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Standard �-lattices, rigid C� tensor categories,
and (bi)modules

Quan Chen

Abstract. In this article, we construct a 2-shaded rigid C� multitensor category with canonical
unitary dual functor directly from a standard �-lattice. We use the notions of traceless Markov
towers and lattices to define the notion of module and bimodule over standard �-lattice(s), and we
explicitly construct the associated module category and bimodule category over the corresponding
2-shaded rigid C� multitensor category.

As an example, we compute the modules and bimodules for Temperley–Lieb–Jones standard
�-lattices in terms of traceless Markov towers and lattices. Translating into the unitary 2-category
of bigraded Hilbert spaces, we recover De Commer–Yamashita’s classification of T LJ module
categories in terms of edge weighted graphs, and a classification of T LJ bimodule categories in
terms of biunitary connections on square-partite weighted graphs.

As an application, we show that every (infinite depth) subfactor planar algebra embeds into the
bipartite graph planar algebra of its principal graph.

1. Introduction

Since Jones’ landmark article [22], the modern theory of subfactors has developed deep
connections to numerous branches of mathematics, including representation theory, cate-
gory theory, knot theory, topological quantum field theory, statistical mechanics, confor-
mal field theory, and free probability. The standard invariant of a type II1 subfactor was
first defined as a standard �-lattice [38]. Since it has been reinterpreted as a planar alge-
bra [24] and a Q-system [30], or unitary Frobenius algebra object, in a rigid C� tensor
category [35].

The following theorem is a well-known folklore result. It is for instance mentioned
in this form in [1, Rem. 2.1]. A similar result with planar algebras in place of tensor
categories was announced in [27]. The folklore proof of this result makes use of Popa’s
subfactor reconstruction theorem [38, Thm. 3.1]. (Similarly, for a given standard �-lattice,
Jones proved in [24, Thm. 4.2.1] that one can construct a subfactor planar algebra by
passing through Popa’s subfactor reconstruction theorem [38, Thm. 3.1].) One primary
motivation of this paper is to give a direct argument without making a detour via subfac-
tors.
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Theorem (Folklore). There is a bijective correspondence between equivalence classes of
the following:²

Standard �-lattices
A D .Ai;j /0�i�j

³
Š

8<:Pairs .A; X/ with A a 2-shaded rigid C� multiten-
sor category with a generator X , i.e., 1A D 1

C ˚ 1�,
1C; 1� are simple and X D 1C ˝X ˝ 1�

9=; :
Equivalence on the left-hand side is unital �-isomorphism of standard �-lattices; equiv-
alence on the right-hand side is unitary equivalence between their Cauchy completions
which maps generator to generator.

Given .A; X/, it is well known that one can obtain a standard �-lattice A by

Ai;j WD

´
idXalt˝2k ˝ End.X alt˝.j�2k// i D 2k;

idXalt˝.2kC1/ ˝ End. xX alt˝.j�2k�1// i D 2k C 1;

where xX is a dual of X and

X alt˝n
WD X ˝ xX ˝X ˝ � � �„ ƒ‚ …

n tensorands

and similarly for xX alt˝n. The inclusion Ai;j � Ai;jC1 sends x to x ˝ id, the inclusion
AiC1;j � Ai;j sends x to x. The Jones projections are defined using the canonical bal-
anced evaluation and coevaluation for X .

Going the other way directly is harder. Using [7, Def. 3.1], we construct a skeletal
(when d > 1) W�-category explicitly from A whose objects are Œn;˙� for n � 0 and
whose hom spaces can be identified with the algebras Ai;j . We endow it with a tensor
structure using the 2-shift map in the standard �-lattice, which is a trace-preserving �-
isomorphism Si;j W Ai;j ! AiC2;jC2 [4, Cor. 2.8]. We call this skeletal category a planar
tensor category, and we provide a string diagram calculus to perform computations. The
Cauchy completion of this planar tensor category is the target 2-shaded rigid C� multiten-
sor category.

Given a standard �-lattice A, an A-module is a Markov tower as a standard A-module.
In more detail, let A D .Ai;j /0�i�j<1 be a standard �-lattice with Jones projection
¹eiºi�1 and compatible conditional expectations. AnA-module is a Markov tower of finite
dimensional von Neumann algebras .Mn/n�0 such that A0;n � Mn together with condi-
tional expectations Ei WMi !Mi�1 implemented by the Jones projections, which satisfy
the appropriate commuting square conditions.

M0 � M1 � M2 � � � � � Mn � � � �

[ [ [ [

A0;0 � A0;1 � A0;2 � � � � � A0;n � � � �

[ [ [

A1;1 � A1;2 � � � � � A1;n � � � �

We refer the reader to Definition 2.3 below for the complete definition.
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We warn the reader that our definition is slightly different from the original one from
[7, Def. 3.1]; our tower of algebras .Mn/n�0 does not necessarily have a Markov trace.
An important difference in our construction is that we do not use the trace, but rather the
commuting square of conditional expectations. In Section 3.3, by using this technique, we
are able to discuss arbitrary modules over a standard �-lattice instead of merely pivotal
modules.

We call an A-module standard if ŒMi ; Ak;l � D 0 for i � k � l . Similar techniques
used in our new proof of the Folklore theorem above, we obtain the following theorem.

Theorem A. There is a bijective correspondence between equivalence classes of the fol-
lowing:8̂<̂
:

Traceless Markov towersM D
.Mi /i�0 with dim.M0/ D 1 as
standard right modules over a
standard �-lattice A

9>=>; Š
8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple right A-module C� category
together with a choice of simple object
Z D Z C 1C

A

9>>=>>; :
Equivalence on the left-hand side is �-isomorphism of traceless Markov towers as stan-
dard A-modules; equivalence on the right-hand side is unitary A-module equivalence on
Cauchy completions which maps the simple base object to simple base object.

Tracial Markov towers as standard A-modules correspond to pivotal A-module cate-
gories.

In Section 4, we discuss bimodules. Given two standard �-lattices A and B , we define
an A-B bimodule as a standard Markov lattice, which consists of a doubly indexed se-
quenceM D .Mi;j /i;j�0 of finite dimensional von Neumann algebras with two sequences
of Jones projections .ei /i�1 and .fj /j�1 where the following conditions hold.

(a) Mi;j �Mi;jC1 and Mi;j �MiC1;j are unital inclusions.

(b) M�;j D .Mi;j ;E
M;l
i;j ; eiC1/i�0 are Markov towers with the same modulus d0 and

ei 2MiC1;j for all i ;Mi;� D .Mi;j ; E
M;r
i;j ; fjC1/j�0 are Markov towers with the

same modulus d1 and fj 2Mi;jC1 for all j . We call M of modulus .d0; d1/.

MiC1;j � MiC1;jC1

[ [

Mi;j � Mi;jC1

(c) The commuting square condition:

MiC1;j MiC1;jC1

Mi;j Mi;jC1

E
M;l
iC1;j E

M;l
iC1;jC1

E
M;r
iC1;jC1

E
M;r
i;jC1

is a commuting square, i.e., EM;ri;jC1 ıE
M;l
i;j D E

M;l
i;jC1 ıE

M;r
iC1;jC1.
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We require Aop
i;0 � Mi;0 and B0;j � M0;j for all i; j with conditional expectations

satisfying the appropriate commuting square conditions. Here, we take the opposite �-
lattice Aop of A, where Aop

i;j is the opposite algebra of Ai;j , so the indices for A and B are
transposed.

[ [ [ [ [ [

A3;1 � A3;0 � M3;0 � M3;1 � M3;2 � M3;3 �

[ [ [ [ [ [

A2;1 � A2;0 � M2;0 � M2;1 � M2;2 � M2;3 �

[ [ [ [ [ [

A1;1 � A1;0 � M1;0 � M1;1 � M1;2 � M1;3 �

[ [ [ [ [

A0;0 � M0;0 � M0;1 � M0;2 � M0;3 �

[ [ [ [

B0;0 � B0;1 � B0;2 � B0;3 �

[ [ [

B1;1 � B1;2 � B1;3 �

We call an A-B bimodule standard if ŒMi;j ;Ap;q�D 0 for i � q�p; ŒMi;j ; Bk;l �D 0,
for j � k � l . Similar to the proof of the Folklore theorem and Theorem A above, we
obtain the following theorem.

Theorem B. There is a bijective correspondence between equivalence classes of the fol-
lowing:8̂̂<̂
:̂

Traceless Markov lattices M D
.Mi;j/i;j�0 with dim.M0;0/D 1

as standard A-B bimodules over
standard �-lattices A;B

9>>=>>; Š
8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple C� A-B bimodule category
together with a choice of simple object
Z D 1C

A
B Z C 1C

B

9>>=>>; :
Equivalence on the left-hand side is �-isomorphism on the traceless Markov lattice as
a standard A-B bimodule; equivalence on the right-hand side is unitary A-B bimod-
ule equivalence between their Cauchy completions which maps the simple base object to
simple base object.

Tracial Markov lattices as standardA-B bimodules correspond to pivotal A-B bimod-
ule categories.

Examples. As a natural corollary from Theorem A, a Markov tower corresponds to a
Temperley–Lieb–Jones (T LJ) module category. This result generalizes the pivotal mod-
ule case from [7, Thm. A.]. To translate our classification into that of [10] which uses fair
and balanced graphs, we obtain an elegant graphical version of a Markov tower using a W�

2-subcategory C.ƒ; !/ of bigraded Hilbert spaces BigHilb which is built from a fair and
balanced graph .ƒ; !/. Our approach is inspired by Ocneanu’s path algebras [12, 21, 36].
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The following diagram shows how these notions are related to each other in Section 5:

indecomposable semisimple C�

T LJ.d/-module category M

2-subcategory C.K; evK/
of BigHilb

Markov tower
M with modulus d

balanced d -fair
bipartite graph .ƒ; !/

Section 5.7

Section 5.6

Section 3 Section 5.3
Section 5.4

As an application, in the unitary pivotal/tracial setting, we obtain the embedding the-
orem for (infinite depth) subfactor planar algebras (cf. [34]).

Theorem C. Every (infinite depth) subfactor planar algebra embeds in any bipartite
graph planar algebra of its principal graph with respect to a module category. In par-
ticular, it embeds in the bipartite graph planar algebra of its (dual) principal graph.

By Theorem B above, a Markov lattice corresponds to a T LJ-T LJ bimodule cat-
egory. By work-in-progress of Penneys–Peters–Snyder, pivotal T LJ-T LJ bimodule
categories correspond to Ocneanu’s biunitary connections on associative square-partite
graphs with vertex weightings. For the non-pivotal case, the weighting on the square-
partite graph is the edge-weighting and we obtain the non-pivotal analog of a biunitary
connection. To translate between these classifications, we use the well-known fact that a
commuting square of finite dimensional von Neumann algebras gives a biunitary connec-
tion [12, 21, 36, 41]. We then introduce a graphical version of a Markov lattice using a
W� 2-subcategory C.ˆ/ of BigHilb obtained from a biunitary connection ˆ. It turns out
that the biunitary connection ˆ corresponds to the bimodule associator of the bimodule
category. The following diagram shows how these notions are related to each other in
Section 6:

indecomposable semisimple C�

T LJ.d0/-T LJ.d1/

bimodule category M

2-subcategory C.ˆ/
of BigHilb

Markov lattice M
with modulus .d0; d1/

balanced .d0; d1/-fair
square-partite graph .ƒ; !/
with biunitary connection ˆ

Section 6.5

Section 6.4

Section 4
Section 6.2

Section 6.3

2. Standard �-lattices and tensor category

2.1. Traceless Markov tower and its properties

Definition 2.1. Let A� B be a unital inclusion of finite von Neumann algebras. A condi-
tional expectationE WM !N is a positive linear map satisfying the following conditions:
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(a) E.x/ D x for all x 2 A,

(b) E.axb/ D aE.x/b for all a; b 2 A, x 2 B .

Definition 2.2. Let C be a unital C�-algebra. We call a linear functional tr W C ! C a
trace if it satisfies the following conditions:

(a) (tracial) tr.xy/ D tr.yx/, for all x; y 2 C .

(b) (positive) tr.x�x/ � 0, for all x 2 C .

(c) (faithful) tr.x�x/ D 0 if and only if x D 0.

In addition, we call tr unital if tr.1/ D 1.

Definition 2.3. A traceless Markov towerM D .Mn;En; enC1/n�0 consists of a sequence
.Mn/n�0 of finite dimensional von Neumann algebras, such that Mn is unitally included
inMnC1. For each n, there is a faithful conditional expectationEn WMn!Mn�1 together
with a sequence of Jones projections en 2MnC1 for all n � 1, such that:

(M1) The projections .en/ satisfy the Temperley–Lieb–Jones relations:

(TLJ1) e2n D en D e
�
n for all n.

(TLJ2) Œei ; ej � D 0 for ji � j j > 1.

(TLJ3) There is a fixed constant called the modulus d >0 such that enen˙1enD
d�2en for all n.

(M2) For all x 2Mn, enxen D En.x/en.

(M3) EnC1.en/ D d�2 � 1 for all n � 1.

(M4) (pull down) MnC1en DMnen for all n � 1.

In the following, all Markov towers are traceless unless stated otherwise.

Proposition 2.4. Some properties of a traceless Markov tower include:

(1) Œx; ek � D 0, for x 2Mn, k � nC 1.

(2) The map Mn 3 x 7! xen 2MnC1 is injective.

(3) For x 2MnC1, d2EnC1.xen/ is the unique element y 2Mn such that xen D yen.

(4) Property (3) is equivalent to (M3).

(5) If x 2 Mn and Œx; en� D 0, then x 2 Mn�1. Together with (1), we have Mn�1 D

Mn \ ¹enº
0.

(6) enMnC1en DMn�1en.

Proof. (1) For x 2Mn and k � nC 1, Ek.x/ D x;Ek.x�/ D x�, then

xek D Ek.x/ek D ekxek D .ekx
�ek/

�
D .Ek.x

�/ek/
�
D .x�ek/

�
D ekx:

(2) If x 2Mn and xen D 0, then by (M3),

0 D EnC1.xen/ D xEnC1.en/ D d
�2x:

Thus, x 7! xen is injective.
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(3) By (M4) and (2), the existence and uniqueness hold. Then by (M3),

EnC1.xen/ D EnC1.yen/ D yEnC1.en/ D d
�2y;

so y D d2EnC1.xen/.
(4) We first show that (3) implies (2). If x 2Mn and xenD 0, then 0D d2EnC1.xen/ is

the unique element such that xenD0Dd2EnC1.xen/en. Therefore, xDd2EnC1.xen/D0.
Let x D en, then we have d2EnC1.en/en D en. Since d2EnC1.en/ and 1 2 Mn, we

have d2EnC1.en/ D 1 by (2).
(5) Since xen D enx,

En.x/en D enxen D xenen D xen:

Then by (2), En.x/ D x, which implies x 2Mn�1.
(6) By (M2) and (M4).

We will explore more properties of traceless Markov towers in Section 5.

Remark 2.5. If there is a faithful tracial state trn on each Mn with trnC1 jMn D trn and
En is the canonical trace-preserving conditional expectation for n D 1; 2; : : : ; then M is
called a tracial Markov tower. Thus, tracial Markov towers defined in [7] are also traceless
Markov towers.

Example 2.6 (Markov tower without a trace). Let d>0 such that d2>4. There is a unique
� 2 .0; 1

2
/ such that d�2 D �.1 � �/. Then d�C d.1 � �/ D d and 1

d�
C

1
d.1��/

D d .
Let "ij denote the matrix units of M2.C/, i; j D 1; 2, and 1 D "11 C "22 2M2.C/.

DefineE� WM2.C/!C byE�."11/D�,E�."22/D1�� andE�."12/DE�."21/D0.
It is clear that E� is a normal faithful conditional expectation and not tracial.

Define e� 2M2.C/˝M2.C/ by

e� D .1 � �/"11 ˝ "11 C �"22 ˝ "22 C
p
�.1 � �/."12 ˝ "12 C "21 ˝ "21/;

and one can check that:

(a) e� is a projection.

(b) E�.e�/ D d
�2."11 C "22/ D d

�2 � 1.

(c) .e�˝1/.1˝ e1��/.e�˝1/ D d
�2.e�˝1/ and .e1��˝1/.1˝ e�/.e1��˝1/ D

d�2.e1�� ˝ 1/.

Define id WM2.C/!M2.C/ to be the identity map. LetMn WDM2.C/˝n. The inclu-
sionMn �MnC1 maps x to x˝ id. Jones projection e2nC1 D 1˝2n˝ e1�� 2M2nC2 and
e2nC2 D 1

˝2nC1 ˝ e� 2M2nC3, n D 0; 1; 2; : : : : The conditional expectation is defined
as follows:

E2nC1 D id˝2nC1 ˝E�; E2nC2 D id˝2nC2 ˝E1��:

Now we build a Markov tower with modulus d and without a trace:

1 M2.C/˝2 M2.C/˝3 M2.C/˝4 � � �
E� id˝E1�� id˝2˝E�
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2.2. Standard �-lattice and its properties

Definition 2.7 ([38]). Let AD .Ai;j /0�i�j<1 be a system of finite dimensional C� alge-
bras with Ai;i D C with unital inclusions Ai;j � Ak;l , for k � i; j � l .

A0;0 � A0;1 � A0;2 � A0;3 � A0;4 � � � �

[ [ [ [

A1;1 � A1;2 � A1;3 � A1;4 � � � �

[ [ [

A2;2 � A2;3 � A2;4 � � � �

[ [

A3;3 � A3;4 � � � �

[

A4;4 � � � �

: : :

Let Eri;j W Ai;j ! Ai;j�1 be the (horizontal) faithful conditional expectation, j D
1; 2; : : : ; i D 0; : : : ; j � 1 and Eli;j W Ai;j ! AiC1;j be the (vertical) faithful normal
conditional expectation i D 0; 1; : : : ; j D i C 1; i C 2; : : : : We also require that

(a1) (commuting square condition)

Ai;j Ai;jC1

AiC1;j AiC1;jC1

E li;j E li;jC1

Eri;jC1

EriC1;jC1

is a commuting square, i.e., Eli;j ıE
r
i;jC1 D E

r
iC1;jC1 ıE

l
i;jC1.

(a2) (existence of Jones �-projections)
There exists a sequence of Jones projections ¹eiºi�1 in

S
nA0;n such that

(b1) ej 2 Ai�1;k , for 1 � i � j C 1 � k.

(b2) The projections satisfy the Temperley–Lieb–Jones relations:

(TLJ1) e2i D ei D e
�
i for all i .

(TLJ2) eiej D ej ei for ji � j j > 1.

(TLJ3) There is a fixed constant d > 0 called the modulus such that
eiei˙1ei D d

�2ei for all i .

(b3) ejxej D Eri;j .x/ej , for x 2 Ai;j ; i C 1 � j .

(b4) eixei D Eli;j .x/ei , for x 2 Ai;j ; i C 1 � j .

(a3) (Markov conditions)

(c1) dimAi;j D dimAi;jC1ej D dimAiC1;jC1, for i � j .

(c2) Eri;jC1.ej / D E
l
j�1;k

.ej / D d
�21, for j � i C 1; k � j C 1.
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Then A D .Ai;j /0�i�j<1 is called a �-lattice of commuting squares. If there is a faithful
tracial state tri;j on Ai;j such that triC1;j jAi;j D tri;jC1 jAi;j D tri;j and Eri;j ; E

l
i;j are the

canonical trace-preserving conditional expectation, then A is called a tracial �-lattice.

Definition 2.8 ([38]). A �-lattice .Ai;j /0�i�j is called a standard �-lattice if ŒAi;j ; Ak;l �
D 0 for i � j � k � l . This condition is called the standard condition.

Remark 2.9. In the definition of (standard) �-lattice, we may not require a trace and the
conditional expectations are trace-preserving. In fact, the reader can construct an example
of (standard) �-lattice without a trace from Example 2.6 easily.

Warning. From now on, we will not further discuss the traceless standard �-lattices,
though the following statements do not require the trace at all!

Remark 2.10. Each row Ai D .Ai;j /j�i is a Markov tower, i D 0; 1; 2; : : : I each column
Aj D .Ai;j /

0
iDj is a Markov tower, j D 1; 2; : : : : From Proposition 2.4, we have

(1) If x 2 Ai;j , Œx; ek � D 0 for k � j C 1; Œx; el � D 0 for 1 � l � i � 1.

(2) The map Ai;j 3 x 7! xej 2 Ai;jC1 is injective; the map Ai;j 3 x 7! xei 2 Ai�1;j
is injective.

(3) The Markov condition is equivalent to the pull-down condition:

(c1)0 d2Eri;jC1.xej /ej D xej , for x 2 Ai;jC1, j � i � 0.

(c2)0 d2Eli�1;j .xei /ei D xei , for x 2 Ai�1;j , j � i � 1.

The following property was proved in [38, Prop. 1.4] by using the trace, here we
provide another proof without it.

Proposition 2.11. Let

A0;0 � A0;1 � A0;2 � A0;3 � � � �

[ [ [

A1;1 � A1;2 � A1;3 � � � �

be a �-sequence of commuting squares, and define Ai;j WD Ai�1;j \ ¹ei�1º
0 D A1;j \

¹e1; : : : ; ei�1º
0, 2 � i � j . Then .Ai;j /0�i�j<1 is a �-lattice of commuting squares.

Proof. We construct Ai;j and conditional expectation Eli�1;j W Ai�1;j ! Ai;j by induc-
tion on i , and show that Jones projections ¹eiC1; : : : ; ej�1º � Ai;j for i C 2� j . Suppose
Ai�1;j is constructed (or given) and ¹ei ; : : : ; ej�1º � Ai�1;j , We define Ai;j WD Ai�1;j \
¹ei�1º

0. Then clearly, ¹eiC1; : : : ; ej�1º � Ai;j .
According to Proposition 2.4 (5) and (6), for each x 2 Ai�1;j � Ai�2;j , there exists a

y 2 Ai;j such that
yei�1 D ei�1xei�1:

By Proposition 2.4 (2), Ai�1;j 3 y 7! yei�1 2 Ai�2;j is injective, so y is unique for each
given x. This technique is often used in this section. We define Eli�1;j .x/ WD y. Now we
show that Eli�1;j is a faithful normal conditional expectation:
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(a) It is clear that Eli�1;j is linear, and Eli�1;j .1/ D 1.

(b) Eli�1;j .x
�/ D Eli�1;j .x/

�:

Eli�1;j .x/
�ei�1 D

�
ei�1E

l
i�1;j .x/

��
D .ei�1xei�1/

�

D ei�1x
�ei�1 D E

l
i�1;j .x

�/ei�1:

(c) Eli�1;j .axb/ D aE
l
i�1;j .x/b for a; b 2 Ai;j : Note that Œa; ei�1� D Œb; ei�1� D 0,

then

Eli�1;j .axb/ei�1 D ei�1axbei�1 D aei�1xei�1b

D aEli�1;j .x/ei�1b D aE
l
i�1;j .x/bei�1:

(d) Eli�1;j .x
�x/ � Eli�1;j .x/

�Eli�1;j .x/, which follows that Eli�1;j is positive:

Eli�1;j .x/
�Eli�1;j .x/ei�1 D E

l
i�1;j .x/

�ei�1xei�1 D ei�1x
�ei�1xei�1

� ei�1x
�xei�1 D E

l
i�1;j .x

�x/ei�1;

so Eli�1;j .x
�x/ � Eli�1;j .x/

�Eli�1;j .x/ by applying the inductive hypothesis
that Eli�2;j is a positive conditional expectation and Eli�2;j .ei�1/ D d

�2 � 1.

(e) Eli�1;j .x
�x/ D 0 if and only if x D 0, i.e., Eli�1;j is faithful:

0 D Eli�1;j .x
�x/ei�1 D ei�1x

�xei�1 D .xei�1/
�.xei�1/;

which follows that xei�1 D 0. Note that Ai�1;j 3 x 7! xei�1 2 Ai�2;j is an
injection, so x D 0.

Then define Eri;jC1 W Ai;jC1 ! Ai;j as the restriction of Eri�1;jC1 on Ai;jC1, which
is also a conditional expectation.

Now we prove the commuting square conditionEli�1;jıE
r
i�1;jC1DE

r
i;jC1ıE

l
i�1;jC1:

for x 2 Ai�1;jC1,

Eli�1;j
�
Eri�1;jC1.x/

�
ei�1 D ei�1E

r
i�1;jC1.x/ei�1;

Eri;jC1
�
Eli�1;jC1.x/

�
ei�1 D E

r
i�1;jC1

�
Eli�1;jC1.x/

�
ei�1

D Eri�1;jC1
�
Eli�1;jC1.x/ei�1

�
D Eri�1;jC1.ei�1xei�1/

D ei�1E
r
i�1;jC1.x/ei�1:

Finally, we prove the Markov condition:

(a) dimAi;j D dimAi�1;j \ ¹ei�1º
0 D dimAi�1;j \ ¹ej�1º

0 D dimAi�1;j�1.

(b) Eri;jC1.ej / D E
r
i�1;jC1.ej / D d

�21.

(c) Eli�1;j .ei /ei�1 D ei�1eiei�1 D d
�2ei�1, so Eli�1;j .ei / D d

�2 � 1.
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Corollary 2.12. Let .Ai;j /i�j;iD0;1 be a �-sequence of commuting squares. If Ai;j WD
¹e1; : : : ; ei�1º

0 \ Ai;j , for all 2 � i � j , then .Ai;j /0�i�j is a standard �-lattice if and
only if .Ai;j /i�j;iD0;1 satisfies

ŒA0;1; A1;j � D 0; 81 � j;

ŒA0;i ; Ai;j � D 0; 82 � i � j:

Now we define the opposite standard �-lattice, which will be used in Definition 4.5.

Definition 2.13. Aop D .Ai;j /0�j�i is the opposite of �-lattice A if Aop
j;i D Ai;j as oppo-

site algebras, Eop;l
j;i D E

r
i;j , Eop;r

j;i D E
l
i;j for i � j .

Example 2.14. The Temperley–Lieb–Jones algebra TLJ.d/ forms a standard �-lattice
with the modulus d by letting Ai;iDAi;iC1DC and Ai;j DheiC1; : : : ; ej�1i for j�i�2,
which is called a Temperley–Lieb–Jones standard �-lattice.

Example 2.15 ([38]). If A0 � A1 is a unital inclusion of type II1 subfactors with finite
index and A0 � A1 � A2 � A3 � � � � is the Jones tower from the basic construction,
then Ai;j WD A0i \Aj forms a standard �-lattice, which is called the standard invariant of
A0 � A1.

2.3. The 2-shift map

In this section, we discuss an important type of �-isomorphism in a standard �-lattice, so-
called the 2-shift map [4]. Here we provide the definition by using conditional expectations
and Jones projections instead of tracial states and Pimsner–Popa basis.

For i; k � 0, define the following element of Al;iC2k , l C 1 � i C 2k:

eik WDd
k.k�1/.ekCiekCi�1 � � �eiC1/.ekCiC1ekCi � � �en�kC2/ � � � .e2kCi�1e2kCi�2 � � �ekCi/:

For i; j; k � 0, define the following element of Al;iCjC2k , l C 1 � i C j C 2k,

eij;k D d
jkeike

iC1
k
� � � e

iCj

k
:

Clearly,

enD e
n�1
1 D en�10;1 ; e

i
k D e

i
0;k ; .e

i
k/
2
D .eik/

�
D eik ; e

i
j;k.e

i
j;k/
�
D ei0;k ; .e

i
j;k/
�eij;k D e

iCj

0;k
:

Definition 2.16 (Multi-step condition expectation). Define the k-step horizontal condi-
tional expectation as

E
r;k
i;j D E

r
i;jC1�k ıE

r
i;jC2�k ı � � � ıE

r
i;j W Ai;j ! Ai;j�k for k � j � i

and we have Er;1i;j D E
r
i;j ; the k-step vertical conditional expectation as

E
l;k
i;j D E

l
iCk�1;j ıE

r
iCk�2;j ı � � � ıE

l
i;j W Ai;j ! AiCk for k � j � i

and we have El;1i;j D E
l
i;j .
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In particular, the trace is made by the composition of conditional expectations, i.e.,
E
l;i�jCk

i;j�k
ıE

r;k
i;j D tr D Er;j�i�tiCt;j ıE

l;t
i;j , for 0 � k � j � i , 0 � t � j � i .

Definition 2.17 (2-shift map). Define the 2-shift map Si;j W Ai;j ! AiC2;jC2, i � j by

Si;j .x/ WD d
2j�2iC2Eli;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/:

Proposition 2.18. The followings are the properties of the 2-shift map.

(1) Si;j is well defined, i.e., Si;j .x/ 2 AiC2;jC2 for x 2 Ai;j .

(2) Si;j is a unital �-isomorphism.

(3) .commuting parallelogram/ Si;j�1 ıEri;j DE
r
iC2;jC2 ı Si;j and SiC1;j ıEli;j D

EliC2;jC2 ı Si;j .

(4) Si;jC1.x/ D Si;j .x/ for x 2 Ai;j and Si�1;j .x/ D Si;j .x/ for x 2 Ai;j .

(5) .shift/ eiC1eiC2 � � �ejC1xDSi;j .x/eiC1eiC2 � � �ejC1 for x2Ai;j . Taking adjoints,
xejC1ej � � �eiC1D ejC1ej � � �eiC1Si;j .x/. In other word, eij�i;1xD Si;j .x/e

i
j�i;1.

(6) Si;j is trace-preserving.

(7) Si;j .ek/ D ekC2, where i C 1 � k � j � 1.

Proof. (1) Note that Si;j .x/2AiC1;jC2, we shall show thatEliC1;jC2.Si;j .x//DSi;j .x/.
Since EliC1;jC2.Si;j .x// � Si;j .x/ 2 AiC1;jC2 and the map AiC1;jC2 3 y 7! yeiC1 2

Ai;jC2 is injective, we shall show that EliC1;jC2.Si;j .x//eiC1 D Si;j .x/eiC1.

EliC1;jC2.Si;j .x//eiC1

D eiC1Si;j .x/eiC1

D d2j�2iC2eiC1E
l
i;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/eiC1

D d2j�2ieiC1.eiC1eiC2 � � � ejxejC1ej � � � eiC1/ (pull down)

D d2j�2ieiC1eiC2 � � � ejxejC1ej � � � eiC1

D d2j�2iC2Eli;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/eiC1 (pull down)

D Si;j .x/eiC1:

(2) For x 2 Ai;j , we have Œx; ejC1� D 0. First, we show that Si;j is a homomorphism,
i.e., Si;j .xy/D Si;j .x/Si;j .y/ for x;y 2Ai;j . Note that the mapAiC2;jC2 �AiC1;jC2 3
y 7! yeiC1 2 Ai;jC2 is injective, we shall prove that Si;j .xy/eiC1 D Si;j .x/Si;j .y/eiC1.

Si;j .x/Si;j .y/eiC1

D d2j�2iC2Si;j .x/E
l
i;jC2.eiC1eiC2 � � � ejyejC1ej � � � eiC1/eiC1

D d2j�2iSi;j .x/eiC1eiC2 � � � ejyejC1ej � � � eiC1 (pull down)

D d2j�2i � d2j�2i .eiC1eiC2 � � � ejxejC1ej � � � eiC1/.eiC1eiC2 � � � ejyejC1ej � � � eiC1/

(pull down)

D d2j�2iC2eiC1eiC2 � � � ejxejC1ejyejC1ej � � � eiC1 (ekek˙1ek D d�2ek)
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D d2j�2iC2eiC1eiC2 � � � ejxejC1ej ejC1yej � � � eiC1 (Œy; ejC1� D 0)

D d2j�2ieiC1eiC2 � � � ejxejC1yej � � � eiC1

D d2j�2ieiC1eiC2 � � � ejxyejC1ej � � � eiC1

D d2j�2iC2Eli;jC2.eiC1eiC2 � � � ejxyejC1ej � � � eiC1/eiC1 (pull down)

D Si;j .xy/eiC1:

Next, Si;j is a �-homomorphism. Note that Eli;jC2 is a �-homomorphism, we have

Si;j .x
�/ D d2j�2iC2Eli;jC2.eiC1eiC2 � � � ejx

�ejC1ej � � � eiC1/

D d2j�2iC2Eli;jC2
�
.eiC1eiC2 � � � ejxejC1ej � � � eiC1/

�
�

D d2j�2iC2E
l;�
i;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/

D S�i;j .x/:

When x D 1,

eiC1eiC2 � � � ej ejC1ej � � � eiC1 D d
�2eiC1eiC2 � � � ej�1ej ej�1 � � � eiC1

D � � � D d2.i�jC2/eiC1eiC2eiC1 D d
2.i�j /eiC1:

Thus, Si;j .1/ D d2Eli;jC2.eiC1/ D 1, i.e., Si;j is unital.
In order to prove that Si;j is an isomorphism, we shall show Si;j is injective and

surjective.
If Si;j .x/ D 0, then

0 D Si;j .x/eiC1 D d
2j�2ieiC1eiC2 � � � ejxejC1ej � � � eiC1

D d2j�2i .eiC1eiC2 � � � ej /xejC1.eiC1eiC2 � � � ej /
�;

which follows that xejC1 D 0. Since the map Ai;j 3 y 7! yejC1 2 Ai;jC1 is injective,
we have x D 0.

Note that dimAi;j D dimAiC1;jC1 D dimAiC2;jC2 <1, so the injectivity implies
the surjectivity. Thus, Si;j is a unital �-isomorphism.

(3) For x 2 Ai;j , Eri;j .x/ 2 Ai;j�1 and ŒEri;j .x/; ej � D 0,

Si;j�1 ıE
r
i;j .x/

D d2j�2iEli;jC1
�
eiC1eiC2 � � � ejE

r
i;j .x/ejC1ej � � � eiC1

�
D d2j�2iEli;jC1

�
eiC1eiC2 � � �E

r
i;j .x/ej ejC1ej � � � eiC1

�
D d2j�2iC2Eli;jC1

�
eiC1eiC2 � � �E

r
i;j .x/ej � � � eiC1

�
D d2j�2iC2Eli;jC1.eiC1eiC2 � � � ejxej � � � eiC1/;

EriC2;jC2 ı Si;j .x/

D EriC2;jC2 ıE
l
iC1;jC2 ı Si;j .x/

D EliC1;jC1 ıE
r
iC1;jC2 ı Si;j .x/ (commuting square)
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D d2j�2iEliC1;jC1 ıE
r
iC1;jC2 ıE

l
i;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/

D d2j�2iEliC1;jC1 ıE
l
i;jC1 ıE

r
i;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC1/

D d2j�2iEliC1;jC1 ıE
l
i;jC1

�
eiC1eiC2 � � � ejxE

r
i;jC2.ejC1/ej � � � eiC1

�
D d2j�2iC2EliC1;jC1 ıE

l
i;jC1.eiC1eiC2 � � � ejxej � � � eiC1/

D EliC1;jC1
�
Si;j�1 ıE

r
i;j .x/

�
(since Si;j�1 ıEri;j .x/ 2 AiC2;jC1)

D Si;j�1 ıE
r
i;j .x/:

Thus, Si;j�1 ıEri;j D E
r
iC2;jC2 ı Si;j .

Note that ¹eiC1; : : : ; ej�1º � Ai;j , we have

Eli;jC2.ekxen/ D ekE
l
i;jC2.x/en for all k; n 2 ¹i C 1; : : : ; j � 1º: (�)

In order to prove that SiC1;j ıEli;j D E
l
iC2 ı Si;j , by Remark 2.10 (2), we shall show

that SiC1;j ıEli;j .x/eiC2 D E
l
iC2;jC2 ı Si;j .x/eiC2 for all x 2 Ai;j .

SiC1;j ıE
l
i;j .x/eiC2

D d2j�2iEliC1;jC2
�
eiC2 � � � ejE

l
i;j .x/ejC1 � � � eiC2

�
eiC2

D d2j�2i�2eiC2 � � � ejE
l
i;j .x/ejC1 � � � eiC2; (pull down)

EliC2;jC2 ı Si;j .x/eiC2

D d2j�2iC2EliC2;jC2
�
Eli;jC2.eiC1 � � � ejxejC1 � � � eiC1/

�
eiC2

D d2j�2iC2eiC2E
l
i;jC2.eiC1eiC2 � � � ejxejC1 � � � eiC2eiC1/eiC2 (by (�))

D d2j�2iC2Eli;jC2.eiC2eiC1eiC2 � � � ejxejC1 � � � eiC2eiC1eiC2/

D d2j�2i�2Eli;jC2.eiC2 � � � ejxejC1 � � � eiC2/

D d2j�2i�2eiC2eiC1 � � � ejE
l
i;jC2.x/ejC1 � � � eiC1eiC2 (by (�))

D d2j�2i�2eiC2eiC1 � � � ejE
l
i;j .x/ejC1 � � � eiC1eiC2 (commuting square)

D SiC1;j ıE
l
i;j .x/eiC2:

Thus, SiC1;j ıEli;j D E
l
iC2 ı Si;j .

(4) This is a particular case of (3) by the property of conditional expectation.
(5) For x 2 Ai;j , Œx; ejC1� D 0,

Si;j .x/eiC1eiC2 � � � ejC1

D d2j�2iC2Eli;jC2.eiC1eiC2 � � � ejxejC1ej � � � eiC2eiC1/eiC1eiC2 � � � ejC1

D d2j�2i .eiC1eiC2 � � � ejxejC1ej � � � eiC2eiC1/eiC2 � � � ejC1 (pull down)

D d2j�2i�2.eiC1eiC2 � � � ejx/ejC1 � � � eiC2 � � � ejC1

D � � � (etet˙1et D d�2et )

D eiC1eiC2 � � � ejxejC1

D eiC1eiC2 � � � ej ejC1x:
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(6) By (3) and Definition 2.16.
(7) Note that the map AiC2;jC2 � AiC1;jC2 3 y 7! yeiC1 2 Ai;jC2 is injective, we

shall prove that Si;j .ek/eiC1 D ekC2eiC1. For i C 1 � k � j � 1,

Si;j .ek/eiC1 D d
2j�2iC2Eli;jC2.eiC1eiC2 � � � ej ekejC1ej � � � eiC1/eiC1

D d2j�2ieiC1eiC2 � � � ej ekejC1ej � � � eiC1 (pull down)

D d2j�2ieiC1 � � � ek�1ekekC1ekekC2 � � � ej ejC1ej � � � ekC2ekC1 � � � eiC1

(Œei ; ej � D 0 for ji � j j � 2)

D d2j�2ieiC1 � � � ek�1.ekekC1ek/.ekC2 � � � ej ejC1ej � � � ekC2/ekC1 � � � eiC1

D d2k�2ieiC1 � � � ek�1ekekC2ekC1ek � � � eiC1 (etet˙1et D d�2et )

D d2k�2iekC2eiC1 � � � ek�1ekekC1ek � � � eiC1

D ekC2eiC1 (etet˙1et D d�2et )

Definition 2.19 (2n-shift map). Define S .n/i;j W Ai;j ! AiC2n;jC2n by

S
.n/
i;j DSiC2.n�1/;jC2.n�1/ ı S

.n�1/
i;j DSiC2.n�1/;jC2.n�1/ ı SiC2.n�2/;jC2.n�2/ ı � � � ıSi;j

to be the 2n-shift map.

Proposition 2.20. The followings are the properties of the 2n-shift map.

(1) S .n/i;j is a unital �-isomorphism.

(2) .commuting parallelogram/ S .n/i;j�1 ıE
r;k
i;j D E

r;k
iC2n;jC2n ı S

.n/
i;j

and S .n/iC1;j ıE
l;k
i;j D E

l;k
iC2n;jC2n ı S

.n/
i;j .

(3) S .n/
i;jCk

.x/ D S
.n/
i;j .x/ for x 2 Ai;j and S .n/

i�k;j
.x/ D S

.n/
i;j .x/ for x 2 Ai;j .

(4) .shift/ For x 2 Ai;j , eij�i;nx D S
.n/
i;j .x/e

i
j�i;n. By taking adjoint,

xe
i;�
j�i;n D e

i;�
j�i;nS

.n/
i;j .x/.

(5) S .n/i;j is trace-preserving.

Proof. (1), (2), (3), (5) follow from Proposition 2.18.
(4) First, we show that

e
iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1x D S

n
i;j .x/e

iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1 for x 2 Ai;j ;

Sni;j .x/e
iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1

D SiC2.n�1/;jC2.n�1/.S
.n�1/
i;j .x//e

iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1

D e
iC2.n�1/
j�i;1 S

.n�1/
i;j .x/e

iC2.n�2/
j�i;1 � � � eij�i;1

D � � �

D e
iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1x:
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Second, eij�i;n D a
i
j�i;ne

iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1b

i
j�i;n with aij�i;n 2 Ai;iC2n and

bij�i;n 2 Aj;jC2n, which will be showed below in Lemma 2.21 and 2.22. Then by the
standard condition, since x 2 Ai;j and S .n/.x/ 2 AiC2n;jC2n, we have

ŒS
.n/
i;j .x/; a

i
j�i;n� D 0 and Œx; bij�i;n� D 0;

which follows that

S
.n/
i;j .x/e

i
j�i;n D S

.n/
i;j .x/a

i
j�i;ne

iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1b

i
j�i;n

D aij�i;nS
.n/
i;j .x/e

iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1b

i
j�i;n

D aij�i;ne
iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1xb

i
j�i;n

D aij�i;ne
iC2.n�1/
j�i;1 e

iC2.n�2/
j�i;1 � � � eij�i;1b

i
j�i;nx

D eij�i;nx:

2.4. String diagram explanation

In this section, we use the Temperley–Lieb–Jones (TLJ) string diagram to explain the
elements in Ai;j , horizontal (right) and vertical (left) conditional expectations, the Jones
projections, 2n-shift maps and their properties.

In the following sections, we will use these diagrams to do the algebraic computa-
tion and readers may interpret these diagrams directly into the algebraic computations by
looking at the dictionary here.

(�1) Element x 2 Ai;j . Ai;j is a (rectangular) box space with j shaded/unshaded
strands where the left i strands are straight strands and together with a j � i box
space. We set the left part of left most strand to be always unshaded; the shading
on the left part of the j � i box space depends on the parity of i :

x

j

If 2 j i W D x

i j�i

D x

j�ii

x

j

If 2 − i W D x

i j�i

D x

j�ii

Remark. The reader shall understand the meaning of rectangular box and round
box of an element. And the shading type of an element is the shading on the left
of the round box.

(�2) Horizontal inclusion x 2 Ai;j � Ai;jC1. The inclusion Ai;j � Ai;jC1 means
adding one straight strand on the right and regarding the j � i box space in Ai;j
as a part of the j � i C 1 box space in Ai;jC1 together with the straight strand,
which does not change the shading type of the box space:
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x

j 1

If 2 j i W D x

j�iC1i

x

j 1

If 2 − i W D x

j�iC1i

(�3) Vertical inclusion x 2Ai;j �Ai�1;j . The inclusionAi;j �Ai�1;j means regard-
ing the right most straight strand together with the original j � i box space in
Ai;j as a part of the j � i C 1 box space in Ai�1;j , which changes the shading
type of the box space:

x

j�iC1i�1

If 2 j i W x

j�iC1i�1

If 2 j i W

(�4) Jones projections:

e2kC1 DW d
�1

2k

e2kC2 D d
�1

2kC1

eik D d
�k

i k

eij;k D d
�k

i j k

e
i;�
j;k
D d�k

i k j

Remark. See the string diagram calculation of Jones projections in the Temper-
ley–Lieb–Jones algebra.

(�5) Horizontal (right) conditional expectation Eri;j W Ai;j ! Ai;j�1, x 2 Ai;j :

Eri;j .x/ D d
�1 x

j�1

D d�1 x

i j�i�1

(�6) Vertical (left) conditional expectation Eli;j W Ai;j ! AiC1;j , x 2 Ai;j . The verti-
cal (left) conditional expectation is the left conditional expectation acting on the
left of the box space and then adding one straight strand on the left of the box
space, which changes the shading type of box space:
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If 2 j i W Eli;j .x/ D d
�1 x

i 1 j�i�1

D d�1 x

j�i�11i

If 2 − i W Eli;j .x/ D d
�1

x

i 1 j�i�1

D d�1 x

j�i�11i

(�7) ejxej D Eri;j .x/ej , for x 2 Ai;j , i C 1 � j ; eixei D Eli;j .x/ei , for x 2 Ai;j ,
i C 1 � j :

d�2 x

j�1

1

D d�2 x

j�1

d�2
x

i�1 j�i�1

D d�2 x

i�1 j�i�1

(�8) Commuting square of conditional expectation: For x 2 Ai;j ,Eli;j ıE
r
i;jC1.x/D

EriC1;jC1 ıE
l
i;jC1.x/:

Eli;j ıE
r
i;jC1.x/ D x

j�i�21i

D EriC1;jC1 ıE
l
i;jC1.x/

(�9) Eri;jC1.ej / D E
l
j�1;k

.ej / D d
�21, for j � i C 1; k � j C 1.

d�2

j�1 1

D d�2

j

d�2

i�1 1 1

D d�2

iC1

(�10) Conditional expectation property Eri;j .axb/D aE
r
i;j .x/b, for x 2 Ai;j ; a; b 2

Ai;j�1; Eli;j .axb/ D aE
l
i;j .x/b, for x 2 Ai;j ; a; b 2 AiC1;j .

d�1

a

x

b

j�1

D d�1

a

x

b

j�1
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(�11) Standard condition: For x 2 Ai;j , y 2 Ak;l with k � j , then we regard x; y as
elements in Ai;l , xy D yx.

x

y

j

k�j

l�k

D

x

y

j

k�j

l�k

(�12) Pull down condition
d2Eri;jC1.xej /ej D xej , for x 2 Ai;jC1, j � i � 0;

d2Eli�1;j .xei /ei D xei , for x 2 Ai�1;j , j � i � 1:

x

j�1

j 1

D

x

j�1

j 1

y

i 1

j�i

j�i�1

D

y

i

j�i

1

j�i�1

(�13) 2-shift map Si;j W Ai;j ! AiC2;jC2: For x 2 Ai;j ,

Si;j .x/ D

i

j�i�1

x

j�i�1

11

1

D x

j�ii 2

D x

j2

2n-shift map S .n/i;j W Ai;j ! AiC2n;jC2n: For x 2 Ai;j ,

S
.n/
i;j .x/ D x

j�i2ni

D x

j2n
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(�14) Commuting parallelogram:
For x 2 Ai;j , S .n/i;j�1 ıE

r;k
i;j .x/ D E

r;k
iC2n;jC2n ı S

.n/
i;j .x/;

For x 2 Ai;j , S .n/iC1;j ıE
l;k
i;j .x/ D E

l;k
iC2n;jC2n ı S

.n/
i;j .x/.

S
.n/
i;j�1 ıE

r;k
i;j .x/ D x

j�k2n

D E
r;k
iC2n;jC2n ı S

.n/
i;j .x/

S
.n/
iC1;j ıE

l;k
i;j .x/ D x

j�i�kki 2n

D E
l;k
iC2n;jC2n ı S

.n/
i;j .x/

(�15) Shift property: For x 2 Ai;j , ei
j;k
x D Ski;j .x/e

i
j;k

.

x

i j

k

k

D

x

i j

k

k

2.5. Some useful lemmas

In this section, we are going to show some important lemmas. One can interpret the string
diagram computation into algebraic computation by the above dictionary.

Lemma 2.21.

i j 1 k�1

D

i j 1 i j k

D

i j 1 k�1

Lemma 2.22. For
Pn
lD1 kpl D

Pm
rD1 kqr , kpl ; kqr 2 Z�0, and x 2 Ai;j , we have:

� � �

� � �x

i j

kp1 kpn

kq1 kqm

D

� � �

� � �

x

i j

kp1 kpn

kq1 kqm
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Proof. By the above lemma.

These two lemmas are used in the proof of Proposition 2.20 (4).

Lemma 2.23.

a b

i

j i

j

D

a b

i

j i

Proof.

a b

i

j i

j

D d�i

a b

i

i

j i

j

D d�i

a b

i

i

j i

j

D d�i

a b

i

i

j i

D

a b

i

j i

Lemma 2.24 ([7]). For x 2 Am;nC2iCj , m � nC 2i C j , we have:

x

n iCj i

ji

i jn

D

x

n i jiCj i

i j

n i j
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Proof.

x

n iCj i

ji

i jn

(�9)
D d�i x

n jiCj i

i

i

n i j

(�10)
D d�i x

n jiCj i

i

i

n i j

(�9)
D d�i x

n jiCj i

i

i

n i j

(�10)
D x

n jiCj i

i

i

n i j

(�7)
D x

n i jiCj

i

i

n i j

(�10)
D x

n i jiCj

i

i

n i j

(�9)
D x

n i jiCj i

i j

n i j
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2.6. From standard �-lattice to pivotal planar tensor category

2.6.1. Planar tensor category.

Definition 2.25. A planar tensor category A0 is a 2-shaded rigid C� multitensor category
(see Definition 2.49) with the following properties.

(a) A0 is a 2-shaded category with objects Œn;C�; Œn;��, n 2 Z�0, where 1C WD
Œ0;C�; 1� WD Œ0;�� are simple and the tensor unit 1A0

D 1C ˚ 1�, which means
A0 is 2-shaded.

(b) A0 is a strict tensor category. The tensor product of objects are

Œm; ‹�˝ Œn; ‹� Œ2i;C� Œ2i C 1;C� Œ2i;�� Œ2i C 1;��

Œn;C� Œ2i C n;C� 0 0 Œ2i C 1C n;��

Œn;�� 0 Œ2i C 1C n;C� Œ2i C n;�� 0

(c) A0 is rigid. There is an involution .�/ such that Œ2i;˙� D Œ2i;˙�, Œ2i C 1;C� D
Œ2i C 1;�� and .�/ D id. For X 2 A0, there exist

(1) evX W xX ˝ X ! 1‹, where ‹ D C if X is unshaded on the right, i.e., X D
1C ˝X , ‹ D � if X is shaded on the right, i.e., X D 1� ˝X ;

(2) coevX W 1‹! X ˝ xX , where ‹ D C if X is unshaded on the left, ‹ D � if X
is shaded on the left.

such that

• .idX ˝ evX / ı .coevX ˝ idX / D idX .

• .evX ˝ id xX / ı .id xX ˝ coevX / D id xX .

• ev xX WD .coevX /� and coev xX D .coevX /�.

In other words, .�/ is a unitary dual functor, which will be discussed in Sec-
tion 2.7.1.

Definition 2.26. We call a planar tensor category A0 pivotal, if the left trace TrL and
right trace TrR defined as follows are faithful normal tracial. For X D Œ2k C 1;C� and
f 2 A0.X ! X/, since Œ2k C 1;C� D Œ2k C 1;��, we define

evX ı .id xX ˝ f / ı ev�X DW TrL.f /id1C ;

coev�X ı .f ˝ id xX / ı coevX DW TrR.f /id1� :

We call A0 spherical if TrR.f /D TrL.f / for all f . Similar for other three cases Œ2k;C�,
Œ2k;��, and Œ2k C 1;��.

And there exists a d > 0 such that evŒn;‹� ı coevŒn;‹� D d2n � 1‹, ‹ D C;�.

Remark 2.27. The traces TrL;TrR are defined in the sense of Definition 2.45.

Definition 2.28. The 2-shaded Temperley–Lieb–Jones multitensor category T LJ.d/ is
a planar tensor category with the endomorphism spaces being 2-shaded Temperley–Lieb–
Jones algebras with modulus d , namely, End.Œn;C�/ is a 2-shaded Temperley–Lieb–Jones
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algebra with n points on one side and unshaded on the left; End.Œn;��/ is a 2-shaded
Temperley–Lieb algebra with n points on one side and shaded on the left.

Remark 2.29. The morphisms in A0 are determined by its representation in endomor-
phism and its domain and range.

There is a canonical isomorphism � W A0.Œm;C�; ŒmC 2i;C�/! A0.ŒmC i; ‹�!

ŒmC i; ‹�/ by Frobenius reciprocity, where ‹ D C if i is even and ‹ D � if i is odd.

� W x

m

mCi

i

7! x

m

mCi

i

��1 W x

mCi

m i

7! x

mCi

m

i

For morphism x 2 A.Œm; ‹�! Œn; ‹�/, we can write a triple .�.x/I Œm; ‹�; Œn; ‹�/ to
represent x, where �.x/ 2 End.ŒmCn

2
; ‹�/, which is called the endomorphism representa-

tion part of x. In the following context, we simply write x instead of �.x/ in the triple
.xI Œm; ‹�; Œn; ‹�/.

2.6.2. From standard �-lattice to pivotal planar tensor category. We regard the ele-
ments in algebraAi;j as endomorphisms in the category and the idea in Remark 2.29 gives
us the way to represent the morphism by using its corresponding endomorphism, source
and target, then we can construct a pivotal planar tensor category from a given standard
�-lattice.

Definition 2.30. Let A D .Ai;j /0�i�j be a standard �-lattice. We define a planar tensor
category A0 from A as follows.

(a) The objects of A0 are the symbols Œn;C�; Œn;�� for n 2 Z�0.

(b) Given n � 0, define A0.Œn;C�! Œn;C�/ WD A0;n and A0.Œn;��! Œn;��/ WD

A1;nC1. Define 1 WD Œ0;C�˚ Œ0;��.

(c) The identity morphism in A0.Œn;C�! Œn;C�/ is 1A0;n and in A0.Œn;��! Œn;��/

is 1A1;nC1 .

(d) For .xI Œn;C�; Œn C 2k;C�/ (or .xI Œn C 2k;C�; Œn;C�/), we define the dag-
ger structure as .xI Œn;C�; Œn C 2k;C�/� WD .x�I Œn C 2k;C�; Œn;C�/, where
x;x� 2 A0;nCk ; for .xI Œn;��; ŒnC 2k;��/ (or .xI ŒnC 2k;��; Œn;��/), we define
.xI Œn;��; ŒnC 2k;��/� WD .x�I ŒnC 2k;��; Œn;��/, where x; x� 2 A1;nCkC1.

(e) We define composition in six cases.

(C1) .yI ŒnC 2i;C�; ŒnC 2i C 2j;C�/ ı .xI Œn;C�; ŒnC 2i;C�/
D .d iE

r;i
0;nC2iCj .yxe

n
j;i /I Œn;C�; ŒnC 2i C 2j;C�/,

where x 2 A0;nCi ; y 2 A0;nC2iCj and d iEr;i0;nC2iCj .yxe
n
j;i / 2 A0;nCiCj .

(C2) .yI ŒnC 2i C 2j;C�; ŒnC 2i;C�/ ı .xI Œn;C�; ŒnC 2i C 2j;C�/
D .d iE

r;iCj
0;nC2iCj .yxe

n;�
j;i /I Œn;C�; ŒnC 2i;C�/,

where x 2 A0;nCiCj ; y 2 A0;nC2iCj and d iEr;iCj0;nC2iCj .yxe
n;�
j;i / 2 A0;nCi .
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(C3) .yI Œn;C�; ŒnC 2i C 2j;C�/ ı .xI ŒnC 2i;C�; Œn;C�/
D .d iye

n;�
j;i xI ŒnC 2i;C�; ŒnC 2i C 2j;C�/,

where x 2 A0;nCi ; y 2 A0;nCiCj and d iyen;�j;i x 2 A0;nC2iCj .

(C4) .yI ŒnC 2i;��; ŒnC 2i C 2j;��/ ı .xI Œn;��; ŒnC 2i;��/
D .d iE

r;i
1;nC2iCjC1.yxe

nC1
j;i /I Œn;C�; ŒnC 2i C 2j;C�/,

where x 2 A1;nCiC1; y 2 A1;nC2iCjC1 and d iEr;i1;nC2iCjC1.yxe
nC1
j;i / 2

A1;nCiCjC1.

(C5) .yI ŒnC 2i C 2j;��; ŒnC 2i;��/ ı .xI Œn;��; ŒnC 2i C 2j;��/
D .d iE

r;iCj
1;nC2iCjC1.yxe

nC1;�
j;i /I Œn;��; ŒnC 2i;��/,

where x2A1;nCiCjC1;y2A1;nC2iCjC1 and d iEr;iCj1;nC2iCjC1.yxe
nC1;�
j;i /2

A1;nCiC1.

(C6) .yI Œn;��; ŒnC 2i C 2j;��/ ı .xI ŒnC 2i;��; Œn;��/
D .d iye

nC1;�
j;i xI ŒnC 2i;��; ŒnC 2i C 2j;��/,

where x 2 A1;nCiC1; y 2 A1;nCiCjC1 and d iyenC1;�j;i x 2 A1;nC2iCjC1.

If x 2 A0.Œn C 2i;��! Œn;��/ and y 2 A0.Œn;��! Œn C 2i C 2j;��/, we
define

y ı x WD d iye
nC1;�
j;i x 2 A1;nC2iCjC1 D A0

�
ŒnC 2i;��! ŒnC 2i C 2j;��

�
:

We define the composition x� ı y� WD .y ı x/�, which defines composition

A0

�
ŒnC 2i C 2j;��! Œn;��

�
˝A0

�
Œn;��! ŒnC 2i;��

�
! A0

�
ŒnC 2i C 2j;��! ŒnC 2i;��

�
:

According to [7, §3.4], the composition and dagger structure are well defined as
Markov tower, and A0 is a C� category.

Before we define the tensor product of morphisms, we use string diagrams to explain
the composition. The box space in the following diagram is always the endomorphism
representation of the corresponding morphism.

y

x

n iCj

i

n

n

i

ij

y

x

n i

jCi

n

n

j i

i

y

x

n iCj

jn

n

i

ii

(C1) (C2) (C3)

The string diagram of case (C4) comes from the string diagram of case (C1) by adding a
straight strand on the leftmost of the diagram and changing the shading. In the same way,
we obtain (C5) from (C2) and (C6) from (C3).
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Now we define the tensor product of morphisms.

x x ˝ 1j

.xI Œm;C�; ŒmC 2i;C�/, i � j .xemj�i;i I ŒmC j;C�; ŒmC 2i C j;C�/

.xI Œm;C�; ŒmC 2i;C�/, i > j .xe
m;�
i�j;j I ŒmC j;C�; ŒmC 2i C j;C�/

.xI Œm;��; ŒmC 2i;��/, i � j .xemC1j�i;i I ŒmC j;��; ŒmC 2i C j;��/

.xI Œm;��; ŒmC 2i;��/, i > j .xe
mC1;�
i�j;j I ŒmC j;��; ŒmC 2i C j;��/

Definition 2.31. x ˝ 1 and 1˝ y, x; y 2 Hom.A0/:
First, we define x ˝ 1 as

x x ˝ 1j

.xI Œm;C�; ŒmC 2i;C�/, i � j .xemj�i;i I ŒmC j;C�; ŒmC 2i C j;C�/

.xI Œm;C�; ŒmC 2i;C�/, i > j .xe
m;�
i�j;j I ŒmC j;C�; ŒmC 2i C j;C�/

.xI Œm;��; ŒmC 2i;��/, i � j .xemC1j�i;i I ŒmC j;��; ŒmC 2i C j;��/

.xI Œm;��; ŒmC 2i;��/, i > j .xe
mC1;�
i�j;j I ŒmC j;��; ŒmC 2i C j;��/

Because of the shading, we define 1˝ y as:

y 12i ˝ y 12iC1 ˝ y

.yI Œn;C�; Œn˙ 2j;C�/ .S
.i/
0;n˙j .y/I ŒnC 2i;C�; 0
ŒnC 2i ˙ 2j;C�/

.yI Œn;��; Œn˙ 2j;��/ 0 .S
.i/
1;nC1˙j .y/I ŒnC 2i;��;

ŒnC 2i ˙ 2j;��/

x

n

j�i

i

nCi i

x

n j i�j

n i j

i � j i > j

y

n2i

y

n�12i 1

Proposition 2.32. For x; y 2 Hom.A0/, .x ˝ 1/ ı .1˝ y/ D .1˝ y/ ı .x ˝ 1/.

Proof. Here, we check the case .xI Œm;C�; Œm C 2i;C�/ and .yI Œn;C�; Œn C 2j;C�/,
where 2 j m (or .yI Œn;��; ŒnC 2j;��/ if 2 − m) and nC j � i . We shall prove that��

xI Œm;C�; ŒmC 2i;C�
�
˝
�
1I ŒnC 2j;C�; ŒnC 2j;C�

��
ı
��
1I Œm;C�; Œm;C�

�
˝
�
yI Œn;C�; ŒnC 2j;C�

��
D
��
1I ŒmC 2i;C�; ŒmC 2i;C�

�
˝
�
yI Œn;C�; ŒnC 2j;C�

��
ı
��
xI Œm;C�; ŒmC 2i;C�

�
˝
�
1I Œn;C�I Œn;C�

��
:

First, they both in A0.ŒmC n;C�! ŒmC nC 2i C 2j;C�/.
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The right-hand side:��
1I ŒmC 2i;C�; ŒmC 2i;C�

�
˝
�
yI Œn;C�; ŒnC 2j;C�

��
ı
��
xI Œm;C�; ŒmC 2i;C�

�
˝
�
1I Œn;C�I Œn;C�

��
W

y

x

m i i nCj�i

m n i j i

D

y

x

m i i nCj�i

m

nCj

i

The left-hand side:��
xI Œm;C�; ŒmC 2i;C�

�
˝
�
1I ŒnC 2j;C�; ŒnC 2j;C�

��
ı
��
1I Œm;C�; Œm;C�

�
˝
�
yI Œn;C�; ŒnC 2j;C�

��
W

(1) If i � j ,

x

y

m i i nCj�i

i

j�i

m n i i

(�15)
D

x

y

m i i nCj�i

i

j�i

m n i i

(�11)
D

(�14)
x

y

m i i nCj�i

i

j�i

m n i i

D

x

y

m i i nCj�i

m

nCj

i

(�10)
D

x

y

m i i nCj�i

m

nCj

i

2.23
D

x

y

m

m i i

nCj

nCj�i

i
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(2) If i > j ,

x

y

m

m i i

n

nCj�i

j i�j j

2.23
D

x

y

m

m i i nCj�i

n j i�j j

(�10)
D

x

y

m

m i i nCj�i

n j i�j j

(�15)
D

2.22

y

x

m

m i i nCj�i

n j i�j j

(�11)
D

(�14)

y

x

m

m i i nCj�i

n j i�j j

D

x

y

m

m i i

nCj

nCj�i

i

Therefore, .x ˝ 1/ ı .1˝ y/ D .1˝ y/ ı .x ˝ 1/ in this case. The remaining cases
are left to the reader.

Definition 2.33 (Tensor product of morphisms). Define x ˝ y WD .x ˝ 1/ ı .1˝ y/.

We need to prove that the tensor product defined above is functorial and associative.

Proposition 2.34. The tensor product is associative and strict, i.e., for x;y;z 2Hom.A0/,
.x ˝ y/˝ z D x ˝ .y ˝ z/.

Proof. Here,we check the case .xI Œm;C�; Œm C 2i;C�/, .yI Œn;C�; Œn C 2j;C�/ and
.zI Œl;��; Œl C 2k;��/, where 2 jm;2 − n and nC j � i , l C k � i C j . Then .x˝ y/˝ z,
x ˝ .y ˝ z/ 2 A0.ŒmC nC l;C�! ŒmC nC l C 2i C 2j C 2k;C�/.

By Proposition 2.32, the endomorphism representation parts of x ˝ y and y ˝ z are
defined in this way:

y

x

m i i nCj�i

m

nCj

i

z

y

n j j lCk�j

n 1

lCk

j
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Then .x ˝ y/˝ z:

y

x

z

m n 1 lCk iCj

m i i n j j lCk�i�j

D d�i�j
y

x

z

m n 1 lCk iCj

m i i n j j lCk�i�j

i j

2.24
D d�i�j

y

x

z

m n 1 lCk iCj

m i i n j j lCk�i�j

i j

D
y

x

z

m n 1 lCk iCj

m i i n j j lCk�i�j

And x ˝ .y ˝ z/:

x

y

z

m

n

lCk j i

1

m i i n j j lCk�i�j

(�10)
D

x

y

z

1

m

n

lCk j i

m i i n j j lCk�i�j
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(�10)
D

x

y

z

m

n

lCk j i

1

m i i n j j lCk�i�j

D
y

x

z

m n 1 lCk iCj

m i i n j j lCk�i�j

Therefore, .x ˝ y/˝ z D x ˝ .y ˝ z/ in this case. Readers can check the rest of the
cases by using the string diagram dictionary and the lemmas.

Proposition 2.35. For x; y 2 Hom.A0/,

.x ı y/˝ 1 D .x ˝ 1/ ı .y ˝ 1/ and 1˝ .x ı y/ D .1˝ x/ ı .1˝ y/:

Proof. By our construction,

1˝ .x ı y/ D .1˝ x/ ı .1˝ y/

only uses the fact that the shift map is a �-homomorphism.
As for .x ı y/˝ 1 D .x ˝ 1/ ı .y ˝ 1/, we check the case .xI Œm;C�; ŒmC 2i;C�/

and .yI ŒmC 2i�; ŒmC 2i C 2j;C�/, where n � i C j . Then

.x ı y/˝ 1n; .x ˝ 1n/ ı .y ˝ 1n/ 2 A0

�
ŒmC n;C�! ŒmC nC 2i C 2j;C�

�
:

Next, let us compare their endomorphism representation parts.
.x ı y/˝ 1n:

y

x

m n�i�j iCj

i

i

m i j i i j

D d�i�j

y

x

i

i

i j

m i j i i j

m n�i�j iCj

2.24
D d�i�j

y

x

m n�i�j iCj

m i j i j

i

i

i j

D

y

x

m n�i�j iCj

m i j i j

i

i



Standard �-lattices, rigid C� tensor categories, and (bi)modules 277

.x ˝ 1n/ ı .y ˝ 1n/:

y

x

m "
n�i�j

j i j i

m i i j j #
n�i�j

i

i

D

y

x

m "
n�i�j

j i j i

m i i j j #
n�i�j

i

i

(�10)
D

y

x

m "
n�i�j

j i j i

m i i j j #
n�i�j

i

i

2.23
D

y

x

m n�i�j iCj

m i j i j

i

i

Only the straight strands are allowed in the blank.
Therefore, .x ı y/˝ 1D .x ˝ 1/ ı .y ˝ 1/ in this case. Readers can check the rest of

the cases by using the string diagram dictionary and the lemmas.

Corollary 2.36. The tensor product is functorial, i.e., for x; y; z; w 2 Hom.A0/,

.x ı y/˝ .z ı w/ D .x ˝ z/ ı .y ˝ w/:

Therefore, the tensor product in Definition 2.33 is well defined.
Next, we show that A0 has a pivotal structure.

Definition 2.37 (ev and coev). Note that Œn;˙� ˝ Œn;˙� D Œ2nI ˙�; Œn;C� ˝ Œn;C� D
Œ2n;C� if 2 j n and Œ2n;�� if 2 − n; Œn;��˝ Œn;�� D Œ2n;�� if 2 j n and Œ2n;C� if 2 − n.

Define

coevŒn;C� W 1C! Œ2n;C�D Œn;C�˝Œn;C� as coevŒn;C�D
�
dnI Œ0;C�; Œ2n;C�

�
;

evŒn;C� W Œn;C�˝Œn;C�D Œ2n;‹�!1‹ as evŒn;C�D
�
dnI Œ2n;‹�; Œ0;‹�

�
; ‹DC; if 2 j n;

coevŒn;�� W 1�! Œ2n;��D Œn;��˝Œn;�� as coevŒn;��D
�
dnI Œ0;��; Œ2n;��

�
;

evŒn;�� W Œn;��˝Œn;�� D Œ2n;‹�!1‹ as evŒn;��D
�
dnI Œ2n;‹�; Œ0;‹�

�
; ‹D�; if 2 j n:

Proposition 2.38. A0 is rigid.

Proof. First, we prove that

.idŒn;C� ˝ evŒn;C�/ ı .coevŒn;C� ˝ idŒn;C�/ D idŒn;C�:

Note that

idŒn;C� ˝ evŒn;C� D
�
S .n/.dn/I Œ2nC n;C�; Œ0C n;C�

�
D
�
dnI Œ3n;C�; Œn;C�

�
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and

coevŒn;C� ˝ idŒn;C� D
�
dne0.n�n/;nI Œ0C n;C�; Œ2nC n;C�

�
D
�
dne00;nI Œn;C�; Œ3n;C�

�
:

Then by the composition case (C2), where i D 0; j D n,

.idŒn;C� ˝ evŒn;C�/ ı .coevŒn;C� ˝ idŒn;C�/

D
�
dnI Œ3n;C�; Œn;C�

�
ı
�
dne00;nI Œn;C�; Œ3n;C�

�
D
�
d0E

r;0Cn
0;nC2n.d

2ne00;ne
n;�
j;i /I Œn;C�; ŒnC 2i;C�

�
D
�
d2nE

r;n
0;3n.e

0
0;n/I Œn;C�; Œn;C�

�
D
�
1I Œn;C�; Œn;C�

�
D idŒn;C�:

The other three cases are left to the reader. Therefore, A0 is rigid.

Proposition 2.39. A0 is pivotal and spherical.

Proof. First, we prove that the right trace TrR is a normal faithful trace. Let X D Œn;C�.
Given .f I Œn;C�; Œn;C�/, f ˝ idŒn;C� D .f I Œ2n;C�; Œ2n;C�/, then

TrR.f / D coev�
Œn;C�
ı .f ˝ idŒn;C�/ ı coevŒn;C�

D
�
dnI Œ2n;C�; Œ0;C�

�
ı
�
f I Œ2n;C�; Œ2n;C�

�
ı
�
dnI Œ0;C�; Œ2n;C�

�
D
�
dnI Œ2n;C�; Œ0;C�

�
ı
�
dnE

r;n
0;2n.f � d

ne00;n/I Œ0;C�; Œ2n;C�
�

D
�
dnI Œ2n;C�; Œ0;C�

�
ı
�
f I Œ0;C�; Œ2n;C�

�
D
�
d0E

r;n
0;n.fe

0;�
n;0/I Œ0;C�I Œ0;C�

�
D
�

tr.f /I Œ0;C�; Œ0;C�
�
:

The third equality uses Definition 2.30(e)(C1), where n D 0, i D n, j D 0; the forth
equality uses (�9); the fifth equality uses (C2), where n D i D 0, j D n.

The case X D Œn;�� is left to the reader.
Next, we prove that the left trace TrL is a normal faithful trace. LetX D Œ2n;C�. Given

.f I Œ2n;C�; Œ2n;C�/, idŒ2n;C� ˝ f D .S
.n/
0;2n.f /I Œ4n;C�; Œ4n;C�/, then

TrL.f / D evŒ2n;C� ı .idŒ2n;C� ˝ f / ı ev�
Œ2n;C�

D
�
d2nI Œ4n;C�; Œ0;C�

�
ı
�
S
.n/
0;2n.f /I Œ4n;C�; Œ4n;C�

�
ı
�
d2nI Œ0;C�; Œ4n;C�

�
D
�
d2nI Œ4n;C�; Œ0;C�

�
ı
�
d2nE

r;2n
0;4n

�
S
.n/
0;2n.f / � d

2ne00;2n
�
I Œ0;C�; Œ4n;C�

�
D
�
d4n � d0E

r;2n
0;2n

�
E
r;2n
0;4n

�
S
.n/
0;2n.f /e

0
0;2n

�
e
0;�
0;2n

�
I Œ0;C�; Œ0;C�

�
D
�

tr.f /I Œ0;C�; Œ0;C�
�
:
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The last equality: note that e0;�0;2nD 1 andEr;2n0;2n ıE
r;2n
0;4nD trDEr;2n2n;4n ıE

l;2n
0;4n, S .n/0;2n.f /2

A2n;4n and S .n/0;2n is trace-preserving, then

d4n � d0E
r;2n
0;2n

�
E
r;2n
0;4n

�
S
.n/
0;2n.f /e

0
0;2n

�
e
0;�
0;2n

�
D d4n tr

�
S
.n/
0;2n.f /e

0
0;2n

�
D d4nE

r;2n
2n;4n ıE

l;2n
0;4n

�
S
.n/
0;2n.f /e

0
0;2n

�
D E

r;2n
2n;4n

�
S
.n/
0;2n.f /

� �
by Proposition 2.20 (2)

�
D E

r;2n
0;2n.f / D tr.f /:

The cases X D Œ2nC 1;C�; Œn;�� are left to the reader.
Therefore, TrR D TrL is the trace, so A0 has a pivotal structure.
Moreover, by the composition case (C2), where i D n D 0; j D n,

evŒn;C� ı coevŒn;C� D
�
dnI Œ2n;C�; Œ0;C�

�
ı
�
dnI Œ0;C�; Œ2n;C�

�
D
�
d0E

r;n
0;2n.d

2ne
0;�
n;0/I Œ0;C�; Œ0;C�

�
D
�
d2nI Œ0;C�; Œ0;C�

�
D d2n � 1C:

Similarly, evŒn;�� ı coevŒn;�� D d2n � 1�.

Combining the above propositions, A0 constructed from a standard �-lattice is a piv-
otal planar tensor category.

2.7. From 2-shaded rigid C� multitensor category to standard �-lattice

In this section, we show the relation between the 2-shaded rigid C� multitensor category
and planar tensor category, and give the construction from the category to standard �-
lattice.

2.7.1. Rigid C� multitensor category. In this subsection, we are going to briefly review
the unitary dual functors in a rigid C� (multi)tensor category C [37].

Definition 2.40. [44, 45] Recall that every object c 2 C is dualizable, i.e., there is an
object Nc 2 C together with morphisms evc 2 C. Nc˝ c! 1C / and coevc 2 C.1C ! c˝ Nc/

satisfying the zigzag condition:

.idc ˝ evc/ ı .coevc ˝ idc/ D idc ;

.evc ˝ id Nc/ ı .id Nc ˝ coevc/ D id Nc :

We also require that every object c 2 C admits a predual object c such that .c/ Š c.

Definition 2.41. A choice of dual for every object in C assembles into a dual functor
.�/ W C ! Cmop, which is a tensor functor with a canonical tensorator �a;b . To be precise,
for a morphism f 2 C.a! b/, define

Nf WD .evb ˝ id Na/ ı .id Nb ˝ f ˝ id Na/ ı .id Nb ˝ coeva/ W Nb ! Na:
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Nf WD f

Nb

Na

b

a

The tensorator �a;b W Na˝ Nb ! b ˝ a is defined as

�a;b WD .eva ˝ idb˝a/ ı .id Na ˝ evb ˝ ida ˝ idb˝a/ ı .id Na˝Nb ˝ coevb˝a/:

Note that � is completely determined by ev and coev.

Proposition 2.42. Any two dual functors .�/1 and .�/2 are equivalent up to a unique nat-
ural isomorphism. Define � W .�/2 ! .�/1 as follows: for c 2 C ,

�c WD .ev2c ˝ id Nc1/ ı .id Nc2 ˝ coev1c/:

�c D

coev1c

ev2c

c

Nc2

Nc1

Then we have �. Nf2/ D �a ı Nf2 ı ��1b D �.f /1 for all f 2 C.a! b/.

Definition 2.43. [11] A pivotal structure on a rigid monoidal category C is a pair ..�/; '/,
where .�/ is a dual functor and ' W id) .�/ is a monoidal natural isomorphism. To be
precise, for all a; b 2 C , the following diagram commutes:

a˝ b a˝ b

NNa˝ NNb Nb ˝ Na

'a˝'b

'a˝b � Nb; Na

�
Na; Nb

Definition 2.44 (Pivotal trace). Let 1C D
Lr
iD1 1i be a decomposition into simples. For

c 2 C and f 2 C.c ! c/, define the left/right pivotal traces tr'L and tr'R W C.c ! c/!

C.1C ! 1C / ŠMr .C/ by

tr'L.f / WD evc ı .id Nc ˝ f / ı .id Nc ˝ '�1c / ı coev Nc
tr'R.f / WD ev Nc ı .'c ˝ id Nc/ ı .f ˝ id Nc/ ı coevc :

tr'L.f / D
f

'�1c

c

NNc

c

Nc tr'R.f / D
f

'c

c

NNc

c

Nc

The traces are tracial and non-degenerate.
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Definition 2.45. Let pi 2 C.1C ! 1C / be the projection onto 1i , i D 1; 2; : : : ; r . We
define the Mr .C/-valued traces Tr'L and Tr'R by the formulas:�

Tr'L.f /
�
i;j

id1j WD tr'L.pi ˝ f ˝ pj /;�
Tr'R.f /

�
i;j

id1i WD tr'R.pi ˝ f ˝ pj /:

Note that Tr'L and Tr'R are tracial, and Tr'L. Nf / D Tr'R.f /
T for all f 2 C.c ! c/.

We call the pivotal structure ..�/;'/ spherical, if Tr'L.f /D Tr'R.f /, for all c 2 C ; f 2

C.c ! c/.

Definition 2.46. For each c 2 C , define Dim'
L;Dim'

R 2Mr .C/ by

Dim'
L.c/ WD Tr'L.idc/; Dim'

R.c/ WD Tr'R.idc/:

If c is simple, then Dim'
L.c/;Dim'

R.c/ have only one non-zero entry, which we denote
dim'

L.c/; dim'
R.c/ respectively.

If the pivotal structure ..�/; '/ is spherical, Dim'
L.c/ D Dim'

R.c/ WD Dim.c/ for all
object c.

Definition 2.47. A dagger structure on a C-linear category is a collection of anti-linear
maps � W C.c ! d/ ! C.d ! c/ for all c; d 2 C such that .f ı g/� D g� ı f � and
.f �/� D f . A morphism f W C.a! b/ is called unitary if f � D f �1.

A dagger (multi)tensor category is a (multi)tensor category equipped with a dagger
structure so that .f ˝ g/� D f � ˝ g� for all morphisms f; g, and all associator and
unitors are unitary.

Definition 2.48. A functor between dagger categories F W C ! D is called a dagger
functor if F.f �/ D F.f /� for all f 2 Hom.C/.

Definition 2.49 (Rigid C� (multi)tensor category). A C� category is a dagger category
which is Cauchy complete and each endomorphism algebra is a C�-algebra, where the
dagger structure is compatible with the �-structure.

A C� (multi)tensor category is a dagger (multi)tensor category whose underlying dag-
ger category is C�.

A rigid C� (multi)tensor category is a C� (multi)tensor category equipped with a dual
functor. It is known that a rigid C� multitensor category is Cauchy complete if and only if
it is semisimple [31].

Proposition 2.50 (Unitary dual functor). Fix a dual functor .�/ on a rigid C� (multi)tensor
category C , the followings are equivalent:

(1) .�/ is a unitary dual functor, i.e., for all a; b 2 C ; f 2 C.a! b/, the tensorator
�a;b is unitary and Nf � D f �.

(2) Defining 'c WD .coev�c ˝ id NNc/ ı .idc ˝ coev Nc/ is a pivotal structure ' W id) .�/.

Proof. [42], see also [37, Prop. 3.9].
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Definition 2.51. Two unitary dual functors are called unitary equivalent, if the canonical
natural transformation � from Proposition 2.42 is unitary, i.e., �c is unitary for all c 2 C .

Proposition 2.52. For a unitary dual functor .�/, the left/right pivotal traces have alter-
nate formulas:

tr'L.f / D evc ı .id Nc ˝ f / ı ev�c ;

tr'R.f / D coev�c ı .f ˝ id Nc/ ı coevc :

Theorem 2.53 ([2], [37, Prop. 3.24]). For a rigid C� (multi)tensor category C , there exists
a unique unitary dual functor whose induced pivotal structure is spherical up to unitary
equivalence. In other words, the pivotal structure can be trivial, so that ev Nc D coev�c and
coev Nc D ev�c for all c 2 C .

2.7.2. 2-shaded rigid C� multitensor category with a choice of the generator and
planar tensor category. Let A be a 2-shaded rigid C� multitensor category together
with 1 D 1C ˚ 1�, where 1C; 1� are simple, and a generator X D 1C ˝ X ˝ 1�. Here,
the generating means for any simple object P , it is a direct summand of X alt˝n or xX alt˝n

(defined below) for some n 2 Z�0.
Let .�/ be a unitary dual functor that induced a spherical pivotal structure '. Note that

only .C;�/ entry of Dim.X/ is non-zero and we denote this number as dX to be the
modulus of category C .

Construction 2.54. We construct a planar tensor categoryA0 from .A;X/. By MacLane’s
coherence theorem, A is unitary equivalent to a strict tensor category with the above prop-
erties and the dual functor is strict, without loss of generality, we also denote it as A.
Construct the pivotal planar tensor category A0 as follows:

(a) Objects: Define Œ0;C� WD 1C, Œ0;�� WD 1�, and

Œn;C� WD Œn � 1;C�˝X ‹ D
�
� � �
�
.X ˝ xX/˝X

�
˝ � � �

�
˝X ‹„ ƒ‚ …

n tensorands

DW X alt˝n;

where X ‹ D xX if n is even and X if n is odd, and

Œn;�� WD Œn � 1;��˝X ‹ D
�
� � �
�
. xX ˝X/˝ xX

�
˝ � � �

�
˝X ‹„ ƒ‚ …

n tensorands

DW xX alt˝n;

where X ‹ D X if n is even and xX if n is odd, for n 2 Z�0.

(b) Morphisms: A0 is the full subcategory of A with above objects.

(c) Duality: The dual functor is unitary as a dual functor on the subcategory, which
also induces a spherical pivotal structure on the subcategory.

Given A0 to be a pivotal planar tensor category, then its Cauchy completion cA0 is a
Cauchy completed 2-shaded rigid C� multitensor category with a generator Œ1;C� and a
canonical unitary dual functor .�/1.
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Proposition 2.55. Suppose A0 is a pivotal planar tensor category constructed from
.A; X/, then there is a unitary equivalence between .cA0; Œ1;C�/ and the Cauchy com-
pletion of .A; X/ with respect to their unitary dual functors.

Remark 2.56. Suppose A;B are two 2-shaded rigid C� multitensor categories with
generator X and Y respectively and A0;B0 are corresponding pivotal planar tensor cate-
gories. Then A0 and B0 are unitary equivalent if and only if the Cauchy completions of
A and B are unitary equivalent which maps generator to generator.

Remark 2.57. The planar tensor category A0 is not Cauchy complete, i.e., additive com-
plete and idempotent complete. In fact, as for skeletalness, strictness, and Cauchy com-
plete, most tensor categories can require at most two of them. Hilb.G/ is an exception.

2.7.3. From planar tensor category to standard �-lattice.

Construction 2.58. Let A0 be a pivotal planar tensor category with modulus d . Define
A0;j D End.Œj;C�/,A1;j D idŒ1;C�˝ End.Œj � 1;��/, j 2Z�0, so thatA0;0 DA1;1DC.
In general, for i � j , define

Ai;j D

´
idŒi;C� ˝ End

�
Œj � i;C�

�
2 j i;

idŒi;C� ˝ End
�
Œj � i;��

�
2 − i:

Then we check A D .Ai;j /i;j�0 to be a standard �-lattice.

(a) The vertical inclusion AiC1;j � Ai;j is clear. The right inclusion: the right inclu-
sion send x 2 Ai;j to x ˝ idŒ1;‹� 2 Ai;jC1, where ‹ D C if 2 j j and ‹ D � if
2 − j .

(b) Horizontal conditional expectation: Define Eri;j W Ai;j ! Ai;j�1 by

Eri;2k.x/ D d
�1.idŒ2k�1;C�˝evŒ1;C�/ı

�
x˝Œ1;C�

�
ı .idŒ2k�1;C�˝coevŒ1;C�/;

Eri;2kC1.x/ D d
�1.idŒ2k;C�˝evŒ1;��/ı

�
x˝Œ1;��

�
ı .idŒ2k;C�˝coevŒ1;��/:

(c) Vertical conditional expectation: Define Eli;j W Ai;j ! AiC1;j by

El2k;j D d
�1.idŒ2kC2;C�˝evŒ1;C�/ı .idŒ2;C�˝x/ı .idŒ2kC2;C�˝coevŒ1;C�/;

El2kC1;j D d
�1.idŒ2kC3;C�˝evŒ1;��/ı .idŒ2;C�˝x/ı .idŒ2kC3;C�˝coevŒ1;��/:

(d) Jones projection: the nth Jones projection is defined as

e2kC1 D d
�1
� idŒ2k;C� ˝ .coevŒ1;C� ı evŒ1;C�/ 2 Ai;2kC2;

e2kC2 D d
�1
� idŒ2kC1;C� ˝ .coevŒ1;�� ı evŒ1;��/ 2 Ai;2kC3:

The check that A D .Ai;j /j�i�0 satisfies Definition 2.7 (a), (b), (c) and the standard con-
dition is left to the reader. In particular, enen˙1en D d�2en, Eri;jC1.ej / D E

l
j�1;k

.ej / D

d�21.
Note that the dual functor is unitary and we divide the loop parameter, the composition

of these conditional expectations is actually a unital trace on A.
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Remark 2.59. The idea of drawing the string diagram explanation in Section 2.4 comes
from here.

In this section, the class of unitary equivalent pairs .A; X/ with A a 2-shaded rigid
C� multitensor category and X a generator induces the class of isomorphic pivotal planar
tensor categories; in Section 2.6, the class of isomorphic pivotal planar tensor categories
is one to one corresponding to the class of isomorphic standard �-lattices.

Combining above discussion, we can deduce the equivalence between standard �-
lattice A and pair 2-shaded rigid C� multitensor category with a generator .A; X/.

Theorem 2.60. There is a bijective correspondence between equivalence classes of the
following:²

Standard �-lattices
A D .Ai;j /0�i�j

³
Š

8<:Pairs .A; X/ with A a 2-shaded rigid C� multiten-
sor category with a generator X , i.e., 1A D 1

C˚1�,
1C; 1� are simple and X D 1C ˝X ˝ 1�

9=; :
Equivalence on the left-hand side is unital �-isomorphism of standard �-lattices; equiva-
lence on the right-hand side is the unitary equivalence between their Cauchy completions
which maps generator to generator.

3. Markov towers as standard right module over standard �-lattice
and module categories

Now we move to the module case. One motivation that regards a Markov tower as a right
module over a standard �-lattice is to answer the question in [7, Rem. 3.34].

3.1. Markov tower as a standard right module over standard �-lattice

Definition 3.1.
M0 � M1 � M2 � � � � � Mn � � � �

[ [ [ [

A0;0 � A0;1 � A0;2 � � � � � A0;n � � � �

[ [ [

A1;1 � A1;2 � � � � � A1;n � � � �

LetAD .Ai;j /0�i�j<1 be a standard �-lattice with Jones projection ¹eiºi�1 and compat-
ible conditional expectations. Let M D .Mn; en/n�0 be a Markov tower with conditional
expectationEi WMi !Mi�1, i � 1. (M and A share the same Jones projections.) We call
a Markov towerM a standard rightA-module if it satisfies the following three conditions.

(a) A0;i �Mi is a unital inclusion, i D 0; 1; 2; : : : :

(b) Ei jA0;i D E
r
0;i , i D 1; 2; : : : :

(c) (standard condition) ŒMi ; Ak;l � D 0 for i � k � l .

In the rest of this section, we only consider the Markov tower with dim.M0/ D 1

unless stated.
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3.2. String diagram explanation

We now introduce the diagrammatic explanation of the element, conditional expectation,
Jones projection and their relations in a Markov tower with the same spirit in Section 2.4.

(MT1) Element x 2Mn:

x

n

WD x

n

(MT2) Vertical inclusion x 2 A0;n �Mn:

x

n

(MT3) Horizontal inclusion x 2Mn �MnC1:

x

n 1

(MT4) Jones projections:

e2iC1 D d
�1

2i

2M2iC2 e2iC2 D d
�1

2iC1

2M2iC3

(MT5) Conditional expectation En WMn !Mn�1 and EnjA0;n D E
r
0;n:

En.x/D d
�1 x

n�1

1

; x 2Mn En.x/D E
r
0;n.x/D d

�1 x

n�1

1

; x 2 A0;n

(MT6) Pull down condition: For x 2MnC1, xen D dEnC1.xen/en.

x

j�1

j 1

D

x

j�1

j 1
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(MT7) Standard condition: For f 2Mi , x 2 Ak;l with k � i , then we regard �; x as
elements in Ml , f x D xf .

f

x

i

k�i

l�k

D

f

x

i

k�i

l�k

3.3. From Markov tower as a standard module to planar module category
3.3.1. Planar module category over planar tensor category.

Definition 3.2. Let A0 be a planar tensor category defined in Definition 2.25. Let M0 be
an indecomposable semisimple C� right A0-module category with following properties:

(a) Object: The objects of M0 are Œn� D Œn�M0
, n 2 Z�0, where Œ0� is simple.

(b) The tensor product of objects are

Œm�M0
C Œn;C�A0

D

´
ŒmC n�M0

if 2 j m;

0 if 2 − m;

Œm�M0
C Œn;��A0

D

´
0 if 2 j m;

ŒmC n�M0
if 2 − m:

(c) Only M0.Œn�! Œn˙ 2i�/ is non-zero, n; i 2 Z�0. The module product of mor-
phisms in Hom.M0/ and Hom.A0/ should match the shading types.

(d) M0 is a strict right A0-module category, i.e., the module associator is identity.
For x1; x2 2 A0 and f 2M0,

.f C x1/ C x2 D f C .x1 ˝ x2/:

(e) M0 is a C� category with a natural dagger structure such that C is a dagger
functor, i.e., for x 2 Hom.A0/ and f 2 Hom.M0/,

.f C x/� D f � C x�:

Such module category is called a planar module category.

Remark 3.3. Similar to Remark 2.29, every morphism in M0 is determined by its repre-
sentation as an endomorphism and its domain and range.

There is a canonical isomorphism � WM0.Œm�! ŒmC 2i�/!M0.ŒmC i �! ŒmC i �/

by using the rigid structure on A0.

� W x

m

mCi

i

7! x

m

mCi

i

��1 W x

mCi

m i

7! x

mCi

m

i
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For morphism x 2M0.Œm�; Œn�/, we can write a triple .�.x/I Œm�; Œn�/ to represent x, where
�.x/ 2 End.ŒmCn

2
�/, which is called the endomorphism representation part of x. In the

following context, we simply write x instead of �.x/ in the triple .xI Œm�; Œn�/.

3.3.2. From Markov tower as a standard module to planar module category. Define
the multi-step conditional expectation Emn D En�mC1 ı � � � ı En, for m � n. Similar to
Definition 2.30, we may regard the elements inMn as endomorphisms in the category, we
can construct a planar module category from a given Markov tower as a standard module
over a standard �-lattice.

Definition 3.4. Let M D .Mn/n�0 be a Markov tower as a standard right module over
standard �-latticeAD .Ai;j / with dim.M0/D 1. We define a planar module category M0

from M as follows.

(a) The objects of M0 are the symbols Œn� for n 2 Z�0.

(b) Given n � 0, define M0.Œn�! Œn�/ WDMn.

(c) The identity morphism in M0.Œn�! Œn�/ is 1Mn .

(d) For .f I Œm�; Œn�/ with 2 jmC n, we define .f I Œm�; Œn�/� WD .f �I Œn�; Œm�/, where
f; f � 2MmCn

2
.

(e) We define composition in three cases.

(C1) .gI ŒnC 2i�; ŒnC 2i C 2j �/ ı .f I Œn�; ŒnC 2i�/
D .d iEinC2iCj .gfe

n
j;i /I Œn�; ŒnC 2i C 2j �/,

where f 2MnCi ; g 2MnC2iCj and d iEinC2iCj .gfe
n
j;i / 2MnCiCj .

(C2) .gI ŒnC 2i C 2j �; ŒnC 2i�/ ı .f I Œn�; ŒnC 2i C 2j �/
D .d iE

iCj
nC2iCj .gfe

n;�
j;i /I Œn�; ŒnC 2i�/,

where f 2MnCiCj ; g 2MnC2iCj and d iEiCjnC2iCj .gfe
n;�
j;i / 2MnCi .

(C3) .gI Œn�; ŒnC 2i C 2j �/ ı .f I ŒnC 2i�; Œn�/
D .d ige

n;�
j;i f I ŒnC 2i�; ŒnC 2i C 2j �/,

where f 2MnCi ; g 2MnCiCj and d igen;�j;i f 2MnC2iCj .

For the other cases, we can use the dagger structure f � ı g� WD .g ı f /� to define.

Similarly, the composition and the dagger structure are well defined, and M0 is C�

according to [7, §3.4].

g

f

n iCj

i

n

n

i

ij

g

f

n i

jCi

n

n

j i

i

g

f

n iCj

jn

n

i

ii

(C1) (C2) (C3)
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Remark 3.5. Readers can observe the similarity between the diagrammatic explanation
of elements in Mn and Ai;n, the difference only appears on the leftmost. Moreover, a
similar version of Lemma 2.23 and Lemma 2.24 holds for the Markov tower case.

Now we define the module action of morphisms.

Definition 3.6. f C 1 and 1 C x, f 2 Hom.M0/ and x 2 Hom.A0/. The idea is the
same as in Definition 2.31.

First, we define f C 1 as

f f C 1j

.f I Œm�; ŒmC 2i�/, i � j .femj�i;i I ŒmC j �; ŒmC 2i C j �/

.f I Œm�; ŒmC 2i�/, i > j .fe
m;�
i�j;j I ŒmC j �; ŒmC 2i C j �/

f

n

j�i

i

nCi i

f

n j i�j

n i j

i � j i > j

The definition of 1 C x will be the same as 1˝ x by using the 2-shift maps in Defini-
tion 2.31.

The proof of the following propositions is the same as in Propositions 2.32, 2.34,
and 2.35.

Proposition 3.7. For f 2Hom.M0/, x2Hom.A0/, .f C1/ı .1Cx/D .1Cx/ı .f C1/.

Definition 3.8. Define f C x WD .f C 1/ ı .1 C x/.

The following propositions guarantee the module action defined above is well defined.

Proposition 3.9. For f 2 Hom.M0/, x; y 2 Hom.A0/, .f C x/ C y D f C .x ˝ y/.

Proposition 3.10. For f; g 2 Hom.M0/, .f ı g/ C 1 D .f C 1/ ı .g C 1/ and 1 C
.x ˝ y/ D .1 C x/ ı .1 C y/.

3.4. Indecomposable semisimple C� A-module categories and planar A0-module
categories

3.4.1. Indecomposable semisimple C� A-module category. Let A be a 2-shaded rigid
C� multitensor category with a generator X D 1C ˝ X ˝ 1� with a canonical unitary
dual functor .�/. Let M be a Cauchy complete indecomposable semisimple C� A-module
category. Note that there is a natural dagger structure on M, and the module action C is a
dagger functor, namely, for morphism f 2 Hom.M/ and x 2 Hom.A/,

.f C x/� D f � C x�:
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We call a module category M indecomposable if for any two simple objectsP;Q 2M,
Q is a direct summand of P C X alt˝n if P D P C 1C (P C xX alt˝n if P D P C 1�) for
some n 2 Z�0.

Construction 3.11. Let A0 be a planar tensor category obtained from .A; X/ via the
construction in Section 2.7.2. By MacLane’s coherence theorem, MA is unitary equivalent
to a strict one, i.e., M and A are strict and the right module associator is trivial. Then M

is also a strict right A0-module category.
We construct the planar A0-module category M0 as follows:

(a) Objects: Pick a simple object Z D Z C 1C 2M, define Œ0� WD Z, and

ŒnC 1� WD Œn� C Œ1; ‹�;

where Œ1; ‹� D Œ1;C� if 2 j n and Œ1; ‹� D Œ1;�� if 2 − n.

(b) Morphisms: M0 is a full subcategory of M with above objects.

Given M0 to be a planar A0-module category, then its Cauchy completion cM0 is ancA0-module, compatible with the dagger structure. The proof is left to the reader as an
exercise.

Remark 3.12. Suppose M0 is a planar A0-module category constructed from .M; Z/

over .A; X/, then there is a unitary equivalence between M as A-module and bM0 ascA0-module, which sends base object to base object.

3.4.2. From planar module category to Markov tower as a standard module over a
standard �-lattice.

Construction 3.13. Let M0 be a planar A0-module category with modulus d and A
is a standard �-lattice constructed from A0 as in Section 2.7.3. Define Mj D End.Œj �/,
j 2 Z�0. Then we check M D .Mj /j�0 to be a Markov tower as a standard A-module.

(a) The horizontal inclusionMj �MjC1 sends x 2Mj to x C idŒ1;‹� 2MjC1, where
‹DC if 2 j j and ‹D� if 2 − j . The vertical inclusionA0;j �Mj sends x 2A0;j
to idŒ0� C x 2Mj .

(b) Conditional expectation: Define EMj WMj !Mj�1 by

EM2k .x/ D d
�1.idŒ2k�1�˝evŒ1;C�/ ı

�
x C Œ1;C�

�
ı .idŒ2k�1�˝coevŒ1;C�/;

EM2kC1.x/ D d
�1.idŒ2k�˝evŒ1;��/ ı

�
x C Œ1;��

�
ı .idŒ2k�˝coevŒ1;��/:

(c) Jones projections: the same Jones projections in A and identify en 2 A0;nC1 with
1 C en 2MnC1.

The check that M is a Markov tower and a standard A-module is left to the reader. In
particular, we have EnC1.en/ D d�2 � 1.

In this section, we show that the class of unitary equivalent pairs .M; Z/ with M an
indecomposable right A-module category and Z a simple base point induces the equiva-
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lent class of planar module categories; according to Section 3.3.2, the class of equivalent
planar module categories is one to one corresponding to the class of isomorphic Markov
towers as standard module over the isomorphic standard �-lattices.

Combining above discussion, we can deduce the equivalence between .M; Z/ as A-
module category and Markov tower M as standard A-module.

Theorem 3.14. There is a bijective correspondence between equivalence classes of the
following:8̂<̂
:

Traceless Markov tower M D
.Mi /i�0 with dim.M0/ D 1 as
a standard right module over a
standard �-lattice A

9>=>; Š
8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple C� right A-module category
together with a choice of simple object
Z D Z C 1C

A

9>>=>>; :
Equivalence on the left-hand side is �-isomorphism of traceless Markov towers as stan-
dard A-modules; equivalence on the right-hand side is unitary A-module category equiv-
alence on their Cauchy completions which maps the simple base object to the simple base
object.

Corollary 3.15. Any Markov tower M with modulus d and dim.M0/ D 1 is naturally
a standard right TLJ.d/-module, where TLJ.d/ is a Temperley–Lieb–Jones standard �-
lattice as in Example 2.14, which corresponds to an indecomposable semisimple C� right
T LJ.d/-module category with a simple base object.

Remark 3.16. The tracial case will be discussed in Section 7.1.

4. Markov lattices as standard bimodule over two standard �-lattices
and bimodule categories

In this section, we extend the discussion into the bimodule case. We give the notion of
Markov lattices and Markov lattices as bimodule over two standard �-lattices, by using a
similar method, which corresponds to bimodule categories.

4.1. Markov lattice and basic properties

Definition 4.1 (Markov lattice). A tuple M D .Mi;j ; E
M;l
i;j ; E

M;r
i;j ; ei ; fj /i;j�0 is called a

Markov lattice if the following conditions hold.

MiC1;j � MiC1;jC1

[ [

Mi;j � Mi;jC1

(a) Mi;j �Mi;jC1 and Mi;j �MiC1;j are unital inclusions.

(b) M�;j D .Mi;j ; E
M;l
i;j ; ei /i�0 are Markov towers with the same modulus d0 and

ei 2 MiC1;j for all j ; Mi;� D .Mi;j ; E
M;r
i;j ; fj /j�0 are Markov towers with the

same modulus d1 and fj 2Mi;jC1 for all i . We call M of modulus .d0; d1/.
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(c) The commuting square condition:

MiC1;j MiC1;jC1

Mi;j Mi;jC1

E
M;l
iC1;j E

M;l
iC1;jC1

E
M;r
iC1;jC1

E
M;r
i;jC1

is a commuting square, i.e., EM;ri;jC1 ıE
M;l
i;j D E

M;l
i;jC1 ıE

M;r
iC1;jC1.

Here are some properties of Markov lattice.

Proposition 4.2. Let M D .Mi;j ; E
M;l
i;j ; E

M;r
i;j ; ei ; fj /i;j�0 be a Markov lattice.

(1) EM;riC1;jC1.ei / D ei and EM;liC1;jC1.fj / D fj for each i; j D 1; 2; : : : :

(2) Œfj ; ei � D 0 for each i; j D 1; 2; 3; : : : :

Proof. (1) Note that ei 2MiC1;j �MiC1;jC1 and EriC1;jC1 WMiC1;jC1 !MiC1;j is a

conditional expectation, we have EriC1;jC1.ei / D ei . Similarly, EM;liC1;jC1.fj / D fj .
(2) By Proposition 2.4 (1).

Remark 4.3. If there is a faithful tracial state trMi;j on Mi;j such that trMiC1;j jMi;j
D

trMi;jC1 jMi;j
D trMi;j andEM;ri;j ;E

M;l
i;j are the canonical faithful trace-preserving conditional

expectations for i; j D 0; 1; 2; : : : ; then M is called a tracial Markov lattice.

Remark 4.4. It is worth mentioning that a single commuting square of finite dimensional
C�-algebras is a particular version of a Markov lattice. For a more detailed discussion, see
Section 6.6.

In the rest of this section, we only consider the traceless Markov lattice with dim.M0;0/

D 1 unless stated.

4.2. Markov lattice as a standard bimodule over two standard �-lattices

Definition 4.5 (Markov lattice as a standard bimodule over two standard �-lattices).

[ [ [ [ [ [

A3;1 � A3;0 � M3;0 � M3;1 � M3;2 � M3;3 �

[ [ [ [ [ [

A2;1 � A2;0 � M2;0 � M2;1 � M2;2 � M2;3 �

[ [ [ [ [ [

A1;1 � A1;0 � M1;0 � M1;1 � M1;2 � M1;3 �

[ [ [ [ [

A0;0 � M0;0 � M0;1 � M0;2 � M0;3 �

[ [ [ [

B0;0 � B0;1 � B0;2 � B0;3 �

[ [ [

B1;1 � B1;2 � B1;3 �
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Let Aop D .Ai;j /0�j�i<1 B D .Bi;j /0�i�j<1 be two standard �-lattices with Jones
projection ei 2AiC1;j , fj 2Bi;jC1 respectively and compatible conditional expectations.
Here, A and M share the same Jones projections ei ; B and M share the same Jones
projections fj . (Warning: here we use the opposite �-lattice Aop, see Definition 2.13)

Let M D .Mi;j ; ei ; fj /i;j�0 be a Markov lattice with conditional expectation EM;r ,
EM;l . We call a Markov lattice M a standard A-B bimodule where the left action is the
opposite action if it satisfies the following three conditions.

(a) Ai;0 �Mi;0, B0;j �M0;j are unital inclusions, i; j D 0; 1; 2; : : : :

(b) E
M;l
i;0 jAi;0 D E

A;l
i;0 , EM;r0;j jB0;j D E

B;r
0;j i D 1; 2; : : : :

(c) (standard condition) ŒMi;j ; Ap;q� D 0 for i � q � p; ŒMi;j ; Bk;l � D 0, for j �
k � l .

Remark 4.6. The standard condition implies that

ŒAp;q; Bk;l � D 0 for all q � p; k � l

since Ap;q � Ap;0 �Mp;0 and Bk;l � B0;l �M0;l . Moreover,

E
M;r
i;j jAk;l D id; E

M;l
i;j jBk;l D id:

In particular, we have
E
M;r
i;j .ek/ D ek ; E

M;l
i;j .fl / D fl

for Jones projections.

4.3. String diagram explanation

We now provide the string diagram explanation of the element, conditional expectation,
Jones projection and their relations in a Markov lattice with the same spirit in Section 3.2.

(ML1) Element x 2Mi;j :

x

i j

D x

i j

(ML2) Horizontal inclusion x 2Mi;j �Mi;jC1 and x 2 Ai;0 �Mi;j :

x

i j 1

x

i j

(ML3) Vertical inclusion x 2Mi;j �MiC1;j and x 2 B0;j �Mi;j :

x

i1 j

x

i j
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(ML4) Horizontal conditional expectation EM;ri;j W Mi;j ! Mi;j�1 and EM;ri;j jB0;j D

E
B;r
0;j :

E
M;r
i;j .x/ D d

�1
1 x

i j�1

1

; x 2Mi;j ;

E
M;r
i;j .x/ D E

B;r
0;j .x/ D d

�1
1 x

i j�1

1

; x 2 B0;j

(ML5) Vertical conditional expectationEM;li;j WMi;j !Mi�1;j andEM;li;j jAi;0 DE
A;l
i;0 :

E
M;l
i;j .x/ D d

�1
0 x

i�1 j

1

; x 2Mi;j ;

E
M;l
i;j .x/ D E

A;l
i;0 .x/ D d

�1
0 x

i�1 j

1

; x 2 Ai;0

(ML6) Commuting square of conditional expectation
E
M;r
i;jC1 ıE

M;l
i;j D E

M;l
i;jC1 ıE

M;r
iC1;jC1 WMiC1;jC1 !Mi;j , x 2MiC1;jC1:

E
M;r
i;jC1 ıE

M;l
i;j .x/ D E

M;l
i;jC1 ıE

M;r
iC1;jC1.x/ D d

�1
0 d�11 x

i j 11

(ML7) Horizontal Jones projections fj 2Mi;jC1 and vertical Jones projections ei 2
MiC1;j :

f2jC1 D d
�1
1

2ji

f2jC2 D d
�1
1

2jC1i

e2iC1 D d
�1
0

2i j

e2iC2 D d
�1
0

2iC1 j
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(ML8) Standard condition:

• ŒMi;j ; Ap;q� D 0, for i � q � p. For g 2 Mi;j ; x 2 Ap;q , regard them as
elements in Mp;j , then gx D xg;

• ŒMi;j ; Bk;l � D 0, for j � k � l . For g 2 Mi;j ; y 2 Bk;l , regard them as
elements in Mi;l , then gy D yg:

g

x

i j

q�i

p�q

D

g

x

i j

q�i

p�q

g

y

i j

k�j

l�k

D

g

y

i j

k�j

l�k

4.4. From Markov lattice as standard bimodule to planar bimodule category

4.4.1. Planar bimodule category. Let A0 and B0 be planar tensor categories. Let M0

be a C� A0-B0 bimodule category with following properties:

(a) Object: The objects of M0 are Œm;n�D Œm;n�M0
,m;n2Z�0, where Œ0;0� WD 1M0

is simple.

(b) The module tensor product of objects are

Œi;C�A0
B Œm; n�M0

D ŒmC i; n�M0
; Œi;��A0

B Œm; n�M0
D 0;

Œm; n�M0
C Œj;C�B0

D Œi; nC j �M0
; Œm; n�M0

C Œj;��B0
D 0;�

Œi;C�A0
B Œm; n�M0

�
C Œj;C�B0

D ŒmC i; nC j �M0
D Œi;C�A0

B
�
Œm; n�M0

C Œj;C�B0

�
:

(c) Only M0.Œm; n�! Œm˙ 2i; n˙ 2j �/ is non-zero, m; n; i; j 2 Z�0. The mod-
ule tensor product of morphisms in Hom.A0/, Hom.M0/ and Hom.M0/ should
match the shading types.

(d) M0 is a strict A0-B0 bimodule category, i.e., the left/right module associator and
bimodule associator are trivial. For x; x1; x2 2 Hom.A0/, g 2 Hom.M0/ and
y; y1; y2 2 Hom.B0/,

x2 B .x1 B g/ D .x2 ˝ x1/ B g;

.g C y1/ C y2 D g C .y1 ˝ y2/;

.x B g/ C y D x B .g C y/:

(e) M0 is a C� category with a natural dagger structure such that C and B are dagger
functors, i.e., for x 2 Hom.A0/; g 2 Hom.M0/ and y 2 Hom.B0/,

.x B g C y/� D x� B g� C y�:

Such a bimodule category is called a planar bimodule category.
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Remark 4.7. As in Remark 3.3, the morphisms in M0 is determined by its representation
as an endomorphism and its domain and range.

There is a canonical isomorphism

� WM0

�
Œm; n�! ŒmC 2i; nC 2j �

�
!M0

�
ŒmC i; nC j �! ŒmC i; nC j �

�
by using the rigid structure on A0 and B0.

x� W

mCi nCj

m n

i j

7! x

mCi nCj

mi jn

Remark 4.8. Let M0 and N0 be planar bimodule categories over the same planar tensor
category. If they are unitary monoidal equivalent, then they are unitary isomorphic.

4.4.2. From Markov lattice as standard bimodule to planar bimodule category. Use
a similar notion as we define the planar module category in Definition 3.4.

Define the multi-step conditional expectations El;im;n WD E
M;l
m�iC1;n ı � � � ı E

M;l
m;n and

E
r;k
m;n WD E

M;r
m;n�kC1

ı � � � ıE
M;r
m;n .

Definition 4.9. Let A; B be standard �-lattices and M D .Mm;n/m;n�0 be a Markov
lattice as a standard A-B bimodule with dim.M0;0/ D 1. We define a planar bimodule
category M0 from M as follows.

(a) The objects of M0 are the symbols Œm; n� for m; n 2 Z�0.

(b) Given m; n � 0, define M0.Œm; n�! Œm; n�/ WDMm;n.

(c) The identity morphism in M0.Œm; n�! Œm; n�/ is 1Mm;n .

(d) For .f I Œm1; n1�; Œm2; n2�/ with 2 j m1 Cm2 and 2 j n1 C n2, define�
f I Œm1; n1�; Œm2; n2�

��
WD
�
f �I Œm2; n2�; Œm1; n1�

�
;

where f; f � 2Mm1Cm2
2 ;

n1Cn2
2

.

(e) Define the composition in nine cases.

(C11) .hI ŒmC2i; nC2k�; ŒmC2iC2j;nC2kC2t�/ı.gI Œm;n�; ŒmC2i; nC2k�/
D .d i0d

k
1E

l;i
mC2iCj;nCkCt

.E
r;k
mC2iCj;nC2kCt

.hgf n
t;k
emj;i //I Œm; n�,

ŒmC 2i C 2j; nC 2k C 2t�/, where g2MmCi;nCk , h2MmC2iCj;nC2kCt

and d i0d
k
1E

l;i
mC2iCj;nCkCt

.E
r;k
mCiCj;nC2kCt

.hgf n
t;k
emj;i //2MmCiCj;nCkCt .

(C12) .hI ŒmC 2i; nC 2k C 2t�; ŒmC 2i C 2j; nC 2k�/ ı .gI Œm; n�;
ŒmC 2i; nC 2k C 2t�/

D .d i0d
k
1E

l;i
mC2iCj;nCk

.E
r;kCt
mC2iCj;nC2kCt

.hgf
n;�
t;k
emj;i //I Œm; n�;

ŒmC 2i C 2j; nC 2k�/, where g 2MmCi;nCkCt ; h 2MmC2iCj;nC2kCt

and d i0d
k
1E

l;i
mC2iCj;nCk

.E
r;kCt
mC2iCj;nC2kCt

.hgf
n;�
t;k
emj;i // 2MmCiCj;nCk .
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(C13) .hI ŒmC 2i;n�ŒmC 2i C 2j;nC 2kC 2t�/ ı .gI Œm;nC 2k�; ŒmC 2i;n�/
D .d i0d

k
1E

l;i
mC2iCj;nC2kCl

.hf
n;�
l;k

gemj;i /I Œm; nC 2k�; ŒmC 2i C 2j;

nC 2k C 2t�/, where g 2MmCi;nCk ; h 2MmC2iCj;nCkCt

and d i0d
k
1E

l;i
mC2iCj;nC2kCl

.hf
n;�
l;k

gemj;i / 2MmCiCj;nC2kCt .

(C21) .hI ŒmC 2i C 2j; nC 2k�; ŒmC 2i; nC 2k C 2t�/ ı .gI Œm; n�;
ŒmC 2i C 2j; nC 2k�/

D .d i0d
k
1E

l;iCj

mC2iCj;nCkCt
.E

r;k
mC2iCj;nC2kCt

.hgf n
t;k
e
m;�
j;i //I Œm; n�;

ŒmC 2i; nC 2k C 2t�/, where g 2MmCiCj;nCk ; h 2MmC2iCj;nC2kCt

and d i0d
k
1E

l;iCj

mC2iCj;nCkCt
.E
r;k
mC2iCj;nC2kCt

.hgf n
t;k
e
m;�
j;i //2MmCi;nC2kCt .

(C22) .hI ŒmC 2i C 2j; nC 2k C 2t�; ŒmC 2i; nC 2k�/ ı .gI Œm; n�;
ŒmC 2i C 2j; nC 2k C 2t�/

D .d i0d
k
1E

l;iCj

mC2iCj;nCk
.E

r;kCt
mC2iCj;nC2kCt

.hgf
n;�
t;k
e
m;�
j;i //I Œm; n�;

ŒmC 2i; nC 2k�/, where g 2MmCiCj;nCkCt ; h 2MmC2iCj;nC2kCt

and d i0d
k
1E

l;iCj

mC2iCj;nCk
.E

r;kCt
mC2iCj;nC2kCt

.hgf
n;�
t;k
e
m;�
j;i // 2MmCi;nCk .

(C23) .hI ŒmC 2i C 2j; n�; ŒmC 2i; nC 2k C 2t�/ ı .gI Œm; nC 2k�;
ŒmC 2i C 2j; n�/

D .d i0f
k
2 E

l;iCj

mC2iCj;nC2kCt
.hf

n;�
t;k
ge
m;�
j;i /I Œm; nC 2k�;

ŒmC 2i; nC 2k C 2t�/, where g 2MmCiCj;nCk ; h 2MmC2iCj;nCkCt

and d i0f
k
2 E

l;iCj

mC2iCj;nC2kCt
.hf

n;�
t;k
ge
m;�
j;i / 2MmCi;nC2kCt .

(C31) .hI Œm; nC 2k�; ŒmC 2i C 2j; nC 2k C 2t�/ ı .gI ŒmC 2i; n�;
Œm; nC 2k�/

D .d i0d
k
1E

r;k
mC2iCj;nC2kCt

.he
m;�
j;i gf

n
t;k
/I ŒmC 2i; n�;

ŒmC 2i C 2j; nC 2k C 2t�/, where g 2MmCi;nCk ;h2MmCiCj;nC2kCt

and d i0d
k
1E

r;k
mC2iCj;nC2kCt

.he
m;�
j;i gf

n
t;k
/ 2MmC2iCj;nCkCt .

(C32) .hI Œm; nC 2k C 2t�; ŒmC 2i C 2j; nC 2k�/ ı .gI ŒmC 2i; n�;
Œm; nC 2k C 2t�/

D .d i0d
k
1E

r;kCt
mC2iCj;nC2kCt

.he
m;�
j;i gf

n;�
t;k
/I ŒmC 2i; n�;

ŒmC 2i C 2j; nC 2k�/, where g 2MmCi;nCkCt ; h 2MmCiCj;nC2kCt

and d i0d
k
1E

r;kCt
mC2iCj;nC2kCt

.he
m;�
j;i gf

n;�
t;k
/ 2MmC2iCj;nCk .

(C33) .hI Œm; n�; ŒmC 2i C 2j; nC 2k C 2t�/ ı .gI ŒmC 2i; nC 2k�; Œm; n�/
D .d i0d

k
1 hf

n;�
t;k
e
m;�
j;i gI ŒmC 2i; nC 2k�; ŒmC 2i C 2j; nC 2k C 2t�/,

where g 2MmCi;nCk ; h 2MmCiCj;nCkCt and
d i0d

k
1 hf

n;�
t;k
e
m;�
j;i g 2MmC2iCj;nC2kCt .

For the other cases, we can use the dagger structure g� ı h� WD .h ı g/� to define.
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Similarly, we use the string diagrams to explain the composition.

g

f

miCj

i

m

m

i

i j

n k

tCk

n

n

t k

k

g

f

mi

jCi

m

m

ji

i

n kCt

tn

n

k

kk

g

f

miCj

j m

m

i

i i

n kCt

k

n

n

k

kt

(C12) (C23) (C31)

The composition is well defined and M0 is a C� category as before.

Remark 4.10. The composition is well defined, because of the commuting square of
left/right conditional expectation condition and Proposition 4.2.

Definition 4.11. 1 B g C 1, x B 1 and 1 C y, g 2 Hom.M0/, x 2 Hom.A0/ and y 2
Hom.B0/.

The idea is the same as in Definition 3.6. First, we define 1 B g C 1 as

g 1j B g C 1t

.gI Œm; n�; ŒmC2i; nC2k�/; i � j; k � t .gemj�i;if
n
t�k;k I ŒmCj; nC t �; ŒmC2iCj;mC2kC t �/

.gI Œm; n�; ŒmC2i; nC2k�/; i > j; k � t .ge
m;�
i�j;jf

n
t�k;k I ŒmCj; nC t �; ŒmC2iCj;mC2kC t �/

.gI Œm; n�; ŒmC2i; nC2k�/; i � j; k > t .gemj�i;if
n;�
k�t;t
I ŒmCj; nC t �; ŒmC2iCj;mC2kC t �/

.gI Œm; n�; ŒmC2i; nC2k�/; i > j; k > t .ge
m;�
i�j;jf

n;�
k�t;t
I ŒmCj; nC t �; ŒmC2iCj;mC2kC t �/

Note that here we use the fact that the Jones projection Œei ; fk � D 0 for all i; k � 1 and
hence .1 B g/ C 1 D 1 B .g C 1/ DW 1 B g C 1.

g

n

t�k

k

nCk k

mji�j

mij

i � j , k � t

The definitions of x B 1 and 1 C y will be the same as x ˝ 1 and 1˝ y in Defini-
tion 2.31 by using the shift maps.

The proof of the following propositions is the same as in the Markov tower case with
the fact in Remark 4.6. To be precise, the diagrammatic proof can be split as left-hand side
and right-hand side independently, and the proof on each side is the same as the Markov
tower case.
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Proposition 4.12. M0 is a left A0-module. That is,

(1) For g 2 Hom.M0/, x 2 Hom.A0/, .1 C g/ ı .x C 1/ D .x C 1/ ı .1 C g/.

(2) For g 2 Hom.M0/, x1; x2 2 Hom.A0/, x2 B .x1 B g/ D .x2 ˝ x1/ B g.

(3) For g1; g2 2Hom.M0/, x1; x2 2Hom.A0/, 1B .g1 ı g2/D .1B g1/ ı .1B g2/

and .x1 ı x2/ B 1 D .x1 B 1/ ı .x2 B 1/.

Proposition 4.13. Similarly, M0 is a right B0-module. That is,

(1) For g 2 Hom.M0/, y 2 Hom.B0/, .g C 1/ ı .1 C y/ D .1 C y/ ı .g C 1/.

(2) For g 2 Hom.M0/, y1; y2 2 Hom.B0/, .g C y1/ C y2 D g C .y1 ˝ y2/.

(3) For g1; g2 2Hom.M0/, y1; y2 2Hom.B0/, .g1 ı g2/C 1D .g1 C 1/ ı .g2 C 1/

and 1 C .x1 ı x2/ D .1 C x1/ ı .1 C x2/.

Proposition 4.14. M0 is a A0-B0 bimodule. That is, for g 2 Hom.M0/, x 2 Hom.A0/,
y 2 Hom.B0/, .x B 1/ ı .1 C y/ ı .1 B g C 1/ D .1 C y/ ı .x B 1/ ı .1 B g C 1/.

Proof. By Remark 4.6.

Definition 4.15. Define x B g C y WD .x B 1/ ı .1 C y/ ı .1 B g C 1/.

4.5. Indecomposable semisimple C� A-B bimodules and planar A0-B0 bimodule
categories

4.5.1. Indecomposable semisimple C� A-B bimodule category. Let A and B be 2-
shaded rigid C� multitensor categories with generators X D 1C

A
˝ X ˝ 1�

A
and Y D

1C
B
˝ Y ˝ 1�

B
. Let M be a Cauchy complete indecomposable semisimple C�A-B bimod-

ule category. Note that there is a natural dagger structure on M, and the left/right module
actions are dagger functors, i.e., for morphism g 2 Hom.M/, x 2 Hom.A/ and y 2
Hom.B/,

.x B g/� D x� B g�; .f C y/� D f � C y�:

We call M indecomposable if for any two simple objects P;Q 2M (without loss of
generality, P D 1C

A
B P C 1C

B
), Q is a direct summand of .X alt˝m B P / C Y alt˝n for

some m; n 2 Z�0.
Let A0;B0 be planar tensor categories constructed from .A; X/ and .B; Y / respec-

tively. By MacLane’s coherence theorem, AMB is unitary equivalent to a strict one, i.e.,
A;B are strict, the right/left module associators and the bimodule associator are trivial.
This strict category is also a strict A0-B0 bimodule category. Without loss of generality,
we also denote it as M.

Pick a simple object Z D 1C
A

B Z C 1C
B
2 M, then we construct a planar A0-B0

bimodule category M0 as follows:

(a) Objects: Define Œ0; 0� WD Z, and

ŒmC 1; 0� WD Œ1; ‹�A0
B Œm; 0�; Œm; nC 1� WD Œm; n� C Œ1; ‹�B0

;

where Œ1; ‹�A0
D Œ1;C�A0

if 2 j m and Œ1; ‹�A0
D Œ1;��A0

if 2 − m; Œ1; ‹�B0
D

Œ1;C�B0
if 2 − n and Œ1; ‹�B0

D Œ1;��B0
if 2 j n.
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(b) M0 is a full subcategory of M with above objects.

Given M0 to be a planar A0-B0 bimodule category, for a similar reason, its Cauchy
completion bM0 is a cA0-cB0 bimodule category, compatible with the dagger structure.

Remark 4.16. Suppose M0 is a planar A0-B0 bimodule category constructed from M

over .A;X/ and .B; Y /, then there is a unitary equivalence between M as A-B bimodule
category and bM0 as cA0-cB0 bimodule category, which maps base object to base object.

4.5.2. From planar bimodule to Markov lattice as standard bimodule.

Construction 4.17. Now letMi;jDEnd.Œi; j �/, i; j2Z�0. After identifying f2Mi;j with
idŒ1;‹� B f 2MiC1;j and f C idŒ1;‹� 2Mi;jC1 and identifying x 2 Ai;0 D End.Œi;C�A0

/

with x C idŒ0;j � 2Mi;j and y 2B0;j D End.Œj;C�B0
/with idŒi;0� C y 2Mi;j . It is easy to

show thatM D .Mi;j /i;j�0 is a Markov lattice as a standard A-B bimodule with modulus
.d0; d1/.

Similar to the module case, combining the above discussion, we have the following
theorem.

Theorem 4.18. There is a bijective correspondence between equivalence classes of the
following:8̂̂<̂
:̂

Traceless Markov lattice M D
.Mi;j /i;j�0 with dim.M0;0/D

1 as a standard A-B bimodule
over standard �-lattices A;B

9>>=>>; Š
8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple C� A-B bimodule category
together with a choice of simple object
Z D 1C

A
B Z C 1C

B

9>>=>>; :
Equivalence on the left-hand side is the �-isomorphism on the traceless Markov lattice
as standard A-B bimodule; the equivalence on the right-hand side is the unitary A-B
bimodule category equivalence between their Cauchy completions which maps the simple
base object to simple base object.

Corollary 4.19. Any Markov lattice M with modulus .d0; d1/ and dim.M00/ D 1 is nat-
urally a standard TLJ.d0/� TLJ.d1/ bimodule, which corresponds to an indecomposable
semisimple C� T LJ.d0/-T LJ.d1/ bimodule category with a simple base object.

Remark 4.20. The tracial case will be discussed in Section 7.3.

5. Markov towers, bigraded Hilbert spaces, and balanced fair graphs

In this section, as an application, we are going to classify all indecomposable semisimple
T LJ-modules (see Corollary 3.15) to get Markov tower, which are also the same as
balanced d -fair bipartite graphs [10]. We will explain exactly how these two classifications
agree by directly constructing the correspondence passing through the 2-category BigHilb
[13]. Although this is known [10, 13], we explain in detail here so that we are able to do
the bimodules in Section 6 below.
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5.1. Balanced d-fair bipartite graph

In [10], the authors classify unshaded unoriented T LJ.d/-modules in terms of the combi-
natorial data of fair and balanced graphs. This classification was generalized to T LJ.�/-
modules in [13], where T LJ.�/ is a generalized Temperley–Lieb–Jones category associ-
ated to a weighted bidirected graph � . We will be interested in the special case of 2-shaded
T LJ.d/-modules.

Notation 5.1. Let ƒ be a graph where V.ƒ/ is the set of vertices and E.ƒ/ is the set of
edges. Let s; t W E.ƒ/! V.ƒ/ be the source and target functions respectively.

Definition 5.2. Let ƒ be a bipartite graph with vertices

V.ƒ/ D V0 t V1 and
®
ejs.e/; t.e/ 2 Vi

¯
D ¿; i D 0; 1:

Let ! W E.ƒ/! .0;1/ be the weighting on the edges of graph [13].
We call .ƒ; !/ a d -fair graph if for each P 2 V0, Q 2 V1X

¹ejs.e/DP º

w.e/ D
X

¹ejs.e/DQº

w.e/ D d:

We call .ƒ;!/ a balanced graph if there exists an involution .N�/ onE.ƒ/ that switches
sources and targets for each e 2 E.ƒ/ and

!.e/!. Ne/ D 1:

Proposition 5.3 (cf. [10, Prop. 3.1]). Suppose .ƒ;!/ is a balanced d -fair bipartite graph.
Then the graph is locally finite, i.e., the number of edges coming in or out of any vertex is
uniformly bounded:

#
®
e W s.e/ D P

¯
D #

®
e W t .e/ D P

¯
� d2 for any vertex P:

Proof. SupposeP hasN edges, then there exists an edge e0 WP !Q such that!.e0/� d
N

and hence !.e0/ D 1
!.e0/

�
N
d

. Note that

d D
X

¹ejs.e/DQº

!.e/ � !.e0/ �
N

d
;

which follows that N � d2 <1.

Definition 5.4. We call � W .ƒ; !/! .ƒ0; !0/ an isomorphism of edge-weighted graphs
if � is a graph isomorphism and !0.�.e// D !.e/ for each e 2 E.ƒ/.

5.2. BigHilb and 2-subcategory C .K; evK /

We refer the reader to [15] and [6, Def. 2.2] for the full definition of W�-category and W�

2-category.
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Definition 5.5. Let U; V be countable sets. Define a W�-category HilbU�V
f

as follows:

(a) Object: U � V -bigraded Hilbert spaces

H D
M
u2U
v2V

Huv;

where Huv is finite dimensional for each pair .u; v/, and only finite many Huv is
non-trivial for each fixed u 2 U or each fixed v 2 V .

(b) Morphism: The morphisms are defined as uniformly bounded operators

f D
M
u2U
v2V

fuv W H ! G;

where fuv W Huv ! Guv are morphisms in Hilbf , the category of finitely dimen-
sional Hilbert spaces. Here the direct sum is taken as von Neumann algebra direct
sum. Uniformly boundedness means

sup
u2U
v2V

kfuvk <1:

(c) The composition: For morphisms f; g, define the composition entry-wisely as

g ı f WD
M
u2U
v2V

guv ı fuv:

(d) The identity morphism: Define the identity morphism idH W H ! H as

idH WD
M
u2U
v2V

idHuv ;

where idH;uv D idHuv is the identity map on Huv .

Definition 5.6. Let BigHilb be a W� 2-category defined as follows:

(a) Object: Countable sets.

(b) For objects U; V , Hom.U; V / D HilbU�V
f

.

(c) The composition of 1-morphisms: For 1-morphisms H W U ! V , G W V ! W ,
the composition of U; V denoted by˝ is defined as

G ıH D H ˝G WD
M
u2U
w2W

M
v2V

Huv ˝Gvw W U ! W;

where the ˝ on the right-hand side is the tensor product of Hilbert spaces. The
operator is analogous to matrix multiplication, the product is replaced by tensor
product and the sum is replaced by direct sum. Clearly, .H ˝ G/˝ L D H ˝
.G ˝ L/:
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(d) The identity 1-morphism: For an object U , the identity 1-morphism

CjU j 2 Hom.U; U /

is defined as
CjU j WD

M
u;v2U

ıuDv �C:

(e) The dual 1-morphism: For 1-morphism

H D
M
u2U
v2V

Huv W U ! V;

define its dual as
xH WD

M
v2V
u2U

xHvu W V ! U;

where xHvu WD Huv and Huv is the complex conjugate Hilbert space of Huv .

(f) Tensor product of 2-morphisms. Let H1; H2 W U ! V , G1; G2 W V ! W , and
f W H1 ! H2, g W G1 ! G2, define f ˝ g as

.f ˝ g/uw WD
M
v2V

fuv ˝ gvw W
M
v2V

H1;uv ˝G1;vw !
M
v2V

H2;uv ˝G2;vw :

Clearly, .f ˝ g/˝ h D f ˝ .g ˝ h/.

(g) Dagger structure: For a 2-morphism f D
L
u;v fuv W H ! G, define its adjoint

f � WD
M
u;v

f �uv W G ! H;

where f �uv is the adjoint of fuv as a bounded linear map. Clearly, .f �/� D f .

Note that for each hom space Hom.H ! K/ as a infinite direct sum of finite dimen-
sional spaces has a predual, and for countable sets T; U; V;K and 1-morphisms H1; H2 W
U ! V , G W V ! W , K W T ! U , the following maps are weak* continuous:

• idK ˝� W Hom.H1 ! H2/! Hom.K ˝H1 ! K ˝H2/ given by f 7! idK ˝ f .

• �˝ idG W Hom.H1 ! H2/! Hom.H1 ˝G ! H2 ˝G/ given by f 7! f ˝ idG .

According to [6, Def. 2.2, Prop. 2.4], BigHilb is a W� 2-category.

Definition 5.7. We call a 1-morphismH WU ! V dualizable, if there exist evaluation and
coevaluation 2-morphisms evH W xH ˝H ! CjV j and coevH W CjU j ! H ˝ xH meeting
the zigzag condition:

.idH ˝ evH / ı .coevH ˝ idH / D idH ;

.evH ˝ id xH / ı .id xH ˝ coevH / D id xH :

We are going to discuss the evaluation and coevaluation evH and coevH in more detail.
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Definition 5.8. Note that

evH;uv W
M
w

xHuw ˝Hwv D . xH ˝H/uv ! .CjV j/uv D ıuDv �C;

only evH;vv is non-zero for v 2 V . Let CH;vu W xHvu˝Huv DHuv ˝Huv! C such that
evH;vv D

L
u2U CH;vu. Similarly, only coevH;uu W C ! .H ˝ xH/uu D

L
v2V Huv ˝

xHvu is non-zero for u 2 U . Let DH;uv W C ! Huv ˝ xHvu D Huv ˝ Huv such that
coevH;uu D

L
v2V DH;uv .

Then

idH;uv D
�
.idH ˝ evH / ı .coevH ˝ idH /

�
uv

D .idH ˝ evH /uv ı .coevH ˝ idH /uv

D

�M
w2V

idH;uw ˝ evH;wv
�
ı

�M
t2U

coevH;ut ˝ idH;tv
�

D .idH;uv ˝ evH;vv/ ı .coevH;uu ˝ idH;uv/

D .idH;uv ˝ CH;vu/ ı .DH;uv ˝ idH;uv/;

for u 2 U , v 2 V . Similarly,

id xH;vu D .evH;vv ˝ id xH;vu/ ı .id xH;vu ˝ coevH;uu/

D .CH;vu ˝ id xH;vu/ ı .id xH;vu ˝DH;uv/;

for v 2 V , u 2 U .

Remark 5.9. evH and coevH are completely determined by CH;uv and DH;uv .

Definition 5.10. Let C.K;evK/DC.K;evK ;coevK/ be a 2-subcategory of BigHilbwith a
1-morphism generatorK WV0!V1 and distinguished 2-morphisms evaluation and coeval-
uation evK ; coevK . We require that

(a) K is dualizable.

(b) The evaluation and coevaluation for the dual xK:

ev xK WD .coevK/� and coev xK WD .evK/�:

(c) They satisfy the d -fairness condition, namely,

ev xK ı coevK D d � idCjV0 j ; evK ı coev xK D d � idCjV1 j :

In other words,
C xK;uv D .DK;uv/

�; D xK;vu D .CK;vu/
�;

and

For each P 2 V0;
X
Q2V1

C xK;PQ ıDK;PQ D d � idC;

For each Q 2 V1;
X
P2V0

CK;QP ıD xK;QP D d � idC;
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Here, the 1-morphism generator means all the 1-morphism is Cauchy generated by K
and xK.

Remark 5.11. Note that K satisfies the d -fairness condition, the maps idK ˝� and �˝
idK (also for xK) are bounded by d and hence weak* continuous. Therefore, C.K; evK/ is
a rigid W� 2-subcategory of BigHilb.

Remark 5.12. evK , coevK ; ev xK and coev xK are determined by one of them in C.K; evK/.

Proposition 5.13. The followings are some properties of C.K; evK/.

(1) Let V D V0 t V1, then all the 1-morphisms in C.K; evK/, including K; xK, can
be regarded as V � V -bigraded Hilbert spaces. So we can regard C.K; evK/ as
a 2-category with one object V . Then all the 2-morphisms can be regarded as
V � V -bigraded uniformly bounded operators.
If .P;Q/ 62 V0 � V1, then KPQ D xKQP D 0, which follows that

CK;QP D DK;PQ D 0:

The zigzag condition between them still hold.

(2) All the 1-morphisms in C.K; evK/ are dualizable.

(3) supP2V0;Q2V1 dim.KPQ/ <1. In fact, we will see supP2V0;Q2V1 dim.KPQ/� d2

in the next section .Section 5.3/ together with Proposition 5.3.

(4) There exist standard spherical evaluation and coevaluation in 2-morphisms:

evstK W xK ˝K ! CjV1j; coevstK W C
jV0j ! K ˝ xK;

evstxK WD .coevK/�; coevstxK WD .evK/�:

In more details, Let ¹"iºkiD1 be the orthonormal basis .ONB/ of KPQ and ¹��i º be
the dual basis of KPQ, P 2 V0, Q 2 V1 then

C st
K;QP W

xKQP ˝KPQ D KPQ ˝KPQ ! C;

Dst
K;ab W C ! KPQ ˝ xKQP D KPQ ˝KPQ;

C st
xK;PQ

WD .Dst
K;PQ/

�; Dst
xK;QP

WD .C st
K;QP /

�

are defined as

C st
K;QP W "

�
i ˝ "j 7! ıiDj ; Dst

K;PQ W 1 7!

kX
iD1

"i ˝ "
�
i :

Note that evstK and coevstK are well defined 2-morphisms because of .3/, and the
definitions of evstK and coevstK do not depend on the choice of ONB on each KPQ
and they also meet the zigzag condition.
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Notation 5.14. Now, we use graphic calculus to describe C.K; evK/. The idea is from the
graphical calculus for 2Hilb [39]. However, in their paper, they only care about the case
when ev D evst and coev D coevst, which is not necessarily true in our context.

First, we provide the single object version:

(1) For P 2 V0;Q 2 V1, C xK;PQ, D xK;QP , C st
xK;PQ

and Dst
xK;QP

.

KPQ xKQP

P Q

C xK;PQ
W KPQ ˝

xKQP !C

xKQP KPQ

Q P

D xK;QP
WC! xKQP ˝KPQ

KPQ xKQP

P Q

C st
xK;PQ

W KPQ ˝
xKQP !C

xKQP KPQ

Q P

Dst
xK;QP

WC! xKQP ˝KPQ

(2) Rigidity:

P Q P Q P QD D

P Q P Q P QD D

(3) d -fairness. For P 2 V ,

P
Q2V

P Q = d � P

Then the graphical calculus version: In the n-category setting, n-morphisms are used
to label codimension n cells of an n-manifold. So here, 0-morphisms in BigHilb label
regions of the plane, 1-morphisms label strings from left to right, and 2-morphisms label
tickets (including ev and coev) from bottom to top. Shading is just shorthand for the label-
ing. The unshaded region indicates the object V0 and the shaded region indicates V1.

(1) coevK , evK , coevst
xK

and evst
xK
.

coevK WC
jV0 j ! K ˝ xK evK W xK ˝K !CjV1 j coevst

xK
WCjV1 j ! xK ˝K evst

xK
W K ˝ xK !CjV0 j
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(2) Rigidity:

D D

D D

(3) d -fairness:

D d � D d �

(4) Dagger structure on ev and evst. !�
D

 !�
D

5.3. The 2-subcategory of BigHilb generated by a balanced d-fair bipartite graph

In this section, we show the relation between 2-categories C.K; evK/ and d -fair bipartite
graphs .ƒ; !/. Then we may regard the generator K as a Hilb-enriched graph and the
edge-weighting ! gives the interesting dual pair.

Construction 5.15. First, we construct a W� 2-subcategory C.ƒ; !/ of BigHilb from a
balanced d -fair bipartite graph .ƒ; !/ as follows:

(a) Object is V D V.ƒ/ D V0 t V1, which is a countable set.

(b) The 1-morphism generator K D Kƒ: At .P;Q/ 2 V0 � V1, KPQ is the Hilbert
space with ONB ¹jei W e 2 E.ƒ/; s.e/ D P; t.e/ D Qº and other entries are 0.
The uniform boundedness condition follows from Proposition 5.3.
As for the dual 1-morphism xK, at entry .Q; P / 2 V1 � V0, xKQP is the Hilbert
space with ONB®
jei W e 2E.ƒ/; s.e/DQ; t.e/D P

¯
D
®
j Nei W e 2E.ƒ/; s.e/D P; t.e/DQ

¯
;

where .�/ is the involution of edge.
So we may regard K as a Hilb-enriched graph.

(c) All the 1-morphisms are Cauchy generated by K and xK.

(d) 2-morphisms are V � V -bigraded uniformly bounded operators between those
1-morphisms.

(e) The edge-weighting gives the distinguished evaluation and coevaluation ev and
coev. Note that KPQ is a Hilbert space with orthonormal basis®

jei W e 2 E.ƒ/; s.e/ D P; t.e/ D Q
¯
;

then ¹j Nei W e 2 E.ƒ/; s.e/ D P; t.e/ D Qº is an orthonormal basis for xKQP .
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Define

C xK;PQ W KPQ ˝
xKQP ! C

by jei ˝ je0i 7! ıeDe0w.e/
1
2 ; e W P ! Q;

DK;PQ W C ! KPQ ˝ xKQP

by 1 7!
X

eWP!Q

w.e/
1
2 jei ˝ j Nei D

X
eWQ!P

w. Ne/
1
2 j Nei ˝ jei;

CK;QP W xKQP ˝KPQ ! C

by jei ˝ je0i 7! ıeDe0w.e/
1
2 ; e W Q! P;

D xK;QP W C ! xKQP ˝KPQ

by 1 7!
X

eWQ!P

w.e/
1
2 jei ˝ j Nei D

X
eWP!Q

w. Ne/
1
2 j Nei ˝ jei:

Proposition 5.16. C.ƒ; !/ satisfies the condition in Definition 5.10.

Proof. We shall prove that C.ƒ;!/ is rigid and d -fair.

(a) Rigidity: For each P;Q 2 V , e W P ! Q,

.C xK;PQ ˝ idK;PQ/ ı .idK;PQ ˝D xK;QP /.jei ˝ 1/

D .C xK;PQ ˝ idK;PQ/
�
jei ˝

X
eWP!Q

w. Ne/
1
2 j Nei ˝ jei

�
D w.e/

1
2w. Ne/

1
2 jei D jei;

.idK;PQ ˝ CK;QP / ı .DK;PQ ˝ idK;QP /.1˝ jei/

D .idK;PQ ˝ CK;QP /
� X
eWP!Q

w.e/
1
2 jei ˝ j Nei ˝ jei

�
D w.e/

1
2w. Ne/

1
2 jei D jei:

(b) d -fairness:X
Q2V1

C xK;PQ ıDK;PQ.1/ D
X
Q2V

C xK;PQ

� X
eWP!Q

w.e/
1
2 jei ˝ j Nei

�
D

X
¹ejs.e/DP º

w.e/
1
2w.e/

1
2 D d;

X
P2V0

CK;QP ıD xK;QP .1/ D
X
a2V

CK;QP

� X
eWQ!P

w.e/
1
2 jei ˝ j Nei

�
D

X
¹ejs.e/DQº

w.e/
1
2w.e/

1
2 D d:
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Remark 5.17. Suppose � W .ƒ;!/! .ƒ0;!0/ is an isomorphism of edge-weighted graphs
(see Definition 5.4). We construct a unitary equivalence between C.ƒ; !/ and C.ƒ0; !0/.
For the 1-morphism generators Kƒ and Kƒ0 , we have

Kƒ;PQ Š Kƒ0;�.P /�.Q/

as finite dimensional Hilbert spaces, via the bijection of ONBs given by jei 7! j�.e/i.
Denote by u� W Kƒ ! Kƒ0 this unitary isomorphism.

As for the evaluation evKƒ and evKƒ0 , we look at CKƒ;PQ and CKƒ0 ;�.P /�.Q/ (see
Definition 5.8). Note that CKƒ0 ;�.P /�.Q/ W xKƒ0;�.Q/�.P / ˝Kƒ0;�.P /�.Q/ ! C byˇ̌

�.e/
˛
˝
ˇ̌
�.e0/

˛
7! ı�.e/D�.e0/!

0
�
�.e/

�
D ıeDe0!.e/; 8 e W Q! P 2 E.ƒ/:

We have
CKƒ0 ;�.P /�.Q/ D CKƒ;PQ ı .u�

�
QP ˝ u�

�
PQ/:

In other words,
evKƒ0 D evKƒ ı .u�

�
˝ u

�

�
/:

Therefore, C.ƒ;!/ and C.ƒ0; !0/ are unitary equivalent up to the unitary 2-morphism u� .

Next, start with a 2-category C.K;evK/, we construct a balanced d -fair bipartite graph
.ƒ; !/.

Definition 5.18. For P 2 V0, Q 2 V1, let vPQ W KPQ ! KPQ D xKQP be the canonical
dual map that � 7! �� and v�PQ W xKQP ! KPQ defined by �� ! ��� D �. Then

v
�
PQ ı vPQ D idK;PQ and vPQ ı v

�
PQ D id xK;QP :

Define

'K;PQ W xKQP ! KPQ by 'K;PQ D .idK;PQ ˝ C st
K;QP / ı .DK;PQ ˝ v

�
PQ/;

' xK;QP W KPQ !
xKQP by ' xK;QP D .id xK;QP ˝ C

st
xK;PQ

/ ı .D xK;QP ˝ v
�
PQ/:

Proposition 5.19. Here are some properties for 'K and ' xK .

(1) 'K;PQ ı ' xK;QP D idK;PQ.

(2)
P
Q2V1

Tr.'�K;PQ ı 'K;PQ/ D
P
P2V0

Tr.'�
xK;QP

ı ' xK;QP / D d .

Proof. See [10, Prop. 1.8], [13, Prop. 3.10].

Construction 5.20. Define the graph ƒ to be V.ƒ/ WD V and the number of edges from
P 2 V0 to Q 2 V1 to be dimKPQ. Define edge-weighting function ! W E.ƒ/! .0;1/

as the multiset ®
!.e/

¯
eWP!Q

WD
®
eigenvalues of 'K;PQ ı '

�
K;PQ

¯
;®

!.e/
¯
eWQ!P

WD
®
eigenvalues of ' xK;QP ı '

�
xK;QP

¯
:
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From Proposition 5.19 above, .ƒ; !/ is a d -fair and balanced bipartite graph. To be
precise, (1) gives the balance condition, and (2) gives the d -fairness. In fact,

'K;PQ ı '
�
K;PQ D .idK;PQ ˝ C

st
K;QP / ı .DK;PQ ˝ idK;PQ/

ı .C xK;PQ ˝ idK;PQ/ ı .idK;PQ ˝Dst
xK;QP

/;

' xK;QP ı '
�
xK;QP

D .id xK;QP ˝ C
st
xK;PQ

/ ı .D xK;QP ˝ id xK;QP /

ı .CK;QP ˝ id xK;QP / ı .id xK;QP ˝D
st
K;PQ/:

P Q Q P

Remark 5.21. For a given 2-category C.K; evK/, let .ƒ;!/ be the balanced d -fair bipar-
tite graph obtained from Construction 5.20. When we construct the 1-morphism generator
K D Kƒ in C.ƒ; !/ from the bipartite graph ƒ, we secretly make a choice of ONB for
each .Kƒ/PQ, so there is a unitary 2-morphism ˛ WK!Kƒ such that evKDevKƒı.x̨˝˛/.
Therefore, C.K; evK/ and C.ƒ; !/ are unitary equivalent up to a unitary 2-morphism ˛.

5.4. From C .K; evK / to Markov tower

Construction 5.22. Here, we are going to build a tower of algebra from the 2-category
C.K; evK/ discussed above with a chosen point, say P0 2 V0. Let CjP0j be a 1-morphism
with all the entry being 0 except .CjP0j/P0P0 D C.

Note that CjP0j ˝Kalt˝n is a 1-morphism for each n 2 Z�0.
Let Mn D End.CjP0j ˝Kalt˝n/ and identify Mn 3 x with x ˝ idK‹ 2 MnC1, where

K‹ D K if 2 j n, K‹ D xK if 2 − n. We use the graphical calculus to show M D .Mn/n�0
is a Markov tower.

(1) Element x 2Mn:

xP0

� � �

� � �

CjP0 j K xK K nth

(2) Inclusion x 2Mn �MnC1:

xP0

� � �

� � �

CjP0 j K xK K nth .nC1/th
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(3) Conditional expectation EnC1 WMnC1 !Mn, x 2Mn:

EnC1.x/ D d
�1 xP0

� � �

� � �

CjP0 j K xK K nth .nC1/th

Here, the choice of the duality pair .coevK ; .coevK/�/ or .evK ; .evK/�/ depends
on the shading.

(4) Jones projection en 2MnC1:

en D d
�1

P0

� � �

� � �

CjP0 j 1st nth

(5) The pull down property is true automatically in this setting. See diagram (MT6)
in Section 3.2.

5.5. More properties of Markov tower

Here, we are going to explore more properties of Markov tower. The tracial version has
been proved in [17, Thm. 4.1.4, Thm. 4.6.3] and [7, Prop. 3.4]. For convenience, here we
will prove those properties for the traceless case.

Lemma 5.23. Suppose A � B is a unital inclusion of finite dimensional C�-algebras
and E W B ! A is a faithful conditional expectation. Then there is an orthonormal basis
¹uiºi2I such that

P
i2I uiE.u

�
i x/ D x for all x 2 B , where jI j <1.

Proof. RegardB as a rightA-module equipped with anA-valued inner product hxjyiA WD
E.x�y/. Note that A and B are finite dimensional, so B is a finitely generated projective
Hilbert A-module. By [14, Thm. 4.1] and [26, Lemma. 1.7], there exists an orthonormal
basis ¹uiºi2I � B such that x D

P
i2I ui hui jxiA D

P
i2I uiE.u

�
i x/ for all x 2 B and

jI j <1.

Proposition 5.24. The tracial version has been proved in [17, Thm. 4.1.4, Thm. 4.6.3]
and [7, Prop. 3.4].

(1) XnC1 WDMnenMn is a 2-sided ideal of MnC1 and hence MnC1 splits as a direct
sum of von Neumann algebras XnC1 ˚ YnC1. We also define Y0 DM0; Y1 DM1

so thatX0 DX1 D 0.XnC1 is called the old stuff and YnC1 is called the new stuff.

(2) XnC1 is isomorphic to Mn ˝Mn�1 Mn, which is the basic construction from En W

Mn!Mn�1. Denote this isomorphism as �. Here,Mn ˝Mn�1Mn is a �-algebra
with multiplication .x1˝y1/.x2˝y2/Dx1En.y1x2/˝y2 and adjoint .x˝y/�D
y� ˝ x�.
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(3) If y 2 YnC1 and x 2 Xn, then yx D 0 inMnC1. Hence EnC1.YnC1/ � Yn, which
means the new stuff comes from the old new stuff.

(4) If Yn D 0, then Yk D 0 for all k � n.

Proof. (1) Note that MnC1en DMnen, then MnC1MnenMn �MnC1enMn DMnenMn

and MnenMnMnC1 D .MnC1MnenMn/
� � .MnenMn/

� DMnenMn.
(2) See Watatani index theory [43, §1] with Lemma 5.23.
(3) Note that as a finite dimensional von Neumann algebra, MnC1 D

L
i MnC1pi ,

where pi are the minimum central projections. So if y 2 YnC1, then y D
P
j mjpj , where

Œpj ; en� D 0.
For aen�1b 2 Xn and mjpj 2 YnC1, by Jones projection property,

mjpjaen�1b D d
�2mjpjaen�1enen�1b D d

�2mjaen�1pj enen�1b D 0;

so yx D 0 for any x 2 Xn, y 2 YnC1.
LetXnD

L
kMnqk , where qk are the minimum central projections. For any y2YnC1,

qkEnC1.y/ D EnC1.qky/ D 0 for all k;

which implies that EnC1.y/ 2 Yn.
(4) By (3) and faithfulness of En.

5.6. From Markov tower to C .ƒ;!/

Now we are able to extract the so-called principal graph data from the Markov tower,
which is similar to the classical tracial Markov tower [36], [21, §4.2].

If A is a finite dimensional C�-algebra, we write �.A/ to be the set of minimal central
projections of A. If A� B is a unital inclusion of finite dimensional C�-algebras, then the
inclusion matrix is the �.A/ � �.B/ matrix, with .p; q/th entry being .dimC.pqA

0pq \

pqBpq//
1
2 . If A � B � B1 is a basic construction, then the inclusion matrix of B � B1

is the transpose of the inclusion matrix of A � B [17, §2], [21].
The inclusion matrix of A � B can be described as the Bratteli diagram of A � B ,

whose vertices are the minimal central projections and the number of edges between p
and q is the .p; q/th entry.

The Bratteli diagram � of the Markov tower M D .Mn/n�0 contains all the Bratteli
diagram �n of Mn �MnC1. Then by the property of inclusion matrix of basic construc-
tion and Proposition 5.24 (2), the Bratteli diagram forMn �MnC1 contains the reflection
of the Bratteli diagram ofMn�1 �Mn and new part, which is called the principal part. A
vertex in the new part is called a new vertex, otherwise, called an old vertex. The reflected
vertex from a new vertex is called a new old vertex. Moreover, for a new vertex p 2 Yn,
denote p0 to be the new old vertex of p in MnC2.

The principal graph ƒ contains the new part in the Bratteli diagram �, so its vertices
are new vertices. To be precise, V.ƒ/ contains all the minimal central projections p in the
new stuff. By Proposition 5.24 (4), the new stuff comes from the old new stuff, then for
p; q 2 ƒ, E.ƒ/ contains all the edges between p and q.



Q. Chen 312

It is clear that both the Bratteli diagram and the principal graph are bipartite. We can
also use the principal graph to construct the Bratteli diagram by doing the reflection at
each level.

p

q

p0

p; q are new vertices

p0 is the new old vertex of p

The red part is principal part

Let us then compute the edge weightingw WE.ƒ/! .0;1/. Before that, we first give
a lemma:

Lemma 5.25. The followings are some properties for the relative commutant in BigHilb:

(1) Let H1; H2; : : : ; Hn; G1; G2; : : : ; Gn be finite dimensional Hilbert spaces. We
identify B.Hi / with B.Hi /˝ idGi and B.Gi / with idHi ˝ B.Gi / as subalgebras
in B.

Ln
iD1Hi ˝Gi / for each i D 1; : : : ; n, then the relative commutant

n\
iD1

�
B.Hi /

0
\ B

� nM
iD1

Hi ˝Gi

��
D

nM
iD1

B.Gi /: (�)

(2) Let H be a 1-morphism in BigHilb, then the center Z.End.H// is the linear span
of all the direct summands of idH .

(3) Let G be another 1-morphism in BigHilb such that H ˝ G is nondegenerate,
i.e., for each non-zero Hpq , there is a non-zero Gqr and vice versa. We iden-
tify End.H/ with End.H/˝ idG and End.G/ with idH ˝ End.G/ as subalgebras
in End.H ˝G/. Then the relative commutant

End.H/0 \ End.H ˝G/ D Z.End.H//˝ End.G/:

(4) Moreover, ifHpq is non-zero only when p D p0 2 V , then the relative commutant
can be represented as

End.H/0 \ End.H ˝G/ D idH ˝ End.G/:

Reminder. The tensor product in (1) is the tensor product of Hilbert spaces and bounded
operators; the tensor product in (3) and (4) is the tensor product of 1-morphisms/2-
morphisms in BigHilb, see Definition 5.6.

Proof. (1) � is clear. We show �.
For f 2 B.

Ln
iD1Hi ˝Gi /, f D

Ln
i;jD1 fi;j , where fi;j 2 B.Hi ˝Gi ;Hj ˝Gj /.

We shall prove that fi;j D0 for i¤j and fi;i 2 idHi˝B.Gi / if f 2LHS of equation (�).
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Let xi 2 B.Hi /, then

f .xi ˝ idGi / D
nM

jD1

fi;j .xi ˝ idGi / D
nM
kD1

.xi ˝ idGi /fk;i D .xi ˝ idGi /f;

which implies that

fi;j .xi ˝ idGi / D .xi ˝ idGi /fk;i D 0 for k ¤ i; j ¤ i

and
fi;i .xi ˝ idGi / D .xi ˝ idGi /fi;i :

From the first half, if we choose xi D idHi , we obtain fi;j D fk;i D 0, j ¤ i , k ¤ i ;
from the second half, from a well-known statement that B.Hi /0 \B.Hi ˝Gi / D B.Gi /,
so that fi;i 2 idHi ˝Gi .

(2) Clear, see Definition 5.5(d).
(3) � is clear. We show �.
For f 2 End.H/0 \ End.H ˝G/, we shall prove that fpq 2

L
r2V idHpr ˝B.Hrq/.

Note that�
End.H ˝G/

�
pq
D End

�
.H ˝G/pq

�
D B

�M
r2V

Hpr ˝Grq

�
:

For f 2 End.H/0 \ End.H ˝G/, fpq commute with B.Hpr /˝ idGrq for all r 2 V .
By (1), we have fpq 2

L
r2V idHpr ˝B.Hrq/. Together with (2), we prove this statement.

(4) From (3), for f 2 End.H/0 \ End.H ˝G/,

f D
M
q2V

idHp0q ˝ g
.q/;

where g.q/ 2 End.G/.
Now we define g 2 End.G/ by gij WD g

.i/
ij . Then f D idH ˝ g.

By Section 5.3, we are able to construct a W� 2-subcategory C.ƒ/ without provid-
ing the distinguished evaluation and coevaluation given by the edge weighting, though
we still have the canonical evaluation and coevaluation denoted by evst and coevst, which
are drawn in green below. We denote the generators by K D Kƒ and xK. From Construc-
tion 5.22, let Nn WD End.Cjp0j ˝Kalt˝n/.

Notation and observation 5.26. Denote ƒn to be the subgraph of ƒ with vertices depth
� n and the corresponding Hilb-enriched graph to be Kn WD Kƒn and xKn the dual space
in the sense of Construction 5.15. As a convention, p0 is of depth 0. Observe that

Nn D End.K1 ˝ xK2 ˝K3 ˝ xK4 ˝ � � � ˝K‹n/:

where K‹n D Kn if 2 − n, K‹n D xKn if 2 j n.
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Example 5.27. Let us take A5 graph for example. We label the vertices as follows.

p1

p4

p2

p5

p3

p1

p1

p1

p4

p4

p2

p2 p3

p5

Then

K1 D

266664
0 0 0 C 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775 ; xK2 D

266664
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C 0 0 0

0 0 0 0 0

377775 ; K3 D

266664
0 0 0 C 0

0 0 0 C C
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775 ;

xK4D

266664
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C 0 0 0

0 C C 0 0

377775D xK4C2k ; K5D

2666664
0 0 0 C 0

0 0 0 C C
0 0 0 0 C
0 0 0 0 0

0 0 0 0 0

3777775DK5C2k ; kD0; 1; 2; : : :

K1˝ xK2˝K3D

266664
0 0 0 C2 C
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775 ; K1˝ xK2˝K3˝K4D

266664
C2 C3 C 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

377775 :
For this example, observe that End.K1 ˝ xK2 ˝ � � � ˝K‹n/ is the semisimple quotient of
TLJn.

p
3/.

One can regardƒn as the subgraph of the Bratteli diagram between depth n�1 and n,
andKn is the Hilb-enriched graph ofƒn. The entry .i; j / inK1˝ xK2˝ � � � ˝K‹n indicates
the number of paths from the vertex pi at depth 0 to the vertex pj at depth n. Note that
the base point is a single vertex p1, so entry only at .1; j / can be non-zero.

The idea is to transport the Jones projections from the Markov tower .Mn/ to the
endomorphism algebras .Nn/ in order to obtain the edge weighting !. Let  n WMn!Nn
be a �-algebra isomorphism for each n � 0 with  nC1jMn D  n.

Let us consider the image of Jones projection  .en/ 2 NnC1. Note that

en 2M
0
n�1 \MnC1;

so  .en/ 2 N 0n�1 \NnC1.
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Proposition 5.28.

N 0n�1 \NnC1 D

´
idK1˝ xK2˝���˝K2k�1 ˝ End. xK2k ˝K2kC1/ n D 2k

idK1˝ xK2˝���˝ xK2k ˝ End.K2kC1 ˝ xK2kC2/ n D 2k C 1:

Proof. Note that
K1 ˝ xK2 ˝ � � � ˝K

‹
n

satisfies the condition in Lemma 5.25 (3) and (4).

Proposition 5.29. Without loss of generality, let n D 2k. There exists a projection "2k 2
End. xK2k ˝K2kC1/ such that  .e2k/ D idK1˝ xK2˝���˝K2k�1 ˝ "2k .

Proof. By proposition 5.28, there exists "2k 2 End. xK2k ˝K2kC1/ such that

 .e2k/ D idK1˝ xK2˝���˝K2k�1 ˝ "2k :

Note that e2k is a projection, so is "2k .

Lemma 5.30. LetH be a Hilbert space and p ¤ 0 be a projection onH . Suppose pfp 2
Cp for all f 2 B.H/, then p D r�r , where r W H ! C and rr� D 1.

Similarly, letH be a 1-morphism in BigHilb and p ¤ 0 be a projection onH . Suppose
pfp 2 Cp for all f 2 End.H/, then p D r�r , where r W H ! CjV j and rr� D CjV j.

Proof. For the Hilbert space case: Note that Im.fp/ can be any subspace of H and
Im.p.fp// D Im.p/, so Im.p/ does not depend on the input, i.e., p facts through C.
Let r W H ! C and p D r�r with rr� D 1, since p� D p D p�p.

The similar argument on 1-morphisms in BigHilb.

As we see the construction of the Jones projection in Construction 5.22 (4), we shall
prove that the Jones projection splits into two pieces.

By Proposition 2.4 (6), enMnC1en DMn�1en, so

 .en/NnC1 .en/ D Nn�1en:

Without loss of generality, let nD2k. For eachf2End. xK2k˝K2kC1/, idK1˝ xK2˝���˝K2k�1˝
f 2 N2kC1, there exists x 2 N2k�1 such that

idK1˝ xK2˝���˝K2k�1˝."2kf "2k/D.x˝id xK2k˝K2kC1/.idK1˝ xK2˝���˝K2k�1˝"2k/Dx˝ "2k ;

which follows that "2kf "2k 2 C"2k .
By Lemma 5.30, there exists r2k W xK2k ˝K2kC1 ! CjV1;2k�1j such that

"2k D r
�

2k
r2k and r2kr

�

2k
D CjV1;2k�1j;

where V1;2kC1 contains all the simple objects in ƒ2kC1 with odd depth.
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Similarly, we can define "2kC1 2 End.K ˝ xK/ corresponding to Jones projection
e2kC1 and there exists

r2kC1 W K2kC1 ˝ xK2kC2 ! CjV0;2k j

such that
"2kC1 D r

�

2kC1
r2kC1 and r2kC1r

�

2kC1
D CjV0;2k j;

where V0;2k contains all the simple objects in ƒ2k with even depth.
Now consider

u2k WD d.id xK ˝ r2kC1/ ı .r
�

2k
˝ idK/ 2 End. xK/:

Note that e2ke2kC1e2k D d�2e2k and e2kC1e2ke2kC1 D d�2e2kC1, we have u�
2k
u2k D

id xK2k and u2ku
�

2k
D id xK2kC2 , so u2k is a unitary.

d2
r
�

2k

r2k

r
�

2kC1

r2kC1

r
�

2kC1

r2kC1

� � �

� � �

� � �

p0

Cjp0 j K K xK K xK

D

r
�

2kC1

r2kC1

� � �p0

Cjp0 j K K xK K xK

d2

r
�

2k

r2k

r
�

2k

r2k

r
�

2kC1

r2kC1

� � �

� � �

� � �

p0

Cjp0 j K K xK K xK

D

r
�

2k

r2k

� � �p0

Cjp0 j K K xK K xK

For adjacent simple objects p; q 2 ƒ with p at depth n and q at depth n C 1, we
shall compute the edge weighting on the edges e W p! q and e W q ! p. Without loss of
generality, n D 2k.
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Define '2k and '2kC1 as follows:

'2k D d
1
2

r2k
� � �p0

Cjp0 j K K xK K xK

'2kC1 D d
1
2

r2kC1

u
�

2k

� � �p0

Cjp0 j K K xK K xK K

and we have the following properties:

(a) '2kC1 ı '
�

2k
D id.

(b) Tr.'�
2k
ı '2k/ D d Tr.r�

2k
r2k/ D d Tr.r2kr

�

2k
/ D d .

(c) Tr.'�
2kC1

ı '2kC1/ D d Tr.u2kr
�

2kC1
r2kC1u

�

2k
/ D d Tr.r2kC1r

�

2kC1
/ D d .

Definition 5.31. Define the edge-weighting function ! as the multiset:

¹!.e/ºeWp!q WD
®
eigenvalues of .'�

2k
ı '2k/pq

¯
;

¹!.e/ºeWq!p WD
®
eigenvalues of .'�

2kC1
ı '2kC1/pq

¯
:

Combining Construction 5.20 and our definition with properties for '2k ; '2kC1, the
edge weighting ! we obtained for bipartite graph ƒ is d -fair and balanced.

5.7. C .K; evK / and End�

0
.M; F /

In this section, T LJ.d/ means the 2-shaded pivotal rigid C� multitensor category from
Definition 2.28 with endomorphism spaces the Temperley–Lieb algebras and simple gen-
erator X D 1C ˝X ˝ 1�.

We have already seen the ways to construct a Markov tower from C.K; evK/ in this
section or from M in Section 3 with a simple base pointZ, where M is an indecomposable
semisimple C� T LJ.d/-module category. In this section, we will show their relation to
each other.

Definition 5.32 (Endofunctor monoidal category). Define End�.M/ to be a W� tensor
category as follows:

(a) Objects: The objects are all the dagger endofunctors of M.

(b) Morphisms: The morphisms are the uniformly bounded natural transformations
between these dagger endofunctors which compatible with the dagger structure.

(c) Tensor structure: The tensor product is given by the composition of endofunctors,
i.e., F1 ˝ F2 WD F2 ı F1 for endofunctors F1; F2.

Definition 5.33. Define F WD �C X; xF WD �C xX , which are endofunctors of M. Note
that F and xF are adjoint functors, with unit evF and counit coevF induced by evX and
coevX .

Define End�0.M; F / to be the full category Cauchy generated by F and xF . Since the
generators are dualizable, the category is rigid.
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We warn the reader that End�0.M; F / will only be multitensor (dim.End.idM// <1)
when M is finitely semisimple. Moreover, the dual functor on End�0.M; F / given by evF
and coevF is not a unitary dual functor.

We can give an alternative description of End�0.M;F / using the following proposition.

Proposition 5.34. Let A be a 2-shaded rigid C� multitensor category with generator X .
The follows are equivalent [18]:

(1) M is an indecomposable semisimple C� right A-module category;

(2) there is a faithful dagger tensor functor � W A! End�.M/, where End�.M/ is
a tensor category with all the dagger endofunctors being objects and uniformly
bounded natural transformations being morphisms.

We see that under this equivalence, End�0.M; F / WD �.A/ is the W� category Cauchy
tensor generated by the image of the tensor functor T LJ!End�.M/, whereF D�CX .
Then End�0.M; F / is clearly a rigid C� tensor category.

At the end of this section, we are going to show that the tensor category End�0.M; F /

(viewed as a 2-category with one object) and 2-category C.K; evK/ are unitarily equiva-
lent.

Construction 5.35. We construct C.K; evK/ from End�0.M; F / functorially.

(a) Object: Let V0 be a set of representatives of all isomorphism classes of simple
objects P 2 M such that P D P C 1C and V1 a set of representatives of all
isomorphism classes of simple objectsQ 2M such thatQ DQ C 1�. Then the
object is the set V D V0 t V1.

(b) 1-morphism: Let G 2 End�0.M; F / be an object with adjoint xG. Define the V �
V -bigraded Hilbert space HG by

HG;PQ WD Hom
�
Q;G.P /

�
;

with inner product hf jgiG;PQ for f; g 2 Hom.Q;G.P // defined by

f � ı g D hf jgiG;PQ � idQ;

sinceQ is simple and f � ı g 2 End.Q/Š C � idQ. Note that Hom.Q;G.P //Š
Hom. xG.Q/;P / is a natural isomorphism, soH xG;QP andHG;PQ are dual Hilbert
spaces.

(c) Composition of 1-morphisms:

Proposition 5.36. For G1; G2 2 End�0.M; F /, we have HG1ıG2 Š HG1 ıHG2
as V � V -bigraded Hilbert spaces, i.e.,

HG1ıG2;PQ Š .HG1 ıHG2/PQ D .HG2 ˝HG1/PQ D
M
R

HG2;PR ˝HG1;RQ:

is a unitary isomorphism between Hilbert spaces for each pair .P;Q/ 2 V � V .



Standard �-lattices, rigid C� tensor categories, and (bi)modules 319

Proof. Note that the direct sum contains finite many components. For each non-
zero component with respect toR, define �R WHG2;PR ˝HG1;RP !HG1ıG2;PQ
by

�R.f2 ˝ f1/ WD G1.f2/ ı f1:

First, we prove that �R is an isometry, i.e.,˝
�.f2 ˝ f1/j�.g2 ˝ g1/

˛
G1ıG2;PQ

D hf2 ˝ f1jg2 ˝ g1i

D hf2jg2iG2;PR � hf1jg1iG1;RQ

for f2; g2 2 HG2;PR, f1; g1 2 HG1;RQ.

LHS D
˝
G1.f2/ ı f1jG1.g2/ ı g1

˛
G1ıG2;PQ

D
�
G1.f2/ ı f1

��
ı
�
G1.g2/ ı g1

�
D f

�
1 ıG1.f

�
2 ı g2/ ı g1 (G1 is a dagger functor)

D f
�
1 ıG1.hf2jg2iG2;PR � idR/ ı g1

D hf2jg2iG2;PR � f
�
1 ı idG1.R/ ı g1 (G1 is a functor)

D hf2jg2iG2;PR � f
�
1 ı g1

D RHS:

It follows that
L
R �R W

L
RHG2;PR ˝HG1;RQ ! HG1ıG2;PQ is an isometry.

Note that for a semisimple rigid C� category,

dimHG1ıG2;PQ D dim Hom
�
Q;G1 ıG2.P /

�
D dim Hom

�
G1.Q/;G2.P /

�
D dim

M
R

Hom
�
G1.Q/;R

�
˝ Hom

�
R;G2.P /

�
D dim

M
R

Hom
�
Q;G1.R/

�
˝ Hom

�
R;G2.P /

�
D dim

M
R

HG1;RQ ˝HG2;PR

D dim
M
R

HG2;PR ˝HG1;RQ:

Note that
L
R �R is an isometry and hence injective, so

L
R �R W

L
RHG2;PR ˝

HG1;RQ ! HG1ıG2;PQ is a bijection and hence a unitary.

It follows that

HG1ıG2 ıHG3 Š HG1ıG2ıG3 Š HG1 ıHG2ıG3

as V � V -bigraded Hilbert space.
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(d) 1-morphism generator: Define K WD HF and xK WD H xF . It is clear that CjV0j D
HIC and CjV1j D HI� .

(e) 2-morphism: The 2-morphism of C.K/ is the morphism of End�0.M; F /. Let ˛ W
G1!G2 be a uniformly bounded natural transformation. Then ˛.P / WG1.P /!
G2.P / and hence

˛PQ WD ˛P ı � WHG1;PQ D Hom
�
Q;G1.P /

�
! Hom

�
Q;G2.P /

�
DHG2;PQ

is a uniformly bounded linear map.

(f) Composition of 2-morphisms: Let ˛1 W G1 ! G2, ˛2 W G2 ! G3 be uniformly
bounded natural transformations. Then G1.P /

˛1.P /
����! G2.P /

˛2
�! G3.P /, then

.˛2 ı ˛1/PQ D .˛2 ı ˛1/P ı � D ˛2;P ı ˛1;P ı �

D ˛2;PQ ı ˛1;PQ W HG1;PQ ! HG2;PQ ! HG3;PQ:

(g) Tensor product of 2-morphisms: Let ˛1 W G1! G2, ˛2 W G3! G4 be uniformly
bounded natural transformation. Then ˛1 ˝ ˛2 W G3 ı G1 D G1 ˝ G3 ! G2 ˝

G4 D G4 ıG2 defined as

G3 ıG2G3 ıG1

G4 ıG2G4 ıG1

H)

HG2 ˝HG3HG1 ˝HG3

HG2 ˝HG4HG1 ˝HG4

Clearly, the tensor product is strict.

(h) evK and coevK : Define evK to be the unit of adjoint pair .F; xF / and coevK to
be the counit of .F; xF /. Note that the duality is a property, not an extra structure.
The dual functor is generated by the duality of generator, which is not necessarily
a unitary dual functor.

Definition 5.37 ([11, Def. 7.2.1]). Let M and N be two semisimple C� module category
categories over a semisimple rigid C� (multi)tensor category C . A C -module functor from
M to N consists of a functor  WM! N and a natural isomorphism sX;M W  .M C X/

!  .M/ C X for all X 2 C , M 2M which satisfies the pentagon equation.
We call that M and N are C -module equivalent if  is an equivalence of categories.

Let C D T LJ.d/. Now we discuss the relation between the equivalence on T LJ.d/-
module category and the equivalence on End�0.M; F /, where F D �C X , and the corre-
sponding 2-category C.K; evK/.

Remark 5.38. Let M be an indecomposable semisimple T LJ.d/-module C� categories
and . ; s/ WM!M is an T LJ.d/-module equivalence. Then 2 End�.M/ is an object.
Since T LJ.d/ is generated by X , s�;� in above Definition 5.37 is determined by sX;�.
Note that

sX;� W  
�
F.�/

�
D  .� C X/!  .�/ C X D F

�
 .�/

�
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is a unitary natural isomorphism. Note that as an equivalence,  maps simple objects in
M to simple objects. Then we have

HF; .P / .Q/ D Hom
�
 .Q/; F

�
 .P /

�� �
����!
�ıs�1

Hom
�
 .Q/; .F.P /

��
Š Hom

�
Q;F.P /

�
D HF;PQ:

It follows that the 1-morphism generator K D HF indexed by V and HF indexed by
 .V / are unitary equivalent.

Comparing the discussion here with Remark 5.17, the T LJ.d/-module equivalence
corresponds to the unitary equivalence on C.K; evK/, which corresponds to isomorphism
of edge-weighted graphs .ƒ; !/.

Theorem 5.39 (cf. [9, Thm. 6.4], [10, Thm. 2.4], [13, Thm. 4.15]). There is a bijective
correspondence between equivalence classes of the following:²

Indecomposable semisimple C�

T LJ.d/-module categories M

³
Š

8<:W� 2-subcategories C.ƒ; !/ of BigHilb,
where ƒ is a balanced d -fair bipartite
graph with edge-weighting !

9=; :
Equivalence on the left-hand side is unitary equivalence; equivalence on the right-hand
side is the isomorphism of edge-weighted graphs.

Proof. We can prove this correspondence for the version with base point by passing
through the Markov tower. According to Construction 5.35, the correspondence holds
without fixing the base point. As for the equivalence, see Remark 5.38.

Remark 5.40. Given a semisimple C� category C , similar to Construction 5.35, we get
a dagger tensor functor from End�.C/ to the tensor category HilbIrr.C/�Irr.C/

f
, which is the

endomorphism tensor category of the object Irr.C/ in BigHilb. One should view this as a
concrete version of End�.C/. Note that dualizable endofunctors always map to dualizable
1-morphisms.

6. Markov lattices and biunitary connections

6.1. Balanced .d0; d1/-fair square-partite graph

Definition 6.1. Let � be an oriented square-partite graph with vertices V.�/ D V00 t

V01 t V10 t V11.

V10 V11

V00 V01

ƒ0 ƒ1

�0

�1

We call that � associative if for any two vertices on opposite corners of � , there are
the same number of length 2 paths going either way around � . In more detail,
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• for any P 2 V00 and R 2 V11, there are the same number of length 2 paths from P to
R (or R to P ) through vertices Q 2 V01 and through vertices S 2 V01;

• for any Q 2 V01 and S 2 V10, there are the same number of length 2 paths from Q to
S (or S to Q) through vertices P 2 V00 and through vertices R 2 V11.

Let ! W E.�/! .0;1/ be a weighting on the edges of graph � .
Let ƒi denote the full subgraph of � on V0i t V1i , i D 0; 1; let �i denote the full

subgraph of � on Vi0 t Vi1, i D 0; 1. Then ƒ1; ƒ2; �1; �2 are oriented bipartite graphs.
We call .�; !/ a balanced .d0; d1/-fair square-partite graph if ƒ0; ƒ1 are balanced

d0-fair bipartite graphs and �0; �1 are balanced d1-fair bipartite graphs.

Remark 6.2. We can define the edge-weighting preserving graph isomorphism literally
the same as in Definition 5.4 for balanced .d0; d1/-fair square partite graph.

6.2. 2-subcategory C .K0;K1;L0;L1; ev/ of BigHilb and biunitary connection ˆ

Definition 6.3. Let C.K0; K1; L0; L1; ev/ be a W� 2-subcategory of BigHilb with four
1-morphism generatorsKi W V0i ! V1i , Li W Vi0! Vi1, i D 0; 1 and a chosen evaluation
and coevaluation for each generator. We require that

(a) Ki ; Li are dualizable, i D 0; 1.

(b) The evaluation and coevaluation for the dual:

evx‹ WD .coev‹/� and coevx‹ WD .ev‹/�;

where ‹ D Ki ; Li , i D 0; 1.

(c) They satisfy the .d0; d1/�fairness condition, namely,

evK0 ı coevK0 D d0 � idCjV00 j ; evK0 ı coevK0 D d0 � idCjV10 j ;

evK1 ı coevK1 D d0 � idCjV01 j ; evK1 ı coevK1 D d0 � idCjV11 j ;

evL0 ı coevL0 D d1 � idCjV00 j ; evL0 ı coevL0 D d1 � idCjV01 j ;

evL1 ı coevL1 D d1 � idCjV10 j ; evL1 ı coevL1 D d1 � idCjV11 j :

Notation 6.4. Now, we provide the graphical calculus to describe C.K0;K1;L0;L1; ev/.
The white region indicates the object V00, the lightest gray for V10, the medium gray for
V11 and the darkest gray for V01; the black edge indicates K0; K1 and red for L0; L1, so
white and medium gray, lightest gray and darkest gray will not be adjacent.

coevK0
WCjV00 j ! K0 ˝K0 evK1

W K1 ˝K1 !CjV11 j coev
L0
WCjV01 j ! L0 ˝L0 ev

L1
W L1 ˝L1 !CjV10 j

Remark 6.5. Similar to the discussion in Section 5.3, from a given balanced .d0; d1/-fair
square-partite graph .�; !/, we can construct a 2-subcategory C.�; !/ of BigHilb; on the
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other hand, if we start with C.K0; K1; L0; L1; ev/, we can obtain the .�; !/. Moreover,
C.K0; K1; L0; L1; ev/ and C.�; !/ are unitary equivalent.

Similar to the discussion in Remark 5.17, the edge-weighting preserving graph auto-
morphism will result in the unitary equivalence on C.�; !/.

In the rest of this section, we define a special 2-morphismˆ in C.K0;K1;L0;L1; ev/,
called biunitary connection.

Definition 6.6 (Biunitary connection). A biunitary connection

ˆ W K0 ˝ L1 ! L0 ˝K1

is a 2-morphism which is a vertical unitary and a horizontal unitary, as defined as follows.
Here is the graphical calculus of ˆ.

(1) The biunitary connection ˆ:

ˆ

(2) Vertical unitary: ˆ� ıˆ D idK0 ˝ idL1 and ˆ ıˆ� D idL0 ˝ idK1 .

ˆ

ˆ�

D

ˆ

ˆ�

D

(3) Horizontal unitary:

.idL0 ˝ evK1 ˝ idL0/ ı .ˆ˝
x̂ �/ ı .idK0 ˝ coevL1 ˝ idK0/ D coevL0 ı evK0 ;

.idK1 ˝ evL0 ˝ idK1/ ı . x̂
�
˝ˆ/ ı .idL1 ˝ coevK0 ˝ idL1/ D coevK1 ı evL1 :

ˆ x̂ � D ˆx̂ � D

Here x̂ is defined as the dual of ˆ in the sense of Definition 2.41.



Q. Chen 324

Definition 6.7. C.K0; K1; L0; L1; ev/ equipped with a biunitary connection ˆ is written
as C.K0; K1; L0; L1; evIˆ/ or simply C.ˆ/.

Remark 6.8. The existence of ˆ implies that

dim.K0 ˝ L1/uv D dim.L0 ˝K1/uv;

dim.K0 ˝ L0/uv D dim.L1 ˝K1/uv;

for each pair .u; v/ 2 V � V . In other words, the corresponding square-partite graph is
associative.

We are going to discuss some properties of biunitary connections.

Definition 6.9 (Rotation by 90ı). Define the rotation by 90ı to be

ˆr WD .idK0 ˝ idL0 ˝ evK1/ ı .idK0 ˝ˆ˝ idK1/ ı .coevK0 ˝ idL1 ˝ idK1/:

Similarly,

ˆr
2

WD .idL1 ˝ idK0 ˝ evL0/ ı .idL1 ˝ˆ
r
˝ idL0/ ı .coevL1 ˝ idK1 ˝ idL0/ D

x̂ :

ˆr WD ˆ ˆr
2 WD ˆr

Remark 6.10. Here are some properties for biunitary connections and rotation.

(1) The group hr; �i D hr; �jr4 D �2 D id; r� D �r3i for the biunitary connection is
isomorphic to the dihedral group D4.

(2) ˆ is a biunitary connection if and only ifˆg is both vertical unitary and horizontal
unitary, where g 2 hr; �i.

Definition 6.11 ([39, §4]). We call biunitary connections ˆ W K0 ˝ L1 ! L0 ˝K1 and
ˆ0 W K 00 ˝ L

0
1 ! L00 ˝K

0
1 gauge equivalent, if there exist unitaries u1 W K 00 ! K0, u2 W

L0! L00, u3 WK1!K 01 and u4 W L01! L1 such thatˆ2 D .u2˝ u3/ ıˆ1 ı .u1˝ u4/.

ˆ0 D ˆ

u1

u2 u3

u4
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Notation and observation 6.12. Observe that once we know the color of the region and
the color of the edge, the biunitary connection in the circle is determined. So we can
simplify the graphical calculus of biunitary connection as follows.

ˆ H)

Moreover, if the color of the leftmost region and the color of each edge is determined,
then the color of the rest of the regions will be determined. The 4 colors on the leftmost
region and 2 colors on the edge (8 cases) can represent all ˆg , g 2 hr; �i.

Here is the simplified graphical calculus of vertical unitarity and horizontal unitarity.
In the following context, We require that the leftmost regions in the uncolored equality
have the same color.

D D

D D

Proposition 6.13. Here are some properties that will be used in the next section and the
proof is left to the reader.

(1)

D

(2) For 2-morphism x2End.F˝K0˝L1/, where F is a proper 2-morphism, we have

x

F K0 L1

D x

F

K0

L1

L0
K1
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6.3. From C .ˆ/ to Markov lattice

Construction 6.14. Here we are going to construct a Markov lattice from the 2-category
C.ˆ/ discussed above with a chosen point, say P0 2 V00. Let CjP0j be a 1-morphism with
all the entry being 0 except .CjP0j/P0P0 D C.

Note that CjP0j ˝Kalt˝i
0 ˝ L

alt˝j
‹

is a 1-morphism for each i; j 2 Z�0.
Let Mi;j D End.CjP0j ˝ Kalt˝i

0 ˝ L
alt˝j
‹

/, where L‹ D L0 if 2 j i and L‹ D L1 if
2 − j . We use the graphical calculus to show M D .Mi;j /i;j�0 is a Markov lattice.

(1) Element x 2Mi;j :

� � �

� � �

� � �

� � �

x

CjP0 j

1st

i th 1st j th

P0

(2) Horizontal inclusion x 2Mi;j �Mi;jC1:

� � �

� � �

� � �

� � �

x

CjP0 j

1st

i th 1st j th

.jC1/th

P0

(3) Vertical inclusion x 2Mi;j �MiC1;j :

� � �

� � �

� � �

� � �

x

CjP0 j

1st

i th 1st j th

.iC1/th

P0

(4) Horizontal conditional expectation EM;ri;j WMi;j !Mi;j�1, ; x 2Mi;j :

E
M;r
i;j .x/ D d

�1
1

� � �

� � �

� � �

� � �

x

CjP0 j

1st

i th 1st .j�1/th

j th

P0
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(5) Vertical conditional expectation EM;li;j WMi;j !Mi�1;j , x 2Mi;j :

E
M;l
i;j .x/ D d

�1
0

� � �

� � �

� � �

� � �

x

CjP0 j

1st

.i�1/th 1st j th

i th

P0

(6) Commuting square of conditional expectationsEM;ri�1;j ıE
M;l
i�1;j�1DE

M;l
i�1;j ıE

M;r
i;j W

Mi;j !Mi�1;j�1, x 2Mi;j :

E
M;r
i�1;j ıE

M;l
i�1;j�1.x/ D d

�1
0 d�11

� � �

� � �

� � �

� � �

x

CjP0 j

1st

.i�1/th 1st .j�1/th

j thi th

P0

D d�10 d�11
� � �

� � �

� � �

� � �

x

CjP0 j

1st

.i�1/th 1st .j�1/th

j thi th

P0 D E
M;l
i�1;j ıE

M;r
i;j .x/

(7) Vertical Jones projections ei2MiC1;j and horizontal Jones projectionfj 2Mi;jC1:

ei D d
�1
0

� � �

� � �

� � �

� � �

CjP0 j

1st

i th 1st j th

P0 fj D d
�1
1

� � �

� � �

� � �

� � �

CjP0 j

1st

i th 1st j th

P0

(8) It is clear that Mj D .Mi;j ; E
M;l
i;j ; ei /i�0 are Markov towers with the same mod-

ulus d0 and ei 2 MiC1;j for all i , i; j D 0; 1; 2; : : : IMi D .Mi;j ; E
M;r
i;j ; fj /j�0

are Markov towers with the same modulus d1 and fj 2Mi;jC1 for all j .

Remark 6.15. A gauge equivalence ˆ � ˆ0 will result in an isomorphism of the corre-
sponding Markov lattices.
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6.4. From Markov lattice to C .�;!Iˆ/

First, we are going to explore more properties of Markov lattice.

Proposition 6.16. One can show the following properties for Markov lattice similar to
Proposition 5.24.

(a) XiC1;jC1 WD hei ; fj i is a 2-sided ideal of MiC1;jC1 and hence MiC1;jC1 can
split as a direct sum of von Neumann algebras XiC1;jC1 ˚ YiC1;jC1. We also
define Y0;0 DM0;0; Y1;0 DM1;0; Y0;1 DM0;1; Y1;1 DM1;1 so that

X0;0 D X1;0 D X0;1 D X1;1 D 0:

XiC1;jC1 is called the old stuff and YiC1;jC1 is called the new stuff.

(b) If y 2 YiC1;jC1 and x 2 XiC1;j or x 2 Xi;jC1, then yx D 0 inMiC1;jC1. Hence
EriC1;jC1.YiC1;jC1/ � YiC1;j and EliC1;jC1.YiC1;jC1/ � Yi;jC1, which means
the new stuff comes from the old new stuff.

(c) If Yi;j D 0, then Yk;l D 0 for all k � i , l � j .

Now we are going to construct C.�; !Iˆ/ from a given Markov lattice M .

Construction 6.17. The square partite graph and the edge weighting .�; !/:
From Markov latticeM , since each row and column is a Markov tower, we can obtain

a Bratteli diagram � as in Section 5.6 (which can be viewed as a “lattice-partite” graph).
After taking only the new vertices in �\ Yi;j and the edges between them, we obtain the
principal graph �0 because of Proposition 6.16(2). Here, �0 is not necessarily a square-
partite graph, so we have to do some identification.

For the new vertices p1 2 �0 \ Yi;j and p2 2 �0 \ YiC2;j�2, as in Section 5.6, let p01
be the new old vertex of p1 in MiC2;j and p02 be the new old vertex of p2 in MiC2;j . We
identify p1 with p2 if p02 2MiC2;jp

0
1 (or equivalently p01 2MiC2;jp

0
2).

For the pairs of new vertices p1 2 �0 \ Yi;j and q1 2 �0 \ YiC1;j , and the pairs of new
vertices p2 2 �0 \ YiC2;j�2 and q2 2 �0 \ YiC3;j�2, suppose p1 and p2 are identified
in MiC2;j , q1 and q2 are identified in MiC3;j on above sense, then the numbers of edges
between p1; q1 and p2; q2 are equal, since they both equal to�

dimC.p
0
1q
0
1M
0
iC2;jp

0
1q
0
1 \ p

0
1q
0
1MiC3;jp

0
1q
0
1/
� 1
2 ;

see the discussion in Section 5.6. Then we can also identify the edges between p1; q1 and
p2; q2. Similar statement for p1 2 �0 \ Yi;j and r1 2 �0 \ Yi;jC1, and the pairs of new
vertices p2 2 �0 \ YiC2;j�2 and r2 2 �0 \ YiC2;j�1. After the above identification as
well as the edges between those identified vertices (see the following example), we obtain
a graph � , which is a square-partite graph.

Then Vij � V.�/ contains all the vertices in V.�0/ \ MiC2m;jC2n, i; j D 0; 1,
m; n 2 Z�0.

The edge-weighting ! can be obtained the same way as in Section 5.6.
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Example 6.18. Here we provide an example to see the difference between the square-
partite graph and the principal graph of a Markov lattice. In the diagram below, if p1 is
at depth zero, then p2 is at depth 2 of the principal graph. Therefore, as a new vertex, p2
will appear in two places M0;2 and M2;0, but their reflections/new old vertices coincide
in M2;2.

p1

p2

p3 p4

p5

p6

square-partite graph

H)

p1

p2 p2p3 p4

p5

p6

p1 p1

p1

p2

p3p6 p6p3 p5

p4

p5

p4

p6p3 p4

p5

principal graph with base point p1
and Bratteli diagram

Remark 6.19. Suppose vertex q 2 V00 is at depth 2n of the principal graph, then q will
first appear in M2i;2n�2i , i D 0; 1; : : : ; n; if q 2 V10 is at depth 2nC 1, then q will first
appear in M2iC1;2n�2i , i D 0; 1; : : : ; n; if q 2 V01 is at depth 2n C 1, then q will first
appear in M2i;2nC1�2i , i D 0; 1; : : : ; n; if q 2 V11 is at depth 2n C 2, then q will first
appear in M2iC1;2nC1�2i , i D 0; 1; : : : ; n.

Next, we compute the biunitary connection ˆ.

Notation and observation 6.20. We choose p0 2 V00 as the base point, which is at
depth 0. Similar to Observation 5.26, denote ƒ0;n to be the subgraph of ƒ0 with vertices
depth � n, similar definition for �0;n; ƒ1;n and �1;n, see Definition 6.1. The corre-
sponding Hilb-enriched graphs areKi;n WDKƒi;n , Li;n WD L�i;n . From Construction 6.14,
Ni;j WDEnd.Cjp0j˝Kalt˝i

0 ˝L
alt˝j
‹ /. Without loss of generality, let 2 − i . Observe that

Ni;j D End.K0;1 ˝ xK0;2 ˝ � � � xK0;i ˝ L1;iC1 ˝ xL1;iC2 ˝ � � � ˝ L‹1;iCj /;

where L‹1;j D L1;j if 2 − j , L‹1;j D xL1;j if 2 j j .

Example 6.21. Following Example 6.18,

K0;1

xK0;2

K0;3 K0;3

xK0;4

K0;5

K1;2

xK1;3

K1;4 K1;4

xK1;5

K1;6

L0;1

xL0;2

L0;3L0;3

xL0;4

L0;5

L1;2

xL1;3

L1;4L1;4

xL1;5

L1;6

N0;0

N3;0 N2;1
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we have

K0;1 D

266666664

0 0 C 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

377777775 ;
xK0;2 D

266666664

0 0 0 0 0 0

0 0 0 0 0 0

C C 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

377777775

K0;3 D

266666664

0 0 C 0 0 0

0 0 C 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

377777775 ; K1;4 D

266666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 C C 0

377777775

L0;1 D

266666664

0 0 0 0 0 C
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

377777775 ;
xL1;3 D

266666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 C 0 0 0

0 0 C 0 0 0

0 0 0 0 0 0

377777775

K0;1 ˝ xK0;2 ˝ L0;3 Š

266666664

0 0 0 0 0 C6

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

377777775 Š K0;1 ˝ L1;2 ˝
xK1;3

Š L0;1 ˝K1;2 ˝ xK1;3:

Similar to Example 5.27, the entry .i; j / in Nm;n indicates number of paths from the
vertex pi at depth 0 to the vertex pj at depth mC n. Note that the base point is a single
vertex p1, so only at entry .1; j / can be non-zero.

Remark 6.22. Any automorphism ofMn.C/ is inner. To be precise, if ˛ 2 Aut.Mn.C//,
then there exists a unitary u 2Mn.C/, such that ˛.x/ D uxu� D Ad.u/.x/, for any x 2
Mn.C/. Moreover, this unitary u is unique up to a unit scalar. Indeed, if uxu� D u1xu�1
for all x 2Mn.C/, then x.u�u1/ D .u�u1/x, which implies that u�u1 is in the center of
Mn.C/. Thus, u�u1 D a 2 C with jaj D 1 and hence u1 D au.

As a corollary, for 1-morphisms H;G, if ˛ W End.H/ Š End.G/ is a �-isomorphism,
then there exists a unitary 2-morphism u W H ! G such that ˛ D Ad.u/.

Warning. The unitary u is obtained by taking a unitary ui;j in each entry. Thus any
two choices of implementing unitary uD .ui;j / and vD .vi;j / differ by a matrix of scalars
.ai;j / which may be distinct. Hence the unitary u is unique up to a matrix of scalars.
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Construction 6.23. The biunitary connection ˆ: The construction (for the tracial case)
has been written in [21, §5.5] in the language of path algebras. For convenience, we will
construct it here using our language.

From Construction 6.17 and Remark 6.5, the 2-category C.�; !/ can be constructed.
In order to obtain the biunitary connection ˆ, we shall compute it componentwise,

which is similar to the idea to compute the edge-weighting in Section 5.6. The goal is to
compute

p̂r W .K0 ˝ L1/pr D
M
q2V10

K0;pq ˝ L1;qr !
M
s2V01

L0;ps ˝K1;sr D .L0 ˝K1/pr

for each pair .p; r/ 2 V00 � V11.
Suppose p is at depth 2n of the principal graph and r is at depth 2n C 2. By Re-

mark 6.19, p first appear in M0;2n and r first appears in M1;2nC1.
Consider two path models M0;0 � M0;1 � � � � � M0;2n � M0;2nC1 � M1;2nC1 and

M0;0 �M0;1 � � � � �M0;2n �M1;2n �M1;2nC1.
Similar to Proposition 5.28, we have

N 00;2n\N1;2nC1D idK0;1˝ xK0;2˝���˝ xK0;2n˝End.K0;2nC1˝L1;2nC1/ for the first model;

N 00;2n\N1;2nC1D idK0;1˝ xK0;2˝���˝K0;2n�1˝End.L0;2n˝K1;2nC1/ for the second model:

Let  WM1;2nC1 ! N1;2nC1 denote the �-isomorphism onto the first model and  0 W
M1;2nC1 ! N1;2nC1 denote the �-isomorphism onto the second model, then

 WM 00;2n \M1;2nC1 ! N 00;2n \N1;2nC1 Š End.K0;2nC1 ˝ L1;2nC1/;

 0 WM 00;2n \M1;2nC1 ! N 00;2n \N1;2nC1 Š End.L0;2n ˝K1;2nC1/

are �-isomorphisms. Then  0 ı �1 W End.K0;2nC1˝L1;2nC1/! End.L0;2n˝K1;2nC1/
is a � isomorphism between two 1-morphisms. By Remark 6.22, their exists a unique
unitary u up to a matrix of scalars such that  0 ı  �1 D Ad.u/. We define p̂r WD upr .

Similar to Remark 5.21, we secretly make a choice of ONB when we construct the
generators Ki ; Lj from the square-partite graph � , i; j D 0; 1. Different choice results in
multiplying a unitary on each generator. Combining Definition 6.11 of gauge equivalence
and above discussion, the biunitary connection ˆ we construct here is unique up to gauge
equivalence.

6.5. C .ˆ/ and End�

0
.M; F;G/

We have already seen the method to construct a Markov lattice from C.ˆ/ above or from
M in Section 4 with a simple base point, where M is an indecomposable semisimple C�

A-B bimodule category. In this section, by using a similar technique as in Section 5.7, we
will show their relation to each other.

Definition 6.24. Suppose M is an indecomposable semisimple C� T LJ.d0/-T LJ.d1/

bimodule category, where X D 1C ˝ X ˝ 1�; Y D 1C ˝ Y ˝ 1� are the generators of
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T LJ.d0/ and T LJ.d1/ respectively. Define F DX B�, xF D xX B�,GD�C Y , xGD
�C xY , which are endofunctors on M. Note that .F; xF / and .G; xG/ are adjoint pairs, with
unit evF ; evG induced by evX ; evY and counit coevF ; coevG induced by coev xX ; coev xY .

Define End�0.M;F;G/ to be the full subcategory of End�.M/Cauchy tensor generated
by F; xF ;G; xG, so it is a rigid W� tensor category.

We warn the reader that End�0.M;F;G/will only be multitensor (dim.End.idM//<1)
when M is finitely semisimple.

Definition 6.25 (Biunitary connection in End�0.M; F; G/). Note that the bimodule asso-
ciator ˛X;�;Y W .X B �/ C Y ! X B .� C Y / is a unitary, which induces a natural
isomorphism ˆF;G W F ˝G ! G ˝ F , where F ˝G WD G ı F . Then

ˆG; xF W G ˝
xF ! xF ˝G

is equal to the 90ı rotation ˆrF;G defined as follows:

ˆrF;G WD .id xF ˝ idG ˝ evF / ı .id xF ˝ˆF;G ˝ id xF / ı .coevF ˝ idG ˝ id xF /:

It is easy to show that ˆF;G is vertical and horizontal unitary and so is ˆG; xF .

Similar to Section 5.7, we will show that the tensor category End�0.M; F; G/ and 2-
category C.ˆ/ are unitarily equivalent.

Construction 6.26. We construct C.ˆ/ from End�0.M; F;G/ functorially.

(a) Let V00 be a set of representatives of all simple objects P 2M such that P D
1CB P C 1C; V10 be the set of representatives of all simple objectsQ 2M such
that Q D 1� B Q C 1C; V11 be the set of representatives of all simple objects
R 2 M such that R D 1� B R C 1�; V01 be the set of representatives of all
simple objects S 2M such that S D 1C B S C 1�. Then the objects are the sets
Vi;j , i; j D 0; 1 and their union V D V00 t V01 t V11 t V10.

(b) 1-morphism: The 1-morphism of C.ˆ/ is the object of End�0.M; F;G/. The way
to construct the corresponding V � V -bigraded Hilbert space from an endofunc-
tor is the same as in Construction 5.35. The same for the dual 1-morphism and
tensor structure/composition.

(c) 2-morphism: The 2-morphism of C.ˆ/ is the morphism of End�0.M; F;G/.

(d) 1-morphism generator: Define

K0 WD HJC˝HF ; K0 D HJC˝H xF ; K1 WD HJ�˝HF ; K1 D HJ�˝H xF ;

L0 WD HIC˝HG ; L0 D HIC˝H xG ; L1 WD HI�˝HG ; L0 D HI�˝H xG :

(e) ev and coev. The same as in Construction 5.35 (h).

(f) Biunitary connection: ˆ W K0 ˝ L1 ! L0 ˝K1 is defined as

ˆF;G W F ˝G ! G ˝ F:

The check that ˆ is vertical and horizontal unitary is left to the reader.
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Construction 6.27. For the convenience to the reader, we also provide the construction
from C.ˆ/ to End�0.M; F;G/:

(a) Object: The object are the 1-morphisms in C.ˆ/. In particular, the generator F D
K0˚K1, xF DK0˚K1,G DL0˚L1 and xG DL0˚L1; the unit IC D 1C B
� D CjV00tV01j, I� D 1� B � D CjV10tV11j, JC D � C 1C D CjV00tV10j and
J� D � C 1� D CjV01tV11j.

(b) Morphism: The morphisms are the 2-morphisms in C.ˆ/.

(c) The associator: Note that F ˝ G D .K0 ˚ K1/˝ .L0 ˚ L1/ D K0 ˝ L1 and
G˝F D .L0˚L1/˝ .K0˚K1/DL0˝K1, the associatorˆF;G W F ˝G!
G ˝ F is defined as the biunitary connection ˆ W K0 ˝ L1 ! L0 ˝K1. All the
8 cases of associators are defined as ˆg , where g 2 hr; �i.

Theorem 6.28. There is a bijective correspondence between equivalence classes of the
following:8<:Indecomposable semisimple C�

T LJ.d0/-T LJ.d1/ bimodule
categories M

9=;Š
8̂̂<̂
:̂

W� 2-subcategories C.�; !Iˆ/ of BigHilb,
where � is a balanced .d0; d1/-fair square
partite graph with edge-weighting ! andˆ
a biunitary connection

9>>=>>; :
Equivalence on the left-hand side is unitary equivalence; equivalence on the right-hand
side is the isomorphism on the edge-weighted square-partite graph and gauge equivalence
on biunitary connection.

Proof. We can prove this correspondence for the version with base point by using the
Markov lattice. According to Construction 6.26, the correspondence holds without fixing
the base point.

As for the equivalence, combining Remark 6.5, Definition 6.11 and the last paragraph
in Construction 6.23, the isomorphism on the edge-weighted graph .�; !/ and gauge
equivalence on ˆ corresponds to the unitary equivalence on C.ˆ/, which corresponds
to the unitary equivalence on T LJ.d0/-T LJ.d1/ bimodule category M based on Con-
struction 6.23 and Remark 5.38.

6.6. Commuting square of finite dimensional C�-algebras

Suppose the following is a commuting square of finite dimensional C�-algebras with con-
ditional expectations:

M1;0 M1;1

M0;0 M0;1

E
M;l
1;0 E

M;l
1;1

E
M;r
1;1

E
M;r
0;1

Without loss of generality, we assume this commuting square is indecomposable. We can
do the basic construction for each horizontal and vertical inclusion, and obtain a Markov
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lattice. Therefore, by Theorem 6.28, commuting squares of finite dimensional C�-algebras
corresponds to semisimple C� T LJ-T LJ bimodule categories with a base point Z D
1C B Z C 1C such that End.Z/ ŠM0;0.

Note that the commuting square may not be Markov, i.e., there is new stuff appearing
in the basic construction, the Bratteli diagram of the original commuting square is not
necessarily the principal graph of the square-partite graph (See Example 6.18).

7. The tracial case

In this section, we finally discuss the tracial/pivotal case for (bi)module categories. As
an application, we prove the module embedding theorem for (infinite depth) graph planar
algebra.

7.1. Tracial Markov towers and pivotal module categories

Definition 7.1. [40] Let C be a rigid C� (multi)tensor category with the canonical spher-
ical unitary dual functor. We call M a semisimple pivotal C� C -module category, if there
exists a pivotal trace trM compatible with the spherical structure on C , i.e.,

trM
mCc.f / D trM

m

�
.idm C coev�c/ ı .f C id Nc/ ı .idm C coevc/

�
;

for all f 2 End.m C c/, where m 2M, c 2 C .

Remark 7.2. If f 2 End.c/; c 2 C and m 2M,

trM
mCc.idm C f / D trM

m

�
.idm C coev�c/ ı

�
.idm C f / C id Nc

�
ı .idm C coevc/

�
D trM

m

�
idm C

�
coev�c ı .f C id Nc ı coevc/

��
D trM

m

�
idm C trA

c .f /
�

D trM
m .idm/ � tr

A
c .f /:

Here we call trM
m .idm/ the dimension of object m.

Remark 7.3. [40, §4.1] If C is fusion and M is indecomposable, then the pivotal trace
trM is unique up to scalar.

Definition 7.4. Let M be a tracial Markov tower (see Remark 2.5). We call M a tracial
standard A-module, where A is a standard �-lattice, if trM jA D trA and M is a standard
A-module, see Definition 3.1.

Let A be a standard �-lattice. If we start with a tracial standard A-module M , com-
bining the construction in Section 3.3 and the proof in proposition 2.39, we are able to
construct a pivotal planar A0-module category. Furthermore, from this pivotal planar A0-
module category, we can construct an indecomposable semisimple pivotal C� A-module
category with a choice of the simple base object. The following is the theorem.
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Theorem 7.5. There is a bijective correspondence between equivalence classes of the
following:´Tracial Markov towersMD.Mi/i�0

with dim.M0/ D 1 as standard right
modules over a standard �-lattice A

µ
Š

8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple pivotal C� right A-module
category together with a choice of simple
base object Z D Z C 1C

A

9>>=>>; :
Equivalence on the left-hand side is trace-preserving�-isomorphism on the tracial Markov
tower as standard A-module; equivalence on the right-hand side is the pivotal unitary A-
module category equivalence on their Cauchy completions which maps simple base object
to simple base object.

Let us look at the balanced d -fair bipartite graph .ƒ; !/ from the tracial Markov
tower M . Since the evaluation and coevaluation are compatible with the trace, the edge-
weighting comes from a vertex-weighting, see [20, Rem. 6.10]. To be precise,

Definition 7.6 (Vertex weighting). Let ƒ be a bipartite graph. Let � W V.ƒ/! .0;1/ be
a weighting on the vertices of ƒ which satisfies the Frobenius-Perron condition: for each
P 2 V.ƒ/, X

¹Q2V.ƒ/WP;Q adjacentº

�.Q/ D d � �.P /:

In the sum on the left-hand side, �.Q/ has a number of edges between P ! Q copies.
From an undirected bipartite graph, one can obtain a directed graph with involution

[19, Def. 2.20]. Then for e W P ! Q, define w.e/ WD �.t.e//
�.s.e//

D
�.Q/
�.P /

. The d -fairness and
balance condition in Definition 5.2 follows automatically.

Remark 7.7. Suppose M is an indecomposable semisimple C� pivotal A-module cate-
gory with principal graph ƒ whose vertices are simple objects of M. We can define the
vertex weighting for simple object P as �.P / WD TrP .idP /.

Remark 7.8. Note that M being a pivotal A-module is equivalent to the dagger ten-
sor functor A ! End�.M/ being pivotal [18, Thm. 3.70], so that its essential image
End�0.M; F / has a unitary pivotal structure from the pivotal structure in A, where F D
� C X is the generator. We also denote the corresponding 2-subcategory of BigHilb as
C.K; �/ or C.ƒ; �/.

7.2. The module embedding theorem

Jones’ planar algebra, as a form of standard invariant, is a method to construct and clas-
sify finite index type II1 subfactors. The module embedding theorem has been known
to Vaughan Jones since he first defined the graph planar algebra [23]. The proof for
finite depth case appears in [7, 18, 25]. Many non-trivial subfactor classification results
are inspired by this theorem [28, 29], including the extended Haagerup subfactor and its
relatives [3, 18].

In this section, our goal is to prove Theorem 7.9, the infinite depth module embedding
theorem. We refer the reader to [23] for the full definition of graph planar algebra.
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Let .ƒ; �/ be a balanced d -fair bipartite graph with vertex weighting described in
Definition 7.6. According to the discussion in Section 5.3, C.K; evK/ is a pivotal W� 2-
subcategory of BigHilb, where the tensor generator K D Kƒ is the Hilb-enriched diagram
of ƒ, the dual and the pivotal structure are given by the vertex weighting. Following
[18, §3], we can define a W� shaded planar algebra P .ƒ/with Pn;C WD EndBigHilb.Kalt˝n/

and Pn;� WD EndBigHilb. xKalt˝n/.
Let V D V0 [ V1 be the set of vertices of ƒ. Recall from the definition of BigHilb, we

have
Kalt˝n
u;v D

M
w1;w2;:::;wn�12V

Ku;w1 ˝
xKw1;w2 ˝ � � � ˝K

‹
wn�1;v

:

Since the degree of each vertex is uniformly bounded, Kalt˝n
u;v is a finite dimensional

Hilbert space. Note that every 2-morphism f 2 EndBigHilb.Kalt˝n/ is determined by its
component maps²

fu;v W
M

w1;w2;:::;wn�12V

Ku;w1 ˝
xKw1;w2 ˝ � � � ˝K

‹
wn�1;v

!

M
r1;r2;:::;rn�12V

Ku;r1 ˝
xKr1;r2 ˝ � � � ˝K

‹
rn�1;v

³
u;v2V

:

Now fix an ONB ¹"ku;vº for each Ku;v (¹N"kv;uº for xKv;u), and for each pair of paths of
length n on ƒ from u to v,

p D "k1u;w1 ˝ N"
k2
w1;w2

˝ � � � ˝ "‹;knwn�1;v
and q D "l1u;r1 ˝ N"

l2
r1;r2
˝ � � � ˝ "‹;lnrn�1;v:

Let F u;vp!q 2 EndBigHilb.Kalt˝n/ be the unique .u; v/-component map sending path p to
path q and all other paths p0 to zero. Then we can see

Pn;C D EndBigHilb.Kalt˝n/ D
M
i;l

spanC

®
F i;lp!q p̄;q paths u to v:

Therefore, each 2-morphism can be represented as a linear combination of these bases.
Following [25, Ex. 3.27], we show this is a bipartite graph planar algebra. In particular,

we verify case (1) and the rest of the cases is left to the readers.
According to the discussion in Definition 5.8, evaluations evK ; ev xK and coevaluations

coevK ; coev xK are completely determined by C xK;uv W Kuv ˝ xKvu ! C. Note that now
the edge-weighting comes from the vertex-weighting, so by Construction 5.15, C xK;uv is
defined as

jei ˝ je0i 7! ıeDe0w.e/
1
2 D ıeDe0

�
�.v/

�.u/

� 1
2

D ıeDe0

�
�
�
t .e/

�
�
�
s.e/

�� 1
2

for e W u! v:

And DK;uv D C
�
xK;uv

is defined as

1 7!
X
eWu!v

w.e/
1
2 jei ˝ j Nei D

X
eWu!v

�
�.v/

�.u/

� 1
2

jei ˝ j Nei D
X
eWu!v

�
�
�
t .e/

�
�
�
s.e/

�� 1
2

jei ˝ j Nei:
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Therefore,

2 EndBigHilb.K ˝ xK/ D P2;C (7.1)

is non-zero on each Kuv ˝ xKvu! Kuw ˝ xKwu component. Once we fix an ONB ¹"ku;vº
for Ku;v , the map on this component is given by

�
�.v/�.w/

�.u/�.u/

� 1
2

D

 
�
�
t ."ku;v/

�
�
�
t ."lu;w/

�
�
�
s."ku;v/

�2
! 1
2

W "ku;v ˝ x"
k
v;u ! "lu;w ˝ x"

l
w;u:

When we identify it with the loop Œ"ku;vx"
k
v;u"

l
u;wx"

l
w;u�, we can regard 2-morphism (7.1) as

X 
�
�
t ."ku;v/

�
�
�
t ."lu;w/

�
�
�
s."ku;v/

�2
! 1
2

Œ"ku;vx"
k
v;u"

l
u;wx"

l
w;u�;

where the sum is taken over all valid loops in P2;C.
For n 2 N is odd,

� � �

1st nth

2 EndBigHilb.Kalt˝.nC1// D PnC1;C:

Note that the first n � 1 strings are identities, this is equal to

X 
�
�
t ."

kn
vn�1;vn/

�
�
�
t ."

lnC1
wn;u/

�
�
�
s."

kn
vn�1;vn/

�2
! 1
2

�
�
"k1u;v1x"

k2
v1;v2
� � � "kn�1vn�2;vn�1

"knu;vn"
kn
vn;u

"lnu;wnx"
ln
wn;u

"ln�1u;wn�1
� � � "l2w2;w1x"

l1
w1;u

�
;

where the sum is taken over all valid loops in PnC1;C.
When the bipartite graph is finite depth, this is exactly the Jones graph planar algebra.

If the bipartite graph is infinite, this is the analytic version of infinite bipartite graph planar
algebra due to Burnstein [5] generalizing Jones’ bipartite graph planar algebra [23].

Note that there is a well-know correspondence between [8, 16, 18, 37]:

²
Subfactor planar
algebras P�

³
Š

8̂̂<̂
:̂

Pairs .A; X/ with A a 2-shaded rigid C�

multitensor category with a generator X ,
i.e., 1A D 1C ˚ 1�, 1C; 1� are simple
and X D 1C ˝X ˝ 1�

9>>=>>; :
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Finally, according to [18, Thm. 3.77], a pivotal dagger tensor functor C ! End�.M/

which preserves the dual structure and maps the generator to the generator corresponds to
an embedding of shaded planar algebra P� ,! G�, where G� is the bipartite graph planar
algebra of the principal graph of M as a A-module generated by � C X and X is the
generator of A.

Now we choose M WD A to be a A-module category and pick the tensor functor � W
A! End�.A/ by c 7! �C c. Based on the discussion in Section 5.7 and Remark 7.8, the
tensor category End�0.M;F / WD �.A/ is equivalent to the 2-category C.Kƒ;evKƒ/, where
ƒ is the principal bipartite graph generated by�CX with generatorXD1C˝X˝1�2A,
we obtain the module embedding theorem:

Theorem 7.9. Every subfactor planar algebra P� embeds into the graph planar algebra
of its principal graph.

7.3. Tracial Markov lattices and pivotal bimodule categories

Definition 7.10. Let C ;D be rigid C� (multi)tensor categories with canonical unitary
dual functors respectively. We callM a semisimple pivotal C� C -D bimodule category, if
there exists a pivotal trace trM compatible with the spherical structures in C and D , i.e.,

trM
aBm.f / D trM

m

�
.ev�a B idm/ ı .id Na B f / ı .eva B idm/

�
;

trM
mCb.f / D trM

m

�
.idm C coev�

b
/ ı .f C id Nb/ ı .idm C coevb/

�
;

for f 2 End.a B m C b/, where m 2M, a 2 C , b 2 D .

Definition 7.11. Let M be a tracial Markov lattice (see Remark 4.3). We call M a tracial
standard A-B bimodule, where A;B are standard �-lattices, if trM jA D trA, trM jB D trB

and M is a standard A-B bimodule, see Definition 4.5.

Similar to Theorem 7.5, we have the following theorem:

Theorem 7.12. There is a bijective correspondence between equivalence classes of the
following:8̂̂<̂
:̂

Tracial Markov lattice M D

.Mi;j/i;j�0 with dim.M0;0/ D

1 as a standard A-B bimodule
over standard �-lattices A;B

9>>=>>; Š
8̂̂<̂
:̂

Pairs .M; Z/ with M an indecomposable
semisimple C� pivotal A-B bimodule
category together with a choice of simple
base object Z D 1C

A
B Z C 1C

B

9>>=>>; :
Equivalence on the left-hand side is the trace-preserving �-isomorphism on the tracial
Markov lattice as standard A-B bimodule; equivalence on the right-hand side is the piv-
otal unitary A-B bimodule equivalence between their Cauchy completions which maps
the simple base object to simple base object.

Let us look at the balanced .d0; d1/-fair square-partite graph .ƒ; !/ from the tracial
Markov lattice M . Similar to the tracial Markov tower case, edge-weighting comes from
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vertex-weighting. To be precise,

For P 2 V00 t V01;
X

¹eWP!QWQ2V10tV11º

�.Q/ D d0 � �.P /;

For P 2 V00 t V01;
X

¹eWP!QWQ2V01tV11º

�.Q/ D d1 � �.P /:

Remark 7.13. As for the biunitary connection, the computation does not change at all.
In fact, the biunitary connection is independent of the pivotal structure, see Proposi-
tion 6.13 (2) and Section 6.5. This now agrees with the usual definition of biunitary
connection for the tracial/pivotal case discussed in [12, 21, 32, 33].

Acknowledgments. The author would like to thank David Penneys and Corey Jones for
providing this project and some necessary techniques, including the idea of the 2-shift map
in a standard �-lattice, unitary dual functors, and biunitary connections for the pivotal
case. The author would like to thank Peter Huston for clarifying Lemma 2.24 and for
providing good writing suggestions. The author would like to thank Jamie Vicary for
clarifying the graphical calculus for 2-categories during the Summer Research Program
on Quantum Symmetries at Ohio State University, in 2019.

Funding. The author was supported by the Mathematics Department at Ohio State Uni-
versity as a Graduate Teaching Associate and David Penneys’ NSF DMS grant 1654159.

References

[1] Y. Arano and S. Vaes, C�-tensor categories and subfactors for totally disconnected groups. In
Operator algebras and applications—the Abel Symposium 2015, pp. 1–43, Abel Symp. 12,
Springer, Cham, 2017 Zbl 1375.46055 MR 3837590

[2] A. Bartels, C. L. Douglas, and A. Henriques, Dualizability and index of subfactors. Quantum
Topol. 5 (2014), no. 3, 289–345 Zbl 1406.46044 MR 3342166

[3] S. Bigelow, E. Peters, S. Morrison, and N. Snyder, Constructing the extended Haagerup planar
algebra. Acta Math. 209 (2012), no. 1, 29–82 Zbl 1270.46058 MR 2979509

[4] D. Bisch, Bimodules, higher relative commutants and the fusion algebra associated to a sub-
factor. In Operator algebras and their applications (Waterloo, ON, 1994/1995), pp. 13–63,
Fields Inst. Commun. 13, American Mathematical Society, Providence, RI, 1997
Zbl 0894.46046 MR 1424954

[5] R. D. Burstein, Automorphisms of the bipartite graph planar algebra. J. Funct. Anal. 259
(2010), no. 9, 2384–2403 Zbl 1216.46055 MR 2674118

[6] Q. Chen, R. Hernández Palomares, C. Jones, and D. Penneys, Q-system completion for C�

2-categories. J. Funct. Anal. 283 (2022), no. 3, article no. 109524 Zbl 1498.46075
MR 4419534

[7] D. Coles, P. Huston, D. Penneys, and S. Srinivas, The module embedding theorem via towers
of algebras. J. Funct. Anal. 280 (2021), article no. 108965 Zbl 1479.46074 MR 4227743

[8] P. Das, S. K. Ghosh, and V. P. Gupta, Perturbations of planar algebras. Math. Scand. 114
(2014), no. 1, 38–85 Zbl 1312.46056 MR 3178106

https://doi.org/10.1007/978-3-319-39286-8_1
https://zbmath.org/?q=an:1375.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=3837590
https://doi.org/10.4171/QT/53
https://zbmath.org/?q=an:1406.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=3342166
https://doi.org/10.1007/s11511-012-0081-7
https://doi.org/10.1007/s11511-012-0081-7
https://zbmath.org/?q=an:1270.46058
https://mathscinet.ams.org/mathscinet-getitem?mr=2979509
https://doi.org/10.1007/s002220050137
https://doi.org/10.1007/s002220050137
https://zbmath.org/?q=an:0894.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=1424954
https://doi.org/10.1016/j.jfa.2010.05.009
https://zbmath.org/?q=an:1216.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=2674118
https://doi.org/10.1016/j.jfa.2022.109524
https://doi.org/10.1016/j.jfa.2022.109524
https://zbmath.org/?q=an:1498.46075
https://mathscinet.ams.org/mathscinet-getitem?mr=4419534
https://doi.org/10.1016/j.jfa.2021.108965
https://doi.org/10.1016/j.jfa.2021.108965
https://zbmath.org/?q=an:1479.46074
https://mathscinet.ams.org/mathscinet-getitem?mr=4227743
https://doi.org/10.7146/math.scand.a-16639
https://zbmath.org/?q=an:1312.46056
https://mathscinet.ams.org/mathscinet-getitem?mr=3178106


Q. Chen 340

[9] K. De Commer and M. Yamashita, Tannaka-Kreı̆n duality for compact quantum homogeneous
spaces. I. General theory. Theory Appl. Categ. 28 (2013), 1099–1138 Zbl 1337.46045
MR 3121622

[10] K. De Commer and M. Yamashita, Tannaka-Kreı̆n duality for compact quantum homogeneous
spaces II. Classification of quantum homogeneous spaces for quantum SU.2/. J. Reine Angew.
Math. 708 (2015), 143–171 Zbl 1334.46050 MR 3420332

[11] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories. Math. Surveys Monogr.
205, American Mathematical Society, Providence, RI, 2015 Zbl 1365.18001 MR 3242743

[12] D. E. Evans and Y. Kawahigashi, Quantum symmetries on operator algebras. Oxford Math.
Monogr., Oxford University Press, New York, 1998 Zbl 0924.46054 MR 1642584

[13] G. Ferrer and R. Hernández Palomares, Classifying module categories for generalized
Temperley-Lieb-Jones �-2-categories. Internat. J. Math. 31 (2020), no. 4, article no. 2050027
Zbl 1440.18042 MR 4098904

[14] M. Frank and D. R. Larson, Frames in Hilbert C�-modules and C�-algebras. J. Operator
Theory 48 (2002), no. 2, 273–314 Zbl 1029.46087 MR 1938798

[15] P. Ghez, R. Lima, and J. E. Roberts,W �-categories. Pacific J. Math. 120 (1985), no. 1, 79–109
Zbl 0609.46033 MR 808930

[16] S. K. Ghosh, Planar algebras: a category theoretic point of view. J. Algebra 339 (2011), 27–54
Zbl 1242.46071 MR 2811311

[17] F. M. Goodman, P. de la Harpe, and V. F. R. Jones, Coxeter graphs and towers of algebras.
Math. Sci. Res. Inst. Publ. 14, Springer, New York, 1989 Zbl 0698.46050 MR 999799

[18] P. Grossman, S. Morrison, D. Penneys, E. Peters, and N. Snyder, The extended Haagerup
fusion categories. Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 2, 589–664 Zbl 07714642
MR 4598730

[19] M. Hartglass and D. Penneys, C�-algebras from planar algebras I: Canonical C�-algebras
associated to a planar algebra. Trans. Amer. Math. Soc. 369 (2017), no. 6, 3977–4019
Zbl 1373.46046 MR 3624399

[20] C. Jones and D. Penneys, Realizations of algebra objects and discrete subfactors. Adv. Math.
350 (2019), 588–661 Zbl 1426.46041 MR 3948170

[21] V. Jones and V. S. Sunder, Introduction to subfactors. London Math. Soc. Lecture Note Ser.
234, Cambridge University Press, Cambridge, 1997 MR 1473221

[22] V. F. R. Jones, Index for subfactors. Invent. Math. 72 (1983), no. 1, 1–25 Zbl 0508.46040
MR 696688

[23] V. F. R. Jones, The planar algebra of a bipartite graph. In Knots in Hellas ’98 (Delphi), pp.
94–117, Ser. Knots Everything 24, World Sci. Publ., River Edge, NJ, 2000 Zbl 1021.46047
MR 1865703

[24] V. F. R. Jones, Planar algebras, I. New Zealand J. Math. 52 (2021), 1–107 Zbl 1484.46067
MR 4374438

[25] V. F. R. Jones and D. Penneys, The embedding theorem for finite depth subfactor planar alge-
bras. Quantum Topol. 2 (2011), no. 3, 301–337 Zbl 1230.46055 MR 2812459

[26] T. Kajiwara and Y. Watatani, Jones index theory by Hilbert C�-bimodules and K-theory.
Trans. Amer. Math. Soc. 352 (2000), no. 8, 3429–3472 Zbl 0954.46034 MR 1624182

[27] Z. Liu, A universal skein theory for subfactor planar algebras. 2014, Talk in Subfactor Seminar,
https://math.vanderbilt.edu/peters10/subfactor_seminar_fall_2014.html visited on 15 Decem-
ber 2023

[28] Z. Liu, Composed inclusions of A3 and A4 subfactors. Adv. Math. 279 (2015), 307–371
Zbl 1330.46061 MR 3345186

https://zbmath.org/?q=an:1337.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=3121622
https://doi.org/10.1515/crelle-2013-0074
https://doi.org/10.1515/crelle-2013-0074
https://zbmath.org/?q=an:1334.46050
https://mathscinet.ams.org/mathscinet-getitem?mr=3420332
https://doi.org/10.1090/surv/205
https://zbmath.org/?q=an:1365.18001
https://mathscinet.ams.org/mathscinet-getitem?mr=3242743
https://zbmath.org/?q=an:0924.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=1642584
https://doi.org/10.1142/S0129167X20500275
https://doi.org/10.1142/S0129167X20500275
https://zbmath.org/?q=an:1440.18042
https://mathscinet.ams.org/mathscinet-getitem?mr=4098904
https://zbmath.org/?q=an:1029.46087
https://mathscinet.ams.org/mathscinet-getitem?mr=1938798
https://doi.org/10.2140/pjm.1985.120.79
https://zbmath.org/?q=an:0609.46033
https://mathscinet.ams.org/mathscinet-getitem?mr=808930
https://doi.org/10.1016/j.jalgebra.2011.04.017
https://zbmath.org/?q=an:1242.46071
https://mathscinet.ams.org/mathscinet-getitem?mr=2811311
https://doi.org/10.1007/978-1-4613-9641-3
https://zbmath.org/?q=an:0698.46050
https://mathscinet.ams.org/mathscinet-getitem?mr=999799
https://doi.org/10.24033/asens.2541
https://doi.org/10.24033/asens.2541
https://zbmath.org/?q=an:07714642
https://mathscinet.ams.org/mathscinet-getitem?mr=4598730
https://doi.org/10.1090/tran/6781
https://doi.org/10.1090/tran/6781
https://zbmath.org/?q=an:1373.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=3624399
https://doi.org/10.1016/j.aim.2019.04.039
https://zbmath.org/?q=an:1426.46041
https://mathscinet.ams.org/mathscinet-getitem?mr=3948170
https://doi.org/10.1017/CBO9780511566219
https://mathscinet.ams.org/mathscinet-getitem?mr=1473221
https://doi.org/10.1007/BF01389127
https://zbmath.org/?q=an:0508.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=696688
https://doi.org/10.1142/9789812792679_0008
https://zbmath.org/?q=an:1021.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=1865703
https://doi.org/10.53733/172
https://zbmath.org/?q=an:1484.46067
https://mathscinet.ams.org/mathscinet-getitem?mr=4374438
https://doi.org/10.4171/QT/23
https://doi.org/10.4171/QT/23
https://zbmath.org/?q=an:1230.46055
https://mathscinet.ams.org/mathscinet-getitem?mr=2812459
https://doi.org/10.1090/S0002-9947-00-02392-8
https://zbmath.org/?q=an:0954.46034
https://mathscinet.ams.org/mathscinet-getitem?mr=1624182
https://math.vanderbilt.edu/peters10/subfactor_seminar_fall_2014.html
https://doi.org/10.1016/j.aim.2015.03.017
https://zbmath.org/?q=an:1330.46061
https://mathscinet.ams.org/mathscinet-getitem?mr=3345186


Standard �-lattices, rigid C� tensor categories, and (bi)modules 341

[29] Z. Liu, S. Morrison, and D. Penneys, 1-supertransitive subfactors with index at most 615 .
Comm. Math. Phys. 334 (2015), no. 2, 889–922 Zbl 1330.46062 MR 3306607

[30] R. Longo, Index of subfactors and statistics of quantum fields. II. Correspondences, braid
group statistics and Jones polynomial. Comm. Math. Phys. 130 (1990), no. 2, 285–309
Zbl 0705.46038 MR 1059320

[31] R. Longo and J. E. Roberts, A theory of dimension. K-Theory 11 (1997), no. 2, 103–159
Zbl 0874.18005 MR 1444286

[32] S. Morrison, D. Penneys, E. Peters, and N. Snyder, Subfactors of index less than 5, Part 2:
Triple points. Internat. J. Math. 23 (2012), no. 3, article no. 1250016 Zbl 1246.46054
MR 2902285

[33] S. Morrison and E. Peters, The little desert? Some subfactors with index in the interval .5; 3C
p
5/. Internat. J. Math. 25 (2014), no. 8, article no. 1450080 Zbl 1314.46074 MR 3254427

[34] S. Morrison and K. Walker, The graph planar algebra embedding theorem. 2010, http://tqft.net/
gpa visited on 15 December 2023

[35] M. Müger, From subfactors to categories and topology. I. Frobenius algebras in and Morita
equivalence of tensor categories. J. Pure Appl. Algebra 180 (2003), no. 1-2, 81–157
Zbl 1033.18002 MR 1966524

[36] A. Ocneanu, Quantized groups, string algebras and Galois theory for algebras. In Operator
algebras and applications, Vol. 2, pp. 119–172, London Math. Soc. Lecture Note Ser. 136,
Cambridge University Press, Cambridge, 1988 Zbl 0696.46048 MR 996454

[37] D. Penneys, Unitary dual functors for unitary multitensor categories. High. Struct. 4 (2020),
no. 2, 22–56 Zbl 1457.18019 MR 4133163

[38] S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor. Invent.
Math. 120 (1995), no. 3, 427–445 Zbl 0831.46069 MR 1334479

[39] D. J. Reutter and J. Vicary, Biunitary constructions in quantum information. High. Struct. 3
(2019), no. 1, 109–154 Zbl 1419.18008 MR 3939047

[40] G. Schaumann, Traces on module categories over fusion categories. J. Algebra 379 (2013),
382–425 Zbl 1291.18011 MR 3019263

[41] J. K. Schou, Commuting squares and index for subfactors. Ph.D. thesis, Odense University,
1990, arXiv:1304.5907

[42] P. Selinger, A survey of graphical languages for monoidal categories. In New structures for
physics, pp. 289–355, Lecture Notes in Phys. 813, Springer, Heidelberg, 2011
Zbl 1217.18002 MR 2767048

[43] Y. Watatani, Index for C�-subalgebras. Mem. Amer. Math. Soc. 83 (1990), no. 424, 117 pp.
Zbl 0697.46024 MR 996807

[44] S. Yamagami, Frobenius reciprocity in tensor categories. Math. Scand. 90 (2002), no. 1, 35–56
Zbl 1019.18005 MR 1887093

[45] S. Yamagami, Frobenius duality in C�-tensor categories. J. Operator Theory 52 (2004), no. 1,
3–20 Zbl 1078.46045 MR 2091457

Communicated by Wilhelm Winter

Received 13 October 2020; revised 22 February 2023.

Quan Chen
Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, TN 37240,
USA; quan.chen@vanderbilt.edu

https://doi.org/10.1007/s00220-014-2160-4
https://zbmath.org/?q=an:1330.46062
https://mathscinet.ams.org/mathscinet-getitem?mr=3306607
https://doi.org/10.1007/BF02473354
https://doi.org/10.1007/BF02473354
https://zbmath.org/?q=an:0705.46038
https://mathscinet.ams.org/mathscinet-getitem?mr=1059320
https://doi.org/10.1023/A:1007714415067
https://zbmath.org/?q=an:0874.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=1444286
https://doi.org/10.1142/S0129167X11007586
https://doi.org/10.1142/S0129167X11007586
https://zbmath.org/?q=an:1246.46054
https://mathscinet.ams.org/mathscinet-getitem?mr=2902285
https://doi.org/10.1142/S0129167X14500803
https://doi.org/10.1142/S0129167X14500803
https://zbmath.org/?q=an:1314.46074
https://mathscinet.ams.org/mathscinet-getitem?mr=3254427
http://tqft.net/gpa
http://tqft.net/gpa
https://doi.org/10.1016/S0022-4049(02)00247-5
https://doi.org/10.1016/S0022-4049(02)00247-5
https://zbmath.org/?q=an:1033.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=1966524
https://zbmath.org/?q=an:0696.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=996454
https://doi.org/10.21136/HS.2020.09
https://zbmath.org/?q=an:1457.18019
https://mathscinet.ams.org/mathscinet-getitem?mr=4133163
https://doi.org/10.1007/BF01241137
https://zbmath.org/?q=an:0831.46069
https://mathscinet.ams.org/mathscinet-getitem?mr=1334479
https://doi.org/10.21136/HS.2019.04
https://zbmath.org/?q=an:1419.18008
https://mathscinet.ams.org/mathscinet-getitem?mr=3939047
https://doi.org/10.1016/j.jalgebra.2013.01.013
https://zbmath.org/?q=an:1291.18011
https://mathscinet.ams.org/mathscinet-getitem?mr=3019263
https://arxiv.org/abs/1304.5907
https://doi.org/10.1007/978-3-642-12821-9_4
https://zbmath.org/?q=an:1217.18002
https://mathscinet.ams.org/mathscinet-getitem?mr=2767048
https://doi.org/10.1090/memo/0424
https://zbmath.org/?q=an:0697.46024
https://mathscinet.ams.org/mathscinet-getitem?mr=996807
https://doi.org/10.7146/math.scand.a-14360
https://zbmath.org/?q=an:1019.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=1887093
https://zbmath.org/?q=an:1078.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=2091457
mailto:quan.chen@vanderbilt.edu

	1. Introduction
	2. Standard \lambda-lattices and tensor category
	2.1. Traceless Markov tower and its properties
	2.2. Standard \lambda-lattice and its properties
	2.3. The 2-shift map
	2.4. String diagram explanation
	2.5. Some useful lemmas
	2.6. From standard \lambda-lattice to pivotal planar tensor category
	2.6.1 Planar tensor category
	2.6.2 From standard \lambda-lattice to pivotal planar tensor category

	2.7. From 2-shaded rigid C^\ast multitensor category to standard \lambda-lattice
	2.7.1 Rigid C^\ast multitensor category
	2.7.2 2-shaded rigid C^\ast multitensor category with a choice of the generator and planar tensor category
	2.7.3 From planar tensor category to standard \lambda-lattice


	3. Markov towers as standard right module over standard \lambda-lattice and module categories
	3.1. Markov tower as a standard right module over standard \lambda-lattice
	3.2. String diagram explanation
	3.3. From Markov tower as a standard module to planar module category
	3.3.1 Planar module category over planar tensor category
	3.3.2 From Markov tower as a standard module to planar module category

	3.4. Indecomposable semisimple C^\ast \mathcal{A}-module categories and planar \mathcal{A}_0-module categories
	3.4.1 Indecomposable semisimple C^\ast \mathcal{A}-module category
	3.4.2 From planar module category to Markov tower as a standard module over a standard \lambda-lattice


	4. Markov lattices as standard bimodule over two standard \lambda-lattices and bimodule categories
	4.1. Markov lattice and basic properties
	4.2. Markov lattice as a standard bimodule over two standard \lambda-lattices
	4.3. String diagram explanation
	4.4. From Markov lattice as standard bimodule to planar bimodule category
	4.4.1 Planar bimodule category
	4.4.2 From Markov lattice as standard bimodule to planar bimodule category

	4.5. Indecomposable semisimple C^\ast \mathcal{A}-\mathcal{B} bimodules and planar \mathcal{A}_0-\mathcal{B}_0 bimodule categories
	4.5.1 Indecomposable semisimple C^\ast \mathcal{A}-\mathcal{B} bimodule category
	4.5.2 From planar bimodule to Markov lattice as standard bimodule


	5. Markov towers, bigraded Hilbert spaces, and balanced fair graphs
	5.1. Balanced d-fair bipartite graph
	5.2. \mathsf{BigHilb} and 2-subcategory \mathcal{C}(K,ev_K)
	5.3. The 2-subcategory of \mathsf{BigHilb} generated by a balanced d-fair bipartite graph
	5.4. From \mathcal{C}(K,ev_K) to Markov tower
	5.5. More properties of Markov tower
	5.6. From Markov tower to \mathcal{C}(\Lambda,\omega)
	5.7. \mathcal{C}(K,ev_K) and End^\dag_0(\mathcal{M},F)

	6. Markov lattices and biunitary connections
	6.1. Balanced (d_0,d_1)-fair square-partite graph
	6.2. 2-subcategory \mathcal{C}(K_0,K_1,L_0,L_1,ev) of \mathsf{BigHilb} and biunitary connection \Phi
	6.3. From \mathcal{C}(\Phi) to Markov lattice
	6.4. From Markov lattice to \mathcal{C}(\Gamma,\omega;\Phi)
	6.5. \mathcal{C}(\Phi) and End_0^\dagger(\mathcal{M},F,G)
	6.6. Commuting square of finite dimensional C^\ast-algebras

	7. The tracial case
	7.1. Tracial Markov towers and pivotal module categories
	7.2. The module embedding theorem
	7.3. Tracial Markov lattices and pivotal bimodule categories

	References

