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A mathematical analysis of the Kakinuma model
for interfacial gravity waves.

Part I: Structures and well-posedness

Vincent Duchêne and Tatsuo Iguchi

Abstract. We consider a model, which we named the Kakinuma model, for interfacial gravity
waves. As is well known, the full model for interfacial gravity waves has a variational structure
whose Lagrangian is an extension of Luke’s Lagrangian for surface gravity waves, that is, water
waves. The Kakinuma model is a system of Euler–Lagrange equations for approximate Lagrangians,
which are obtained by approximating the velocity potentials in the Lagrangian for the full model.
In this paper we first analyze the linear dispersion relation for the Kakinuma model and show that
the dispersion curves highly fit that of the full model in the shallow water regime. We then analyze
the linearized equations around constant states and derive a stability condition, which is satisfied for
small initial data when the denser water is below the lighter water. We show that the initial value
problem is in fact well posed locally in time in Sobolev spaces under the stability condition, the
noncavitation assumption, and intrinsic compatibility conditions, in spite of the fact that the initial
value problem for the full model does not have any stability domain so that its initial value problem
is ill posed in Sobolev spaces. Moreover, it is shown that the Kakinuma model enjoys a Hamilto-
nian structure and has conservative quantities: mass, total energy, and in the case of a flat bottom,
momentum.

1. Introduction

We are concerned with the motion of interfacial gravity waves at the interface between two
layers of immiscible waters in a domain of the .nC 1/-dimensional Euclidean space in the
rigid-lid case. Let t be the time, x D .x1; : : : ; xn/ the horizontal spatial coordinates, and z
the vertical spatial coordinate. We assume that the interface, the rigid lid of the upper layer,
and the bottom of the lower layer are represented as z D �.x; t /, z D h1, and z D �h2 C
b.x/, respectively, where �.x; t / is the elevation of the interface, h1 and h2 are mean
thicknesses of the upper and lower layers, and b.x/ represents the bottom topography.
The only external force applied to the system is the constant and vertical gravity, and
interfacial tension is neglected. Moreover, we assume that the waters in the upper and the
lower layers are both incompressible and inviscid fluids with constant densities �1 and �2,
respectively, and that the flows are both irrotational. See Figure 1. Then the motion of the
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Figure 1. Interfacial gravity waves.

waters is described by the velocity potentials ˆ1 and ˆ2 and the pressures P1 and P2 in
the upper and the lower layers, respectively, satisfying the basic equations in the theory
of fluid dynamics, which will be referred to as the full model for interfacial gravity waves
throughout this paper. As shown by Luke [23], the basic equations for the surface gravity
waves, that is, the water wave problem, have a variational structure, whose Lagrangian is
written in terms of the surface elevation of the water and the velocity potential, and the
Lagrangian density is given by the vertical integral of the pressure in the water region. The
full model for interfacial gravity waves also has a variational structure and the Lagrangian
density L.ˆ1; ˆ2; �/ is again given by the vertical integral of the pressure in both water
regions. Kakinuma [17–19] proposed a model for interfacial gravity waves and applied
his model to numerically simulate the waves. To derive the model, he approximated the
velocity potentials ˆ1 and ˆ2 by

ˆ
app
k
.x; z; t/ D

NX
iD0

Zk;i .zI Qhk.x//�k;i .x; t / (1.1)

for k D 1; 2, where ¹Z1;iº and ¹Z2;iº are appropriate function systems in the vertical
coordinate z and may depend on Qh1.x/ and Qh2.x/, respectively, which are the thicknesses
of the upper and the lower layers in the rest state, whereas �k D .�k;0; �k;1; : : : ; �k;N /T,
k D 1; 2, are unknown variables. Then he derived an approximate Lagrangian density
Lapp.�1; �2; �/ D L.ˆ

app
1 ; ˆ

app
2 ; �/ for unknowns .�1; �2; �/. The Kakinuma model is

a corresponding system of Euler–Lagrange equations for the approximated Lagrangian
density Lapp.�1;�2; �/. Different choices of the function systems ¹Z1;iº and ¹Z2;iº give
different Kakinuma models and we have to carefully choose the function systems for the
Kakinuma model to provide good approximations for interfacial gravity waves.

The Kakinuma model is an extension to interfacial gravity waves of the so-called
Isobe–Kakinuma model for surface gravity waves, that is, water waves. In the case of



Kakinuma model for interfacial gravity waves: Structures and well-posedness 259

surface gravity waves, the basic equations are known to have a variational structure with
Luke’s Lagrangian density LLuke.ˆ; �/, where � is the surface elevation and ˆ is the
velocity potential of the water. The Isobe–Kakinuma model is a system of Euler–Lagrange
equations for the approximated Lagrangian density Lapp.�; �/ D LLuke.ˆ

app; �/, where
ˆapp is an approximate velocity potential

ˆapp.x; z; t/ D

NX
iD0

Zi .zI b.x//�i .x; t / (1.2)

and � D .�0; �1; : : : ; �N /
T are unknown variables. The model was first proposed by

Isobe [15, 16] and then applied by Kakinuma to numerically simulate water waves. We
note that a similar model was derived by Klopman, van Groesen, and Dingemans [21],
and used to simulate water waves. See also Papoutsellis and Athanassoulis [29]. Recently,
this model was analyzed from a mathematical point of view. One possible choice of the
function system ¹Ziº is a set of polynomials in z, for example, Zi .zI b.x// D .z C h �
b.x//pi , with integers pi satisfying 0 D p0 < p1 < � � � < pN . Under this choice of the
function system ¹Ziº, the initial value problem to the Isobe–Kakinuma model was ana-
lyzed by Murakami and Iguchi [27] in a special case and by Nemoto and Iguchi [28] in
the general case. The hypersurface t D 0 in the space-time Rn �R is characteristic for the
Isobe–Kakinuma model, so that one needs to impose some compatibility conditions on
the initial data for the existence of the solution. Under these compatibility conditions and
a sign condition �@zP app � c0 > 0 on the water surface, they showed the well-posedness
of the initial value problem locally in time, where P app is an approximate pressure in the
Isobe–Kakinuma model calculated from Bernoulli’s equation. Moreover, Iguchi [12, 13]
showed that under the choice of the function system

Zi .zI b.x// D

´
.z C h/2i in the case of a flat bottom;

.z C h � b.x//i in the case of a variable bottom;
(1.3)

the Isobe–Kakinuma model is a higher-order shallow water approximation for the water
wave problem in a strongly nonlinear regime. Furthermore, Duchêne and Iguchi [8]
showed that the Isobe–Kakinuma model also enjoys a Hamiltonian structure analogous
to the one exhibited by Zakharov [32] on the full water wave problem. Our aim in the
present paper is to extend these results on surface gravity waves to interfacial gravity
waves.

In view of these results on the Isobe–Kakinuma model, in the present paper we con-
sider the Kakinuma model under the choice of the approximate velocity potentials in (1.1)
as 8̂̂̂̂

<̂̂
ˆ̂̂̂:
ˆ

app
1 .x; z; t/ D

NX
iD0

.�z C h1/
2i�1;i .x; t /;

ˆ
app
2 .x; z; t/ D

N�X
iD0

.z C h2 � b.x//
pi�2;i .x; t /;

(1.4)
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where N , N � and p0; p1; : : : ; pN� are nonnegative integers satisfying 0 D p0 < p1 <

� � � < pN� . In applications of the Kakinuma model, it would be better to choose N � D
N and pi D 2i in the case of a flat bottom, and N � D 2N and pi D i in the case of
a variable bottom. In the case N D N � D 0, that is, if we choose the approximation
ˆ

app
k
.x; z; t/ D �k.x; t / for k D 1; 2, functions independent of the vertical coordinate z,

then the corresponding Kakinuma model is reduced to the shallow water equations. In the
caseN CN � > 0, the Kakinuma model is classified into a system of nonlinear dispersive
equations.

It is well known that in the case of a flat bottom b D 0, the dispersion relation of the
linearized equations to the full model around the flow .�;ˆ1;ˆ2/D .0;u1 � x;u2 � x/with
constant horizontal velocities u1 and u2 is given by

.�1 coth.h1j�j/C �2 coth.h2j�j//!2

C 2.�1� � u1 coth.h1j�j/C �2� � u2 coth.h2j�j//!

C �1.� � u1/
2 coth.h1j�j/C �2.� � u2/2 coth.h2j�j/ � .�2 � �1/gj�j D 0;

where � 2 Rn is the wave vector, ! 2 C the angular frequency, and g the gravitational
constant. It is easy to see that the roots ! of the above equation are always real for any
wave vector � 2 Rn if and only if u1 D u2 and �2 � �1. Otherwise, the roots of the above
equation have the form ! D !r .j�j/˙ i!i .j�j/ satisfying !i .j�j/!C1 as j�j ! C1,
which leads to an instability of the interface. The instabilities in the case �2 > �1 and
u1 ¤ u2 and in the case �2 < �1 and u1 D u2 are known as the Kelvin–Helmholtz and
the Rayleigh–Taylor instabilities, respectively. For more details, see for example Drazin
and Reid [7]. In the rest of this paper, we are interested in the situation where

.�2 � �1/g > 0;

that is, the denser water is below the lighter water. In the case u1 D u2 D 0, the linear
dispersion relation is written simply as

!2 D
.�2 � �1/gj�j

�1 coth.h1j�j/C �2 coth.h2j�j/
:

We denote the right-hand side by !IW.�/
2. Then the phase speed cIW.�/ of the plane wave

solution related to the wave vector � is given by

cIW.�/ D
!IW.�/

j�j
D ˙

s
.�2 � �1/g

�1j�j coth.h1j�j/C �2j�j coth.h2j�j/
: (1.5)

As a shallow water limit h1j�j; h2j�j ! 0, we have

cIW.�/ ' cSW D ˙

s
.�2 � �1/gh1h2

�1h2 C �2h1
; (1.6)
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where cSW is the phase speed of infinitely long and small interfacial gravity waves. In Sec-
tion 3 we will analyze the linear dispersion relation of the Kakinuma model and calculate
the phase speed cK.�/ of the plane wave solution related to the wave vector �. Under the
choice N � D N and pi D 2i , or N � D 2N and pi D i in the approximation (1.4) of the
velocity potentials, it turns out that

jcIW.�/
2
� cK.�/

2
j . .h1j�j C h2j�j/

4NC2; (1.7)

which indicates that the Kakinuma model may be a good approximation of the full model
for interfacial gravity waves in the shallow water regime h1j�j; h2j�j � 1. We note that
the Miyata–Choi–Camassa model derived by Miyata [26] and Choi and Camassa [4] is a
model for interfacial gravity waves in the strongly nonlinear regime and can be regarded as
a generalization of the Green–Naghdi equations for water waves into a two-layer system.
Let cMCC.�/ be the phase speed of the plane wave solution related to the wave vector � for
the linearized equations of the Miyata–Choi–Camassa model around the rest state. Then
we have

jcIW.�/
2
� cMCC.�/

2
j . .h1j�j C h2j�j/

4;

so that the Kakinuma model gives a better approximation of the full model than the
Miyata–Choi–Camassa model in the shallow water regime, at least, at the linear level. A
rigorous analysis for the consistency of the Kakinuma model in the shallow water regime
will be analyzed in the subsequent paper Duchêne and Iguchi [9]. On the other hand, in
the deep water limit we have

lim
h1j�j;h2j�j!1

cK.�/
2 > 0;

which is not consistent with the limit of the full model

lim
h1j�j;h2j�j!1

cIW.�/
2
D 0:

We notice that the Miyata–Choi–Camassa model is only apparently consistent with the
full model in this deep water limit since

lim
h1j�j;h2j�j!1

cMCC.�/
2
D 0;

but we note also that

lim
h1j�j;h2j�j!1

cIW.�/
2

cMCC.�/2
D1:

We refer to Duchêne, Israwi, and Talhouk [10] for further discussion and the derivation of
modified Miyata–Choi–Camassa models having either the same dispersion relation as the
full model, or the same behavior as the Kakinuma model in the deep water limit. As we
discuss below, thanks to the high-frequency behavior of the linearized equations, and con-
trarily to both the full model and the Miyata–Choi–Camassa model, the Kakinuma model
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has a nontrivial stability domain and, as a result, the initial value problem to the Kakinuma
model is well posed locally in time in Sobolev spaces under appropriate assumptions on
the initial data.

As we have already seen, the roots ! 2 C of the dispersion relation of the linearized
equations of the full model around the rest state are always real, so that the corresponding
initial value problem is well posed. However, as for the nonlinear problem, even if the ini-
tial velocity is continuous on the interface, a discontinuity of the velocity in the tangential
direction on the interface would be created instantaneously in general, so that the Kelvin–
Helmholtz instability appears locally in space. As a result, the initial value problem for
the full model turns out to be ill posed. For more details, we refer to Iguchi, Tanaka, and
Tani [14]. See also Kamotski and Lebeau [20] and Lannes [22]. In Section 4 we consider
the linearized equations of the Kakinuma model around an arbitrary flow. After freezing
the coefficients and neglecting lower-order terms of the linearized equations, we calculate
the linear dispersion relation and derive a stability condition, which is equivalent to

�@z.P
app
2 � P

app
1 / �

�1�2

�1H2˛2 C �2H1˛1
jrˆ

app
2 � rˆ

app
1 j

2
� c0 > 0 (1.8)

on the interface, where P app
1 and P app

2 are approximate pressures of the waters in the
upper and the lower layers in the Kakinuma model calculated from Bernoulli’s equations,
H1 and H2 are the thicknesses of the upper and the lower layers, respectively, ˛1 is a
constant depending only on N , ˛2 is a constant determined from ¹p0; p1; : : : ; pN�º, and
r D .@x1 ; : : : ; @xn/

T is the nabla with respect to the horizontal spatial coordinates x D
.x1; : : : ; xn/. If �1 D 0, then (1.8) coincides with the stability condition for the Isobe–
Kakinuma model for water waves derived by Nemoto and Iguchi [28].

As in the case of the Isobe–Kakinuma model, the hypersurface t D 0 in the space-
time Rn � R is characteristic for the Kakinuma model, so that one needs to impose some
compatibility conditions on the initial data for the existence of the solution. Under these
compatibility conditions, the noncavitation assumption H1 � c0 > 0 and H2 � c0 > 0,
and the stability condition (1.8), we will show in this paper that the initial value problem
to the Kakinuma model is well posed locally in time in Sobolev spaces. Here, we note that
the coefficients ˛1 and ˛2 in the stability condition (1.8) converge to 0 as N;N �!1, so
that the domain of stability diminishes as N and N � grow. This fact is consistent with the
aforementioned properties of the full model.

Let us further comment on the significance of approximating an ill-posed system with
well-posed systems. Firstly, while the initial value problem for the full model is ill posed
in Sobolev spaces, analytic solutions do exist, as shown by Sulem, Sulem, Bardos, and
Frisch [31] and Sulem and Sulem [30] in the case where upper and lower boundaries are
absent, and we expect that the corresponding solutions to the Kakinuma model provide
valid approximations. Secondly, it should be recalled that the full model itself is a sim-
plified model that discards effects that would stabilize the flow, especially vertical mixing
across the pycnocline. In [22], Lannes considered another stabilizing effect, namely inter-
facial tension, and showed the existence and uniqueness of solutions with finite regularity
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to the corresponding initial value problem over a long time in the shallow water regime.
The key physical mechanism at stake is that the Kelvin–Helmholtz instability, which is
responsible for ill-posedness issues, occurs at sufficiently small spatial scale, so that it
is possible to regularize the equations while being almost transparent to the behavior of
the flow at large spatial scale, which is of practical interest for applications. Our results
demonstrate that the Kakinuma model inherently incorporates such a stabilizing effect
whose strength diminishes as N and N � grow, consistently with the expectation that the
accuracy with respect to the full model increases.

As is well known, the full model for interfacial gravity waves has a conserved energy

E D

Z Z
�1.t/

1

2
�1
�
jrˆ1.x; z; t/j

2
C .@zˆ1.x; z; t//

2
�

dx dz

C

Z Z
�2.t/

1

2
�2
�
jrˆ2.x; z; t/j

2
C .@zˆ2.x; z; t//

2
�

dx dz

C

Z
Rn

1

2
.�2 � �1/g�.x; t /

2 dx; (1.9)

where �1.t/ and �2.t/ are the upper and the lower layers, respectively. This is the total
energy, that is, the sum of the kinetic energies of the waters in the upper and the lower
layers and the potential energy due to gravity. Moreover, Benjamin and Bridges [1] found
that the full model can be written in Hamilton’s canonical form

@t� D
ıH

ı�
; @t� D �

ıH

ı�
;

where the canonical variable � is defined by

�.x; t / D �2ˆ2.x; �.x; t /; t/ � �1ˆ1.x; �.x; t /; t/ (1.10)

and the Hamiltonian H is the total energy E written in terms of the canonical variables
.�; �/. Their result can be viewed as a generalization into interfacial gravity waves of
Zakharov’s Hamiltonian [32] for water waves. For mathematical treatments of the Hamil-
tonian for interfacial gravity waves, we refer to Craig and Groves [5] and Craig, Guyenne,
and Kalisch [6]. The Kakinuma model also has a conserved energy EK, which is the total
energy given by (1.9) with ˆ1 and ˆ2 replaced by ˆapp

1 and ˆapp
2 . Moreover, we will

show that the Kakinuma model enjoys a Hamiltonian structure with a Hamiltonian HK

the total energy in terms of canonical variables � and �, where � is defined by (1.10)
with ˆ1 and ˆ2 replaced by ˆapp

1 and ˆapp
2 . This fact can be viewed as a generalization

to the Kakinuma model for interfacial gravity waves of a Hamiltonian structure of the
Isobe–Kakinuma model for water waves given by Duchêne and Iguchi [8].

The contents of this paper are as follows. In Section 2 we begin with reviewing the
full model for interfacial gravity waves and derive the Kakinuma model. Then we state
one of the main results of this paper, that is, Theorem 2.1 about the well-posedness of the
initial value problem to the Kakinuma model locally in time. In Section 3 we analyze the
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linear dispersion relation of the linearized equations of the Kakinuma model around the
rest state in the case of a flat bottom and show (1.7). In Section 4 we derive the stability
condition (1.8) by analyzing the linearized equations of the Kakinuma model around an
arbitrary flow. In Section 5 we derive an energy estimate for the linearized equations with
frozen coefficients and then transform the equations into a standard positive symmetric
system by introducing an appropriate symmetrizer. In Section 6 we introduce several dif-
ferential operators related to the Kakinuma model and derive elliptic estimates for these
operators. In Section 7 we prove one of our main result, Theorem 2.1, by using the method
of parabolic regularization of the equations. In Section 8 we prove another main result,
Theorem 8.4, which ensures that the Kakinuma model enjoys a Hamiltonian structure.
Finally, in Section 9 we derive conservation laws of mass, momentum, and energy for the
Kakinuma model together with the corresponding flux functions.

Notation. We denote by W m;p.Rn/ the Lp Sobolev space of order m on Rn and Hm D

W m;2.Rn/. The norm of a Banach space B is denoted by k � kB . The L2-inner product
is denoted by .�; �/L2 . We put @t D @

@t
, @j D @xj D

@
@xj

, and @z D @
@z

. ŒP; Q� D PQ �
QP denotes the commutator and ŒP Iu; v� D P.u � v/ � .Pu/ � v � u � .P v/ denotes the
symmetric commutator. For a matrix A we denote by AT the transpose of A. For a vector
� D .�0; �1; : : : ; �N /

T we denote the last N components by �0 D .�1; : : : ; �N /
T. We

use the notational convention 0
0
D 0. We denote by C.a1; a2; : : :/ a positive constant

depending on a1; a2; : : : : The expression f . g means that there exists a nonessential
positive constant C such that f � Cg holds, and f ' g means that f . g and g . f

hold.

2. Kakinuma model and well-posedness

We begin with formulating mathematically the full model for interfacial gravity waves.
In what follows, the upper layer, the lower layer, the interface, the rigid lid of the upper
layer, and the bottom of the lower layer, at time t , are denoted by �1.t/, �2.t/, �.t/, †t ,
and†b , respectively. Then the motion of the waters is described by the velocity potentials
ˆ1 and ˆ2 and the pressures P1 and P2 in the upper and the lower layers satisfying the
equations of continuity

�ˆ1 C @
2
zˆ1 D 0 in �1.t/; (2.1)

�ˆ2 C @
2
zˆ2 D 0 in �2.t/; (2.2)

where�D @21C � � � C @
2
n is the Laplacian with respect to the horizontal spatial coordinates

x D .x1; : : : ; xn/, and Bernoulli’s equations

�1

�
@tˆ1 C

1

2
.jrˆ1j

2
C .@zˆ1/

2/C gz
�
C P1 D 0 in �1.t/; (2.3)

�2

�
@tˆ2 C

1

2
.jrˆ2j

2
C .@zˆ2/

2/C gz
�
C P2 D 0 in �2.t/: (2.4)
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The dynamical boundary condition on the interface is given by

P1 D P2 on �.t/: (2.5)

The kinematic boundary conditions on the interface, the rigid lid, and the bottom are given
by

@t� Crˆ1 � r� � @zˆ1 D 0 on �.t/; (2.6)

@t� Crˆ2 � r� � @zˆ2 D 0 on �.t/; (2.7)

@zˆ1 D 0 on †t ; (2.8)

rˆ2 � rb � @zˆ2 D 0 on †b : (2.9)

These are the basic equations for interfacial gravity waves. We can remove the pressures
P1 and P2 from these basic equations. In fact, it follows from Bernoulli’s equations (2.3)–
(2.4) and the dynamical boundary condition (2.5) that

�1

�
@tˆ1 C

1

2
.jrˆ1j

2
C .@zˆ1/

2/C gz
�

� �2

�
@tˆ2 C

1

2
.jrˆ2j

2
C .@zˆ2/

2/C gz
�
D 0 on �.t/: (2.10)

Then the basic equations consist of (2.1)–(2.2) and (2.6)–(2.10), and we can regard Ber-
noulli’s equations (2.3)–(2.4) as the definition of the pressures P1 and P2.

In the case of surface gravity waves, as shown by Luke [23], the basic equations have
a variational structure and Luke’s Lagrangian density is given by the vertical integral of
the pressure P � Patm in the water region, where Patm is a constant atmospheric pressure.
Therefore, it is natural to expect that even in the case of interfacial gravity waves, the
vertical integral of the pressure in the water regions would give a Lagrangian density L,
so that we first define Lpre by

Lpre
D

Z h1

�.x;t/

P1.x; z; t/ dz C
Z �.x;t/

�h2Cb.x/

P2.x; z; t/ dz: (2.11)

By Bernoulli’s equations (2.3)–(2.4), this can be written in terms of the velocity potentials
ˆ1, ˆ2, and the elevation of the interface � as

Lpre
D ��1

Z h1

�

�
@tˆ1 C

1

2
.jrˆ1j

2
C .@zˆ1/

2/
�

dz

� �2

Z �

�h2Cb

�
@tˆ2 C

1

2
.jrˆ2j

2
C .@zˆ2/

2/
�

dz

�
1

2
.�2 � �1/g�

2
�
1

2
�1gh

2
1 C

1

2
�2g.�h2 C b/

2:
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The last two terms do not contribute to the calculus of variations of this Lagrangian, so
that we define the Lagrangian density L.ˆ1; ˆ2; �/ by

L.ˆ1; ˆ2; �/ D ��1

Z h1

�

�
@tˆ1 C

1

2
.jrˆ1j

2
C .@zˆ1/

2/
�

dz

� �2

Z �

�h2Cb

�
@tˆ2 C

1

2
.jrˆ2j

2
C .@zˆ2/

2/
�

dz

�
1

2
.�2 � �1/g�

2 (2.12)

and the action function J.ˆ1; ˆ2; �/ by

J.ˆ1; ˆ2; �/ D

Z t1

t0

Z
Rn

L.ˆ1; ˆ2; �/ dx dt:

It is not difficult to check that the corresponding system of Euler–Lagrange equations is
exactly the same as the basic equations (2.1)–(2.2) and (2.6)–(2.10) for interfacial gravity
waves.

We proceed to derive the Kakinuma model for interfacial gravity waves. Let ˆapp
1

and ˆapp
2 be approximate velocity potentials defined by (1.4) and define an approximate

Lagrangian density Lapp.�1;�2; �/ for �1D .�1;0;�1;1; : : : ;�1;N /T, �2D .�2;0;�2;1; : : : ;
�2;N�/

T, and � by
Lapp.�1;�2; �/ D L.ˆ

app
1 ; ˆ

app
2 ; �/; (2.13)

which can be written explicitly as

Lapp
D �1

² NX
iD0

1

2i C 1
H 2iC1
1 @t�1;i

C
1

2

NX
i;jD0

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;i � r�1;j

C
4ij

2.i C j / � 1
H
2.iCj /�1
1 �1;i�1;j

�³
� �2

²N�X
iD0

1

pi C 1
H
piC1
2 @t�2;i

C
1

2

N�X
i;jD0

� 1

pi C pj C 1
H
piCpjC1

2 r�2;i � r�2;j

�
2pi

pi C pj
H
piCpj
2 �2;irb � r�2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/�2;i�2;j

�³
�
1

2
.�2 � �1/g�

2;
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where H1 and H2 are thicknesses of the upper and the lower layers, that is,

H1.x; t / D h1 � �.x; t /; H2.x; t / D h2 C �.x; t / � b.x/:

The corresponding system of Euler–Lagrange equations is the Kakinuma model, which
consists of the equations

H 2i
1 @t� �

NX
jD0

°
r �

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;j

�
�

4ij

2.i C j / � 1
H
2.iCj /�1
1 �1;j

±
D 0 (2.14)

for i D 0; 1; : : : ; N ,

H
pi
2 @t� C

N�X
jD0

°
r �

� 1

pi C pj C 1
H
piCpjC1

2 r�2;j �
pj

pi C pj
H
piCpj
2 �2;jrb

�
C

pi

pi C pj
H
piCpj
2 rb � r�2;j

�
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/�2;j

±
D 0 (2.15)

for i D 0; 1; : : : ; N �, and

�1

² NX
jD0

H
2j
1 @t�1;j C g� C

1

2

�ˇ̌̌̌ NX
jD0

H
2j
1 r�1;j

ˇ̌̌̌2
C

� NX
jD0

2jH
2j�1
1 �1;j

�2�³

� �2

²N�X
jD0

H
pj
2 @t�2;j C g�

C
1

2

�ˇ̌̌̌N�X
jD0

.H
pj
2 r�2;j � pjH

pj�1

2 �2;jrb/

ˇ̌̌̌2
C

� N�X
jD0

pjH
pj�1

2 �2;j

�2�³
D 0: (2.16)

Here and in what follows we use the notational convention 0
0
D 0. This system of equations

is the Kakinuma model that we are going to consider in this paper. We consider the initial
value problem to the Kakinuma model (2.14)–(2.16) under the initial condition

.�;�1;�2/ D .�.0/;�1.0/;�2.0// at t D 0: (2.17)

For notational convenience, we decompose �k as �k D .�k;0; �
0
k
/T for k D 1; 2 with

�01 D .�1;1; : : : ; �1;N / and �02 D .�2;1; : : : ; �2;N�/. Accordingly, we decompose the initial
data �k.0/ as �k.0/ D .�k;0.0/;�0k.0//

T for k D 1; 2.
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The hypersurface t D 0 in the space-time Rn � R is characteristic for the Kakinuma
model (2.14)–(2.16), so that the initial value problem (2.14)–(2.17) is not solvable in gen-
eral. In fact, by eliminating the time derivative @t� from the equations, we see that if
the problem has a solution .�;�1;�2/, then the solution has to satisfy the N C N � C 1
relations

H 2i
1

NX
jD0

r �

� 1

2j C 1
H
2jC1
1 r�1;j

�
�

NX
jD0

°
r �

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;j

�
�

4ij

2.i C j / � 1
H
2.iCj /�1
1 �1;j

±
D 0 (2.18)

for i D 1; 2; : : : ; N ,

H
pi
2

N�X
jD0

r �

� 1

pj C 1
H
pjC1

2 r�2;j �
pj

pj
H
pj
2 �2;jrb

�
�

N�X
jD0

°
r �

� 1

pi C pj C 1
H
piCpjC1

2 r�2;j �
pj

pi C pj
H
piCpj
2 �2;jrb

�
C

pi

pi C pj
H
piCpj
2 rb � r�2;j

�
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/�2;j

±
D 0 (2.19)

for i D 1; 2; : : : ; N �, and

NX
jD0

r �

� 1

2j C 1
H
2jC1
1 r�1;j

�
C

N�X
jD0

r �

� 1

pj C 1
H
pjC1

2 r�2;j �
pj

pj
H
pj
2 �2;jrb

�
D 0: (2.20)

Therefore, as a necessary condition, the initial data .�.0/; �1.0/; �2.0// and the bottom
topography b have to satisfy relations (2.18)–(2.20) for the existence of the solution. These
necessary conditions will be referred to as the compatibility conditions.

The following theorem is one of our main results in this paper, which guarantees the
well-posedness of the initial value problem to the Kakinuma model (2.14)–(2.17) locally
in time.

Theorem 2.1. Let g, �1, �2, h1, h2, c0, M0 be positive constants and m an integer such
thatm> n

2
C 1. There exists a time T > 0 such that for any initial data .�.0/;�1.0/;�2.0//
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and bottom topography b satisfying the compatibility conditions (2.18)–(2.20), the stabil-
ity condition (1.8), and´

k.�.0/;r�1;0.0/;r�2;0.0//kHm C k.�0
1.0/

;�0
2.0/

/kHmC1 C kbkW mC2;1 �M0;

h1 � �.0/.x/ � c0; h2 C �.0/.x/ � b.x/ � c0 for x 2 Rn;
(2.21)

the initial value problem (2.14)–(2.17) has a unique solution .�;�1;�2/ satisfying´
�;r�1;0;r�2;0 2 C.Œ0; T �IH

m/ \ C 1.Œ0; T �IHm�1/;

�01;�
0
2 2 C.Œ0; T �IH

mC1/ \ C 1.Œ0; T �IHm/:

Remark 2.2. The term .@z.P
app
2 �P

app
1 //jzD� in the stability condition (1.8) is explicitly

given in (4.4). It includes the terms @t�k.x; 0/ for k D 1; 2. Although the hypersurface
t D 0 is characteristic for the Kakinuma model, we can uniquely determine them in terms
of the initial data and b. For details, we refer to Remark 7.1. Under the condition .�2 �
�1/g > 0 and if the initial data and the bottom topography are suitably small, the stability
condition (1.8) is automatically satisfied at t D 0.

Remark 2.3. In the case N D N � D 0, that is, if we approximate the velocity poten-
tials in the Lagrangian by functions independent of the vertical spatial variable z as
ˆ

app
k
.x; z; t/ D �k.x; t / for k D 1; 2, then the Kakinuma model (2.14)–(2.16) is reduced

to the nonlinear shallow water equations8̂̂̂<̂
ˆ̂:
@t� � r � ..h1 � �/r�1/ D 0;

@t� Cr � ..h2 C � � b/r�2/ D 0;

�1

�
@t�1 C g� C

1

2
jr�1j

2
�
� �2

�
@t�2 C g� C

1

2
jr�2j

2
�
D 0:

(2.22)

The compatibility conditions (2.18)–(2.20) are reduced to

r � ..h1 � �/r�1/Cr � ..h2 C � � b/r�2/ D 0

and the stability condition (1.8) is reduced to

g.�2 � �1/ �
�1�2

�1H2 C �2H1
jr�2 � r�1j

2
� c0 > 0:

Therefore, we recover the conditions for well-posedness in Sobolev spaces of the ini-
tial value problem to the nonlinear shallow water equations (2.22) proved by Bresch and
Renardy [3].

Remark 2.4. By analogy with the canonical variable (1.10) for interfacial gravity waves
introduced by Benjamin and Bridges [1], we introduce a canonical variable for the Kak-
inuma model:

� D �2

N�X
jD0

H
pj
2 �2;j � �1

NX
jD0

H
2j
1 �1;j : (2.23)
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Given the initial data .�.0/; �.0// for the canonical variables .�; �/ and the bottom topogra-
phy b, the compatibility conditions (2.18)–(2.20) and relation (2.23) determine the initial
data .�1.0/;�2.0// for the Kakinuma model, which is unique up to an additive constant
of the form .C�2;C�1/ to .�1;0.0/; �2;0.0//. In fact, we have the following proposition,
which is a simple corollary of Lemma 6.4 given in Section 6.

Proposition 2.5. Let �1, �2, h1, h2, c0, M0 be positive constants and m an integer such
thatm> n

2
C 1. There exists a positive constant C such that for any initial data .�.0/;�.0//

and bottom topography b satisfying´
k�.0/kHm C kbkW m;1 �M0; kr�.0/kHm�1 <1;

h1 � �.0/.x/ � c0; h2 C �.0/.x/ � b.x/ � c0 for x 2 Rn;

the compatibility conditions (2.18)–(2.20) and relation (2.23) determine the initial data
.�1.0/; �2.0// for the Kakinuma model, uniquely up to an additive constant of the form
.C�2;C�1/ to .�1;0.0/; �2;0.0//. Moreover, we have

k.r�1;0.0/;r�2;0.0//kHm�1 C k.�01.0/;�
0
2.0//kHm � Ckr�.0/kHm�1 :

Therefore, given the initial data .�.0/; �.0//, we infer initial data for the Kakinuma
model, which satisfy the compatibility conditions (2.18)–(2.20).

3. Linear dispersion relation

In this section we consider the linearized equations of the Kakinuma model (2.14)–(2.16)
around the flow .�;�1;�2/D .0;0;0/ in the case of a flat bottom. The linearized equations
have the form8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

@t� �

NX
jD0

� h
2jC1
1

2.i C j /C 1
��1;j

�
4ij

2.i C j / � 1
h
2j�1
1 �1;j

�
D 0 for i D 0; 1; : : : ; N ;

@t� C

N�X
jD0

� h
pjC1

2

pi C pj C 1
��2;j

�
pipj

pi C pj � 1
h
pj�1

2 �2;j

�
D 0 for i D 0; 1; : : : ; N �;

�1

� NX
jD0

h
2j
1 @t�1;j C g�

�

��2

� N�X
jD0

h
pj
2 @t�2;j C g�

�
D 0:

(3.1)
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Putting  1 D .�1;0; h21�1;1; : : : ; h
2N
1 �1;N /

T and  2 D .�2;0; h
p1
1 �2;1; : : : ; h

pN�
1 �2;N�/

T,
we can rewrite the above equations in the simple matrix form0@ 0 ��11

T �21
T

h11 O O

�h21 O O

1A @t
0@ �

 1

 2

1A
C

0@.�2 � �1/g 0T 0T

0 �h21A1;0�C A1;1 O

0 O �h22A2;0�C A2;1

1A0@ �

 1

 2

1A D 0;
where 1 D .1; : : : ; 1/T and matrices Ak;0 and Ak;1 for k D 1; 2 are given by

A1;0 D
� 1

2.i C j /C 1

�
0�i;j�N

; A1;1 D
� 4ij

2.i C j / � 1

�
0�i;j�N

;

A2;0 D
� 1

pi C pj C 1

�
0�i;j�N�

; A2;1 D
� pipj

pi C pj � 1

�
0�i;j�N�

:

Therefore, the linear dispersion relation is given by

det

0@.�2 � �1/g i�1!1T �i�2!1T

�ih1!1 A1.h1�/ O

ih2!1 O A2.h2�/

1A D 0;
where � 2Rn is the wave vector, ! 2C is the angular frequency, and Ak.�/D j�j

2Ak;0C

Ak;1 for k D 1; 2. We can expand this dispersion relation as�
�1h1 det zA1.h1�/ det A2.h2�/C �2h2 det zA2.h2�/ det A1.h1�/

�
!2

� .�2 � �1/g det A1.h1�/ det A2.h2�/ D 0: (3.2)

Here and in what follows, we use the notation

zA D

�
0 1T

�1 A

�
for a matrix A. Concerning the determinants appearing in the above dispersion relation,
we have the following proposition, which was proved by Nemoto and Iguchi [28].

Proposition 3.1. (1) For any � 2Rn n ¹0º, the symmetric matrices A1.�/ and A2.�/

are positive.

(2) There exists c0 > 0 such that for any � 2 Rn we have det zAk.�/ � c0 for k D 1; 2.

(3) j�j�2 det A1.�/ and j�j�2 det A2.�/ are polynomials in j�j2 of degree N and N �

and their leading coefficients are detA1;0 and detA2;0, respectively.

(4) det zA1.�/ and det zA2.�/ are polynomials in j�j2 of degree N and N � and their
leading coefficients are det zA1;0 and det zA2;0, respectively.
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Thanks to this proposition and the dispersion relation (3.2), the linearized system (3.1)
is classified into the dispersive system in the case N C N � > 0, so that the Kakinuma
model (2.14)–(2.16) is a nonlinear dispersive system of equations.

Therefore, we can define the phase speed cK.�/ of the plane wave solution to (3.1)
related to the wave vector � 2 Rn by

cK.�/
2
D

.�2 � �1/gj�j
�2 det A1.h1�/ det A2.h2�/

�1h1 det zA1.h1�/ det A2.h2�/C �2h2 det zA2.h2�/ det A1.h1�/
: (3.3)

It follows from Proposition 3.1 that

lim
h1j�j;h2j�j!1

cK.�/
2
D

.�2 � �1/gh1h2 detA1;0 detA2;0
�1h2 det zA1;0 detA2;0 C �2h1 det zA2;0 detA1;0

> 0;

which is not consistent with the linear interfacial gravity waves

lim
h1j�j;h2j�j!1

cIW.�/
2
D 0:

However, as shown by the following theorems, the Kakinuma model gives a very precise
approximation in the shallow water regime h1j�j; h2j�j � 1 under an appropriate choice
of the indices pi for i D 0; 1; : : : ; N �.

Theorem 3.2. If we choose N � D N and pi D 2i for i D 0; 1; : : : ;N � or N � D 2N and
pi D i for i D 0; 1; : : : ; N �, then for any � 2 Rn and any h1; h2; g > 0 we haveˇ̌̌�cIW.�/

cSW

�2
�

�cK.�/

cSW

�2 ˇ̌̌
� C.h1j�j C h2j�j/

4NC2;

where C is a positive constant depending only on N .

Proof. The phase speeds cIW.�/ and cK.�/ can be written in the form

�cIW.�/

cSW

�2
D

tanh.h1j�j/
h1j�j

tanh.h2j�j/
h2j�j

�
tanh.h1j�j/
h1j�j

C .1 � �/
tanh.h2j�j/
h2j�j

and �cK.�/

cSW

�2
D

det A1.h1�/

.h1j�j/2 det zA1.h1�/

det A2.h2�/

.h2j�j/2 det zA2.h2�/

�
det A1.h1�/

.h1j�j/2 det zA1.h1�/
C .1 � �/

det A2.h2�/

.h2j�j/2 det zA2.h2�/

;

respectively, where � D �2h1
�2h1C�1h2

2 .0; 1/. It has been shown by Nemoto and Iguchi [28]
that ˇ̌̌ tanh j�j

j�j
�

det Ak.�/

j�j2 det zAk.�/

ˇ̌̌
� C j�j4NC2

for k D 1; 2, so that we obtain the desired inequality.
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4. Stability condition

In this section we will derive the stability condition (1.8) by analyzing a system of lin-
earized equations to the Kakinuma model (2.14)–(2.16). We linearize the Kakinuma model
around an arbitrary flow .�;�1;�2/ and denote the variation by . P�; P�1; P�2/. After neglect-
ing lower-order terms, the linearized equations have the form8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

@t P� C u1 � r P� �

NX
jD0

1

2.i C j /C 1
H
2jC1
1 � P�1;j D 0 for i D 0; 1; : : : ; N ;

@t P� C u2 � r P� C

N�X
jD0

1

pi C pj C 1
H
pjC1

2 � P�2;j D 0 for i D 0; 1; : : : ; N �;

�1

NX
jD0

H
2j
1 .@t P�1;j C u1 � r P�1;j /

��2

N�X
jD0

H
pj
2 .@t P�2;j C u2 � r P�2;j / � a P� D 0;

(4.1)

where H1 D h1 � � and H2 D h2 C � � b are the thicknesses of the layers,8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
u1 D .rˆ

app
1 /jzD� D

NX
jD0

H
2j
1 r�1;j ;

u2 D .rˆ
app
2 /jzD� D

N�X
jD0

.H
pj
2 r�2;j � pjH

pj�1

2 �2;jrb/

(4.2)

are approximate horizontal velocities in the upper and the lower layers at the interface,8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:
w1 D .@zˆ

app
1 /jzD� D �

NX
jD0

2jH
2j�1
1 �1;j ;

w2 D .@zˆ
app
2 /jzD� D

N�X
jD0

pjH
pj�1

2 �2;j

(4.3)

are approximate vertical velocities in the upper and the lower layers at the interface, and

a D �2

� N�X
jD0

pjH
pj�1

2 .@t�2;j C u2 � r�2;j /

C .w2 � u2 � rb/

N�X
jD0

pj .pj � 1/H
pj�2

2 �2;j C g

�
C �1

� NX
jD0

2jH
2j�1
1 .@t�1;j C u1 � r�1;j / � w1

NX
jD0

2j.2j � 1/H 2.j�1/�1;j � g

�
D �.@z.P

app
2 � P

app
1 //jzD� : (4.4)
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Here,P app
1 andP app

2 are approximate pressures in the upper and the lower layers calculated
from Bernoulli’s equations (2.3)–(2.4), that is,

P
app
k
D ��k

�
@tˆ

app
k
C
1

2
.jrˆ

app
k
j
2
C .@zˆ

app
k
/2/C gz

�
for k D 1; 2. Now we freeze the coefficients in the linearized equations (4.1) and put´

P 1 D . P�1;0;H
2
1
P�1;1; : : : ;H

2N
1
P�1;N /

T;

P 2 D . P�2;0;H
p1
2
P�2;1; : : : ;H

pN�
2
P�2;N�/

T:
(4.5)

Then (4.1) can be written in the form0@ 0 ��11
T �21

T

H11 O O

�H21 O O

1A @t
0@ P�P 1
P 2

1A
C

0@ a ��11
T.u1 � r/ �21

T.u2 � r/

H11.u1 � r/ �H 2
1A1;0� O

�H21.u2 � r/ O �H 2
2A2;0�

1A0@ P�P 1
P 2

1A D 0:
Therefore, the linear dispersion relation for (4.1) is given by

det

0@ a i�1.! � u1 � �/1T �i�2.! � u2 � �/1T

�iH1.! � u1 � �/1 .H1j�j/
2A1;0 O

iH2.! � u2 � �/1 O .H2j�j/
2A2;0

1A D 0;
where � 2 Rn is the wave vector and ! 2 C the angular frequency. The left-hand side can
be expanded as

LHS D det

0@a i�1.! � u1 � �/1T �i�2.! � u2 � �/1T

0 .H1j�j/
2A1;0 O

0 O .H2j�j/
2A2;0

1A
C det

0@ 0 i�1.! � u1 � �/1T �i�2.! � u2 � �/1T

�iH1.! � u1 � �/1 .H1j�j/
2A1;0 O

iH2.! � u2 � �/1 O .H2j�j/
2A2;0

1A
D a det..H1j�j/2A1;0/ det..H2j�j/2A2;0/

C det
�

0 i�1.! � u1 � �/1T

�iH1.! � u1 � �/1 .H1j�j/
2A1;0

�
det..H2j�j/2A2;0/

C det
�

0 �i�2.! � u2 � �/1T

iH2.! � u2 � �/1 .H2j�j/
2A2;0

�
det

 
.H1j�j/

2A1;0

!
D H 2NC1

1 H 2N�C1
2 j�j2.NCN

�C1/
®
aH1H2j�j

2 detA1;0 detA2;0

� �1H2.! � u1 � �/
2 det zA1;0 detA2;0

� �2H1.! � u2 � �/
2 det zA2;0 detA1;0

¯
;
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so that the linear dispersion relation is given simply as

�1

H1˛1
.! � u1 � �/

2
C

�2

H2˛2
.! � u2 � �/

2
� aj�j2 D 0; (4.6)

where

˛k D
detAk;0
det zAk;0

; zAk;0 D

�
0 1T

�1 Ak;0

�
(4.7)

for k D 1; 2. The discriminant of this quadratic equation in ! is� �1

H1˛1
u1 � � C

�2

H2˛2
u2 � �

�2
�

� �1

H1˛1
C

�2

H2˛2

�� �1

H1˛1
.u1 � �/

2
C

�2

H2˛2
.u2 � �/

2
� aj�j2

�
D

� �1

H1˛1
C

�2

H2˛2

��
aj�j2 �

�1�2

�1H2˛2 C �2H1˛1

�
.u2 � u1/ � �

�2�
:

Therefore, the solutions ! to the dispersion relation (4.6) are real for any wave vector
� 2 Rn if and only if

a �
�1�2

�1H2˛2 C �2H1˛1
ju2 � u1j

2
� 0:

Otherwise, the roots of the linear dispersion relation (4.6) have the form ! D !r .�/ ˙

i!i .�/ satisfying !i .�/ ! C1 as � D .u2 � u1/� and � ! C1, which leads to an
instability of the problem. These considerations leads us to the stability condition

a �
�1�2

�1H2˛2 C �2H1˛1
ju2 � u1j

2
� c0 > 0; (4.8)

which is equivalent to

�.@z.P
app
2 � P

app
1 //jzD� �

�1�2

�1H2˛2 C �2H1˛1
.jrˆ

app
2 � rˆ

app
1 j

2/jzD� � c0:

Here, we note that ˛1 and ˛2 are positive constants depending only onN and ¹p0; p1; : : : ;
pN�º and converge to 0 asN;N �!1. Therefore, asN andN � go to infinity the domain
of stability diminishes.

5. Analysis of the linearized system

In this section we still analyze the system of linearized equations (4.1) with frozen coeffi-
cients. We first derive an energy estimate for solutions to the linearized system by defin-
ing a suitable energy function, and then transform the linearized system into a standard
symmetric form, for which the hypersurface t D 0 in the space-time Rn � R is nonchar-
acteristic. These results motivate the subsequent analysis on the nonlinear equations.



V. Duchêne and T. Iguchi 276

5.1. Energy estimate

With the notation (4.5), the linearized system (4.1) with frozen coefficients can be written
in a symmetric form as

A1@t PU CA0 PU D 0; (5.1)

where PU D . P�; P 1; P 2/T and

A1 D

0@ 0 ��11
T �21

T

�11 O O

��21 O O

1A ;
A0 D

0@ a ��11
T.u1 � r/ �21

T.u2 � r/

�11.u1 � r/ ��1H1A1;0� O

��21.u2 � r/ O ��2H2A2;0�

1A :
We note that A0 is symmetric in L2.Rn/ whereas A1 is skew-symmetric. Therefore, by
taking L2-inner product of (5.1) with @t PU we have

d
dt
. PU ;A0 PU /L2 D 0

for any regular solution PU to (5.1), so that . PU ;A0 PU /L2 would give a mathematical energy
function to the linearized system (5.1) if we show the positivity of the symmetric operator
A0 in L2.Rn/. We proceed to check the positivity. For simplicity, we consider first the
case N D N � D 0 so that A1;0 D A2;0 D 1. Then we see that

. PU ;A0 PU /L2 D

Z
Rn

0@ P�

r P�1;0
r P�2;0

1A �0@ a ��1u
T
1 �2u

T
2

��1u1 �1H1Id O

�2u2 O �2H2Id

1A0@ P�

r P�1;0
r P�2;0

1A dx:

Therefore, it is sufficient to analyze the positivity of this .2nC 1/� .2nC 1/matrix. The
characteristic polynomial of this matrix is given by

0 D det

0@ � � a �1u
T
1 ��2u

T
2

�1u1 .� � �1H1/Id O

��2u2 O .� � �2H2/Id

1A
D .� � a/.� � �1H1/

n.� � �2H2/
n

� �21ju1j
2.� � �1H1/

n�1.� � �2H2/
n
� �22ju2j

2.� � �1H1/
n.� � �2H2/

n�1

D .� � �1H1/
n�1.� � �2H2/

n�1
®
.� � a/.� � �1H1/.� � �2H2/

� �21ju1j
2.� � �2H2/ � �

2
2ju2j

2.� � �1H1/
¯
:

Therefore, the eigenvalues of the matrix are �1H1 and �2H2 of multiplicity n� 1 and �1,
�2, �3, which are the roots of the polynomial

.� � a/.� � �1H1/.� � �2H2/ � �
2
1ju1j

2.� � �2H2/ � �
2
2ju2j

2.� � �1H1/ D 0:
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Here, we see that

�1�2�3 D �1�2.aH1H2 � �1H2ju1j
2
� �2H1ju2j

2/;

which is not necessarily positive even if u1 D u2. Therefore, for the positivity of the
symmetric operator A0 we need a smallness of the horizontal velocities u1 and u2. Such a
condition is, of course, a stronger restriction than the stability condition (4.8). This means
that . PU ;A0 PU /L2 is not an optimal energy function and we proceed to find another one.

We are now considering the linearized system (5.1) with frozen coefficients, that is,8̂̂<̂
:̂
H11.@t P� C u1 � r P�/ �H

2
1A1;0�

P 1 D 0;

H21.@t P� C u2 � r P�/CH
2
2A2;0�

P 2 D 0;

�11 � .@t P 1 C .u1 � r/ P 1/ � �21 � .@t P 2 C .u2 � r/ P 2/ � a P� D 0:

(5.2)

Applying � to the last equation in (5.2) we have

�1.A1;0/
�11 � .@t C u1 � r/A1;0� P 1

� �2.A2;0/
�11 � .@t C u2 � r/A2;0� P 2 � a� P� D 0: (5.3)

Plugging the first and second equations in (5.2) into (5.3) to remove P 1 and P 2, we obtain��1.A1;0/�11 � 1
H1

.@t C u1 � r/
2
C
�2.A2;0/

�11 � 1

H2
.@t C u2 � r/

2
�
P� � a� P� D 0:

In view of the relation following from Cramer’s rule

.Ak;0/
�11 � 1 D

det zAk;0
detAk;0

D
1

˛k

for k D 1; 2, the above equation for P� can be written as� �1

H1˛1
C

�2

H2˛2

�
.@t C u � r/

2 P�

�

�
a� �

�1�2

�1H2˛2 C �2H1˛1
..u2 � u1/ � r/

2
�
P� D 0; (5.4)

where u is an averaged horizontal velocity on the interface defined by

u D
�1H2˛2

�1H2˛2 C �2H1˛1
u1 C

�2H1˛1

�1H2˛2 C �2H1˛1
u2: (5.5)

Taking (5.4) into account, we consider the constant coefficient second-order partial
differential equation

c1.@t C u � r/
2 P� � .c2� � .v � r/

2/ P� D 0; (5.6)
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where c1 and c2 are positive constants. By taking the L2-inner product of (5.6) with .@t C
u � r/ P� and using integration by parts, we see that

d
dt
.c1k@t P� C u � r P�k

2
L2
C c2kr P�k

2
L2
� kv � r P�k2

L2
/ D 0

for any regular solution P� to (5.6). Here, we have

c2kr P�k
2
L2
� kv � r P�k2

L2
D .r P�; .c2Id � v˝ v/r P�/L2 :

The matrix c2Id� v˝ v is positive if and only if c2 � jvj2 > 0. Under this assumption, we
obtain an energy estimate for the solutions to (5.6). Applying this consideration to (5.4),
we see that the positivity condition is exactly the same as the stability condition (4.8),
under which we can obtain an energy estimate for (5.4).

In [3] (see also [2]), Bresch and Renardy rewrote the nonlinear shallow water equa-
tions (2.22), corresponding to the case N D N � D 0, as a scalar second-order partial
differential equation analogous to (5.4), and then used the abstract theory of Hughes,
Kato, and Marsden [11] to obtain the local well-posedness of the initial value problem
under sharp hyperbolicity conditions, as mentioned in Remark 2.3. Our strategy is differ-
ent as we rely on the symmetrization of the system and parabolic regularization to prove
Theorem 2.1.

In view of (5.4) and the subsequent observation we rewrite the linearized system (5.1)
with frozen coefficients in the form

A1.@t C u � r/ PU CAmod
0
PU D 0;

where

Amod
0 D A0 �A1.u � r/

D

0BB@
a �1�2H1˛1

�1H2˛2C�2H1˛1
1T.v � r/ �1�2H2˛2

�1H2˛2C�2H1˛1
1T.v � r/

�
�1�2H1˛1

�1H2˛2C�2H1˛1
1.v � r/ ��1H1A1;0� O

�
�1�2H2˛2

�1H2˛2C�2H1˛1
1.v � r/ O ��2H2A2;0�

1CCA
and v D u2 � u1. By taking the L2-inner product of this equation with .@t C u � r/ PU and
using integration by parts, we see that

d
dt
.Amod

0
PU ; PU /L2 D 0

for any regular solution to (5.1). We proceed to check the positivity of the symmetric
operator Amod

0 in L2.Rn/ under the stability condition (4.8). We see that

.Amod
0
PU; PU /L2 D .a

P�; P�/L2C

nX
lD1

®
.�1H1A1;0@l P 1; @l P 1/L2C.�2H2A2;0@l P 2; @l P 2/L2

¯
C 2

� �1�2H1˛1

�1H2˛2 C �2H1˛1
.v � r/.1 � P 1/; P�

�
L2

C 2
� �1�2H2˛2

�1H2˛2 C �2H1˛1
.v � r/.1 � P 2/; P�

�
L2
:
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On the other hand, the matrix zAk;0 is nonsingular and its inverse matrix can be written as

. zAk;0/
�1
D

�
0 1T

�1 Ak;0

��1
D

�
qk;0 .qk;0/

T

�qk;0 Qk;0

�
;

with a symmetric matrixQk;0 for k D 1; 2. Moreover, qk;0 D
detAk;0
det zAk;0

D ˛k is positive and

Qk;0 is nonnegative. In fact, for any  , putting
�
�
�

�
D . zAk;0/

�1
�
0
 

�
, we have

Qk;0 � D

�
qk;0 .qk;0/

T

�qk;0 Qk;0

��
0

 

�
�

�
0

 

�
D

�
�

�

�
� zAk;0

�
�

�

�
D � � Ak;0� � 0:

We note that Qk;0 is not positive because it has a zero eigenvalue with an eigenvector 1.
Now, for any �, putting � D 1 � � and  D Ak;0�, we have zAk;0

�
0
�

�
D
� �
 

�
so that

Ak;0� � � D zAk;0

�
0

�

�
�

�
0

�

�
D

�
�

 

�
� . zAk;0/

�1

�
�

 

�
D qk;0�

2
CQk;0 � ;

from which we deduce the identity

Ak;0� � � D ˛k.1 � �/
2
CQk;0Ak;0� � Ak;0�: (5.7)

By using decomposition (5.7) we see that

.Amod
0
PU ; PU /L2 D

nX
lD1

®
.�1H1Q1;0A1;0@l P 1; A1;0@l P 1/L2

C .�2H2Q2;0A2;0@l P 2; A2;0@l P 2/L2
¯

C

°
.a P�; P�/L2 C .�1H1˛1r.1 � P 1/;r.1 � P 1//L2

C .�2H2˛2r.1 � P 2/;r.1 � P 2//L2

C

� 2�1�2H1˛1

�1H2˛2 C �2H1˛1
.v � r/.1 � P 1/; P�

�
L2

C

� 2�1�2H2˛2

�1H2˛2 C �2H1˛1
.v � r/.1 � P 2/; P�

�
L2

±
DW I1 C I2:

Here, I1 � 0 since Q1;0 and Q2;0 are nonnegative, and

I2 �

Z
Rn

°
a P�2 C �1H1˛1jr.1 � P 1/j

2
C �2H2˛2jr.1 � P 2/j

2

�
2�1�2jvj

�1H2˛2 C �2H1˛1
.H1˛1jr.1 � P 1/j CH2˛2jr.1 � P 2/j/j P�j

±
dx;

so that it is sufficient to show the positivity of the matrix

A0 WD

0BB@
a �

�1�2H1˛1
�1H2˛2C�2H1˛1

jvj � �1�2H2˛2
�1H2˛2C�2H1˛1

jvj

�
�1�2H1˛1

�1H2˛2C�2H1˛1
jvj �1H1˛1 0

�
�1�2H2˛2

�1H2˛2C�2H1˛1
jvj 0 �2H2˛2

1CCA :
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From Sylvester’s criterion and since �kHk˛k is positive for k D 1; 2, the positivity of the
matrix A0 is equivalent to

det A0 D a.�1H1˛1/.�2H2˛2/

� �1H1˛1

� �1�2H2˛2

�1H2˛2 C �2H1˛1
jvj
�2
� �2H2˛2

� �1�2H1˛1

�1H2˛2 C �2H1˛1
jvj
�2

D .�1H1˛1/.�2H2˛2/
�
a �

�1�2

�1H2˛2 C �2H1˛1
jvj2

�
> 0:

Since v D u2 � u1, under the stability condition (4.8) we have the positivity of A0, so
that in view of (5.7) and the positivity of the matrix Ak;0 for k D 1; 2 we finally obtain the
equivalence

.Amod
0
PU ; PU /L2 ' k

P�k2
L2
C kr P�1k

2
L2
C kr P�2k

2
L2
:

Therefore, .Amod
0
PU ; PU /L2 would provide a useful mathematical energy function.

5.2. Symmetrization of the linearized equations

We still consider the linearized equations (4.1) with frozen coefficients. However, for later
use we define P�1 and P�2 in place of (4.5) by´

P�1 D . P�1;0; P�1;1; : : : ; P�1;N /
T;

P�2 D . P�2;0; P�2;1; : : : ; P�2;N�/
T:

Then the linearized equations have the form8̂̂̂̂
<̂
ˆ̂̂:
l1.H1/.@t P� C u1 � r P�/ � A1.H1/� P�1 D 0;

�l2.H2/.@t P� C u2 � r P�/ � A2.H2/� P�2 D 0;

��1l1.H1/ � .@t P�1 C .u1 � r/ P�1/

C�2l2.H2/ � .@t P�2 C .u2 � r/ P�2/C a P� D 0;

(5.8)

where

l1.H1/ D .1;H
2
1 ;H

4
1 ; : : : ;H

2N
1 /T; l2.H2/ D .1;H

p1
2 ;H

p2
2 ; : : : ;H

pN�
2 /T; (5.9)

and 8̂̂<̂
:̂
A1.H1/ D

� 1

2.i C j /C 1
H
2.iCj /C1
1

�
0�i;j�N

;

A2.H2/ D
� 1

pi C pj C 1
H
piCpjC1

2

�
0�i;j�N�

:

(5.10)

In the following, for simplicity we abbreviate lk.Hk/ and Ak.Hk/ as lk and Ak for k D
1; 2. We are going to show that the system can be transformed into a positive symmetric
system of the form

Amod
0 @t PU CA PU D 0; (5.11)
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where PU D . P�; P�1; P�2/T, Amod
0 is the positive operator defined in the previous section with

slight modification, and A is a skew-symmetric operator in L2.Rn/. As before, we put
v D u2 � u1 and define u by (5.5). Furthermore, we introduce the notation

�1 D
�2H1˛1

�1H2˛2 C �2H1˛1
; �2 D

�1H2˛2

�1H2˛2 C �2H1˛1
; (5.12)

where ˛1 and ˛2 are positive constants defined by (4.7). Then we have u D �2u1 C �1u2
and �1 C �2 D 1. We can also express u1 and u2 in terms of u and v as

u1 D u � �1v; u2 D uC �2v:

Applying� to the third equation in (5.8) and differentiating the first and the second equa-
tions with respect to t , we obtain0@ 0 ��1l

T
1 �2l

T
2

��1l1 �1A1 O

�2l2 O �2A2

1A0@ @2t
P�

�@t P�1
�@t P�2

1AC0@ 0

��1l1.u1 � r/

�2l2.u2 � r/

1A @t P�
C

0@a ��1l
T
1 .u1 � r/ �2l

T
2 .u2 � r/

0 O O

0 O O

1A� PU D 0:
In view of this, we introduce a symmetric matrix0@q0 qT

1 qT
2

q1 Q11 Q12
q2 Q21 Q22

1A D 0@ 0 ��1l
T
1 �2l

T
2

��1l1 �1A1 O

�2l2 O �2A2

1A�1 ; (5.13)

where QT
11 D Q11, QT

22 D Q22, and QT
12 D Q21. Moreover, we have8̂̂<̂

:̂
��1l1 � q1 C �2l2 � q2 D 1; A1q1 D q0l1; A2q2 D �q0l2;

�1A1Q11 D IdC �1l1qT
1 ; �2A2Q22 D Id � �2l2qT

2 ;

A1Q12 D l1q
T
2 ; A2Q21 D �l2q

T
1

and by Cramer’s rule,

q0 D �
H1H2˛1˛2

�1H2˛2 C �2H1˛1
; l1 � q1 D

�q0

H1˛1
D �

�2

�1
; l2 � q2 D

q0

H2˛2
D
�1

�2
:

Using this notation we have�
��1A1�@t P�1
��2A2�@t P�2

�
C

�
��1A1 O

O ��2A2

��
q1 Q11 Q12
q2 Q21 Q22

�0@ 0

��1l1.u1 � r/

�2l2.u2 � r/

1A @t P�
C

�
��1A1 O

O ��2A2

��
q1 Q11 Q12
q2 Q21 Q22

�0@a ��1l
T
1 .u1 � r/ �2l

T
2 .u2 � r/

0 O O

0 O O

1A� PU
D 0:
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Here, we see that�
��1A1 O

O ��2A2

��
q1 Q11 Q12
q2 Q21 Q22

�0@ 0

��1l1.u1 � r/

�2l2.u2 � r/

1A D ���1�1l1
�2�2l2

�
.v � r/;

�
��1A1 O

O ��2A2

��
q1 Q11 Q12
q2 Q21 Q22

�0@a ��1l
T
1 .u1 � r/ �2l

T
2 .u2 � r/

0 O O

0 O O

1A
D q0

�
�a�1l1 �21l1l

T
1 .u1 � r/ ��1�2l1l

T
2 .u2 � r/

a�2l2 ��1�2l2l
T
1 .u1 � r/ �22l2l

T
2 .u2 � r/

�
;

so that 
��1A1�@t P�1 � �1�1l1.v � r/@t P�

��2A2�@t P�2 � �2�2l2.v � r/@t P�

!
D q0a

�
�1l1
��2l2

�
� P� C q0

�
��21l1l

T
1 .u1 � r/ �1�2l1l

T
2 .u2 � r/

�1�2l2l
T
1 .u1 � r/ ��22l2l

T
2 .u2 � r/

�
�

�
P�1
P�2

�
: (5.14)

On the other hand, taking the Euclidean inner product of the first and the second equations
in (5.8) with ��1q1 and �2q2, respectively, we obtain´

�2.@t P� C u1 � r P�/C q0�1l1 �� P�1 D 0;

�1.@t P� C u2 � r P�/ � q0�2l2 �� P�2 D 0;

which are equivalent to´
@t P� C u � r P� C q0�.�1l1 � P�1 � �2l2 � P�2/ D 0;

�1�2v � r P� � q0�.�1�1l1 � P�1 C �2�2l2 � P�2/ D 0:
(5.15)

It follows from the second equation in (5.15) that

�1�1l1 � @t P�1 C �2�2l2 � @t P�2 D q
�1
0 �1�2.v � r/�

�1@t P�:

Therefore, we obtain

a@t P� C .v � r/.�1�1l1 � @t P�1 C �2�2l2 � @t P�2/

D �a
�
.u � r/ P� C q0�.�1l1 � P�1 � �2l2 � P�2/

�
� �1�2.v � r/

2
�
q�10 .u � r/��1 P� C .�1l1 � P�1 � �2l2 � P�2/

�
: (5.16)

We proceed to symmetrize the second term in the right-hand side of (5.14):

q0

�
��21l1l

T
1 .u1 � r/ �1�2l1l

T
2 .u2 � r/

�1�2l2l
T
1 .u1 � r/ ��22l2l

T
2 .u2 � r/

�
�

�
P�1
P�2

�
D q0

�
��21l1l

T
1 �1�2l1l

T
2

�1�2l2l
T
1 ��22l2l

T
2

�
.u � r/�

�
P�1
P�2

�
C q0

�
�1�

2
1l1l

T
1 �2�1�2l1l

T
2

��1�1�2l2l
T
1 ��2�

2
2l2l

T
2

�
.v � r/�

�
P�1
P�2

�
;
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where

q0

�
�1�

2
1l1l

T
1 �2�1�2l1l

T
2

��1�1�2l2l
T
1 ��2�

2
2l2l

T
2

�
�

�
P�1
P�2

�
D

�
�1l1
��2l2

�
q0�.�1�1l1 � P�1 C �2�2l2 � P�2/

D �1�2

�
�1l1
��2l2

�
.v � r/ P�:

In the above calculation, we used the second equation in (5.15). Therefore, 
��1A1�@t P�1 � �1�1l1.v � r/@t P�

��2A2�@t P�2 � �2�2l2.v � r/@t P�

!
D q0a

�
�1l1
��2l2

�
� P� C �1�2

�
�1l1
��2l2

�
.v � r/2 P�

C q0

�
��21l1l

T
1 �1�2l1l

T
2

�1�2l2l
T
1 ��22l2l

T
2

�
.u � r/�

�
P�1
P�2

�
:

Summarizing the above calculations, if we define the symmetrizer Amod
0 by

Amod
0 D

0@ a �1�1l
T
1 .v � r/ �2�2l

T
2 .v � r/

��1�1l1.v � r/ ��1A1� O

��2�2l2.v � r/ O ��2A2�

1A ; (5.17)

then we obtain

Amod
0 @t PU

D

0B@a@t P� C .v � r/.�1�1l1 � @t P�1 C �2�2l2 � @t P�2/��1�1l1.v � r/@t P� � �1A1�@t P�1

��2�2l2.v � r/@t P� � �2A2�@t P�2

1CA
D a

0@ �u � r �q0�1l
T
1� q0�2l

T
2�

q0�1l1� O O

�q0�2l2� O O

1A PU
C

0@�q�10 �1�2.v � r/
2.u � r/��1 ��1�2�1l

T
1 .v � r/

2 �1�2�2l
T
2 .v � r/

2

�1�2�1l1.v � r/
2 �q0�

2
1l1l

T
1 .u � r/� q0�1�2l1l

T
2 .u � r/�

��1�2�2l2.v � r/
2 q0�1�2l2l

T
1 .u � r/� �q0�

2
2l2l

T
2 .u � r/�

1A PU:
Therefore, PU satisfies the symmetric system (5.11) with a skew-symmetric operator A

defined by

A D a

0@ u � r q0�1l
T
1� �q0�2l

T
2�

�q0�1l1� O O

q0�2l2� O O

1A
C

0@q�10 �1�2.v � r/
2.u � r/��1 �1�2�1l

T
1 .v � r/

2 ��1�2�2l
T
2 .v � r/

2

��1�2�1l1.v � r/
2 q0�

2
1l1l

T
1 .u � r/� �q0�1�2l1l

T
2 .u � r/�

�1�2�2l2.v � r/
2 �q0�1�2l2l

T
1 .u � r/� q0�

2
2l2l

T
2 .u � r/�

1A :
For the positive symmetric system (5.11), we can apply the standard theory for partial
differential equations to show its well-posedness of the initial value problem. Moreover,
these considerations help us to analyze the nonlinear problem (2.14)–(2.16).
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6. Analysis of related operators

We go back to consider the nonlinear problem, that is, the Kakinuma model (2.14)–(2.16).
We introduce the following second-order differential operators L1;ij D L1;ij .H1/ (i; j D
0; 1; : : : ; N ) and L2;ij D L2;ij .H2; b/ (i; j D 0; 1; : : : ; N �):

L1;ij'1;j D �r �
� 1

2.iCj /C1
H
2.iCj /C1
1 r'1;j

�
C

4ij

2.iCj /�1
H
2.iCj /�1
1 '1;j ; (6.1)

L2;ij'2;j D �r �
� 1

pi C pj C 1
H
piCpjC1

2 r'2;j �
pj

pi C pj
H
piCpj
2 '2;jrb

�
�

pi

pi C pj
H
piCpj
2 rb � r'2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/'2;j : (6.2)

Then we have .Lk;ij /� D Lk;j i for k D 1; 2, where .Lk;ij /� is the adjoint operator of
Lk;ij in L2.Rn/. We also use uk and wk for k D 1; 2 defined by (4.2) and (4.3), which
represent approximately the horizontal and the vertical components of the velocity field on
the interface from the water region�k.t/, respectively. Then the Kakinuma model (2.14)–
(2.16) can be written simply as8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

H 2i
1 @t� C

NX
jD0

L1;ij .H1/�1;j D 0 for i D 0; 1; : : : ; N ;

�H
pi
2 @t� C

N�X
jD0

L2;ij .H2; b/�2;j D 0 for i D 0; 1; : : : ; N �;

��1

² NX
jD0

H
2j
1 @t�1;j C g� C

1

2
.ju1j

2
C w21/

³

C�2

²N�X
jD0

H
pj
2 @t�2;j C g� C

1

2
.ju2j

2
C w22/

³
D 0:

Moreover, introducing �1 D .�1;0; �1;1; : : : ; �1;N /T, �2 D .�2;0; �2;1; : : : ; �2;N�/T, and´
l1.H1/ D .1;H

2
1 ;H

4
1 ; : : : ;H

2N
1 /T; L1.H1/ D .L1;ij .H1//0�i;j�N ;

l2.H2/ D .1;H
p1
2 ;H

p2
2 ; : : : ;H

pN�
2 /T; L2.H2; b/ D .L2;ij .H2; b//0�i;j�N� ;

(6.3)

we can write the Kakinuma model (2.14)–(2.16) more simply as8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

l1.H1/@t� C L1.H1/�1 D 0;

�l2.H2/@t� C L2.H2; b/�2 D 0;

��1

°
l1.H1/ � @t�1 C g� C

1

2
.ju1j

2
C w21/

±
C�2

°
l2.H2/ � @t�2 C g� C

1

2
.ju2j

2
C w22/

±
D 0:

(6.4)
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By eliminating @t� from the Kakinuma model, we obtainN CN �C 1 scalar relations8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

NX
jD0

.L1;ij .H1/�1;j �H
2i
1 L1;0j .H1/�1;j / D 0 for i D 1; 2; : : : ; N ;

N�X
jD0

.L2;ij .H2; b/�2;j �H
pi
2 L2;0j .H2; b/�2;j / D 0 for i D 1; 2; : : : ; N �;

NX
jD0

L1;0j .H1/�1;j C

N�X
jD0

L2;0j .H2; b/�2;j D 0:

These are compatibility conditions for the existence of the solution to the Kakinuma
model, and exactly the same as the compatibility conditions (2.18)–(2.20). Introducing
further linear operators L1;i D L1;i .H1/ (i D 0; 1; : : : ; N ) acting on '1 D .'1;0; : : : ;

'1;N /
T and L2;i D L2;i .H2; b/ (i D 0; 1; : : : ; N �) acting on '2 D .'2;0; : : : ; '2;N�/T as8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

L1;0.H1/'1 D

NX
jD0

L1;0j .H1/'1;j ;

L1;i .H1/'1

D

NX
jD0

.L1;ij .H1/'1;j �H
2i
1 L1;0j .H1/'1;j / for i D 1; 2; : : : ; N ;

L2;0.H2; b/'2 D

N�X
jD0

L2;0j .H2; b/'2;j ;

L2;i .H2; b/'2

D

N�X
jD0

.L2;ij .H2; b/'2;j �H
pi
2 L2;0j .H2; b/'2;j / for i D 1; 2; : : : ; N �;

(6.5)

the compatibility conditions can be written simply as8̂̂<̂
:̂

L1;i .H1/�1 D 0 for i D 1; 2; : : : ; N ;

L2;i .H2; b/�2 D 0 for i D 1; 2; : : : ; N �;

L1;0.H1/�1 CL2;0.H2; b/�2 D 0:

(6.6)

We proceed to derive evolution equations for �1 and �2. To this end, we differentiate
the above compatibility conditions with respect to t and use equations of the Kakinuma
model to eliminate @t�. Then we obtain8̂̂<̂

:̂
L1;i .H1/@t�1 D F1;i for i D 1; 2; : : : ; N ;

L2;i .H2; b/@t�2 D F2;i for i D 1; 2; : : : ; N �;

L1;0.H1/@t�1 CL2;0.H2; b/@t�2 D F3;

(6.7)
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where 8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

F1;i D �
@L1;i

@H1
.H1/ŒL1;0.H1/�1��1 for i D 1; 2; : : : ; N ;

F2;i D �
@L2;i

@H2
.H2; b/ŒL2;0.H2; b/�2��2 for i D 1; 2; : : : ; N �;

F3 D �
@L1;0

@H1
.H1/ŒL1;0.H1/�1��1

�
@L2;0

@H2
.H2; b/ŒL2;0.H2; b/�2��2:

Here, we note that F3 can be written in divergence form as

F3 D r �

²
.L1;0.H1/�1/

NX
jD0

H
2j
1 r�1;j C .L2;0.H2; b/�2/

N�X
jD0

H
pj
2 r�2;j

³
:

On the other hand, the last equation in the Kakinuma model can be written as

��1l1.H1/ � @t�1 C �2l2.H2/ � @t�2 D F4; (6.8)

where
F4 D �1

°
g� C

1

2
.ju1j

2
C w21/

±
� �2

°
g� C

1

2
.ju2j

2
C w22/

±
:

In view of these evolution equations (6.7)–(6.8) for �1 and �2, we will consider the fol-
lowing equations for '1 and '2:8̂̂̂̂

<̂
ˆ̂̂:

L1;i .H1/'1 D f1;i for i D 1; 2; : : : ; N ;

L2;i .H2; b/'2 D f2;i for i D 1; 2; : : : ; N �;

L1;0.H1/'1 CL2;0.H2; b/'2 D r � f3;

��1l1.H1/ � '1 C �2l2.H2/ � '2 D f4:

(6.9)

In the following we will use the notation '01 D .'1;1; : : : ; '1;N /
T and '02 D .'2;1; : : : ;

'2;N�/
T, and we put f 01 D .f1;1; : : : ; f1;N /

T and f 02 D .f2;1; : : : ; f2;N�/
T.

Lemma 6.1. Let c0 and c1 be positive constants. There exists a positive constant C D
C.c0; c1/ depending only on c0 and c1 such that for anyH1;H2;rb 2L1.Rn/ satisfying
H1.x/;H2.x/ � c0 and jrb.x/j � c1, any regular solution .'1;'2/ to (6.9) satisfies

�1.kr'1;0k
2
L2
C k'01k

2
H1/C �2.kr'2;0k

2
L2
C k'02k

2
H1/

� C

�
�

NX
jD0

�
rf4;

1

2j C 1
H
2jC1
1 r'1;j

�
L2

C �1.f
0
1;'
0
1/L2 C �2.f

0
2;'
0
2/L2 C �2.r � f3; l2.H2/ � '2/L2

�
:
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Proof. We introduce a dummy variable � as

� D �L1;0.H1/'1:

Then we can rewrite the equations in (6.9) as8̂̂<̂
:̂
�l1.H1/C L1.H1/'1 D f1 D .0; f1;1; : : : ; f1;N /

T;

��l2.H2/C L2.H2; b/'2 D f2 D .0; f2;1; : : : ; f2;N�/
T C .r � f3/l2.H2/;

��1l1.H1/ � '1 C �2l2.H2/ � '2 D f4;

that is, 0@ 0 ��1l1.H1/
T �2l2.H2/

T

�1l1.H1/ �1L1.H1/ O

��2l2.H2/ O �2L2.H2; b/

1A0@ �

'1

'2

1A D 0@ f4
�1f1
�2f2

1A :
By taking the L2-inner product of this equation with .�;'1;'2/T, we see that

�1.L1.H1/'1;'1/L2 C �2.L2.H2; b/'2;'2/L2

D .f4; �/L2 C �1.f1;'1/L2 C �2.f2;'2/L2

D �

NX
jD0

�
rf4;

1

2j C 1
H
2jC1
1 r'1;j

�
L2

C �1.f
0
1;'
0
1/L2 C �2.f

0
2;'
0
2/L2 C �2.r � f3; l2.H2/ � '2/L2 :

Here, by direct calculation we have

.L1.H1/'1;'1/L2 D

NX
i;jD0

.L1;ij .H1/'1;j ; '1;i /L2

D

Z
Rn

dx
Z H1

0

²ˇ̌̌̌ NX
iD0

.z2ir'1;i /

ˇ̌̌̌2
C

� NX
iD0

2iz2i�1'1;i

�2³
dz

'

Z
Rn

dx
Z H1

0

NX
iD0

.z4i jr'1;i j
2
C i2z4i�2'21;i / dz

'

Z
Rn

NX
iD0

.H 4iC1
1 jr'1;i j

2
C i2H 4i�1

1 '21;i / dx; (6.10)

where we used the fact that ¹z2iºiD0;:::;N and ¹z2i�1ºiD1;:::;N are both linearly indepen-
dent. We also have

.L2.H2; b/'2;'2/L2 D

N�X
i;jD0

.L2;ij .H2; b/'2;j ; '2;i /L2

D

Z
Rn

dx
Z H2

0

²ˇ̌̌̌N�X
iD0

.zpir'2;i � piz
pi�1'2;irb/

ˇ̌̌̌2
C

� N�X
iD0

piz
pi�1'2;i

�2³
dz:
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If ¹zpi ; zpi�1ºiD0;:::;N are linearly independent, then we have

.L2.H2; b/'2;'2/L2

'

Z
Rn

dx
Z H2

0

N�X
iD0

®
.z2pi jr'2;i j

2
C p2i z

2pi�2jrbj2'22;i /C p
2
i z
2pi�2'22;i

¯
dz

'

Z
Rn

N�X
iD0

®
H
2piC1
2 jr'2;i j

2
C p2i H

2pi�1
2 .1C jrbj2/'22;i

¯
dx: (6.11)

Otherwise, for example, in the case pi D i (i D 0; : : : ; N ) we obtain

.L2.H2; b/'2;'2/L2

D

Z
Rn

dx
Z H2

0

²ˇ̌̌̌N��1X
iD0

zi .r'2;i � .i C 1/'2;iC1rb/C z
N�
r'2;N�

ˇ̌̌̌2
C

� N�X
iD0

piz
pi�1'2;i

�2³
dz

'

Z
Rn

dx
Z H2

0

²N��1X
iD0

z2i jr'2;i � .i C 1/'2;iC1rbj
2
C z2N

�

jr'2;N� j
2

C

N�X
iD0

i2z2.i�1/'22;i

³
dz

'

Z
Rn

²N��1X
iD0

H 2iC1
2 jr'2;i � .i C 1/'2;iC1rbj

2
CH 2N�C1

2 jr'2;N� j
2

C

N�X
iD0

i2H 2i�1
2 '22;i

³
dx: (6.12)

A similar estimate holds in other cases. These estimates give the desired one.

Although this lemma gives an a priori bound of the solution to (6.9), the equations
in (6.9) do not have good symmetry. In order to give an existence theorem to (6.9) with
robust elliptic estimates, it is better to rewrite them in a symmetric form by introducing a
good unknown variable. We introduce scalar functions '1 and '2 as

'1 D l1.H1/ � '1; '2 D l2.H2/ � '2: (6.13)

We also introduce the second-order differential operators P1;i .H1/ (i D 1; : : : ; N )
and Q1.H1/ acting on RN -valued functions '01 D .'1;1; : : : ; '1;N /

T and P2;i .H2; b/
(i D 1; : : : ; N �) and Q2.H2/ acting on RN� -valued functions '02 D .'2;1; : : : ; '2;N�/

T
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as 8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

P1;i .H1/'
0
1 D

NX
jD1

®
.L1;ij .H1/ �H

2i
1 L1;0j .H1//'1;j

�.L1;i0.H1/ �H
2i
1 L1;00.H1//.H

2j
1 '1;j /

¯
;

Q1.H1/'
0
1 D

NX
jD1

®
L1;0j .H1/'1;j � L1;00.H1/.H

2j
1 '1;j /

¯
;

(6.14)

and8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

P2;i .H2; b/'
0
2 D

N�X
jD1

®
.L2;ij .H2; b/ �H

pi
2 L2;0j .H2; b//'2;j

�.L2;i0.H2; b/ �H
pi
2 L2;00.H2; b//.H

pj
2 '2;j /

¯
;

Q2.H2; b/'
0
2 D

N�X
jD1

®
L2;0j .H2; b/'2;j � L2;00.H2; b/.H

pj
2 '2;j /

¯
;

(6.15)

respectively, and put8<:P1.H1/'01 D .P1;1.H1/'01; : : : ; P1;N .H1/'01/T;P2.H2; b/'
0
2 D .P2;1.H2; b/'

0
2; : : : ; P2;N�.H2; b/'

0
2/

T:

Then we see easily that P1.H1/ and P2.H2; b/ are symmetric in L2.Rn/ and that

L1;i .H1/'1 D

8<:Q1.H1/'01 C L1;00.H1/.l1.H1/ � '1/ for i D 0;

P1;i .H1/'
0
1 C ..Q1.H1//

�.l1.H1/ � '1//i for i D 1; : : : ; N ;

L2;i .H2; b/'2 D

8<:Q2.H2; b/'02 C L2;00.H2; b/.l2.H2/ � '2/ for i D 0;

P2;i .H2; b/'
0
2 C ..Q2.H2; b//

�.l2.H2/ � '2//i for i D 1; : : : ; N �;

whereQ� denotes an adjoint operator ofQ in L2.Rn/. Therefore, we can rewrite (6.9) as8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

P1.H1/'
0
1 C .Q1.H1//

�'1 D f1;

P2.H2; b/'
0
2 C .Q2.H2; b//

�'2 D f2;

Q1.H1/'
0
1 C L1;00.H1/'1 CQ2.H2; b/'

0
2 C L2;00.H2; b/'2 D r � f3;

��1'1 C �2'2 D f4:

These equations for .'01; '1;'
0
2; '2/ do not yet have good symmetry. But, it follows from

the last equation that
�2'2 D �1'1 C f4:
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Using this we can remove '2 from the equations and obtain8̂̂̂̂
<̂
ˆ̂̂:
�1P1.H1/'

0
1 C �1.Q1.H1//

�'1 D �1F1;

�2P2.H2; b/'
0
2 C �1.Q2.H2; b//

�'1 D �2F2;

�1Q1.H1/'
0
1 C �1Q2.H2; b/'

0
2 C �1.L1;00.H1/C

�1
�2
L2;00.H2; b//'1

D �1r � F3;

where

F1 D f1; F2 D f2 �
1

�2
.Q2.H2; b//

�f4; F3 D f3 C
1

�2
H2rf4: (6.16)

These equations for .'01; '
0
2; '1/ have good symmetry and can be written in the matrix

form

P.�; b/

0@'01'02
'1

1A D 0@ �1F1
�2F2

�1r � F3

1A ; (6.17)

where

P.�; b/ D

0B@�1P1.H1/ O �1.Q1.H1//
�

O �2P2.H2; b/ �1.Q2.H2; b//
�

�1Q1.H1/ �1Q2.H2; b/ �1.L1;00.H1/C
�1
�2
L2;00.H2; b//

1CA ; (6.18)

which is symmetric in L2.Rn/. Moreover, P.�; b/ is positive in L2.Rn/ as shown in the
following lemma.

Lemma 6.2. Let c0, c1 be positive constants. There exists a positive constant C D C.c0;
c1/ depending only on c0 and c1 such that if �; b 2 W 1;1.Rn/ satisfyH1.x/;H2.x/ � c0
and H1.x/C jrH1.x/j C jrb.x/j � c1, then for any Q' D .'01;'

0
2; '1/

T we have

.P.�; b/ Q'; Q'/L2 � C
�1.�1k'

0
1k
2
H1 C �2k'

0
2k
2
H1 C �1kr'1k

2
L2
/:

Proof. Given Q' D .'01;'
0
2; '1/

T, we define '1;0 and '2;0 by

'1;0 D '1 �

NX
jD1

H
2j
1 '1;j ; '2;0 D

�1

�2
'1 �

N�X
jD1

H
pj
2 '2;j

and put '1 D .'1;0; '1;1; : : : ; '1;N /T and '2 D .'2;0; '2;1; : : : ; '2;N�/T. Then we have
'1 D l1.H1/ � '1 D

�2
�1
l2.H2/ � '2, so that

�1l1.H1/ � '1 � �2l2.H2/ � '2 D 0:

We also define F1 D .F1;1; : : : ; F1;N /T, F2 D .F2;1; : : : ; F2;N�/T, and F3 by0@F1F2
F3

1A D P.�; b/

0@'01'02
'1

1A :
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Then we have 8̂̂<̂
:̂
�1L1;i .H1/'1 D F1;i for i D 1; 2; : : : ; N ;

�2L2;i .H2; b/'2 D F2;i for i D 1; 2; : : : ; N �;

�1L1;0.H1/'1 C �2L2;0.H2; b/'2 D F3:

Now we introduce a dummy variable � as

� D �L1;0.H1/'1:

Then it follows from the above equations that8̂̂<̂
:̂
��1l1.H1/ � '1 C �2l2.H2/ � '2 D 0;

�1.�l1.H1/C L1.H1/'1/ D f1;

�2.��l2.H2/C L2.H2; b/'2/ D f2 C
�2
�1
l2.H2/F3;

where f1 D .0;F1;1; : : : ; F1;N /T and f2 D .0;F2;1; : : : ; F2;N�/T. These equations can be
written in the matrix form0@ 0 ��1l1.H1/

T �2l2.H2/
T

�1l1.H1/ �1L1.H1/ O

��2l2.H2/ O �2L2.H2; b/

1A0@ �

'1

'2

1A D
0B@ 0

f1

f2 C
�2
�1
l2.H2/F3

1CA :
By taking the L2-inner product of this equation with .�;'1;'2/T we see that

�1.L1.H1/'1;'1/L2 C �2.L2.H2; b/'2;'2/L2

D .f1;'1/L2 C .f2;'2/L2 C
�2

�1
.l2.H2/F3;'2/L2

D .F1;'
0
1/L2 C .F2;'

0
2/L2 C .F3; '1/L2

D .P.�; b/ Q'; Q'/L2 ;

which gives, by (6.10) and (6.11) or (6.12),

.P.�; b/ Q'; Q'/L2 ' �1.k'
0
1k
2
H1 C kr'1;0k

2
L2
/C �2.k'

0
2k
2
H1 C kr'2;0k

2
L2
/:

Since kr'1k2L2 . k'01k2H1 C kr'1;0k
2
L2

, we obtain the desired estimate.

By this lemma, the explicit expression (6.18) of the operator P.�; b/, and the standard
theory of elliptic partial differential equations, we can obtain the following lemma.

Lemma 6.3. Let �1, �2, h1, h2, c0, M be positive constants and m an integer such that
m > n

2
C 1. There exists a positive constant C D C.�1; �2; h1; h2; c0; m/ such that if �

and b satisfy´
k�kHm C kbkW m;1 �M;

H1.x/ D h1 � �.x/ � c0; H2.x/ D h2 C �.x/ � b.x/ � c0 for x 2 Rn;
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then for any F1;F2 2 H k�1 and F3 2 H k with k 2 ¹0; 1; : : : ; m � 1º, there exists a
solution .'01;'

0
2; '1/ of (6.17) satisfying

k.'01;'
0
2/kHkC1 C kr'1kHk � C.k.F1;F2/kHk�1 C kF3kHk /:

Moreover, the solution is unique up to an additive constant to '1.

We proceed to consider the solvability of (6.9). Given f 01 , f 02 , f3, f4, we define F1,
F2, F3 by (6.16), for which there exists a solution .'01;'

0
2; '1/ to (6.17), define '1;0 and

'2;0 by

'1;0 D '1 �

NX
jD1

H
2j
1 '1;j ; '2;0 D

�1

�2
'1 �

N�X
jD1

H
pj
2 '2;j C

1

�2
f4;

and put '1 D .'1;0; '1;1; : : : ; '1;N /T and '2 D .'2;0; '2;1; : : : ; '2;N�/T. Then we see that
.'1;'2/ is a solution to (6.9). More precisely, we obtain the following lemma.

Lemma 6.4. Under the hypothesis of Lemma 6.3, for any f 01 D .f1;1; : : : ; f1;N /
T, f 02 D

.f2;1; : : :, f2;N�/T, f3, and f4 satisfying f 01; f
0
2 2 H

k�1 and f3;rf4 2 H k with k 2
¹0; 1; : : : ; m � 1º, there exists a solution .'1;'2/ to (6.9) satisfying

k.'01;'
0
2/kHkC1 C k.r'1;0;r'2;0/kHk � C.k.f

0
1;f

0
2/kHk�1 C k.f3;rf4/kHk /;

where C D C.�1; �2; h1; h2; c0; m/. Moreover, the solution is unique up to an additive
constant of the form .C�2;C�1/ to .'1;0; '2;0/.

7. Construction of the solution

In this section we will prove Theorem 2.1, one of the main theorems in this paper. One pos-
sible strategy to construct the solution of the initial value problem to the Kakinuma model
(2.14)–(2.16) would consist in firstly transforming the equations into a quasilinear positive
symmetric system, that is, a quasilinear version of the positive symmetric system (5.11),
secondly applying the method of parabolic regularization to construct the solution of the
transformed system, and finally to show that the solution to the transformed system is
in fact the solution of the Kakinuma model if we further impose the compatibility con-
ditions (2.18)–(2.18) on the initial data. Here, in order to avoid the heavy computations
that would be involved when following this strategy, we find it more convenient to instead
apply the method of parabolic regularization to the Kakinuma model directly.

7.1. Parabolic regularization of the equations

We recall that the Kakinuma model (2.14)–(2.16) can be written compactly as (6.4), that
is, 8̂̂<̂

:̂
l1.H1/@t� C L1.H1/�1 D 0;

�l2.H2/@t� C L2.H2; b/�2 D 0;

��1l1.H1/ � @t�1 C �2l2.H2/ � @t�2 D F;

(7.1)
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where �1 D .�1;0; �1;1; : : : ; �1;N /T, �2 D .�2;0; �2;1; : : : ; �2;N�/T, lk andLk for k D 1;2
are defined in (6.3), and

F D �1

°
g� C

1

2
.ju1j

2
C w21/

±
� �2

°
g� C

1

2
.ju2j

2
C w22/

±
: (7.2)

Here uk and wk for k D 1; 2 are defined by (4.2) and (4.3) respectively. We regularize the
Kakinuma model by adding artificial viscosity terms as8̂̂<̂

:̂
l1.H1/.@t� � "��/C L1.H1/�1 D 0;

�l2.H2/.@t� � "��/C L2.H2; b/�2 D 0;

��1l1.H1/ � .@t�1 � "��1/C �2l2.H2/ � .@t�2 � "��2/ D F:

(7.3)

We are going to show the existence of the solution to the initial value problem for this
regularized Kakinuma model under the initial conditions

.�;�1;�2/jtD0 D .�.0/;�1.0/;�2.0//: (7.4)

For this regularized Kakinuma model, the compatibility conditions for the existence of the
solution have the same form as the original Kakinuma model, that is,8̂̂<̂

:̂
L1;i .H1/�1 D 0 for i D 1; 2; : : : ; N ;

L2;i .H2; b/�2 D 0 for i D 1; 2; : : : ; N �;

L1;0.H1/�1 CL2;0.H2; b/�2 D 0;

(7.5)

where L1;i .H1/ for i D 0; 1; : : : ; N and L2;i .H2; b/ for i D 0; 1; : : : ; N � are defined
in (6.5). Here, we note the identities8̂̂<̂

:̂
Œ@t ;L1;i .H1/��1 D f1;i .�;�1/@t� for i D 1; 2; : : : ; N ;

Œ@t ;L2;i .H2; b/��2 D f2;i .�;�2; b/@t� for i D 1; 2; : : : ; N �;

Œ@t ;L1;0.H1/��1 C Œ@t ;L2;0.H2; b/��2 D �r � .v@t�/;

where v D u2 � u1 and8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

f1;i .�;�1/ D �

NX
jD0

° 2i

2j C 1
H
2.iCj /
1 ��1;j C 4ijH

2.iCj�1/
1 �1;j

±
;

f2;i .�;�2; b/ D

N�X
jD0

° pi

pj C 1
H
piCpj
2 ��2;j �

pipj

pj
H
piCpj�1

2 r � .�2;jrb/

�piH
piCpj�1

2 rb � r�2;j C pipjH
piCpj�2

2 .1C jrbj2/�2;j

±
;

and8̂̂<̂
:̂
Œ�;L1;i .H1/��1 D f1;i .�;�1/�� C Qf1;i .�;�1/ for i D 1; 2; : : : ; N ;

Œ�;L2;i .H2; b/��2 D f2;i .�;�2; b/�� C Qf2;i .�;�2; b/ for i D 1; 2; : : : ; N �;

Œ�;L1;0.H1/��1 C Œ�;L2;0.H2; b/��2 D �r � .v��/C f3.�;�1;�2; b/;
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where8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

Qf1;i .�;�1/ D

nX
lD1

®
Œ@l ;L1;i .H1/�@l�1 C .@l�/@lf1;i .�;�1/

¯
;

Qf2;i .�;�2; b/ D

nX
lD1

²
Œ@l ;L2;i .H2; b/�@l�2 C .@l�/f2;i .�;�2; b/

�@l ..@lb/f2;i .�;�2; b//

C

N�X
jD0

@l

�
�

pipj

.pi C pj /pj
H
piCpj
2 r � .�2;jr@lb/

�
pi

pi C pj
H
piCpj
2 r@lb � r�2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 2.rb � r@lb/
�³
;

f3.�;�1;�2; b/ D

nX
lD1

²
Œ@l ;L1;0.H1/�@l�1 C Œ@l ;L2;0.H2; b/�@l�2

Cr �

�
�.@l�/.@lv/C @l

�
.@lb/u2 C

N�X
jD1

H
pj
2 �2;jr@lb

��³
:

We also note that f3.�;�1;�2; b/ can be written in a divergence form as

f3.�;�1;�2; b/ D r � f3.�;�1;�2; b/;

where

f3.�;�1;�2; b/ D

nX
lD1

²
.@l�/

NX
jD0

H
2j
1 r@l�1;j C

N�X
jD1

H
pj
2 .@l�2;j /r@lb

C .@lb � @l�/

N�X
jD0

.H
pj
2 r@l�2;j � pjH

pj�1

2 .@l�2;j /rb/

� .@l�/.@lv/C @l

�
.@lb/u2 C

N�X
jD1

H
pj
2 �2;jr@lb

�³
:

Therefore, applying the operator @t � "� to (7.5) we obtain8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

L1;i .H1/.@t�1 � "��1/

D �f1;i .�;�1/.@t� � "��/C " Qf1;i .�;�1/ for i D 1; 2; : : : ; N ;

L2;i .H2; b/.@t�2 � "��2/

D �f2;i .�;�2; b/.@t� � "��/C " Qf2;i .�;�2; b/ for i D 1; 2; : : : ; N �;

L1;0.H1/.@t�1 � "��1/CL2;0.H2; b/.@t�2 � "��2/

D r � .v.@t� � "��/C "f3.�;�1;�2; b//:

(7.6)
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On the other hand, we haveN CN �C 2 evolution equations for one scalar function �. To
select an appropriate evolution equation for �, we will use the notation defined by (5.13).
We note that they depend on the unknown functions H1 and H2. Taking Euclidean inner
products of the first and the second equations in (7.3) with �1q1 and �2q2, respectively,
adding the resulting equations, and using the relation��1l1 � q1C �2l2 � q2D 1, we obtain

@t� � "�� D G0; (7.7)

where
G0 D �1q1 � L1.H1/�1 C �2q2 � L2.H2; b/�2:

Plugging this into (7.6) and noting the last equation in (7.3), we have8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

L1;i .H1/.@t�1 � "��1/

D �f1;i .�;�1/G0 C " Qf1;i .�;�1/ for i D 1; 2; : : : ; N ;

L2;i .H2; b/.@t�2 � "��2/

D �f2;i .�;�2; b/G0 C " Qf2;i .�;�2; b/ for i D 1; 2; : : : ; N �;

L1;0.H1/.@t�1 � "��1/CL2;0.H2; b/.@t�2 � "��2/

D r � .vG0 C "f3.�;�1;�2; b//;

��1l1.H1/ � .@t�1 � "��1/

C�2l2.H2/ � .@t�2 � "��2/ D F:

(7.8)

Therefore, thanks to Lemma 6.4 we obtain´
@t�1 � "��1 D G1;

@t�2 � "��2 D G2;
(7.9)

where G1 D .G1;0; G1;1; : : : ; G1;N /T and G2 D .G2;0; G2;1; : : : ; G2;N�/T are defined as
a solution to the following equations:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

L1;i .H1/G1 D �f1;i .�;�1/G0 C " Qf1;i .�;�1/ for i D 1; 2; : : : ; N ;

L2;i .H2; b/G2

D �f2;i .�;�2; b/G0 C " Qf2;i .�;�2; b/ for i D 1; 2; : : : ; N �;

L1;0.H1/G1 CL2;0.H2; b/G2 D r � .vG0 C "f3.�;�1;�2; b//;

��1l1.H1/ �G1 C �2l2.H2/ �G2 D F:

(7.10)

Precisely speaking, .G1;G2/ are defined uniquely up to an additive constant of the form
.C�2;C�1/ to .G1;0; G2;0/. However, this indeterminacy does not cause any difficulties
in the following arguments.

Remark 7.1. The equations in (7.9) are valid even in the case " D 0, that is, any regu-
lar solutions to the Kakinuma model (2.14)–(2.15) satisfy (7.9) with " D 0. Particularly,
@t�k.x; 0/ for k D 1; 2 can be expressed in terms of the initial data .�.0/;�1.0/;�2.0// and
the bottom topography b.



V. Duchêne and T. Iguchi 296

7.2. Existence of the solution to the regularized problem

Lemma 7.2. Let g, �1, �2, h1, h2, c0 be positive constants and m an integer such that
m > n

2
C 1. For any initial data .�.0/;�1.0/;�2.0// and bottom topography b satisfying´
�.0/;r�1;0.0/;r�2;0.0/ 2 H

m; �0
1.0/

;�0
2.0/
2 HmC1; b 2 W mC2;1;

h1 � �.0/.x/ � c0; h2 C �.0/.x/ � b.x/ � c0 for x 2 Rn;

and for any " > 0 there exists a maximal existence time T" 2 .0;C1� such that the initial
value problem (7.7), (7.9), and (7.4) has a unique solution .�";�"1;�

"
2/ satisfying

�";r�"1;0;r�
"
2;0 2 C.Œ0; T"/IH

m/; �"01 ;�
"0
2 2 C.Œ0; T"/IH

mC1/:

Proof. We evaluate the right-hand sides of the equations, that is, the terms G0, G1, and
G2. To this end, suppose that .�;�1;�2/ and b satisfy´

k.�;r�1;0;r�2;0/kHm C k.�01;�
0
2/kHmC1 C kbkW mC2;1 �M;

h1 � �.x/ � c1; h2 C �.x/ � b.x/ � c1 for x 2 Rn:
(7.11)

Then we see that

kG0kHm�1 C k.f 01;f
0
2;f3/kHm�1 C k. Qf 01;

Qf 02/kHm�2 C kF kHm � C.M; c1/;

where f 01 D .f1;1.�;�1/; : : : ; f1;N .�;�1// and so on. Therefore, by Lemma 6.4 we have

k.rG1;0;rG2;0/kHm�1 C k.G 01;G
0
2/kHm � C.M; c1; "/;

where we notice for further use that C.M; c1; "/ is bounded uniformly with respect to
" 2 .0; 1�. We obtain the desired result by the standard theory of the heat equation.

Lemma 7.3. Suppose that the initial data .�.0/; �1.0/; �2.0// and the bottom topogra-
phy b satisfy the hypotheses in Lemma 7.2 and the compatibility conditions (7.5). Then
the solution .�"; �"1; �

"
2/ constructed in Lemma 7.2 satisfies the regularized Kakinuma

model (7.3).

Proof. By the construction of the solution, we easily see that it satisfies (7.8) and in par-
ticular the last equation in (7.3). Therefore, it is sufficient to show that it also satisfies the
first two equations in (7.3). By (7.7) and (7.8), we have8̂̂<̂

:̂
.@t � "�/.L1;i .H1/�1/ D 0 for i D 1; 2; : : : ; N ;

.@t � "�/.L2;i .H2; b/�2/ D 0 for i D 1; 2; : : : ; N �;

.@t � "�/.L1;0.H1/�1 CL2;0.H2; b/�2/ D 0;

so that by the uniqueness of the solution to the initial value problem of the heat equa-
tion, if the initial data satisfy the compatibility conditions (7.5), then the solution also
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satisfies (7.5) for all t 2 Œ0; T"/. Particularly, we obtain´
�l1.H1/.L1;0.H1/�1/C L1.H1/�1 D 0;

�l2.H2/.L2;0.H2; b/�2/C L2.H2; b/�2 D 0;

so that by the last equation in the compatibility conditions (7.5) we have´
�l1.H1/.L1;0.H1/�1/C L1.H1/�1 D 0;

l2.H2/.L1;0.H1/�1/C L2.H2; b/�2 D 0:
(7.12)

Taking Euclidean inner products of the first and the second equations with �1q1 and �2q2,
respectively, adding the resulting equations, and using the relation��1l1 � q1C �2l2 � q2D
1, we obtain

L1;0.H1/�1 C �1q1 � L1.H1/�1 C �2q2 � L2.H2; b/�2 D 0;

which together with (7.7) implies

L1;0.H1/�1 D �.@t� � "��/:

Plugging this into (7.12), we see that the solution satisfies the first two equations in (7.3).

7.3. Uniform bound of the solution to the regularized problem

We proceed to derive estimates concerning solutions .�";�"1;�
"
2/ to the regularized Kak-

inuma model (7.3), uniform with respect to the regularized parameter " 2 .0; 1� and for
a time interval independent of ". To this end, we make use of the good symmetric struc-
ture of the Kakinuma model based on the analysis of Section 5.1. In order to simplify the
notation we write .�;�1;�2/ in place of .�";�"1;�

"
2/.

In view of (6.1) and (6.2) we decompose L1.H1/�1 and L2.H2; b/�2 into their prin-
cipal parts and remainder parts as

L1.H1/�1 D �A1.H1/��1 C l1.H1/.u1 � r�/C L
low
1 .H1/�1; (7.13)

L2.H2; b/�2 D �A2.H2/��2 � l2.H2/.u2 � r�/C L
low
2 .H2; b/�2; (7.14)

where the matricesA1.H1/,A2.H2/ are given by (5.10),Llow
1 .H1/D .L

low
1;ij .H1//0�i;j�N

and Llow
2 .H2; b/ D .L

low
2;ij .H2; b//0�i;j�N� are given by

Llow
1;ij .H1/'1;j D

4ij

2.i C j / � 1
H
2.iCj /�1
1 '1;j ;

Llow
2;ij .H2; b/'2;j D rb � .H

piCpj
2 r'2;j � pjH

piCpj�1

2 '2;jrb/

C
pj

pi C pj
H
piCpj
2 r � .'2;jrb/ �

pi

pi C pj
H
piCpj
2 rb � r'2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/'2;j :
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Let us recall the definitions of u in (5.5), and �1 and �2 in (5.12), so that

u1 D u � �1v; u2 D uC �2v:

Therefore, we can rewrite the first two equations in (7.3) as8<: l1.H1/.@t� � "�� C .u � �1v/ � r�/ � A1.H1/��1 C Llow
1 .H1/�1 D 0;

�l2.H2/.@t� � "�� C .uC �2v/ � r�/ � A2.H2/��2 C L
low
2 .H2; b/�2 D 0:

Let ˇ D .ˇ1; : : : ; ˇn/ be a multi-index satisfying jˇj � m. Applying the differential oper-
ator @ˇ to these equations and noting the relation .v � r/ D �.v � r/� � .r � v/, we have8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�1l1.@t�
ˇ
� "��ˇ C u � r�ˇ /C .v � r/�.�1�1l1�

ˇ /

�

nX
lD1

@l .�1A1@l�
ˇ
1 / D F1;ˇ ;

��2l2.@t�
ˇ
� "��ˇ C u � r�ˇ /C .v � r/�.�2�2l2�

ˇ /

�

nX
lD1

@l .�2A2@l�
ˇ
2 / D F2;ˇ ;

(7.15)

where �ˇ D @ˇ �, �ˇ
k
D @ˇ�k for k D 1; 2, and8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

F1;ˇ D �1

²
�Œ@ˇ ; l1�G0 � Œ@

ˇ ; l1u
T
1�r�

�.r � v/�1l1�
ˇ
C Œv � r; �1l1��

ˇ

�

nX
lD1

.@lA1/@l�
ˇ
1 C Œ@

ˇ ; A1���1 � @
ˇLlow

1 .H1/�1

³
;

F2;ˇ D �2

²
Œ@ˇ ; l2�G0 C Œ@

ˇ ; l2u
T
2�r�

�.r � v/�2l2�
ˇ
C Œv � r; �2l2��

ˇ

�

nX
lD1

.@lA2/@l�
ˇ
2 C Œ@

ˇ ; A2���2 � @
ˇLlow

2 .H2; b/�2

³
:

In the above calculation, we used (7.7). Similarly, applying the differential operator @ˇ to
the last equation in (7.3), we have

� �1l1 � .@t�
ˇ
1 � "��

ˇ
1 C .u � r/�

ˇ
1 /C �1�1l1 � .v � r/�

ˇ
1

C �2l2 � .@t�
ˇ
2 � "��

ˇ
2 C .u � r/�

ˇ
2 /C �2�2l2 � .v � r/�

ˇ
2 C a�

ˇ

D F0;ˇ ; (7.16)
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where

a D �2

� N�X
iD0

piH
pi�1
2 .G2;i C u2 � r�2;i /

C

N�X
iD0

pi .pi � 1/H
pi�2
2 .w2 � u2 � rb/�2;i C g

�
C �1

� NX
iD0

2iH 2i�1
1 .G1;i C u1 � r�1;i / � w1

NX
iD0

2i.2i � 1/H 2.i�1/�1;i � g

�
;

F0;ˇ D �1

²�
@ˇ l1.H1/ � .@H1l1.H1//@

ˇH1
�
�G1 C Œ@

ˇ
I l1.H1/;G1�

C u1 �

NX
jD0

�
Œ@ˇ I l1;j .H1/;r�1;j �

C
�
@ˇ l1;j .H1/ � .@H1 l1;j .H1//@

ˇH1
�
r�1;j

�
� w1

NX
jD0

�
Œ@ˇ ; �1;j �@H1 l1;j .H1/

C
�
@ˇ@H1 l1;j .H1/ � .@

2
H1
l1;j .H1//@

ˇH1
�
�1;j

�
C
1

2
.Œ@ˇ Iu1;u1�C Œ@

ˇ
Iw1; w1�/

³
� �2

²�
@ˇ l2.H2/ � .@H2l2.H2//@

ˇ �
�
�G2 C Œ@

ˇ
I l2.H2/;G2�

C u2 �

N�X
jD0

�
Œ@ˇ I l2;j .H2/;r�2;j �

C
�
@ˇ l2;j .H2/ � .@H2 l2;j .H2//@

ˇH2
�
r�2;j

� Œ@ˇ ; @H2 l2;j .H2/��2;jrb

�
�
@ˇ@H2 l2;j .H2/ � .@

2
H2
l2;j .H2//@

ˇH2
�
�2;jrb

�
C w2

N�X
jD0

�
Œ@ˇ ; �2;j �@H2 l2;j .H2/

C
�
@ˇ@H2 l2;j .H2/ � .@

2
H2
l2;j .H2//@

ˇH2
�
�2;j

�
C
1

2
.Œ@ˇ Iu2;u2�C Œ@

ˇ
Iw2; w2�/

³
:

In the above calculation, we used (7.9) and the notation´
l1.H1/ D .l1;0.H1/; l1;1.H1/; : : : ; l1;N .H1//

T;

l2.H2/ D .l2;0.H2/; l2;1.H2/; : : : ; l2;N�.H2//
T;
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and the notation for the symmetric commutator Œ@ˇ I u; v� D @ˇ .u � v/ � .@ˇu/ � v � u �

.@ˇv/. We can rewrite (7.15) and (7.16) in matrix form as

A1.@tU
ˇ
� "�U ˇ C .u � r/U ˇ /CAmod

0 U ˇ D Fˇ ; (7.17)

where

U ˇ D

0B@�ˇ�ˇ1
�
ˇ
2

1CA ; Fˇ D

0@F0;ˇF1;ˇ
F2;ˇ

1A ;
and

A1 D

0@ 0 ��1l
T
1 �2l

T
2

�1l1 O O

��2l2 O O

1A ;
Amod
0 D

0@ a �1�1l
T
1 .v � r/ �2�2l

T
2 .v � r/

.v � r/�.�1�1l1 � / �
Pn
lD1 @l .�1A1@l � / O

.v � r/�.�2�2l2 � / O �
Pn
lD1 @l .�2A2@l � /

1A :
Here, we note that A1 is a skew-symmetric matrix and Amod

0 is symmetric in L2.Rn/.
Concerning the positivity of Amod

0 , we have the following lemma.

Lemma 7.4. Let c0 and C0 be positive constants. Then there exists C D C.c0; C0/ > 0
such that if a, H1, H2, and v satisfy´

kakL1 C k.H1;H2/kL1 C kvkL1 � C0;

H1.x/ � c0; H2.x/ � c0 for x 2 Rn;
(7.18)

and the stability condition

a.x/ �
�1�2

�1H2.x/˛2 C �2H1.x/˛1
jv.x/j2 � c0 > 0 for x 2 Rn; (7.19)

then for any PU D . P�; P�1; P�2/T, we have the equivalence

C�1k. P�;r P�1;r P�2/k
2
L2
� .Amod

0
PU ; PU /L2 � Ck.

P�;r P�1;r P�2/k
2
L2
:

Proof. Introducing diagonal matrices D1.H1/ and D2.H2/ as´
D1.H1/ D diag.1;H 2

1 ;H
4
1 ; : : : ;H

2N
1 /;

D2.H2/ D diag.1;Hp1
2 ;H

p2
2 ; : : : ;H

pN�
2 /;

we have
Ak.Hk/ D HkDk.Hk/Ak;0Dk.Hk/; k D 1; 2;

where A1;0 and A2;0 are constant matrices defined by

A1;0 D
� 1

2.i C j /C 1

�
0�i;j�N

; A2;0 D
� 1

pi C pj C 1

�
0�i;j�N�

:
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We also have
1 �Dk.Hk/�k D lk.Hk/ � �k ; k D 1; 2:

Therefore,

.Amod
0
PU ; PU /L2 D .a

P�; P�/L2 C

nX
lD1

X
kD1;2

.�kHkAk;0Dk@l P�k ;Dk@l P�k/L2

C 2
X
kD1;2

.�k�klk � .v � r/ P�k ; P�/L2

D

nX
lD1

X
kD1;2

.�kHkQk;0Ak;0Dk@l P�k ; Ak;0Dk@l P�k/L2

C .a P�; P�/L2 C
X
kD1;2

®
.�kHk˛k.lk ˝r/

T P�k ; .lk ˝r/
T P�k/L2

C 2.�k�kv � .lk ˝r/
T P�k ; P�/L2

¯
DW I1 C I2;

where we used identity (5.7). Since Q1;0 and Q2;0 are nonnegative and in view of

I2 �

Z
Rn

²
a P�2 C

X
kD1;2

®
�kHk˛kj.lk ˝r/

T P�kj
2
� 2�k�kjvj j.lk ˝r/

T P�kj j P�j
¯³

dx

and the analysis in Section 5.1, we can show the desired equivalence.

Lemma 7.5. Let g, �1, �2, h1, h2, c0; M0 be positive constants and m an integer such
thatm> n

2
C 1. There exist a positive time T and a positive constant C such that if initial

data .�.0/;�1.0/;�2.0// and bottom topography b satisfy´
k.�.0/;r�1;0.0/;r�2;0.0//kHm C k.�0

1.0/
;�0
2.0/

/kHmC1 C kbkW mC2;1 �M0;

h1 � �.0/.x/ � 2c0; h2 C �.0/.x/ � b.x/ � 2c0 for x 2 Rn;

the stability condition (7.19) with c0 replaced by 2c0, and the compatibility conditions
(7.5), then for any " 2 .0; 1� the solution .�";�"1;�

"
2/ constructed in Lemmas 7.2 and 7.3

satisfies

sup
0�t�T

�
k.�".t/;r�"1;0.t/;r�

"
2;0.t//k

2
Hm C k.�

"0
1 ;�

"0
2 /k

2
HmC1

�
C "

Z T

0

k.�".t/;r�"1.t/;r�
"
2.t//k

2
HmC1 dt � C:

Proof. Once again we simply write U D .�;�1;�2/T in place of .�";�"1;�
"
2/

T. We define
an energy function Em.t/ by

Em.t/ D
X
jˇ j�m

®
.Amod

0 @ˇU .t/; @ˇU .t//L2 C k.@
ˇ�01.t/; @

ˇ�02.t//k
2
L2

¯
:
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We assume that the solution .�.t/; �1.t/; �2.t// satisfies (7.18) and the stability condi-
tion (7.19) for 0 � t � T . Then the energy function Em.t/ is equivalent to

Em.t/ D k.�.t/;r�1;0.t/;r�2;0.t//k
2
Hm C k.�

0
1.t/;�

0
2.t//k

2
HmC1 :

Furthermore, we assume that

Em.t/C "

Z t

0

EmC1.�/ d� �M1 (7.20)

for 0 � t � T , where the constant M1 and the time T will be determined later. In the
following we simply write the constants depending only on .g; �1; �2; h1; h2; c0; C0;M0/

as C1 and the constants depending also on M1 as C2. They may change from line to line.
Then it holds that

C�11 Ej .t/ � Ej .t/ � C1Ej .t/

for j D 0; 1; 2; : : : : We are going to evaluate the evolution of the energy function Em.t/.
To this end, we take the L2-inner product of (7.17) with @tU ˇ � "�U ˇ C .u � r/U ˇ and
use integration by parts to get

1

2

d
dt
.Amod

0 U ˇ ;U ˇ /L2 C "

nX
lD1

.Amod
0 @lU

ˇ ; @lU
ˇ /L2

D
1

2
.Œ@t ;A

mod
0 �U ˇ;U ˇ /L2 � "

nX
lD1

.Œ@l ;A
mod
0 �U ˇ; @lU

ˇ /L2 � .A
mod
0 U ˇ; .u � r/U ˇ /L2

C .F0;ˇ ; @
ˇG0 C .u � r/�

ˇ /L2 C
X
kD1;2

.Fk;ˇ ; @
ˇGk C .u � r/�

ˇ

k
/L2 :

Here, we see that

.Œ@t ;A
mod
0 �U ˇ ;U ˇ /L2

D ..@ta/�
ˇ ; �ˇ /L2

C 2
X
kD1;2

�k.Œ@t ; �kl
T
k .v � r/��

ˇ

k
; �ˇ /L2 C

nX
lD1

X
kD1;2

�k..@tAk/@l�
ˇ

k
; @l�

ˇ

k
/L2 ;

.Œ@l ;A
mod
0 �U ˇ ; @lU

ˇ /L2

D ..@la/�
ˇ ; �ˇ /L2

C

X
kD1;2

�k
®
.Œ@l ; �kl

T
k .v � r/��

ˇ

k
; @l�

ˇ /L2 C .�
ˇ ; Œ@l ; �kl

T
k .v � r/�@l�

ˇ

k
/L2
¯

C

X
kD1;2

nX
jD1

�k..@jAk/@l�
ˇ

k
; @j @l�

ˇ

k
/L2 ;
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.Amod
0 U ˇ ; .u � r/U ˇ /L2

D �
1

2

�
.r � .au//�ˇ ; �ˇ

�
L2

�

X
kD1;2

�k
®
..r � u/�ˇ ; �klk � .v � r/�

ˇ

k
/L2 C .�

ˇ ; Œ.u � r/; �kl
T
k .v � r/��

ˇ

k
/L2
¯

�

X
kD1;2

nX
lD1

�k

°�
Ak@l�

ˇ

k
; ..@lu/ � r/�

ˇ

k

�
L2
C
1

2

�
..u � r/�Ak/@l�

ˇ

k
; @l�

ˇ

k

�
L2

±
;

so that for 1 � jˇj � m we have

1

2

d
dt
.Amod

0 U ˇ ;U ˇ /L2 C "

nX
lD1

.Amod
0 @lU

ˇ ; @lU
ˇ /L2

� C2.1C "EmC1.t/
1
2 /C kF0;ˇkH1k@ˇG0 C .u � r/�

ˇ
kH�1

C

X
kD1;2

kFk;ˇkL2k@
ˇGk C .u � r/�

ˇ

k
kL2

� C2.1C "EmC1.t/
1
2 /: (7.21)

A similar estimate can be obtained in the case jˇj D 0 more directly. On the other hand, it
follows from (7.9) that

1

2

d
dt
k.�

ˇ 0
1 ;�

ˇ 0
2 /k

2
L2
C "k.r�

ˇ 0
1 ;r�

ˇ 0
2 /k

2
L2
D

X
kD1;2

.@ˇG 0k ;�
ˇ 0

k
/2
L2
� C2:

Therefore, we obtain

d
dt

Em.t/C "EmC1.t/ � C2.1C "EmC1.t/
1
2 /;

which yields

Em.t/C "

Z t

0

EmC1.�/ d� � C1 C C2t:

PuttingM1D 2C1 and taking T > 0 so thatC2T �C1, we obtain by a continuity argument
that (7.20) holds for 0 � t � T .

It remains to show that .�.t/; �1.t/; �2.t// satisfies (7.18) and the stability condi-
tion (7.19) for 0 � t � T . By the Sobolev embedding theorem, (7.7), and (7.9), we see
that

j�.x; t / � �.0/.x/j C
X
kD1;2

.jr�k.x; t / � r�k.0/.x/j C j�
0
k.x; t / � �

0
k.0/.x/j/

� C1

�
k�.t/ � �.0/kHm�1

C

X
kD1;2

.kr�k.t/ � r�k.0/kHm�1 C k�0k.t/ � �
0
k.0/kHm�1/

�
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� C1

Z t

0

�
k@t�.�/kHm�1 C

X
kD1;2

.kr@t�k.�/kHm�1 C k@t�
0
k.�/kHm�1/

�
d�

� C1

Z t

0

.k.G0;rG1;0;rG2;0/.�/kHm�1 C k.G 01;G
0
2/.�/kHm C "EmC1.�/

1
2 / d�

� C2.t C
p
"t/; (7.22)

which yields (7.18), except for the estimate for a, by taking T > 0 sufficiently small.
We now turn to the stability condition (7.19). In order to evaluate @ta, we need to obtain
estimates for @tG 0k for k D 1; 2. Differentiating (7.10) with respect to t , we have8̂̂̂̂

<̂
ˆ̂̂:

L1;i .H1/@tG1 D g1;i for i D 1; 2; : : : ; N ;

L2;i .H2; b/@tG2 D g2;i for i D 1; 2; : : : ; N �;

L1;0.H1/@tG1 CL2;0.H2; b/@tG2 D r � g3;

��1l1.H1/ � @tG1 C �2l2.H2/ � @tG2 D g4;

where 8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

g1;i D �Œ@t ;L1;i .H1/�G1

�@t .f1;i .�;�1/G0 � " Qf1;i .�;�1// for i D 1; 2; : : : ; N ;

g2;i D �Œ@t ;L2;i .H2; b/�G2

�@t .f2;i .�;�2; b/G0 � " Qf2;i .�;�2; b// for i D 1; 2; : : : ; N �;

g3 D .@t�/

�
�

NX
jD0

H
2j
1 rG1;j C

N�X
jD0

.H
pj
2 rG2;j � pjH

pj�1

2 G2;jrb/

�
C@t .vG0 C "f3.�;�1;�2; b//;

g4 D �1Œ@t ; l1.H1/
T�G1 � �2Œ@t ; l2.H2/

T�G2 C @tF:

Therefore, by Lemma 6.4 with k D m � 2 we obtain

k.r@tG1;0;r@tG2;0/kHm�2 C k.@tG
0
1; @tG

0
2/kHm�1

� C2.k.g1;g2/kHm�3 C k.g3;rg4/kHm�2/

� C2.k.@t�;r@t�1;0;r@t�2;0/kHm�1 C k.@t�
0
1; @t�

0
2/kHm/:

On the other hand, it follows from (7.7) and (7.9) that

k.@t�;r@t�1;0;r@t�2;0/kHm�1 C k.@t�
0
1; @t�

0
2/kHm

� k.G0;rG1;0;rG2;0/kHm�1 C k.G 01;G
0
2/kHm

C ".k.�;r�1;0;r�2;0/kHmC1 C k.�01;�
0
2/kHmC2/

� C2.1C "EmC1.t/
1
2 /:
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Thus,

k@takHm�1 � C2.k.@t�;r@t�1;0;r@t�2;0; @tG
0
1; @tG

0
2/kHm�1 C k.@t�

0
1; @t�

0
2/kHm/

� C2.1C "EmC1.t/
1
2 /;

so that

ja.x; t/ � a.x; 0/j � C1

Z t

0

k@ta.�/kHm�1 d� � C2.t C
p
"t/:

This together with (7.22) yields (7.18) and the stability condition (7.19) by taking T > 0
sufficiently small. This completes the proof.

Once we obtain this kind of uniform estimate, compactness arguments allow us to pass
to the limit "!C0 in the regularized problem (7.3) and (7.4). By construction, the limit
.�;�1;�2/ satisfies (2.14)–(2.17) and8̂̂<̂

:̂
�;r�1;0;r�2;0 2 L

1.0; T IHm/ \ C.Œ0; T �IHm�1/;

�01;�
0
2 2 L

1.0; T IHmC1/ \ C.Œ0; T �IHm/;

@ˇ �; @ˇr�1; @
ˇr�2 2 Cw.Œ0; T �IL

2/

for any multi-index ˇ satisfying jˇj D m. It remains to show that the above weak conti-
nuity in time can be replaced by strong continuity. To this end, we use the technique by
Majda [24], that is, we make use of the energy estimate. See also Majda and Bertozzi [25].
For each t 2 Œ0; T � we introduce an inner product

h.�;r 1;r 2/; . Q�;r Q 1;r Q 2/it WD .A
mod
0 .t/V ; zV /L2

with V D .�; 1; 2/
T and zV D . Q�; Q 1; Q 2/

T, and denote the corresponding norm by
k � kt , which is equivalent to the standard L2-norm by Lemma 7.4. By using the energy
estimate corresponding to (7.21), for any multi-index ˇ satisfying jˇj D m we can show
the continuity of k.@ˇ �.t/; @ˇr�1.t/; @ˇr�2.t//kt in t 2 Œ0; T �. Particularly, for each
t0 2 Œ0; T � we have

lim
t!t0
k.@ˇ �.t/; @ˇr�1.t/; @

ˇ
r�2.t//kt0 D k.@

ˇ �.t0/; @
ˇ
r�1.t0/; @

ˇ
r�2.t0//kt0 :

Since we already knew weak continuity, this gives strong continuity, that is, we have
@ˇ �; @ˇr�1; @

ˇr�2 2 C.Œ0; T �IL
2/. Thus, Theorem 2.1 follows.

8. Hamiltonian structure

In this section we will show that the Kakinuma model (2.14)–(2.16) also enjoys a Hamil-
tonian structure analogous to the one exhibited by Benjamin and Bridges [1] on the full
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interfacial gravity waves. We recall that the Kakinuma model can be written simply as8̂̂<̂
:̂
l1.H1/@t� C L1.H1/�1 D 0;

�l2.H2/@t� C L2.H2; b/�2 D 0;

��1l1.H1/ � @t�1 C �2l2.H2/ � @t�2 D F;

(8.1)

where �1 D .�1;0; �1;1; : : : ; �1;N /T, �2 D .�2;0; �2;1; : : : ; �2;N�/T, lk andLk for k D 1;2
are defined by (6.3), and F is defined by

F D �1

°
g� C

1

2

�
j.rˆ

app
1 /jzD� j

2
C ..@zˆ

app
1 /jzD� /

2
�±

� �2

°
g� C

1

2

�
j.rˆ

app
2 /jzD� j

2
C ..@zˆ

app
2 /jzD� /

2
�±
: (8.2)

Here, ˆapp
1 and ˆapp

2 are approximate velocity potentials defined by (1.4).

8.1. Hamiltonian

As was expected, the Hamiltonian would be the total energy. In terms of our variables
.�;�1;�2/, the total energy EK is given by

EK.�;�1;�2/ D

Z
Rn
eK.�;�1;�2/ dx; (8.3)

where the density of the energy eK D eK.�;�1;�2/ is given by

eK
D

Z h1

�

1

2
�1.jrˆ

app
1 j

2
C .@zˆ

app
1 /2/ dz C

Z �

�h2Cb

1

2
�2.jrˆ

app
2 j

2
C .@zˆ

app
2 /2/ dz

C
1

2
.�2 � �1/g�

2

D
1

2
�1

NX
i;jD0

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;i � r�1;j

C
4ij

2.i C j / � 1
H
2.iCj /�1
1 �1;i�1;j

�
C
1

2
�2

N�X
i;jD0

� 1

pi C pj C 1
H
piCpjC1

2 r�2;i � r�2;j

�
2pi

pi C pj
H
piCpj
2 �2;irb � r�2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/�2;i�2;j

�
C
1

2
.�2 � �1/g�

2: (8.4)
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By integration by parts, we also have

EK.�;�1;�2/D

Z
Rn

�1
2
�1L1.H1/�1 ��1C

1

2
�2L2.H2; b/�2 ��2C

1

2
.�2 � �1/g�

2
�

dx:

In view of the symmetry of the operators L1.H1/ and L2.H2; b/, we can easily calculate
the variational derivatives of this energy functional and obtain8̂̂<̂

:̂
ı�E

K.�;�1;�2/ D �F;

ı�1E
K.�;�1;�2/ D �1L1.H1/�1;

ı�2E
K.�;�1;�2/ D �2L2.H2; b/�2:

(8.5)

Therefore, the Kakinuma model (8.1) can be written as0@ 0 �1l1.H1/
T ��2l2.H2/

T

��1l1.H1/ O O

�2l2.H2/ O O

1A @t
0@ �

�1

�2

1A D 0@ ı�EK.�;�1;�2/

ı�1E
K.�;�1;�2/

ı�2E
K.�;�1;�2/

1A : (8.6)

As we will see later, the canonical variables of the Kakinuma model are the surface
elevation � and � given by

� D �2ˆ
app
2 jzD� � �1ˆ

app
1 jzD� D �2l2.H2/ � �2 � �1l1.H1/ � �1; (8.7)

which is the canonical variable for the full interfacial gravity waves found by Benjamin
and Bridges [1] with .ˆ1; ˆ2/ replaced by .ˆapp

1 ; ˆ
app
2 /. Then the compatibility condi-

tions (2.18)–(2.20) and (8.7) are written in the form8̂̂̂̂
<̂
ˆ̂̂:

L1;i .H1/�1 D 0 for i D 1; 2; : : : ; N ;

L2;i .H2; b/�2 D 0 for i D 1; 2; : : : ; N �;

L1;0.H1/�1 CL2;0.H2; b/�2 D 0;

��1l1.H1/ � �1 C �2l2.H2/ � �2 D �:

(8.8)

Therefore, it follows from Lemma 6.4 that once the canonical variables .�; �/ are given
in an appropriate class of functions, �01 D .�1;1; : : : ; �1;N /

T, �02 D .�2;1; : : : ; �2;N�/
T,

r�1;0, r�2;0 can be determined uniquely. In other words, these variables depend on the
canonical variables .�; �/ and b, and furthermore they depend on � linearly. Although the
solution .�1;�2/ to the above equations is not unique, we will denote the solution by

�1 D S1.�; b/�; �2 D S2.�; b/�:

This abbreviation causes no confusion in the following calculations. Since we will fix b,
we simply write S1.�/ and S2.�/ in place of S1.�; b/ and S2.�; b/ for simplicity. Now,
we define the Hamiltonian to the Kakinuma model as

HK.�; �/ D EK.�;S1.�/�;S2.�/�/; (8.9)

which is uniquely determined from .�; �/.
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8.2. Hamilton’s canonical form

We proceed to show that the Kakinuma model (8.1) is equivalent to Hamilton’s canonical
form with the Hamiltonian defined by (8.9). In the following, we fix b 2 W m;1 with
m > n

2
C 1 and put

Umb D
®
� 2 Hm

I infx2Rn.h1 � �.x// > 0 and infx2Rn.h2 C �.x/ � b.x// > 0
¯
;

which is an open set in Hm. We also use the function space VH k D ¹�I r� 2 Hm�1º. For
Banach spaces X and Y, we denote by B.XIY/ the set of all linear and bounded operators
from X into Y. By Lemma 6.4, we easily see the following lemma.

Lemma 8.1. Let m be an integer such thatm > n
2
C 1 and b 2 W m;1. For each � 2 Um

b

and for k D 1; 2; : : : ; m, the linear operators´
S1.�/ W VH k 3 � 7! �1 2 VH

k � .H k/N ;

S2.�/ W VH k 3 � 7! �2 2 VH
k � .H k/N

�

;

where .�1;�2/ is the solution to (8.8), are defined. Moreover, we have S1.�/ 2 B. VH k I

VH k � .H k/N / and S2.�/ 2 B. VH k I VH k � .H k/N
�

/.

Formally, P k D D�Sk.�/Œ P���, the Fréchet derivative of Sk.�/� with respect to �
applied to P� for k D 1; 2 satisfy8̂̂̂̂

ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

L1;i .H1/ P 1 D DH1L1;i .H1/Œ P���1 for i D 1; 2; : : : ; N ;

L2;i .H2; b/ P 2 D �DH2L2;i .H2; b/Œ P���2 for i D 1; 2; : : : ; N �;

L1;0.H1/ P 1 CL2;0.H2; b/ P 2

D DH1L1;0.H1/Œ P���1 �DH2L2;0.H2; b/Œ P���2;

��1l1.H1/ � P 1 C �2l2.H2/ � P 2

D �
�
�1.@H1l1.H1// � �1 C �2.@H2l2.H2// � �2

�
P�

(8.10)

with �j D Sj .�/� for j D 1; 2, where for i D 1; : : : ; N ,

DH1L1;i .H1/Œ P���1 D

NX
jD0

�
DH1L1;ij .H1/Œ

P�� �H 2i
1 DH1L1;0j .H1/Œ

P��

� 2iH 2i�1
1
P�L1;0j .H1/

�
�1;j ;

DH1L1;ij .H1/Œ
P���1;j D �r � . P�H

2.iCj /
1 r�1;j /C 4ij P�H

2.iCj�1/
1 �1;j ;

and so on. By using these equations together with Lemma 6.4 and standard arguments,
we can justify the Fréchet differentiability of Sk.�/ with respect to � for k D 1; 2. More
precisely, we have the following lemma.

Lemma 8.2. Let m be an integer such that m > n
2
C 1 and b 2 W m;1. Then the maps

Um
b
3 � 7!S1.�/2B. VH

k I VH k � .H k/N / andUm
b
3 � 7!S2.�/2B. VH

k I VH k � .H k/N
�

/

are Fréchet differentiable for k D 1; 2; : : : ; m, and (8.10) holds.
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We proceed to calculate the variational derivatives of the Hamiltonian HK.�;�/, which
are given by the following lemma.

Lemma 8.3. Let m be an integer such that m > n
2
C 1 and b 2 W m;1. Then the map

Um
b
� VH 1 3 .�; �/ 7! HK.�; �/ 2 R is Fréchet differentiable and the variational deriva-

tives of the Hamiltonian are8̂̂<̂
:̂
ı�H

K.�; �/ D �L1;0.H1/�1;

ı�H
K.�; �/ D .ı�E

K/.�;�1;�2/

C.L1;0.H1/�1/
�
�1.@H1l1/.H1/ � �1 C �2.@H2l2/.H2/ � �2

�
;

where �k D Sk.�/ for k D 1; 2.

Proof. Let us calculate Fréchet derivatives of the Hamiltonian HK.�; �/. Let us consider
first Um

b
�H 2 3 .�; �/ 7! HK.�; �/. For any P� 2 H 2, we see that

D�H
K.�; �/Œ P��

D .D�1E
K/.�;S1.�/�;S2.�/�/ŒS1.�/ P��C .D�2E

K/.�;S1.�/�;S2.�/�/ŒS2.�/ P��

D ..ı�1E
K/.�;�1;�2/;S1.�/ P�/L2 C ..ı�2E

K/.�;�1;�2/;S2.�/ P�/L2

D .�1L1.H1/�1;S1.�/ P�/L2 C .�2L2.H2; b/�2;S2.�/ P�/L2

D
�
�1l1.H1/.L1;0.H1/�1/;S1.�/ P�

�
L2
�
�
�2l2.H2/.L1;0.H1/�1/;S2.�/ P�

�
L2

D .L1;0.H1/�1; �1l1.H1/ � S1.�/ P� � �2l2.H2/ � S2.�/ P�/L2

D �.L1;0.H1/�1; P�/L2 ;

where we used (8.5) and Lemma 8.1. The above calculations are also valid when .�; P�/ 2
VH 1 � VH 1, provided we replace the L2-inner products with the X0–X duality product,

where X D VH 1 � .H 1/N or X D VH 1 � .H 1/N
�

for the first lines, and X D VH 1 for the
last line. This gives the first equation of the lemma.

Similarly, for any .�; �/ 2 Um
b
� VH 2 and P� 2 Hm we see that

D�H
K.�; �/Œ P�� D .D�E

K/.�;S1.�/�;S2.�/�/Œ P��

C .D�1E
K/.�;S1.�/�;S2.�/�/ŒD�S1.�/Œ P����

C .D�2E
K/.�;S1.�/�;S2.�/�/ŒD�S2.�/Œ P����

D ..ı�E
K/.�;�1;�2/; P�/L2 C ..ı�1E

K/.�;�1;�2/;D�S1.�/Œ P���/L2

C ..ı�2E
K/.�;�1;�2/;D�S2.�/Œ P���/L2 :

Here, we have�
.ı�1E

K/.�;�1;�2/;D�S1.�/Œ P���
�
L2
C
�
.ı�2E

K/.�;�1;�2/;D�S2.�/Œ P���
�
L2

D
�
�1L1.H1/�1;D�S1.�/Œ P���

�
L2
C
�
�2L2.H2; b/�2;D�S2.�/Œ P���

�
L2

D
�
L1;0.H1/�1; �1l1.H1/ �D�S1.�/Œ P��� � �2l2.H2/ �D�S2.�/Œ P���

�
L2
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D
�
L1;0.H1/�1;

�
�1.@H1l1/.H1/ � �1 C �2.@H2l2/.H2/ � �2

�
P�
�
L2

D
�
.L1;0.H1/�1/

�
�1.@H1l1/.H1/ � �1 C �2.@H2l2/.H2/ � �2

�
; P�
�
L2
;

where we used the identity

�1l1.H1/ �D�S1.�/Œ P��� � �2l2.H2/ �D�S2.�/Œ P���

D
�
�1.@H1l1/.H1/ � �1 C �2.@H2l2/.H2/ � �2

�
P�;

stemming from (8.10). Again, the above identities are still valid for .�; �/ 2 Um
b
� VH 1

provided we replace the L2-inner products with suitable duality products. This concludes
the proof of the Fréchet differentiability, and the second equation of the lemma.

Now we are ready to show another main result in this paper.

Theorem 8.4. Let m be an integer such that m > n
2
C 1 and b 2 W m;1. Then the Kak-

inuma model (2.14)–(2.16) is equivalent to Hamilton’s canonical equations

@t� D
ıHK

ı�
; @t� D �

ıHK

ı�
; (8.11)

with HK defined by (8.9) as long as �.�; t / 2 Um
b

and �.�; t / 2 VH 1. More precisely, for any
regular solution .�;�1;�2/ to the Kakinuma model (2.14)–(2.16), if we define � by (8.7),
then .�; �/ satisfies Hamilton’s canonical equations (8.11). Conversely, for any regular
solution .�; �/ to Hamilton’s canonical equations (8.11), if we define �1 and �2 by �k D
Sk.�/� for k D 1; 2, then .�;�1;�2/ satisfies the Kakinuma model (2.14)–(2.16).

Proof. Suppose that .�;�1;�2/ is a solution to the Kakinuma model (2.14)–(2.16). Then
it satisfies (8.6), and in particular

@t� D �L1;0.H1/�1: (8.12)

Moreover, it follows from (8.7) and (8.6) that

@t� D �2l2.H2/ � @t�2 � �1l1.H1/ � @t�1

C
�
�2.@H2l2.H2// � �2 C �1.@H1l1.H1// � �1

�
@t�

D �.ı�E
K/.�;�1�2/

� .L1;0.H1/�1/
�
�1.@H1l1.H1// � �1 C �2.@H2l2.H2// � �2

�
:

These equations together with Lemma 8.3 show that .�; �/ satisfies (8.11).
Conversely, suppose that .�;�/ satisfies Hamilton’s canonical equations (8.11) and put

�k DSk.�/� for kD 1;2. Then it follows from (8.11) and Lemma 8.3 that we have (8.12).
This fact and Lemma 8.1 imply the equations´

l1.H1/@t� C L1.H1/�1 D 0;

�l2.H2/@t� C L2.H2; b/�2 D 0:
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We see also that

� �1l1.H1/ � @t�1 C �2l2.H2/ � @t�2

D @t� �
�
�1.@H1l1/.H1/ � �1 C �2.@H2l2/.H2/ � �2

�
@t�

D �ı�E
K.�;�1�2/ D F;

where we used (8.11), (8.12), Lemma 8.3, and (8.5). Therefore, .�;�1;�2/ satisfies (8.1),
that is, the Kakinuma model (2.14)–(2.16).

9. Conservation laws

The Kakinuma model (2.14)–(2.16) has conservative quantities: the excess of massR
Rn � dx and the total energy EK.�; �1; �2/ given by (8.3). Moreover, in the case of a

flat bottom in the lower layer, the momentum given by

MK.�;�1;�2/ D

“
�1.t/

�1rˆ
app
1 dx dz C

“
�2.t/

�2rˆ
app
2 dx dz

D

Z
Rn
�r.��1l1.H1/ � �1 C �2l2.H2/ � �2/ dx

D

Z
Rn
�r� dx

is also conserved for the Kakinuma model. Here, we also give the corresponding flux
functions to these conservative quantities.

We have two forms of conservation of mass by (2.14) and (2.15) with i D 0, that is,

@t� Cr �

NX
jD0

�
�

1

2j C 1
H
2jC1
1 r�1;j

�
D 0; (9.1)

@t� Cr �

N�X
jD0

� 1

pj C 1
H
pjC1

2 r�2;j �
pj

pj
H
pj
2 �2;jrb

�
D 0: (9.2)

Proposition 9.1. Any regular solution .�;�1;�2/ to the Kakinuma model (2.14)–(2.16)
satisfies the conservation of energy

@te
K
Cr � f K

e D 0;

where the energy density eK is defined by (8.4) and the corresponding flux f K
e is given by

f K
e D �1

NX
i;jD0

�
�

1

2.i C j /C 1
H
2.iCj /C1
1 r�1;j

�
.@t�1;i /

C �2

N�X
i;jD0

�
�

1

pi C pj C 1
H
piCpjC1

2 r�2;j C
pj

pi C pj
H
piCpj
2 �2;jrb

�
.@t�2;i /:
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Proof. By using F defined by (8.2), we see that

@te
K
D �F@t�

C �1

NX
i;j

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;j � r@t�1;i

C
4ij

2.i C j / � 1
H
2.iCj /�1
1 �1;j @t�1;i

�
C �2

N�X
i;jD0

°� 1

pi C pj C 1
H
piCpjC1

2 r�2;j

�
pj

pi C pj
H
piCpj
2 �2;jrb

�
� r@t�2;i

C

�
�

pi

pi C pj
H
piCpj
2 rb � r�2;j

C
pipj

pi C pj � 1
H
piCpj�1

2 .1C jrbj2/�2;j

�
@t�2;i

±
D �F@t� � r � f

K
e C �1L1.H1/�1 � @t�1 C �2L2.H2; b/�2 � @t�2;

so that, by (8.1),

@te
K
Cr � f K

e D �F@t� C �1L1.H1/�1 � @t�1 C �2L2.H2; b/�2 � @t�2

D .�F � �1l1.H1/ � @t�1 C �2l2.H2/ � @t�2/@t�

D 0;

which is the desired identity.

Proposition 9.2. Suppose that the bottom in the lower layer is flat, that is, bD 0. Then any
regular solution .�;�1;�2/ to the Kakinuma model (2.14)–(2.16) satisfies the conservation
of momentum

@tm
K
Cr � F K

m D 0;

where the momentum densitymK and the corresponding flux matrix F K
m are given by

mK
D �r� D �r.�2l2.H2/ � �2 � �1l1.H1/ � �1/;

F K
m D �

�
�@t .�2l2.H2/ � �2 � �1l1.H1/ � �1/C e

K�Id
C �1

NX
i;jD0

1

2.i C j /C 1
H
2.iCj /C1
1 r�1;i ˝r�1;j

C �1

N�X
i;jD0

1

pi C pj C 1
H
piCpjC1

2 r�2;i ˝r�2;j :
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Proof. For l D 1; 2; : : : ; n, we see by (8.1) that

@t .�@l�/ � @l .�@t�/ D .@t�/.�2l2.H2/ � @l�2 � �1l1.H1/ � @l�1/

� .@l�/.�2l2.H2/ � @t�2 � �1l1.H1/ � @t�1/

D �2L2.H2; 0/�2 � @l�2 C �1L1.H1/�1 � @l�1 � .@l�/F

D �r �

²
�1

NX
i;jD0

� 1

2.i C j /C 1
H
2.iCj /C1
1 r�1;i

�
@l�1;j

C �2

N�X
i;jD0

� 1

pi Cpj C 1
H
piCpjC1

2 r�2;i

�
@l�2;j

³
CR1;

where F is given by (8.2) and

R1 D �1

NX
i;jD0
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C
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2
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N�X
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C
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Here, we have
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1

2
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i;jD0

�
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�
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2
�
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so that R1 D @leK. These identities yield the desired one.
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