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Geometric pushforward in Hodge filtered complex
cobordism and secondary invariants

Knut Bjarte Haus and Gereon Quick

Abstract. We construct a functorial pushforward homomorphism in geometric Hodge filtered com-
plex cobordism along proper holomorphic maps between arbitrary complex manifolds. This signif-
icantly improves previous results on such transfer maps and is a much stronger result than the ones
known for differential cobordism of smooth manifolds. This enables us to define and provide a
concrete geometric description of Hodge filtered fundamental classes for all proper holomorphic
maps. Moreover, we give a geometric description of a cobordism analog of the Abel–Jacobi invari-
ant for nullbordant maps which is mapped to the classical invariant under the Hodge filtered Thom
morphism. For the latter we provide a new construction in terms of geometric cycles.
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1. Introduction

The study of the analytic submanifolds of a given compact Kähler manifold is a central
theme in complex geometry. Fundamental classes provide important invariants for this
study. For a classical example, letX be a compact Kähler manifold andZ �X a subman-
ifold of codimension p. The Poincaré dual of the pushforward of the fundamental class of
Z along the inclusion defines a cohomology class ŒZ� in H 2p.X IZ/. In fact, ŒZ� lies in
the subgroup Hdg2p.X/ D H 2p.X IZ/ \Hp;p.X IC/ of integral classes of Hodge type
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.p; p/. This induces a homomorphism from the free abelian group Zp.X/ generated by
submanifolds of codimension p of X to Hdg2p.X/. This map lifts to a homomorphism to
Deligne cohomology H 2p

D
.X IZ.p//. The latter group fits in the short exact sequence

0! J 2p�1.X/! H
2p

D

�
X IZ.p/

�
! Hdg2p.X/! 0; (1.1)

where J 2p�1.X/ denotes Griffiths’ intermediate Jacobian (see for example [24, Sec-
tion 12]). On the subgroup Z

p
hom.X/ of submanifolds whose fundamental class is homo-

logically trivial sequence (1.1) induces the Abel–Jacobi map Z
p
hom.X/ ! J 2p�1.X/.

As described in [24, Section 12.1] this map has a concrete geometric description via
evaluating integrals over singular cycles in X , and one may consider it as a secondary
cohomology invariant. In [19, 20] Karoubi constructed an analog of Deligne cohomology
for complex K-theory over complex manifolds in which secondary invariants for vector
bundles can be defined (see also [9]). In [16], Hopkins and Quick show that there is a
bigraded analog of Deligne cohomology ED for every rationally even cohomology the-
ory E. If X is a compact Kähler manifold, there is a short exact sequence

0! J
2p�1
E .X/! E

2p

D
.p/.X/! Hdg2pE .X/! 0

generalizing sequence (1.1). Let X be a smooth projective complex algebraic variety and
zMp.X/ be the free abelian group generated by isomorphism classes Œf � of projective

smooth morphisms f W Y ! X of codimension p between complex algebraic varieties.
Based on the work of Levine and Morel [21] on algebraic cobordism, it is shown in [16]
that forE DMU there is a natural homomorphism y'W zMp.X/!MU

2p

D
.p/.X/whereX

also denotes the underlying complex manifold of complex points of X . On the subgroup
zMp.X/top of topologically cobordant maps this induces an Abel–Jacobi type homomor-

phism AJW zMp.X/top ! J
2p�1
MU .X/. This homomorphism has been studied in more detail

in [22]. However, both y' and AJ are only defined for complex algebraic varieties and are
not induced by a geometric procedure as their classical analogs, but by a rather abstract
machinery.

In [14], the authors define for every complex manifold X and integers n and p, geo-
metric Hodge filtered complex cobordism groups MU n.p/.X/ recalled below. The main
result of [14] is that there is a natural isomorphism of Hodge filtered cohomology groups

MU nD.p/.X/ ŠMU n.p/.X/: (1.2)

The aim of the present paper is to construct pushforward homomorphisms along proper
holomorphic maps for geometric Hodge filtered cobordism. This will allow us to give
a concrete description of the Hodge filtered fundamental classes of holomorphic maps
f WY ! X for any complex manifold X and of the Abel–Jacobi invariant AJ for topolog-
ically trivial cobordism cycles on compact Kähler manifolds. We note that the results of
the present paper are independent of the comparison isomorphism (1.2) of [14]. The only
results from [14] that we assume here are the verification of some natural properties of the
groups MU n.p/.X/.
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We will now briefly describe the construction of the groups MU n.p/.X/ of [14]
which we also recall in more detail in Section 2 and will then describe our main results in
more detail. Consider the genus �WMU� ! V� WD MU� ˝Z C given by multiplication
by .2�i/n in degree 2n. By Thom’s theorem,MUn is the bordism group of n-dimensional
almost complex manifolds Z. Hirzebruch showed that any genus �WMU� ! V� is of the
form

�.Z/ D

Z
Z

�
K�.TZ/

��1
for a multiplicative sequenceK� , where TZ denotes the tangent bundle of Z. This yields
a V�-valued characteristic class of complex vector bundles. For p 2 Z, we consider the
characteristic classKp D .2�i/p �K� . Ifr is a connection on a complex vector bundleE,
Chern–Weil theory gives a formKp.r/ representingKp.E/. Given a form ! on Z and a
proper oriented map f WZ! X , we consider the pushforward current f�!, which acts on
compactly supported forms on X by � 7!

R
Z
! ^ f �� . We define Hodge filtered cobor-

dism cycles as triples .f;r; h/ where f is a proper complex-oriented map f WZ ! X ,
r is a connection on the complex stable normal bundle of f and h is a current on X such
that

f�K
p.r/ � dh is a smooth form in F pAn.X IV�/:

After defining a suitable Hodge filtered bordism relation we obtain the groupMU n.p/.X/
of Hodge filtered cobordism classes. The main new technical contribution of the present
paper is the construction of pushforwards for geometric Hodge filtered complex cobor-
dism.

Theorem 1.1. Let gWX ! Y be a proper holomorphic map between complex manifolds
of complex codimension d D dimC Y � dimC X . Then there is a pushforward homomor-
phism of MU �.�/.Y /-modules

g�WMU n.p/.X/!MU nC2d .p C d/.Y /

which is functorial for proper holomorphic maps and compatible with pullbacks.

In [16, Section 7], the authors show that there is an MUD -pushforward along projec-
tive morphisms between smooth projective complex varieties. In fact, they show that there
are pushforward maps for a logarithmically refined version of MUD for quasi-projective
smooth complex varieties, as a rather formal consequence of the projective bundle for-
mula. This theory coincides with MUD for projective smooth complex varieties. Hence,
assuming the comparison isomorphism (1.2) of [14], Theorem 1.1 extends the existence
of pushforwards to a significantly larger class of maps than the one in [16]. Since pushfor-
wards in cohomology g�WMU n.X/! MU nC2d .Y / only exist for proper and complex
oriented continuous maps of (real) codimension d , the class of proper holomorphic maps
is the largest possible subclass of holomorphic maps for which a pushforward with good
properties may exist.
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The construction of g� in Theorem 1.1 is similar to the one of pushforwards for dif-
ferential cobordism for smooth manifolds in [5]. However, the pushforward in differential
cobordism exists only for proper submersions with a choice of a smoothMU -orientation.
We will now explain why the pushforward for Hodge filtered cobordism exists for all
proper holomorphic maps. In Section 3 we first define the group of a Hodge filteredMU -
orientation as a Grothendieck group of triples .E;r; �/ where E is a complex vector
bundle with connection r and � is a form on X such that K.r/ � d� 2 F 0A0.X IV�/.
The relations involve a Chern–Simons transgression form associated to the multiplicative
sequenceK. A Hodge filteredMU -oriented map is then a holomorphic map with a lift of
the stable normal bundle to the group of Hodge filtered MU -orientations. Then we show
in Section 4 that there is a pushforward along every proper Hodge filtered MU -oriented
map. Finally, we show in Section 5 that there is a canonical choice of a Hodge filtered
MU -orientation for every proper holomorphic map. The key idea is a variation of a result
of Karoubi’s [19, Theorem 6.7] which establishes a mapping of virtual holomorphic vector
bundles to the group of Hodge filtered MU -orientations by picking a Bott connection.1

Applying this result to the virtual normal bundle of a holomorphic map defines a canonical
orientation which we call the Bott orientation.

Another crucial point for the construction of pushforwards is that there is a currential
version of Hodge filtered cobordism which we introduce in Section 2.3. A key difference
to differential cohomology theories on smooth manifolds, such as differential cobordism
or differential K-theory, is that, for Hodge filtered cobordism, the currential description
and the one using forms are canonically isomorphic. This is not the case for differen-
tial theories as explained for differential K-theory in [10], where particularly the exact
sequences [10, (2.20)] and [10, (2.29)] make it clear that the smooth and currential dif-
ferential K-theory groups are different in general. The main reason is that the space of
closed currents Dn.X/cl is strictly larger than the space of closed forms An.X/cl. In
the Hodge filtered context, however, we use Hn.X I F pA�/ and Hn.X I F pD�/, and
Hn.X IA�=F p/ and Hn.X ID�=F p/ instead of An.X/= Im.d/ and Dn.X/= Im.d/.
Since the Dolbeault–Grothendieck lemma holds both for currents and forms, in both cases
the canonical map from the first to the second group is an isomorphism (see Lemma 2.2
and Theorem 2.16).

We will now describe the remaining content and results of the paper. In Section 4,
we show that the pushforward is functorial, compatible with pullbacks and satisfies a
projection formula. In Section 6, we introduce the Hodge filtered fundamental class Œf �D
f�.1/ 2MU 2p.p/.X/ associated to a holomorphic map f WY ! X of codimension p as
the pushforward of the unit element along f . If X is a compact Kähler manifold and f
is a nullbordant proper holomorphic map, then Œf � has image in the subgroup J 2p�1MU .X/

which has the structure of a complex torus. In this case we also write AJ.f / WD Œf � for the

1The notion of Bott connection in [19, Section 6] is a generalization of Bott connections in foliation
theory. For complex manifolds, Bott connections are connections compatible with the holomorphic struc-
ture.
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class of f in J 2p�1MU .X/. Since the pushforward f� has a geometric construction, we are
able to give a geometric description of the secondary invariant AJ.f / in Section 6. The
main ingredient in the formulas are certain Chern–Simons transgression forms as in [6]
mediating between an arbitrary connection on the normal bundleNf and Bott connections
on the corresponding tangent bundles. In Section 7 we present a cycle model for Deligne
cohomology inspired by but slightly simpler than the one of Gillet and Soulé in [11].
The main difference is that we use currents of integration instead of integral currents in
the sense of geometric measure theory (see also [13]). The new construction may be of
independent interest and useful for other applications. This enables us to give a cycle
description of the Hodge filtered Thom morphism MU n

D
.p/.X/ ! Hn

D
.X IZ.p// for

every complex manifoldX and integers n and p. In Section 8, we report on our knowledge
of the current status of examples and phenomena related to the kernel and image of the
Hodge filtered Thom morphism for compact Kähler manifolds.

2. Currential geometric Hodge filtered cobordism

First we briefly recall some facts about currents and the construction of geometric Hodge
filtered complex cobordism groups from [14]. Then we introduce a currential version of
Hodge filtered cobordism.

2.1. Currents

LetX be a smooth manifold and letƒX denote the orientation bundle ofX. Let A�c.XIƒX/

be the space of compactly supported smooth forms on X with values in ƒX . Let D�.X/
denote the space of currents on X , defined as the topological dual of A�c .X IƒX /. Given
a form ! 2 A�.X/ and a current T 2 D�.X/, their product acts by

T ^ !.�/ D T .! ^ �/:

There is an injective map A�.X/ ,! D�.X/ given by

! 7! T! D

�
� 7!

Z
X

! ^ �; � 2 A�c .X IƒX /

�
:

We equip D� with a grading so that this injection preserves degrees. That is, Dk.X/ con-
sists of the currents which vanish on a homogeneous ƒX -valued form � , unless possibly
if deg � D dimRX � k. We will not always distinguish ! from T! in our notation.

If X is a manifold without boundary, Stokes’ theorem implies for ! 2 Ak.X/:

Td!.�/ D .�1/
kC1T!.d�/:

Hence the exterior differential can be extended to a map d WDk.X/! DkC1.X/ by

dT .�/ D .�1/kC1T .d�/:
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For a vector space V we set D�.X IV /DD�.X/˝ V , and for an evenly graded complex
vector space V� D j̊V2j we set

Dn.X IV�/ D
M
j

DnC2j .X IV2j /:

An orientation of a map f WZ ! X is equivalent to an isomorphism ƒZ Š f
�ƒX . If f

is proper and oriented, we therefore get a map

f �WA�c .X IƒX /! A�c .ZIƒZ/

which induces a homomorphism

f�WD
�.Z/! D�Cd .X/;

where d D codimf D dimX � dimZ. We also denote by f� the homomorphism

D�.ZIV�/! D�.X IV�/

induced by tensoring f� with the identity of the various V2j . We then have the identity

d ı f� D .�1/
df� ı d:

Remark 2.1. In the case of a submersion � WW ! X the pushforward �� preserves
smoothness. We thus obtain the integration over the fiber mapZ

W=X

WA�.W /! A�Cd .X/

defined by the equation
TR

W=X !
D ��T! :

Now we assume that X is a complex manifold. Then the space of currents is bigraded
as follows. We write Dp;q.X/ for the subgroup of those currents which vanish on com-
pactly supported .p0; q0/-forms unless p0 C p D dimC X D q0 C q. Then A�;�.X/!

D�;�.X/, ! 7! T! , is a morphism of double complexes. The Hodge filtration on currents
is defined by

F pDn.X/ D
M
i�p

Di;n�i .X/:

For an evenly graded complex vector space V� we set

F pDn.X IV�/ WD
M
j

F pCjDnC2j .X IV2j /;

Dn

F p
.X IV�/ WD

M
j

DnC2j .X IV2j /

F pCjDnC2j .X IV2j /
:

With similar notation for F pA�.X IV�/ and A�

F p
.X IV�/we get the following result which

will be crucial for the proof of Theorem 2.16.
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Lemma 2.2. LetX be a complex manifold. For every p, the maps of complexes of sheaves

F pA�.V�/! F pD�.V�/ and
A�

F p
.V�/!

D�

F p
.V�/

are quasi-isomorphisms on the site of open subsets of X .

Proof. It suffices to prove the assertions for V� D C. Let�p be the sheaf of holomorphic
p forms on X . The maps of complexes

�p ! Ap;�
! Dp;�

are quasi-isomorphisms by the Dolbeault–Grothendieck lemma as formulated and proven
in [12, pp. 382–385] (see also [8, Lemma 3.29, p. 28]), where we consider �p as a com-
plex concentrated in a single degree. The sheaves Ap;q and Dp;q , being modules over A0,
are fine. Therefore, it follows from [24, Lemma 8.5] that the solid inclusions

��>p

zz $$

F pA� // F pD�

are quasi-isomorphisms. This implies that the dotted arrow is a quasi-isomorphism and
proves the first assertion. By the same argument we have de Rham’s theorem and the
inclusion A� ! D� is a quasi-isomorphism. Hence the induced map between the coker-
nels of the maps A� ! D� and F pA� ! F pD� is a quasi-isomorphism as well. This
proves the second assertion.

2.2. Geometric Hodge filtered cobordism groups

Webrieflyrecall the construction of thegeometricHodge filtered cobordism groups of [14].
For further details we refer to [14, Section 2]. Let ManC denote the category of complex
manifolds with holomorphic maps. For X 2 ManC let f WZ ! X be a proper complex-
oriented map, and let Nf be a complex vector bundle which represents the stable normal
bundle of f . Let rf be a connection onNf . We call the triple Qf D .f;Nf ;rf / a geomet-
ric cycle over X . We let AZMU n.X/ denote the abelian group generated by isomorphism
classes, in the obvious sense, of geometric cycles over X of codimension n with the rela-
tions

Qf1 C Qf2 D Qf1 t Qf2:

Let MU� be the graded ring with MUn D MU�n.pt/. A map of rings MU� ! R

for R an integral domain over Q is called a complex genus. Complex genera may be
constructed in the following way. For each i 2 N, let xi be an indeterminate of degree i .
Let Q 2 RJyK be a formal power series in the variable y of degree 2. Let �i denote the
i -th elementary symmetric function in x1; x2; : : : : We may then define a sequence of
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polynomials KQi satisfying

KQ.�1; �2; : : :/ D 1CK
Q
2 .�1/CK

Q
4 .�1; �2/C � � � D

1Y
iD1

Q.xi /

since the right-hand side is symmetric in the xi . Then we get a characteristic class KQ

defined on a complex vector bundle E ! X of dimension n by

KQ.E/ WD KQ
�
c1.E/; : : : ; cn.E/

�
2 H�.X IR/;

where ci .E/ denotes the i -th Chern class of E. In fact, by [15, Section 1.8], all genera are
of the form

�Q
�
ŒX�

�
D

Z
X

KQ.NX /;

where NX denotes the complex vector bundle representing the stable normal bundle of X
obtained from the complex orientation ofX! pt. From now on we set V� WDMU�˝Z C.
We assume that the power series Q.y/ D 1C r1y C r2y2 C � � � has total degree 0. This
is equivalent to assuming �Q to be a degree-preserving genus. Then KQ.E/ has total
degree 0. By [5, Lemma 3.26], �Q extends to a morphism of multiplicative cohomology
theories

�QWMU n.X/! Hn.X IV�/

by

�Q
�
Œf �
�
D f�K

Q.Nf /:

HereHn.X IV�/Š
L
j H

nC2j .X IV2j /, so that in particularH�2j .ptIV�/Š V2j . Now
we fix the multiplicative natural transformation

�WMU �.X/! H�.X IV�/

characterized by restricting to multiplication with .2�i/k on MU2k !MU2k ˝C. Let

K D 1CK2.�1/CK4.�1; �2/C � � �

be the multiplicative sequence satisfying �.Œf �/ D f�K.Nf /. For p 2 Z we set Kp D
.2�i/p �K and

�p
�
Œf �
�
D f�K

p.Nf /:

Let f WZ ! X be a proper complex-oriented map, and let rf be a connection on Nf .
By Chern–Weil theory there is a well-defined form c.rf / 2 A�.Z/ representing the total
Chern class c.Nf /. In fact, with respect to local coordinates, we have

c.rf / D 1C c1.rf /C c2.rf /C � � � D det
�
I �

1

2�i
F rf

�
;
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where F rf denotes the curvature of rf . Then the form

K.rf / WD K
�
c1.rf /; c2.rf /; : : :

�
2 A0.ZIV�/

represents the cohomology class K.Nf /.

Definition 2.3. For a geometric cycle Qf 2 AZMU n.X/ we define, using the orientation
of f induced by its complex orientation, the current

�p. Qf / D f�K
p.rf / 2 Dn.X IV�/:

Note that �p. Qf / is a closed current representing the cohomology class

�p
�
Œf �
�
D f�K

p.Nf / 2 H
n.X IV�/:

By de Rham’s work [7, Theorem 14] we can always find a current h 2 Dn�1.X IV�/ such
that

�p. Qf / � dh D f�K
p.rf / � dh is a form, i.e., lies in An.X IV�/:

Definition 2.4. Let X be a complex manifold and n, p integers. The group of Hodge
filtered cycles of degree .n; p/ on X is defined as the subgroup

ZMU n.p/.X/ �
� AZMU n.X/ �Dn�1.X IV�/=dD

n�2.X IV�/
�

consisting of pairs 
 D . Qf ; h/ satisfying

f�K
p.rf / � dh 2 F

pAn.X IV�/:

Remark 2.5. To simplify the notation, we will often write � andK instead of �p andKp ,
respectively. We may sometimes consider a Hodge filtered cobordism cycle as a triple


 D . Qf ; !; h/ 2 AZMU n.X/ � F pAn.X IV�/ �Dn�1.X IV�/=dD
n�2.X IV�/;

where . Qf ; h/ 2 ZMU n.p/.X/ and the form ! WD �. Qf / � dh D f�K.rf / � dh.

Next we introduce the cobordism relation. The group of geometric bordism data over
X is the subgroup of elements Qb 2 AZMU n.R � X/, with underlying maps of the form
b D .cb; f /WW ! R �X such that 0 and 1 are regular values for cb . Then Wt D c�1b .t/

is a closed manifold for t D 0; 1, and ft D f jWt is a geometric cycle. We define

@ Qb WD Qf1 � Qf0 2 AZMU n.X/

and, setting WŒ0;1� D c�1b .Œ0; 1�/, we define the current

 p. Qb/ WD .�1/n.f jWŒ0;1�/�
�
Kp.rb/

�
: (2.1)

We will often write  instead of  p to simplify the notation. By [14, Proposition 2.17], a
geometric bordism datum Qb over X satisfies

�p.@ Qb/ � d p. Qb/ D 0:
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Hence we consider .@ Qb;  p. Qb// as a Hodge filtered cycle of degree .codim b; p/. We call
such cycles nullbordant and let BMU ngeo.p/.X/ � ZMU n.p/.X/ denote the subgroup
they generate. We follow Karoubi in [19, Section 4.1] and denote

zF pAn�1.X IV�/ WD F
pAn�1.X IV�/C dAn�2.X IV�/: (2.2)

We define the map

aW d�1
�
F pAn.X IV�/

�n�1
! ZMU n.p/.X/; a.h/ WD .0; h/; (2.3)

where d�1.F pAn.X IV�//
n�1 denotes the subset of elements in An�1.X IV�/ which are

sent to the subgroup F pAn.X IV�/ under d WAn�1.X IV�/! An.X IV�/. The group of
Hodge filtered cobordism relations is defined as

BMU n.p/.X/ D BMU ngeo.p/.X/C a
�
zF pAn�1.X IV�/

�
:

Definition 2.6. Let X 2ManC and let n and p be integers. The geometric Hodge filtered
cobordism group of X of degree .n; p/ is defined as the quotient

MU n.p/.X/ WD
ZMU n.p/.X/

BMU n.p/.X/
:

We denote the Hodge filtered cobordism class of the cycle 
 D . Qf ; h/ D .f; Nf ;rf ; h/
by Œ
� D Œ Qf ; h� D Œf;Nf ;rf ; h�.

We define maps R and I on the level of cycles as follows:

RWZMU n.p/.X/! F pAn.X IV�/cl; R. Qf ; h/ D f�K.rf / � dh;

I WZMU n.p/.X/! ZMU n.X/; I. Qf ; h/ D f:
(2.4)

Note that the maps R, I , and a above induce well-defined homomorphisms on cohomol-
ogy by [14, Proposition 2.19].

Remark 2.7. Note that ŒR.
/� D �.I.
//. In that sense, R refines the topological infor-
mation of I with Hodge filtered differential geometric content. It is shown in [14] that
R and I fit in a homotopy pullback in a suitable model category which can be used to
construct Hodge filtered cobordism.

For the following theorem we let x� denote the composition of � with the homomor-
phism induced by reducing the coefficients modulo F p .

Theorem 2.8. For every p 2 Z, the assignment X 7! MU �.p/.X/ has the following
properties:

• For every X 2ManC there is the following long exact sequence:

� � � // Hn�1
�
X I A�

F p
.V�/

� a // MU n.p/.X/
I // MU n.X/

x�
// Hn

�
X I A�

F p
.V�/

� a // MU nC1.p/.X/ // � � � :
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• For every holomorphic map gWY ! X and every n there is a homomorphism

g�WMU n.p/.X/!MU n.p/.Y /:

Hence MU n.p/ is a contravariant functor on ManC .

• For every X 2ManC , there is a structure of a bigraded ring on

MU �.�/.X/ D
M
n;p

MU n.p/.X/:

Proof. The first assertion is proven in [14, Section 2.6] and follows from a direct verifica-
tion of the exactness. The second and third assertions are proven in [14, Section 2.7] and
[14, Section 2.8], respectively. We will, however, recall the construction of the pullback
and of the ring structure in Section 4.

For later purposes we now show how the Hodge filtered cobordism class depends on
the connection on the representative of the normal bundle.

Definition 2.9. Let X be a smooth manifold, and let

E D .0! E1 ! E2 ! E3 ! 0/

be a short exact sequence of complex vector bundles over X with connections rEi on Ei .
Let � W Œ0; 1� �X ! X denote the projection. Let r�

�E2 be a connection on ��E2 which
equals ��rE2 near ¹1º �X and equals ��.rE1 ˚rE3/ near ¹0º �X . The Chern–Simons
transgression form of the short exact sequence E associated to the multiplicative sequence
K is given by

CSK.E/ D CSK.rE1 ;rE2 ;rE3/

D

Z
Œ0;1��X=X

K.r�
�E2/ 2 A�1.X IV�/= Im.d/:

Remark 2.10. The construction of CSK.E/ requires choosing a section sWE3 ! E2 as
well as a connection r�

�E2 . However, the form CSK.E/ is independent of these choices
in the quotient A�1.X I V�/= Im.d/. By Stokes’ theorem, the derivative of the Chern–
Simons form CSK.rE1 ;rE2 ;rE3/ satisfies

d CSK.rE1 ;rE2 ;rE3/ D K.rE2/ �K.rE1 ˚rE3/

D K.rE2/ �K.rE1/ ^K.rE3/:

Remark 2.11. We will often consider the following special case. Let E be a complex
vector bundle over the smooth manifold X . Let r0 and r1 be two connections on E. We
can form the short exact sequence

E D .0! E
id
�! E ! 0! 0/
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and define CSK.r0;r1/ WD CSK.E/. This Chern–Simons transgression form can be ex-
pressed as

CSK.r1;r0/ D
Z
Œ0;1��X=X

K
�
t � ��r1 C .1 � t / � �

�
r0

�
and its derivative satisfies

d CSK.r1;r0/ D K.r1/ �K.r0/:

Lemma 2.12. Let Qf0 D .f;N;r0/; and Qf1 D .f;N;r1/ 2 AZMU n.X/ be two geometric
cycles over X with the same underlying complex-oriented map f WZ ! X . Then there is
a geometric bordism Qb with @ Qb D Qf1 � Qf0 and

 . Qb/ D .�1/nf� CSK.r0;r1/:

Proof. Let b D idR � f WR�Z!R�X , and let �Z WR�Z!Z denote the projection.
With the product complex orientation, using NidR D 0, we have Nb D NidR�f D �

�
ZNf .

On ��ZNf we consider the connection

rb WD t � �
�
Zr0 C .1 � t / � �

�
Zr1;

where t is the R-coordinate. We can then promote b to a geometric bordism

Qb D .b;Nb;rb/:

Then we have @ Qb D Qf1 � Qf0. Using f ı �Z D �X ı b the assertion follows from

f� CSK.r0;r1/ D f� ı .�Z jŒ0;1��Z/�K.rb/ D
�
.�X ı b/jŒ0;1��Z

�
�
K.rb/:

2.3. Currential Hodge filtered complex cobordism

Now we introduce a new and alternative description of Hodge filtered cobordism groups
by considering the Hodge filtration on currents instead of forms. The difference to the
previous definition may seem negligible but turns out to be crucial for the construction of
a general pushforward later.

Definition 2.13. Let X be a complex manifold and n, p integers. We define the group of
currential Hodge filtered cycles ZMU n

ı
.p/.X/ as the subgroup

ZMU nı .p/.X/ �
� AZMU n.X/ �Dn�1.X IV�/=dD

n�2.X IV�/
�

consisting of pairs . Qf ; h/ such that

�. Qf / � dh D f�K.rf / � dh 2 F
pDn.X IV�/: (2.5)

We will sometimes write a currential Hodge filtered cycle . Qf ; h/ as a triple . Qf ; T; h/
with T D �. Qf / � dh. Let aı denote the map

aı W d
�1
�
F pDn.X IV�/

�n�1
! ZMU n.p/.X/; aı.h/ WD .0; h/;
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where d�1.F pDn.X IV�//
n�1 denotes the subset of elements in Dn�1.X IV�/ which are

sent to the subgroup F pDn.X IV�/ under

d WDn�1.X IV�/! Dn.X IV�/:

We define the group of currential cobordism relations by

BMU nı .p/.X/ WD BMU ngeo.X/C aı
�
zF pD�.X IV�/

�
:

Definition 2.14. ForX 2ManC and integers n, p, we define the currential Hodge filtered
cobordism groups by

MU nı .p/.X/ WD ZMU nı .p/.X/=BMU nı .p/.X/:

Similar to (2.4), we define maps on the level of currential cycles as follows:

Rı WZMU nı .p/.X/! F pDn.X IV�/; Rı. Qf ; h/ D f�K.rf / � dh;

Iı WZMU nı .p/.X/! ZMU n.X/; Iı. Qf ; h/ D f:
(2.6)

By slight abuse of notation, we also denote by the symbols Rı , Iı and aı the correspond-
ing induced homomorphisms on cohomology groups. When the context is clear, we will
often drop the subscript ı from the notation. For the next statement let x�ı denote the com-
position of � with the homomorphism induced by reducing the coefficients modulo F p .

Proposition 2.15. Let X be a complex manifold. There is a long exact sequence

� � �
x�ı // Hn�1

�
X I D

�

F p
.V�/

� aı // MU n
ı
.p/.X/

Iı // MU n.X/
x�ı // Hn

�
X I D

�

F p
.V�/

� aı // MU nC1
ı

.p/.X/
Iı // � � � :

Proof. The proof follows that of [14, Theorem 2.21] closely. We provide the details of
the proof for the convenience of the reader. We start with exactness at MU n

ı
.p/.X/. By

definition of aı and Iı we have

Iı
�
aı
�
Œh�
��
D Iı

�
Œ0; dh; h�

�
D 0:

To show the converse we work at the level of cycles. Let 
 D . Qf ; h/ 2 ZMU n
ı
.p/.X/

and suppose Iı.
/ D 0. That means f D @b for some bordism datum b. We may extend
the geometric structure of Qf over b and obtain a geometric bordism datum Qb such that
@ Qb D Qf . We then have

. Qf ; h/ �
�
@ Qb;  . Qb/

�
D .0; h0/ D aı.h

0/:

The last equality follows from the observation that, since .0; h0/ 2 ZMU n.p/.X/ is a
currential Hodge filtered cycle, we must have dh0 2 F pDn.X IV�/. Hence we know 
 2

BMU n
ı
.p/.X/.
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Next we show exactness at MU n.X/. The vanishing x�ı ı Iı D 0 follows from the
following commutative diagram, where the bottom row is exact:

MU n
ı
.p/.X/

Rı

��

Iı // MU n.X/

�

��

x�ı

((

Hn
�
X IF pD�.V�/

� inc� // Hn.X IV�/ // Hn
�
X I D

�

F p
.V�/

�
:

Conversely, suppose x�ı.Œf �/ D 0. Then we can find z! 2 F pDn.X IV/ such that

�
�
Œf �
�
D inc�

�
Œz!�
�
:

Let rf be a connection on Nf so that we get a geometric cycle Qf with Iı. Qf / D f . Then
�. Qf / is a current representing �.Œf �/. Hence �. Qf / and z! are cohomologous, i.e., there
is a current h 2 Dn�1.X IV�/ such that �. Qf /� dh D z!. Then 
 WD . Qf ; h/ is a currential
Hodge filtered cycle with Iı.
/ D f .

Now we show exactness atHn.X I D
�

F p
.V�//. Let f WZ!X be a bordism cycle onX .

We will show
aı
�
x�ı
�
Œf �
��
D 0 2MU nC1

ı
.p/.X/:

Lifting f to a geometric cycle Qf 2 AZMU n.X/, we can write

aı
�
x�ı
�
Œf �
��
D
�
0; �. Qf /

�
:

We may build from Qf a geometric bordism datum Qb with underlying map

Z
. 12 ;f / // R �X

where 1
2

denotes the constant map with value 1
2

. We have @ Qb D 0 and  . Qb/D .�1/n�. Qf /.
Hence �

@ Qb;  . Qb/
�
D
�
0; .�1/n�. Qf /

�
2 BMU nı .p/.X/

and we conclude that aı.x�ı.Œf �// D 0.
Conversely, suppose that h 2 .d�1F pDn.X IV�//

n�1 is such that aı.h/D .0; h/ rep-
resents 0 in MU n

ı
.p/.X/. Then there is a geometric bordism datum Qb with underlying

map .cb; fb/WW ! R �X , and a current h0 2 zF pDn�1.X IV�/ such that

.0; h/ D
�
@ Qb;  . Qb/C h0

�
:

Note that zF pDn�1.X I V�/ is the group of relations for Hn�1.X I D
�

F p
.V�//, where we

therefore have
Œh� D

�
 . Qb/

�
:

Since @ Qb D 0, we have
f WD fbjc�1

b
.Œ0;1�/ 2 ZMU n.X/
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is a bordism cycle. By definition of , we have . Qb/D .�1/n�. Qf /where Qf is the obvious
geometric cycle over f . Hence

Œh� D
�
 . Qb/

�
D .�1/n x�ı

�
Œf �
�
2 Im.x�ı/:

This finishes the proof.

There is a natural homomorphism

� WZMU n.p/.X/! ZMU nı .p/.X/; . Qf ; h/ 7! . Qf ; h/

which forgets that �. Qf /�dh is a form and not just a current. Since � sendsBMU n.p/.X/

to BMU n
ı
.p/.X/, it follows that there is an induced natural homomorphism

� WMU n.p/.X/!MU nı .p/.X/:

Theorem 2.16. For every X 2 ManC and all integers n and p, the natural homomor-
phism � WMU n.p/.X/!MU n

ı
.p/.X/ is an isomorphism.

Proof. The long exact sequences of Theorem 2.8 and Proposition 2.15 fit into the com-
mutative diagram

� � � // Hn�1
�
X I A�

F p
.V�/

�
Š

��

a // MU n.p/.X/

��

I // MU n.X/

id

��

x�
//

��

� � �

� � � // Hn�1
�
X I D

�

F p
.V�/

� aı // MU n
ı
.p/.X/

Iı // MU n.X/
x�ı // � � �

That the left-most vertical arrow is an isomorphism, is a corollary of the fact that the
Dolbeault–Grothendieck lemma holds for currents as well as forms, see Lemma 2.2 for
the full argument. The right-most arrow is the identity. The assertion now follows from
the five-lemma.

Remark 2.17. In [14],MU n.p/.�/ is defined on the larger category ManF of manifolds
with a filtration of A�. We note that Theorem 2.16 does not extend to that context, since
its proof uses that there is a Hodge filtration for currents which extends that of forms and
that the inclusion F pA� ! F pD� is a quasi-isomorphism.

Remark 2.18. As we discussed in the introduction, Theorem 2.16 reflects an important
difference between Hodge filtered cohomology and differential cohomology.

3. Hodge filtered MU -orientations

We will now define the notion of a Hodge filtered MU -orientation of a holomorphic map
in two steps: First as a type of Hodge filtered K-theory class with V�-coefficients. Then
we apply this to the normal bundle of a holomorphic map. Recall from (2.2) the notation

zF 0A�1.X IV�/ D F
0A�1.X IV�/C Im.d/ � A�1.X IV�/:
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Definition 3.1. Let X be a complex manifold. We define the group KMUD
.X/ of Hodge

filtered MU -orientations, MUD -orientations for short, to be the quotient of the free
abelian group generated by triples " WD .E;r; �/ where E is a complex vector bundle
on X , r is a connection on E and � 2 A�1.X IV�/= zF

0A�1.X IV�/ such that

K."/ DK.E;r; �/ WD K.r/ � d� 2 F 0A0.X IV�/cl (3.1)

is a form in filtration step F 0 modulo the subgroup generated by .CX ; d; 0/ for the trivial
bundle CX on X with the canonical connection and by

.E2;r2; �2/ � .E1;r1; �1/ � .E3;r3; �3/

whenever there is a short exact sequence of the form

0! E1 ! E2 ! E3 ! 0

with the identity

�2 D �1 ^K."3/C �3 ^K.r1/C CSK.r1;r2;r3/ (3.2)

in A�1.X I V�/= zF
0A�1.X I V�/. We denote the image of .E;r; �/ in the quotient by

ŒE;r; ��.

Remark 3.2. For q 2 Z we could modify the above definition and define an MUD -
orientation of filtration q to be a triple .E;r; �/ as above such that K."/DK.r/� d� 2

F qA0.X I V�/. Using appropriate relations, the addition on KMUD
.X/ extends to the

direct limit of pointed sets over all q 2 Z. The group KMUD
.X/ of Definition 3.1 is the

subgroup of orientations of filtration 0. Since we do not know of applications to support
the additional generality and complexity, we only consider orientations of filtration 0 in
this paper.

We will now discuss the group KMUD
.X/ in more detail.

Lemma 3.3. The addition in KMUD
.X/ is given by

Œ"1�C Œ"2� D ŒE1;r1; �1�C ŒE2;r2; �2� D ŒE1 ˚E2;r1 ˚r2; �12�;

where
�12 D �1 ^K."2/C �2 ^

�
K.r1/

�
:

Proof. We consider the sequence

0! E1 ! E1 ˚E2 ! E2 ! 0:

Since the connections split, CSK.r1;r1 ˚r2;r2/ D 0. Hence condition (3.2) for

.E1 ˚E2;r1 ˚r2; �12/ � .E1;r1; �1/ � .E2;r2; �2/

to be a relation reduces to

�12 D �1 ^K."2/C �2 ^K.r1/:



Geometric pushforward in Hodge filtered complex cobordism 473

Remark 3.4. It follows from Lemma 3.3 that the identity element ofKMUD
.X/ is repre-

sented by the triple .0; d; 0/ where the first 0 denotes the zero-dimensional trivial bundle.

Remark 3.5. Suppose we have two triples "1D .E;r1; �1/ and "2D .E;r2; �2/with the
same underlying bundle E. By Remark 3.4, the triple 0 D .0; d; 0/ represents the identity

element in KMUD
.X/. Since K.d/ D 1, considering E

id
�! E as a short exact sequence

as in Remark 2.11, we get a relation Œ"2� � Œ"1� � Œ0� for KMUD
, i.e., we have Œ"1� D Œ"2�

in KMUD
.X/, if and only if

�2 D �1 C CSK.r1;r2/:

Remark 3.6. There is a hidden symmetry in equation (3.2) of Definition 3.1: Since �1
and �3 are of odd degree, we have

�1 ^ d�3 D �3 ^ d�1 mod Im.d/:

Hence, modulo Im.d/, we have

�1 ^
�
K.r3/ � d�3

�
C �3 ^K.r1/ D �1 ^K.r3/ � �1 ^ d�3 C �3 ^K.r1/

D �1 ^K.r3/C �3 ^K.r1/ � �3 ^ d�1

D �1 ^K.r3/C �3 ^
�
K.r1/ � d�1

�
:

Using the map K we can rewrite this relation as

�1 ^K."3/C �3 ^K.r1/ D �1 ^K.r3/C �3 ^K."1/ mod Im.d/:

We now discuss further properties of the assignment

" D .E;r; �/ 7!K."/ D K.r/ � d�

defined in (3.1). We note that there is a certain similarity in the behaviors and roles of
the forms R. Qf ; h/ (respectively current Rı. Qf ; h/) and K."/. Both Rı. Qf ; h/ and K."/

contribute to the construction of the pushforward along holomorphic maps in Section 4
(see also Lemma 4.2, Remark 4.5, Proposition 4.10 and Remark 4.15). Moreover, while
the current f�K.rf / is not a cobordism invariant, the class of the difference

R. Qf ; h/ D f�K.rf / � dh

is indeed invariant. Similarly, we will show in Proposition 3.8 that K."/ D K.r/ � d�

is an invariant of the equivalence class Œ"� in KMUD
.X/ while K.r/ is not. In fact, we

will show that K respects the group structure on KMUD
.X/. This result will be used in

several of our main results and their proofs. In particular, K plays a key role in the proof
of the functoriality of the pushforward in Theorem 4.11.

Lemma 3.7. For representatives .Ei ;ri ; �i / with i D 1; 2 of generators in KMUD
.X/

we have
K."1 C "2/ DK."1/ ^K."2/:
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Proof. To prove the assertion we use Lemma 3.3. Both d�i and K.ri / are closed and lie
in A0.Xi IV�/cl. In particular, this means that they are in the center of the ring A�.Xi IV�/.
Using this fact we get

K."1 C "2/ D K.r1 ˚r2/ � d
�
�1 ^

�
K.r2/ � d�2

�
C �2 ^

�
K.r1/

��
D K.r1/ ^K.r2/ � d�1 ^K."2/ � d�2 ^K.r1/

D K.r1/ ^K."2/ � d�1 ^K."2/

DK."1/ ^K."2/:

Proposition 3.8. The map K descends to a morphism of monoids

KW
�
KMUD

.X/;C
�
!
�
F 0A0.X IV�/cl;^

�
:

Proof. Since the triple .CN
X ; d; 0/ represents the identity element in KMUD

.X/, we see
that K sends the identity element to the identity. The fact that K descends to a map
on KMUD

.X/ and respects the monoid structure then follows from Lemma 3.7 and the
defining relations of KMUD

.X/.

Remark 3.9. Let " D .E; r; �/ in KMUD
.X/ be a representative of a generator in

KMUD
.X/. We may consider

K."/ D K.r/ � d�

as a power series over the commutative ring A2�.X/ in the generators of V�. Having
leading term 1, K."/ is an invertible power series.

Remark 3.10. The triple .CN
X ; d; 0/ represents the identity element inKMUD

.X/. Given
a generator " D .E;r; �/ for KMUD

.X/, we can construct a class Œ"0� which satisfies
Œ"� C Œ"0� D 0 in KMUD

.X/ as follows: Since X is a finite-dimensional manifold, we
can find a complex vector bundle E 0 and an isomorphism E ˚ E 0 Š CN

X for some N .
We equip E 0 with the connection r 0 induced from d by the direct sum decomposition
E ˚E 0 D CN

X . Using Remark 3.9 we let

� 0 D �� ^K.r 0/ ^K."/�1:

To check that "0 D .E 0;r 0; � 0/ satisfies Œ"�C Œ"0� D 0 we use Lemma 3.3 to write

Œ"�C Œ"0� D ŒCN
X ; d; �

00�;

where

� 00 D � ^K.r 0/C � 0 ^K."/

D � ^K.r 0/ � � ^K.r 0/ ^K."/�1 ^K."/

D 0

which proves the claim.
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Remark 3.11. Assume we have a short exact sequence of complex vector bundles

0! E1 ! E2 ! E3 ! 0

and that we have orientations oi D ŒEi ;ri ; �i � involving two of the three bundles. Then it
follows from the defining relations in KMUD

.X/ and Remark 3.9 that for any connection
rj on the remaining bundle Ej we can find a form �j such that oj D ŒEj ;rj ; �j � is an
orientation and such that o1 C o3 D o2.

Definition 3.12. Let f WX ! Y be a holomorphic map. Since the defining relations are
compatible with pullbacks of bundles and connections, there is a well-defined pullback of
orientations

f �WKMUD
.Y /! KMUD

.X/

defined by f �ŒE;r; �� D Œf �E; f �r; f ���.

Next we define the notion of a Hodge filtered orientation of a holomorphic map. We
will use this notion in the following section to define the pushforward along a holomorphic
map. In Section 5 we show that every holomorphic map has a canonical choice of a Hodge
filtered orientation.

Definition 3.13. Let gWX ! Y be a holomorphic map. We define a Hodge filtered MU -
orientation of g, or an MUD -orientation of g for short, to be a class

o D ŒNg ;rg ; �g � 2 KMUD
.X/;

where Ng represents the complex stable normal bundle associated with g as a complex-
oriented map.

Definition 3.14. Let X1
g1
�! X2

g2
�! X3 be proper holomorphic maps of complex codi-

mension d1 and d2, respectively. Let oi 2 KMUD
.Xi / be MUD -orientations of gi for

i D 1; 2. We define the composed Hodge filtered MU -orientation of g2 ı g1 to be

o1 C g
�
1o2 2 KMUD

.X1/:

Remark 3.15. With the notation of Definition 3.14, we recall that the stable normal bun-
dle of g2 ı g1 is isomorphic to the sum of the stable normal bundle of g1 and the pullback
of the stable normal bundle of g2 along g1. Hence o1 C g

�
1o2 is, in fact, a Hodge filtered

MU -orientation of g2 ı g1 in the sense of Definition 3.13.

4. Pushforward along proper Hodge filtered MU -oriented maps

We will now define a pushforward homomorphism for proper MUD -oriented maps and
show that it is functorial. Then we show that the pushforward is compatible with pullback
and cup product.
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Let gWX ! Y be a holomorphic map and let o be an orientation of g. We write go

for g together with the orientation o and refer to go as an MUD -oriented holomorphic
map. If we want to specify the representative " D .Ng ; rg ; �g/ of o, we write g" D
.g; Ng ;rg ; �g/, and we write Qg" for the underlying geometric cycle Qg" D .g; Ng ;rg/.
We will now define the pushforward of a Hodge filtered cycle along an oriented proper
holomorphic map.

Definition 4.1. Let gWX ! Y be a proper holomorphic map of complex codimension d .
Let " D .Ng ;rg ; �g/ be a representative of an orientation class of g in KMUD

.X/. If
Qf D .f;Nf ;rf / is a geometric cycle on X , we write

Qg" ı Qf D .g ı f; Nf ˚ f
�Ng ; rf ˚ f

�
rg/

for the composed geometric cycle on Y . We define the pushforward homomorphism on
currential Hodge filtered cycles by

g"�.
Qf ; h/ D

�
Qg" ı Qf ; g�

�
K.rg/ ^ hC �g ^Rı. Qf ; h/

��
;

where g� denotes the pushforward of currents along g and Rı. Qf ; h/ D f�K.rf /� dh is
defined as in (2.6).

We will explain the choices made in Definition 4.1 further in Remarks 4.4 and 4.5
below. But first we need to check that the construction is well-defined, i.e., we have to
show that g"�. Qf ; h/ actually is a currential Hodge filtered cycle. We will achieve this in
two steps as follows:

Lemma 4.2. For every . Qf ; h/ 2 ZMU n
ı
.p/.X/ we have

Rı
�
g"�.
Qf ; h/

�
D g�

�
K."/ ^Rı. Qf ; h/

�
:

Proof. We check this claim by applying the definition of Rı and then rewrite the current
as follows:

Rı
�
g"�.
Qf ; h/

�
D g�f�K.rf ˚ f

�
rg/ � dg�

�
K.rg/ ^ hC �g ^Rı. Qf ; h/

�
D g�

�
f�K.rf / ^K.rg/

�
� g�

�
K.rg/ ^ dhC d�g ^Rı. Qf ; h/

�
D g�

�
K.rg/ ^ .f�K.rf / � dh/ � d�g ^Rı. Qf ; h/

�
D g�

�
.K.rg/ � d�g/ ^Rı. Qf ; h/

�
D g�

�
K."/ ^Rı. Qf ; h/

�
:

We can now use this observation to show that g"�. Qf ; h/ is a currential Hodge filtered
cycle.

Proposition 4.3. For every . Qf ; h/ 2 ZMU n
ı
.p/.X/ we have

g"�.
Qf ; h/ 2 ZMU nC2d

ı
.p C d/.Y /:
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Proof. It follows from the definition that Qg" ı Qf is a geometric cycle. Hence, by definition
of currential Hodge filtered cycles in Definition 2.13, it remains to check that the current

Rı.g
"
�.
Qf ; h// D �. Qg" ı Qf / � dh

satisfies condition (2.5) on the filtration step of a current in a Hodge filtered cycle, i.e.,
we have to show that Rı.g"�. Qf ;h// lies in F pCdDnC2d .Y IV�/. By Lemma 4.2 we know
Rı.g

"
�.
Qf ; h// D g�.K."/ ^Rı. Qf ; h//. Hence it suffices to observe that

K."/ D K.rg/ � d�g 2 F
0A0.X IV�/

and
Rı. Qf ; h/ D f�K.rf / � dh 2 F

pDn.X IV�/:

Since g is holomorphic of codimension d , it follows that

g�
�
K."/ ^Rı. Qf ; h/

�
2 F pCdDnC2d .Y IV�/

as required.

Remark 4.4. One might arrive at the formula for the current in the definition of g"�. Qf ; h/
as follows: If �g D 0, then g�.K.rg/^ h/ is the only natural candidate, and it does satisfy
the desirable formulas. Having made that choice, consider next the case o D ŒNg ;rg ; �g �

such that there is a connection r 0g with o D ŒNg ;r
0
g ; 0� in KMUD

.X/. Then the rest of
the formula can be derived using Lemma 2.12 and the relations in KMUD

.X/.

Remark 4.5. Let o D ŒNg ;rg ; �g � 2 KMUD
.X/. Since �g is of degree �1, we have

d.�g ^ h/ D d�g ^ h � �g ^ dh. Hence, modulo Im.d/, we have �g ^ dh D d�g ^ h,
and it follows that modulo Im.d/ we have

K.rg/ ^ hC �g ^
�
f�K.rf / � dh

�
D
�
K.rg/ � d�g

�
^ hC �g ^ f�K.rf /: (4.1)

Using the maps K and Rı we can rewrite this relation as

K.rg/ ^ hC �g ^Rı. Qf ; h/ DK.o/ ^ hC �g ^ f�K.rf /:

We will now show that the map g"� of Definition 4.1 induces a well-defined pushfor-
ward homomorphism on Hodge filtered cobordism. We first show that g"� sends Hodge
filtered bordism data to Hodge filtered bordisms in Lemma 4.6.

Lemma 4.6. We have

g"�
�
BMU nı .p/.X/

�
� BMU nC2d

ı
.p C d/.Y /:

Proof. Let h 2 zF pDn�1.X IV�/. By definition of the map a in (2.3), we have a.h/ D
.0; h/. Using relation (4.1) we get

g�
�
K.rg/ ^ h � �g ^ dh

�
D g�

��
K.rg/ � d�g

�
^ h

�
:
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Since g�..K.r/ � d�g/ ^ h/ 2 zF pCdDnC2d .Y IV�/, we conclude that

g"�
�
a.h/

�
2 BMU nC2d

ı
.p C d/.Y /:

It remains to show
g"�
�
BMU ngeo.X/

�
� BMU nC2dgeo .Y /:

This follows from [5, Lemma 4.35]. We provide a proof for the reader’s convenience. Let
Qb 2 AZMU n.R � X/ be a geometric bordism datum on X . Let Qe denote the geometric
cycle idR � gWR � X ! R � Y with the obvious geometric structure. Then Qe ı Qb is a
geometric bordism datum over Y .

By definition of  . Qb/ in (2.1), the fact that g is of even real codimension implies

 . Qe ı Qb/ D g�
�
K.rg/ ^  . Qb/

�
:

This shows that we have�
@. Qe ı Qb/;  . Qe ı Qb/

�
D
�
Qg ı @ Qb; g�

�
K.rg/ ^  . Qb/

��
:

By definition of g"�, we have

g"�
�
@ Qb;  . Qb/

�
D
�
Qg ı @ Qb; g�

�
K.rg/ ^  . Qb/C �g ^Rı

�
@ Qb;  . Qb/

���
:

By [14, Proposition 2.17], geometric bordism data satisfy R
�
@ Qb;  . Qb/

�
D 0 and hence

also Rı
�
@ Qb;  . Qb/

�
D 0. Thus, we get

g"�
�
@ Qb;  . Qb/

�
D
�
Qg ı @ Qb; g�

�
K.rg/ ^  . Qb/

��
:

Hence in total we have shown that

g"�
�
@ Qb;  . Qb/

�
D
�
@. Qe ı Qb/;  . Qe ı Qb/

�
:

This shows g"�.BMU ngeo.X// � BMU nC2dgeo .Y / and finishes the proof.

Next we show that the equivalence class of g"�. Qf ; h/ does not depend on the choice of
a representative of the MUD -orientation on g.

Lemma 4.7. Let " D .Ng ; r; �/ and "0 D .Ng ; r
0; � 0/ be two representatives of the

MUD -orientation o of gWX ! Y . Then, for each 
 2 ZMU n
ı
.p/.X/, we have

Œg"�
� D Œg
"0

� 
� in MU nC2d
ı

.p C d/.Y /:

Proof. Let 
 D . Qf ; h/ be a currential cycle. By the definition of g"�
 we have�
g"�.
Qf ; h/

�
D
�
Qg" ı Qf ; g�

�
K.r/ ^ hC � ^Rı. Qf ; h/

��
:

Using (4.1), we get�
g"�.
Qf ; h/

�
D
�
Qg" ı Qf ; g�

�
K."/ ^ hC � ^ f�K.rf /

��
: (4.2)
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Similarly, for the representative "0, we get�
g"
0

� .
Qf ; h/

�
D
�
Qg"
0

ı Qf ; g�
�
K."0/ ^ hC � 0 ^ f�K.rf /

��
: (4.3)

We need to show that the two cycles in (4.2) and (4.3), respectively, are connected by a
Hodge filtered bordism. By Proposition 3.8, we know

K."/ D K.r/ � d� D K.r 0/ � d� 0 DK."0/: (4.4)

By Remark 3.5 we can assume � � � 0 D CSK.r;r 0/. Hence we get

� ^ f�K.rf / D �
0
^ f�K.rf /C CSK.r;r 0/ ^ f�K.rf /:

Since f�K.rf / is of degree n and CSK.r;r 0/ is of degree �1, switching factor on the
right-hand side yields

� ^ f�K.rf / D �
0
^ f�K.rf /C .�1/

nf�K.rf / ^ CSK.r;r 0/: (4.5)

The projection formula f�.T ^ f �!/ D .f�T / ^ ! applied to the current T D K.rf /
and the form ! D CSK.r;r 0/ implies

f�K.rf / ^ CSK.r;r 0/ D f�
�
K.rf / ^ f

� CSK.r;r 0/
�
: (4.6)

The connections of Qg" ı Qf and Qg"
0

ı Qf are rf ˚ f �r and rf ˚ f �r 0, respectively. The
Chern–Simons form for these two connections satisfies

CSK.rf ˚ f �r; rf ˚ f �r 0/ D K.rf / ^ f � CSK.r;r 0/:

Together with (4.6) this implies

f�K.rf / ^ CSK.r;r 0/ D f� CSK.rf ˚ f �r; rf ˚ f �r 0/: (4.7)

Hence, identities (4.4), (4.5), and (4.7) together with g� ı f� D .g ı f /� on currents show
that

g�
�
K."/ ^ hC � ^ f�K.rf /

�
D g�

�
.K."0/ ^ hC � 0 ^ f�K.rf /

�
C .�1/nC2d .g ı f /� CSK.rf ˚ f �r; rf ˚ f �r 0/: (4.8)

Since rf ˚ f �r and rf ˚ f �r 0 are the connections of Qg" ı Qf and Qg"
0

ı Qf , respectively,
Lemma 2.12 and (4.8) imply that the difference of the cycles g"�. Qf ; h/ and g"

0

� .
Qf ; h/ lies

in BMU nC2d
ı

.p C d/.Y /. This proves the assertion of the lemma.

From now on we will use the canonical isomorphism � WMU n.p/.X/!MU n
ı
.p/.X/

of Theorem 2.16 to identifyMU n.p/.X/ withMU n
ı
.p/.X/. Putting the previous results

together we have shown the following result.
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Theorem 4.8. Let goWX ! Y be a proper MUD -oriented holomorphic map with o D

Œ"� 2 KMUD
.X/. The assignment

Œ Qf ; h� 7!
�
g"�.
Qf ; h/

�
induces a well-defined homomorphism

go
�WMU n.p/.X/!MU nC2d .p C d/.Y /:

We refer to go
� as the pushforward along go.

Remark 4.9. Following Remark 3.2 we could consider an orientation oq of filtration q
for q 2 Z. Then we would get a pushforward homomorphism

g
oq
� WMU n.p/.X/!MU nC2d .p C q C d/.Y /

with an additional shift by q. Since we are mainly interested in the orientation of Defi-
nition 5.9 which is of filtration 0 in this terminology, we decided to skip the additional
level of generality. We note, however, that all the computations in this section could be
modified accordingly.

The following result shows how the pushforward of Theorem 4.8 relates to the push-
forwards of complex cobordism and sheaf cohomology.

Proposition 4.10. Let goWX ! Y be a properMUD -oriented holomorphic map of com-
plex codimension d , with o D ŒNg ;rg ; �g � 2 KMUD

.X/. Recall that we write K.o/ D

K.rg/ � d�g . Then the following diagrams commute:

Hn�1
�
X I D

�

F p
.V�/

�
g�

�
K.o/^�

�
��

a // MU n.p/.X/
I //

go
�

��

MU n.X/

g�

��

Hn�1C2d
�
Y I D�

F pCd
.V�/

� a // MU nC2d .p C d/.Y /
I // MU nC2d .Y /

(4.9)

MU n.p/.X/
R //

go
�

��

Hn
�
X IF pD�.X IV�/

�
g�

�
K.o/^�

�
��

MU nC2d .p C d/.Y /
R // HnC2d

�
X IF pCdD�.Y IV�/

�
:

(4.10)

Proof. For Œh� 2 Hn�1.X I D
�

F p
.V�// we have

go
�.aŒh�/ D

�
0; g�.K.o/ ^ h/

�
D a

�
g�
�
K.o/ ^ h

��
which proves that the left-hand square in (4.9) commutes. That the right-hand square
in (4.9) commutes follows from the observation that the underlying complex-oriented
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map of a composition of geometric cycles, is the composition of the underlying complex-
oriented maps. Hence we have

g�
�
I Œ Qf ; h�

�
D g�Œf;Nf � D Œg ı f;Nf ˚ f

�Ng � D I
�
go
�Œ
Qf ; h�

�
:

Finally, by Lemma 4.2 we have

R
�
go
�.
/

�
D g�

�
K.o/ ^R.
/

�
which shows that square (4.10) commutes as well.

We will now show that the pushforward is functorial.

Theorem 4.11. Let the composition of proper holomorphic maps

g2 ı g1WX1
g1
�! X2

g2
�! X3

be endowed with the composed MUD -orientation o1 C g
�
1o2. Then we have

.g
o2
2�/ ı .g

o1
1�/ D .g2 ı g1/

o1Cg
�
1 o2

�

as homomorphisms

MU n.p/.X1/!MU nC2d1C2d2.p C d1 C d2/.X3/:

Proof. Let 
 D . Qf ; h/ 2 ZMU n
ı
.p/.X1/. For i D 1; 2, let "i D .Ni ;ri ; �i / represent oi .

We use the representative of o1 C g
�
1o2 suggested by Lemma 3.3,

"12 D .N1 ˚ g
�
1N2;r1 ˚ g

�
1r2; �12/

with

�12 WD �1 ^ g
�
1K.o2/C g

�
1�2 ^K.r1/: (4.11)

Observe that the underlying geometric cycle of g"1212 , which we denote by Qg12, is the com-
posed geometric cycle

Qg12 D Qg2 ı Qg1:

Therefore, we know that the underlying geometric cycles of

.g
"12
12 /�
 D . Qg12 ı

Qf ; h12/

and
.g
"2
2 /� ı .g

"1
1 /�
 D . Qg2 ı Qg1 ı

Qf ; hı/

coincide. It remains to show that h12 D hı modulo Im.d/. By definition of the pushfor-
ward and Remark 4.5 we have

h12 D .g2 ı g1/�
�
K.o1 C g

�
1o2/ ^ hC �12 ^ f�K.rf /

�
:
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On the other hand, applying Remark 4.5 to hı yields

hı D g2�
�
K.o2/ ^ g1�

�
K.o1/ ^ hC �1 ^ f�K.rf /

�
C �2 ^ .g1 ı f /�K.rg1ıf /

�
:

Now we use the projection formula f�.T ^ f �!/ D .f�T / ^ ! for a current T and
a form !. Since we have K.rg1ıf / D K.rf / ^ f

�K.r1/, the projection formula for
T D K.rf / and ! D K.r1/ implies

f�K.rg1ıf / D f�
�
K.rf / ^ f

�K.r1/
�
D f�K.rf / ^K.r1/:

Hence we can rewrite hı as

hı D g2�
�
K.o2/^ g1�

�
K.o1/^ hC �1 ^ f�K.rf /

�
C �2 ^ g1�

�
f�K.rf /^K.r1/

��
:

We apply again the projection formula to the pushforward along g1, once with T D
K.o1/ ^ h C �1 ^ f�K.rf / and ! D K.o2/, and once with T D f�K.rf / ^ K.r1/

and ! D �2. Since g�1K.o2/ andK.r1/ lie in A0.X1IV�/, and hence in the center of the
ring A�.X1IV�/, we then get

hıD.g2 ı g1/�
�
g�1K.o2/^

�
K.o1/^ hC�1 ^ f�K.rf /

�
Cg�1�2 ^K.r1/^ f�K.rf /

�
:

Next we collect the terms that are wedged with f�K.rf / and obtain:

hıD .g2 ı g1/�
�
g�1K.o2/^K.o1/^ hC

�
g�1K.o2/^ �1Cg

�
1�2 ^K.r1/

�
^ f�K.rf /

�
:

By Proposition 3.8 we have K.o1 C g
�
1o2/ DK.o1/ ^K.g�1o2/ which implies

hı D .g2 ı g1/�
�
K.o1 C g

�
1o2/ ^ hC

�
g�1K.o2/ ^ �1 C g

�
1�2 ^K.r1/

�
^ f�K.rf /

�
:

Finally, by formula (4.11) for �12, we get

hı D .g2 ı g1/�
�
K.o1 C g

�
1o2/ ^ hC �12 ^ f�K.rf /

�
:

This shows hı D h12 and finishes the proof.

Remark 4.12. Let gWX ! Y and qWW ! Y be transverse proper holomorphic maps of
codimensions d and d 0, respectively. Let � WW �Y X ! Y be the map induced by the
following cartesian diagram in ManC

W �Y X

g 0

��

q0
//

�

$$

X

g

��

W
q

// Y:

Let og 2KMUD
.X/ and oq 2KMUD

.W / beMUD -orientations of g and q, respectively.
We then have natural isomorphisms of stable normal bundles .g0/�Nq D Nq0 , .q0/�Ng D
Ng 0 , and

N� D .g
0/�Nq ˚Ng 0 D .q

0/�Ng ˚Nq0 :
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Hence .g0/�oq C .q0/�og is an orientation of � , and Theorem 4.11 implies that we have
the following identity

g
og
� ı .q

0/
.g 0/�oq
� D �

.g 0/�oqC.q
0/�og

� D q
oq
� ı .g

0/
.q0/�og
�

of homomorphisms MU n.p/.W �Y X/!MU nC2dC2d
0

.p C d C d 0/.Y /.

Next we will show that the pushforward is compatible with pullbacks. First we briefly
recall the construction of pullback homomorphisms in MU �.p/.�/ from [14, Theo-
rem 2.22]. For further details we refer to [14, Section 2.7] and the references therein.
Let kW Y 0 ! Y be a holomorphic map. We consider the following cartesian diagram of
manifolds

Z0
kZ //

k�f

��

Z

f

��

Y 0
k

// Y

where k and f are transverse, and Qf D .f;Nf ;rf / is a geometric cycle on Y . By transver-
sality we get that k�f is complex-oriented with NkZ D kZ

�Nf . We define k� Qf by

k� Qf D .k�f; k�ZNf ; k
�
Zrf /:

For a cycle . Qf ; h/ 2 ZMU n.p/.Y /, it remains to define the pullback of the current h.
Since the pullback of an arbitrary current is not defined, this requires to restrict to the
subgroup ZMU n

k
.p/.Y / � ZMU n.p/.Y / consisting of those 
 D . Qf ; h/ satisfying

WF.h/ \N.k/ D ; and k t f

where WF.h/ denotes the wave-front set of h andN.k/ is the normal set of f as defined in
[17, Section 8.1]. For 
 D . Qf ; h/ 2 ZMU n

k
.p/.Y /, we then have a well-defined pullback

k�
 D k�. Qf ; h/ D .k�f; k�ZNf ; k
�
Zrf ; k

�h/

where k�h is well-defined by [17, Theorem 8.2.4]. By [14, Theorem 2.25], this induces a
pullback homomorphism

k�WMU n.p/.Y /!MU n.p/.Y 0/:

Theorem 4.13. Suppose we have a cartesian diagram in ManC

X 0

g 0

��

k0 // X

g

��

Y 0
k

// Y

(4.12)
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with k transverse to g, and g proper of codimension d . Let o be an MUD -orientation
of g. We equip g0 with the pullback orientation o0 WD k0�o. Then we have

k�go
� D .g

0/o
0

� k
0�
WMU n.p/.X/!MU nC2d .p C d/.Y 0/:

Proof. Let 
 D . Qf ;h/D .f;Nf ;rf ; h/ 2 ZMU n.p/.X/ be a cycle. Since transversality
is generic we can assume f to be transverse with k0. Let k0Z WZ

0! Z be the induced map
in the top cartesian rectangle in

Z0

k0
�
f

��

k0ZDkZ // Z

f

��

X 0

g 0

��

k0 // X

g

��

Y 0
k

// Y:

Since both rectangles are cartesian, the outer rectangle is cartesian as well. Hence the map
kZ WZ

0 ! Z induced by the outer cartesian diagram agrees with k0Z . We write

k�go
�.
Qf ; h/ DW .fy; hy/ and .g0/o

0

� k
0�. Qf ; h/ DW .f p; hp/:

Let " D .Ng ;rg ; �g/ be a representative of the orientation o of g. Then we have

fy D
�
k�.g ı f /; k�ZNf ˚ k

�
Zf
�Ng ; k

�
Zrf ˚ k

�
Zf
�
rg

�
:

The pullback orientation k0�o is represented by "0 D .k0�Ng ; k0
�
rg ; k

0��g/. Since dia-
gram (4.12), is cartesian we have

fy D
�
.g0 ı k0

�
f /;Nk0�f ˚ .k

0�f /�Ng ;rk0�f ˚ .k
0�f /�rg

�
D f p:

Now we check the effect on the current h using that we have k�g� D g0�k
0� by [14,

Theorem 2.27] whenever the involved maps are defined:

hy D k
�
�
g�
�
K.rg/ ^ hC �g ^

�
f�K.rf / � dh

���
D g0�

�
k0
�
K.rg/ ^ k

0�hC k0
�
�g ^ k

0�
�
f�K.rf / � dh

��
D hp:

We recall from [14, Section 2.8] that there is a natural product of the form

MU n1.p1/.X/ �MU n2.p2/.X/!MU n1Cn2.p1 C p2/.X/ (4.13)

turning MU �.�/.X/ into a ring. The product of two classes Œ
1� and Œ
2� is denoted by
Œ
1� � Œ
2� and is induced by the following construction: We consider the operation

˝WDn1.X1IV�/ �Dn2.X2IV�/! Dn1Cn2.X1 �X2IV�/ (4.14)
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satisfying T1 ˝ T2 D ��1T1 ^ �
�
2T2. Since K is multiplicative, we have

Kp1Cp2.r1 ˚r2/ D K
p1.r1/˝K

p2.r2/:

We then define the symbol �, and refer to it as the external product of Hodge filtered
cycles by potential slight abuse of terminology, by


1 � 
2 WD
�
Qf1 � Qf2; h1 ˝R.
2/C .�1/

n1f1�K.rf1/˝ h2
�
: (4.15)

The product in (4.13) is then defined as the pullback along the diagonal map�X WX!
X �X :

Œ
1� � Œ
2� D �
�
X

�
Œ
1 � 
2�

�
:

The following theorem shows that g� is a homomorphism of MU �.�/.Y /-modules.

Theorem 4.14. Let gWX ! Y be a proper holomorphic map of codimension d and let
o be an MUD -orientation of g. Then, for all integers n, p, m, q, and all elements x 2
MU n.p/.X/ and y 2MUm.q/.Y /, we have the following projection formula

go
�

�
g�y � x

�
D y � go

�x in MU nCmC2d .p C q C d/.Y /:

Proof. Since the product is defined by pulling back an exterior product along the diagonal,
we consider the following commutative diagram

X

g

��

.g;idX / // Y �X

GDidY �g
��

�X // X

g

��

Y
�Y

// Y � Y pr2
// Y:

We denote by �Y W Y � X ! Y and �X W Y � X ! X , and by pr1W Y � Y ! Y and
pr2WY � Y ! Y the projections onto the first and second factors, respectively. We endow
the map G WD idY � g with the pullback MUD -orientation o0 WD ��Xo. We claim that in
order to prove the assertion of the theorem it suffices to show the identity

Go0

� .y � x/ D y � g
o
�.x/: (4.16)

To prove that it suffices to show (4.16), we observe that (4.16) implies that

��YG
o0

� .y � x/ D �
�
Y

�
y � go

�.x/
�
D y � go

�x

by definition of the cup product on MU �.�/.Y /. Hence it remains to show that

��YG
o0

� .y � x/ D g
o
�.g
�y � x/:

To do so we consider the following diagram

X

g

��

�X // X �X

g�g

��

g�idX // Y �X

G

��

Y
�Y

// Y � Y
idY�Y

// Y � Y:

(4.17)
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Since the outer diagram in (4.17) is cartesian and since G and �Y are transverse, we can
apply Theorem 4.13 to get

��YG
o0

� .y � x/ D g
o
�

�
.g � idX / ı�X

��
.y � x/

D go
��
�
X

�
.g � idX /�.y � x/

�
D go

��
�
X

�
.g�y � x/

�
D go

�

�
g�y � x

�
;

where the last equality uses the definition of the cup product onMU �.�/.X/. This proves
the claim.

We will now show that identity (4.16) holds by proving the corresponding formula
on the level of cycles. Let " D .Ng ; rg ; �g/ be a representative of o. Then the triple
"0 D .��XNg ; �

�
Xrg ; �

�
X�g/ represents o0 D ��Xo. Let . Qfx ; hx/ and . Qfy ; hy/ be cycles

such that x D Œ Qfx ; hx � and y D Œ Qfy ; hy �. We write hy�x for the current defined by (4.15)
such that y � x D Œ Qfy � Qfx ; hy�x �. The theorem will then follow once we have proven the
identity of cycles

G"
0

� .
Qfy � Qfx ; hy�x/ D . Qfy ; hy/ � g

"
�.
Qfx ; hx/: (4.18)

Formula (4.18) can be checked separately on the level of geometric cycles and on
the level of currents. To simplify the notation we denote the cycle G"

0

� .
Qfy � Qfx ; hy�x/

by . QfG ; hG/. We write . Qfg�.x/; hg�.x// for the cycle g"�. Qfx ; hx/, and . Qfy�g�.x/; hy�g�.x//
for the cycle . Qfy ; hy/ � g"�. Qfx ; hx/. For the geometric cycles the formula QfG D Qfy�g�.x/
follows directly from the definition of the pushforward and the definition of the map G D
idY � g.

Now we show that (4.18) holds for the corresponding currents. Recall that we use the
notation �.
/D .f
 /�K.rf
 / andR.
/D �.
/� dh
 for a cycle 
 D .f
 ; h
 /. We then
have by definition of the exterior product �

hy�x D hy ˝R.x/C .�1/
m�.y/˝ hx : (4.19)

By definition of the pushforward we have

hG D G�
�
��XK.rg/ ^ hy�x C �

�
X�g ^R.y � x/

�
:

Using formula (4.19) and the formula R.y � x/ D R.y/ ˝ R.x/, which is verified in
[14, p. 26], we can rewrite hG as

hG D G�
�
��XK.rg/ ^

�
hy ˝R.x/C .�1/

m�.y/˝ hx
�
C ��X�g ^

�
R.y/˝R.x/

��
:

By definition of˝ in (4.14) and the fact that R.y/ is of degree m we then get

hG D G�
�
hy ˝

�
K.rg/ ^R.x/

�
C .�1/m�.y/˝

�
K.rg/ ^ hx

�
C .�1/mR.y/˝

�
�g ^R.x/

��
:
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Now we use the definition of G as G D idY � g to get:

hG D hy ˝ g�
�
K.rg/ ^R.x/

�
C .�1/m�.y/˝ g�

�
K.rg/ ^ hx

�
C .�1/mR.y/˝ g�

�
�g ^R.x/

�
:

On the other hand we compute

hy�g"�.x/

D hy ˝R
�
g"�.
Qfx ; hx/

�
C .�1/m�.y/˝ hg"�.x/

D hy ˝ g�
��
K.rg/ � d�g

�
^R.x/

�
C .�1/m�.y/˝ g�

�
K.rg/ ^ hx C �g ^R.x/

�
D hy ˝ g�

�
K.rg/ ^R.x/

�
� hy ˝ g�

�
d�g ^R.x/

�
C .�1/m�.y/˝ g�

�
K.rg/ ^ hx

�
C .�1/m�.y/˝ g�

�
�g ^R.x/

�
:

Comparing the expressions for hG and hy�g"�.x/ it remains to show

.�1/mR.y/˝ g�
�
�g ^R.x/

�
C hy ˝ g�

�
d�g ^R.x/

�
D .�1/m�.y/˝ g�

�
�g ^R.x/

�
modulo Im.d/. Since, by definition of R in (2.4), R.x/ is a closed form, we have

d
�
�g ^R.x/

�
D d�g ^R.x/ � �g ^ dR.x/ D d�g ^R.x/:

Since hy is of degree m, we therefore get

d
�
hy ˝ g�

�
�g ^R.x/

��
D dhy ˝ g�

�
d�g ^R.x/

�
C .�1/mhy ˝ g�

�
d�g ^R.x/

�
:

Hence, modulo image of d , we get the following identity

hy ˝ g�
�
d�g ^R.x/

�
D .�1/mdhy ˝ g�

�
d�g ^R.x/

�
modulo Im.d/:

Since R.y/ D �.y/ � dhy by definition, we can thus conclude

.�1/mR.y/˝ g�
�
�g ^R.x/

�
C hy ˝ g�

�
d�g ^R.x/

�
D .�1/mR.y/˝ g�

�
�g ^R.x/

�
C .�1/mdhy ˝ g�

�
�g ^R.x/

�
D .�1/m�.y/˝ g�

�
�g ^R.x/

�
modulo Im.d/. This shows (4.18) and finishes the proof.

We end this section with a further observation on the relationship of the maps R
and K .

Remark 4.15. As in the proof of Proposition 4.10, we can express the identity shown in
Lemma 4.2 as

R
�
go
�.
/

�
D g�

�
K.o/ ^R.
/

�
for every element Œ
� and proper holomorphic map gWX ! Y with MUD -orientation o.
For the special case that 
 is the identity element 1X of the ring MU �.�/.X/, i.e., for
Œ
� D 1X D ŒidX ; d; 0�, we get

R
�
go
�.1X /

�
D g�

�
K.o/

�
:
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5. A canonical Hodge filtered MU -orientation for holomorphic maps

We will now show that for every holomorphic map there is a natural choice for an MUD -
orientation. The key result is Theorem 5.6 which provides us with a canonical choice of
a class of connections. The existence of a canonical choice of a class of orientation and
Theorem 5.12 may be seen as justification for defining MUD -orientations as a K-group
and not just as a set. We recall from [19, Section 6.3] the following terminology.

Definition 5.1. Let X be a complex manifold and let D be a smooth connection on a
holomorphic vector bundle E over X . Then with respect to local coordinates .Ui ; gi /, D
acts as d C �i , where �i D .�

jk
i / is a matrix of 1-forms. Recall that we have

�i D g
�1
ji dgj i C g

�1
ji �jgj i ;

where the gij denote the transition functions. Conversely any such cocycle ¹�iº defines a
connection. Then D is called a Bott connection if for each i , j , k we have

�
jk
i 2 F

1A1.X/:

Remark 5.2. As noted in the introduction, Bott connections are more commonly referred
to as connections compatible with the holomorphic structure. Here we follow Karoubi,
who uses the terminology in [19] in a context where Bott connections generalize both
connections compatible with a holomorphic structure and Bott connections of foliation
theory. Since Bott connections are frequently used in what follows, we adopt Bott connec-
tion as a convenient terminology.

Remark 5.3. Every holomorphic vector bundle on a complex manifold admits a Bott con-
nection. In fact, the Chern connection on a holomorphic bundle with a hermitian metric
is defined as the unique Bott connection which is compatible with the hermitian struc-
ture. By [18, Proposition 4.1.4] every complex vector bundle admits a hermitian metric.
By [18, Proposition 4.2.14] every holomorphic bundle with a hermitian structure has a
Chern connection. Alternatively, one can show the existence of Bott connections as in
[19, Section 6] using a local trivialization of the bundle and a partition of unity.2

Remark 5.4. If D is a Bott connection, then the curvature of D, which in local coordi-
nates is represented by the matrix

d�i C �i ^ �i ;

belongs toF 1A2.X IEnd.E//. This implies the following key fact about Bott connections:

K.D/ 2 F 0A0.X IV�/: (5.1)

2We emphasize again that a Bott connection does not have to be holomorphic, but is merely required
to be smooth. Hence one may use a partition of unity for the construction as explained in [19, Section 6].
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Remark 5.5. LetD be a Bott connection onE. Then (5.1) implies that the triple .E;D;0/
defines an element in KMUD

.X/. The following result, inspired by [19, Theorem 6.7],
shows that the associated orientation class ŒE;D; 0� is independent of the choice of Bott
connection D.

We will now prove the key technical result of this section.

Theorem 5.6. For every X 2ManC , there is a natural homomorphism

BWK0hol.X/! KMUD
.X/

induced by
BŒE� D ŒE;D; 0�;

for each holomorphic vector bundle E where D is any Bott connection on E.

Proof. The existence of a Bott connection was pointed out in Remark 5.3. The assertion
of the theorem then follows from the following two lemmas.

As a first step we analyze the Chern–Simons form of two Bott connections on a given
holomorphic vector bundle and show that they lead to the same orientation class.

Lemma 5.7. Let D and D0 be two Bott connections for a holomorphic vector bundle
E ! X . Then CSK.D;D0/ 2 F 0A0.X IV�/, so ŒE;D; 0� D ŒE;D0; 0� in KMUD

.X/.

Proof. Let �i and � 0i be the connection matrices of D and D0, respectively, with respect
to local holomorphic coordinates z1; : : : ; zl on Ui . Let I D Œ0; 1� be the unit interval and
let � W I �X ! X denote the projection. Then consider the connection D00 D t � ��D C
.1 � t / � ��D0 on ��E. Its connection matrix on I � Ui is

� 00 D t�i C .1 � t /�
0
i :

The curvature of D00 is given on I � Ui by

�00i D d�
00
i C �

00
i ^ �

00
i

D dt ^ �i C t � d�i � dt ^ �
0
i C .1 � t /d�

0
i C t

2�i ^ �i

C .1 � t /2� 0i ^ �
0
i C t .1 � t /�i ^ �

0
i :

Each term is of filtration 1 in the sense that at least one of the dzj s appears in each term of
each entry. Hence the Chern form ck.D

00/ has at least k many dzj s appearing in its local
expression, and in that sense belongs to F kA�.Œ0; 1� � X/. Integrating out dt maps this
filtration step F kA�.Œ0; 1� �X/ to the Hodge filtration F kA�.X/. This implies

��K.D
00/ 2 F 0A�1.X IV�/:

Since CSK.D;D0/ D ��K.D00/, this proves

ŒE;D; 0� D ŒE;D0; 0� 2 KMUD
.X/:
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Next, we show that all the defining relations of K0hol.X/ and KMUD
.X/ are respected

by B .

Lemma 5.8. Let E be a holomorphic bundle over X and D be a Bott connection on E.
The assignment E 7! .E;D; 0/ induces a map BWK0hol.X/! KMUD

.X/.

Proof. The first part of this proof follows [19, Proof of Theorem 6.7]. Let

0! E1
˛
�! E2

ˇ
�! E3 ! 0

be a short exact sequence of holomorphic vector bundles, and let Di be a Bott connection
on Ei . By the defining relations for KMUD

.X/ we need to establish

CSK.D1;D2;D3/ 2 zF 0A�1.X IV�/

where we recall that the notation zF has been introduced in (2.2). Let 
 WE3 ! E2 be a
smooth splitting. This yields a smooth isomorphism of bundles

u D .˛; 
/WE1 ˚E3 ! E2:

The inverse u�1 has the form

u�1 D

�
�

ˇ

�
;

where � is a left-inverse of ˛. We choose holomorphic coordinates for each Ej over an
open Ui � X . We then get the following equations of matrix valued forms:

ui � u
�1
i D

�
˛i 
i

�
�

�
�i
ˇi

�
D 1

and �
�i
ˇi

� �
˛i 
i

�
D

�
1 0

0 1

�
:

Since D2 is a Bott connection, it is represented by a matrix �2i with coefficients in F 1.
Note that, since 
 and � may not be holomorphic, �2 WD u�D2 may not be a Bott con-
nection. However, locally on Ui , �2 takes the form

�2i D u
�1
i dui C u

�1
i �

2
i ui :

We have u�1i �
2
i ui 2 F

1, since �2i is in F 1. The matrix u�1i dui expands as�
�i
ˇi

� �
d˛i d
i

�
D

�
�id˛i �id
i
ˇid˛i ˇid
i

�
:

Since ˇi
i D 1, we have ˇid
i D �dˇi
i 2 F
1. Since d˛i 2 F 1, we see that u�1i dui is

upper triangular modulo F 1.
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Now let � W Œ0; 1� �X ! X be the projection. Let

r D t � ���2 C .1 � t / � ��.D1 ˚D3/;

and let �i be the connection matrix of r with respect to local coordinates on Ui � X .
We continue to use the notion of filtration on A�.��.E1 ˚ E3//, A�.��.E2//, and
A�.Œ0; 1� � X IV�/ as in the proof of Lemma 5.7. We know that .1 � t / � ��.D1 ˚D3/
is in F 1, and we have just shown that t � ���2 is upper triangular modulo F 1. Thus,
�i is upper triangular modulo F 1 as well. Hence the local curvature form of r, i.e.,
�i D d�i C �i ^ �i , is upper triangular modulo F 1 as well. This implies that ci .r/ 2
F iA2i .Œ0;1��X/ and henceK.r/2F 0A0.Œ0;1��X IV�/. Now we note that we defined
the Chern–Simons form CSK.D1; D2; D3/ as the integral of K.r 0/, and not K.r/, for
the connection r 0 on Œ0; 1� � ��E2 given by

r
0
D .u�1/�r D t � ��D2 C .1 � t / � �

�
�
.u�1/�.D1 ˚D3/

�
:

Locally we can express the curvature of r 0 as

�0i D u
�1
i �iui :

Thus r and r 0 have identical Chern–Weil forms. In particular, this implies that K.r 0/ 2
F 0A0.Œ0; 1� � X IV�/. Thus, again since integrating out dt sends F 0A0 to F 0A�1, we
have shown

��K.r
0/ D CSK.D1;D2;D3/ 2 zF 0A�1.X IV�/

which finishes the proof of the lemma and of Theorem 5.6.

A key application of Theorem 5.6 is that it allows us to make a canonical choice of a
Hodge filtered MU -orientation for each holomorphic map:

Definition 5.9. Let gWX ! Y be a holomorphic map, and let

Ng WD Œg
�T Y � � ŒTX� 2 K0hol.X/

denote the virtual holomorphic normal bundle of g. We define the Bott MUD -orientation
of g, or Bott orientation of g for short, to be B.Ng/ 2 KMUD

.X/, i.e., the image of Ng

under BWK0hol.X/! KMUD
.X/.

The next lemma shows that the Bott orientation is functorial, i.e., it is compatible with
pullbacks in the following way.

Lemma 5.10. Assume we have a pullback diagram in ManC

X 0

g 0

��

f 0
// X

g

��

Y 0
f

// Y

(5.2)
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with f transverse to g. Let Ng and Ng 0 be the virtual holomorphic normal bundles of g
and g0, respectively. Then we have

f 0
�
B.Ng/ D B.Ng 0/ in KMUD

.X 0/:

Proof. Since f is transverse to g, we have f 0�Ng D Ng 0 in K0hol.X
0/. Since the choice

of Bott connection does not matter for B by Theorem 5.6, this induces the desired identity
f 0
�
B.Ng/ D B.Ng 0/ in KMUD

.X 0/.

Remark 5.11. Let X1
g1
�! X2

g2
�! X3 be proper holomorphic maps. Since the map

K0hol.X/! KMUD
.X/

is a homomorphism of groups, we have

B.Ng2ıg1/ D B.Ng1 ˚ g
�
1Ng2/ D B.Ng1/C g

�
1B.Ng2/:

Hence the Bott orientation of g2 ı g1 is the composed MUD -orientation of the Bott ori-
entations of g1 and g2, respectively. Together with Lemma 5.10 this may justify to call
the Bott orientation a canonical Hodge filtered MU -orientation for a holomorphic map.

Applying Theorems 4.8, 4.11, 4.13, and 4.14 with the Bott orientation together with
Remark 5.11 yields the following result.

Theorem 5.12. Let X and Y be complex manifolds, and let gWX ! Y be a proper holo-
morphic map of codimension d . We equip g with its Bott orientation o WD B.Ng/. Then
g� WD g

o
� defines a functorial pushforward map

g�WMU n.p/.X/!MU nC2d .p C d/.Y /:

This is a homomorphism of MU �.�/.Y /-modules in the sense that, for all integers n, p,
m, q, and all elements x 2MU n.p/.X/ and y 2MUm.q/.Y /, we have

g�
�
g�y � x

�
D y � g�x in MU nCmC2d .p C q C d/.Y /:

Furthermore, if f WY 0 ! Y is holomorphic and transversal to g, letting f 0 and g0 denote
the induced maps as in (5.2), the following formula holds

f � ı g� D g
0
� ı f

0�:

In the remainder of this section we further reflect on the Bott orientation class B.Ng/.
We note that ŒNg �D Œg

�T Y �� ŒTX�merely is a virtual bundle and, in general, there may
not be a holomorphic bundle Ng over X which represents Œg�T Y � � ŒTX� in K0hol.X/.
We can, however, obtain a representative of the orientation class B.Ng/ in KMUD

.X/ as
follows: Let gWX ! Y be a holomorphic map and i WX ! Ck a smooth embedding. We
then get a short exact sequence of complex vector bundles of the form

0! TX
D.g;i/
����! g�T Y ˚Ck

X ! N.g;i/ ! 0: (5.3)
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Proposition 5.13. Let X be a Stein manifold, Y any complex manifold and gWX ! Y a
holomorphic map. Then we can represent the virtual normal bundle of g, i.e., the element
Œg�T Y � � ŒTX� 2 K0.X/, by a holomorphic vector bundle on X .

Proof. SinceX is Stein, we can assume i in (5.3) to be holomorphic. HenceN.g;i/ admits
a holomorphic structure.

For general X , however, we cannot expect N.g;i/ to be holomorphic. In particular,
N.g;i/ does not, in general, represent the difference Œg�T Y � � ŒTX� in K0hol.X/. Yet we
have the following result which follows from the defining relations in KMUD

.X/ (see
also Remark 3.11).

Proposition 5.14. With the above notation, let DX be a Bott connection for TX , and DY
a Bott connection for T Y . Let r.g;i/ be a connection on N.g;i/. We set

og WD
�
N.g;i/;r.g;i/;�CSK.DX ; g�DY ˚ d;r.g;i//

�
2 KMUD

.X/:

Then we have
B.Ng/ D og in KMUD

.X/:

For a projective complex manifold we can represent the canonical MUD -orientation
in the following way.

Proposition 5.15. Let gWX ! Y be a proper holomorphic map. Assume that X is a
projective complex manifold. Then there is a holomorphic vector bundle N on X and a
Bott connection D on N such that .N;D; 0/ is an MUD -orientation of g and B.Ng/ D

ŒN;D; 0� in KMUD
.X/.

Proof. Recall the Euler sequence

0! C ! 

˚.nC1/
1 ! TCPn ! 0

where 
1 ! CPn is the tautological line bundle. There is a canonical inclusion 
1 !
CnC1, and we denote the quotient by 
?1 . Hence �Œ
1� D Œ
?1 �� ŒC

nC1�. Thus we obtain
the identity

�ŒTCPn� D .nC 1/ �
�
Œ
?1 � � ŒC

nC1�
�
C ŒC� D .nC 1/ � Œ
?1 � � ŒC

n2C2n�

inK0hol.CPn/. Now letX be a projective manifold and let �WX ,!CPn denote a holomor-
phic embedding. We have a short exact sequence of holomorphic vector bundles over X

0! TX ! ��TCPn ! NX ! 0:

In K0hol.X/ this implies the identities

�ŒTX� D ŒNX� � ��ŒTCPn� D ŒNX�C .nC 1/��Œ
?1 � � ŒC
n2C2n
X �
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and hence

Ng D Œg
�T Y � � ŒTX� D Œg�T Y �C ŒNX�C .nC 1/��Œ
?1 � � ŒC

n2C2n
X �:

We define the holomorphic bundle

N WD g�T Y ˚NX ˚ ��.
?1 /
˚.nC1/:

Since B.Cn2C2n/ D 0, we then get the identity B.Ng/ D B.N/ in KMUD
.X/. Thus we

have B.Ng/ D ŒN;D; 0� for any Bott connection D on N .

6. Fundamental classes and secondary cobordism invariants

The existence of pushforwards along proper holomorphic maps allows us to define special
types of Hodge filtered cobordism classes. In particular, we can define fundamental classes
as follows:

Definition 6.1. Let f W Y ! X be a proper holomorphic map of codimension d . Let
1Y 2 MU 0.0/.Y / be the identity element of the graded commutative ring MU �.�/.Y /.
We endow f with its Bott orientation. We then refer to the element Œf � WD f�.1Y / 2

MU 2d .d/.X/ as the fundamental class of f . If the context of f and X is clear, we may
also write ŒY � for Œf � and call it the fundamental class of Y .

Let f WY ! X be a proper holomorphic map of codimension d . Let i WY ! Ck be a
smooth embedding. We then get a short exact sequence of the form

0! T Y ! f �TX ˚Ck
Y ! N.f;i/ ! 0:

With this notation, we have the following result.

Proposition 6.2. The fundamental class Œf � of f in MU 2p.p/.X/ is given by

f�Œ1Y � D
�
Qf ; f��.f;i/

�
D
�
f;N.f;i/;r.f;i/; f��.f;i/

�
;

where r.f;i/ is any connection on N.f;i/ and �.f;i/ D �CSK.DY ; f �DX ˚ d;r.f;i// for
Bott connections DX on TX and DY on T Y .

Proof. This follows directly from the description of theBottorientation in Proposition 5.14
and the definition of the pushforward map using 1Y D ŒidY ; d; 0�.

Next we show that the fundamental class is compatible with products in the following
sense.

Lemma 6.3. Let f WY ! X and gWZ! X be proper holomorphic maps of codimension
d and d 0, respectively. Let � denote the map induced by the following cartesian diagram
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in ManC

Y �X Z

g 0

��

f 0
//

�

##

Z

g

��

Y
f

// X:

Assume that f and g are transverse. Then we have

Œf � � Œg� D Œ�� in MU 2dC2d
0

.d C d 0/.X/:

Proof. Since f and g are transverse, we can apply Theorem 4.13 to get

f �g� D g
0
�f
0�:

Since � D g0 ı f by definition, Theorem 4.11 implies

f�f
�g� D f�g

0
�f
0�
D ��f

0�:

We apply this to 1Z 2MU 0.0/.Z/ and use that f 0�.1Z/ D 1Y�XZ to get

Œ�� D ��f
0�.1Z/ D f�f

�g�.1Z/ D f�f
�Œg�:

Now we apply Theorem 4.14 to y D Œg� and x D 1Y to conclude

Œ�� D ��.1Y�XZ/ D f�f
�Œg� D Œg� � f�.1Y / D Œg� � Œf �:

Finally, we note that the product in the subring consisting of elements of even cohomo-
logical degrees MU 2�.�/.X/ is commutative to conclude the proof.

Remark 6.4. If f W Y ,! X is the embedding of a complex submanifold of codimen-
sion d , then the normal bundle Nf is a holomorphic bundle. Hence, in this case, the Bott
orientation of f is given by B.Nf /D .Nf ;Df ; 0/ with a Bott connectionDf onNf , and
we have Œf � D Œf;Nf ;Df ; 0� in MU 2d .d/.X/.

Remark 6.5. Let f0WY0! X and f1WY1! X be two embeddings of complex submani-
folds of codimension d . By Remark 6.4, we can write the associated fundamental classes
as Œf0� D Œf0; Nf0 ; Df0 ; 0� and Œf1� D Œf1; Nf1 ; Df1 ; 0�. Now assume that f0 and f1 are
cobordant, i.e., they represent the same element in MU 2d .X/. Then we can find a geo-
metric bordism Qb with @ Qb D Qf1 � Qf0. The bordism Qb is, in general, not sufficient to show
Œf0� D Œf1� in MU 2d .d/.X/, since the associated current  . Qb/ defined in (2.1) may not
vanish. In fact, Qb defines a Hodge filtered bordism datum between f0 and f1 if and only if

 . Qb/ 2 zF dD2d�1.X IV�/ D F
dD2d�1.X IV�/C dD

2d�2.X IV�/:

In particular, two homotopic maps f0 and f1 do not define the same class in Hodge filtered
cobordism in general (see also Lemma 2.12 and [14, Lemma 5.9]). This shows that the
current  . Qb/ contains information that is not detected by MU 2d .X/.
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Following Remark 6.5 we will now study the case of a topologically cobordant fun-
damental class in more detail. For the rest of this section we assume that X is a compact
Kähler manifold. Then we can split the long exact sequence of Proposition 2.15 into a
short exact sequence as follows. Let Hdg2pMU .X/ D I.MU 2p.p/.X//. We write

J
2p�1
MU .X/ D

H 2p�1
�
X I D

�

F p
.V�/

�
�
�
MU 2p�1.X/

� :

Then we get a short exact sequence

0! J
2p�1
MU .X/!MU 2p.p/.X/! Hdg2pMU .X/! 0: (6.1)

Remark 6.6. Note that, since X is compact Kähler, we have an isomorphism

H 2p�1

�
X I

D�

F p
.V�/

�
Š

H 2p�1.X IV�/

F pH 2p�1.X IV�/
:

Thus we can rewrite J 2p�1MU .X/ as

J
2p�1
MU .X/ D

H 2p�1.X IV�/

F pH 2p�1.X IV�/C �
�
MU 2p�1.X/

� :
Remark 6.7. As noted in [16, Remark 4.12], it follows from the Hodge decomposition
that J 2p�1MU .X/ is isomorphic to the group MU 2p�1.X/˝ R=Z. This implies that, as a
real Lie group, J 2p�1MU .X/ is a homotopy invariant of X , while as a complex Lie group
J
2p�1
MU .X/ depends on the complex structure of X .

Definition 6.8. Assume we have an element Œ
� in MU 2p.p/.X/ such that I.Œ
�/ van-
ishes in MU 2p.X/. Then sequence (6.1) shows that we may use J 2p�1MU .X/ as the target
for secondary cobordism invariants. For example, let f W Y ! X be a proper holomor-
phic map of codimension p. Assume that the fundamental class of f inMU 2p.X/, given
as the pushforward of 1Y 2 MU 0.Y / along f , vanishes. Then the fundamental class of
f in MU 2p.p/.X/ has image in the subgroup J 2p�1MU .X/. Because of the similarity to
the Abel–Jacobi map of Deligne–Griffiths (see e.g. [24, Section 12]) we will denote the
image of f in the subgroup J 2p�1MU .X/ by AJ.f / and will refer to AJ.f / as the Abel–
Jacobi invariant of f .

Let f WY ! X be a proper holomorphic map of codimension p. We will now describe
AJ.f / in more detail. Let Œ
f � WD Œf; N.f;i/; r.f;i/; f��.f;i/� be as in Proposition 6.2.
We assume that f�.1Y / D 0 in MU 2p.X/. Then there is a topological bordism datum
bWW !R�X such that @b D f . LetNb be the associated normal bundle. We can extend
the connection r.f;i/ on N.f;i/ to get a connection rb on Nb , and obtain a geometric
cobordism datum Qb. Then we have


f �
�
@ Qb;  . Qb/

�
D
�
0; f��.f;i/ �  . Qb/

�
D
�
0; f��.f;i/ �

�
�X ı bjWŒ0;1�

�
�

�
Kp.rb/

��
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by definition of  . Qb/ in (2.1). Hence we get

Œ
f � D a
�
f��.f;i/ �  . Qb/

�
under the homomorphism

aWH 2p�1

�
X I

D�

F p
.V�/

�
!MU 2p�1.p/.X/

which is induced by the map defined on the level of forms in (2.3). The class Œf��f � . Qb/�
in H 2p�1.X I D

�

F p
.V�// may depend on the choice of Qb. However, if Qb0 is a different bor-

dism datum, then we have

a
�
 . Qb/ �  . Qb0/

�
2 �

�
MU 2p�1.X/

�
� H 2p�1.X IV�/:

Thus, after taking the quotient, we get a well-defined class. We summarise these observa-
tions in the following theorem.

Theorem 6.9. With the above assumptions on f and X , the fundamental class of f in
MU 2p.p/.X/ is the image of

AJ.f / D
�
f��f �  . Qb/

�
2

H 2p�1.X IV�/

F pH 2p�1.X IV�/C �
�
MU 2p�1.X/

� D J 2p�1MU .X/:

Now we give an alternative description of AJ.f /. Let V 0� be the C-dual graded algebra
with homogeneous components

V 0j D .V�j /
0
D HomC.V�j ;C/:

Then the canonical pairing given by evaluation

evWV 0� ˝ V� ! C

has degree 0, if C is interpreted as a graded vector space concentrated in degree 0. Let nD
dimCX . Poincaré duality and the fact that all vector spaces involved are finite-dimensional
imply that the pairing

H k.X IV�/ �H
2n�k.X IV 0�/! C˝

Œ��; Œ!�
˛
D ev

�Z
X

� ^ !

� (6.2)

is perfect. Here � ^ ! is interpreted as a V� ˝ V 0�-valued form. We may thus identify
H 2p�1.X IV�/with .H 2n�2pC1.X IV 0�//

0. Hodge symmetry and Serre duality then imply
that, under this identification, the subspaceF pH 2p�1.X IV�/ corresponds to the subspace
.F n�pC1H 2n�2pC1.X IV 0�//

?. This implies that there is a natural isomorphism

H 2p�1.X IV�/

F pH 2p�1.X IV�/
Š
�
F n�pC1H 2n�2pC1.X IV 0�/

�0
:
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Now we let �0 denote the composition of �WMU k.X/! H k.X IV�/ followed by the
identification under pairing (6.2), i.e., �0 maps the element Œf WZ ! X� 2 MU k.X/ to
�0.f / in .H 2n�k.X IV 0�//

0 defined by

�0.f /
�
Œ!�
�
WD ev

�Z
Z

K.rf / ^ f
�!

�
;

where rf is a connection on the normal bundle Nf . We note that, since Y is closed, it
follows from Stokes’ theorem that this pairing is independent of the choice of representa-
tive of Œ!� and of the choice of connection. In fact, it is independent of the choice of form
which represents the classK.Nf /. Then we conclude from the above arguments that there
is a natural isomorphism

J
2p�1
MU .X/ Š

�
F n�pC1H 2n�2pC1.X IV 0�/

�0
�0
�
MU 2p�1.X/

� : (6.3)

Now let f WY ! X be a proper holomorphic map of codimension p such that Œf �D 0
in MU 2p.X/. Let Qb D .b;Nb;rb/ be a geometric bordism datum over

b D .cb; fb/WW ! R �X:

We set WŒ0;1� WD c�1b .Œ0; 1�/, and w WD fbjWŒ0;1� .

Theorem 6.10. With the above notation, the image of AJ.f / under isomorphism (6.3) is
represented by the functional in .F n�pC1H 2n�2pC1.X IV 0�//

0 defined by

Œ!� 7! ev
�Z

Y

�f ^ f
�! C

Z
WŒ0;1�

K.rb/ ^ w
�!

�
:

Proof. We recall from Theorem 6.9 that AJ.f /D
�
f��f � . Qb/

�
2 J

2p�1
MU .X/. Let ! be

a closed form in F n�pC1A2n�2pC1.X IV 0�/. Since the codimension of fb is odd, we have
 . Qb/ D �w�K.rb/. Then the interaction of pushforwards and pullbacks with integrals
and Stokes’ theorem yield:Z

X

�
f��f �  . Qb/

�
^ ! D

Z
X

f��f ^ ! �

Z
X

 . Qb/ ^ !

D

Z
Y

�f ^ f
�! C

Z
WŒ0;1�

K.rb/ ^ w
�!:

By construction of isomorphism (6.3), the image of AJ.f / is the homomorphism that
sends Œ!� to the class given by evaluating the above sum of integrals.

It remains to show that this evaluation yields a well-defined element in the group
.F n�pC1H 2n�2pC1.X IV 0�//

0. Assume ! D d . ThenZ
WŒ0;1�

K.rb/ ^ w
�.d / D

Z
Y

K.rb/jY ^ f
� (6.4)
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by Stokes’ theorem. Since f is holomorphic, we haveK.Nb/jY DK.Nf / 2H 0;0.Y IV�/

and thusK.rb/jY 2 F 0A0.Y IV�/. Since Hodge theory implies the vanishing of the sub-
space F n�pC1H 2n�2p.Y IV� ˝ V 0�/ D 0, integral (6.4) vanishes.

For the other integral we note that by Stokes’ theorem we haveZ
Y

�f ^ f
�.d / D

Z
Y

d�f ^ f
� : (6.5)

We recall from Proposition 6.2 that �f D �CSK
�
DY ; f

�DX ˚ d;rf
�

for Bott connec-
tions DX on TX and DY on T Y , and an arbitrary connection rf on the normal bundle.
The derivative of �f satisfies

d�f D K.f
�DX ˚ d/ �K.DY / �K.rf /:

SinceK is multiplicative andK.d/D 1, we haveK.f �DX ˚ d/DK.f �DX /. SinceDX
andDY are Bott connections, we know thatK.f �DX / andK.DY / are in F 0A0.Y IV�/.
This implies again for reasons of type that the integralsZ

Y

K.f �DX / ^ f
� and

Z
Y

K.DY / ^ f
� 

both vanish. The remaining term to analyse is the integral
R
Y
K.rf / ^ f

� which we
already have shown to vanish. Thus integral (6.5) vanishes and the functional is well-
defined. Finally, we note that integral (6.5) is independent of the chosen bordism datum,
while the difference between the integrals (6.4) corresponding to two different bordism
data is an element in �0.MU 2p�1.X//.

Remark 6.11. The formula in Theorem 6.10 simplifies if the orientation of admits a
representative of the form .N;r; 0/. If f is projective, we obtain such a representative
from Proposition 5.15, and if f is a holomorphic embedding, B.f �TX=T Y / will do.
We do not know if such representatives exist for the canonical orientations of general
holomorphic maps.

7. Hodge filtered Thom morphism

We will now define a Thom morphism from Hodge filtered cobordism to Deligne coho-
mology. In order to define a map on the level of cycles we will first construct a new cycle
model for Deligne cohomology. Our construction is similar to that of Gillet–Soulé in [11]
(see also [13]). However, our construction is more elementary than the one in [11] in the
sense that it avoids the use of geometric measure theory.

Let X be a complex manifold and U � X an open subset. For an integer p � 0, let
Z.p/ denote .2�i/p � Z and let ZD.p/ be the complex of sheaves

0! Z.p/! OX ! �1X ! � � � ! �
p�1
X ! 0;
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where Z.p/ is placed in degree 0. Then the Deligne cohomology group H q

D
.X IZ.p//

may be defined as the q-th hypercohomology of the complex ZD.p/. We recall the group
of smooth relative chains defined as the quotient

C diff
dimX�k

�
X;Xn xU IZ.p/

�
D

C diff
dimX�k

�
X IZ.p/

�
C diff

dimX�k

�
Xn xU IZ.p/

� :
Let xC k denote the presheaf

U 7! xC k.U / WD C diff
dimX�k

�
X;Xn xU IZ.p/

�
:

The restriction maps of xC k are induced by quotienting out the appropriate additional
chains. The presheaf xC k is very close to being a sheaf since it satisfies the sheaf con-
dition for coverings of X . However, it does not satisfy the sheaf condition for general
collections of open subsets of X . Hence let C k be the sheafification of xC k . The sheaf
C k is not fine, but it is homotopically fine, meaning that its endomorphism sheaf admits a
homotopy partition of unity. We refer to [4, p. 172], from which we also recall the implica-
tion thatH�.H j . xC �.U ///D 0 for j > 0. Hence the hypercohomology spectral sequence
degenerates on the E2-page, past which only the row H 0.C �.U // survives. On stalks the
sheaf C k coincides with the presheaf xC k . Let U be a small contractible open subset of X .
By excision we have

H k. xC �.U // D HdimX�k
�
RdimX ;RdimX

nDIZ.p/
�
;

for D the closed unit disc. Hence we get

H j
�
xC �.U /

�
D

´
0 j > 0;

Z.p/ j D 0:

This proves the following result.

Lemma 7.1. The complex C � is an acyclic resolution of the constant sheaf Z.p/ as
sheaves on X .

By [4, Appendix B, Solution I.12], we also have the following fact.

Lemma 7.2. The canonical map xC �!C � induces an isomorphism of cohomology groups
on global sections H k. xC �.X// D H k.C �.X//.

In other words, the sheaf cohomology H k.X IZ.p// can be computed as the coho-
mology of the complex xC �.X/. Now we consider the map of complexes

T W xC �.X/! D�.X/

induced by integration. Let D�Z.X/ be the image of T in D�.X/. Since T is a map of
chain complexes, it follows that D�Z.X/ is a complex as well.
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Proposition 7.3. The map T W xC �.X/!D�Z.X/ induces an isomorphism on cohomology.

Proof. By Whitehead’s triangulation theorem, we may pick a smooth triangulation of X ,
i.e., a set S D ¹fi W�ki ! Xº such that each fi is a continuous embedding which extends
to a smooth mapping of a neighborhood of�k �Rk , and each x 2X is in the interior of a
unique cell Si D Im.fi /. It is well-known that the inclusion C�.S IZ.p//! C�.X IZ.p//
of cellular chains is a quasi-isomorphism. Hence it suffices to show that T restricts to a
quasi-isomorphism on the cellular chains of S . Since each point x 2 X is contained in
the interior of a unique cell of S , we can show that T is injective on cellular chains
as follows. We can construct for each i a form !i 2 Aki .X/ such that

R
�ki

f �i !i ¤ 0,
and such that the only ki -cell intersecting the support of !i is Si . Suppose T .c/ D 0

for c D
P
aifi . Then T .c/.!i / D aiT .fi /.!i / is a nonzero multiple of ai , and we get

ai D 0 for all i . To see that the map induced by T from cellular homology is injective,
we first note that the inclusion of cellular chains into singular chains is a deformation
retract since it is a quasi-isomorphism between complexes of projective modules. Let r
be a retraction onto the cellular chains. Now let c be a cellular cycle with T .c/ D dT .˛/
for ˛ an arbitrary integral chain ˛ 2 C �.X/. Then we have T .c/ D dT .˛/ D T .@˛/ and
thus T .c/ D T .r.c// D T .r.@˛// D T .@r.˛//. Since T is injective on cellular chains,
we get c D @r.˛/. Hence c represents 0 in cellular homology, and the map induced by T
on cellular homology is injective. It remains to see that T restricted to cellular chains is
surjective on homology.

By definition of D�Z.X/ as the image of T , every element of D�Z.X/ is of the formP
i T .ai � gi / where gi are smooth maps �k ! X . Assume that

P
i T .ai � gi / is a cycle

and hence represents a class in H k.X IDZ/. To simplify the notation, we write

g WD
X
i

ai � gi :

By assumption, we have dT .g/ D 0. Since r is a deformation retraction, there is a homo-
topy h of the cellular chains such that

@hC h@ D 1 � r:

By applying r , we define a cellular chain f WD r.g/. Omitting the inclusion from cellular
chains into chains from the notation we then have the identity of chains

g0 WD f � h@.g/ D @
�
h.g/

�
C g:

Applying r again defines a cellular chain r.g0/ such that

dT
�
r.g0/

�
D dT

�
r
�
@
�
h.g/

�
C g

��
D T

�
@@
�
h.g/

��
C dT .g/ D 0;

where we use the assumption dT .g/ D 0. Hence we get

T
�
@
�
r.g0/

��
D dT

�
r.g0/

�
D 0:
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Since T is injective on cellular chains, this implies @r.g0/ D 0, i.e., that f 0 WD r.g0/ is
a cellular cycle. Since T .f 0/ � T .g/ D T .@.h.g/// D dT .h.g// is an exact current, we
have found a cellular cycle f 0 whose homology class is mapped to the homology class of
g under T . This completes the proof.

We are now ready to give our presentation of Deligne cohomology. Let

iF WF
pA� ! D�

be the map of sheaves induced by T , and let ic WD�Z.X/! D�.X/ be the inclusion. We
will show that the following cochain complex

C �D.p/.X/ D cone
�
D�Z.X/˚ F

pA�.X/
ic�iF
����! D�.X/

�
computes the Deligne cohomology of X . In degree k we have the group

C kD.p/.X/ D Dk
Z.X/˚ F

pAk.X/˚Dk�1.X/:

The differential is defined by

d.T; !; h/ D
�
dT; d!; ic.T / � dhC iF .!/

�
:

Theorem 7.4. The cohomology of the cochain complex C �
D
.p/.X/ is naturally isomor-

phic to Deligne cohomology.

To prove the theorem we will use multicomplexes, which are more flexible than bicom-
plexes. We recall from [3] that a multicomplex of abelian groups consists of the data of a
bigraded abelian group, Es;t , and differentials d s;tr WEs;t ! EsCr;t�rC1 such thatX

iCjDk

d
sCi;t�iC1
j ı d

s;t
i D 0WE

s;t
! EsCk;t�kC2:

One can consider multicomplexes of objects in any abelian category. We are considering
here multicomplexes of abelian sheaves.

Proof of Theorem 7.4. We will construct a series of quasi-isomorphisms of complexes of
sheaves

ZD.p/ ' C
0�
D .p/ ' Tot.M/

and a quasi-isomorphism of complexes of abelian groups Tot.M/.X/! C �
D
.X/, where

M is the following multicomplex of sheaves on X :

M s;t
D

8̂̂<̂
:̂
C t s D 0;

Ds�1;t 0 < s < p;

F pAs;t ˚Ds�1;t p � i:
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To define the differentials let …s;k�s WDk ! Ds;k�s be the projection. For s > 0, there is
only d0 and d1. The differentials of M are

d
s;t
0 D

8̂̂<̂
:̂
d WC t ! C tC1 s D 0;

�x@WDs�1;t ! Ds�1;tC1 0 < s < p;

.x@; iF � x@/WF
pAs;t ˚Ds�1;t ! F pAs;tC1 ˚Ds�1;tC1 s � p;

d
s;t
1 D

8̂̂<̂
:̂
…0;t ı ic WC

t ! D0;t s D 0;

�@WDs�1;t ! Ds;t 0 < s < p;

.@; iF � @/WF
pAs;t ˚Ds�1;t ! F pAsC1;t ˚Ds;t s � p;

d0;tr D …
r;t�r
ı ic WC

t
! Dr;t�r :

The total complex of M is given by

Tot�.M/ D cone
�
C � ˚ F pA�

iF�ic
����! D�

�
:

There is therefore a natural map Tot�.M.X//! C �
D
.p/.X/ defined by

Tot�
�
M.X/

�
3 .c; !; h/ 7!

�
aT .c/; !; h

�
2 C �D.p/.X/;

where we write aT for the sheafified map induced by T . This map of complexes induces
an isomorphism on cohomology since each of the maps

idWF pA�.X/! F pA�.X/; T W xC �.X/! D�Z.X/; and idWD�.X/! D�.X/

is a quasi-isomorphism. We define yet another complex of sheaves

C 0�D .p/ D
�
Z.p/ �! �0

d
�! � � �

d
�! �p�2

.0;d/
���! �p ˚�p�1

ıp
�! �pC1 ˚�p

ıpC1
���! � � �

�
with ıi .!; �/ D .d!; ! � d�/ for i > p. There is a map f WZD.p/.X/! C 0�

D
.p/.X/

given by

Z.p/

id
��

// �0
d //

id
��

�1
d //

id
��

� � �
d // �p�2

id
��

d // �p�1 //

˛

��

0

Z.p/ // �0
d // �1 // � � �

d // �p�2
.0;d/

// �p ˚�p�1
ıp
// � � �

with ˛.!/D .d!;!/. We claim that this is a quasi-isomorphism of complexes of sheaves.
This is clear in degrees < p, and in degrees > p it follows from the fact that C 0�

D
.p/ is

exact in that range. In degree p we need to show that f induces an isomorphism on
cohomology of stalks. Let U be a polydisc. Then

H
p

D

�
U IZ.p/

�
D
�p�1.U /

Im d
;
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and

Hp
�
U IC 0�D .p/

�
D

®
.!; �/ 2 �p.U /˚�p�1.U / W d� D !

¯
Im.0; d/

:

It is clear that the map induced by f , which can be described as Œ� � 7! Œd�; ��, is an
isomorphism. Hence f is a quasi-isomorphism as claimed. Next there is a natural map
C 0�

D
.p/!M given by

Z.p/ //

"

��

�0 //

��

� � � // �p�2 //

��

�p ˚�p�1 //

��

� � �

C 0 // D0;0 // � � � // Dp�2;0 // Ap ˚Dp�1 // � � �

where " is the quasi-isomorphism Z.p/! C �. The column M i;� is a resolution of the
sheaf C 0i

D
.p/ by Lemma 7.1 and the arguments in [12, pp. 382–385]. Hence the natural

map
C 0�D .p/!M

is a quasi-isomorphism. This concludes the proof.

Remark 7.5. If we choose a smooth triangulation ofZ, then by summing up the top cells
we get a smooth singular cycle cZ representing the fundamental class ŒZ� 2HdimZ.ZIZ/.
We have T .cZ/ D 1 2 D0.Z/, and so

f�1 D f�T .cZ/ D T .f�cZ/ 2 D�Z.X/:

The advantage of using DZ is that no choice of triangulation is needed in order to get the
current f�1.

Let �0 be the map
D�.X IV�/! D�.X IC/

induced by the map on coefficients

V� DMU� ˝C ! C

determined by the additive formal group law over C. Then �0 is a chain map and it
preserves the Hodge filtration. Now we are ready to define our Hodge filtered Thom mor-
phism on the level of cycles:

�ZWZMU n.p/.X/! C nD.p/.X/;


 D . Qf ; h/ 7!
�
f�1; �0

�
R.
/

�
; �0.h/

�
:

Lemma 7.6. We have �0.f�K.rf // D f�1.

Proof. This follows from the definition of �0 and the factK0 D 1 sinceK is a multiplica-
tive sequence.
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Theorem 7.7. For every X 2ManC , the map �Z induces a natural homomorphism

y�ZWMU n.p/.X/! Hn
D

�
X IZ.p/

�
which fits into a morphism of long exact sequences

� � � // Hn�1
�
X I A�

F p
.V�/

�
//

�0

��

MU n.p/.X/ //

y�Z

��

MU n.X/ //

�

��

� � �

� � � // Hn�1
�
X I A�

F p
.C/

�
// Hn

D
.X IZ.p// // Hn.X IZ/ // � � �

(7.1)

Proof. It is clear that �Z is a group homomorphism. We need to prove that, for a cycle

 D . Qf ; h/ 2 ZMU n.p/.X/, we have

d�Z.
/ D 0 and �Z

�
BMU n.p/.X/

�
� dC n�1D .p/.X/:

We begin with the former. We have

d�Z. Qf ; h/ D d
�
f�1; �0

�
R.
/

�
; �0.h/

�
D
�
df�1; �0

�
dR.
/

�
; �0.dh/C f�1 � �0

�
R.
/

��
:

Since f�1 is a closed current, and R.
/ is a closed form, we deduce d�Z.
/ D 0 from
Lemma 7.6. Now let Qb be a geometric bordism datum. Then

y�Z

�
@ Qb;  . Qb/

�
D
�
�0�.@ Qb/; 0; �0 . Qb/

�
D
�
�0d . Qb/; 0; �0 . Qb/

�
D d

�
�0 . Qb/; 0; 0

�
:

Next let h 2 zF pAn�1.X IV�/. Then �0.h/ 2 zF pAn�1.X/, so that�
0; �0.h/; 0

�
2 C n�1D .p/.X/:

We have
�Z

�
a.h/

�
D �Z.0; h/ D

�
0; �0.dh/; �0.h/

�
D d

�
0; �0.h/; 0

�
which finishes the proof that �Z induces a homomorphism. The second assertion follows
directly from the construction of y�Z.

Let X be a compact Kähler manifold. Let f W Y ! X be the inclusion of a complex
submanifold of codimension p such that its fundamental class in MU 2p.X/ vanishes.
The latter condition implies that the fundamental class of f in H 2p.X IZ/ vanishes as
well. Hence both the classical Abel–Jacobi invariant AJH .f / of Deligne–Griffiths (see
e.g. [24, Section 12]) and the invariant AJ.f / of Theorems 6.9 and 6.10 are defined.

Theorem 7.8. With the above notation and assumptions, we have

�0
�

AJ.f /
�
D AJH .f /:
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Proof. By Theorem 6.10 the invariant AJ.f / may be represented by the functional

Œ!� 7! ev
�Z

Y

�f ^ f
�! C

Z
WŒ0;1�

�
K.rb/

�
^ w�!

�
:

The image of the Chern–Simons form �f under y�Z and �0 is zero since �f is a form in
degree �1. By Lemma 7.6, K.rb/ is mapped to 1. Thus, �0 maps AJ.f / to the class of
the functional in F n�pC1H 2n�2pC1.X IC0/0 defined by

Œ!� 7! ev
Z
WŒ0;1�

w�!:

This corresponds to the characterization of AJH .f / in [24, Section 12.1.2, p. 294].

8. Image and kernel for compact Kähler manifolds

We assume again that X is a compact Kähler manifold. Then the morphism of long exact
sequences (7.1) induces a map of short exact sequences

0 // J
2p�1
MU .X/ //

�J

��

MU 2p.p/.X/ //

y�Z
��

Hdg2pMU .X/

�

��

// 0

0 // J 2p�1.X/ // H
2p

D

�
X IZ.p/

�
// Hdg2p.X/ // 0:

(8.1)

Let Mp.X/ be the free abelian group generated by isomorphism classes Œf � of proper
holomorphic maps f WY ! X of codimension p. For a proper holomorphic map f WY !
X of codimension p we denote its fundamental class in MU 2p.p/.X/ by y'.f / and its
fundamental class inMU 2p.X/ by '.f /. This defines homomorphisms of abelian groups

y'WMp.X/!MU 2p.p/.X/ and 'WMp.X/!MU 2p.X/:

We denote the kernel of ' by Mp.X/top. Then the Abel–Jacobi invariant of Definition 6.8
defines a homomorphism

AJWMp.X/top ! J
2p�1
MU .X/:

Note that every element in Mp.X/top is homologically equivalent to zero and therefore
has a well-defined image in J 2p�1.X/. By Theorems 7.7 and 7.8 composition with the
respective maps of diagram (8.1) produces the classical invariants. Diagram (8.1) shows
that studying the kernel and image of y�Z is equivalent to analysing the kernel and image
of �J and � , respectively. We expect the maps y' and AJ to be useful to discover new
phenomena and examples that the classical invariants with values in Deligne cohomology
are not able to detect. We will now briefly report on some results in this direction.
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First we look at the image of y�Z. Let X be a smooth projective complex algebraic
variety. In [23], Totaro showed that an element in H 2�.X.C/IZ/ which is not in the
image of � WMU 2�.X.C//! H 2�.X.C/IZ/ cannot be algebraic. This is a refinement
of the obstruction induced by the Atiyah–Hirzebruch spectral sequence (see also [2]). It
follows from [16, Corollary 7.12] that an algebraic class in H 2�.X.C/IZ/ has to be in
the subgroup �.Hdg2�MU .X.C///. In [1, Section 3.4], Benoist shows that this obstruction
to algebraicity of cohomology classes is in fact finer than the one of [23].

Now we consider the kernel of �J . Since �0 is an epimorphism of vector spaces, the
map �J is surjective, and the snake lemma implies that there is a short exact sequence

0! ker �J ! ker y�Z ! ker � ! 0:

Hence ker y�Z contains information on the failure of the Thom morphism � to be injective
on Hodge classes, and on the failure of �J to be injective. We have a further short exact
sequence

0 // MU 2p�1.X/mt
�mt //

�mt

��

H2p�1.X IV�/

F pH2p�1.X IV�/

� xJ

��

// J
2p�1
MU .X/

�J

��

// 0

0 // H 2p�1.X IZ/mt
i // H2p�1.X IC/

F pH2p�1.X IC/
// J 2p�1.X/ // 0

where the subscript mt means modulo torsion. Again, since �0 is onto, it follows that � xJ
is onto. Then the snake lemma places ker �J in the exact sequence

0! ker � ! ker � xJ ! ker �J ! coker �mt ! 0:

This indicates two methods to construct elements in ker �J : as elements coming from
ker � xJ or as elements coming from coker �mt . We will now briefly describe both these
methods.

The arguments in [16, Section 7.3] show how to construct elements in ker � xJ . We note
that even though we have not shown that MU 2�.�/.�/ receives a map from algebraic
cobordism for algebraic varieties, we can adjust the arguments as follows. Let P1 be
the complex projective line, and let ŒP1� denote corresponding element in MU�2. Let
f W Y ! X be a proper holomorphic map of codimension p. Let P1X ! X denote the
pullback of P1 to X . By Lemma 6.3 we get a well-defined homomorphism

Mp.X/!MU 2p�2.p � 1/.X/

induced by sending ŒY � to ŒY � � ŒP1X �. Since X is compact, there is an isomorphism

MU �.X/˝Z Q Š H�.X IQ/˝Z MU �:

This implies that the sum p̊2ZJ
2p�1
MU .X/ ˝ Q is a flat MU �-module. Thus, for


 2 Mp.X/, if AJ.
/ is non-zero in J 2p�1MU .X/ ˝ Q, then AJ.
/ � ŒP1� is non-zero in
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J
2p�3
MU .X/˝Q and therefore non-zero in J 2p�3MU .X/. Now we can take an element 
 2

Mp.X/ such that '.
/ D 0 and the image of 
 in J 2p�1.X/ is non-torsion. Then the
above argument shows that AJ.
/ � ŒP1� is non-zero in J 2p�3MU .X/. However, the image
�J .AJ.
/ � ŒP1�/ vanishes in J 2p�3.X/ since �0 sends ŒP1� to zero. Examples of this sit-
uation where X is a projective smooth complex algebraic variety are described in [16,
Examples 7.15 and 7.16].

Finally, we look at coker� . The most interesting case is that of a non-torsion element in
coker � which induces an element in ker �J that remains non-trivial after taking the tensor
product with R=Z over MU �. For certain complex Lie groups, for example SO.5/, we
can show that there are such elements in coker � . However, we are so far not able to
produce such elements for X being compact or even projective.
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