacLane’s
coherence theorem, + is unitary equivalent to a strict tensor category with the above prop-
erties and the dual functor is strict, without loss of generality, we also denote it as 4.
Construct the pivotal planar tensor category 4 as follows:

(a) Objects: Define [0, +] := 11, [0,—] := 17, and

mA+l=h-1,HX = (X®X)®X)® ) ® X" = X&",

n tensorands

where X? = X if n is even and X if n is odd, and

[n,—] = [n—1,_]®X? _ (---(()?®X)®)?)®---)®X7 —. jalen

n tensorands

where X? = X if nis even and X if n is odd, for n € Z>yp.
(b) Morphisms: 4 is the full subcategory of # with above objects.
(c) Duality: The dual functor is unitary as a dual functor on the subcategory, which

also induces a spherical pivotal structure on the subcategory.

Given Ay to be a pivotal planar tensor category, then its Cauchy completion ;\:) isa
Cauchy completed 2-shaded rigid C* multitensor category with a generator [1, +] and a
canonical unitary dual functor (-);.
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Proposition 2.55. Suppose Ao is a pivotal planar tensor category constructed from
(A, X), then there is a unitary equivalence between (Aq, [1, +]) and the Cauchy com-
pletion of (A, X) with respect to their unitary dual functors.

Remark 2.56. Suppose 4, B are two 2-shaded rigid C* multitensor categories with
generator X and Y respectively and #Ag, 8B are corresponding pivotal planar tensor cate-
gories. Then #4( and By are unitary equivalent if and only if the Cauchy completions of
A and B are unitary equivalent which maps generator to generator.

Remark 2.57. The planar tensor category +y is not Cauchy complete, i.e., additive com-
plete and idempotent complete. In fact, as for skeletalness, strictness, and Cauchy com-
plete, most tensor categories can require at most two of them. Hilb(G) is an exception.

2.7.3. From planar tensor category to standard A -lattice.

Construction 2.58. Let A be a pivotal planar tensor category with modulus d. Define
Ao,; =End([j, +]), A1,; =id(1 +] ® End([j — 1,—]), j € Zo, so that Agp = 41,1 = C.
In general, fori < j, define
A idj,4) ®End ([j —i,+]) 2],
iy = . .. .
id;,+) ® End ([/ —l,—]) 2 4i.
Then we check A = (4; )i, ;>0 to be a standard A-lattice.
(a) The vertical inclusion A;1,; C A;,; is clear. The right inclusion: the right inclu-
sion send x € A; j to x @id[y,9) € A;,j+1, where ? = 4+ if 2| j and ? = — if
24 7.
(b) Horizontal conditional expectation: Define E] ; : A;,; — Aj j—1 by
Ej 5 (x) = d " (idppk—1,4] ®evp iy © (x®[1, 4]) o (idp2k—1,+] ®coev(1 4+]).
E] p1 (¥) = d 7 (idpk 1) ®evr ) 0 (x ®[1. —]) o (idpzk, 1) ®coevpy ).

(c) Vertical conditional expectation: Define Ell it A;j — Ait1,j by

Ey ;= d ™ (idprt2,41®ev ) © (idp, 11®X) o (idpk +2,4] @ coevyr 17),
ESpiry = d ™ (dprts,41®evop) o (idpp, 11 ®x) o (k13,41 ®coevy, ).
(d) Jones projection: the nth Jones projection is defined as
eak+1 =d " - idpg, 4] ® (coevyy 4] 0 eviray) € Ai2k+2
esk+2 =d ™" -idpk41,4] ® (coevyy o evp—p) € Aiok+3.

The check that A = (A;,;);>i>0 satisfies Definition 2.7 (a), (b), (c) and the standard con-
dition is left to the reader. In particular, e,e,+1e, = d ey, E£j+1 (ej) = Ejl‘—l,k (ej) =
d—21.

Note that the dual functor is unitary and we divide the loop parameter, the composition
of these conditional expectations is actually a unital trace on A.
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Remark 2.59. The idea of drawing the string diagram explanation in Section 2.4 comes
from here.

In this section, the class of unitary equivalent pairs (4, X) with 4 a 2-shaded rigid
C* multitensor category and X a generator induces the class of isomorphic pivotal planar
tensor categories; in Section 2.6, the class of isomorphic pivotal planar tensor categories
is one to one corresponding to the class of isomorphic standard A-lattices.

Combining above discussion, we can deduce the equivalence between standard A-
lattice A and pair 2-shaded rigid C* multitensor category with a generator (4, X).

Theorem 2.60. There is a bijective correspondence between equivalence classes of the
following:

Pairs (+, X) with 4 a 2-shaded rigid C* multiten-
= { sor category with a generator X, ie., 14 =1"T®1",

{Standard )&-lattices}
17,17 aresimpleand X = 1T ®@ X ® 1~

A= (Ai,j)0§i§j

Equivalence on the left-hand side is unital x-isomorphism of standard A-lattices; equiva-
lence on the right-hand side is the unitary equivalence between their Cauchy completions
which maps generator to generator.

3. Markov towers as standard right module over standard A -lattice
and module categories

Now we move to the module case. One motivation that regards a Markov tower as a right
module over a standard A-lattice is to answer the question in [7, Rem. 3.34].

3.1. Markov tower as a standard right module over standard A -lattice

Definition 3.1.

My C¢c My Cc M, C --- C M, C
U U U U

A0,0 C A(),l C Ao,z c - C AO,n C
U U U

Ay C Aip C - C A1n C

Let A = (A;,j)o<i<j<oco be a standard A-lattice with Jones projection {e; };>1 and compat-
ible conditional expectations. Let M = (Mp, e,)x>0 be a Markov tower with conditional
expectation E; : M; — M;_1,i > 1. (M and A share the same Jones projections.) We call
a Markov tower M a standard right A-module if it satisfies the following three conditions.
(a) Ao, C M; isaunital inclusion,i =0,1,2,....
(®) Eila,; = Eg’i, i=1,2,....
(c) (standard condition) [M;, Ax ;] =0fori <k <.

In the rest of this section, we only consider the Markov tower with dim(My) = 1
unless stated.
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3.2. String diagram explanation

We now introduce the diagrammatic explanation of the element, conditional expectation,
Jones projection and their relations in a Markov tower with the same spirit in Section 2.4.

(MT1) Element x € M,:

L 1Ll
',,' [T

(MT2) Vertical inclusion x € Ao, C My:

(MT4) Jones projections:
- J A
NAR W Lo

2i 2i+1

-
_1\

eziyr =d
I—

(MT5) Conditional expectation Ey, : My, — My—1 and Ey|4,, = E6,n5

1 1
Exm=d7' x |[.xeM, E,(0)=E;,m=d7|[x]. xea0,

n—1 n—1

(MT6) Pull down condition: For x € M, 41, xe, = dE,+1(xen)en.
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(MT7) Standard condition: For f € M;, x € Ax; with k > i, then we regard ¢, x as
elements in M;, fx = xf.

3.3. From Markov tower as a standard module to planar module category
3.3.1. Planar module category over planar tensor category.
Definition 3.2. Let 4 be a planar tensor category defined in Definition 2.25. Let Mg be
an indecomposable semisimple C* right #4¢-module category with following properties:
(a) Object: The objects of My are [n] = [r]u,, n € Zx0p, Where [0] is simple.
(b) The tensor product of objects are
[+ nla, 02| m.
mime <\, +[ae =
[mlae < [n.+1ao {0 2 m.
0 if 2 | m,
[m]M < [ns_]eA =
0 0 [m+nluy, if24m.

(¢c) Only Mo([n] — [n £ 2i]) is non-zero, n,i € Zso. The module product of mor-
phisms in Hom(:M() and Hom(¢) should match the shading types.

(d) My is a strict right A¢-module category, i.e., the module associator is identity.
For x1,x, € Ag and f € My,

(f <x1) <dx2=f <(x1 ®x2).

(e) My is a C* category with a natural dagger structure such that <1 is a dagger
functor, i.e., for x € Hom(¢) and f € Hom(My),

(f <ax)f = T < x
Such module category is called a planar module category.

Remark 3.3. Similar to Remark 2.29, every morphism in M is determined by its repre-
sentation as an endomorphism and its domain and range.

There is a canonical isomorphism ¢ : Mo ([m] — [m + 2i]) > Mo([m + i] — [m +i])
by using the rigid structure on #Ay.

m+i i

m+i m+i m+i
i
¢: X |—> X ¢_1: X |~ x
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For morphism x € Mg ([m], [1n]), we can write a triple (¢ (x); [m], [n]) to represent x, where
P(x) € End([m;”]), which is called the endomorphism representation part of x. In the
following context, we simply write x instead of ¢ (x) in the triple (x; [m], [n]).

3.3.2. From Markov tower as a standard module to planar module category. Define
the multi-step conditional expectation E* = E,_p41 0--- 0 E,, for m < n. Similar to
Definition 2.30, we may regard the elements in M,, as endomorphisms in the category, we
can construct a planar module category from a given Markov tower as a standard module
over a standard A-lattice.

Definition 3.4. Let M = (M,),>0 be a Markov tower as a standard right module over
standard A-lattice A = (4;, ;) with dim(M,) = 1. We define a planar module category Mg
from M as follows.
(a) The objects of M are the symbols [n] for n € Zxy.
(b) Givenn > 0, define Mo ([n] — [n]) := M,.
(¢) The identity morphism in Mo ([n] — [n]) is 1ar,.
(d) For (f;[m],[n]) with 2 | m + n, we define (f;[m], [n])T := (f*;[n], [m]), where
f, f* € MmT-I—n
(e) We define composition in three cases.
(CD (g:[n +2i].[n+2i + 2/ o (f:[n]. [n+2i])
= (diE;ig+2i+j (gfe]n',i); [n]» [I’l + 2i.+ 2]])’
where f € Mpyi g € Mpy2itjandd'E, ;i (gfe};) € Mpyiyj.
(C2) (g:[n+2i +2j],[n+2i]) o (f;[n],[n +2i +2j])
= (@' Ey i (8 e)): ). In + 2i)),
where f € My+itj, g € My+2iy; and diE:;iéi+j (gfe]}") € Mn+i.
(C3) (g:[n].[n+2i +2j]) o (f:ln +2i],[n])
= (d'ge};" fiIn +2i], [n + 2i +2j]),
where f € Myti, g € Mytivj and d'gel;" f € Myiai.
For the other cases, we can use the dagger structure £ o g7 := (g o f)T to define.

Similarly, the composition and the dagger structure are well defined, and M, is C*
according to [7, §3.4].

3
|
(\

. L |~
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Remark 3.5. Readers can observe the similarity between the diagrammatic explanation
of elements in M, and A;,, the difference only appears on the leftmost. Moreover, a
similar version of Lemma 2.23 and Lemma 2.24 holds for the Markov tower case.

Now we define the module action of morphisms.

Definition 3.6. f <1 and 1 < x, f € Hom(My) and x € Hom(+Ay). The idea is the
same as in Definition 2.31.
First, we define f <11 as

f VRRY
(film], m +2i]),i < j  (fe]", ;slm+ jl[m+2i + j])
(f5[m), m +2i]),i > j  (fe"] slm+ jlIm +2i + j])

i <j i>J

The definition of 1 <1 x will be the same as 1 ® x by using the 2-shift maps in Defini-
tion 2.31.

The proof of the following propositions is the same as in Propositions 2.32, 2.34,
and 2.35.

Proposition 3.7. For f e Hom(Mg), x eHom(sAp), (f<t1)o(1<x)=(1<ax)o(f<l).
Definition 3.8. Define f < x := (f < 1)o (1 < x).

The following propositions guarantee the module action defined above is well defined.
Proposition 3.9. For f € Hom(My), x,y € Hom(Ag), (f <x) <ty =f <(x® y).

Proposition 3.10. For f,g € Hom(My), (fog) <1 =(f <l)o(g<al)and 1<
x®y)=>0<x)o(l <y)

3.4. Indecomposable semisimple C* #A-module categories and planar +¢-module
categories

3.4.1. Indecomposable semisimple C* -A-module category. Let 4 be a 2-shaded rigid
C* multitensor category with a generator X = 17 ® X ® 1~ with a canonical unitary
dual functor (-). Let M be a Cauchy complete indecomposable semisimple C* A-module
category. Note that there is a natural dagger structure on M, and the module action < is a
dagger functor, namely, for morphism f € Hom(:M) and x € Hom(#4),

(f <ax) =t <xt.
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We call a module category M indecomposable if for any two simple objects P, Q € M,
Q is adirect summand of P <1 X¥®" if P = P 9117 (P <« X¥®" if P = P < 17) for
some 1 € Zxyg.

Construction 3.11. Let 4( be a planar tensor category obtained from (+4, X) via the
construction in Section 2.7.2. By MacLane’s coherence theorem, M 4 is unitary equivalent
to a strict one, i.e., M and # are strict and the right module associator is trivial. Then M
is also a strict right #Ag-module category.

We construct the planar #Ay-module category Mg as follows:

(a) Objects: Pick a simple object Z = Z <1 11 € M, define [0] := Z, and
[n+1]:=[n] < [1,7],

where [1,?] = [1,+]if2 |nand [1,?7] = [1,—]if2 } n.
(b) Morphisms: My is a full subcategory of M with above objects.
Given My to be a planar #4A-module category, then its Cauchy completion ]l’/l\o is an

Ag-module, compatible with the dagger structure. The proof is left to the reader as an
exercise.

Remark 3.12. Suppose M is a planar #Ag-module category constructed from (M, Z)
over (A, X), then there is a unitary equivalence between M as A-module and Mg as
#Ao-module, which sends base object to base object.

3.4.2. From planar module category to Markov tower as a standard module over a
standard A -lattice.

Construction 3.13. Let Mg be a planar #¢-module category with modulus d and A
is a standard A-lattice constructed from g as in Section 2.7.3. Define M; = End([/]),
J € Zo. Then we check M = (M;);>o to be a Markov tower as a standard A-module.

(a) The horizontal inclusion M; C M; 11 sends x € M to x <1id[; 9] € M; 11, where
?=+if2|jand?=—if 2 } j. The vertical inclusion Ay, ; C M; sends x € Ay, ;
to id[o] <x € Mj.

(b) Conditional expectation: Define E }M :M; — M;_; by

EJ(x) = d™ (idpr-n®@eviyp © (x < [1,+]) o (idpk—11®coevp 41),
E%_H(x) = d_l(id[zk]@)evm) o (x <t [1,-]) o (idpx) ®coev(i, ).

(c) Jones projections: the same Jones projections in A and identify e, € Ag 41 With
1 <e, € Mn+1.
The check that M is a Markov tower and a standard A-module is left to the reader. In
particular, we have E, 4 (e,) = d ™2 1.

In this section, we show that the class of unitary equivalent pairs (M, Z) with M an
indecomposable right 4A-module category and Z a simple base point induces the equiva-
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lent class of planar module categories; according to Section 3.3.2, the class of equivalent
planar module categories is one to one corresponding to the class of isomorphic Markov
towers as standard module over the isomorphic standard A-lattices.

Combining above discussion, we can deduce the equivalence between (M, Z) as A-
module category and Markov tower M as standard A-module.

Theorem 3.14. There is a bijective correspondence between equivalence classes of the
following:

Traceless Markov tower M = Pairs (M, Z) with M an indecomposable
(M;)i=o with dim(Mo) = 1as| _ | semisimple C* right A-module category
a standard right module over a| — | together with a choice of simple object
standard A-lattice A Z=27Zd 1;

Equivalence on the left-hand side is x-isomorphism of traceless Markov towers as stan-
dard A-modules; equivalence on the right-hand side is unitary A-module category equiv-
alence on their Cauchy completions which maps the simple base object to the simple base
object.

Corollary 3.15. Any Markov tower M with modulus d and dim(My) = 1 is naturally
a standard right TLI(d)-module, where TLI(d) is a Temperley—Lieb—Jones standard A-
lattice as in Example 2.14, which corresponds to an indecomposable semisimple C* right
TEg(d)-module category with a simple base object.

Remark 3.16. The tracial case will be discussed in Section 7.1.

4. Markov lattices as standard bimodule over two standard A -lattices
and bimodule categories

In this section, we extend the discussion into the bimodule case. We give the notion of
Markov lattices and Markov lattices as bimodule over two standard A-lattices, by using a
similar method, which corresponds to bimodule categories.

4.1. Markov lattice and basic properties

Definition 4.1 (Markov lattice). A tuple M = (M, ;, E%l E%r ei, fi)i,j>o is called a
Markov lattice if the following conditions hold.

Miy1; C Mit1,j+1
U U
Mij C  Mijn
(@) M;; CM;j;ji1and M; ; C M; ; are unital inclusions.
by M_; =(M;;, EMI e;)i>o are Markov towers with the same modulus dy and

i,j

e; € My forall j; M — = (M, ;, E%' fi)j=0 are Markov towers with the

same modulus d; and f; € M; ;4 for all i. We call M of modulus (do., dy).
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(¢) The commuting square condition:

M,r
i+1,j+1

M, M;iq,j+1

M. M,

Ei+1,/l Eif1 41
Mi,] <T Ml]-‘rl
i,j+1
M, M, M,
is a commuting square, i.e., Et]+1OEij =E; 7 El-_Her.

Here are some properties of Markov lattice.

Proposition 4.2. Let M = (M, ;, E% l, E% " e;, J7)i,j>0 be a Markov lattice.

1 Ez+11+1(ei) =e¢; andEi+’1,j+1(fj) = fjforeachi,j =1,2,....
(2) [fj.eil=0foreachi,j =1,2,3,....

Proof. (1) Note that e; € M, j C M1 L+l and ET : Mi+15j+1 — Mi+l,j isa

i+1,j+1
conditional expectation, we have E/; ;. (e;) = e;. Similarly, Eﬂf ) =1

(2) By Proposition 2.4 (1). [

Remark 4.3. If there is a faithful tracial state tr S on M; ; such that trf‘j’rl j Im,; =
trM YRR Im,; = trl -, and E ,E%l are the canomcal faithful trace-preserving conditional
expectations for 7, j = 0, 1 2,...,then M is called a tracial Markov lattice.

Remark 4.4. It is worth mentioning that a single commuting square of finite dimensional
C*-algebras is a particular version of a Markov lattice. For a more detailed discussion, see
Section 6.6.

In the rest of this section, we only consider the traceless Markov lattice with dim(M,o)
= 1 unless stated.

4.2. Markov lattice as a standard bimodule over two standard A -lattices

Definition 4.5 (Markov lattice as a standard bimodule over two standard A-lattices).

@] @] U U U U
A3,1 C Ag,() C M3,0 C M3,1 - M3,2 C M3,3 C
@] @] @] @] @] @]
A2,1 C Az,() C Mz’() C M2,1 C szz C M2,3 C
@] @] @] @] @] @]
A1,1 C Al,O C Ml,() C M151 C M1’2 C M1,3 C
@] U U @] U
Ao,o C M(),o C M(),l C M(),z C M(),3 C
U @] @] U
B0,0 C BO,l C Bo’z C Bo,3 C
@] @] @)
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Let A’ = (A;,j)o<j<i<co B = (Bi,j)o<i<j<oc be two standard A-lattices with Jones
projection e; € A;11,;, fj € Bi ;j+1 respectively and compatible conditional expectations.
Here, A and M share the same Jones projections ¢;; B and M share the same Jones
projections f;. (Warning: here we use the opposite A-lattice A°P, see Definition 2.13)

Let M = (M; ;. e;i, f;)i,j>0 be a Markov lattice with conditional expectation £ Mr
EM-I We call a Markov lattice M a standard A-B bimodule where the left action is the
opposite action if it satisfies the following three conditions.

(a) A0 C Mo, Bo,j C My, are unital inclusions, 7, j =0,1,2,....

M, _ pAl M, _ pBr. _
®) E;y lao,=Eig- Eo’jr|30,j = EO,]-rl =12,....
(c) (standard condition) [M; ;, Apq]l =O0fori < g < p; [M; ;, Bx;] =0, for j <
k=<l
Remark 4.6. The standard condition implies that
[Apg. Bxi] =0 forallg < p.k <!
since Ap g C Apo C My and By C By C My,;. Moreover,

M,r _ . M, _ .
Ei,j |Ak,l = id, Ei,j |Bk,l =id.

In particular, we have
M, M.l
Ei,jr(ek) = €k, E,',j (D= rh
for Jones projections.

4.3. String diagram explanation

We now provide the string diagram explanation of the element, conditional expectation,
Jones projection and their relations in a Markov lattice with the same spirit in Section 3.2.

(ML1) Element x € M; ;:
)
i J i J

(ML2) Horizontal inclusion x € M; ; C M; j11and x € A; o0 C M; ;:

1 1 R 0

r
[l I [l
[l
I

[ X 1

T

o1 i J

(ML3) Vertical inclusion x € M; ; C M;;1,j and x € By j C M; j:
UL L

X I

r
1
1
[

X
Fr
[ J i J



Standard A-lattices, rigid C* tensor categories, and (bi)modules 293

(ML4) Horizontal conditional expectation EM" : M; j — M; j_; and EM |5, =

B,r.
EO,j :

EM"(x) = Eg (x) = d!

i -1

s XEBO’J'

(ML5) Vertical conditional expectation E%l :M; ; — M;_,,; and E%l Ao = Efél:

Ml N _ Al N _ -1
E; 7 (x) = E;§(x) =d; . X E€Aip
j
(ML6) Commuting square of conditional expectation
M,r Ml M, M,r . .
E,]+1 o E = El]+1 o Et+l 1 Mi+1,j+1 — Ml-,j,x S Mi+1,j+1.
M,r
Eijfo (x) = z;+1 z+1 ;+1(x) = dy

(ML7) Horizontal Jones projections f; € M; ;41 and vertical Jones projections e; €
My,

AR =S TN
f2j+1 = dl_l\ J \‘JV | f2j+2 = dl 1\ J \‘JV |
A I B W S I B

i 2j i 2j+1

e e ' e
ezi+1 = dgy ! €242 = d; !
B SUE g Bul
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(MLS8) Standard condition:
e [M;;,Apg) =0,fori <gq < p.Forge M, ; x e Ap,, regard them as
elements in M, ;, then gx = xg;
* [M;;, Byl =0,for j <k <l .ForgeM,;,y € By, regard them as
elements in M, ;, then gy = yg:

p—q

4.4. From Markov lattice as standard bimodule to planar bimodule category
4.4.1. Planar bimodule category. Let 4A¢ and B, be planar tensor categories. Let My
be a C* Ag-By bimodule category with following properties:

(a) Object: The objects of M are [m,n] = [m,n]uy,, m,n € Zxg, where [0,0] := 1 4,
is simple.

(b) The module tensor product of objects are

[0, +1ao &> [m.nla, = [m +i.nlag. [ =]ae > [m.n]lu, =0,
[m.nlpe <[, +lgy =0+ jlao,  [m.nla <[/, —]8, =0,
([i. +Hao > [m.nlag) < 1.+,
=[m+in+jlag =1+l > (Im.nlu, <[/ +s,)-
(¢) Only Mo([m,n] — [m %+ 2i,n £ 2j]) is non-zero, m,n,i, j € Zso. The mod-

ule tensor product of morphisms in Hom(¢), Hom(:M¢) and Hom(Mg) should
match the shading types.

(d) My is a strict Ag-Bo bimodule category, i.e., the left/right module associator and
bimodule associator are trivial. For x, x1, x, € Hom(Ap), g € Hom(Mg) and
¥, Y1, Y2 € Hom(By),

X2 > (x1 > g) = (x2®x1) > g,
(g <9y1) <y2=g < (1 ®y2),
(x>g) qy=x>(g<Qy).

(e) My isaC* category with a natural dagger structure such that <1 and > are dagger
functors, i.e., for x € Hom(+y), g € Hom(My) and y € Hom(By),

x>g<ayt=xT gl <y

Such a bimodule category is called a planar bimodule category.
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Remark 4.7. As in Remark 3.3, the morphisms in M is determined by its representation
as an endomorphism and its domain and range.
There is a canonical isomorphism

¢ Mo([m,n] — [m +2i,n ~|—2j]) — Mo([m +i,n+jl—>m+in —i—j])
by using the rigid structure on g and By.

m+i n+j m+i n+j

| L] ] 1

¢ X > X
|

m n i m noj
Remark 4.8. Let M and N be planar bimodule categories over the same planar tensor
category. If they are unitary monoidal equivalent, then they are unitary isomorphic.

4.4.2. From Markov lattice as standard bimodule to planar bimodule category. Use
a similar notion as we define the planar module category in Definition 3.4.

Define the multi-step conditional expectations E,ln',, = Eﬁl{ll 41p Or O E,j,‘,/l ,f and
rk . M,r M,r
Enpn =E, 141°°Enn.

Definition 4.9. Let A, B be standard A-lattices and M = (M, 4)m.n>0 be a Markov
lattice as a standard A-B bimodule with dim(Mp ) = 1. We define a planar bimodule
category My from M as follows.

(a) The objects of My are the symbols [m, n] form,n € Zso.

(b) Givenm,n > 0, define Mo([m,n] — [m,n]) := My, 5.

(c) The identity morphism in Mo([m,n] — [m,n])is 1y, ,.

(d) For (f;[m1,n1], [ma,nz]) with2 | my 4+ m, and 2 | ny + n,, define

(f:lmy,ml [ma,n2))" = (£ Imas nal, [mr, i),
where f, f* € Mmi+my nj+n, .
2 4 2
(e) Define the composition in nine cases.

(C11) (h;[m4+2i,n+2k], [m~+2i+2j,n+2k+2t])o(g; [m,n], [m+2i,n+2k])
_ (i gk pli , .
= (dod; Eml+2i+j,n+k+t( rrn+2i+j,n+2k+t(hg ttlke;?i))’[m»”]’

[m +2i +2j,n + 2k + 2t]), where § € My i ntks h € Munt2i+ jn+2k+1

i gkl rk n ,m .
and dody El iy inrkert Emai v jntokrs (R8T € Mmtit jntic+1-

(C12) (h;[m + 2i,n + 2k + 2t],[m + 2i + 2j,n + 2k]) o (g; [m, n],
[m + 2i.n + 2k + 21])
— i 7k gl k4t ¥ .
= (ﬁ_l(l)dl E.ml+2i+j,n+k(Errn+2i+j,n+2k+z(hgfz’,lk ej:)):[m.n],
[m +2i +2j,n + 2k]), where g € Mytintk+t. 1 € Mymy2itjn+2k+t

i1k i rk+t n.* m L
and dyd; Em+2i+j,n+k(Em+2i+j,n+2k+t(hgft,k €i)) € Mmyitjntk-
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(C13) (h;[m +2i,n][m+2i +2j,n + 2k +2t]) o(g;[m,n + 2k],[m + 2i,n])
1,i . .
= (dyd E +21+Jn+2k+l(hflk geyy)ilm.n + 2k], [m + 2i +2j,
n+2k + 21]) where g € My, i pnik» h € Mm+2i+j,n+k+t

i gk m
and dody E m+21+] n+2k+l(hflk 8€i) € Mintit jn+ak+e-

(C21) (h;[m + 2i +2j,n+ 2k],[m + 2i,n + 2k + 2t]) o (g; [m, n],
[+ 2i + 2j,n + 2k])
_ i gk plit+] k
= (oY Epp it kst Egai e jnsaiere (R8I35 7)) [monl,
[m +2i,n + 2k + 2t]), where § € Mytitjn+k>h € Mmt2itjnt2k+t

i gkpliti r.k n
and dod Em+21+] n+k+t(Em+2i+j,n+2k+t(hg t.k€ ]z ))GMm+l n+2k+t-

(C22) (h;[m +2i +2j,n+ 2k 4+ 2t],[m + 2i,n + 2k]) o (g; [m, n],
[m + 2i +2j.n + 2k + 21])
— (didkEl,i+j (Er,k+t (h fn * m, *)) [m,n]
0% Emzitjn+k\Emv2itjnt2k+:\"18 ¢ p €5 ) M1,
[m +2i,n + 2k]), where g € Mytiyjntk+e.h € Mmy2itjntok+e

i gk plitj rk+t nox *
and dody B, 5k (Egaig jnsokre 1811k €507)) € Mimintk-

(C23) (h;[m +2i + 2j.n], [m + 2i.n + 2k +21]) o (g; [m,n +2%),
[m +2i +2j,n)])
= (défzkErlr;iJ:rzjz:+j,n+2k+z(hf k gejl *):lm,n + 2],
[m +2i,n + 2k + 2t]), where g € Myitjntksh € Mmt2it jntk+e
and d(ngkErlr;l;i-le:+j,n+2k+t(hft 1 ge” *) € Mytintokte

(C31) (h;[m,n +2k],[m +2i +2j,n + 2k + 2t]) o (g:[m + 2i,n],
[m,n + 2k])
= (d¢dfE m+21+jn+2k+t(he]l &S Im +2i.n],
[m +2i + 2] n + 2k + 2t]), where § € Mytin+k h € Mmti+jn+2k+t
and djd{ E m+21+] n+2k+t(he]"',1i’*g i) € Mmaitjnkte-
(C32) (h;[m,n 4+ 2k + 2t],[m + 2i + 2j,n + 2k]) o (g; [m + 2i,n],
[m,n + 2k + 2t])
i gk prk—+t .
= (dod{ Ey oy, n+2k+t(he et & ") [m + 2i,n],
[m +2i +2j,n + 2k]), where g € Mytintk+1: 1 € Myyitjnt2k+e

i gk gkt m* o gn.* it
and dody B, it jnoke (1€ 810 8) € Mimi jnke

(C33) (h;[m,n],[m +2i +2j,n+ 2k +2t]) o (g;[m + 2i,n + 2k], [m,n)])
= (dydfhf] el g Im + 2i,n + 2k], [m + 2i + 2j,n + 2k + 21)),
where g € My yintk-h € My+itjnti+: and
dldkhfnk* ]m,*g € Myi2it jntok+t-

For the other cases, we can use the dagger structure gt o 2T := (h o g)T to define.
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Similarly, we use the string diagrams to explain the composition.

i+j m nk

Jj+i

3

The composition is well defined and M is a C* category as before.

Remark 4.10. The composition is well defined, because of the commuting square of
left/right conditional expectation condition and Proposition 4.2.

Definition 4.11. 1> g <1, x> land 1 < y, g € Hom(Myp), x € Hom(Ag) and y €
Hom(By).
The idea is the same as in Definition 3.6. First, we define 1 > g <1 1 as

g L>g<ly
(g:[m.nl, [m+2i,n+2Kk]), i < jk <t (gefl;; flyp:lm~+jn+1][m+2i+ j,m+2k+1])
(g;[m,n),[m+2i,n+2k)), i > j k<t (gef";;f’j.}”t'ik’k; m+j,n+t],[m+2i+jm+2k+1t])
(g;[m,n),[m+2i,n+2k]), i <j k>t (ge]'-”_i,ifk"_’t’t; [m+j,n+t],[m+2i+j,m+2k+t])
(g:lm.nl, [m+2i,n+2k]), i > j.k >t (gef”]; fior i lm+ jon 1], [m+2i + j.m+2k +1])

Note that here we use the fact that the Jones projection [e;, fx] = O for all i,k > 1 and
hence(1>g)<l=1>(g<gl)=1>g<l.

The definitions of x > 1 and 1 < y will be the same as x ® 1 and 1 ® y in Defini-
tion 2.31 by using the shift maps.

The proof of the following propositions is the same as in the Markov tower case with
the fact in Remark 4.6. To be precise, the diagrammatic proof can be split as left-hand side
and right-hand side independently, and the proof on each side is the same as the Markov
tower case.
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Proposition 4.12. M is a left Aq-module. That is,
(1) For g € Hom(My), x € Hom(Ay), (1 < g)o(x <) =(x < 1)o(1 < g).
(2) For g € Hom(My), x1, x2 € Hom(sAg), X2 > (x1 > g) = (x2 ® x1) > g.

(3) Forgi,g> € Hom(My), x1,x2 € Hom(sAg), 1 > (g10g2) =11 g1)o (1> g2)
and (x1oxp) > 1= (x> 1)o (x> 1).

Proposition 4.13. Similarly, My is a right By-module. That is,
(1) For g € Hom(My), y € Hom(By), (g < Do(l<y)=(1<y)o(g<l).
(2) For g € Hom(My), y1,y2 € Hom(Bo), (g < y1) < y2 =g < ()1 ® y2).

(3) For g1,82 € Hom(Mo), y1,y2 € Hom(Bo), (g1082) <1 =(g1 < 1)o(g2<1)
and 1 <1 (x10x2) = (1 < x1) o (1 < x3).

Proposition 4.14. My is a A¢-Bo bimodule. That is, for g € Hom(My), x € Hom(+Ay),
¥y € Hom(By), (x > 1ol <dy)o(I>g<al) =0 <y)o(x>o(l>g<l)

Proof. By Remark 4.6. ]
Definition 4.15. Definex > g <ty = (x> 1)o(l gy)o(l> g <1l).

4.5. Indecomposable semisimple C* +A-8 bimodules and planar #(-8¢ bimodule
categories

4.5.1. Indecomposable semisimple C* #A-8B bimodule category. Let 4 and B be 2-
shaded rigid C* multitensor categories with generators X = 1; ®X®1,and Y =
1% ® Y ® 1 5. Let M be a Cauchy complete indecomposable semisimple C* #4-8 bimod-
ule category. Note that there is a natural dagger structure on M, and the left/right module
actions are dagger functors, i.e., for morphism g € Hom(M), x € Hom(+4A) and y €
Hom(8B),

gt =xTeg’ (fap’=sTa)h

We call M indecomposable if for any two simple objects P, O € M (without loss of
generality, P = 1} > P <1 15), Q is a direct summand of (X™'®™ > P) < Ya®" for
some m,n € Zxy.

Let A, By be planar tensor categories constructed from (+4, X) and (B, Y) respec-
tively. By MacLane’s coherence theorem, 4 .M g is unitary equivalent to a strict one, i.e.,
A, B are strict, the right/left module associators and the bimodule associator are trivial.
This strict category is also a strict -8By bimodule category. Without loss of generality,
we also denote it as M.

Pick a simple object Z = 1;: >Z 1} € M, then we construct a planar +A¢-Bo
bimodule category M as follows:

(a) Objects: Define [0,0] := Z, and
[m+1,0] :=[1,N4, > [m,0], [m,n+1]:=[m,n] <[1,?]s,,

where [1, 24, = [1. +]4, if 2 | m and [1, 4, = [1, =], if 2 4 m; [1,?g, =
[1,+]g, if2 { nand[1,%5, = [1,—]s, if 2 | n.
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(b) My is a full subcategory of M with above objects.

Given My to be a planar #A(-8B¢ bimodule category, for a similar reason, its Cauchy
completion M is a #Ao-By bimodule category, compatible with the dagger structure.

Remark 4.16. Suppose My is a planar #4y-8B¢ bimodule category constructed from M
over (+4, X) and (B, Y), then there is a unitary equivalence between M as -8B bimodule
category and My as #Ao-B¢ bimodule category, which maps base object to base object.

4.5.2. From planar bimodule to Markov lattice as standard bimodule.

Construction 4.17. Now let M; ; =End([i, j]),i, j€Z>o. After identifying f'e M; ; with
idjy 91 > f € Mi4,; and f <1idy 9 € M; ;41 and identifying x € A; o = End([i, +].4,)
with x <1ido, ;) € M; j and y € By ; = End([], +]g,) withid[; o) < y € M; ;. Itis easy to
show that M = (M; ;); j>o is a Markov lattice as a standard A- B bimodule with modulus

(do. dy).

Similar to the module case, combining the above discussion, we have the following
theorem.

Theorem 4.18. There is a bijective correspondence between equivalence classes of the

following:
Traceless Markov lattice M = Pairs (M, Z) with M an indecomposable
(M; ;)i j=0 with dim(Mpg)=| _ )semisimple C* A-8B bimodule category
1 as a standard A-B bimodule [ ~ ] together with a choice of simple object
over standard A-lattices A, B Z = 1; >Z < 15

Equivalence on the left-hand side is the x-isomorphism on the traceless Markov lattice
as standard A-B bimodule; the equivalence on the right-hand side is the unitary A-8B
bimodule category equivalence between their Cauchy completions which maps the simple
base object to simple base object.

Corollary 4.19. Any Markov lattice M with modulus (dgy, d1) and dim(Mgyg) = 1 is nat-
urally a standard TLY(dy) — TLI(dy) bimodule, which corresponds to an indecomposable
semisimple C* T L (do)-T L (d1) bimodule category with a simple base object.

Remark 4.20. The tracial case will be discussed in Section 7.3.

5. Markov towers, bigraded Hilbert spaces, and balanced fair graphs

In this section, as an application, we are going to classify all indecomposable semisimple
TEF-modules (see Corollary 3.15) to get Markov tower, which are also the same as
balanced d -fair bipartite graphs [10]. We will explain exactly how these two classifications
agree by directly constructing the correspondence passing through the 2-category BigHilb
[13]. Although this is known [10, 13], we explain in detail here so that we are able to do
the bimodules in Section 6 below.
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5.1. Balanced d -fair bipartite graph

In [10], the authors classify unshaded unoriented 7 £ ¢ (d )-modules in terms of the combi-
natorial data of fair and balanced graphs. This classification was generalized to 7L £ (T")-
modules in [13], where TE (") is a generalized Temperley—Lieb—Jones category associ-
ated to a weighted bidirected graph I'. We will be interested in the special case of 2-shaded
TELg(d)-modules.

Notation 5.1. Let A be a graph where V(A) is the set of vertices and E(A) is the set of
edges. Let s, 7 : E(A) — V(A) be the source and target functions respectively.

Definition 5.2. Let A be a bipartite graph with vertices
V(A) =VouV; and {e|s(e), t(e) € Vi} =2, i =0,1.

Letw : E(A) — (0, 00) be the weighting on the edges of graph [13].
We call (A, w) a d-fair graph if foreach P € Vy, Q € 1V}

Z w(e) = Z w(e) =d.
{els(e)=P} {els(e)=0}
We call (A, w) a balanced graph if there exists an involution (-) on E(A) that switches
sources and targets for each e € E(A) and

w(e)w(e) = 1.

Proposition 5.3 (cf. [10, Prop. 3.1]). Suppose (A,w) is a balanced d -fair bipartite graph.
Then the graph is locally finite, i.e., the number of edges coming in or out of any vertex is
uniformly bounded:

#{e 1s(e) = P} = #{e 1t(e) = P} <d? forany vertex P.

Proof. Suppose P has N edges, then there exists an edge g : P — Q such that w(eg) < %

and hence w(eg) = w(leo) > %. Note that

_ N
d= 3 ol)zo@) >,
{els(e)=0}

which follows that N < d? < oo. n
Definition 5.4. We call 0 : (A, w) — (A’, @) an isomorphism of edge-weighted graphs
if 0 is a graph isomorphism and @’ (6(e)) = w(e) for each e € E(A).

5.2. BigHilb and 2-subcategory € (K, evg)

We refer the reader to [15] and [6, Def. 2.2] for the full definition of W*-category and W*
2-category.
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Definition 5.5. Let U, VV be countable sets. Define a W*-category Hilb}JXV as follows:
(a) Object: U x V-bigraded Hilbert spaces

H = @Huv»

uelU
veV

where H,,, is finite dimensional for each pair (u, v), and only finite many H,,, is
non-trivial for each fixed u € U or each fixed v € V.
(b) Morphism: The morphisms are defined as uniformly bounded operators

f:Gafuv:H—)G,

uelU
veV

where fyy : Hyy — Gyy are morphisms in Hilby, the category of finitely dimen-
sional Hilbert spaces. Here the direct sum is taken as von Neumann algebra direct
sum. Uniformly boundedness means

sup || fuvl < oo.
uelU
veV

(¢) The composition: For morphisms f, g, define the composition entry-wisely as

gof = @guvofuw

uelU
veV
(d) The identity morphism: Define the identity morphism idg : H — H as
idy = @ idn,,.
uel
veV
where idg , = idg,, is the identity map on Hy,.

Definition 5.6. Let BigHilb be a W* 2-category defined as follows:
(a) Object: Countable sets.
(b) For objects U, V, Hom(U, V) = Hnb}f <V,

(¢) The composition of 1-morphisms: For 1-morphisms H : U -V, G :V — W,
the composition of U, V' denoted by ® is defined as

GoH=HQ®G:= P P Huw®Gow:U > W,

uelU veV
weW

where the ® on the right-hand side is the tensor product of Hilbert spaces. The
operator is analogous to matrix multiplication, the product is replaced by tensor
product and the sum is replaced by direct sum. Clearly, (H ® G) @ L = H ®
(G®L).
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The identity 1-morphism: For an object U, the identity 1-morphism
CYl' e Hom(U, U)

is defined as

Cll:= @ bu=v-C.

u,vel
The dual 1-morphism: For 1-morphism

H=@HuU:U—>V,

uelU
veV

define its dual as
H:Z@Hvu:v_)Uv
veV
uelU
where Hy,, ‘= Hy,, and H,, is the complex conjugate Hilbert space of H,,;.

Tensor product of 2-morphisms. Let H;, H, : U -V, G1,G, : V — W, and
f i Hy — Hy, g:Gy — Gy, define f ® g as

(f ®g)uw = @fuv ® gvw : @Hl,uv & Gl,vw - @Hz,uv ® GZ,vw-

veV veV veV

Clearly, (f @ ) ®h = f ® (g ® h).
Dagger structure: For a 2-morphism f = @u,v Juv : H — G, define its adjoint

fT::@fu*v:GaH,

u,v

where £} is the adjoint of f;,, as a bounded linear map. Clearly, (f )T = f.

Note that for each hom space Hom(H — K) as a infinite direct sum of finite dimen-

sional spaces has a predual, and for countable sets T, U, V, K and 1-morphisms H;, H> :
U—->V,G:V —>W,K:T — U, the following maps are weak™* continuous:

idg ® —: Hom(H; — H,) - Hom(K ® H; — K ® H,) givenby f — idg ® f.
— ®idg : Hom(H; — Hy) - Hom(H; ® G — H, ® G) givenby f — f ®idg.

According to [6, Def. 2.2, Prop. 2.4], BigHilb is a W* 2-category.

Definition 5.7. We call a 1-morphism H : U — V dualizable, if there exist evaluation and
coevaluation 2-morphisms evy : H @ H — C!Vland coevy : CIV! - H ® H meeting
the zigzag condition:

(idg ® evy) o (coevy ® idy) = idy,

(evg ®idg) o (idg ® coevy) = idg.

We are going to discuss the evaluation and coevaluation evg and coevy in more detail.
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Definition 5.8. Note that

EVH uv : @I'_Iuw ® Hyy = (I'_I ® H)yy = (Clvl)uv = Su=y - C,
w

only evy 4y is non-zero forv € V. Let Cy yy, Hyy ® Hyy = Hyy @ Hyy — C such that
eVHy = D, cv CH,vu- Similarly, only coeve yy : C - (H @ H)yy = Dyey Huv ®

Hyy is non-zero for u € U. Let Dy yy 1 C — Hyy ® ﬁvu = Hy,, ® Hy, such that
coeVH uu = PDyey DHuv-
Then

dguy = ((idH ®evy) o (coevyg ® idH))uv

= (idg ® evh)uy o (coevy ® idp)uy

= ( @ id»H,uw &® eVH,wv) o (@COGVH,W &® id»H,tv)

weV teU
= (idg,uv ® evy,py) o (coevy uy ® idy uy)
= ([dH,uv ® CH,vu) © (DHuv ® 1dH,u0).
foru € U, v € V. Similarly,
dg ,, = (eVH vy ® idfl,uu) o (idﬁ,vu ® COeVH,yy)
= (CH,pu ®idg ,,) 0 (g, ® DHuv),
forveV,ueU.

Remark 5.9. evy and coevy are completely determined by Cy yy and Dy yy.

Definition 5.10. Let €(K,evg) = €(K,evk,coevk) be a 2-subcategory of BigHilb with a
1-morphism generator K : Vo — V1 and distinguished 2-morphisms evaluation and coeval-
uation evg, coevg . We require that

(a) K is dualizable.

(b) The evaluation and coevaluation for the dual K:
evg = (coevg)" and coevg 1= (evi)'.
(c) They satisfy the d-fairness condition, namely,
evg ocoevg = d -idgw,l, evg ocoevg =d -idgpy).
In other words,
Ciauy = (Pxaun)’ Dy = (Cxou)',
and

For each P € Vj, Z Ck.po © Dk.po =d -idc.
Qe

For each Q € 17, Z Ck,op © DE’QP =d -idc,
PeVy
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Here, the 1-morphism generator means all the 1-morphism is Cauchy generated by K
and K.

Remark 5.11. Note that K satisfies the d-fairness condition, the maps idxy ® — and — ®
idg (also for K) are bounded by d and hence weak* continuous. Therefore, € (K, evk) is
arigid W* 2-subcategory of BigHilb.

Remark 5.12. evg, coevg,evg and coev g are determined by one of them in € (K, evg).

Proposition 5.13. The followings are some properties of €(K, evg).

(1) Let V = Vo U V4, then all the 1-morphisms in €(K, evg), including K, K, can
be regarded as V x V -bigraded Hilbert spaces. So we can regard € (K, evg) as
a 2-category with one object V. Then all the 2-morphisms can be regarded as
V x V-bigraded uniformly bounded operators.
If (P,Q) &€ Vo xVq, then Kpg = IZQP = 0, which follows that

Ck,op = Dk, po = 0.

The zigzag condition between them still hold.
(2) All the 1-morphisms in €(K, evk) are dualizable.

(3) Suppey,.pey, dim(Kpg) < 0. In fact, we will see suppcy, ey, dim(Kpg) < d?
in the next section (Section 5.3) together with Proposition 5.3.

(4) There exist standard spherical evaluation and coevaluation in 2-morphisms:

eVK K® K — (C‘V‘l, coev‘}é R OLCIEN K®K,

sto.__ i sto.__ T
eve 1= (coevg)', coevy 1= (evk)'.

In more details, Let {¢; }f-‘zl be the orthonormal basis (ONB) of Kpo and {€]} be
the dual basis of Kpg, P € Vo, O € V; then

CI?,QP : IZQP ® Kpo = Kpo ® Kpg — C,
D;éab :C — KPQ ®EQP = KPQ ®KPQ,

st T st T
CK PQ (DKPQ) ’ DK QP (C QP)

are defined as

CI?,QP:S?®8]"_>81'=]" KPQ 1l—>z€l®£

Note that ev and coevy are well defined 2-morphisms because of (3), and the
definitions of evy and coevy do not depend on the choice of ONB on each Kpo
and they also meet the zigzag condition.
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Notation 5.14. Now, we use graphic calculus to describe € (K, evk). The idea is from the
graphical calculus for 2Hilb [39]. However, in their paper, they only care about the case
when ev = ev® and coev = coev®, which is not necessarily true in our context.

First, we provide the single object version:

(1) For P € V,Q € V71, CE’PQ, DI?,QP’ C;%’PQ and D%,QP.
Kop Kpo
P @ Q P
Kpo Kop
CE,pQ:KPQ‘g’EQP_’C DIZ,QP:(C_’EQP‘X’KPQ
Kop  Kpg
P o 0 P
Kpo Kop
C%,PQ:KPQ®I?QP—>C D%,QP:«:—»EQP®KPQ
(2) Rigidity:
P Q=rpr Q=r 0
P Q =P Q=r°p 0

(3) d-fairness. For P € V,

ZQGVP @ =d‘i P :

Then the graphical calculus version: In the n-category setting, n-morphisms are used
to label codimension n cells of an n-manifold. So here, 0-morphisms in BigHilb label
regions of the plane, 1-morphisms label strings from left to right, and 2-morphisms label
tickets (including ev and coev) from bottom to top. Shading is just shorthand for the label-
ing. The unshaded region indicates the object V, and the shaded region indicates V.

(1) coevg, evg, coev-} and evs}‘?.

_ _ oevt : V1l S £ ‘K@K - ClV
coevg V0l S K@ & og Kok —cll ot 1l > K@ K ot k@K - ClVol
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(2) Rigidity:

777777777777777777777777777

777777777777777777777777777777777777

5.3. The 2-subcategory of BigHilb generated by a balanced d -fair bipartite graph

In this section, we show the relation between 2-categories € (K, evg) and d -fair bipartite
graphs (A, w). Then we may regard the generator K as a Hilb-enriched graph and the
edge-weighting w gives the interesting dual pair.

Construction 5.15. First, we construct a W* 2-subcategory € (A, w) of BigHilb from a
balanced d -fair bipartite graph (A, w) as follows:

(a)
(b)

(©
(d)

(e)

Objectis V = V(A) = Vy U V7, which is a countable set.

The 1-morphism generator K = K: At (P, Q) € Vo x Vi, Kpg is the Hilbert
space with ONB {|e) : e € E(A), s(e) = P, t(e) = Q} and other entries are 0.
The uniform boundedness condition follows from Proposition 5.3.

As for the dual 1-morphism K, at entry (Q, P) € V1 x Vy, Kgp is the Hilbert
space with ONB

{|e) e€ E(N), s(e)=0, tle) = P} = {|é) ce€ E(A), s(e)=P, t(e) = Q}
where (-) is the involution of edge.

So we may regard K as a Hilb-enriched graph.

All the 1-morphisms are Cauchy generated by K and K.

2-morphisms are V' x V-bigraded uniformly bounded operators between those
1-morphisms.

The edge-weighting gives the distinguished evaluation and coevaluation ev and
coev. Note that Kpg is a Hilbert space with orthonormal basis

{|e) ce€ E(A), s(e) =P, t(e) = Q}
then {|e) : e € E(A), s(e) = P, t(e) = Q} is an orthonormal basis for EQP.
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Define

CIZ,PQ :Kpo ® EQP —C
by |e) ® |e/) — Se:erw(e)%, e: P — 0,
Dkg,po :C — Kpp ® I?Qp
byl > w(e)2le) ® |&) = > w(@)?2) ® le),
e:P—Q e:Q—>P
Ck,op : EQP ® Kpg - C
by le) @ [¢') > Se=erw(e)?, €: Q — P,
DE,QP :C — EQP ® Kpo
byls > wEzle)®e)= > w@)?[e) ® le).
e:0—>P e:P—0
Proposition 5.16. € (A, w) satisfies the condition in Definition 5.10.

Proof. We shall prove that C(A, w) is rigid and d -fair.
(a) Rigidity: Foreach P,Q € V,e: P — Q,

(Cg.po ®idk,pg) o (idk,po ® Dg gp)(le) ® 1)

= (Crpo ®idkro)(le) ® Y. w@?te) ®le))
e:P—>Q
= w(e)2w(@)?e) = le),

(idx,po ® Ck,opP) © (Dk,po ®idg,or)(1 ® |e))

= (idx.ro ® Cor)( Y. w(@)}le) ®2) ® le)
e:P—Q

= w(e)2w(@)?le) = le).

(b) d-fairness:

Z Cg.po° Drpo(l) = Z CIZ,PQ( Z w(e)?le) ® |5))

QeVy QevV e:P—Q

= > weiuwe)? =d

{els(e)=P}

Y CropoDgop(l) =) CK,QP( > w(e)zle) ® Ié)>

PeVy acV e:Q—P

= Z w(e)%w(e)%zd. L]
{els(e)=0}
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Remark 5.17. Suppose 0 : (A,w) — (A’,w’) is an isomorphism of edge-weighted graphs
(see Definition 5.4). We construct a unitary equivalence between € (A, w) and €(A’, o’).
For the 1-morphism generators K, and K+, we have

Ka,po = Kar9(P)6(0)

as finite dimensional Hilbert spaces, via the bijection of ONBs given by |e) > |0(e)).
Denote by ug : Ko — K- this unitary isomorphism.

As for the evaluation evg, and evg,,, we look at Ck,,pg and Ck,, a(p)o(0) (see
Definition 5.8). Note that CKA/,Q(P)Q(Q) : KA/’Q(Q)Q(P) ® KAr,g(p)e(Q) — C by

6(e)) ® |6(e")) > So(e)=b(en @ (0(€)) = Se=crw(e), Ye:Q — P € E(A).

We have
Ck,.0(P)0(Q) = Ckyp,Po © (WZ;P ® MQTPQ)'
In other words,
ev — Tt T
Ky = €Vk, © (Ug' ®uy).

Therefore, €(A, ) and €(A’, @') are unitary equivalent up to the unitary 2-morphism ug.

Next, start with a 2-category € (K, evg), we construct a balanced d -fair bipartite graph
(A, w).

Definition 5.18. For P € VO, Q eV, letvpg : Kpg — KpQ = KQp be the canonical
dual map that £ — £* and vPQ Kop — Kpo defined by £* — £** = £. Then
vho ovpg =idkpo and vpg oV}, =idg gp-
Define
¢k,po : Kop — Kpo by ¢k po = (idk,po ® CZ.op) o (Dkpo ® U;Q)’
9%.op Kpo — Kop by 9g.op = (dg op ® C%’PQ) °o(Dg.op ® U}L,Q).
Proposition 5.19. Here are some properties for g and ¢ .
(1) ¢x,Po ° ¢k op = idk,Po.
(2 ZQGVl Tr(goIT(,PQ °¢K,PQ) = ZPGVQ Tr(ﬁo}%’QP ° QOIZ,QP) =d
Proof. See [10, Prop. 1.8], [13, Prop. 3.10]. [

Construction 5.20. Define the graph A to be V(A) := V and the number of edges from
P € Vyto Q € V) tobe dim Kpg. Define edge-weighting function w : E(A) — (0, o0)
as the multiset

{@(e)},.p_ o = {eigenvalues of gk pg o w;(’pQ},

{a)(e)}e:Q_)P 1= {eigenvalues of 9 5p © @I?’QP}_
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From Proposition 5.19 above, (A, w) is a d-fair and balanced bipartite graph. To be
precise, (1) gives the balance condition, and (2) gives the d-fairness. In fact,

¢K.P0 © 0k po = (idk.po ® Cit op) o (Dk.po ® idk,po)
° (Cgpo ®idk.po) o (idk.Po ® D% ,p)-

st

¥ . .
9&.0p ° Pk op = Udg op ® Cg py) o (Di op ®idg op)
o (CK,QP & idf’Qp) © (idIZ,QP ® D;é,PQ)-

W, L

P 0 0 P

a a

Remark 5.21. For a given 2-category € (K, evk), let (A, w) be the balanced d -fair bipar-
tite graph obtained from Construction 5.20. When we construct the 1-morphism generator
K = K, in €(A, w) from the bipartite graph A, we secretly make a choice of ONB for
each (Ka)pg, so there is a unitary 2-morphism o : K— K such that evg =evg, o (@ ®a).
Therefore, €(K, evk) and € (A, w) are unitary equivalent up to a unitary 2-morphism o.

5.4. From € (K, evg) to Markov tower

Construction 5.22. Here, we are going to build a tower of algebra from the 2-category
€ (K, evk) discussed above with a chosen point, say Py € V. Let C!Pol be a 1-morphism
with all the entry being 0 except (C!Fol)p p, = C.

Note that C!Pol @ K®" js a 1-morphism for each n € Zo.

Let M,, = End(C!Pol @ K2'®") and identify M, > x with x ® idg> € M1, where
K’ =K if2|n, K’ = K if 2 } n. We use the graphical calculus to show M = (M},),>0
is a Markov tower.

(1) Element x € M,,:

clPol K K K nth (n+1)th
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(3) Conditional expectation E, 41 : My+1 — My, x € My:

————— e e el |

clPol K K K nth (n+1)th

Here, the choice of the duality pair (coevg, (coevg)T) or (evg, (evk)') depends
on the shading.

(4) Jones projection e, € My 1 1:

(5) The pull down property is true automatically in this setting. See diagram (MT6)
in Section 3.2.

5.5. More properties of Markov tower

Here, we are going to explore more properties of Markov tower. The tracial version has
been proved in [17, Thm. 4.1.4, Thm. 4.6.3] and [7, Prop. 3.4]. For convenience, here we
will prove those properties for the traceless case.

Lemma 5.23. Suppose A C B is a unital inclusion of finite dimensional C*-algebras
and E : B — A is a faithful conditional expectation. Then there is an orthonormal basis
{u;}ier suchthat ) ;. u; E(ufx) = x forall x € B, where |I| < oo.

Proof. Regard B as aright A-module equipped with an A-valued inner product (x|y)4 :=
E(x*y). Note that A and B are finite dimensional, so B is a finitely generated projective
Hilbert A-module. By [14, Thm. 4.1] and [26, Lemma. 1.7], there exists an orthonormal
basis {u;}ie; C B suchthatx = Y ;c; ui(ui|x)4 = D ;c; ui E(u}x) for all x € B and
|1] < oo. |

Proposition 5.24. The tracial version has been proved in [17, Thm. 4.1.4, Thm. 4.6.3]
and [7, Prop. 3.4].
(D) Xpt+1 := Mye, M, is a 2-sided ideal of M,,+1 and hence My, splits as a direct

sum of von Neumann algebras X,+1 ® Yy+1. We also define Yo = My, Y1 = M,
so that Xo = X1 = 0. Xy+1 is called the old stuff and Yy, 11 is called the new stuff.

(2) Xp+1 is isomorphic to My, @u,_, My, which is the basic construction from E, :
M, — M, _1. Denote this isomorphism as ¢. Here, M, ®p1,_, My, is a x-algebra
with multiplication (x1 ® y1)(x2 ® y2) =x1 E, (y1X2) ® y2 and adjoint (x @ y)* =
¥R x*.
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(3) Ify € Yyy1 and x € Xy, then yx = 0in My 4. Hence Ey+1(Yy+1) C Yy, which
means the new stuff comes from the old new stuff.

@) IfY, =0, then Yy =0 forallk > n.

Proof. (1) Note that M, +1e,, = My ey, then M1 Mue, M, C My, r1e, M, = Mye, M,
and Mye, My My 11 = (My 11 Myen My)* C (MyenMy)* = MyeyM,,.

(2) See Watatani index theory [43, §1] with Lemma 5.23.

(3) Note that as a finite dimensional von Neumann algebra, M, +1 = @; My+1pi.,
where p; are the minimum central projections. Soif y € ¥, 41, then y = Z_i mj p;, where
[pj,en] = 0.

For ae,_1b € X, and m; pj € Y,41, by Jones projection property,

—2 —2
m;pjaep_1b =d""mjp;ae,_1e,e,_1b =d “mjae,_1pjepen—1b =0,

soyx =0forany x € X,y € ¥y41.
Let X, =@ Muqx, where gy are the minimum central projections. For any y € Yy, 41,

Gk En+1(y) = Ent1(qry) =0 forall k,

which implies that £, +1(y) € Y.
(4) By (3) and faithfulness of E,,. [ ]

5.6. From Markov tower to € (A, »)

Now we are able to extract the so-called principal graph data from the Markov tower,
which is similar to the classical tracial Markov tower [36], [21, §4.2].

If A is a finite dimensional C*-algebra, we write 7 (A4) to be the set of minimal central
projections of A. If A C B is a unital inclusion of finite dimensional C*-algebras, then the
inclusion matrix is the 7 (A4) x 7 (B) matrix, with (p, ¢)th entry being (dimc (pgA’ pg N
qupq))%. If A C B C B; is a basic construction, then the inclusion matrix of B C B;
is the transpose of the inclusion matrix of A C B [17, §2], [21].

The inclusion matrix of A C B can be described as the Bratteli diagram of A C B,
whose vertices are the minimal central projections and the number of edges between p
and q is the (p, ¢)th entry.

The Bratteli diagram A of the Markov tower M = (M,),>0 contains all the Bratteli
diagram A, of M, C M, ;. Then by the property of inclusion matrix of basic construc-
tion and Proposition 5.24 (2), the Bratteli diagram for M,, C M, contains the reflection
of the Bratteli diagram of M,,_; C M,, and new part, which is called the principal part. A
vertex in the new part is called a new vertex, otherwise, called an old vertex. The reflected
vertex from a new vertex is called a new old vertex. Moreover, for a new vertex p € Y,
denote p’ to be the new old vertex of p in M, 4».

The principal graph A contains the new part in the Bratteli diagram A, so its vertices
are new vertices. To be precise, V(A) contains all the minimal central projections p in the
new stuff. By Proposition 5.24 (4), the new stuff comes from the old new stuff, then for
P.q € A, E(A) contains all the edges between p and g.
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It is clear that both the Bratteli diagram and the principal graph are bipartite. We can
also use the principal graph to construct the Bratteli diagram by doing the reflection at

each level.
} The red part is principal part
p’ is the new old vertex of p
q .
" P, q are new vertices
p

Let us then compute the edge weighting w : E(A) — (0, 00). Before that, we first give
a lemma:

Lemma 5.25. The followings are some properties for the relative commutant in BigHilb:
(1) Let Hy, H3, ..., H,, G1, G2, ..., Gy be finite dimensional Hilbert spaces. We
identify B(H;) with B(H;) ® idg, and B(G;) withidg, ® B(G;) as subalgebras

in B(@:’zl H; ® G;) foreachi = 1,...,n, then the relative commutant

n n n

N (B(Hi)’ﬂB(@Hi ®Gi)) = P BG). (%)

i=1 i=1 i=1

(2) Let H be a 1-morphism in BigHilb, then the center Z(End(H)) is the linear span
of all the direct summands of idg.

(3) Let G be another 1-morphism in BigHilb such that H ® G is nondegenerate,
i.e., for each non-zero H,q, there is a non-zero Gg, and vice versa. We iden-
tify End(H) with End(H) ® idg and End(G) withidg ® End(G) as subalgebras
in End(H ® G). Then the relative commutant

End(H) NEnd(H ® G) = Z(End(H)) ® End(G).

(4) Moreover, if Hpq is non-zero only when p = po € V, then the relative commutant
can be represented as

End(H) NEnd(H ® G) = idy ® End(G).

Reminder. The tensor product in (1) is the tensor product of Hilbert spaces and bounded
operators; the tensor product in (3) and (4) is the tensor product of 1-morphisms/2-
morphisms in BigHilb, see Definition 5.6.

Proof. (1) D is clear. We show C.
For f S B(@?:l H; ® G,'), f = @?,j:l fi,j, where f,',j € B(H,' ® Gi, Hj 29 Gj).
We shall prove that f; ; =0 fori # j and f;; €idg, ® B(G;) if f € LHS of equation ().
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Let x; € B(H;), then

f(xi ®idg,) = @fi,j(xi ®idg,;) = @(xi ®idg;) fri = (xi ®idg;) f.
k=1

J=1

which implies that

fij(xi ®idg;) = (xi ® idg,) fi,;y =0 fork #i, j #i

and
Jii(xi ®idg;) = (x; Q@ idg,) fii-

From the first half, if we choose x; = idg,, we obtain f; ; = fx; =0, j # i,k #i;
from the second half, from a well-known statement that B(H;)' N B(H; ® G;) = B(G;),
sothat f;; € idg, ® G;.

(2) Clear, see Definition 5.5(d).

(3) D is clear. We show C.

For f € End(H)' N End(H ® G), we shall prove that f,; € B,y idn,, ® B(Hyg).

Note that

(End(H ® G)),,, = End (H & G)pq) = B( €D Hpr  Gry ).
rev
For f € End(H)' N End(H ® G), fpq, commute with B(H),) ® idg,, forallr € V.

By (1), we have fpy € @, cy idn,, ® B(H,4). Together with (2), we prove this statement.
(4) From (3), for f € End(H)' N End(H ® G),

f= EBideOq ® gD,

qev

where g@ € End(G). _
Now we define g € End(G) by g;; := gl.(j’-). Then f =idy ® g. [

By Section 5.3, we are able to construct a W* 2-subcategory € (A) without provid-
ing the distinguished evaluation and coevaluation given by the edge weighting, though
we still have the canonical evaluation and coevaluation denoted by ev® and coev®, which
are drawn in green below. We denote the generators by K = K, and K. From Construc-
tion 5.22, let N, := End(C!?0! @ K®n),

Notation and observation 5.26. Denote A, to be the subgraph of A with vertices depth
< n and the corresponding Hilb-enriched graph to be K, := K, and K, the dual space
in the sense of Construction 5.15. As a convention, pg is of depth 0. Observe that

N, =End(K, @ K, @ K3 ® K4 ® -+~ Q@ K)).

where K} = K, if2 t n, K, = K, if 2 | n.
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Example 5.27. Let us take A5 graph for example. We label the vertices as follows.

Then
000CO 00000 000C 0
00000 00000 000C C
Ki=|00000|, K=|00000|, K3=[0000 0],
00000 CCo000 0000 0
00000 00000 0000 0
00 000 000C O
00000 000C C
Ki=[0 0 0 00|=Ksiox, Ks=|000 0 C|=Ksion, k=0,1,2,...
CCo000 0000 0
0CcCoo 0000 0
000C2C c2c*coo
000 0 O 0 0 000
KiQK:®K3={000 0 0|, Ki®K,K3®K4s=|0 0 0 00
000 0 O 0 0 000
000 0 O 0 0 000

For this example, observe that End(K; ® K, @ - -+ ® Kn?) is the semisimple quotient of
TLJ, (+/3).

One can regard A, as the subgraph of the Bratteli diagram between depth n—1 and n,
and K, is the Hilb-enriched graph of A,,. Theentry (i, /) in K, @ K, ® --- ® KZ indicates
the number of paths from the vertex p; at depth O to the vertex p; at depth n. Note that
the base point is a single vertex pi, so entry only at (1, j) can be non-zero.

The idea is to transport the Jones projections from the Markov tower (M) to the
endomorphism algebras (N,,) in order to obtain the edge weighting w. Let ¥, : M,, — N,
be a x-algebra isomorphism for each n > 0 with V41 |p, = VY.

Let us consider the image of Jones projection ¥ (e,) € N,+1. Note that

ey € M,/,_l N Myy1,
soV(e,) € Nj_; N Npgi.
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Proposition 5.28.

idK1®E2®---®K2k,1 ® El’ld(]?zk ® K2k+1) n =2k

Ny:—l n Nn+1 = { —
g 9,00k, ® ENd(Kokt1 ® Kokyo) n =2k + 1.

Proof. Note that
Ki®K, ® - ®K]
satisfies the condition in Lemma 5.25 (3) and (4). ]

Proposition 5.29. Without loss of generality, let n = 2k. There exists a projection g5} €
End(Kox ® Kag41) such that Y (eyr) = idK1®I?2®~~~®K2k,1 ® &2k

Proof. By proposition 5.28, there exists 25 € End(K»x ® Kok1) such that

W(eZk) = 1dK1®122®---®K2k—1 ® €2k
Note that e, is a projection, so is &5k [

Lemma 5.30. Let H be a Hilbert space and p # 0 be a projection on H. Suppose pfp €
Cpforall f € B(H), then p = r*r, wherer : H - C andrr* = 1.

Similarly, let H be a 1-morphism in BigHilb and p # 0 be a projection on H. Suppose
pfp € Cpforall f € End(H), then p = r*r, wherer : H — CWVl and rr* = CIV1,

Proof. For the Hilbert space case: Note that Im(fp) can be any subspace of H and
Im(p(fp)) = Im(p), so Im(p) does not depend on the input, i.e., p facts through C.
Letr : H — Cand p = r*r with rr* = 1, since p* = p = p*p.

The similar argument on 1-morphisms in BigHilb. ]

As we see the construction of the Jones projection in Construction 5.22 (4), we shall
prove that the Jones projection splits into two pieces.
By Proposition 2.4 (6), e, My, +1€, = Myu—_1€y, SO

w(en)Nn-Hw(en) = Np_16,.

Without loss of generality, let n =2k. For each f€End (K ® Kok 1 1), id K ®Kr @0 Ky O
f € Nag41, there exists x € Noi_; such that

idKl QK@ @Kok ®(eak fear) =(x ®id1€2k ®K2k+1)(idK1 ®K>®®Ko_1 ®e2k) =X @ eak,

which follows that &,y feor € Cepg.
By Lemma 5.30, there exists rp : Ko ® Koky1 — CM2-1l gych that

i i Viok—
Eak = Typlok  and  ropr,, = CWiak=l,

where V] 5k 41 contains all the simple objects in Ax 41 with odd depth.
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Similarly, we can define e5;4; € End(K ® K) corresponding to Jones projection
e>k+1 and there exists

) = v,
Fak+1 ¢ Kogp1 ® Kogyp — CVo2t!

such that
— i —_ v
E2k+1 = Iy qT2k+1 and  ragyiry, = CVoaxl,

where 1} 2k contains all the simple objects in A, with even depth.
Now consider

Usg 1= d(idg ® rag41) © (), ® idx) € End(K).

Note that epxesx 12k = d 2esr and ex 4 1€xears1 = d 2enp41, We have u;kuzk =

- o . .
ldsz and uppu,, = ldszH’ SO Upg 1S a unitary.

e -
|
|
|
|
|
|
|
Lo = == =-4
|
|
2\
d<, Do
|
|
|
r--------A
|
|
|
|
|
|
|
| IR S S
clrol K K
jmmmqmp—— -
|
|
|
|
|
|
|
Lo = == =-4
|
|
|
d?' po
|
|
|
r--------A
|
|
|
|
|
|
|
Lo - L - -
clrol K K K K K

For adjacent simple objects p,q € A with p at depth n and ¢ at depth n + 1, we
shall compute the edge weighting on the edges e : p — g and e : ¢ — p. Without loss of
generality, n = 2k.
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Define @51 and @i 41 as follows:

and we have the following properties:
(@) @10 €0;rk =id.
(b) Tr(<p;rk o) =d Tr(r;krzk) =d Tr(rzkr;k) =d.
(©) TT(@;kH °pak+1) =d Tr(uzk'”;kHrzkHu;k) =d Tf(r2k+1'”§k+1) =d.

Definition 5.31. Define the edge-weighting function w as the multiset:

{w(e)}e:psq = {eigenvalues of ((p;k o €02k)pq},
{w(e)}e:q—sp 1= {eigenvalues of ((p;rk_H o (p2k+1)pq}.

Combining Construction 5.20 and our definition with properties for ¢k, ¢2x+1, the
edge weighting @ we obtained for bipartite graph A is d-fair and balanced.

5.7. € (K, evg) and End] (M, F)

In this section, T£ g (d) means the 2-shaded pivotal rigid C* multitensor category from
Definition 2.28 with endomorphism spaces the Temperley—Lieb algebras and simple gen-
erator X = 1T @ X ® 1.

We have already seen the ways to construct a Markov tower from €(K, evg) in this
section or from M in Section 3 with a simple base point Z, where M is an indecomposable
semisimple C* 7 £ ¢ (d)-module category. In this section, we will show their relation to
each other.

Definition 5.32 (Endofunctor monoidal category). Define End' (M) to be a W* tensor
category as follows:

(a) Objects: The objects are all the dagger endofunctors of M.

(b) Morphisms: The morphisms are the uniformly bounded natural transformations
between these dagger endofunctors which compatible with the dagger structure.

(c) Tensor structure: The tensor product is given by the composition of endofunctors,
ie., F1 ® F, := F, o F; for endofunctors Fi, F5.

Definition 5.33. Define F := — <1 X, F := — <1 X, which are endofunctors of M. Note
that F and F are adjoint functors, with unit evg and counit coevrg induced by evy and
coevy.

Define Endz;(eM, F) to be the full category Cauchy generated by F and F. Since the
generators are dualizable, the category is rigid.
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We warn the reader that Endg(,M, F) will only be multitensor (dim(End(id)) < co)
when M is finitely semisimple. Moreover, the dual functor on End;r)(M , F') given by evp
and coev g is not a unitary dual functor.

We can give an alternative description of Endg (M, F) using the following proposition.
Proposition 5.34. Let A be a 2-shaded rigid C* multitensor category with generator X .
The follows are equivalent [18]:

(1) M is an indecomposable semisimple C* right A-module category;

(2) there is a faithful dagger tensor functor ¢ : A — End' (M), where End' (M) is
a tensor category with all the dagger endofunctors being objects and uniformly
bounded natural transformations being morphisms.

We see that under this equivalence, Endz(cM, F) := ¢(A) is the W* category Cauchy
tensor generated by the image of the tensor functor T£ g — End’ (M), where F = — <1 X.
Then Endz; (M, F) is clearly a rigid C* tensor category.

At the end of this section, we are going to show that the tensor category End;r)(gM, F)
(viewed as a 2-category with one object) and 2-category € (K, evg) are unitarily equiva-
lent.

Construction 5.35. We construct € (K, evg) from Endg(M , F') functorially.

(a) Object: Let Vy be a set of representatives of all isomorphism classes of simple
objects P € M such that P = P <1 17 and V; a set of representatives of all
isomorphism classes of simple objects Q € M such that Q = Q <1 17. Then the
objectistheset V =V, U V.

(b) 1-morphism: Let G € End;r)(e/\/(, F) be an object with adjoint G. Define the V x
V -bigraded Hilbert space Hg by
Hg,po := Hom (Q.G(P)),
with inner product { f|g)g,po for f, g € Hom(Q, G(P)) defined by

fTog=1(f18).ro-idg,

since Q is simple and /T o g € End(Q) = C -idg. Note that Hom(Q, G(P)) =
Hom(G (Q), P) is a natural isomorphism, so Hg op and Hg,pg are dual Hilbert
spaces.

(c) Composition of 1-morphisms:
Proposition 5.36. For Gy, G, € End} (M, F), we have Hg, o6, = Hg, o Hg,
as V x V-bigraded Hilbert spaces, i.e.,
He,06,.p0 = (Hg, © Hg,)po = (Hg, ® Hs,)po = @D Ha,.pr ® He, ro-
R

is a unitary isomorphism between Hilbert spaces for each pair (P, Q) € V x V.
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Proof. Note that the direct sum contains finite many components. For each non-
zero component with respect to R, define 6r : Hg,,pr ® Hg,,rP = HG,0G,,P0
by

Or(f2® f1) := Gi(f2) © f1.

First, we prove that O is an isometry, i.e.,
(0(f2® f)I0(g2 ® 81))g,06,.p0 = (/2 ® filg2 ® g1)
= (/2182)G,.pr - (/1181)G1,RO
for f>,8> € Hg,,Pr, f1.81 € Hg, ,RO-
LHS = (G1(/f2) © /11G1(82) © 81)g,00,.r0
= (Gi(f) o fi) o (Gilg) o g1)
= f;r ) Gl(f; 0gr)og (G is a dagger functor)

= £ 0 Gi((f2182)6..pr - 1dR) © g1

= (/2182)G,,PR f1T oidg,(R) © &1 (G is a functor)
= (/2182)G,,PR - f1T og1

= RHS.

It follows that P Or : g Ha,,PrR ® HG,,R0 — HG,06,,Po is an isometry.
Note that for a semisimple rigid C* category,

dim Hg,0G,,po0 = dimHom (Q, Gyo Gz(P))
= dimHom (G,(Q). G2(P))
= dim @ Hom (G1(Q). R) ® Hom (R, G2 (P))
R

= dim @) Hom (Q. G1(R)) ® Hom (R, G2 (P))
R

= dim @D He, .ro ® Ho,,pr
R

= dim @ He,.pr ® Ha, ro-
R

Note that D O is an isometry and hence injective, s0 D g Or : Pr HG,, PR @
Hg,.ro — Hg,+G,,po 1s a bijection and hence a unitary. |

It follows that
HgG 06, 0 Hg; = HGoGr065 = Hg, © Hg,o6;

as V' x V-bigraded Hilbert space.
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(d) 1-morphism generator: Define K := Hp and K := H 7 - Itis clear that clVol =
H;+ and C"l = H;-.

(e) 2-morphism: The 2-morphism of €(K) is the morphism of End;r, (M, F).Leta :
G1 — G, be a uniformly bounded natural transformation. Then &(P) : G{(P) —
G, (P) and hence

apg :=apo—: Hg, po =Hom(Q,Gi(P)) - Hom (Q,G2(P)) = Hg,,po
is a uniformly bounded linear map.
(f) Composition of 2-morphisms: Let a; : Gy = G2, @ : G — G3 be uniformly
bounded natural transformations. Then G (P) o G, (P) 2, G3(P), then
(az0ai)pg = (2 0a)po—=azpoaipo—
=z pg oarpg : Hg,,po — Hg,,po = Hg,,Po-

(g) Tensor product of 2-morphisms: Let &y : Gy — G2, a2 : Gz — G4 be uniformly
bounded natural transformation. Then 1 @ a2 : G300 G =G Gz —> G2 ®
G4 = G4 o G, defined as

G3OG1 —_— G3OG2 HG1 ®HG3 E— HG2 ®HG3
| | = | |
Gs40G] —— G40G, HG1 ®HG4 — HGZ ®HG4

Clearly, the tensor product is strict.

(h) evk and coevg: Define evg to be the unit of adjoint pair (F, F) and coevg to
be the counit of (F, F). Note that the duality is a property, not an extra structure.
The dual functor is generated by the duality of generator, which is not necessarily
a unitary dual functor.

Definition 5.37 ([11, Def. 7.2.1]). Let M and N be two semisimple C* module category
categories over a semisimple rigid C* (multi)tensor category €. A €-module functor from
M to N consists of a functor y : M — N and a natural isomorphism sy ar : V(M <1 X)
— Y (M) < X forall X € €, M € M which satisfies the pentagon equation.

We call that M and N are €-module equivalent if i is an equivalence of categories.

Let € = T£4(d). Now we discuss the relation between the equivalence on £ ¢ (d)-
module category and the equivalence on Endz)(cM , F),where F = — < X, and the corre-
sponding 2-category € (K, evg).

Remark 5.38. Let M be an indecomposable semisimple 7L g (d)-module C* categories
and (¢, s) : M — M is an T L (d)-module equivalence. Then y € End"(M) is an object.
Since T£Z(d) is generated by X, s— — in above Definition 5.37 is determined by sx,—.
Note that

sy~ Y(F(O) =¥(=<X) > y(-) X = F(y(-))
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is a unitary natural isomorphism. Note that as an equivalence, ¥ maps simple objects in
M to simple objects. Then we have

HE ypyy(0) = Hom (¥(Q), F ((P))) ——> Hom (¥/(Q), ¥ (F(P)))
~ Hom (Q, F(P)) = HF,PQ~

It follows that the 1-morphism generator K = Hp indexed by V and Hfr indexed by
¥ (V) are unitary equivalent.

Comparing the discussion here with Remark 5.17, the T &£ ¢ (d )-module equivalence
corresponds to the unitary equivalence on € (K, evg ), which corresponds to isomorphism
of edge-weighted graphs (A, w).

Theorem 5.39 (cf. [9, Thm. 6.4], [10, Thm. 2.4], [13, Thm. 4.15]). There is a bijective
correspondence between equivalence classes of the following:

W* 2-subcategories € (A, w) of BigHilb,
=~ s where A is a balanced d-fair bipartite

{Indecomposable semisimple C*}
graph with edge-weighting w

T £ ¢ (d)-module categories M

Equivalence on the left-hand side is unitary equivalence; equivalence on the right-hand
side is the isomorphism of edge-weighted graphs.

Proof. We can prove this correspondence for the version with base point by passing
through the Markov tower. According to Construction 5.35, the correspondence holds
without fixing the base point. As for the equivalence, see Remark 5.38. ]

Remark 5.40. Given a semisimple C* category €, similar to Construction 5.35, we get
a dagger tensor functor from End’ () to the tensor category Hilb}fr(e)xm(f), which is the
endomorphism tensor category of the object Irr(€) in BigHilb. One should view this as a
concrete version of End’ (€). Note that dualizable endofunctors always map to dualizable

1-morphisms.

6. Markov lattices and biunitary connections

6.1. Balanced (dy, d1)-fair square-partite graph

Definition 6.1. Let I" be an oriented square-partite graph with vertices V(I") = Vyo U
Vo1 U Vio U V71.

Qo
V1o 231
Ao ‘Al
Voo o Vo1

We call that I" associative if for any two vertices on opposite corners of I', there are
the same number of length 2 paths going either way around I". In more detail,



Q. Chen 322

* forany P € Vo and R € V7, there are the same number of length 2 paths from P to
R (or R to P) through vertices Q € Vj; and through vertices S € Vp1;

* forany Q € Vp; and S € Vo, there are the same number of length 2 paths from Q to
S (or S to Q) through vertices P € Vo and through vertices R € Vj;.

Letw : E(I") — (0, 00) be a weighting on the edges of graph I'.

Let A; denote the full subgraph of I" on Vy; U Vy;, i = 0, 1; let 2; denote the full
subgraph of I" on Vjo U V;1,i = 0, 1. Then Ay, A3, 21, 2, are oriented bipartite graphs.

We call (T, w) a balanced (dy, dy)-fair square-partite graph if Ay, A are balanced
do-fair bipartite graphs and ¢, 21 are balanced d; -fair bipartite graphs.

Remark 6.2. We can define the edge-weighting preserving graph isomorphism literally
the same as in Definition 5.4 for balanced (dy, d;)-fair square partite graph.

6.2. 2-subcategory € (Ky, K1, L¢, L1, ev) of BigHilb and biunitary connection ¢

Definition 6.3. Let €(Ky, K1, Lo, L1, ev) be a W* 2-subcategory of BigHilb with four
1-morphism generators K; : Vo; — Vi, Li : Vio = Vi1, 1 = 0,1 and a chosen evaluation
and coevaluation for each generator. We require that

(a) K;, L; are dualizable,i = 0, 1.

(b) The evaluation and coevaluation for the dual:
evy 1= (coevs)T and coevy 1= (evo)T,

where ? = K;, L;,i =0, 1.
(c) They satisfy the (dy, d1)—fairness condition, namely,

eVE, © Coevg, = do - idgivel, €V, © coevg, = do - idgivyl,

eVE, © Coevk, = do -idgiv 1, evk, © coevg, = do - idgivyy1,

eV, O CoevL, = dy -idgivgl, VL, © coevy, = dy - i1

evp ocoevy, = dy -idgivipl, evp, o coevy = dy -idgpgy -
Notation 6.4. Now, we provide the graphical calculus to describe €(Kg, K1, Lo, L1,ev).
The white region indicates the object Vo, the lightest gray for Vj¢, the medium gray for
V11 and the darkest gray for Vp;; the black edge indicates K¢, K1 and red for Lo, Lj, so

white and medium gray, lightest gray and darkest gray will not be adjacent.

COCVKO:CIVoowﬁKO‘X,ITO ek, K ek, —clul c()ew’mtclvol‘—»H®L0 EVH:L1®H—>C|V10‘

Remark 6.5. Similar to the discussion in Section 5.3, from a given balanced (dy, d;)-fair
square-partite graph (I", w), we can construct a 2-subcategory € (I, w) of BigHilb; on the
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other hand, if we start with €(Ky, Ky, Lg, L1, ev), we can obtain the (T, w). Moreover,
€(Kg, K1, Lo, L1,ev) and €(T', w) are unitary equivalent.

Similar to the discussion in Remark 5.17, the edge-weighting preserving graph auto-
morphism will result in the unitary equivalence on € (I, ).

In the rest of this section, we define a special 2-morphism ® in €(Ky, K1, Lo, L1,ev),

called biunitary connection.

Definition 6.6 (Biunitary connection). A biunitary connection

D:Kog® L1 — Lo ® Ky

is a 2-morphism which is a vertical unitary and a horizontal unitary, as defined as follows.

Here is the graphical calculus of ®.

(1) The biunitary connection ®:

|
I
I
I
I
I
I
I
I
—

(2) Vertical unitary: ®' o ® = idg, ® idz, and ® o ®T =id, ® idk;,.

(3) Horizontal unitary:

(i, @ evg, ®idr;) o (P ® oh)o (idg, ® coevy, ® idg;) = coevy, o evgr,

(idg; ® eve, ®idk,) © (@7 ® @) o (idg; ® coevg, ®idr,) = coevgroevy,.

==
|
|
|
|
|
|
!
!
!
|
|
|
L -

Here @ is defined as the dual of @ in the sense of Definition 2.41.
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Definition 6.7. € (Ko, K1, Lo, L1, ev) equipped with a biunitary connection ® is written
as €(Ky, K1, Lo, L1, ev; ®) or simply €(D).

Remark 6.8. The existence of ® implies that

dim(Ko ® L1)yy = dim(Lo ® K1)y,
dim(K_O ® Lo)yy = dim(L; ® Fl)ulh

for each pair (u,v) € V x V. In other words, the corresponding square-partite graph is
associative.

We are going to discuss some properties of biunitary connections.

Definition 6.9 (Rotation by 90°). Define the rotation by 90° to be
Q" = (idg, ®idL, ® evg,) o (idg, ®  ®idg,) o (coevg, ®idr, ® idg,).
Similarly,

0" = (idg; ® idg; ® evy,) o (idy ® O ® idy,) o (coevy: ® idg: ® idg,) = .

Remark 6.10. Here are some properties for biunitary connections and rotation.
(1) The group (r,t) = (r, ¥|r* = 12 = id, rt = $r3) for the biunitary connection is
isomorphic to the dihedral group Dg4.

(2) @ is abiunitary connection if and only if ®# is both vertical unitary and horizontal
unitary, where g € (r, T).

Definition 6.11 ([39, §4]). We call biunitary connections ® : Ko ® L1 — Lo ® K; and
' Ky ® L} — Ly ® K| gauge equivalent, if there exist unitaries u; : Ki — Ko, u> :
Lo— Ly,u3: Ky — Kjandug: L) — Ly suchthat ®; = (uz ® uz) o @y o (u; ® us).
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Notation and observation 6.12. Observe that once we know the color of the region and
the color of the edge, the biunitary connection in the circle is determined. So we can
simplify the graphical calculus of biunitary connection as follows.

Moreover, if the color of the leftmost region and the color of each edge is determined,
then the color of the rest of the regions will be determined. The 4 colors on the leftmost
region and 2 colors on the edge (8 cases) can represent all ®¢, g € (r, T).

Here is the simplified graphical calculus of vertical unitarity and horizontal unitarity.
In the following context, We require that the leftmost regions in the uncolored equality
have the same color.

Proposition 6.13. Here are some properties that will be used in the next section and the
proof is left to the reader.

ey

F Ko Ly
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6.3. From € (®) to Markov lattice

Construction 6.14. Here we are going to construct a Markov lattice from the 2-category
€ (®) discussed above with a chosen point, say Py € Vgo. Let C*0l be a 1-morphism with
all the entry being 0 except (C!Pol)p p, = C.

Note that C Pl & Kf)‘h@" ® Lglt@j is a 1-morphism for each i, j € Z>y.

Let M; ; = End(C!Pl @ K&"®" @ 1.5"®7), where Ly = Lo if 2 | i and Ly = L, if
2t j. We use the graphical calculus to show M = (M; ;) ;>0 is a Markov lattice.

(1) Element x € M; ;:

Ist

ith Ist Jjth

(2) Horizontal inclusion x € M; ; C M; j+1:

1st (j+Dth

————— —_—r === T -=T-—

clPol ith 1st jth

(3) Vertical inclusion x € M; ; C M, ;:

1st (i+1)th

>
Il pmmmm==-==-
=

clPol ith Ist jth

(4) Horizontal conditional expectation E%’ M —> M j1,,x €M;;:

1st jth

e - — T — === =

M, —1
Ei’jr(x)zdl 1\ P0| X

|
l
l
|
I
! |
[
[
il

|
|
L - -

clPol ith 1st (j—1)th
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(5) Vertical conditional expectation E%l M —> My, xeM;;:

1st

M, —
E; S (x)=dg" Po |

!

!

|

:

Lo J_4d__L__
clPol (i—Dth 1st  jth

(6) Commuting square of conditional expectations ElM T oEMI.

Mi’j — Mi—l,j—ls X € M,',ji

M,r
Ei—l,j l—l J— l(x) -

CTG—Dm 15 G-Dn

= EM! o EM7(x)

clPol (z l)lh Ist (j—1th

(7) Vertical Jones projections e; € M; 1 1,; and horizontal Jones projection f; € M, j11:

“=do’ P ] ::H:::: fi=dit L1 ::%:

clPol ith  1st  jith clPol ith Ist ~ Jjth

(8) Itis clear that M; = (M, ;, El g ei),-zo are Markov towers with the same mod-
ulus do and e; € My, foralli,i,j =0,1.2,...; M; = (M; ;. EM". f);20
are Markov towers with the same modulus d; and f; € M; j4 forall j.

Remark 6.15. A gauge equivalence ® ~ @ will result in an isomorphism of the corre-
sponding Markov lattices.
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6.4. From Markov lattice to € (I', w; ®)
First, we are going to explore more properties of Markov lattice.

Proposition 6.16. One can show the following properties for Markov lattice similar to
Proposition 5.24.

@ Xiy1,j+1:= (e, fj) is a 2-sided ideal of M;41,j+1 and hence M;11 j4+1 can
split as a direct sum of von Neumann algebras X; 11 j11 ® Yiy1,j+1. We also
define Yo,0 = Mo,0, Y1,0 = M1,0, Yo,1 = Mo 1, Y1,1 = My,1 so that

Xo,0 = X1,0 = Xo,1 = X1,1 =0.

Xiq1,j+1 is called the old stuff and Y; 1,11 is called the new stuff.

(b) IfyeYitr,j+1andx € Xijq1,j orx € X; j41, then yx =0in M; 1, j41. Hence
Eir+1,j+1(Y,-+1,j+1) CYiqr,j and E,-l+1,j+1(Yi+1,j+1) C Yi,j+1, which means
the new stuff comes from the old new stuff.

() IfY;j =0 thenYy; =0forallk >i,1> j.
Now we are going to construct € (T, w; ®) from a given Markov lattice M .

Construction 6.17. The square partite graph and the edge weighting (I, w):

From Markov lattice M, since each row and column is a Markov tower, we can obtain
a Bratteli diagram A as in Section 5.6 (which can be viewed as a “lattice-partite” graph).
After taking only the new vertices in A N Y; ; and the edges between them, we obtain the
principal graph I'y because of Proposition 6.16(2). Here, I'y is not necessarily a square-
partite graph, so we have to do some identification.

For the new vertices p1 € I'o N Y; ; and p, € I'g N Y; 42,2, as in Section 5.6, let p’1
be the new old vertex of p; in M; 1, ; and pé be the new old vertex of p, in M;, ;. We
identify py with ps if p5 € M, 4> ; p} (or equivalently p| € Mi15 jp5).

For the pairs of new vertices p; € I'0 NY; ; and g1 € I'p N Y; 41, , and the pairs of new
vertices pp € I'g N Y; 42 j—» and g2 € T'g N Y;43,j—2, suppose pp and p, are identified
in M;1> ;, g1 and g, are identified in M; 3 ; on above sense, then the numbers of edges
between pi, g1 and p», g» are equal, since they both equal to

=

(dime(p}q1 M/ 4o ;P41 N P1ay Mits,; P191)) 2,

see the discussion in Section 5.6. Then we can also identify the edges between p1, ¢; and
D2, q>. Similar statement for p; € o NY; j and r; € I'g N Y; ; 41, and the pairs of new
vertices py € I'o N Y42, ;-2 and 1o € I'g N Y; 42, ;1. After the above identification as
well as the edges between those identified vertices (see the following example), we obtain
a graph I', which is a square-partite graph.

Then V;; C V(I') contains all the vertices in V(o) N M qom,j+2n, i, j =0, 1,
m,n € Zxyp.

The edge-weighting @ can be obtained the same way as in Section 5.6.
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Example 6.18. Here we provide an example to see the difference between the square-
partite graph and the principal graph of a Markov lattice. In the diagram below, if p; is
at depth zero, then p, is at depth 2 of the principal graph. Therefore, as a new vertex, p»
will appear in two places My, and M> o, but their reflections/new old vertices coincide
in M. 2,2-

square-partite graph principal graph with base point p;

and Bratteli diagram
Remark 6.19. Suppose vertex g € Vyo is at depth 2n of the principal graph, then g will
first appear in M3; 2,—2;,1 = 0,1,...,n;if g € Vy¢ is at depth 2n + 1, then g will first
appear in Ma;112n—2i, 1 =0,1,...,n;if g € Vp; is at depth 2n + 1, then g will first
appear in My; 2p+1-2i,1 = 0,1,...,n;if g € V11 is at depth 2n 4 2, then g will first
appear in M2j+1,2n+1_2l‘, i = O, 1, Y (N

Next, we compute the biunitary connection ®.

Notation and observation 6.20. We choose py € Vy as the base point, which is at

depth 0. Similar to Observation 5.26, denote Ay, to be the subgraph of A with vertices

depth < n, similar definition for €¢,, A1, and €21 ,, see Definition 6.1. The corre-

sponding Hilb-enriched graphs are K; , := K4, ,,, Lin := Lg;,. From Construction 6.14,

N;,j :=End(C!Pol @ Ka"® ®Li}h®’ ). Without loss of generality, let 2 4 i. Observe that
N;,j =End(Ko ® Koo ® -+ Ko;i ® L1,it1® L1it2® - ® L], ;).

where L} = Ly;if2 4 j, L} ; =Ly, if2]j.

Example 6.21. Following Example 6.18,
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we have
[0 0 C 0 0 O] [0 0 0 0 0 O]
00 0 0 0 0 0 0 00 00
K _|00 0000 & C C 000 0
%1710 0 0 o0 ol "™~ o 0o 00 0 0
00 0 0 0 0 0 0 00 00
(00 0 0 0 0] (0 0 0 0 0 0]
[0 0 C 0 0 O] [0 0 0 0 0 O]
00 C 00 0 000 0 0 0
00 0 0 0 0 000 0 0 0
Kos=10 00 00 0" X* {000 0 0 o0
00 0 0 0 0 000 0 0 0
(00 0 0 0 0 00 0 C C 0]
[0 0 0 0 0 C [0 0 0 0 0 0
00 000 O 00 0 0 00
L _|00000 0 I 00 0 0 00
%1710 0000 ol "7 ]loocC o000
00000 O 00 C 000
(00 000 0 (00 0 0 0 0]
(00 00 0 C°
00 000 O
_ 00000 O _
Ko1 ® Koo ® Loz = 00000 0 >~ Ko 1 ®Lip® K3
00000 O
00000 O]

~ Loy ® K12 ® Ky 5.

Similar to Example 5.27, the entry (i, j) in N, , indicates number of paths from the
vertex p; at depth O to the vertex p; at depth m + n. Note that the base point is a single
vertex pp, so only at entry (1, j) can be non-zero.

Remark 6.22. Any automorphism of M,,(C) is inner. To be precise, if @ € Aut(M, (C)),
then there exists a unitary u € M, (C), such that &(x) = uxu® = Ad(u)(x), for any x €
M, (C). Moreover, this unitary u is unique up to a unit scalar. Indeed, if uxu™® = uxuj
for all x € M, (C), then x(u*uy) = (u*uy)x, which implies that u*u is in the center of
M, (C). Thus, u*u; = a € C with |a] = 1 and hence u; = au.

As a corollary, for 1-morphisms H, G, if & : End(H) = End(G) is a *-isomorphism,
then there exists a unitary 2-morphism v : H — G such that ¢ = Ad(u).

Warning. The unitary u is obtained by taking a unitary u; ; in each entry. Thus any
two choices of implementing unitary u = (u;,;) and v = (v;, ;) differ by a matrix of scalars
(a;,j) which may be distinct. Hence the unitary u is unique up to a matrix of scalars.
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Construction 6.23. The biunitary connection ®: The construction (for the tracial case)
has been written in [21, §5.5] in the language of path algebras. For convenience, we will
construct it here using our language.
From Construction 6.17 and Remark 6.5, the 2-category €(I", ) can be constructed.
In order to obtain the biunitary connection ®, we shall compute it componentwise,
which is similar to the idea to compute the edge-weighting in Section 5.6. The goal is to
compute

q)pr : (KO & Ll)pr = @ KO,pq ® Ll,qr - @ LO,ps ® Kl,sr = (LO ® Kl)pr
q<Vio seVo1

for each pair (p,r) € Voo x V11.

Suppose p is at depth 2n of the principal graph and r is at depth 2n + 2. By Re-
mark 6.19, p first appear in My 2, and r first appears in M1 2,+1.

Consider two path models Moo C Mo C -+ C Mo2n C Mo2n+1 C Mi 241 and
Moo C Moy C-+- C Moz CMi2n CMiopt1.

Similar to Proposition 5.28, we have

N(;,Zn NN12n+1= idKo,1®I?o,2®---®I?o,zn ®End(Ko,21n+1® L1,21+1) for the first model,

N(;,2n NN12nt1= idKO’l@,13032@,"®K0!2n_1 ®End(Lo 2, ® K1,2+1) for the second model.

Let ¥ : M1 2441 = Ni2n+1 denote the x-isomorphism onto the first model and ¥’ :
M1 2n+1 = Ni 2441 denote the *-isomorphism onto the second model, then

Vi Mg o, O Miani1 = Nyoy N Nigpt1 = End(Kopn+1 ® Li2nt1).
V't Mg, N Myons1 = Nooy 0 Nigngr = End(Lo2n ® Ki20+1)

are *-isomorphisms. Then ¢/ oy~ 1 : End(Ko,2n+1®L12n+1) = End(Lo,2, ® K1 2n+1)
is a * isomorphism between two 1-morphisms. By Remark 6.22, their exists a unique
unitary v up to a matrix of scalars such that ¥’ o ¥ ~! = Ad(u). We define @, := u,,.

Similar to Remark 5.21, we secretly make a choice of ONB when we construct the
generators K;, L; from the square-partite graph I', i, j = 0, 1. Different choice results in
multiplying a unitary on each generator. Combining Definition 6.11 of gauge equivalence
and above discussion, the biunitary connection & we construct here is unique up to gauge
equivalence.

6.5. €(®) and End] (M, F, G)

We have already seen the method to construct a Markov lattice from € (®) above or from
M in Section 4 with a simple base point, where M is an indecomposable semisimple C*
A-B bimodule category. In this section, by using a similar technique as in Section 5.7, we
will show their relation to each other.

Definition 6.24. Suppose M is an indecomposable semisimple C* TLZ (do)-TLF (d1)
bimodule category, where X = 1T ® X ® 17,Y = 1T ® ¥ ® 1~ are the generators of
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T£4(do) and TLZ (dy) respectively. Define F=X>—, F=X1>—,G=—<Y,G =
— <Y, which are endofunctors on M. Note that (F, F) and (G, G) are adjoint pairs, with
unit evr, evg induced by evy, evy and counit coev, coevg induced by coev g, coevy.
Define Endg (M, F,G) to be the full subcategory of End' (M) Cauchy tensor generated
by F, F.G,G,soitisa rigid W* tensor category.
We warn the reader that Endg (M, F,G) will only be multitensor (dim(End(id 4)) < co0)
when M is finitely semisimple.

Definition 6.25 (Biunitary connection in Endg(eM, F, G)). Note that the bimodule asso-
ciator ax—y : (X > —) <Y — X > (— < Y) is a unitary, which induces a natural
isomorphism ®r g : F® G - G ® F,where F ® G := G o F. Then
P67 GRF—>F®G
is equal to the 90° rotation @, ., defined as follows:
O% 6 = (ldf ®idg ®evr) o (idf ® Pr ¢ ®idf) o (coevr ® idg ® idf).

It is easy to show that ® F ¢ is vertical and horizontal unitary and so is ®; .

Similar to Section 5.7, we will show that the tensor category Endg (M, F,G) and 2-
category € () are unitarily equivalent.
Construction 6.26. We construct € (&) from Endg (M, F, G) functorially.

(a) Let Vyo be a set of representatives of all simple objects P € M such that P =
1T > P <117T; Vi be the set of representatives of all simple objects O € M such
that Q = 17 > Q < 17; Vj; be the set of representatives of all simple objects
R € M such that R =17 > R < 17; Vp; be the set of representatives of all
simple objects S € M such that S = 1T > § <1 17. Then the objects are the sets
Vi,j, i, j = 0,1 and their union V = Vo U Vp1 U V71 U V.

(b) 1-morphism: The 1-morphism of €(®) is the object of Endz;(eM , F, G). The way
to construct the corresponding V' x V -bigraded Hilbert space from an endofunc-
tor is the same as in Construction 5.35. The same for the dual 1-morphism and
tensor structure/composition.

(¢) 2-morphism: The 2-morphism of € (®) is the morphism of Endg(M, F,G).
(d) 1-morphism generator: Define
Ko:=H;+®HF, Ko = Hyj+®Hp, K := Hj-QHFp, K; = Hj-®Hp,
Lo:=H+®Hg, Lo=H+®Hg, L1 := H-®Hg, Lo = H-®Hg.
(e) ev and coev. The same as in Construction 5.35 (h).
(f) Biunitary connection: ® : Ko ® L1 — Lo ® K is defined as
Prc: FRQG—->GQF.

The check that @ is vertical and horizontal unitary is left to the reader.
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Construction 6.27. For the convenience to the reader, we also provide the construction
from €(®) to End} (M, F. G):
(a) Object: The object are the 1-morphisms in € (P). In particular, the generator F =
Ko® K1, F=Ko®K,G=Lo® LiandG =Lo® Ly;theunit/ T =1">
_ = (C\Vool—lV()lI’ I " =1"p>—= C‘VIOUVII" Jt = — g 1T = ¢Vl gnd
J" =— <1 = CYatVul
(b) Morphism: The morphisms are the 2-morphisms in € (D).

(c) The associator: Note that F ® G = (Ko ® K1) ® (Lo & L) = K¢y ® L and
GRF=(Lo®L1)®(Ko® K1) =Lo® Kj, the associator Pr g : F @ G —
G ® F is defined as the biunitary connection ® : Ko ® L1 — Lo ® K;. All the
8 cases of associators are defined as ®#, where g € (r, T).

Theorem 6.28. There is a bijective correspondence between equivalence classes of the
following:

W* 2-subcategories € (T, w; @) of BigHilb,
where T is a balanced (dy, d;)-fair square
partite graph with edge-weighting w and ¢

a biunitary connection

Indecomposable semisimple C*
TELE(do)-TLF(d1) bimodule
categories M

12

Equivalence on the left-hand side is unitary equivalence; equivalence on the right-hand
side is the isomorphism on the edge-weighted square-partite graph and gauge equivalence
on biunitary connection.

Proof. We can prove this correspondence for the version with base point by using the
Markov lattice. According to Construction 6.26, the correspondence holds without fixing
the base point.

As for the equivalence, combining Remark 6.5, Definition 6.11 and the last paragraph
in Construction 6.23, the isomorphism on the edge-weighted graph (I', w) and gauge
equivalence on @ corresponds to the unitary equivalence on €(®), which corresponds
to the unitary equivalence on TLZJ (dy)-TLZF (d1) bimodule category M based on Con-
struction 6.23 and Remark 5.38. ]

6.6. Commuting square of finite dimensional C*-algebras

Suppose the following is a commuting square of finite dimensional C*-algebras with con-
ditional expectations:

M,r

EVY
Mo ——— M,

M, M,
Eyg l lEl,l

Moo <——— Mo,
Eyy
Without loss of generality, we assume this commuting square is indecomposable. We can
do the basic construction for each horizontal and vertical inclusion, and obtain a Markov
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lattice. Therefore, by Theorem 6.28, commuting squares of finite dimensional C*-algebras
corresponds to semisimple C* TLZ-T L4 bimodule categories with a base point Z =
1T > Z <17 such that End(Z) = M.

Note that the commuting square may not be Markov, i.e., there is new stuff appearing
in the basic construction, the Bratteli diagram of the original commuting square is not
necessarily the principal graph of the square-partite graph (See Example 6.18).

7. The tracial case

In this section, we finally discuss the tracial/pivotal case for (bi)module categories. As
an application, we prove the module embedding theorem for (infinite depth) graph planar
algebra.

7.1. Tracial Markov towers and pivotal module categories

Definition 7.1. [40] Let € be a rigid C* (multi)tensor category with the canonical spher-
ical unitary dual functor. We call M a semisimple pivotal C* €-module category, if there
exists a pivotal trace tr™ compatible with the spherical structure on €, i.e.,

trn"‘fqC (f) = tr;’:f ((idm < coev:f) o(f <idg) o (id,, < coevc)),
forall f € End(m < c), wherem € M, ¢ € €.
Remark 7.2. If f € End(c), c € € andm € M,
((idm < coev)) o ((idm <0 f) < idz) o (idwm < coev))
(1d < (coeV o(f <idgo coevc)))
= tr)f (idm < 2 (f))
= M (idy) - t2(f).

Here we call trn"‘f (id,,) the dimension of object m.

uM_ (idy < f) = uM

m
M
T
M
L
M

Remark 7.3. [40, §4.1] If € is fusion and M is indecomposable, then the pivotal trace

tr™ is unique up to scalar.

Definition 7.4. Let M be a tracial Markov tower (see Remark 2.5). We call M a tracial

standard A-module, where A is a standard A-lattice, if tr™ 4 = tr4 and M is a standard

A-module, see Definition 3.1.

Let A be a standard A-lattice. If we start with a tracial standard A-module M, com-
bining the construction in Section 3.3 and the proof in proposition 2.39, we are able to
construct a pivotal planar #-module category. Furthermore, from this pivotal planar -
module category, we can construct an indecomposable semisimple pivotal C* #-module
category with a choice of the simple base object. The following is the theorem.
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Theorem 7.5. There is a bijective correspondence between equivalence classes of the
following:

Pairs (M, Z) with M an indecomposable
semisimple pivotal C* right #4-module
category together with a choice of simple
base object Z = Z < 1;

with dim(Mj) = 1 as standard right

{Tracial Markov towers M = (M;) izO}
modules over a standard A-lattice A

Equivalence on the left-hand side is trace-preserving x-isomorphism on the tracial Markov
tower as standard A-module; equivalence on the right-hand side is the pivotal unitary A-
module category equivalence on their Cauchy completions which maps simple base object
to simple base object.

Let us look at the balanced d-fair bipartite graph (A, @) from the tracial Markov
tower M. Since the evaluation and coevaluation are compatible with the trace, the edge-
weighting comes from a vertex-weighting, see [20, Rem. 6.10]. To be precise,

Definition 7.6 (Vertex weighting). Let A be a bipartite graph. Let v : V(A) — (0, 00) be
a weighting on the vertices of A which satisfies the Frobenius-Perron condition: for each
P e V(AN),
> v(Q) =d -v(P).
{Q€eV(A):P,Q adjacent}

In the sum on the left-hand side, v(Q) has a number of edges between P — Q copies.

From an undirected bipartite graph, one can obtain a directed graph with involution
[19, Def. 2.20]. Then for e : P — Q, define w(e) := vt(e)) _ Q) The 4 fairness and

v(s(e)) — v(P)
balance condition in Definition 5.2 follows automatically.

Remark 7.7. Suppose M is an indecomposable semisimple C* pivotal A-module cate-
gory with principal graph A whose vertices are simple objects of M. We can define the
vertex weighting for simple object P as v(P) := Trp(idp).

Remark 7.8. Note that M being a pivotal A-module is equivalent to the dagger ten-
sor functor A — EndT(M) being pivotal [18, Thm. 3.70], so that its essential image
End;r) (M, F) has a unitary pivotal structure from the pivotal structure in +, where F =
— <1 X is the generator. We also denote the corresponding 2-subcategory of BigHilb as
C(K,p) or €(A,v).

7.2. The module embedding theorem

Jones’ planar algebra, as a form of standard invariant, is a method to construct and clas-
sify finite index type II; subfactors. The module embedding theorem has been known
to Vaughan Jones since he first defined the graph planar algebra [23]. The proof for
finite depth case appears in [7, 18, 25]. Many non-trivial subfactor classification results
are inspired by this theorem [28, 29], including the extended Haagerup subfactor and its
relatives [3, 18].

In this section, our goal is to prove Theorem 7.9, the infinite depth module embedding
theorem. We refer the reader to [23] for the full definition of graph planar algebra.
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Let (A, v) be a balanced d-fair bipartite graph with vertex weighting described in
Definition 7.6. According to the discussion in Section 5.3, € (K, evk) is a pivotal W* 2-
subcategory of BigHilb, where the tensor generator K = K is the Hilb-enriched diagram
of A, the dual and the pivotal structure are given by the vertex weighting. Following
[18, §3], we can define a W* shaded planar algebra £ (A) with P, 4 := EndBigH“b(Kalt@")
and 5)",_ = EndBigH”b(I?ah@").

Let V = V, U V; be the set of vertices of A. Recall from the definition of BigHilb, we
have

K= @B Kuw ® Kuyw, ® @K, .
wi,W2,..., wy—1€V
Since the degree of each vertex is uniformly bounded, K2"®" is a finite dimensional
Hilbert space. Note that every 2-morphism f € Endgiguin(K*'®") is determined by its
component maps

{fu,v : @ Kuw, ® Ky, ® - ® Kz;,,_l,v

W1,W2,...,Wp—1 €V

- B KaneRuneekl)

€
715725000 Tn—1€V u,veV

Now fix an ONB {aﬁ’v} for each K, ({élj,u} for K,,), and for each pair of paths of
length n on A from u to v,

k =k 2,k _ =l 2,1
P =y @8y, 4, @ @8y, and g =g, ®&,, @ - ®&"
Let F;;’:q € Endgignit (K alt®n) be the unique (1, v)-component map sending path p to
path ¢ and all other paths p’ to zero. Then we can see

Pn+ = EndBigH"b(Kah®n) = @ Spanc {F;iq }p,q pathsu to v’
il
Therefore, each 2-morphism can be represented as a linear combination of these bases.
Following [25, Ex. 3.27], we show this is a bipartite graph planar algebra. In particular,
we verify case (1) and the rest of the cases is left to the readers.
According to the discussion in Definition 5.8, evaluations evg, ev g and coevaluations
coevg, coev g are completely determined by C Roauv Kyy ® Ky, — C. Note that now

the edge-weighting comes from the vertex-weighting, so by Construction 5.15, Cg , is
defined as

— 1 v(v) 2 B v(t(e)) .
le) ® |e') > Se=erw(e)2 = 82:6,(@) = 86:2/(V(S(€))) fore:u — v.

(Sl

And Dk yy = C;%,uv is defined as

U O (@) \E
1o Y wellele) = Y (W) ele) =Y (V(S(e))) ©) ® 12).

eu—v eu—v e:u—>v
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Y
HAN

is non-zero on each Kyy ® Kyu — Kyw ® Ky component. Once we fix an ONB {ef }
for Ky, the map on this component is given by

Therefore,

| € Endgigri (K ® K) = P> 4 (7.1)

(v(v)v(w)); _ v(l(eﬁ,v)) (t(su w)) : Gk & I -
V() () v(s(ek )’ o ’ ’ ’
1 4

When we identify it with the loop [eu v .2 wEw u)» WE can regard 2-morphism (7.1) as

Z(V(I(E t(g ) [guv Uu U)Elw u]’
s(s ’ “ ’

where the sum is taken over all valid loops in &, 4.
Forn € N is odd,

|

|

|

3 € Endgigrii(K"® D) = 2,11 4.
S R A O, L

Ist nth
Note that the first n — 1 strings are identities, this is equal to
1
kn / 2
3 (v(t(evn o))V (1 ))2

(S(Svn 1, Un))2

kl _k2 knfl kn _kn ln _ln lnfl 12 _Il ]

€ € e e

X [8 .
U,v1 V1,02 Un—2,Vn—1 " "U,VUp " VUp U " U, Wy~ Wn,U " U, Wn—1 w2,W1 "Wi,U

where the sum is taken over all valid loops in $ 41, +.

When the bipartite graph is finite depth, this is exactly the Jones graph planar algebra.
If the bipartite graph is infinite, this is the analytic version of infinite bipartite graph planar
algebra due to Burnstein [5] generalizing Jones’ bipartite graph planar algebra [23].

Note that there is a well-know correspondence between [8, 16, 18,37]:

Pairs (+, X) with 4 a 2-shaded rigid C*
multitensor category with a generator X,
ie, ly=1"@ 17, 17,17 are simple
and X =1T@X®1”

I

Subfactor planar
algebras &,
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Finally, according to [18, Thm. 3.77], a pivotal dagger tensor functor € — EndT(gM)
which preserves the dual structure and maps the generator to the generator corresponds to
an embedding of shaded planar algebra s < ., where ¥, is the bipartite graph planar
algebra of the principal graph of M as a A-module generated by — <1 X and X is the
generator of A.

Now we choose M := #4 to be a A-module category and pick the tensor functor ¢ :
A — EndT(A) by ¢ + — <1 c. Based on the discussion in Section 5.7 and Remark 7.8, the
tensor category Endz; (M, F) := ¢ () is equivalent to the 2-category € (K ,evk, ), where
A is the principal bipartite graph generated by —<1X with generator X =1t QX ®1~ € 4,
we obtain the module embedding theorem:

Theorem 7.9. Every subfactor planar algebra Pe embeds into the graph planar algebra
of its principal graph.
7.3. Tracial Markov lattices and pivotal bimodule categories

Definition 7.10. Let €, D be rigid C* (multi)tensor categories with canonical unitary
dual functors respectively. We call M a semisimple pivotal C* €-D bimodule category, if
there exists a pivotal trace tr compatible with the spherical structures in € and D, i.e.,

2, () =t ((evl > idwm) o (idz > f) 0 (eva B> idm)),
aM_, (f) = ) ((idm < coev)) o (f <idg) o (idm < coevy)),
for f € End(a > m <1 b), wherem € M,a € €,b € D.

Definition 7.11. Let M be a tracial Markov lattice (see Remark 4.3). We call M a tracial
standard A-B bimodule, where A, B are standard A-lattices, if tr™ l4 = 4, oM B = trB
and M is a standard A-B bimodule, see Definition 4.5.

Similar to Theorem 7.5, we have the following theorem:

Theorem 7.12. There is a bijective correspondence between equivalence classes of the
following:

Tracial Markov lattice M = Pairs (M, Z) with M an indecomposable
(M;,j)i,j=0 with dim(My ) =| _ | semisimple C* pivotal A-B bimodule
1 as a standard A-B bimodule [ ~ | category together with a choice of simple
over standard A-lattices A, B base object Z = 1; >Z < 15

Equivalence on the left-hand side is the trace-preserving x-isomorphism on the tracial
Markov lattice as standard A-B bimodule; equivalence on the right-hand side is the piv-
otal unitary A-B bimodule equivalence between their Cauchy completions which maps
the simple base object to simple base object.

Let us look at the balanced (dy, dq)-fair square-partite graph (A, w) from the tracial
Markov lattice M. Similar to the tracial Markov tower case, edge-weighting comes from
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vertex-weighting. To be precise,

For P € Vo U Vo1, Z V(Q) =dp - U(P)s
{e:P—>Q:0€ViouVi1}
For P € Vyo U Vo1, Z V(Q) =d;- V(P)

{e:P—>Q:0€Vp1 UV}

Remark 7.13. As for the biunitary connection, the computation does not change at all.
In fact, the biunitary connection is independent of the pivotal structure, see Proposi-
tion 6.13(2) and Section 6.5. This now agrees with the usual definition of biunitary
connection for the tracial/pivotal case discussed in [12,21,32,33].
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