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Algebraic kk-theory and the KH-isomorphism conjecture

Eugenia Ellis and Emanuel Rodríguez Cirone

Abstract. We relate the Davis–Lück homology with coefficients in Weibel’s homotopy K-theory
to the equivariant algebraic kk-theory using homotopy theory and adjointness theorems. We express
the left hand side of the assembly map for the KH-isomorphism conjecture in terms of equivariant
algebraic kk-groups.

1. Introduction

Kasparov KK-theory, introduced in [21], is the major tool in noncommutative topology.
To every pair .A; B/ of separable C �-algebras it associates an abelian group KK.A; B/
that is a common generalization both of topological K-theory K top

� .B/ Š KK�.C; B/
and topological K-homology. Kasparov KK-theory was deeply studied by Cuntz, who
gave an alternative description of the groups KK.A; B/ and provided a new perspec-
tive on the theory [10]. The groups KK.A; B/ form the hom-sets of a category KK that
is the target of the universal homotopy invariant, C �-stable and split-exact functor from
separable C �-algebras into an additive category; these universal properties were estab-
lished by Higson [18]. Kasparov developed in [22] an equivariant version of KK-theory,
KKG , for separable C �-algebras with a an action of a group G by �-automorphisms.
Equivariant KK-theory was used in [4] to formulate the Baum–Connes conjecture with
coefficients and is one of the basic tools in the proofs of results about it. Cuntz also ana-
lyzedKK-theory in algebraic terms and defined a bivariantK-theory for all locally convex
algebras [11].

Motivated by the works of Cuntz and Higson, algebraic kk-theory was introduced by
Cortiñas and Thom in [9] as a completely algebraic counterpart of Kasparov KK-theory.
To every pair .A; B/ of algebras over a commutative ring ` it associates an abelian group
kk.A;B/ that generalizes Weibel’s homotopy K-theory KH defined in [31]. By [9, Main
Theorem] we have KH�.B/Š kk�.`;B/ for every algebra B . The groups kk.A;B/ form
the hom-sets of a category kk that is the target of the universal (polynomial) homotopy
invariant, M1-stable and excisive functor from Alg` into a triangulated category. An
equivariant version of algebraic kk-theory, kkG , was developed in [15] for `-algebras

Mathematics Subject Classification 2020: 19D55 (primary); 55N91, 18N40, 19K35 (secondary).
Keywords: bivariant algebraic K-theory, equivariant homology, homotopy K-theory, Quillen model
categories.

https://creativecommons.org/licenses/by/4.0/


E. Ellis and E. Rodríguez Cirone 400

with an action of a group G. By Garkusha’s representability theorems [17], the groups
kk.A; B/ can be recovered as the homotopy groups of certain spectra K.A; B/. These
spectra were constructed in [17] and were later extended in [27] to spectra KG.A; B/

representing kkG.A;B/.
We may summarize the above into a dictionary between Kasparov KK-theory and

algebraic kk-theory:

continuous homotopy invariance  ! polynomial homotopy invariance
C �-stability  ! M1-stability
split exactness  ! excision
KK-theory of C �-algebras  ! kk-theory of `-algebras
KK.C; B/ Š K top

� .B/  ! kk�.`; B/ Š KH�.B/
KKG-theory of G-C �-algebras  ! kkG-theory of G-algebras
formulation of the Baum–Connes conjecture
with coefficients using KKG-theory

 ! ?

This paper is concerned with the last line of this dictionary. The Baum–Connes conjecture
with coefficients was originally formulated using KKG-theory, but no analogue is known
on the algebraic side. We shed light on this by exploring the relation between kkG-theory
and the KH-isomorphism conjecture – the latter was introduced in [3] using the homotopi-
cal approach to isomorphism conjectures developed in [13]. Our main theorem states that
the domain of the KH-assembly map can be described in terms of kkG-groups in way that
is completely analogous to the case of the Baum–Connes assembly map. As explained
in Section 2.2.4, a group G and a G-algebra B satisfy the KH-isomorphism conjecture if
certain morphism

HG
� .EF in.G/IKHB/! KH�.B ÌG/;

called the assembly map, is an isomorphism. Here EF in.G/ is the classifying space of G
with respect to its family of finite subgroups and HG

� .�IKHB/ is a G-homology theory
such that HG

� .G=H IKHB/ Š KH�.B ÌH/ for every subgroup H � G. We prove the
following result; see Section 2.1 for the precise definition of `.X/ and Section 2.2 for the
definition of .G;F in/-complex.

Main Theorem (cf. Theorem 7.11 and Remark 7.12). Let G be a group such that jH j is
invertible in the base ring ` for every finite subgroupH � G. Let B be aG-algebra. Then
for every .G;F in/-complex Z there is a natural isomorphism

HG
� .ZIKHB/ Š colim

X�Z
G-finite

kkG� .`
.X/; B/ (1.1)

where `.X/ denotes the algebra of finitely supported polynomial functions on X .

For Z D G=H with H � G a finite subgroup, the isomorphism (1.1) is easily under-
stood using the adjointness theorems in kk-theory. LetH �G be a finite subgroup whose
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order is invertible in `. By the Green–Julg theorem [15, Theorem 5.2.1] we have a natural
isomorphism

kkH .A� ; B/ Š kk.A;B ÌH/ (1.2)

for A 2 Alg` and B 2HAlg`. Here A� denotes the algebra A considered as anH -algebra
with trivial H -action. By the adjunction between induction and restriction [15, Theo-
rem 6.14] we have a natural isomorphism

kkG
�
IndGH .A/; B

�
Š kkH

�
A;ResHG .B/

�
(1.3)

forA 2HAlg` and B 2GAlg`. Since IndGH .A
� /D

L
G=H ADA

.G=H/, upon composing
(1.2) and (1.3) we get a natural isomorphism

kkG.A.G=H/; B/ Š kk.A;B ÌH/ (1.4)

for A 2 Alg` and B 2 GAlg`. As it will turn out, the identification (1.1) is obtained by
glueing the isomorphisms (1.4) with homotopy theoretic techniques. In this process we
will replace the groups kk and kkG by the spectra K and KG that respectively represent
them; see [17] and Appendix C.

The paper is organized as follows. In Section 2, we recall definitions and preliminaries
that are used throughout the article. In Section 3, we give explicit descriptions of the unit
and counit of the adjunction (1.4). In Section 4, we define a triangulated functor

R.� ÌG=H/ W kkG ! kk

that is naturally isomorphic to the crossed product with H . This allows us to replace the
right-hand side of (1.4) by an actual functor on Or.G/; see Definition 2.5. In Section 5,
we prove that the isomorphism

kkG.A.G=H/; B/ Š kk
�
A;R.B ÌG=H/

�
(1.5)

is natural in G=H ; see Theorem 5.8. Section 6 is the technical core of this work and is
devoted to lifting the isomorphism (1.5) to a weak equivalence of Or.G;F in/-spectra. By
Lemma 5.5, we can describe the isomorphism (1.5) as the composite of the morphisms in
the zig-zag (6.2). Upon replacing kk by K and kkG by KG we obtain a zig-zag as follows:

K
�
A;R.B ÌG=H/

� .�/.G=H/
// KG

�
A.G=H/;

�
R.B ÌG=H/

�.G=H/�
KG.A.G=H/;MGB/ KG

�
A.G=H/;R

�
.B ÌG=H/.G=H/

��
:

�

OO

R.�G=H /
oo

(1.6)

Here the technical difficulties arise:

(1) How to consider the spectra on the right column as functors Or.G;F in/! Sp (or
to replace them by ones)?

(2) Once the previous question has been addressed, are the morphisms in (1.6) natural
in G=H?
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An answer to (1) is provided in Sections 6.3 and 6.4. In Section 6.6 we introduce a model
category that allows us to build models for certain homotopy coends. An answer to (2)
is given in Theorem 6.34. The latter is the key technical result of this paper. In Section 7
we finally prove our Main Theorem (Theorem 7.11). In Section 8 we prove a first result
towards obtaining a kk-theoretic description of the KH-assembly map.

2. Notation, conventions and preliminaries

Throughout this text, ` denotes a commutative ring with unit and G denotes a group.
We write Alg` for the category of not necessarily unital `-algebras and algebra homomor-
phisms. The objects of Alg` are simply called algebras. Tensor products over ` are denoted
by˝. A G-algebra is an algebra with a left action of G. We write GAlg` for the category
ofG-algebras andG-equivariant algebra homomorphisms. The category of simplicial sets
is denoted by S. AG-simplicial set is a simplicial set endowed with a left action ofG. We
write SG for the category of G-simplicial sets with equivariant morphisms.

2.1. Algebras of polynomial functions on a simplicial set

Let B be an algebra. For n � 0, the algebra B�
n

of B-valued polynomial functions on the
standard n-simplex is defined asB�

n
WDBŒt0; : : : ; tn�=ht0C � � � C tn � 1i. For a simplicial

set X , the algebra BX of B-valued polynomial functions on X is defined as

BX WD HomS.X;B
�/

whereB� is the simplicial algebra Œn� 7!B�
n
. Note that the functorB� W S!Alg` sends

colimits to limits. We summarize useful properties of this construction in the following
lemma.

Lemma 2.1 ([9, Lemma 3.1.2 and Proposition 3.1.3]). Let B be an algebra.

(1) If X � Y is an inclusion of simplicial sets, then BY ! BX is surjective.

(2) If K is a finite simplicial set, then `K is free as `-module and there is a natural
isomorphism of algebras BK Š B ˝ `K .

Let X be a simplicial set. We recall the definition of the algebra B.X/ of finitely sup-
ported B-valued polynomial functions on X ; see [8, Section 9.3] for details. The support
of a polynomial function � 2 BX is defined as the simplicial subset of X generated by[

n�0

®
� 2 Xn W �.�/ ¤ 0

¯
:

Put
B.X/ WD ¹� 2 BX W supp.�/ is finiteº:

Then B.X/ � BX is a two-sided ideal. IfK is a finite simplicial set, then we have B.K/ D
BK .
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Remark 2.2. The assignment X 7! B.X/ is natural only for proper maps of simplicial
sets – i.e. morphisms f W X ! Y such that f �1.K/ is finite for every finite simplicial
subset K � Y .

Remark 2.3. If ¹Xiºi is a family of simplicial sets then we have

B.
F
i Xi / Š

M
i

B.Xi /:

The behavior of B.�/ with respect to general colimits of proper maps is analyzed in [8,
Section 9.3, conditions (@0) and (@1)]. In particular, upon applying B.�/ to a pushout
square of simplicial sets where all the morphisms are proper we obtain a pullback square
of algebras.

IfX is aG-simplicial set, thenBX andB.X/ areG-algebras with the action defined by
.g � �/.�/ WD �.g�1 � �/ for � 2 BX , n � 0 and � 2 Xn. If X ! Y is a proper morphism
in SG , then B.Y / ! B.X/ is a morphism in GAlg`.

Example 2.4. Let H � G be a subgroup and let G=H D ¹uH W u 2 Gº be the set of left
cosets of H . We can consider the G-set G=H as a 0-dimensional G-simplicial set. For
any algebra A we have

AG=H D A
F
uH2G=H ¹uHº Š

Y
uH2G=H

A¹uHº Š
Y
G=H

A;

A.G=H/ D A

�F
uH2G=H ¹uHº

�
Š

M
uH2G=H

A.¹uHº/ Š
M
G=H

A:

In particular, `.G=H/ Š
L
G=H ` is a free `-module with base ¹�uH W uH 2 G=H º. When

considering �uH as a function G=H ! ` with finite support, then �uH .vH/ D ıuH;vH
(Kronecker delta). Note that we have g � �uH D �guH for every g 2 G. For any algebra
A we have

A.G=H/ Š
M
G=H

A Š A˝
M
G=H

` Š A˝ `.G=H/:

For a 2 A and uH 2 G=H we sometimes write a�uH 2 A.G=H/ for the element corre-
sponding to a˝ �uH 2 A˝ `.G=H/ under the isomorphism above.

2.2. Isomorphism conjectures

In this section, we recall the homotopical approach to the isomorphism conjectures devel-
oped in [13]. By [8, Section 2], it is equivalent to work in the topological or in the
simplicial setting; we choose to do the latter.

Definition 2.5. Let G be a group. The orbit category of G is the category Or.G/ whose
objects are the G-sets G=H with H � G a subgroup and whose morphisms are the G-
equivariant functions.
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2.2.1. Model structure on G -simplicial sets determined by a family of subgroups.
For X 2 SG and H � G a subgroup, let XH be the simplicial subset of X formed by
those simplices that are fixed by H . Note that

XH Š HomG.G=H;X/

so that, for fixed X , G=H 7! XH is a functor on Or.G/. Let F be a nonempty family
of subgroups of G closed under conjugation and under taking subgroups. As explained
in [8, Section 2], SG admits a model structure where a morphism f W X ! Y is a weak
equivalence (resp. a fibration) if and only if f H W XH ! YH is a weak equivalence
(resp. a fibration) in S for every H 2 F . Moreover, the cofibrant objects, called .G;F /-
complexes, are those G-simplicial sets X such that the stabilizer of every simplex of X is
in F . These can be alternatively described as those G-simplicial sets X that can be built
from cells of the form G=H ��n with H 2 F ; see Appendix A. We write EF .G/! pt
for a cofibrant replacement of the point and call EF .G/ a model for the classifying space
of G with respect to F .

2.2.2. Equivariant homology and assembly map. Let Sp be the category of spectra;
see Appendix C for details. An Or.G/-spectrum is a functor Or.G/! Sp. Fix an Or.G/-
spectrum E and define HG.�IE/ W SG ! Sp as the coend

HG.X IE/ WD
Z G=H

XHC ^ E.G=H/: (2.6)

The groupsHG
� .X IE/ WD ��HG.X IE/ assemble into a homology theory ofG-simplicial

sets such that
HG
� .G=H IE/ Š ��E.G=H/

for any G=H 2 Or.G/; see [13, Lemma 6.1]. The assembly map for the triple .E; G;F /
is the morphism

HG
�

�
EF .G/IE

�
! HG

� .ptIE/ Š ��E.G=G/ (2.7)

induced on homology by the cofibrant replacement EF .G/! pt. We say that the isomor-
phism conjecture for the triple .E; G;F / holds if (2.7) is an isomorphism.

Remark 2.8. Let Or.G;F / be the full subcategory of Or.G/ whose objects are those
G=H with H 2 F . If the functor E is only defined on Or.G;F /, the formula (2.6) still
makes sense but defines a homology theory in the full subcategory of SG whose objects
are the .G;F /-complexes.

Remark 2.9. Any morphism f W E! F of Or.G;F /-spectra induces a natural transfor-
mation f� W HG.�IE/! HG.�IF/ of functors from the category of .G;F /-complexes
into Sp. Upon taking homotopy groups, we get a natural transformation

f� W H
G
� .X IE/! HG

� .X IF/: (2.10)

Moreover, if f is an objectwise weak equivalence, then (2.10) is an isomorphism by [13,
Lemma 4.6].
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2.2.3. The Baum–Connes conjecture with coefficients. Let G be a countable group
andB be a separableG-C �-algebra. The Baum–Connes conjecture fits into the framework
described above by considering the family F in of finite subgroups and an Or.G/-spectrum
KB such that

��KB.G=H/ Š K
top
� .B Ìr H/

for every subgroup H � G. Here Ìr denotes the reduced crossed product. The equiva-
lence of the corresponding assembly map with the original one in [4] was recently proved
independently in [23] and in [6].

2.2.4. The KH-isomorphism conjecture. Let G be a group and let B be a G-algebra.
The KH-isomorphism conjecture was introduced in [3, Section 7] using the machinery
described above; see [25, Section 15.3] for the status of this conjecture. The conjecture is
obtained upon considering the family F in of finite subgroups ofG and an Or.G/-spectrum
KHB such that

��KHB.G=H/ Š KH�.B ÌH/ (2.11)

for every subgroup H � G. The original construction of KHB was done in [3]. In Sec-
tion 7, we provide a different construction using the spectra that represent algebraic kk-
theory [17].

2.3. Algebraic kk-theory

Let C denote either the category Alg` or GAlg`.

2.3.1. Homotopy invariance. Two morphisms f; g W A! B in C are elementary homo-
topic if there exists a morphism H W A! BŒt� such that ev0 ıH D f and ev1 ıH D g.
Here, BŒt� is the algebra of polynomials with coefficients in B and evi W BŒt�! B is the
evaluation at i . If B is a G-algebra we let G act trivially on t . The relation of elementary
homotopy is easily seen to be reflexive and symmetric but not transitive. We consider the
equivalence relation generated by elementary homotopy and call it homotopy.

Let C be a category. A functor F W C! C is homotopy invariant if it sends homotopic
morphisms to the same morphism. It is easily verified that F is homotopy invariant if and
only if F.A � AŒt�/ is an isomorphism for every A.

2.3.2. Matrix stability. Let A be an algebra and X be an infinite set. We write MXA
for the algebra of finitely supported matrices with coefficients in A that are indexed over
X � X ; when A D ` we just write MX . Note that MXA Š MX ˝ A. The assignment
X 7!MX depends covariantly on X with respect to injective functions.

Fix x 2 X and let �x W A!MXA be given by �x.a/ D ex;x ˝ a. Let C be a category.
A functor F W C ! C is MX -stable if F.�x W A!MXA/ is an isomorphism for every A.
This definition is independent of the choice of x by the following result.

Lemma 2.12 ([7, Proposition 2.2.6]). Let C be a category and let F W GAlg`! C be an
M2-stable functor. LetB � C be an inclusion ofG-algebras. Suppose that C is unital and
let V 2 C be an invertible element such that VB;BV �1 � B and g � V D V for all g 2G.
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Then the formula �V .b/D VbV �1 defines aG-algebra homomorphism �V WB!B such
that F.�V / D idF.B/.

Proof. It is easily verified that g � V �1 D V �1 for all g 2 G and that �V defines a
G-algebra homomorphism. The rest of the proof of [7, Proposition 2.2.6] carries over
verbatim.

Let S be a G-set and let jS j be its underlying set. We write MS for the algebra MjS j
endowed with theG-action defined by g � es;t D eg �s;g �t . LetGC DG t ¹+º and let � W `!
MGC (respectively �0 W MG ! MGC ) be the morphism induced by the inclusion ¹+º �
GC (resp. G � GC). Let C be a category. There is a notion of G-stability for functors
GAlg` ! C ; see [15, Section 3.1] for details. It turns out that any G-stable functor sends
the morphisms

B
� // MGC ˝ B MG ˝ B

�0oo (2.13)

to isomorphisms, for every B 2 GAlg`.

Remark 2.14. For any G-algebra B , we have an isomorphism RS;B W .MS ˝B/ ÌG!
MjS j ˝ .B ÌG/ defined by

RS;B
�
.es;t ˝ b/ Ì g

�
D es;g�1t ˝ .b Ì g/: (2.15)

This isomorphism is natural in S with respect to injective morphisms ofG-sets and natural
in B with respect to morphisms of G-algebras.

2.3.3. Excision. An extension of algebras (respectively of G-algebras) is a short exact
sequence

E W A // B // C
||

(2.16)

that splits in the category of `-modules (resp. G-modules). Let .T ; �/ be a triangulated
category. A functor F W C ! T is excisive [9, Section 6.6] if it associates to every exten-
sion (2.16) a morphism @E W �F.C/! F.A/ that fits into a triangle as follows:

�F.C/
@E // F.A/ // F.B/ // F.C/:

These triangles are required to be natural with respect to morphisms of extensions.

2.3.4. Bivariant K -theory categories. Let X be an infinite set. There exists a triangu-
lated category kk (see [9] for X D N and [27] for general X ) endowed with a functor

j W Alg` ! kk

that is homotopy invariant, MX -stable and excisive. This functor j is moreover universal
in the following sense: any functor Alg`! .T ;�/ that is homotopy invariant,MX -stable
and excisive factors uniquely through j [9, Theorem 6.6.2]. By a theorem of Cortiñas and
Thom [9, Main Theorem], homotopy K-theory is representable in kk since we have

kk�.`; B/ Š KH�.B/
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for every B 2 Alg`. Here kkn.A;B/ is defined as kk.j.A/;�nj.B//. This representabil-
ity theorem is a major computation of [9].

Let G be a group. There exists a triangulated category kkG (see [15] for countable G
and [27] for general G) endowed with a functor

jG W GAlg` ! kkG

that is homotopy invariant, G-stable and excisive. This functor jG is moreover universal
in the following sense: any functorGAlg`! .T ;�/ that is homotopy invariant,G-stable
and excisive factors uniquely through jG [15, Theorem 4.1.1].

Throughout this paper, by kk we shall mean the universal MN�jGj-stable kk-theory.

Example 2.17. Let B be a G-algebra. By G-stability, the morphisms (2.13) induce an
isomorphism jG.B/ Š jG.MGB/ in kkG . To ease notation we often omit jG and write
B Š MGB . By homotopy invariance, we have isomorphisms B Š B�

n
in kkG , since

B�
n

is isomorphic to the algebra of polynomials in n variables with coefficients in B .

3. Adjoint theorems revisited

Let G be a group and let H � G be a finite subgroup whose order n is invertible in `.
Recall the notation and conventions from Example 2.4. By [15, Theorem 5.2.1] and [15,
Theorem 6.14] we have an adjunction isomorphism

kkG.A.G=H/; B/ Š kk.A;B ÌH/ (3.1)

for any A 2 Alg` and any B 2 GAlg`. For A 2 Alg`, let �A W A! A.G=H/ ÌH be the
algebra homomorphism defined by

�A.a/ D a�H Ì
1

n

X
h2H

h:

Put �A D j.�A/ 2 kk.A;A.G=H/ ÌH/. We will show that �A is a unit for the adjunction
(3.1). For B 2 GAlg`, let �B W .B ÌH/.G=H/ ! MG ˝ B be the G-algebra homomor-
phism defined by

�B
�
.b Ì h/�wH

�
D

X
p2wH

ep;ph ˝ .p � b/: (3.2)

Let "B 2 kkG..B ÌH/.G=H/; B/ be the following composite in kkG , where the isomor-
phism on the right is given by the zig-zag (2.13):

.B ÌH/.G=H/
jG.�B /// MG ˝ B Š B: (3.3)

We will show that "B is a counit for the adjunction (3.1).

Lemma 3.4. For any B 2 GAlg` we have ."B ÌH/ ı �BÌH D idBÌH in kk.
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Proof. It is easily verified that the following diagram in kk commutes, where all the
arrows are isomorphisms:

.MG ˝ B/ ÌH

(2.15)RG;B

��

.�0/� // .MG+ ˝ B/ ÌH

(2.15)RG+;B

��

B ÌH��oo

��
uu

MjGj ˝ .B ÌH/
.�0/�

// MjG+j ˝ .B ÌH/:

Thus, the isomorphism .MG ˝ B/ ÌH Š B ÌH in kk induced by the zig-zag (2.13)
equals the following composite:

.MG ˝ B/ ÌH
Š

j.RG;B /
// MjGj ˝ .B ÌH/ B ÌH:

j.e1;1˝�/

Š
oo

To prove the lemma, it will be enough to show that the composite

B ÌH �BÌH // .B ÌH/.G=H/ ÌH
�BÌH

// .MG ˝ B/ ÌH
RG;B

// MjGj ˝ .B ÌH/

and the inclusion e1;1 ˝ � W B ÌH ! MjGj ˝ .B ÌH/ induce the same morphism in
kk. Let � be the algebra of matrices with coefficients in zB Ì G indexed by G � G that
have only finitely many nonzero coefficients in each column and each row. Notice that �
is a unital algebra that contains MjGj ˝ .B ÌH/ as a subalgebra. Put

V D
X
g2G

eg;g ˝ .1 Ì g/ 2 �: (3.5)

We have�
RG;B ı .�B ÌH/ ı �BÌH

�
.b Ì h/ D

1

n

X
p;q2H

ep;q ˝
�
.p � b/ Ì phq�1

�
D V

�
1

n

X
p;q2H

ep;q ˝ .b Ì h/
�
V �1:

Moreover, 1
n

P
p;q2H ep;q is a conjugate of e1;1 in MjGj; see [15, Remark 3.1.11]. By

[7, Proposition 2.2.6] we have

j
�
RG;B ı .�B ÌH/ ı �BÌH

�
D j.e1;1 ˝�/ W B ÌH !MjGj ˝ .B ÌH/

as we wanted to prove.

Lemma 3.6. For any A 2 Alg` we have "A.G=H/ ı Œ.�A/
.G=H/� D idA.G=H/ in kkG .

Proof. It is easily verified that the composite

A.G=H/
.�A/

.G=H/

// .A.G=H/ ÌH/.G=H/
"
A.G=H/ // MG ˝ A

.G=H/ �0 // MG+ ˝ A
.G=H/
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is given by

a�wH 7�!
1

n

X
p;q2H

ewp;wq ˝ a�wH : (3.7)

To prove the lemma, it suffices to show that the above formula induces the same morphism
as � W A.G=H/!MG+ ˝A

.G=H/, �.a�wH /D e+;+˝ a�wH , upon applying jG WGAlg`!
kkG . Let zA be the unitalization ofA and let �GC. zA/ be the set of those matrices with coef-
ficients in zA, indexed over G+ � G+, that have finitely many nonzero coefficients in each
row and each column. Then �G+. zA/ is a G-algebra with the usual matrix multiplication
and the G-action defined by .g � a/x;y WD ag�1�x;g�1�y . Moreover, we have inclusions of
G-algebras as follows:

MG+ ˝ A
.G=H/

� .MG+ ˝ A/
G=H
�
�
�G+. zA/

�G=H
:

The G-action on the right is described by

.g � f /.tH/ WD g � f .g�1tH/;

where f W G=H ! �G+. zA/ is a function and g 2 G. We will show that there exists an
invertible V 2 .�G+. zA//

G=H such that the following diagram commutes, where the hori-
zontal morphism is given by (3.7):

A.G=H/ //

�
((

MG+ ˝ A
.G=H/

�V

��

MG+ ˝ A
.G=H/:

(3.8)

Once this is done, the result will follow by Lemma 2.12. For wH 2 G=H , define

VwH WD
X
x2wH

�
n�1
n
ex;x C e+;x C ex;+

�
�

X
x;y2wH

1
n
ex;y C

X
g2GnwH

eg;g 2 �G+. zA/: (3.9)

Note that g � VwH D VgwH for all g 2 G. We can picture VwH as a block diagonal matrix
having an identity block in the coordinates corresponding to g 2 G nwH , and the follow-
ing block in the coordinates corresponding to elements of wH [ ¹+º:

n�1
n

�
1
n
� � � �

1
n
�
1
n

1

�
1
n

n�1
n

� � � �
1
n
�
1
n

1

:::
: : :

:::
:::

�
1
n
�
1
n
� � �

n�1
n

�
1
n

1

�
1
n
�
1
n
� � � �

1
n

n�1
n

1

1 1 � � � 1 1 0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
wH

wH

.
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It is easily verified that VgH is invertible with inverse given by

V �1wH WD
X
x2wH

�
n�1
n
ex;x C

1
n
e+;x C

1
n
ex;+

�
�

X
x;y2wH

1
n
ex;y C

X
g2GnwH

eg;g 2 �G+. zA/:

Again, we can think of V �1wH as a block diagonal matrix having an identity block in the
coordinates corresponding to g 2 G n wH , and the following block in the coordinates
corresponding to elements of wH [ ¹+º:

n�1
n

�
1
n
� � � �

1
n
�
1
n

1
n

�
1
n

n�1
n

� � � �
1
n
�
1
n

1
n

:::
: : :

:::
:::

�
1
n
�
1
n
� � �

n�1
n

�
1
n

1
n

�
1
n
�
1
n
� � � �

1
n

n�1
n

1
n

1
n

1
n

� � �
1
n

1
n

0

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
wH

wH

.

Define V ˙1 W G=H ! �G+. zA/ by V ˙1.wH/ WD V ˙1wH . Then V; V �1 2 .�G+. zA//
G=H are

mutual inverses and we have

V.MG+ ˝ A
.G=H//; .MG+ ˝ A

.G=H//V �1 � .MG+ ˝ A
.G=H//:

Moreover, g � V D V for all g 2 G. An easy computation shows that the triangle (3.8)
commutes. This finishes the proof.

Proposition 3.10 (cf. [15, Theorems 5.2.1 and 6.14]). Let G be a group and let H � G
be a finite subgroup whose order is invertible in `. Then the morphisms

�A 2 kk.A;A
.G=H/ ÌH/ and "B 2 kk

G
�
.B ÌH/.G=H/; B

�
defined above are respectively the unit and the counit of an adjunction

kkG.A.G=H/; B/ Š kk.A;B ÌH/: (3.11)

Proof. It follows immediately from Lemmas 3.4 and 3.6.

4. Crossed product with G=H

Let Or.G;F in/ be the full subcategory of Or.G/ (see Definition 2.5) whose objects are
those G=H with finite H . We want to show that the adjunction (3.11) is natural in G=H .
The first thing to do is to replace the right-hand side of (3.11) by an actual functor on
Or.G;F in/.
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4.1. Non-unital linear categories

Definition 4.1. A non-unital `-linear category C consists of:

(1) a set of objects ob C ,

(2) an `-module C.x; y/ for every x; y 2 ob C , and

(3) `-module homomorphisms

ı W C.y; z/˝ C.x; y/! C.x; z/ (4.2)

for every x; y; z 2 ob C , that are associative in the obvious way.

Non-unital `-linear categories with only one object can be identified with (non-unital)
algebras. In the sequel, we will refer to non-unital `-linear categories simply as linear
categories.

Definition 4.3. Let C and D be linear categories. A linear functor F W C ! D consists
of a function F W ob C ! ob D together with `-module homomorphisms

Fx;y W C.x; y/! D
�
F.x/; F.y/

�
(4.4)

that are compatible with the composition.

We will write Cat` for the category whose objects are linear categories and whose
morphisms are linear functors.

Example 4.5. Let B be a G-algebra and let H � G be a subgroup. We proceed to define
a linear category B Ì G=H . The objects of B Ì G=H are the elements of G=H and the
hom-modules are given by

.B ÌG=H/.uH; vH/ WD B ˝ `ŒvHu�1�:

The composition law in B ÌG=H is defined as follows:

.B ÌG=H/.vH;wH/˝ .B ÌG=H/.uH; vH/ ı // .B ÌG=H/.uH;wH/
.b ˝ g/˝ . Qb ˝ Qg/

� // b.g � Qb/˝ g Qg:

In the terminology of [8],BÌG=H is the crossed product ofB with the transport groupoid
of G=H . It is easily verified that B ÌG=H depends covariantly on B and on G=H .

Let C and D be linear categories. The tensor product C ˝D is the linear category
with objects ob.C/ � ob.D/ and such that

.C ˝D/
�
.c; d/; . Qc; Qd/

�
D C.c; Qc/˝D.d; Qd/:

Composition is defined in the usual way, using the composition laws in C and D and the
commutativity of the tensor product of `-modules.
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We proceed to recall some definitions from [8, Section 3]. Let C be a linear category.
Put

A.C/ D
M

x;y2ob C

C.x; y/:

If f 2 A.C/, write fy;x for its component in C.x; y/. Then A.C/ is an algebra with
multiplication given by

.gf /y;x D
X
z2ob C

gy;z ı fz;x :

Example 4.6. Let C and D be linear categories. It is easily verified that

A.C ˝D/ Š A.C/˝A.D/:

Example 4.7. LetB be aG-algebra andH�G be a subgroup. We can view A.BÌG=H/
as a subalgebra ofMjG=H j.BÌG/ via the inclusion that sends b˝g2.BÌG=H/.uH;vH/
to evH;uH ˝ .b Ì g/.

A disadvantage of A.C/ is that it is not natural with respect to all linear functors, but
only with respect to those that are injective on objects; see [8, p. 1231]. To fix this, one
defines the algebra R.C/ [8, Section 3.4]. IfM is an `-module, write T .M/D˚n�1M

˝n

for the unaugmented tensor algebra. Put

R.C/ WD T
�
A.C/

�
=
˝®
g ˝ f � g ı f W f 2 C.x; y/; g 2 C.y; z/; x; y; z 2 ob C

¯˛
:

This defines a functor R W Cat` ! Alg`.

Remark 4.8. Let G be a group. One can define a G-category as a linear category C

such that the hom-modules C.x; y/ are G-modules and the composition law (4.2) is G-
equivariant, endowing C.y; z/ ˝ C.x; y/ with the diagonal G-action. If C and D are
G-categories, a G-functor F W C ! D is a linear functor such that the morphisms (4.4)
are G-equivariant. These definitions give rise to a category GCat` whose objects are G-
categories and whose morphisms are G-functors.

If C is a G-category, then A.C/ and R.C/ are G-algebras in a natural way. Thus, we
have a functor R W GCat` ! GAlg`.

Example 4.9. Let C be a linear category and let D be an algebra. We claim that there is
a natural morphism

R.C ˝D/! R.C/˝D:

To see this, first note that there is a linear functor C ! R.C/ that takes f 2 C.x; y/ to
the class in R.C/ of f 2 C.x; y/ � A.C/ � T .A.C//. Upon tensoring this functor with
D and then applying R.�/, we get the desired morphism

R.C ˝D/! R
�
R.C/˝D

�
D R.C/˝D:

If C is a G-category and D is a G-algebra, then this is a morphism of G-algebras.
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For a linear category C , there is a morphism p W R.C/! A.C/ induced by multipli-
cation in A.C/.

Lemma 4.10 ([8, Lemma 3.4.3]). Let C be a linear category (respectively a G-category).
Then the morphism

p W R.C/! A.C/

induces an isomorphism in kk (resp. in kkG).

Proof. The proof of [8, Lemma 3.4.3] carries on verbatim in this setting.

Corollary 4.11. Let C 2 Cat` and D 2 Alg` (resp. C 2 GCat` and D 2 GAlg`). Then
the morphism

R.C ˝D/! R.C/˝D

of Example 4.9 is an isomorphism in kk (resp. in kkG).

Proof. It is easily verified that the following diagram commutes in Alg` (resp. in GAlg`):

R.C ˝D/ //

p

��

R.C/˝D

p˝D

��

A.C ˝D/
Š // A.C/˝D:

Indeed, it suffices to check commutativity on the generators f ˝ d , and this is immediate.
The result follows from Lemma 4.10.

4.2. Crossed product with G=H

FixG=H 2 Or.G/ and recall the definition of B ÌG=H from Example 4.5. We claim that
the composite functor

GAlg`
�ÌG=H

// Cat`
R // Alg`

j
// kk (4.12)

factors through jG W GAlg` ! kkG . To prove this, it suffices to show that it is exci-
sive, homotopy invariant and G-stable [15, Theorem 4.1.1]. Homotopy invariance and
G-stability follow easily from the following.

Lemma 4.13. Let G be a group, let H � G be a subgroup and let uH 2 G=H . Then
there is a natural isomorphism

�uH W j.� Ì uHu�1/
Š // jR.� ÌG=H/ (4.14)

of functors GAlg` ! kk.

Proof. Let B 2 GAlg`. Consider B Ì uHu�1 � B ÌG=H as the full subcategory whose
only object is uH . Upon applying R to this inclusion, we get an algebra homomorphism

B Ì uHu�1 D R.B Ì uHu�1/ �! R.B ÌG=H/:
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Let �uH be the image of this morphism in kk. Clearly, �uH is a natural transformation
j.� Ì uHu�1/! jR.� Ì G=H/. To finish the proof, we will show that �uH is an iso-
morphism. We claim that there is an isomorphism ˛ that fits in the following commutative
diagram in kk:

B Ì uHu�1 �uH //

euH;uH˝�

++

R.B ÌG=H/

pŠ

��

A.B ÌG=H/

Š ˛

��

MjG=H j.B Ì uHu�1/:

Here, the bent arrow is induced by the inclusion into the .uH; uH/-coefficient and it is
an isomorphism by matrix invariance. It follows that �uH is an isomorphism too. The
isomorphism ˛ is constructed as in the proof of [8, Lemma 3.2.6]. More precisely, let
s W G=H ! G be a section of the projection such that s.uH/ D u. Write Og D s.gH/ for
g 2 G. For b ˝ g 2 .B ÌG=H/.sH; tH/ put

˛.b ˝ g/ WD etH;sH ˝
�
.uOt�1/ � b

�
Ì uOt�1g Osu�1:

It is straightforward to verify that this formula defines an isomorphism of algebras ˛ W
A.B ÌG=H/!MjG=H j.B Ì uHu�1/.

Corollary 4.15 (cf. [15, Proposition 5.1.2 and Section 6]). Let G be a group and let
H � G be a subgroup. Then the functor

jR.� ÌG=H/ W GAlg` ! kk

is homotopy invariant and G-stable.

Proof. Write F W GAlg`! kk for the functor F D j.�ÌH/. By Lemma 4.13 it suffices
to show that F is homotopy invariant and G-stable. The functor � ÌH W GAlg` ! Alg`
is easily seen to send homotopic morphisms inGAlg` to homotopic morphisms in Alg`. It
follows that F is homotopy invariant. Recall the definition of G-stable functor from [15,
Section 3.1]. Let .W1; B1/ and .W2; B2/ be G-modules by locally finite automorphisms
such that card.Bi /� card.N �G/ for i D 1;2 and letA be aG-algebra. Then the inclusion�

A˝ EndF` .W1/
�
ÌH

z�
!
�
A˝ EndF` .W1 ˚W2/

�
ÌH

is identified with

.A ÌH/˝ EndF` .W1/
z�
! .A ÌH/˝ EndF` .W1 ˚W2/ by [15, Proposition 5.1.1]:

The latter becomes an isomorphism upon applying j byMN�jGj-stability of kk. It follows
that F is G-stable.
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We still have to show that the composite of the functors in (4.12) is excisive.

Construction 4.16. Let E WA!B!C be an extension inGAlg` (that splits inGMod`).
We will to construct a triangle in kk as follows, that is natural with respect to morphisms
of extensions:

�
�
R.C ÌG=H/

� @EÌG=H
// R.A ÌG=H/ // R.B ÌG=H/ // R.C ÌG=H/:

Let �H W j.�ÌH/!jR.�ÌG=H/ be the natural isomorphism (4.14). Note that j.�ÌH/
is excisive, since � ÌH W GAlg` ! Alg` preserves extensions. To simplify notation, we
omit explicit mention to j for the rest of the proof. We have the following commutative
diagram of solid arrows in kk, where the top row is a triangle:

�.C ÌH/
@EÌH //

Š �.�H /

��

A ÌH

Š �H

��

// B ÌH

Š �H

��

// C ÌH

Š �H

��

�
�
R.C ÌG=H/

�
// R.A ÌG=H/ // R.B ÌG=H/ // R.C ÌG=H/:

Define @EÌG=H W�.R.C ÌG=H//!R.AÌG=H/ to be the dashed arrow that makes the
left square commute. Then the bottom row becomes a triangle too. This triangle is clearly
natural with respect to the extension E . These morphisms @EÌG=H make jR.� ÌG=H/ W
GAlg` ! kk into an excisive homology theory.

Proposition 4.17. Let G be a group and let H � G be a subgroup. Then there exists a
unique triangulated functor � ÌG=H W kkG ! kk making the following diagram com-
mute:

GAlg`
jG

��

R.�ÌG=H/
// Alg`

j
��

kkG
�ÌG=H

// kk:

Moreover, for every extension E W A ! B ! C in GAlg` and every uH 2 G=H , the
following square in kk commutes:

�.C Ì uHu�1/

�.�uH /
Š

(4.14)
��

@EÌuHu�1 // A Ì uHu�1

�uH
Š

(4.14)
��

�
�
R.C ÌG=H/

� @EÌG=H
// R.A ÌG=H/:

(4.18)

Proof. The functor
jR.� ÌG=H/ W GAlg` ! kk

is homotopy invariant and G-stable by Corollary 4.15. Moreover, endowed with the mor-
phisms @EÌG=H defined in Construction 4.16, it becomes an excisive homology theory.
Then the existence of � ÌG=H W kkG ! kk follows from [15, Theorem 4.1.1].
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To prove the assertion about (4.18), consider the following diagram in kk:

�.C Ì uHu�1/

�.�uH / Š

��

@EÌuHu�1 // A Ì uHu�1

�uHŠ

��

�
�
R.C ÌG=H/

� @EÌG=H
//

�.�H /
�1 Š

��

R.A ÌG=H/

.�H /
�1Š

��

�.C ÌH/
@EÌH // A ÌH:

(4.19)

The bottom square commutes by definition of @EÌG=H ; see Construction 4.16. Thus, the
commutativity of (4.18) is equivalent to that of the outer square in (4.19). We will see
that the latter commutes since it is induced by a morphism of extensions in Alg`. For
D 2 GAlg`, let 'u W D Ì uHu�1 ! D ÌH be the algebra homomorphism defined by
'u.a Ì g/ D .u�1 � a/ Ì u�1gu. We have a morphism of extensions

A Ì uHu�1

'u

��

// B Ì uHu�1

'u

��

// C Ì uHu�1

'u

��

A ÌH // B ÌH // C ÌH
that induces a morphism of triangles in kk. In particular, there is a commutative square in
kk as follows:

�.C Ì uHu�1/

�j.'u/

��

@EÌuHu�1 // A Ì uHu�1

j.'u/

��

�.C ÌH/
@EÌH // A ÌH:

This square turns out to be the outer square of (4.19). To see this, it suffices to show that
j.'u/ D .�H /

�1 ı �uH or, equivalently, that

j.p/ ı �H ı j.'u/ D j.p/ ı �uH (4.20)

where p WR.D ÌG=H/! A.D ÌG=H/ is the morphism of Lemma 4.10. Each side of
(4.20) is induced by an algebra homomorphism D Ì uHu�1 ! A.D Ì G=H/. We will
show that both morphisms are conjugate in MjG=H j.D Ì G/, regarding A.D Ì G=H/
as a subalgebra of MjG=H j.D ÌG/ with the inclusion of Example 4.7. A straightforward
verification shows that the left- and the right-hand sides of (4.20) are induced, respectively,
by the algebra homomorphisms � and � defined by

�.d Ì g/ WD eH;H ˝ .u�1 � d/ Ì u�1gu;
�.d Ì g/ WD euH;uH ˝ d Ì g:

Now put

V WD
X

vH2G=H

euvH;vH ˝ 1 Ì u 2 �jG=H j. zD ÌG/ �MjG=H j.D ÌG/:
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It is easily seen that � D V �V �1. This proves equality (4.20) and concludes the proof of
the proposition.

Proposition 4.21. LetG be a group. Then every morphismG=H!G=K in Or.G/ induces
a natural transformation � ÌG=H ! � ÌG=K of triangulated functors kkG ! kk. In
addition, these assemble into a functor � Ì � W kkG � Or.G/! kk.

Proof. Let f WG=H !G=K be a morphism in Or.G/. Clearly, f induces a natural trans-
formation jR.�ÌG=H/! jR.�ÌG=K/ of functorsGAlg`! kk. We will prove that
this natural transformation is compatible with the excisive homology theory structures.
More precisely, let E W A! B ! C be an extension in GAlg`. We will prove that the
following square in kk commutes:

�
�
R.C ÌG=H/

�
f�

��

@EÌG=H
// R.A ÌG=H/

f�

��

�
�
R.C ÌG=K/

� @EÌG=K
// R.A ÌG=K/:

(4.22)

Suppose for a moment that this square commutes. Put A D kkI where I is the interval
category. Then f induces a functor f W GAlg` ! A defined by

D 7!
�
f� W R.D ÌG=H/! R.D ÌG=K/

�
:

The commutativity of (4.22) implies that f is a homotopy invariant and G-stable ı-
functor in the sense of Definition D.2. Thus, it factors uniquely through kkG by the
universal property of kkG stated in Theorem D.3, yielding a commutative triangle as
follows:

GAlg`
jG
//

f
))

kkG

9Š xf

��

A :

The functor xf corresponds to the desired natural transformation. Let us now show that
(4.22) commutes. The morphism f W G=H ! G=K is determined by f .H/ D uK for
some u 2 G with H � uKu�1. We have the following commutative square of linear
categories:

A ÌG=H
f� // A ÌG=K

A ÌH

OO

incl // A Ì uKu�1:

OO

The bottom arrow is an inclusion of algebras. The left and right arrows are the inclusions
of the full subcategories whose only objects are H and uK, respectively. Upon applying
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j ıR W Cat` ! kk the vertical arrows become isomorphisms and we get

f� D �uK ı j.incl/ ı .�H /�1 W R.A ÌG=H/ �! R.A ÌG=K/:

Thus, the commutativity of (4.22) is equivalent to that of the outer square in the following
diagram in kk:

�
�
R.C ÌG=H/

�
�.�H /

�1 Š

��

@EÌG=H
// R.A ÌG=H/

Š .�H /
�1

��

�.C ÌH/
@EÌH //

�j.incl/
��

A ÌH

j.incl/

��

�.C Ì uKu�1/

�.�uK / Š

��

@EÌuKu�1 // A Ì uKu�1

�uKŠ

��

�
�
R.C ÌG=K/

� @EÌG=K
// R.A ÌG=K/:

Here, the bottom and top squares commute by Proposition 4.17. The middle square com-
mutes because it fits into the morphism of triangles induced by H � uKu�1.

5. A natural adjunction

Let G be a group and let H be a finite subgroup of G. Recall from Lemma 4.13 that
there is a natural isomorphism �H W � ÌH ! � ÌG=H of functors kkG ! kk. If jH j
is invertible in `, we have isomorphisms

kkG.A.G=H/; B/ Š kk.A;B ÌH/ Š kk
�
A;R.B ÌG=H/

�
; (5.1)

where the isomorphism on the right is induced by �H and the one on the left is that of
Proposition 3.10. In other words, there is an adjunction as follows:

.�/.G=H/ W kk kkG W � ÌG=H: (5.2)

We will show that this adjunction is natural in G=H . For the rest of this paper, we assume
that G satisfies the following property:

jH j is invertible in ` for every H 2 F in: (5.3)

We will prove that for every morphism f W G=H ! G=K 2 Or.G;F in/ the following
square commutes:

kk
�
A;R.B ÌG=H/

� Š //

f�

��

kkG.A.G=H/; B/

f�

��

kk
�
A;R.B ÌG=K/

� Š // kkG.A.G=K/; B/:

(5.4)
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The commutativity of this square is not obvious a priori since the middle term of (5.1)
is not a functor on Or.G;F in/. Let ˛ 2 kk.A;R.B Ì G=H// and f W G=H ! G=K in
Or.G;F in/. The commutativity of (5.4) is equivalent to that of the outer square in the
following diagram in kk, where �G=H is the counit of (5.2):

A.G=H/
˛.G=H/ //

�
R.B ÌG=H/

�.G=H/ �G=H
// B

A.G=K/

A.f /

OO

˛.G=K/
//
�
R.B ÌG=H/

�.G=K/f �

OO

f�

//
�
R.B ÌG=K/

�.G=K/
:

�G=K

OO

The square on the left clearly commutes. The commutativity of the square on the right
follows easily from the following result.

Lemma 5.5. Let G be a group satisfying (5.3). Then:

(1) For every G=H 2 Or.G;F in/ there is a G-functor

�G=H W .B ÌG=H/.G=H/ !MG ˝ B (5.6)

that sends .b ˝ g/�sH 2 Hom.uH; vH/ D B ˝ `ŒvHu�1�.G=H/ toX
p2sHv�1

ep;pg ˝ .p � b/:

(2) For any f W G=H ! G=K in Or.G;F in/, the following square in GCat` com-
mutes:

.B ÌG=H/.G=H/
�G=H

// MG ˝ B

.B ÌG=H/.G=K/

f �

OO

f� // .B ÌG=K/.G=K/:

�G=K

OO

(5.7)

(3) The counit �G=H of the adjunction (5.2) fits into the following commutative dia-
gram in kkG:�

R.B ÌG=H/
�.G=H/

�G=H

++

R
�
.B ÌG=H/.G=H/

�
R.�G=H /

��

Corollary 4.11

Š
oo

MG ˝ B

(2.13)Š

B:

Proof. Let us verify that �G=H as defined in (1) is compatible with composition. Let f1 D
.b1 ˝ g1/�sH 2 Hom.uH; vH/ and f2 D .b2 ˝ g2/�tH 2 Hom.vH;wH/. We have

f2 ı f1 D ısH;tH
�
b2.g2 � b1/˝ g2g1

�
�tH
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where ısH;tH is Kronecker’s delta. Then

�G=H .f2 ı f1/ D ısH;tH
X

p2tHw�1

ep;pg2g1 ˝ p �
�
b2.g2 � b1/

�
:

On the other hand, we have

�G=H .f2/�G=H .f1/ D
� X
q2tHw�1

eq;qg2 ˝ .q � b2/
�� X

p2sHv�1

ep;pg1 ˝ .p � b1/
�

D

X
p2sHv�1

q2tHw�1

eq;qg2ep;pg1 ˝ .q � b2/.p � b1/

D ısH;tH
X

q2tHw�1

eq;qg2g1 ˝ .q � b2/
�
.qg2/ � b1

�
:

The appearance of Kronecker’s delta in the last line is explained as follows: qg2 2 tHv�1

and p 2 sHv�1 can be equal if and only if sH D tH . This shows that �G=H is indeed a
well-defined functor.

Let us prove (2). The square commutes on objects sinceMG ˝B has only one object.
A morphism f W G=H ! G=K is determined by f .H/ D xK with x such that H �
xKx�1. Let .b ˝ g/�sK 2 Hom.uH; vH/. We have

�G=K
�
f�
�
.b ˝ g/�sK

��
D �G=K

�
.b ˝ g/�sK

�
D

X
p2sK.vx/�1

ep;pg ˝ .p � b/:

On the other hand, we have

�G=H
�
f �
�
.b ˝ g/�sK

��
D �G=H

� X
tH2f �1.sK/

.b ˝ g/�tH

�
D

X
tH2f �1.sK/

X
p2tHv�1

ep;pg ˝ .p � b/

D

X
p2sKx�1v�1

ep;pg ˝ .p � b/:

Here, the last equality follows from the fact that sKx�1 is the disjoint union of f �1.sK/.
This finishes the proof of (2).

Let us prove (3). It follows from (5.1) that the counit �G=H of the adjunction (5.2)
equals "H ı Œ.�H /�1�.G=H/, where "H is the counit of (3.11). Recall the definition of "H
from (3.3). Then �G=H equals the following composite in kk:

�
R.B ÌG=H/

�.G=H/ Œ.�H /�1�.G=H/// .B ÌH/.G=H/ �B

(3.2)
// MG ˝ B Š

(2.13)
B:
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The statement in (3) now follows from the commutativity of the following diagram of
G-algebras: �

R.B ÌG=H/
�.G=H/

R
�
.B ÌG=H/.G=H/

�Corollary 4.11
oo

R.�G=H /

��

.B ÌH/.G=H/
�B //

.�H /
.G=H/

OO 44

MG ˝ B:

Here the diagonal morphism is the one induced by the inclusion

.B ÌH/.G=H/ � .B ÌG=H/.G=H/

as the full subcategory on the object H . This finishes the proof.

We collect the main results of this section in the next theorem.

Theorem 5.8. LetG be a group satisfying (5.3) and letH �G be a finite subgroup. Then
we have an adjunction as follows:

.�/.G=H/ W kk kkG W � ÌG=H:

Moreover, the adjunction isomorphism

kkG.A.G=H/; B/ Š kk
�
A;R.B ÌG=H/

�
is natural inG=H2Or.G;F in/ and the counit of the adjunction is described by Lemma 5.5.

6. Lifting the adjunction to spectra

6.1. The primitive zig-zag

LetA 2Alg`,B 2GAlg` andG=N 2Or.G;F in/. By Theorem 5.8 we have an adjunction
isomorphism

kkG.A.G=N/; B/ Š kk
�
A;R.B ÌG=N/

�
(6.1)

that is natural in G=N . Let K and KG be, respectively, the spectra representing kk-theory
and kkG-theory. These were defined in [17] and in [27]; see Section C.2 for details. We
would like to lift the isomorphism (6.1) to a natural weak equivalence of spectra

K
�
A;R.B ÌG=N/

�
// KG.A.G=N/; B/:

Here, we want the dashed arrow to represent a zig-zag of Or.G;F in/-spectra inducing the
isomorphism (6.1) upon taking homotopy groups. As a starting point, let us recall how
to obtain this adjunction. By Lemma 5.5 (3), the isomorphism (6.1) equals the following
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composite:

kk
�
A;R.B ÌG=N/

� .�/.G=N/
// kkG

�
A.G=N/;

�
R.B ÌG=N/

�.G=N/�
kkG.A.G=N/;MGB/

Š

��

kkG
�
A.G=N/;R

�
.B ÌG=N/.G=N/

��Corollary 4.11

Š

OO

R.�G=N /

(5.6)
oo

kkG.A.G=N/;MG+B/ kkG.A.G=N/; B/:
Šoo

(6.2)

The last two morphisms are easily lifted to spectra. Indeed, the G-stability zig-zag (2.13)
induces the following zig-zag of weak equivalences that is clearly natural in G=N :

KG.A.G=N/;MGB/
� // KG.A.G=N/;MG+B/ KG.A.G=N/; B/:

�oo

Lifting the rest of (6.2) is somewhat more delicate. If we simply replace groups by spectra,
we get the following diagram:

K
�
A;R.B ÌG=N/

� .�/.G=N/
// KG

�
A.G=N/;

�
R.B ÌG=N/

�.G=N/�
KG.A.G=N/;MGB/ KG

�
A.G=N/;R

�
.B ÌG=N/.G=N/

��
:

Corollary 4.11 �

OO

R.�G=N /

(5.6)
oo

(6.3)

This is what we call the primitive zig-zag. While the spectra on the left are covariant
functors on Or.G; F in/, this is not the case for those on the right. We should start by
replacing the latter by covariant functors on Or.G; F in/ if we expect a zig-zag that is
natural in G=N . In the following sections – taking the primitive zig-zag as our model –
we proceed to construct a zig-zag of spectra that depends covariantly on G=N and that
induces the isomorphism (6.1) upon taking homotopy groups.

6.2. Notation and preliminary definitions

To ease notation, the category Or.G;F in/ will be denoted by O for the rest of this section.
Its objects – the orbit spaces corresponding to finite subgroups of G – will be denoted by
letters r , s and t .

Let C be a category and � be a small category. We will write B.�;C/ for the category
C�

op�� of bifunctors �op ��! C . Let f W �!ƒ be a functor between small categories.
Then we can restrict along f either of the variables of a bifunctor ƒop �ƒ! C , or both
of them, as shown by the following commutative diagram of categories:

B.ƒ;C/
f �
//

f �

��

f ?

&&

Cƒ
op��

f �

��

C�
op�ƒ f �

// B.�;C/:



Algebraic kk-theory and the KH-isomorphism conjecture 423

Here, f � denotes restriction of one of the variables (either the covariant or the contravari-
ant one) and f ? denotes restriction of both variables.

Define functors J 2 SpO and M;L 2 B.O;Sp/O by

J.t/ WD K
�
A;R.B Ì t /

�
;

Lt .s; r/ WD KG
�
A.t/;R

�
.B Ì r/.s/

��
;

Mt .s; r/ WD KG
�
A.t/;

�
R.B Ì r/

�.s/� (6.4)

for r; s; t 2 O. The kkG-equivalence RŒ.B Ì r/.s/�! ŒR.B Ì r/�.s/ of Corollary 4.11
induces, upon applying KG.A.t/; �/, a natural transformation  W L ! M that is an
objectwise weak equivalence of spectra. With this notation, the primitive zig-zag (6.3)
becomes

J.t/
.�/.t/

// Mt .t; t/ Lt .t; t/�

 
oo

R.�t / // KG.A.t/;MGB/: (6.5)

6.3. Coends enter the game

Fix t 2 O. The commutativity of (5.7) suggests that the morphism induced by R.�t / in
(6.5) could be replaced by a morphism from a certain coend, as we proceed to explain. If
f W r ! s is a morphism in O, the following square commutes by Lemma 5.5 (2):

.B Ì r/.r/
�r // MG ˝ B

.B Ì r/.s/

f �

OO

f� // .B Ì s/.s/:

�s

OO

Upon applying KG.A.t/;R.�//, we get a commutative diagram as follows:

Lt .r; r/
�r // KG.A.t/;MGB/

Lt .s; r/

f �

OO

f� // Lt .s; s/:

�s

OO

(6.6)

For reasons that will become clear later on (see Remark 6.16 and Lemma 6.29) we will
take coends over the slice category O=t of orbit spaces over t . We will denote by ut the
forgetful functor O=t ! O. Let now f W ˛ ! ˇ be a morphism in O=t , where ˛ W r ! t

and ˇ W s ! t . Then (6.6) equals the following square:�
.ut /

?Lt
�
.˛; ˛/

�r // KG.A.t/;MGB/

�
.ut /

?Lt
�
.ˇ; ˛/

f ?

OO

f� //
�
.ut /

?Lt
�
.ˇ; ˇ/:

�s

OO
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By the universal property of the coend, there is a unique morphism � making the following
triangle commute for all objects ˛ W r ! t of O=t :R O=t .ut /

?Lt
�
// KG.A.t/;MGB/:

�
.ut /

?Lt
�
.˛; ˛/

can˛

OO

�r

CC

(6.7)

Here the vertical morphism is the structural morphism into the coend corresponding to ˛.
In the next section we will prove that � depends covariantly on t 2 O.

6.4. Defining O-spectra as objectwise coends

Let us show that the morphisms � of (6.7) assemble, for varying t , into a morphism of
O-spectra. We first prove some preliminary lemmas.

Lemma 6.8. Let C be a cocomplete category, f W � ! ƒ be a functor between small
categories and T 2 B.ƒ;C/. Then there is a unique morphismR �

f ?T //
R ƒ

T (6.9)

making the following square in C commute, for every object  of �:R �
f ?T //

R ƒ
T

.f ?T /.; /

can

OO

T
�
f ./; f ./

�
:

canf ./

OOOO

Here the vertical arrows are the structural morphisms into the coends. Moreover, (6.9) is
natural in T .

Proof. This is immediate from the universal property of coends.

Remark 6.10. For composable functors �
f
�! ƒ

g
�! † and T 2 B.†;C/, the morphisms

(6.9) clearly fit into the following commutative triangle:R �
.g ı f /?T D

R �
f ?g?T //

R ƒ
g?T

��R †
T://

Lemma 6.11. Let C be a cocomplete category and � be a small category. Then there is a
functor C W B.�;C/� ! C� described as follows.
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(1) Let V be an object of B.�;C/� , t 2 � 7! Vt 2 B.�;C/. For t 2 � , we have

C .V /.t/ D
R �=t .ut /?Vt :

For a morphism f W t ! t 0 in � , C .V /.f / equals the composite

R �=t .ut /?Vt Vf
//
R �=t .ut /?Vt 0 D R �=t f ?.ut 0/?Vt 0 (6.9)

//
R �=t 0 .ut 0/?Vt 0 :

(2) For a morphism h W V ! W in B.�;C/� , the natural transformation C .h/ has
the following components:

R �=t .ut /?Vt R �=t .ut /?ht
//
R �=t .ut /?Wt :

Proof. The fact that the equalities in (1) indeed define a functor C .V / 2 C� boils down
to the naturality of (6.9) and Remark 6.10. The fact that C .h/ is indeed a natural transfor-
mation follows as well from the naturality of (6.9).

Lemma 6.12. The morphism � defined by (6.7) is a morphism of O-spectra.

Proof. The codomain of � is clearly an O-spectrum. Its domain is an O-spectrum as well;
indeed, it is C .t 7! Lt / where C is the functor of Lemma 6.11. Let f W t ! t 0 be a
morphism in O. We claim that following square commutes:

R O=t .ut /
?Lt

�
//

f

��

KG.A.t/;MGB/

f

��R O=t 0 .ut 0/
?Lt 0

�
// KG.A.t

0/;MGB/:

Indeed, by the universal property of the coend, it suffices to show that the square commutes
when precomposed with the structural morphisms�

.ut /
?Lt

�
.˛; ˛/!

R O=t .ut /
?Lt

for every object ˛ W r ! t of O=t . Upon precomposing with the latter we get the following
square, that clearly commutes:

KG
�
A.t/;R

�
.B Ì r/.r/

�� �r //

f

��

KG.A.t/;MGB/

f

��

KG
�
A.t

0/;R
�
.B Ì r/.r/

�� �r // KG.A.t
0/;MGB/:

This proves the lemma.
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6.5. The morphism '

In this section, we define a morphism ' that will be part of the natural zig-zag of The-
orem 6.34. Let ı W SpO

! B.O; Sp/ be the functor that adds a constant contravariant
variable, defined by

ıF .s; r/ D F.r/ (6.13)

for F 2 SpO and r; s 2 O. Let .ut /� W B.O; Sp/! Sp.O=t /
op�O be the restriction of the

contravariant variable along the forgetful functor. Recall the definitions of J 2 SpO and
Mt 2 B.O;Sp/ from (6.4). Define a morphism

'] W .ut /
�ıJ ! .ut /

�Mt (6.14)

as follows. For objects r of O and ˛ W s ! t of O=t , let

'
]

.˛;r/
W
�
.ut /

�ıJ
�
.˛; r/!

�
.ut /

�Mt

�
.˛; r/ (6.15)

be the following composition:

K
�
A;R.B Ì r/

� .�/.t/
// KG

�
A.t/;

�
R.B Ì r/

�.t/� ˛� // KG
�
A.t/;

�
R.B Ì r/

�.s/�
:

It is easily verified that '] is a natural transformation of bifunctors. Indeed, for morphisms
f W r ! r 0 in O and g W ˛ ! ˛0 in O=t , the following diagrams commute:

K
�
A;R.B Ì r/

�
'
]
.˛;r/

��

.�/.t/

��
'
]

.˛0;r/

��

KG
�
A.t/;

�
R.B Ì r/

�.t/�
.˛0/�

((

˛�

vv

KG
�
A.t/;

�
R.B Ì r/

�.s/�
KG

�
A.t/;

�
R.B Ì r/

�.s0/�
;

g�
oo

K
�
A;R.B Ì r/

�
'
]
.˛;r/

))

.�/.t/

��

f� // K
�
A;R.B Ì r 0/

�
.�/.t/

��

'
]

.˛;r 0/

uu

KG
�
A.t/;

�
R.B Ì r/

�.t/�
˛�

��

f� // KG
�
A.t/;

�
R.B Ì r 0/

�.t/�
˛�

��

KG
�
A.t/;

�
R.B Ì r/

�.s/� f� // KG
�
A.t/;

�
R.B Ì r 0/

�.s/�
:

Remark 6.16. The definition of the components of '] (6.15) makes use of the structural
morphism ˛ W s ! t and it is not clear how to define '] as a morphism ıJ ! Mt in
B.O; Sp/. This is one of the reasons that motivated our choice of O=t as the indexing
category for coends.
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Construction 6.17. By Remark 6.24 we have, for each t 2 O, a pair of adjoint functors

.ut /Š W Sp.O=t /
op�O //

oo B.O;Sp/ W .ut /�: (6.18)

Let f W t ! t 0 be a morphism in O and write f � W Sp.O=t 0 /
op�O

! Sp.O=t /
op�O for the

restriction of the contravariant variable along f W O=t ! O=t 0 . Note that f � ı .ut 0/� D
.ut /

� and consider the following diagram of solid arrows for F 2 SpO andH 2B.O;Sp/:

B.O;Sp/
�
.ut 0/Š.ut 0/

�ıF ;H
� Š //

��

Sp.O=t 0 /
op�O

�
.ut 0/

�ıF ; .ut 0/
�H

�
f �

��

B.O;Sp/
�
.ut /Š.ut /

�ıF ;H
� Š // Sp.O=t /

op�O
�
.ut /

�ıF ; .ut /
�H

�
:

Let the dashed arrow complete the diagram to a commutative square. By the Yoneda
lemma, the dashed arrow is induced by precomposition with a unique morphism

.ut /Š.ut /
�ıF ! .ut 0/Š.ut 0/

�ıF :

The latter, for varying f , assemble into a functor O! B.O;Sp/, t 7! .ut /Š.ut /
�ıF . This

construction is, moreover, clearly natural in F , so that we get a functor as follows:

SpO // B.O;Sp/O

F
� //

�
t 7�! .ut /Š.ut /

�ıF
�
:

Remark 6.19. Let F 2 SpO . Later on, it will be useful to have an explicit description of
the functor O!B.O;Sp/, t 7! .ut /Š.ut /

�ıF mentioned in Construction 6.17. Let us first
describe the bifunctor .ut /Š.ut /�ıF 2 B.O;Sp/ for fixed t 2 O. For r; s 2 O we have�

.ut /Š.ut /
�ıF

�
.s; r/ D

a
˛2O.s;t/

�
.ut /

�ıF
�
.˛; r/ D

a
O.s;t/

F.r/:

For a morphism f W r! r 0 in O, the induced morphism f� D Œ.ut /Š.ut /
�ıF �.s; f / equals

the morphism a
F.f / W

a
O.s;t/

F.r/ �!
a

O.s;t/

F.r 0/:

For a morphism g W s0 ! s in O, the induced morphism g� D Œ.ut /Š.ut /
�ıF �.g; r/ is the

unique morphism making the following triangle commute for all ˇ 2 O.s; t/:

F.r/
canˇ

//

canˇıg
**

a
O.s;t/

F.r/

g�
��a

O.s0;t/

F.r/:
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Now let h W t ! t 0 be a morphism in O. Then the components of the induced natural
transformation h� W .ut /Š.ut /�ıF ! .ut 0/Š.ut 0/

�ıF are the unique morphisms making
the following triangle commute for all ˇ 2 O.s; t/:

F.r/
canˇ

//

canhıˇ
**

a
O.s;t/

F.r/

h�
��a

O.s;t 0/

F.r/:

Lemma 6.20. Fix t 2 O and let '] W .ut /�ıJ ! .ut /
�Mt be the morphism in Sp.O=t /

op�O

defined in (6.14). Under the adjunction (6.18), '] corresponds to a morphism

' W .ut /Š.ut /
�ıJ !Mt

inB.O;Sp/. Explicitly, for r; s 2O, the component '.s;r/ W Œ.ut /Š.ut /�ıJ �.s; r/!Mt .s; r/

is the unique morphism making the following triangle commute for every ˛ 2 O.s; t/:a
O.s;t/

J.r/
'.s;r/

// Mt .s; r/:

J.r/

can˛

OO

'
]
.˛;r/

FF

Then the latter, for varying t , assemble into a morphism in B.O;Sp/O – where the domain
of ' is considered as an object of B.O;Sp/O as explained in Construction 6.17.

Proof. Let f W t ! t 0 be a morphism in O. We have to show that the following square in
B.O;Sp/ commutes:

.ut /Š.ut /
�ıJ

'
//

f�
��

Mt

f�
��

.ut 0/Š.ut 0/
�ıJ

'
// Mt 0 :

By Remark 6.19, for r; s 2 O, we have Œ.ut /Š.ut /�ıJ �.s; r/ D
`

O.s;t/ J.r/. Thus, it suf-
fices to show that the following square commutes for r; s 2 O:a

O.s;t/

J.r/
'
//

f�
��

Mt .s; r/

f�

��a
O.s;t 0/

J.r/
'
// Mt 0.s; r/:

By the universal property of the coproduct it suffices to show that this square commutes
when precomposed with every structural morphism into the coproduct in the upper left
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corner. Let ˛ 2 O.s; t/. Upon precomposing with can˛ W J.r/!
`

O.s;t/ J.r/ we get

J.r/
'
]
.˛;r/
//

'
]
.f ı˛;r/

**

Mt .s; r/

f�
��

Mt 0.s; r/:

Unraveling the definition of '], this triangle becomes the following diagram:

K.A;R.B Ì r//
.�/.t/

//

.�/.t
0/

��

KG.A.t/; ŒR.B Ì r/�.t//

f�
��

˛� // KG.A.t/; ŒR.B Ì r/�.s//

f�
��

KG.A.t
0/; ŒR.B Ì r/�.t 0//

f �
// KG.A.t

0/; ŒR.B Ì r/�.t// ˛� // KG.A.t
0/; ŒR.B Ì r/�.s//:

The square on the right clearly commutes. The one on the left commutes by Lemma C.6.

6.6. Model structure on categories of bifunctors

Let C be a model category and let � be a small category. In this section, we endowB.�;C/
with a model structure that will allow us to build models for the homotopy coends of
certain morphisms of bifunctors. We will need these later on to define the morphisms
going backwards in the zig-zag of O-spectra of Theorem 6.34.

Proposition 6.21 ([26, Proposition A.2.8.2]). Let C be a combinatorial model category
and let � be a small category. Then there exist two combinatorial model structures on C� :

• The injective model structure, denoted C�inj, where weak equivalences and cofibrations
are defined objectwise.

• The projective model structure, denoted C�proj, where weak equivalences and fibrations
are defined objectwise.

We will always consider B.�; C/ as a model category with the structure .C�
op

inj /
�
proj

whenever this structure exists. The model structure on B.�; Sp/ exists for any � by
Lemma C.2 and Proposition 6.21.

Theorem 6.22 ([2, Theorem 4.1]). Let C be a model category and � be a small category
such that the model structure on B.�;C/ exists. Then the functorZ �

W B.�;C/! C

is a left Quillen functor.

Proof. This is [2, Theorem 4.1]; we sketch the proof for completeness. For c 2 C , define
R.c/ W �op � � ! C by

R.c/.s; r/ WD
Y

˛2�.r;s/

c:
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For morphisms f W r ! r 0 and g W s0 ! s in � , let f� and g� be the unique morphisms
making the following diagrams commute for all ˛ 2 �.r 0; s/ and all ˇ 2 �.r; s0/:

R.c/.s; r/
f� //

can˛ıf ..

R.c/.s; r 0/

can˛
��
c

R.c/.s; r/
g�

//

cangıˇ ..

R.c/.s0; r/

canˇ
��
c:

It is easily verified that R W C ! C�
op�� is right adjoint to

R �
W C�

op�� ! C . Thus,
proving the theorem is equivalent to showing that

R W C ! B.�;C/

preserves fibrations and trivial fibrations. Let c! c0 be a (trivial) fibration in C . To prove
that R.c/! R.c0/ is a (trivial) fibration in

B.�;C/ D .C�
op

inj /
�
proj;

it suffices to show that R.c/.�; r/! R.c0/.�; r/ is a (trivial) fibration in C�
op

inj for every
r 2 � . But the latter holds since, for every r , there is a Quillen adjunction

evr W C�
op

inj � C W R.�/.�; r/

where evr is the evaluation at r [2, Corollary 2.3 (iii)]. Indeed, this adjunction is Quillen
since evr clearly preserves cofibrations and trivial cofibrations.

Lemma 6.23 ([26, Proposition A.2.8.7]). Let C be a model category and let f W � ! ƒ

be a functor. Then the restriction functor f � W Cƒ ! C� fits into the following Quillen
adjunctions, whenever the model structures in question exist:

(1) f � W Cƒinj � C�inj W f�,

(2) fŠ W C�proj � Cƒproj W f
�.

Remark 6.24. Let C be a category with small coproducts and let � be a small category.
Fix t 2 � and let ut W �=t ! � be the forgetful functor. Then there is an adjunction

.ut /Š W C
.�=t /

op
C�

op
W .ut /

�:

Moreover, the pushforward functor .ut /Š can be explicitly described as follows. For s 2 � ,
we have �

.ut /ŠF
�
.s/ D

a
˛2Hom.s;t/

F.˛/:

For a morphism g W s0 ! s in � , Œ.ut /ŠF �.g/ is the unique morphism making the fol-
lowing squares commute, where the vertical arrows are the structural morphisms into the
coproducts: a

˛2Hom.s;t/

F.˛/
Œ.ut /ŠF �.g/ //

a
˛02Hom.s0;t/

F.˛0/

F.ˇ/

canˇ
OO

F.g/
// F.ˇ ı g/:

canˇıg
OO



Algebraic kk-theory and the KH-isomorphism conjecture 431

Lemma 6.25 (cf. [26, Lemma A.2.8.10]). Let C be a model category, � be a small cat-
egory, fix t 2 � , and let ut W �=t ! � be the forgetful functor from the slice category.
Then the following adjunctions are Quillen adjunctions, whenever the model structures in
question exist:

(1) .ut /� W C�proj � C
�=t
proj W .ut /�,

(2) .ut /Š W C
.�=t /

op

inj � C�
op

inj W .ut /
�.

Proof. To prove (2) is a Quillen adjunction, let us show that .ut /Š preserves cofibrations
and trivial cofibrations. Recall from Remark 6.24 that, for F 2 C .�=t /

op
and s 2 � , we have�

.ut /ŠF
�
.s/ D

a
˛2�.s;t/

F.˛/:

Let � W F ! F 0 be a morphism in C .�=t /
op

. For s 2 � , .ut /Š.�/.s/ is the coproduct of the
morphisms ®

�.˛/ W F.˛/ �! F 0.˛/
¯
˛2�.s;t/

:

If � is a cofibration (resp. a trivial cofibration) in C
.�=t /

op

inj , the latter are cofibrations (resp.
trivial cofibrations) in C and, thus, .ut /Š.�/.s/ is again a cofibration (resp. trivial cofibra-
tion) in C . Since this holds for every s 2 � , it follows that .ut /Š.�/ is a cofibration (resp.
a trivial cofibration) in C�

op

inj . The proof of (1) is dual to that of (2), using the fact that�
.ut /�F

�
.s/ D

Y
˛2�.t;s/

F.˛/

for F 2 C�=t and s 2 � .

Lemma 6.26 ([26, Remark A.2.8.6]). Let F W C � D W U be a Quillen adjunction of
combinatorial model categories and let � be a small category. Then composition with F
and U determines a Quillen adjunction

F � W C� � D�
W U �

with respect to either the injective or the projective model structures.

Lemma 6.27. Let ı W SpO
proj ! B.O; Sp/ be the functor defined in (6.13). Then ı is a left

Quillen functor.

Proof. Let const W Sp ! SpOop

inj be the functor that sends a spectrum E to the constant
functor on E. Then const is left Quillen since it clearly sends cofibrations (resp. trivial
cofibrations) to cofibrations (resp. trivial cofibrations) and it has a right adjoint (taking
limit). Note that we have

ı D .const/O W SpO
proj �!

�
SpOop

inj

�O
proj D B.O;Sp/:

Then ı is left Quillen by Lemma 6.26.

Lemma 6.28. Let C be a combinatorial model category, � be a small category, fix t 2 � ,
and let ut W �=t ! � be the forgetful functor from the slice category. Then the restriction
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on both variables
.ut /

?
W B.�;C/! B.�=t ;C/

is a left Quillen functor.

Proof. Consider the following commutative square:

B.�;C/ D .C�
op

inj /
�
proj

.ut /
?

**

.ut /
�

//

.ut /
�

��

.C�
op

inj /
�=t
proj

.ut /
�

���
C
.�=t /

op

inj

��
proj

.ut /
�

//
�
C
.�=t /

op

inj

��=t
proj D B.�=t ;C/:

The horizontal morphisms are left Quillen by Lemma 6.25 (1) and the vertical morphisms
are left Quillen by Lemma 6.23 and Lemma 6.26. Then .ut /? is left Quillen as well, for
being the composite of left Quillen functors.

6.7. The natural zig-zag

In this section we finally construct a zig-zag of O-spectra inducing (6.1) upon taking
homotopy groups. We begin with the following lemma, that shows that every O-spectrum
can be canonically described as an objectwise coend.

Lemma 6.29. Let ı W SpO
proj ! B.O; Sp/ be the functor defined in (6.13). For F 2 SpO

and t 2 O, the structural morphisms into the coends

F.t/ D
�
.ut /

?ıF
�
.idt ; idt / �!

Z O=t

.ut /
?ıF (6.30)

are isomorphisms. Moreover, these are natural in t 2 O and in F 2 SpO .

Proof. Fix t 2 O. Since .ut /?ıF is constant in the contravariant variable, we haveZ O=t

.ut /
?ıF Š colim

˛2O=t

F
�
ut .˛/

�
:

Since idt is a final object of O=t , the structural morphism

F.t/ D F
�
ut .idt /

�
�! colim

˛2O=t

F
�
ut .˛/

�
is an isomorphism. Combining the above we get the desired isomorphism,

F.t/
Š
��!

Z O=t

.ut /
?ıF :

It is easily verified that this is natural in t and in F .

Lemma 6.31. Let F 2 SpO and fix t 2O. Let .ut /Š and .ut /� be the functors that form the
adjunction (6.18). Then there is a morphism of bifunctors .ut /?ıF ! .ut /

?.ut /Š.ut /
�ıF

described as follows. For objects ˛ W r!t and ˇ W s!t of O=t , the component correspond-
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ing to the pair .ˇ; ˛/ is the structural morphism into the coproduct corresponding to ˇ,�
.ut /

?ıF
�
.ˇ; ˛/ D F.r/

canˇ
���!

a
O.s;t/

F.r/ D
�
.ut /

?.ut /Š.ut /
�ıF

�
.ˇ; ˛/: (6.32)

Moreover, upon taking coend we get a morphism of spectraZ O=t

.ut /
?ıF �!

Z O=t

.ut /
?.ut /Š.ut /

�ıF (6.33)

that is natural in t .

Proof. The fact that the morphisms (6.32) are natural in ˛ and ˇ is easily verified using
the explicit description of the bifunctor .ut /Š.ut /�ıF given in Remark 6.19.

Let us now prove that (6.33) is natural in t . Let h W t ! t 0 be a morphism in O. By the
universal property of the coend, it suffices to show that the outer square in the following
diagram commutes for every ˛ W r ! t in O=t :

F.r/ D
�
.ut /

?ıF
�
.˛; ˛/

can˛

)) ))

++

R O=t .ut /
?ıF

h�
��

(6.33)
//
R O=t .ut /

?.ut /Š.ut /
�ıF

h�
��R O=t 0 .ut 0/

?ıF
(6.33)
//
R O=t 0 .ut 0/

?.ut 0/Š.ut 0/
�ıF :

Unraveling the definitions of h� (see Lemma 6.11 and Remark 6.19), it is straightforward
to verify that both ways from F.r/ to

R O=t 0 .ut 0/
?.ut 0/Š.ut 0/

�ıF in the diagram above
equal the composite

F.r/
canhı˛
�����!

a
O.r;t 0/

F.r/
canhı˛
�����!

Z O=t 0

.ut 0/
?.ut 0/Š.ut 0/

�ıF :

This finishes the proof.

Theorem 6.34. Let q W Q
�
�! id and Nq W xQ

�
�! id be, respectively, cofibrant replacements

in B.O;Sp/ and SpO
proj. Then we have a zig-zag of O-spectra as follows:R O=t .ut /

?ıJ
R O=t .ut /

?ı xQJ�

Nq
oo

(6.33)
//
R O=t .ut /

?.ut /Š.ut /
�ı xQJ

R O=t .ut /
?Q.Mt /

R O=t .ut /
?Q.ut /Š.ut /

�ıJ
'
oo

R O=t .ut /
?Q.ut /Š.ut /

�ı xQJ

q�

OO

Nq
oo

R O=t .ut /
?Q.Lt /

q
//

 �

OO

R O=t .ut /
?Lt

�
// KG.A.t/;MGB/:
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Moreover, upon identifying

K
�
A;R.B Ì t /

�
D J.t/

(6.30)
Š

Z O=t

.ut /
?ıJ

and then taking homotopy groups, this zig-zag induces the isomorphism (6.1).

Proof. Let us first show that the morphisms appearing in the zig-zag are indeed natural
in t . For (6.33) this is part of Lemma 6.31 and for � it is Lemma 6.12. The rest of the
morphisms are natural in t because they result from applying the functor C of Lemma 6.11
to appropriate morphisms in B.O;Sp/O .

The morphisms in the zig-zag labeled with � are indeed weak equivalences by Ken
Brown’s lemma [19, Lemma 1.1.12]: they result from applying a left Quillen functor to
an appropriate weak equivalence between cofibrant objects. Here we use that the functors
ı, .ut /? and

R O=t are left Quillen by Lemmas 6.27, 6.28 and Theorem 6.22 respectively.
The fact that the zig-zag induces (6.1) upon taking homotopy groups follows from the

commutativity of the following diagram of spectra.

K.A;R.B Ì t //

canidt

��

J.t/
canidt

Š by Lemma 6.29
//
R O=t .ut /

?ıJ

. xQJ/.t/

Nq �

OO

canidt

Š by Lemma 6.29
//

canidt

��

R O=t .ut /
?ı xQJ

Nq �

OO

(6.33)
��a

2O.t;t/

J.t/

'

��

a
2O.t;t/

. xQJ/.t/
canidt //

Nq
oo

R O=t .ut /
?.ut /Š.ut /

�ı xQJ

�
Q.ut /Šı xQJ

�
.t; t/

q �

OO

Nq
��

canidt //
R O=t .ut /

?Q.ut /Š.ut /
�ı xQJ

q �

OO

Nq
��

ŒQ.ut /ŠıJ �.t; t /

'

��

canidt //
R O=t .ut /

?Q.ut /Š.ut /
�ıJ

'
��

Mt .t; t/ .QMt /.t; t/
canidt //

q

�
oo

R O=t .ut /
?Q.Mt /

.QLt /.t; t/
canidt //

 �

OO

q

��

R O=t .ut /
?Q.Lt /

 �

OO

q
��

Lt .t; t/
canidt //

 

�

UU

�t ,,

R O=t .ut /
?Lt

�
��

KG.A.t/;MGB)

q

�

^^.�/.t/

��
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Upon taking homotopy groups, the morphisms labeled with � in the diagram above be-
come isomorphisms and can be inverted. The zig-zag equals the morphism in the top row
followed by the composite of the morphisms in the rightmost column. By Lemma 5.5 (3),
the composite of the bent morphisms on the left equals, upon taking homotopy groups,
the isomorphism (6.1).

7. Main theorem

In this section, we prove Theorem 7.11. It will turn out to be an easy consequence of the
technical Theorem 6.34 and the following two lemmas.

Lemma 7.1. Let A be an algebra, B be aG-algebra andX be a .G;F in/-finite complex.
Then there exists a weak equivalence of spectra

˛X W H
G
�
X IKG.A.�/; B/

�
! KG.A.X/; B/ (7.2)

that is natural in X .

Proof. Let E W Or.G;F in/! Sp be defined by

E.G=H/ D KG.A.G=H/; B/

and let X be a .G;F in/-complex. Since coends and smash products commute with col-
imits, we have

HG.X IE/ D
Z G=H

XHC ^ E.G=H/

Š

Z G=H

colim
G=K��n#X

.G=K ��n/HC ^ E.G=H/ (by Lemma A.6)

Š colim
G=K��n#X

�nC ^

Z G=H

.G=K/HC ^ E.G=H/ (by Lemma A.1)

D colim
G=K��n#X

�nC ^H
G.G=KIE/

Š colim
G=K��n#X

�nC ^ E.G=K/:

Thus, to construct the morphism (7.2) it suffices to define compatible morphisms

�nC ^KG.A.G=K/; B/! KG.A.X/; B/ (7.3)

for every f W G=K ��n ! X . Define (7.3) as the following composite:

�nC ^KG.A.G=K/; B/
(C.4)
// KG.A.G=K��

n/; B/
f� // KG.A.X/; B/:

The compatibility of these morphisms is immediate from the naturality of (C.4) in G=K.
This defines the morphism (7.2).
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We claim that ˛X is a weak equivalence of spectra. We will prove the claim by con-
sidering the following increasingly more general cases:

(1) X D G=H with H 2 F in,

(2) X D G=H ��n with H 2 F in and n 2 N,

(3) X D
Fm
iD1G=Hi ��

n with Hi 2 F in and m; n 2 N,

(4) X any .G;F in/-finite complex.

To prove the case (1), note that the identity of X Š G=H ��0 is a final object among
thoseG=K ��n #X . Then, taking colimit overG=K ��n #X boils down to evaluating
at the final object idG=H��0 and the result follows from Lemma C.3.

For the case (2), let � W G=H � �n ! G=H be the projection and consider the fol-
lowing commutative diagram:

HG.G=H ��nIE/
˛G=H��n

//

���

��

KG.A.G=H��
n/; B/

� ��

��

HG.G=H IE/
�

˛G=H
// KG.A.G=H/; B/:

The left vertical arrow is an equivalence by homotopy invariance of equivariant homol-
ogy theories. The right vertical arrow is a weak equivalence by homotopy invariance of
kkG� .�; B/, since we have

A.G=H��
n/
Š A.

F
G=H �

n/
Š

M
G=H

A�
n

Š

�M
G=H

A
�
˝ `�

n

Š A.G=H/ ˝ `�
n

:

The bottom arrow is a weak equivalence by the case (1).
Now let X be as in case (3). This case follows from the previous one since we have

HG
� .X IE/ Š

nM
iD1

HG
� .G=Hi ��

n
IE/;

kkG� .A
.X/; B/ Š

nM
iD1

kkG� .A
.G=Hi��

n/; B/;

˛X D ˚˛G=Hi��n :

To prove the case (4) we proceed by induction on n D dimX . The base case n D 0
holds by the case (3). Now suppose n � 1 and assume that ˛Z is a weak equivalence for
every .G;F in/-finite complex Z with dimZ � n� 1. Since X is .G;F in/-finite, there is
a pushout diagram as follows:Fn

iD1G=Hi � @�
n //

��

skn�1X

��Fn
iD1G=Hi ��

n // X:
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By Lemma B.2, upon applying the functor A.�/ we obtain the following Milnor square:

A.
Fn
iD1G=Hi�@�

n/ A.skn�1X/oo

A.
Fn
iD1G=Hi��

n/

OOOO

A.X/:

OOOO

oo

This induces a morphism of Mayer–Vietoris sequences as follows; see Lemma B.5:

HG
� .
Fn
iD1G=Hi � @�

nIE/

��

˛Fn
iD1

G=Hi�@�
n

// kkG� .A
.
Fn
iD1G=Hi�@�

n/; B/

��

HG
� .
Fn
iD1G=Hi ��

nIE/
˚

HG
� .skn�1X IE/

��

˛Fn
iD1

G=Hi��
n

˚
˛skn�1 X //

kkG� .A
.
Fn
iD1G=Hi��

n/; B/

˚

kkG� .A
.skn�1X/; B/

��

HG
� .X IE/

��

˛X // kkG� .A
.X/; B/

��

H��1.
Fn
iD1G=Hi � @�

nIE/ // kkG��1.A
.
Fn
iD1G=Hi�@�

n/; B/:

The morphisms ˛Fn
iD1G=Hi�@�

n and ˛skn�1X are isomorphisms by the inductive hypothe-
sis. The morphism ˛Fn

iD1G=Hi��
n is an isomorphism by the case (3). We conclude by the

Five Lemma that ˛X is an isomorphism.

Remark 7.4. The morphism ˛X of Lemma 7.1 can be defined for any .G;F in/-complex
X . However, the hypothesis of X being .G;F in/-finite is needed for stating that ˛X is
natural in X – the codomain of ˛X is a functor on X only when restricted to the full
subcategory of SG whose objects are .G;F in/-finite complexes.

Lemma 7.5. Let G be a group satisfying (5.3). Let A be an algebra, B be a G-algebra
and Z be a .G;F in/-complex. Then there is a natural isomorphism

HG
�

�
ZIK

�
A;R.B Ì �/

��
Š HG

� .ZIK
G.A.�/; B/

�
induced by a natural zig-zag of spectra.

Proof. Recall the notation and definitions introduced in Section 6. By Theorem 6.34, we
have a zig-zag of Or.G;F in/-spectra as follows, where the morphisms labeled with� are
objectwise weak equivalences of spectra:

K
�
A;R.B Ì t /

� R O=t .ut /
?ı xQJ

�oo //
R O=t .ut /

?.ut /Š.ut /
�ı xQJ

R O=t .ut /
?Q.Mt /

R O=t .ut /
?Q.ut /Š.ut /

�ı xQJ
'ı Nq

oo

�

OO

R O=t .ut /
?Q.Lt /

�ıq
//

�

OO

KG.A.t/;MGB/:

(7.6)
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We also have a zig-zag of Or.G;F in/-spectra as follows, induced by the G-stability zig-
zag (2.13):

KG.A.t/;MGB/
�0

�
// KG.A.t/;MGCB/ KG.A.t/; B/

�

�
oo (7.7)

In (7.7), both morphisms are objectwise weak equivalences of spectra since theG-algebra
homomorphisms of (2.13) induce isomorphisms in kkG . To ease notation, we name the
Or.G;F in/-spectra appearing in the zig-zags above as follows:

F.t/ WD K
�
A;R.B Ì t /

�
;

R1.t/ WD
Z O=t

.ut /
?ı xQJ ;

R2.t/ WD
Z O=t

.ut /
?.ut /Š.ut /

�ı xQJ ;

R3.t/ WD
Z O=t

.ut /
?Q.ut /Š.ut /

�ı xQJ ;

R4.t/ WD
Z O=t

.ut /
?Q.Mt /;

R5.t/ WD
Z O=t

.ut /
?Q.Lt /;

R6.t/ WD KG.A.t/;MGB/;

R7.t/ WD KG.A.t/;MGCB/;

E.t/ WD KG.A.t/; B/:

Upon concatenating (7.6) and (7.7) we get a zig-zag of Or.G;F in/-spectra as follows,
where the morphisms labeled with � are objectwise weak equivalences of spectra:

F R1
�oo // R2 R3

�oo // R4 R5
�oo // R6

� // R7 E:�oo (7.8)

Moreover, by Theorem (6.34), this zig-zag induces the isomorphism (6.1) upon taking
homotopy groups.

Let Z be a .G;F in/-complex. After applying HG
� .ZI �/ to (7.8) we get a zig-zag of

graded abelian groups

HG
� .ZIF/ HG

� .ZIR1/
Šoo // HG

� .ZIR2/ � � �
Šoo HG

� .ZIE/:
Šoo (7.9)

Each arrow in (7.9) is natural in Z since it is induced by a morphism of Or.G; F in/-
spectra; see Remark 2.9. Moreover, by Remark 2.9, those arrows labeled with � in (7.8)
induce natural isomorphisms in (7.9) and thus can be uniquely inverted. Upon inverting
the natural isomorphisms in (7.9) we get a chain of natural transformations as follows:

HG
� .ZIF/ // HG

� .ZIR1/ // HG
� .ZIR2/ // � � � // HG

� .ZIE/: (7.10)
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Write ˇZ WHG
� .ZIF/!HG

� .ZIE/ for the composite of the morphisms above. It is clear
that ˇZ is natural in Z since each one of the morphisms appearing in (7.10) is. We claim,
moreover, that ˇZ is an isomorphism. Since homology commutes with filtered unions,
it suffices to prove this for .G;F in/-finite Z. The claim holds for Z D G=N since, in
this case, ˇZ is the isomorphism (6.1) by Theorem 6.34. Now we can continue as in the
proof of Lemma 7.1: the case Z D G=H ��n follows from homotopy invariance and the
general case follows from excision upon considering the skeletal filtration of Z.

Combining Lemma 7.1 and Lemma 7.5 with the fact that homology commutes with
filtered unions we get the main result of this paper.

Theorem 7.11. Let G be a group satisfying (5.3). Let A be an algebra, B be a G-algebra
and Z be a .G;F in/-complex. Then there is a natural isomorphism

HG
�

�
ZIK

�
A;R.B Ì �/

��
Š colim

X�Z
G-finite

kkG� .A
.X/; B/

induced by a natural zig-zag of spectra.

Remark 7.12. Let G be a group satisfying (5.3) and let B be a G-algebra. Define an
Or.G/-spectrum KHB by KHB.G=H/ WD K.`;R.B Ì G=H// and note that it satisfies
(2.11). By Theorem 7.11, for every .G;F in/-complex Z we have

HG
� .ZIKHB/ Š colim

X�Z
G-finite

kkG� .`
.X/; B/:

When taking Z D EF in.G/, this shows that the domain of the KH-assembly map can be
expressed in terms of kkG-groups in a way that is completely analogous to that of the
Baum–Connes assembly map.

8. Towards a kk-theoretic assembly map

8.1. The Baum–Connes assembly map

Let us briefly recall the definition of the Baum–Connes assembly map as formulated in [4,
Section 9]. Fix a G-C �-algebra B and write B Ìr G for the reduced crossed product. Let
EF in.G/ be a topological model of the classifying space ofG with respect to F in. To every
properG-compactG-spaceX one associates a canonical class eX 2KK.C;C0.X/ÌG/,
where C0.X/ denotes the algebra of continuous functions X ! C that vanish at infinity.
Now consider the following composites:

KKG�
�
C0.X/; B

� �ÌrG // KK�
�
C0.X/ Ìr G;B Ìr G

� e�X // KK�.C; B Ìr G/:

As X varies over the closed G-compact subsets of EF in.G/, these maps are compatible
and define the Baum–Connes assembly map,

colim
X�EF in.G/
G-compact

KKG�
�
C0.X/; B

�
! KK�.C; B Ìr G/ Š K top

� .B Ìr G/: (8.1)
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The canonical class eX can be obtained as we proceed to explain. Let Cc.X/ denote the
algebra of continuous functions X ! C with compact support. A cut-off function for X
is a nonnegative f 2 Cc.X/ such that

P
g2G f .g � x/ D 1 for all x 2 X ; such functions

always exist for proper and G-compact X . Let f be a cut-off function for X and define
pf 2 Cc.G �X/ by

pf .g; x/ WD
p
f .x/f .g�1 � x/:

If we consider pf 2 C0.X/ ÌG, then pf is a projection and its class

eX D Œpf � 2 KK0
�
C; C0.X/ ÌG

�
is independent of the choice of f [24, Lemma 2.2].

Example 8.2. Let G be a (discrete) group and let H � G be a finite subgroup. For every
uH 2 G=H we have a cut-off function fuH WD 1

jH j
�uH 2 Cc.G=H/. The corresponding

projection is

puH WD
1

jH j
�uH Ì

X
h2H

uhu�1 2 C0.G=H/ ÌG: (8.3)

8.2. The KH-assembly map

Let G be a group satisfying (5.3) and let B be a G-algebra. Taking Remark 7.12 into
account, it is a natural question whether the KH-assembly map admits a kk-theoretic
description analogous to (8.1). We could expect to find, for each .G;F in/-finite complex
X , a natural class eX 2 kk0.`; `.X/ ÌG/ such that the composites

kkG� .`
.X/; B/

�ÌG // kk�.`
.X/ ÌG;B ÌG/

e�X // kk�.`; B ÌG/

are natural in X and define a morphism A making the following diagram commute:

HG
�

�
EF in.G/IK

�
`;R.B Ì �/

�� pr
//

Theorem 7.11 Š

��

kk�.`; B ÌG/ Š KH�.B ÌG/:

colim
X�EF in.G/
G-compact

kkG� .`
.X/; B/

A

;;

The authors have no results in this generality although it is clear how to define eX for
X D G=H , as we explain below.

Let H � G be a finite subgroup. The formula (8.3) defines an idempotent

puH D
1

jH j
�uH Ì

X
h2H

uhu�1 2 `.G=H/ ÌG (8.4)

and thus an element ŒpuH � 2 kk0.`; `.G=H/ Ì G/. It is immediate that the latter does not
depend upon uH since we have

.1 Ì g/pH .1 Ì g�1/ D puH 2 `G=H ÌG:
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Lemma 8.5. Let G be a group satisfying (5.3) and let B be a G-algebra. Let H � G be
a finite subgroup and let pH 2 `.G=H/ Ì G be the idempotent defined in (8.4). Then the
following diagram commutes:

HG
�

�
G=H IK

�
`;R.B Ì �/

�� pr
//

Theorem 7.11 Š
��

kk�.`; B ÌG/ Š KH�.B ÌG/:

kkG� .`
.G=H/; B/

.�ıŒpH �/ı.�ÌG/

::

(8.6)

Proof. For every algebra A we have a morphism pH ˝ A W A! A.G=H/ Ì G. We will
prove that the following diagram commutes for every algebra A; note that the commuta-
tivity of the outer square for A D ` is equivalent to that of (8.6).

HG
�

�
G=H IK

�
A;R.B Ì �/

��
ŠTheorem 7.11

��

pr
// HG
�

�
G=GIK

�
A;R.B Ì �/

��
Š

��

kk�
�
A;R.B ÌG=H/

�
Š

(6.1)
xx

pr
//

&&

Š

kk�
�
A;R.B ÌG=G/

�
kkG� .A

.G=H/; B/
.pH˝A/

�ı.�ÌG/
// kk�.A;B ÌG/:

(8.7)

To see that the triangle in (8.7) commutes, recall that the isomorphism of Theorem 7.11
is induced by the zig-zag of Or.G;F in/-spectra from Theorem 6.34 and that the latter
recovers the isomorphism (6.1) upon taking homotopy groups. As the upper right square in
(8.7) clearly commutes, we have to prove the commutativity of the lower right one. After
identifying kk�.A;R.B Ì G=H// Š kk�.A; B Ì H/ using (4.14) and unraveling the
details of the isomorphism (6.1), we are left to show that the following diagram commutes
for all n:

kkn.A;B ÌH/
incl� //

.�/.G=H/

��

kkn.A;B ÌG/

��
Š

(2.13)
��

kkGn
�
A.G=H/; .R ÌH/.G=H/

�
. B /� (3.2)

��

kkn
�
A; .MG+B/ ÌG

�
kkGn .A

.G=H/;MGB/
.pH˝A/

�ı.�ÌG/
// kkn

�
A; .MGB/ ÌG

�
:

.�0/�
Š

(2.13)

OO
(8.8)

It suffices to consider the case n D 0 since the general case follows upon replacing A by
†nA if n > 0 and by��nA if n < 0; see [9, Corollary 6.4.2]. Let ˛ 2 kk.A;B ÌH/ and
put

˛1 WD .�� ı incl�/.˛/;

˛2 WD
�
.�0/� ı .pH ˝ A/

�
ı .� ÌG/ ı . B/� ı .�/.G=H/

�
.˛/:



E. Ellis and E. Rodríguez Cirone 442

We will show that ˛1 D ˛2. Recall from (2.15) that we have an isomorphism

.RG+;B/� W kk
�
A; .MG+B/ ÌG

�
! kk

�
A;MjG+j.B ÌG/

�
:

We claim that .RG+;B/�.˛1/ D .RG+;B/�.˛2/. First suppose that ˛ is represented by an
algebra homomorphism f W A! B ÌH . Fix a 2 A and write

f .a/ D
X
k2H

bk Ì k:

It is straightforward to verify that .RGC;B/�.˛i / is represented by the algebra homomor-
phism fi W A!MjGCj.B ÌG/, where f1 and f2 are given by

f1.a/ D
X
k2H

e+;+ ˝ .bk Ì k/;

f2.a/ D
1

jH j

X
p;t;k2H

ep;t ˝ .p � bk Ì pkt�1/:

An easy computation shows that

.VH ˝ 1/V
�1f2V.V

�1
H ˝ 1/ D f1

where V is defined in (3.5) and VH in (3.9). Thus, f1 and f2 induce the same morphism
in kk. Suppose now that ˛ is represented by an algebra homomorphism

f W J rA! .B ÌH/Sr :

Let � W kk ! kk denote the translation functor in kk and recall that we have natural
isomorphisms as follows; see [9, Lemma 6.3.11] and [29, Lemma 7.10]:

kk.A;B/ Š kk.�rA;�rB/ Š kk.J rA;BS
r

/

Since these are compatible with all the morphisms appearing in (8.8), we may replace A
by J rA, B by BS

r
and reduce to the case r D 0 that we have already addressed.

A. G -Simplicial sets

Let G be a group. We recall some definitions and properties concerning the G-simplicial
sets. A G-simplicial set is a simplicial set with a left action of G. We write SG for the
category ofG-simplicial sets with equivariant morphisms. EveryG-simplicial setX has a
skeletal filtration such that the n-skeleton sknX is obtained from skn�1X upon attaching
cells of the form G=H � �n with H a subgroup of G. We say that X is G-finite if X
can be built from a finite number of these cells; it is easily verified that X is G-finite if
and only if GnX is a finite simplicial set. Let F be a nonempty family of subgroups of
G closed under conjugation and subgroups; we are interested in the family F in of finite
subgroups. A G-simplicial set X is called a .G;F /-complex if X can be built from cells
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of the form G=H � �n with H 2 F . The .G;F /-complexes are the cofibrant objects
for a certain model structure on SG ; see [8, Proposition 2.3]. A G-simplicial set X is
called .G;F /-finite if it can be built from a finite number of cells of the form G=H ��n

with H 2 F . It is easily verified that X is .G;F /-finite if and only if X is a G-finite
.G;F /-complex. In the rest of this section we gather some technical results that are used
in Section 7.

Lemma A.1. Let G be a group and let Sc � S denote the full subcategory of connected
simplicial sets. Let G=H;G=K 2 Or.G/ and X; Y 2 Sc . Then there is a natural isomor-
phism

HomSG .G=H �X;G=K � Y / Š HomOr.G/.G=H;G=K/ � HomS.X; Y /:

In other words, the full subcategory of SG whose objects are G=H � X with G=H 2
Or.G/ and X 2 Sc is equivalent to the product category Or.G/ � Sc .

Proof. Let f W G=H �X ! G=K � Y be a morphism in SG . We claim that there exist a
unique coset uK 2 G=K and a unique morphism h W X ! Y that fit into a commutative
square as follows, as we proceed to explain.G

G=H

X
f
//
G
G=K

Y

X

canH

OO

h // Y:

canuK

OO (A.2)

Since Y is a connected simplicial set, the set of connected components of
F
G=K Y is

¹canuK.Y /ºuK2G=K . Since X is a connected simplicial set, there is a unique connected
component canuK.Y / of

F
G=K Y such that .f ı canH /.X/ � canuK.Y /. Now define h

as the following composite:

X
f ıcanH // canuK.Y /

.canuK /�1

Š
// Y:

It is clear that h makes the square (A.2) commute. Moreover, it follows from the equivari-
ance of f that g.tH/D tuK defines a morphism g WG=H !G=K. Conversely, every pair
.g;h/ 2HomOr.G/.G=H;G=K/�HomS.X;Y / defines a uniqueG-equivariant morphism
f making the following squares commute for all t :G

G=H

X
f
//
G
G=K

Y

X

cantH

OO

h // Y:

cang.tH/

OO

It is easily verified that both constructions are mutually inverse.
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Lemma A.3. Let F be a family of subgroups of G and let  W Y ! X be a morphism of
G-simplicial sets. If X is a .G;F /-complex then Y is a .G;F /-complex too.

Proof. Let � 2 Yn; it is easily verified that Stab.�/ � Stab
�
 .�/

�
2 F .

Lemma A.4. Let G be an infinite group, let H � G be a subgroup, let X be a .G;F in/-
complex and let K be a finite simplicial set. Then every G-equivariant morphism  W

G=H �K ! X is proper, i.e.  �1.L/ is a finite simplicial set for every finite simplicial
subset L � X .

Proof. First of all notice thatH 2F in by Lemma A.3. LetL�X be a finite simplicial set
and suppose that  �1.L/ is not finite. Then there is an infinite number of non-degenerate
simplices in  �1.L/ � G=H �K. Since every non-degenerate simplex of G=H �K has
dimension � d WD dimK, there exists 0 � p � d such that there is an infinite number of
non-degenerate p-simplices in �1.L/. Let ¹gi ; i 2 I º �G be a system of representatives
for the cosets in G=H ; notice that I is infinite because H is finite. Every non-degenerate
p-simplex of G=H �K is of the form .giH;�/ for some i 2 I and some non-degenerate
p-simplex � of K. Since K has finitely many non-degenerate p-simplices, there exist a
non-degenerate p-simplex � of K and an infinite subset J � I such that®

.giH; �/; i 2 J
¯
�  �1.L/:

Then ®
 .giH; �/; i 2 J

¯
� Lp:

Since Lp is a finite set, replacing J by a smaller but still infinite subset, we can assume
without loss of generality that there is � 2 Lp such that  .giH; �/ D � for every i 2 J .
Fix i0 2 J . Then

gi0 �  .H; �/ D  .gi0H; �/ D � D  .giH; �/ D gi �  .H; �/

for every i 2 J and it follows that ¹g�1i gi0 ; i 2 J º � Stab. .H; �// 2 F in; this is a
contradiction since J is infinite.

Lemma A.5. Let X be a .G;F in/-complex and Y be a .G;F in/-finite simplicial set.
Then every morphism � W Y ! X is proper.

Proof. Let K � X be a finite simplicial subset and suppose that ��1.K/ is not finite.
Note that ��1.K/ has finite dimension since ��1.K/ � Y and Y has finite dimension. It
follows that, for some n� 0, ��1.K/ has infinitely many non-degenerate n-simplices. Let
¹�kºk2N � �

�1.K/ be a list of distinct non-degenerate n-simplices. Consider a pushout
diagram Fr

iD1G=Hi � @�
n //

��

skn�1 Y

��Fr
iD1G=Hi ��

n // skn Y
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where the Hi are finite. For every k 2 N, there exist 1 � ik � r and a non-degenerate
n-simplex �k ofG=Hik ��

n such that �k is the image of �k underG=Hik ��
n! skn Y .

Then there exists some 1� j � r such that ik D j for infinitely many values of k. We may
assume without loss of generality that ik D j for all k. Let  be the following composite:

G=Hj ��
n // skn Y

incl // Y
�
// X:

Then ¹�kºk2N is a list of distinct non-degenerate n-simplices of  �1.K/ � G=Hj ��n.
But the latter is not possible since  is proper by Lemma A.4.

Lemma A.6. Let G be a group,K � G be a subgroup and X be a G-simplicial set. Then

XK Š colim
G=H��n#X

.G=H ��n/K :

Proof. There is a natural morphism

colim
G=H��n#X

.G=H ��n/K ! XK : (A.7)

Let us prove that it is surjective. Let � 2 .XK/p D .Xp/K and putH WD Stab.�/; note that
we have K � H . Let f W G=H ��p ! X be the G-equivariant morphism determined
by .H; �p/ 7! � . Since .H; �p/ 2 .G=H ��p/K , we have that � D f K.H; �p/, showing
that � is in the image of (A.7). We still have to prove that (A.7) is injective. Let us first
show that every p-simplex of

colim
G=H��n#X

.G=H ��n/K (A.8)

is represented by one of the form .L; �p/ 2 .G=L ��
p/K . Let f W G=H ��n ! X be

a G-equivariant morphism and let .gH; �/ be a p-simplex of .G=H ��n/K . Then K �
gHg�1 and � D ��.�p/ for some nondecreasing function � W Œp�! Œn�. The commutativity
of the following triangle implies that .gH; �/ and .gH; �p/ represent the same simplex of
(A.8):

.gH; �/ G=H ��n
f

// X:

.gH; �p/
_

OO

G=H ��p

id���

OO

f ı.id���/

@@

Write L WD gHg�1 and note that there is a G-equivariant bijection ˇ W G=H ! G=L

determined by ˇ.H/ D g�1L. The commutativity of the following triangle implies that
.gH; �p/ and .L; �p/ represent the same simplex of (A.8):

.gH; �p/_

��

G=H ��p

Šˇ�id
��

f ı.id���/ // X:

.L; �p/ G=L ��p

@@



E. Ellis and E. Rodríguez Cirone 446

Now let .L; �p/ and .M; �p/ represent two p-simplices of (A.8) having the same image
� 2 .XK/p under (A.7). Put S WD Stab.�/ and note that L;M � S . The commutativity of
the following diagram shows that .L; �p/ and .M; �p/ represent the same simplex of (A.7):

.L; �p/_

��

G=L ��p

�� ��

.S; �p/ G=S ��p // X:

.M; �p/
_

OO

G=M ��p

@@OO

This finishes the proof.

B. A Mayer–Vietoris sequence in kk-theory

Definition B.1. A Milnor square of G-algebras is a pullback square

A //

��

B

f

��

C // D

where f is surjective and has a G-linear section.

Lemma B.2. Let A be an algebra and let X be a .G;F in/-finite G-simplicial set. For
each n � 1 there is a pushout diagramFr

iD1G=Hi � @�
n //

��

skn�1X

��Fr
iD1G=Hi ��

n // sknX

(B.3)

of G-simplicial sets with Hi 2 F in for all i . Then all the morphisms appearing in (B.3)
are proper and this diagram induces the following Milnor square of G-algebras:

A

�Fr
iD1G=Hi�@�

n
�

A.skn�1X/oo

A

�Fr
iD1G=Hi��

n
�

OO

A.sknX/:

OO

oo

(B.4)

Proof. All the morphisms in (B.3) are proper by Lemma A.5. Then we can apply A.�/ to
get a commutative diagram of G-algebras like (B.4) that it is easily seen to be a pullback;
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see Remark 2.3. Write i W @�n ! �n for the inclusion. By Lemma 2.1, the morphism
i� W A�

n
! A@�

n
admits a linear section. Then the left vertical morphism in (B.4) admits

a G-linear section, since it identifies withM
i

`.G=Hi / ˝ i� W
M
i

`.G=Hi / ˝ A�
n

�!

M
i

`.G=Hi / ˝ A@�
n

by Remark 2.3.

Lemma B.5. Let E be a G-algebra. Then every Milnor square of G-algebras

A //

��

B

��

C // D

induces a long exact Mayer–Vietoris sequence as follows:

kkG� .D;E/
// kkG� .B;E/˚ kk

G
� .C;E/

// kkG� .A;E/
// kkG��1.D;E/:

Proof. It follows from excision in kkG [15, Theorem 4.1.1] and from the argument given
in [12, Theorem 2.41].

C. The model category of spectra and spectra representing kk-theory

C.1. The stable model category of spectra

In this section, we recall the definition of the stable model category of spectra and discuss
some of its properties.

Definition C.1 ([5, Definition 2.1]). A spectrum X is a sequence of pointed simplicial
sets X0; X1; X2; : : : together with pointed morphisms

S1 ^Xn ! XnC1 for all n;

called bonding maps. Here, S1 D �1=@�1. A morphism of spectra f W X ! Y is a
sequence of pointed morphisms f n W Xn ! Y n that commute with the bonding maps
as follows:

S1 ^Xn

S1^f n

��

// XnC1

f nC1

��

S1 ^ Y n // Y nC1:

We write Sp for the category of spectra and morphisms of spectra.

We endow Sp with its stable model structure, that we proceed to describe; see [5,
Section 2] and [20, Section 3] for details:
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• Let X be a spectrum and let m 2 Z. The m-th stable homotopy group of X is defined
as

�m.X/ D colim
k

�mCk.X
k/:

A morphism of spectra f WX ! Y is a weak equivalence if �m.f / is an isomorphism
for all m 2 Z.

• A morphism of spectra f W X ! Y is a fibration if f n W Xn ! Y n is a fibration of
simplicial sets for all n.

• A morphism of spectra is a cofibration if it has the left lifting property with respect to
trivial fibrations.

Lemma C.2 ([30, Example 3.6 (iii)]). The stable model structure on Sp is combinatorial.

Proof. Recall from [14, Definition 2.1] that a model category is combinatorial if it is
cofibrantly generated and its underlying category is locally presentable. The stable model
structure on Sp is cofibrantly generated by [20, Definition 3.3 and Corollary 3.5]. We have
to show that the underlying category is locally presentable. We claim that Sp is locally
finitely presentable. By [1, Theorem 1.11], to prove this claim we have to show that Sp
has a strong generator formed by finitely presentable objects. By [1, Example 1.12], the
set ¹�m W m � 0º is a strong generator for S formed by finitely presentable objects. Since
the forgetful functor S� ! S commutes with filtered colimits, the latter is easily seen
to imply that ¹�mC W m � 0º is a strong generator for S� formed by finitely presentable
objects. For n � 0, let Fn W S� ! Sp be the left adjoint to evaluation at n. Explicitely, for
a pointed simplicial set X , let Fn.X/ be the spectrum whose level k is .S1/^.k�n/ ^X if
k � n and � otherwise. The bonding maps are the obvious ones. It is easily verified that
¹Fn.�

m
C/ Wm;n� 0º is a strong generator for Sp formed by finitely presentable spectra.

C.2. Bivariant K -theory spectra

In this section, we recall the definitions of spectra representing kk-theory [17, Theo-
rem 9.8] and kkG-theory [27, Theorem 5.3.11].

Let C denote either Alg` or GAlg`. For two objects A and B of C , the bivariant K-
theory space of the pair .A; B/ [28, Definition 4.10] is defined as the fibrant simplicial
set

K .A;B/ WD colim
n

�nEx1 HomC .J
nA;B�/:

This definition is equivalent to the original one given in [17, Section 4]. By [17, Theo-
rem 5.1], there is a natural isomorphism of simplicial sets

K .A;B/ Š �K .JA;B/:

Thus, we have an �-spectrum K.A;B/ defined by the sequence

K .A;B/;K .JA;B/;K .J 2A;B/; : : : :
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The spectrum K.A; B/ (denoted by Kunst.A; B/ in [17]) represents a universal bivariant
K-theory introduced by Garkusha that is excisive, homotopy invariant but matrix-unstable
[17, Comparison Theorem B]. Different matrix-stabilizations can be performed in order
to obtain spectra representing kk- and kkG-theories:

(1) Stabilization by finite matrices. For two objects A and B of C put

Kf .A;B/ WD colim
n

K.A;MnB/

where the transition maps are induced by the inclusion MnB !MnC1B into the
upper left corner. These spectra represent a universal bivariant K-theory that is
excisive, homotopy invariant and stable by finite matrices [17, Theorem 9.8]; see
[17, Section 9] and [27, Section 5.1] for details.

(2) Stabilization by finite matrices indexed on an infinite set. Let X be an infinite set.
For two objects A and B of C put [27, Definition 5.2.21]

KX .A;B/ WD Kf .A;MXB/:

The spectra KX .A; B/ represent a universal bivariant K-theory that is excisive,
homotopy invariant and MX -stable [27, Theorem 5.2.22]. For any X , Weibel’s
homotopy K-theory KH is the functor represented by the base ring ` [27, Theo-
rem 5.2.20]. For XDN, this theory coincides with the kk-theory defined in [9].

(3) G-stabilization. Let G be a group and let X D N � jGj. For two G-algebras A
and B put

KG.A;B/ WD KX .MGA;MGB/:

These spectra represent kkG-theory [27, Theorem 5.3.11].

Lemma C.3 (cf. [27, Section 4.4]). Let Sf � S denote the full subcategory of finite sim-
plicial sets. Let G be a group, X be an infinite set, G=K 2 Or.G;F in/, A; B 2 GAlg`
and S 2 Sf . Then, for E 2 ¹K;Kf ;KX ;K

Gº, there is a morphism of spectra

SC ^ E.A.G=K/; B/! E.A.G=K�S/; B/ (C.4)

that is natural in A, B , G=K and S . Moreover, for S D �0 this is an isomorphism.

Proof. It suffices to prove the Lemma for EDK: the case EDKf follows from this upon
taking colimit over the inclusions MnB !MnC1B and the rest of the cases follow from
the latter upon replacing A and B with appropriate matrix algebras.

Let us prove the case E D K. We will define (C.4) levelwise. At level p � 0, we have
to define a morphism of simplicial sets

SC ^K
�
J p.A.G=K//; B

�
! K

�
J p.A.G=K�S//; B

�
: (C.5)

Let us describe it in dimension q � 0. A q-simplex of

SC ^K
�
J p.A.G=K//; B

�
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is represented by a pair .�; ˛/ where � is a q-simplex of S and ˛ is a q-simplex of
K .J p.A.G=K//;B/. Below we use the notation of [28, Section 2.9]. Let ˛ be represented
by a G-algebra homomorphism

˛ W J pCv.A.G=K//! B.I
v��q ;@I v��q/

r

for some v; r � 0. Then the morphism (C.5) sends the pair .�; ˛/ to the q-simplex of
K .J p.A.G=K�S//; B/ represented by the following composite in GAlg`:

J pCv.A.G=K�S// J pCv
�
.A.G=K//S

� clas //
�
J pCv.A.G=K//

�S
˛�
��

B
.I v��q��q ;@I v��q��q/
r

diag�
��

�
B
.I v��q ;@I v��q/
r

��q�
oo

�
B
.I v��q ;@I v��q/
r

�S��oo

B
.I v��q ;@I v��q/
r :

Here, � is the morphism defined in [28, Remark 3.4]. This clearly defines a morphism
(C.5) that is natural in A, B , G=K and S . Let us now show that (C.5) is an isomorphism
for S D �0. First note that the classifying map

clas W J pCv
�
.A.G=K//�

0�
!
�
J pCv.A.G=K//

��0
is an isomorphism. Moreover, it follows from the naturality of� that the composite diag� ı
� ı �� equals the obvious isomorphism

ŒB.I
v��q ;@I v��q/

r ��
0 Š
�! B.I

v��q ;@I v��q/
r :

Together, these observations imply that, for S D �0 and making the obvious identi-
fications, the morphism (C.5) is the identity of K .J p.A.G=K//; B/. This finishes the
proof.

Lemma C.6. Let A and B be two G-algebras and let f W C ! D be a morphism of
G-algebras. Then the following square of spectra commutes:

KG.A;B/
�˝C

//

�˝D

��

KG.A˝ C;B ˝ C/

f�

��

KG.A˝D;B ˝D/
f �
// KG.A˝ C;B ˝D/:

Proof. Unraveling the definitions of the spectra KG , KX and Kf , it suffices to show that
the following square commutes:

K.A;B/
�˝C

//

�˝D

��

K.A˝ C;B ˝ C/

f�

��

K.A˝D;B ˝D/
f �
// K.A˝ C;B ˝D/:
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At level p � 0 the latter is the following square of simplicial sets:

K .J pA;B/
�˝C

//

�˝D

��

K
�
J p.A˝ C/;B ˝ C

�
f�

��

K
�
J p.A˝D/;B ˝D

� f �
// K

�
J p.A˝ C/;B ˝D

�
:

(C.7)

Let q � 0. Write BS
n��q

r instead of B.I
n��q ;@�n��q/

r to ease notation. Let ˛ be a q-
simplex of K .J pA;B/, represented by an algebra homomorphism ˛ W J pCnA!BS

n��q

r

for some n; r � 0. Consider the following commutative diagram of algebras:

J pCn.A˝ C/
clas //

JpCn.id˝f /
��

J pCn.A/˝ C
˛˝id

//

JpCn.id/˝f
��

BS
n��q

r ˝ C

id˝f
��

.B ˝ C/S
n��q

r

.id˝f /S
n��q
r

��

J pCn.A˝D/
clas // J pCn.A/˝D

˛˝id
// BS

n��q

r ˝D .B ˝D/S
n��q

r :

The composite of the top morphisms followed by the rightmost vertical morphism rep-
resents the q-simplex f�.˛ ˝ C/ of K .J p.A ˝ C/; B ˝ D/. The leftmost vertical
morphism followed by the composite of the bottom morphisms represents the q-simplex
f �.˛ ˝D/ of K .J p.A˝ C/; B ˝D/. The commutativity of the diagram shows that
f�.˛ ˝ C/ D f

�.˛ ˝D/ and, thus, that (C.7) commutes.

D. Equivariant kk-theory as a universal ı-functor into a graded
category

Let G be a group. Equivariant kkG-theory was introduced in [15, Theorem 4.1.1] as the
universal homotopy invariant, G-stable and excisive functor from GAlg` into a trian-
gulated category. This universal property allows us, for example, to define the crossed
product with a subgroup H � G – or better, with an orbit space G=H – at the level of
kk-theory. Indeed, by Proposition 4.17, for every subgroup H � G there exists a unique
triangulated functor � ÌG=H W kkG ! kk making the following diagram commute:

GAlg`

jG

��

R.�ÌG=H/
// Alg`

j

��

kkG
�ÌG=H

// kk:

A morphism f W G=H ! G=K of G-sets induces a natural transformation f� W R.� Ì
G=H/! R.� ÌG=K/ of functors GAlg` ! Alg`. We would like f to induce as well a
natural transformation f� W � ÌG=H ! � ÌG=K of triangulated functors kkG ! kk.
Such a natural transformation can be thought of as a functor kkG ! kkI , where kkI
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is the category of functors from the interval category I into kk. We cannot expect to
define a functor kkG ! kkI by the universal property of kkG mentioned above [15,
Theorem 4.1.1] since kkI is not a triangulated category in an obvious way. To get around
this problem, we work in the setting of graded categories.

Definition D.1 ([29, Section 10]). A graded category is a pair .A ; �/ where A is an
additive category and � is an automorphism of A . A graded functor F W .A ; �/ !

.A 0; �0/ is an additive functor F W A ! A 0 such that F ı � D �0 ı F . Let F; G W

.A ;�/! .A 0;�0/ be graded functors. A graded natural transformation � W F ! G is a
natural transformation � such that�0.�X /D ��.X/ W�0F.X/!�0G.X/ for all X 2 A .

Every triangulated category is a graded category. If A is a graded category, then A I

is a graded category as well.

Definition D.2 (cf. [29, Definition 10.6]). Let C denote either Alg` or GAlg` and let
.A ;�/ be a graded category. A ı-functor with values in A consists of the following data:

(1) a functor X W C ! A that preserves finite products;

(2) a morphism ıE 2 HomA .�X.C/;X.A// for every extension E as in (2.16).

These morphisms ıE are subject to the following conditions:

(1) ıE W �X.C/! X.A/ is an isomorphism if X.B/ D 0;

(2) the morphisms ıE are natural with respect to morphisms of extensions.

Any excisive homology theory in the sense of Cortiñas and Thom [9, Section 6.6] is
a ı-functor. By [29, Theorem 10.15 and Remark 10.17], the excisive, homotopy invariant
and matrix-unstable bivariant K-theory introduced by Garkusha in [16] is the universal
homotopy invariant ı-functor with values in a graded category. By [27, Theorem 5.2.15],
for any infinite set X , MX -stable algebraic kk-theory is the universal homotopy invariant
and MX -stable ı-functor with values in a graded category. A similar result holds in the
equivariant context.

Theorem D.3. LetG be a group, let .A ;�/ be a graded category and letX WGAlg`!A

be a homotopy invariant andG-stable ı-functor. Then there exists a unique graded functor
xX W kkG ! A such that xX.@G

E
/ D ıE for every extension E and such that the following

diagram commutes:

GAlg`

X --

jG
// kkG

9Š xX

��

A :

(D.4)

Here, the morphisms @G
E

are those that make jG W GAlg`! kkG into an excisive homol-
ogy theory.

Proof. The proof is similar to that of [15, Theorem 4.1.1]. We start by recalling some
details of the construction of kkG . Following [9, Section 6.6], an excisive homology theory
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of G-algebras consists of a triangulated category .T ;�/, a functor X W GAlg` ! T and
a morphism ıE W �X.C/! X.A/ for every extension E as in (2.16) such that:

(1) For every extension E , the following is a distinguished triangle in T :

�X.C/
ıE // X.A/ // X.B/ // X.C/:

(2) The morphisms ıE are natural with respect to morphisms of extensions.

Fix j W GAlg` ! kkGAlg` , ¹@EºE , a universal excisive, homotopy invariant and MN�jGj-
stable homology theory. The existence of such a homology theory follows from [9, The-
orem 6.6.2] in the case G D 1, from [15, Theorem 2.6.5] for countable G and from [27,
Theorem 5.2.16] in the general case. Since the composite

GAlg`
MG˝�// GAlg`

j
// kkGAlg`

is an excisive, homotopy invariant and MN�jGj-stable homology theory, there exists a
unique triangulated functor MG W kk

GAlg` ! kkGAlg` making the following square com-
mute:

GAlg`
j
//

MG˝�

��

kkGAlg`

MG

��

GAlg`
j
// kkGAlg` :

Now define kkG (see [15, Section 4.1] and [27, Definition 5.3.4]) as the category whose
objects are those of kkGAlg` and whose morphism sets are given by

HomkkG .A;B/ WD HomkkGAlg` .MGA;MGB/:

Let f 2 HomkkGAlg` .MGA; MGB/. We will often consider f both as a morphism in
kkGAlg` and as a morphism A! B in kkG . To avoid ambiguity, we will write Œf � instead
of f when considering f as a morphism in kkG . There is a functor tG W kkGAlg` !

kkG that is the identity on objects and that sends f 2 HomkkGAlg` .A; B/ to ŒMG.f /� 2

kkG.A;B/. Let jG be the following composite:

GAlg`
j
// kkGAlg` tG // kkG :

By [15, Theorem 4.1.1] and [27, Theorem 5.3.8],

jG W GAlg` �! kkG

endowed with ¹@G
E
WD tG.@E/ºE is the universal excisive, homotopy invariant andG-stable

homology theory.
Let us show that jG W GAlg`! kkG , ¹@G

E
ºE , is also the universal homotopy invariant

and G-stable ı-functor into a graded category. Let X W GAlg` ! .A ; �/, ¹ıEº, be a
homotopy invariant andG-stable ı-functor. Since X isG-stable, then it isMN�jGj-stable;
see [15, Section 3]. By [27, Theorem 5.2.15] there exists a unique graded functor

yX W kkGAlg` �! A
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making the following diagram commute and such that yX.@E/D ıE for every extension E:

GAlg`
j
//

X ..

kkGAlg`

9Š yX
��

A :

Suppose that there exists a graded functor

xX W kkG ! A

making the triangle (D.4) commute and such that xX.@G
E
/ D ıE for every extension E .

Then we have X D xX ı jG D . xX ı tG/ ı j and ıE D
xX.@G

E
/ D . xX ı tG/.@E/ for every

extension E . By the uniqueness of yX we must have yX D xX ı tG . By [27, Lemma 5.3.6],
for any f 2HomkkGAlg` .MGA;MGB/we have a commutative diagram in kkG as follows:

MGA
tG.f /

//

ŠtG.�0A/

��

MGB

tG.�0B /Š

��

MGCA MGCB

A

ŠtG.�A/

OO

Œf �
// B:

tG.�B /Š

OO

Here � and �0 are the morphisms appearing in theG-stability zig-zag (2.13). Upon applying
xX to the diagram above we get

xX.Œf �/ D yX.�B/
�1
ı yX.�0B/ ı

yX.f / ı yX.�0A/
�1
ı yX.�A/:

This shows that xX is uniquely determined. Moreover, it is straightforward to verify that
the last equation defines a graded functor xX W kkG ! A with the desired properties.
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