Ann. Inst. H. Poincaré © 2023 Association Publications de 1’Institut Henri Poincaré
Anal. Non Linéaire 41 (2024), 257-315 Published by EMS Press
DOI 10.4171/ATHPC/82 This work is licensed under a CC BY 4.0 license

A mathematical analysis of the Kakinuma model
for interfacial gravity waves.
Part I: Structures and well-posedness

Vincent Duchéne and Tatsuo Iguchi

Abstract. We consider a model, which we named the Kakinuma model, for interfacial gravity
waves. As is well known, the full model for interfacial gravity waves has a variational structure
whose Lagrangian is an extension of Luke’s Lagrangian for surface gravity waves, that is, water
waves. The Kakinuma model is a system of Euler-Lagrange equations for approximate Lagrangians,
which are obtained by approximating the velocity potentials in the Lagrangian for the full model.
In this paper we first analyze the linear dispersion relation for the Kakinuma model and show that
the dispersion curves highly fit that of the full model in the shallow water regime. We then analyze
the linearized equations around constant states and derive a stability condition, which is satisfied for
small initial data when the denser water is below the lighter water. We show that the initial value
problem is in fact well posed locally in time in Sobolev spaces under the stability condition, the
noncavitation assumption, and intrinsic compatibility conditions, in spite of the fact that the initial
value problem for the full model does not have any stability domain so that its initial value problem
is ill posed in Sobolev spaces. Moreover, it is shown that the Kakinuma model enjoys a Hamilto-
nian structure and has conservative quantities: mass, total energy, and in the case of a flat bottom,
momentum.

1. Introduction

We are concerned with the motion of interfacial gravity waves at the interface between two
layers of immiscible waters in a domain of the (n + 1)-dimensional Euclidean space in the
rigid-lid case. Let ¢ be the time, x = (x1, ..., X,) the horizontal spatial coordinates, and z
the vertical spatial coordinate. We assume that the interface, the rigid lid of the upper layer,
and the bottom of the lower layer are represented as z = {(x,t),z = hy,and z = —h, +
b(x), respectively, where {(x, t) is the elevation of the interface, 41 and h, are mean
thicknesses of the upper and lower layers, and b(x) represents the bottom topography.
The only external force applied to the system is the constant and vertical gravity, and
interfacial tension is neglected. Moreover, we assume that the waters in the upper and the
lower layers are both incompressible and inviscid fluids with constant densities p; and p,,
respectively, and that the flows are both irrotational. See Figure 1. Then the motion of the
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Figure 1. Interfacial gravity waves.

waters is described by the velocity potentials ®; and ®, and the pressures P; and P, in
the upper and the lower layers, respectively, satisfying the basic equations in the theory
of fluid dynamics, which will be referred to as the full model for interfacial gravity waves
throughout this paper. As shown by Luke [23], the basic equations for the surface gravity
waves, that is, the water wave problem, have a variational structure, whose Lagrangian is
written in terms of the surface elevation of the water and the velocity potential, and the
Lagrangian density is given by the vertical integral of the pressure in the water region. The
full model for interfacial gravity waves also has a variational structure and the Lagrangian
density £(®;, ®,, ¢) is again given by the vertical integral of the pressure in both water
regions. Kakinuma [17-19] proposed a model for interfacial gravity waves and applied
his model to numerically simulate the waves. To derive the model, he approximated the
velocity potentials ®; and &, by

N
O (x,2,0) = Y Zii (25 I ()i (x, 1) (1.1)

i=0

for k = 1,2, where {Z;;} and {Z,;} are appropriate function systems in the vertical
coordinate z and may depend on hy (x) and hs (x), respectively, which are the thicknesses
of the upper and the lower layers in the rest state, whereas ¢x = (¢x.0, Pk.1,--->Pk.N) >
k = 1,2, are unknown variables. Then he derived an approximate Lagrangian density
L3P (hy, o, §) = L(OT, DI, ¢) for unknowns (¢1, @2, ¢). The Kakinuma model is
a corresponding system of Euler—Lagrange equations for the approximated Lagrangian
density £L%P(¢;, ¢, {). Different choices of the function systems {Z ;} and {Z, ;} give
different Kakinuma models and we have to carefully choose the function systems for the
Kakinuma model to provide good approximations for interfacial gravity waves.

The Kakinuma model is an extension to interfacial gravity waves of the so-called
Isobe—Kakinuma model for surface gravity waves, that is, water waves. In the case of
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surface gravity waves, the basic equations are known to have a variational structure with
Luke’s Lagrangian density Ly (P, ¢), where ¢ is the surface elevation and & is the
velocity potential of the water. The Isobe—Kakinuma model is a system of Euler—Lagrange
equations for the approximated Lagrangian density £%P (@, () = Lyke (PP, ¢), where
®P s an approximate velocity potential

N
QP (x,z,0) = Y Zi(z:b(x))i(x.1) (1.2)

i=0

and ¢ = (¢o, $1....,¢n)T are unknown variables. The model was first proposed by
Isobe [15, 16] and then applied by Kakinuma to numerically simulate water waves. We
note that a similar model was derived by Klopman, van Groesen, and Dingemans [21],
and used to simulate water waves. See also Papoutsellis and Athanassoulis [29]. Recently,
this model was analyzed from a mathematical point of view. One possible choice of the
function system {Z;} is a set of polynomials in z, for example, Z;(z;b(x)) = (z + h —
b(x))Pi, with integers p; satisfying 0 = pg < p; < --- < pn. Under this choice of the
function system {Z;}, the initial value problem to the Isobe-Kakinuma model was ana-
lyzed by Murakami and Iguchi [27] in a special case and by Nemoto and Iguchi [28] in
the general case. The hypersurface # = 0 in the space-time R” x R is characteristic for the
Isobe—Kakinuma model, so that one needs to impose some compatibility conditions on
the initial data for the existence of the solution. Under these compatibility conditions and
a sign condition —d, P?PP > ¢o > 0 on the water surface, they showed the well-posedness
of the initial value problem locally in time, where PP is an approximate pressure in the
Isobe—Kakinuma model calculated from Bernoulli’s equation. Moreover, Iguchi [12, 13]
showed that under the choice of the function system

212 b(x)) = { (z +h)? | ?n the case of a ﬂat.bottom, (L3)
(z+ h—b(x))" inthe case of a variable bottom,

the Isobe—Kakinuma model is a higher-order shallow water approximation for the water
wave problem in a strongly nonlinear regime. Furthermore, Duchéne and Iguchi [8]
showed that the Isobe—Kakinuma model also enjoys a Hamiltonian structure analogous
to the one exhibited by Zakharov [32] on the full water wave problem. Our aim in the
present paper is to extend these results on surface gravity waves to interfacial gravity
waves.

In view of these results on the Isobe—Kakinuma model, in the present paper we con-
sider the Kakinuma model under the choice of the approximate velocity potentials in (1.1)
as

N
O (x.z.0) =Y (—z +h) X pri(x.1).
i=0
N*
QPP (x.z.1) =Y (2 +ha —b(x)? ¢ (x.1).

i=0

(1.4)
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where N, N* and py, p1, ..., pn+ are nonnegative integers satisfying 0 = py < p; <
.-+ < pn+. In applications of the Kakinuma model, it would be better to choose N* =
N and p; = 2i in the case of a flat bottom, and N* = 2N and p; = i in the case of
a variable bottom. In the case N = N* = 0, that is, if we choose the approximation
CD;LPP (x,z,t) = ¢r(x,t) for k = 1,2, functions independent of the vertical coordinate z,
then the corresponding Kakinuma model is reduced to the shallow water equations. In the
case N + N* > 0, the Kakinuma model is classified into a system of nonlinear dispersive
equations.

It is well known that in the case of a flat bottom b = 0, the dispersion relation of the
linearized equations to the full model around the flow (¢, @1, ®2) = (0, u; - x, u, - x) with
constant horizontal velocities #; and u, is given by

(p1 coth(hy|€]) + p2 coth(h |€]))w?
+ 2(p1€ - ug coth(h1|&]) + p2& - us coth(hz|€]))w
+ p1(& - ur)? coth(hy|§]) + pa(& - u2)* coth(hz|&|) — (02 — p1)gl€| = O,

where & € R” is the wave vector, w € C the angular frequency, and g the gravitational
constant. It is easy to see that the roots @ of the above equation are always real for any
wave vector £ € R” if and only if 1 = u; and p, > p;. Otherwise, the roots of the above
equation have the form w = w, (|€]) * iw; (|€]) satisfying w; (|§]) — +oo as |§| — +o0,
which leads to an instability of the interface. The instabilities in the case p, > p; and
uy # u, and in the case p, < p; and u; = u, are known as the Kelvin—Helmholtz and
the Rayleigh—Taylor instabilities, respectively. For more details, see for example Drazin
and Reid [7]. In the rest of this paper, we are interested in the situation where

(p2 —p1)g >0,

that is, the denser water is below the lighter water. In the case u; = u, = 0, the linear
dispersion relation is written simply as

2 (p2 — p1)gl&]

~ p1coth(hi]&]) + pa coth(hz|€])

We denote the right-hand side by wrw(&)?2. Then the phase speed crw (£) of the plane wave
solution related to the wave vector € is given by

cw(§) = (1.5)

& p1l€| coth(h1[§]) + p2 || coth(h2|E])”

As a shallow water limit /11|&|, h,|&| — 0, we have

[(p2 — p1)gh1h2
~ =4,/ —=, 1.6
crw(€) >~ csw orla + paly (1.6)

ow(®) _ \/ (p2— p1)g
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where csw is the phase speed of infinitely long and small interfacial gravity waves. In Sec-
tion 3 we will analyze the linear dispersion relation of the Kakinuma model and calculate
the phase speed cx (&) of the plane wave solution related to the wave vector &. Under the
choice N* = N and p; = 2i,or N* = 2N and p; = i in the approximation (1.4) of the
velocity potentials, it turns out that

lerw (8)% — ck ()] < (h1|&] + ha|&))*NV+2, (1.7)

which indicates that the Kakinuma model may be a good approximation of the full model
for interfacial gravity waves in the shallow water regime /1 |&|, h2|&| < 1. We note that
the Miyata—Choi—Camassa model derived by Miyata [26] and Choi and Camassa [4] is a
model for interfacial gravity waves in the strongly nonlinear regime and can be regarded as
a generalization of the Green—Naghdi equations for water waves into a two-layer system.
Let cpec(€) be the phase speed of the plane wave solution related to the wave vector & for
the linearized equations of the Miyata—Choi—Camassa model around the rest state. Then
we have

letw (§)” — emcc(§)?] < (h1|€] + halED*,

so that the Kakinuma model gives a better approximation of the full model than the
Miyata—Choi—Camassa model in the shallow water regime, at least, at the linear level. A
rigorous analysis for the consistency of the Kakinuma model in the shallow water regime
will be analyzed in the subsequent paper Duchéne and Iguchi [9]. On the other hand, in
the deep water limit we have

lim c 250,
Y L LY

which is not consistent with the limit of the full model

lim c 2=0.
el o0 V)
We notice that the Miyata—Choi—Camassa model is only apparently consistent with the
full model in this deep water limit since

lim c 2=0,
il b o M)

but we note also that
- aw(§)?®
hyl€]h2 & |00 cmcc (§)?

‘We refer to Duchéne, Israwi, and Talhouk [10] for further discussion and the derivation of
modified Miyata—Choi—Camassa models having either the same dispersion relation as the
full model, or the same behavior as the Kakinuma model in the deep water limit. As we
discuss below, thanks to the high-frequency behavior of the linearized equations, and con-
trarily to both the full model and the Miyata—Choi—Camassa model, the Kakinuma model
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has a nontrivial stability domain and, as a result, the initial value problem to the Kakinuma
model is well posed locally in time in Sobolev spaces under appropriate assumptions on
the initial data.

As we have already seen, the roots w € C of the dispersion relation of the linearized
equations of the full model around the rest state are always real, so that the corresponding
initial value problem is well posed. However, as for the nonlinear problem, even if the ini-
tial velocity is continuous on the interface, a discontinuity of the velocity in the tangential
direction on the interface would be created instantaneously in general, so that the Kelvin—
Helmholtz instability appears locally in space. As a result, the initial value problem for
the full model turns out to be ill posed. For more details, we refer to Iguchi, Tanaka, and
Tani [14]. See also Kamotski and Lebeau [20] and Lannes [22]. In Section 4 we consider
the linearized equations of the Kakinuma model around an arbitrary flow. After freezing
the coefficients and neglecting lower-order terms of the linearized equations, we calculate
the linear dispersion relation and derive a stability condition, which is equivalent to

P102
p1Hz0 + po Hyog

=3, (P — P{™) — VO — Vdfipp|2 >co>0 (1.8)
on the interface, where P{* and P," are approximate pressures of the waters in the
upper and the lower layers in the Kakinuma model calculated from Bernoulli’s equations,
H, and H, are the thicknesses of the upper and the lower layers, respectively, «; is a

constant depending only on N, a5 is a constant determined from {pg, p1,..., py+}, and
V = (3x,,...,0x,)" is the nabla with respect to the horizontal spatial coordinates x =
(x1,...,xpn). If p; = 0, then (1.8) coincides with the stability condition for the Isobe—

Kakinuma model for water waves derived by Nemoto and Iguchi [28].

As in the case of the Isobe—Kakinuma model, the hypersurface ¢t = 0 in the space-
time R” x R is characteristic for the Kakinuma model, so that one needs to impose some
compatibility conditions on the initial data for the existence of the solution. Under these
compatibility conditions, the noncavitation assumption Hy > ¢¢ > 0 and H, > ¢¢ > 0,
and the stability condition (1.8), we will show in this paper that the initial value problem
to the Kakinuma model is well posed locally in time in Sobolev spaces. Here, we note that
the coefficients o7 and o, in the stability condition (1.8) converge to 0 as N, N* — o0, so
that the domain of stability diminishes as N and N * grow. This fact is consistent with the
aforementioned properties of the full model.

Let us further comment on the significance of approximating an ill-posed system with
well-posed systems. Firstly, while the initial value problem for the full model is ill posed
in Sobolev spaces, analytic solutions do exist, as shown by Sulem, Sulem, Bardos, and
Frisch [31] and Sulem and Sulem [30] in the case where upper and lower boundaries are
absent, and we expect that the corresponding solutions to the Kakinuma model provide
valid approximations. Secondly, it should be recalled that the full model itself is a sim-
plified model that discards effects that would stabilize the flow, especially vertical mixing
across the pycnocline. In [22], Lannes considered another stabilizing effect, namely inter-
facial tension, and showed the existence and uniqueness of solutions with finite regularity
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to the corresponding initial value problem over a long time in the shallow water regime.
The key physical mechanism at stake is that the Kelvin—Helmholtz instability, which is
responsible for ill-posedness issues, occurs at sufficiently small spatial scale, so that it
is possible to regularize the equations while being almost transparent to the behavior of
the flow at large spatial scale, which is of practical interest for applications. Our results
demonstrate that the Kakinuma model inherently incorporates such a stabilizing effect
whose strength diminishes as N and N* grow, consistently with the expectation that the
accuracy with respect to the full model increases.

As is well known, the full model for interfacial gravity waves has a conserved energy

&= // —,01 (IVO1(x,z,0)]* + (3:P1(x,z,7))*) dx dz
210 2

f/ —p2 (IV®a(x,z, D? + (0, D2(x,z,1)) )dx dz
Qz(t) 2

+ [ 3= gt ax. (19
Rn

where 21 (¢) and 2, (¢) are the upper and the lower layers, respectively. This is the total
energy, that is, the sum of the kinetic energies of the waters in the upper and the lower
layers and the potential energy due to gravity. Moreover, Benjamin and Bridges [1] found
that the full model can be written in Hamilton’s canonical form

CSRPOP
- t¥ — 8§»

where the canonical variable ¢ is defined by

d(x.1) = pr®a(x,8(x,1),1) — p1 P1(x,8(x,2).1) (1.10)

and the Hamiltonian J is the total energy € written in terms of the canonical variables
(¢, ¢). Their result can be viewed as a generalization into interfacial gravity waves of
Zakharov’s Hamiltonian [32] for water waves. For mathematical treatments of the Hamil-
tonian for interfacial gravity waves, we refer to Craig and Groves [5] and Craig, Guyenne,
and Kalisch [6]. The Kakinuma model also has a conserved energy €X, which is the total
energy given by (1.9) with ®; and ®, replaced by CIDipp and @;pp. Moreover, we will
show that the Kakinuma model enjoys a Hamiltonian structure with a Hamiltonian H¥
the total energy in terms of canonical variables ¢ and ¢, where ¢ is defined by (1.10)
with ®; and @, replaced by @ and ®3. This fact can be viewed as a generalization
to the Kakinuma model for interfacial gravity waves of a Hamiltonian structure of the
Isobe—Kakinuma model for water waves given by Duchéne and Iguchi [8].

The contents of this paper are as follows. In Section 2 we begin with reviewing the
full model for interfacial gravity waves and derive the Kakinuma model. Then we state
one of the main results of this paper, that is, Theorem 2.1 about the well-posedness of the
initial value problem to the Kakinuma model locally in time. In Section 3 we analyze the
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linear dispersion relation of the linearized equations of the Kakinuma model around the
rest state in the case of a flat bottom and show (1.7). In Section 4 we derive the stability
condition (1.8) by analyzing the linearized equations of the Kakinuma model around an
arbitrary flow. In Section 5 we derive an energy estimate for the linearized equations with
frozen coefficients and then transform the equations into a standard positive symmetric
system by introducing an appropriate symmetrizer. In Section 6 we introduce several dif-
ferential operators related to the Kakinuma model and derive elliptic estimates for these
operators. In Section 7 we prove one of our main result, Theorem 2.1, by using the method
of parabolic regularization of the equations. In Section 8 we prove another main result,
Theorem 8.4, which ensures that the Kakinuma model enjoys a Hamiltonian structure.
Finally, in Section 9 we derive conservation laws of mass, momentum, and energy for the
Kakinuma model together with the corresponding flux functions.

Notation. We denote by W7 (R") the L? Sobolev space of order m on R” and H™” =
W™2(R™). The norm of a Banach space B is denoted by || - | . The L2-inner product
is denoted by (-, -)z2. We put 9; = %, dj = 0y; = %, and 0, = a% [P,O] = PO —
QP denotes the commutator and [P;u,v] = P(u-v) — (Pu) - v —u - (Pv) denotes the
symmetric commutator. For a matrix A we denote by AT the transpose of A. For a vector
¢ = (¢o, P1....,¢n)T we denote the last N components by ¢’ = (¢1,...,¢n)T. We
use the notational convention % = (0. We denote by C(ay, az,...) a positive constant
depending on aq, as,.... The expression f < g means that there exists a nonessential
positive constant C such that f < Cg holds, and f ~ g means that f S gandg < f
hold.

2. Kakinuma model and well-posedness

We begin with formulating mathematically the full model for interfacial gravity waves.
In what follows, the upper layer, the lower layer, the interface, the rigid lid of the upper
layer, and the bottom of the lower layer, at time ¢, are denoted by 21 (2), Q2(¢), ['(¢), Xy,
and X, respectively. Then the motion of the waters is described by the velocity potentials
@, and &, and the pressures P; and P, in the upper and the lower layers satisfying the
equations of continuity

A®y + 2D =0 inQ(1), 2.1
ADy 4+ 32D, =0 in (1), (2.2)

where A = 97 + - -+ + 02 is the Laplacian with respect to the horizontal spatial coordinates
x = (x1,...,Xp), and Bernoulli’s equations

1 .
pl(atfbl + 5 (VL + (3:91)%) + gz) F P =0 inQ(), 2.3)

1
pa(0:®2 + SV + (0:92)7) +g2) + P2 =0 in (). (24)
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The dynamical boundary condition on the interface is given by
Py, =P, on F(l) 2.5)

The kinematic boundary conditions on the interface, the rigid lid, and the bottom are given
by

96+ VD -VE—0,0, =0 onTD(t), (2.6)
96+ Vdy-VE—0,0, =0 onT(t), @.7)
3,9, =0 onX,, 2.8)

Vd,-Vb—03,8, =0 onXp. 2.9)

These are the basic equations for interfacial gravity waves. We can remove the pressures
Py and P, from these basic equations. In fact, it follows from Bernoulli’s equations (2.3)—
(2.4) and the dynamical boundary condition (2.5) that

1
P1 <3tq>1 + §(|V‘1>1|2 +(0;91)%) + gz)
1
- pz(atopz + (V0 + (0:92)) + gz) -0 onT(). (2.10)

Then the basic equations consist of (2.1)—(2.2) and (2.6)—(2.10), and we can regard Ber-
noulli’s equations (2.3)—(2.4) as the definition of the pressures P and P,.

In the case of surface gravity waves, as shown by Luke [23], the basic equations have
a variational structure and Luke’s Lagrangian density is given by the vertical integral of
the pressure P — Py, in the water region, where P, is a constant atmospheric pressure.
Therefore, it is natural to expect that even in the case of interfacial gravity waves, the
vertical integral of the pressure in the water regions would give a Lagrangian density £,
so that we first define LP™ by

hy &(x,t)
Lpre :/ Pi(x,z,t)dz +/ Py(x,z,t)dz. (2.11)
&(x,t) —h2+b(x)

By Bernoulli’s equations (2.3)—(2.4), this can be written in terms of the velocity potentials
®,, ®,, and the elevation of the interface ¢ as

hi 1
o= p) / (2:@1 + (VL + @:01)?)) dz
¢ 2

¢ 1
_ p2/ (a,q>2 F (VO + (azcbz)z)) dz
—hy+b 2

1 1 1
- 5(’02 —p1)gs* — Eplgh% + 5028(—h2 + b)>.
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The last two terms do not contribute to the calculus of variations of this Lagrangian, so
that we define the Lagrangian density £(®q, ®,, ¢) by

hy 1
0@ 0.0 = pr [ (00 + 30VOUP + 0001 a2

c i
pa [ (804 (V0P + @:02)%)) 82
—hy+b

1
— 52— p1)g¢? (2.12)
and the action function J(®;, &5, ¢) by

5]
H(Cbl,q’z,f):/ / L(®y, Py, &) dx dr.
to R”

It is not difficult to check that the corresponding system of Euler-Lagrange equations is
exactly the same as the basic equations (2.1)—(2.2) and (2.6)—(2.10) for interfacial gravity
waves.

We proceed to derive the Kakinuma model for interfacial gravity waves. Let &
and @5 be approximate velocity potentials defined by (1.4) and define an approximate
Lagrangian density L (¢1,$2,¢) for g1 = (1,0, 1.1, ... ¢1.8)", b2 = ($2.0.¢2.1. - .-,
¢2,n+)", and { by

L (p1.92.0) = L(@}F, )7, 0). (2.13)

which can be written explicitly as

N
FRHDFIY e,
]Z (2(1 +])+1 1 ¢1,1 ¢1,]

4ij 2(i+7)—1 }
s H]
T ¢ll¢l,])

N*

1 ,
—p2!> HY 0,62
/OZ{ it 1 2 t¢2,t

i=0

N*
1 pit+pj+1
-5 HY P, Ve,
2 oz <pl + p] + ] 2 ¢2J ¢25.1

__2pi
pi + pj
PiDj
pi+pi—1

i +Dj
HY ™ Vb -V

H21)i+1’f_l 1+ |Vb|2)¢2,i¢2,j>}

1
- E(Pz - Pl)gé'z,



Kakinuma model for interfacial gravity waves: Structures and well-posedness 267

where H; and H, are thicknesses of the upper and the lower layers, that is,
Hy(x,t) =hy —§(x.1), Ha(x.t) =hy+§(x,1) = b(x).

The corresponding system of Euler—Lagrange equations is the Kakinuma model, which
consists of the equations

H0E - Z{ (2(1 T )

4ij 2(i+j)—1
S L — -}:0 2.14
T R R e
fori =0,1,..., N,
< 1 +pj+1 Dj +
HE 9,8+ YAV (s B N - ] P V)
2 0 Z (Pi+P_/+1 ’ 92 pitp;? P2
+ HPPivp . v
p,+p, $2.
Pili__ pgPitri=lq L vpPyp, i\ =0 2.15
T oA 1 (L4 VD)2, = (2.15)

fori =0,1,...,N*, and

2 N 2
pl{ZH A1 + 8L+ = ( PV + (ZZJHf’_1¢1,j) )}

j=0 j=0

N*
—Pz{z Hy i) + 8¢

j=0

1 N 1 2

i 5( S HP Vs s - pHY VD)

j=0
2
(ij ¢2,,) )} =0. (2.16)

Here and in what follows we use the notational convention % = 0. This system of equations
is the Kakinuma model that we are going to consider in this paper. We consider the initial
value problem to the Kakinuma model (2.14)—(2.16) under the initial condition

&, ¢1.92) = (£©0). P1(0). P2(0)) att =0. (2.17)

For notational convenience, we decompose ¢y as ¢r = (Pxo, gb;c)T for k = 1,2 with
O =(d1.1.....¢01,8) and @5 = (¢2.1, ..., ¢2,N+). Accordingly, we decompose the initial
data ¢k(0) as ¢k(0) = (¢k,0(0)s ¢;€(0))T fork =1,2.
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The hypersurface ¢ = 0 in the space-time R” x R is characteristic for the Kakinuma
model (2.14)—(2.16), so that the initial value problem (2.14)—(2.17) is not solvable in gen-
eral. In fact, by eliminating the time derivative d,( from the equations, we see that if
the problem has a solution (£, ¢1, ¢2), then the solution has to satisfy the N + N* + 1
relations

N

oty )

j=0
N
—Hz(i+j)+lv )
Z{ (2(1+J)+1 ! o1

Jj=0

4ij 2(i+j)-1
-— H } =0 2.18
2(1 + ]) -1 1 ¢1,./ ( )

fori =1,2,..., N,

e |
H{’;v-(p]H

pj+ X pj
HY 'V, pH $2,;Vb)

_ Z{ <pl+—p]+1H;i+pj+1V¢2’f B Hp;+p/ b ]Vb>

Pt"‘PJ
pPi pi+pj
+ HY'"Pivp .V,
pitp 2 @2,
T it —1 filf_j_ 1H5i+pj_1(1 + IVb|2)¢z,j} =0 (2.19)
i Jj
fori =1,2,...,N*, and
al 1
2j+1
Zv-(z.HHlf Vi)
j=0 /
+ZV ( Hp’ Vg, - i’ H”’¢2,Vb) (2.20)

Therefore, as a necessary condition, the initial data ({(), ¢1(0), $2¢0)) and the bottom
topography b have to satisfy relations (2.18)—(2.20) for the existence of the solution. These
necessary conditions will be referred to as the compatibility conditions.

The following theorem is one of our main results in this paper, which guarantees the
well-posedness of the initial value problem to the Kakinuma model (2.14)—(2.17) locally
in time.

Theorem 2.1. Let g, p1, p2, h1, ha, co, My be positive constants and m an integer such
thatm > 5 + 1. There exists a time T > 0 such that for any initial data (), $1(0)> P2(0))
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and bottom topography b satisfying the compatibility conditions (2.18)—(2.20), the stabil-
ity condition (1.8), and

{ 1oy Vor.o@- Va0 lm + 18] 0y o) It + [Bllwmsz0 < Mo,

hi—Cwy(x) = co, ha+y(x) —b(x) >co forx € R",
(2.21)
the initial value problem (2.14)—(2.17) has a unique solution ({, $1, §2) satisfying

$.Ve1,0. Voo € C(0,T; H")NC'([0,T]; H™ ),
¢1.¢5 € C(0.T): H™*H)yn C'([0.T]; H™).

Remark 2.2. The term (3, (P," — P,*"))|;=¢ in the stability condition (1.8) is explicitly
given in (4.4). It includes the terms ;¢ (x,0) for k = 1, 2. Although the hypersurface
t = 0 is characteristic for the Kakinuma model, we can uniquely determine them in terms
of the initial data and b. For details, we refer to Remark 7.1. Under the condition (p, —
p1)g > 0 and if the initial data and the bottom topography are suitably small, the stability
condition (1.8) is automatically satisfied at = 0.

Remark 2.3. In the case N = N* = 0, that is, if we approximate the velocity poten-
tials in the Lagrangian by functions independent of the vertical spatial variable z as
CIDpr(x, z,t) = ¢r(x,t) for k = 1,2, then the Kakinuma model (2.14)—(2.16) is reduced
to the nonlinear shallow water equations

3§ =V - ((h1 =) V¢1) =0,

1 1
pi (i1 + g+ 51V9112) = 2 (9182 + 8¢ + 5|V ) = 0.
The compatibility conditions (2.18)—(2.20) are reduced to
V((h1 =V¢1) + V- ((ha +{ = b)Vgy) =0

and the stability condition (1.8) is reduced to

P102

— V¢, — Voi|? > ¢ > 0.
P1H2+PzH1| 02 Pil” = <o

g(p2 — p1) —
Therefore, we recover the conditions for well-posedness in Sobolev spaces of the ini-
tial value problem to the nonlinear shallow water equations (2.22) proved by Bresch and
Renardy [3].

Remark 2.4. By analogy with the canonical variable (1.10) for interfacial gravity waves
introduced by Benjamin and Bridges [1], we introduce a canonical variable for the Kak-
inuma model:

N* N
d=p2Y HY'doj—p1y H¢1;. (2.23)
j=0 j=0
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Given the initial data ({(g), ¢(0)) for the canonical variables (£, ¢) and the bottom topogra-
phy b, the compatibility conditions (2.18)—(2.20) and relation (2.23) determine the initial
data (¢1(0). $2(0)) for the Kakinuma model, which is unique up to an additive constant
of the form (€p2, €p1) to ($1,0(0), P2,0(0))- In fact, we have the following proposition,
which is a simple corollary of Lemma 6.4 given in Section 6.

Proposition 2.5. Let p1, p2, h1, ha, co, My be positive constants and m an integer such
that m > 5 + 1. There exists a positive constant C such that for any initial data ({(o), $(0))
and bottom topography b satisfying

1Sy lam + 1bllwme < Mo, [[Véoyllgm—1 < 00,
h1 —y(x) > co, ha + Loy(x) —b(x) > co forx € R",

the compatibility conditions (2.18)—(2.20) and relation (2.23) determine the initial data
(P1(0) P2(0)) for the Kakinuma model, uniquely up to an additive constant of the form
(Cp2,C€p1) to (¢1,000), P2,00))- Moreover, we have

(Vo1,00)> V2,00 | zrm—1 + (870, Do) IlEzm < C V(o) | zrm—1-

Therefore, given the initial data ({(g). ¢(0)), we infer initial data for the Kakinuma
model, which satisfy the compatibility conditions (2.18)—(2.20).

3. Linear dispersion relation
In this section we consider the linearized equations of the Kakinuma model (2.14)—(2.16)

around the flow (£, ¢1,¢2) = (0,0, 0) in the case of a flat bottom. The linearized equations
have the form

N it
R g (L vy
t§ ;(2(i+j)+1 oL
4ij 2j-1 ,
" p27 ) =0 fori=0,1,....N,
200+ /)-1" 1) o
N* pi+1
W+ ) (700,
. jg(P'JerJrl #2.
- 3.1)
—— P ) =0 fori =0,1,..., N,
pi+pi—1
N .
Pl(zh%]at(pl,j + gi)
=0
N*
—Pz(zhg]f’t(ﬁz,j + gg“) =0.
j=0
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Putting l/ll = (¢1,0, h%gb],l, ey h%N(ﬁl,N)T and wz = ((]52’0, hfl(ﬁz,l, ey th*QZSz,N*)T,
we can rewrite the above equations in the simple matrix form

0 —pi1" podT ¢
/’111 o 0 81‘ wl
—hy1 o 0 v

(b2 = p1)g 0" 0" ¢

+ 0 —h%Al,oA + A1 (0] ¥vi1| =0,
0 0] —h%Az’oA + Az %)
where 1 = (1,...,1)T and matrices A ¢ and Ay for k = 1,2 are given by
1

4ij
Ao = ( Ay = (

204+ j)— 1)05i,j5N’
hog = (PP
pi + pj —1/0=i,j<N*

2004 j) + 1>05i,j5N’
1

a0 = (D
20 pi + pj +1/0<i,j<N*

Therefore, the linear dispersion relation is given by

(p2—p1)g  ipol™  —ipyol”
det —ihiwl Al(hls) (0] =0,
ihool o A2 (h2€)

where § € R” is the wave vector, w € C is the angular frequency, and Ay (§) = |§|% Ax0 +
Ay,1 for k = 1,2. We can expand this dispersion relation as

(prhy det Ay (h1£) det Az (h2£) + paha det Az (h2£) det A (h1£))w?
— (p2 — p1)g det Ay (h1§) det A2 (h2§) = 0. (3.2)

Here and in what follows, we use the notation

- T
= ( 0 1 )
-1 A
for a matrix +. Concerning the determinants appearing in the above dispersion relation,
we have the following proposition, which was proved by Nemoto and Iguchi [28].

Proposition 3.1. (1) Forany & € R" \ {0}, the symmetric matrices A1 (E) and A, (E)
are positive.

(2) There exists co > 0 such that for any & € R" we have det al?k (&) >cofork =1,2.

(3) |&|72det A, (&) and |&|72 det A, (§) are polynomials in |&|? of degree N and N*
and their leading coefficients are det A1 o and det A, o, respectively.

(4) det A; (&) and det As (&) are polynomials in |&|? of degree N and N* and their
leading coefficients are det A; o and det A, o, respectively.
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Thanks to this proposition and the dispersion relation (3.2), the linearized system (3.1)
is classified into the dispersive system in the case N + N* > 0, so that the Kakinuma
model (2.14)—(2.16) is a nonlinear dispersive system of equations.

Therefore, we can define the phase speed ck(€) of the plane wave solution to (3.1)
related to the wave vector & € R” by

(p2 — p1)g|€| 72 det Ay (h1§) det Az (h2§)

2 _
wl®) prhy det Ay (718) det A (ha) + paha det Ay (hok) det Ay (h1§)

(3.3)

It follows from Proposition 3.1 that

lim  cx(§)? = (p2 — p1)ghiha det Ay g det Az

K = = = > 0,
h1|§1,h2|&|—>00 ,01]’12 detAl,O detAz,o + p2h1 det Az,o detAl,o

which is not consistent with the linear interfacial gravity waves

lim c 2-0.
e oo T )

However, as shown by the following theorems, the Kakinuma model gives a very precise
approximation in the shallow water regime /1|&|, h2|€| < 1 under an appropriate choice
of the indices p; fori =0,1,..., N*.

Theorem 3.2. [fwe choose N* = N and p; = 2i fori =0,1,...,N* or N* = 2N and
pi=ifori =0,1,...,N* then for any & € R" and any hy, h, g > 0 we have

(BB (S < el + a2,

Csw

where C is a positive constant depending only on N.

Proof. The phase speeds crw(&) and ¢ (€) can be written in the form
tanh(/,|§]) tanh(h2|§])

(ﬁw(é'))z _ hi|§] hy|§|
csw / ,tanh(hi|§]) tanh(h2|§1)
0———+ (1 -0)————

migl O g

and
det Ay (h1€) det A (h2€)
(cK<$>)2 _ (h1&1)> det A, (h1§) (2]€])? det Ao (h2§)
Csw detAl(hlg) i (1 _0) detAZ(hzg) )
(h|E)? det Ay (h1§) (h2|€1)? det A2 (h28)

respectively, where 0 = % € (0, 1). It has been shown by Nemoto and Iguchi [28]
that

‘tanh|§|_ det Ay (§) < Clg[*N+2
&l &2 det Ag(8) | T

for k = 1, 2, so that we obtain the desired inequality. [
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4. Stability condition

In this section we will derive the stability condition (1.8) by analyzing a system of lin-
earized equations to the Kakinuma model (2.14)—(2.16). We linearize the Kakinuma model
around an arbitrary flow (¢, @1, ¢2) and denote the variation by (é 1. ¢2). After neglect-
ing lower-order terms, the linearized equations have the form

N
: : 1 241 4 ; .
0;C+uy; -V — —  HYT'APy ;=0 fori=0,1,...,N,
6w Ve ;2(1—1—1)—{-1 1 oL
N* | o
0E+ur VE+Y ——HI " 'Ady ;=0 fori =0,1,...,N*,
té‘ 2 Z jZ:(:)Pi‘i‘Pj"'l 2 ¢2,1
N .1
p1 Zlej(at(]BI,j +uy-Véy )
j=0
N* '
—p2 ) Hy (3162, +uz- Vo, j) —al =0,
j=0
where H; = h; — ¢ and Hy = hy + ¢ — b are the thicknesses of the layers,
N .
up = (VO™ = > H{/ Ve ;.
j=0
N “4.2)
; —1
s = (VOL®) .o = Y (Hy Vo, — piH)' ™ ¢2,,Vb)
j=0

are approximate horizontal velocities in the upper and the lower layers at the interface,

N
wy = @072z = — Y 2jHY "' $u;,
=0 43
o (43)
ay i—1
wy = (005" ¢ = ) piHy' ™ 2
j=0

are approximate vertical velocities in the upper and the lower layers at the interface, and

N*
a= PZ(ZPJHZI)j_I(at‘in,j +uz- Vo ;)
Jj=0 N*
i—2
+(wa—uz-Vb) Y pi(p; — DHY "o + g)
N /=0 N
+ p1(22ijf‘1(a,¢1,,- +uy V) —wi Yy 2j2j —DH* Y Vg, ;- g)
j=0 j=0
= —(0:(P," — Pi™))|z=¢. 4.4)



V. Duchéne and T. Iguchi 274

Here, Pla PP and P2app are approximate pressures in the upper and the lower layers calculated
from Bernoulli’s equations (2.3)—(2.4), that is,

1
PP = —pi (9,0} + S(VO + (0:04)) + )
for k = 1, 2. Now we freeze the coefficients in the linearized equations (4.1) and put

V1= (pr0, H2p11,..., HN g1 n)",
Vo = (¢2.0, H ' §o1y ..., HIN y no)T.

Then (4.1) can be written in the form

(4.5)

0 —pi1" podT ¢
Hil 0 0 o, | v
—-H,1 0O o Vs
a —p11%(uy - V) po1T(uy - V) g
+ Hil(u,-V) —HIZAL()A 0 ¥ | =0.
—Hy1(u, - V) 0 —H2A20A ) \¥»

Therefore, the linear dispersion relation for (4.1) is given by

a ipr(w—uy - 81T —ipa(w —uy - E)1T
det | —iHi(w—uy-§)1  (Hi|€)* A1 o =0,
iHa(w — - )1 0 (H2|€])*Az2,0

where & € R” is the wave vector and w € C the angular frequency. The left-hand side can
be expanded as

a ipi(@—u;-EN" —ips(® —us - E)17

LHS =det| 0 (H1|§|)2A1,0 (0]
0 o (H2|E])*A2,0
0 ipr(w—uy - 81T —ipa(w —uy - E)1T
+det| —iHi(w —uy-§)1  (H1|E])*A10 )
iHy (0 —us - £)1 0 (H2|§])*Az,0
= adet((H,|£])*A1,0) det((H2|£])* A2,0)
0 ip1(w—uy-§)17 2
#0e (Lo A ) EHCEED )
0 —ip2(@ —uy - )17 2
! (PR AR de‘(“’ HED A“’)

= H12N+1H22N*+1 |E|2(N+N*+1){CZH1H2|E|2 detAl,o detAz,O
— prHz(w —uy - £)*det Ay g det Az o
— paHy (0 —uz - £)? det A5 det Ay o},
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so that the linear dispersion relation is given simply as

P1 2 P2 2 2
—u - ——(w —uy - — =0, 4.6
(@ =7+ (0~ £)° —ald 46
where .
detAk() ~ (O 1 )
o = ——. Aro = 4.7
, det Ay o ko -1 Ao @7

for k = 1, 2. The discriminant of this quadratic equation in w is

(Lul &+ P2 u2'5)2

Hya Hao
Ry P2 )( P1 N2y P2 2 2)
(i + i) (G 80 + (o £)° —al
P1 P2 2 P1P2 2
= + )(a — ((uz—ul)- )
<H10l1 Hras d p1Hz00 + pr Hyo E>

Therefore, the solutions w to the dispersion relation (4.6) are real for any wave vector
& € R" if and only if

a— P1P2
p1Hza + po Hio

|ll2 —ll1|2 2 O

Otherwise, the roots of the linear dispersion relation (4.6) have the form w = w,(§) £+
iw; (§) satisfying w; (§) — 400 as &€ = (up — uy)¢ and £ — 400, which leads to an
instability of the problem. These considerations leads us to the stability condition

P1P2

a— luy —u? > co >0, (4.8)
p1Hzas + po Hiay

which is equivalent to

P102

—(0: (P — P{**))|=¢ —
2 ! =t p1Hzas + po Hyog

(VO — VO ?).—¢ = co.

Here, we note that &y and o5 are positive constants depending only on N and { po, p1,-- -,
pn~+} and converge to 0 as N, N* — oo. Therefore, as N and N* go to infinity the domain
of stability diminishes.

5. Analysis of the linearized system

In this section we still analyze the system of linearized equations (4.1) with frozen coeffi-
cients. We first derive an energy estimate for solutions to the linearized system by defin-
ing a suitable energy function, and then transform the linearized system into a standard
symmetric form, for which the hypersurface # = 0 in the space-time R” x R is nonchar-
acteristic. These results motivate the subsequent analysis on the nonlinear equations.
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5.1. Energy estimate

With the notation (4.5), the linearized system (4.1) with frozen coefficients can be written
in a symmetric form as
A10,U + AU =0, (GR))

where U = (. y1.92)" and
0 —pP1 lT P2 lT

Al = ,011 o o s
—,Ozl 0] (0]

a —p11"(uy - V) p21"(uz - V)
Ao =\ ml(u1-V) —p1H1A10A o
—p21(uz - V) o —p2HyA20A

We note that Ag is symmetric in L2(R") whereas A, is skew-symmetric. Therefore, by
taking L2-inner product of (5.1) with 9,U we have

d . .
— U, ApU)2 =0
(0. AoU) 12

for any regular solution U to (5.1), so that (U, AgU )12 would give a mathematical energy
function to the linearized system (5.1) if we show the positivity of the symmetric operator
Ap in L2(R™). We proceed to check the positivity. For simplicity, we consider first the
case N = N* = 0sothat A1 9o = A0 = 1. Then we see that

N (o el ol (O
/ V(I?I,O | —p1U1 £1 Hlld 0] V(,Z?l’o dx.
Vo pau2 o p2HoId) \V¢a o

(U,AOU)Lz =

Therefore, it is sufficient to analyze the positivity of this (2n 4+ 1) x (2n + 1) matrix. The
characteristic polynomial of this matrix is given by

A—a piuy —patt;
0=det| piu; (A —p1Hy)Id 0]
—pau> o (A — p2H2)Id

=A—a)A—p1H)" (A — p2H2)"
—pilur P — p1 H)" 7' (A — p2 H)" — p3|uz|* (A — p1 H)" (A — p2 Ho)" ™!
=X —p1H)" 'A = p2 Hp)" YA —a)(X — pr H1)(A — p2 H>)
— pilurP(A — p2 Ha) — p5|uz|* (A — p1 Hy)}.

Therefore, the eigenvalues of the matrix are py Hy and pp H, of multiplicity n — 1 and A4,
A2, Az, which are the roots of the polynomial

(A —a)(A — prH1) (A — p2Ha) — pilu1|*(A — p2 Ha) — p3|ua*(A — p1 Hy) = 0.
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Here, we see that
AiA2As = pipa(aHyHy — prHalug|? — po Hylus?),

which is not necessarily positive even if u; = u,. Therefore, for the positivity of the
symmetric operator A, we need a smallness of the horizontal velocities #; and u,. Such a
condition is, of course, a stronger restriction than the stability condition (4.8). This means
that (U, AoU) 12 is not an optimal energy function and we proceed to find another one.
We are now considering the linearized system (5.1) with frozen coefficients, that is,

Hi1(0,{ +uy - V) — H2 A1 gAYy = 0,
HZI(até' + Uy - VC) + H22A2,0A¢2 = 0, (52)
p1l- @1 + (w1 - V)¥1) — p2l - (3, ¥2 + (uz - V)§2) —al = 0.

Applying A to the last equation in (5.2) we have

Pp1(A1,0) " 1+ (3, + uy - V) A1 0AY
— p2(A2,0) "1+ (3 + uz - V) A2 0A¥2 —aAl = 0. (5.3)

Plugging the first and second equations in (5.2) into (5.3) to remove 1}1 and 1}2, we obtain

A1) '1-1 Az )7 11-1 . .
(—’“( 1.0) @ +up - V)2 4 220101 +uz-V)?)E —anl =o.
Hl H2
In view of the relation following from Cramer’s rule

det A 1
(Ak,O)_ll -1 = S 2k0 = —
detAk,O (072

for k = 1, 2, the above equation for § can be written as

P1 P2
<H1a1 + HzOlz

P1P2 2\ ¢
—(aA — ur, —uqp)-V =0, 5.4
( b o (@) )¢ (5.4)

)@ +u- V)%

where u is an averaged horizontal velocity on the interface defined by

p1Hza; p2Hyio

= u, + u.
p1Hza 4+ p2 Hio p1Hzor + po Hyog

(5.5)

Taking (5.4) into account, we consider the constant coefficient second-order partial
differential equation

13 +u- V)2 — (28 — (v-V)H)E =0, (5.6)
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where ¢, and ¢, are positive constants. By taking the L2-inner product of (5.6) with (3, +
u - V)¢ and using integration by parts, we see that

d . . . .
g lallot +u- VeIIZ2 + 2l VElIZe — v - VEI72) = 0
for any regular solution ¢ to (5.6). Here, we have

2| VEI2, = [lv-VE[2, = (VE, (c2ld — v ® v) V) 2.

The matrix c;Id — v ® v is positive if and only if ¢, — |v|? > 0. Under this assumption, we
obtain an energy estimate for the solutions to (5.6). Applying this consideration to (5.4),
we see that the positivity condition is exactly the same as the stability condition (4.8),
under which we can obtain an energy estimate for (5.4).

In [3] (see also [2]), Bresch and Renardy rewrote the nonlinear shallow water equa-
tions (2.22), corresponding to the case N = N* = 0, as a scalar second-order partial
differential equation analogous to (5.4), and then used the abstract theory of Hughes,
Kato, and Marsden [11] to obtain the local well-posedness of the initial value problem
under sharp hyperbolicity conditions, as mentioned in Remark 2.3. Our strategy is differ-
ent as we rely on the symmetrization of the system and parabolic regularization to prove
Theorem 2.1.

In view of (5.4) and the subsequent observation we rewrite the linearized system (5.1)
with frozen coefficients in the form

A1 +u- VYU + ARU =0,

where
At = Ag — A1 (u- V)
p1paHyay T(y . P12 Hoap T .
a p1Hzaz2+p2 Hio F'(@-V) p1Hraz+p2Hiog '(v-V)
— | - p1p2Hioy . .
- prHyaz+p2Hiog 1(v-V) lelAl,OA 0]
__ _p1ppHay . B
p1Hz02+p2Hiay 1(v-V) o p2H2A30A

and v = u, — u;. By taking the L2-inner product of this equation with (3; + u - V)U and
using integration by parts, we see that

d o
a(A§°dU, U)-=0

for any regular solution to (5.1). We proceed to check the positivity of the symmetric
operator A in L2(R") under the stability condition (4.8). We see that

n
(AFU.U)p2 = (al,0)p2 +Z{(01H1A1,0311ﬁ1, W) 2+ (p2Hy Az 00192, 0192) 2}
I=1
p1p2Hio
p1Ha00 + po Hyion
+ 2( p1p2Hr0
p1H2a0 + pa Hyo

+2( (-V)(A-¥1).8)

(0-V)1-92).8) .
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On the other hand, the matrix A4, k.0 1s nonsingular and its inverse matrix can be written as

-1
(Ako) ! = (0 . ) _ (‘Ik,o (qk,o)T)
, 1 Ako —qko0  Qko /)’

det Ak,O
detAk!O

Qk.o is nonnegative. In fact, for any ¥, putting (§) = (Ax,0)7! (), we have

e (e @) (O (O) L (5) A (5) -
Oro¥ w_(—(Ik,o 0:0 J\y) y) =g Ak,o é =¢ - Aro9p = 0.

We note that Oy ¢ is not positive because it has a zero eigenvalue with an eigenvector 1.
Now, for any ¢, putting n = 1-¢ and ¥ = Ag ¢, we have Ak,o(g) = (:;) so that

Aot - & = Aro (g) - (g) _ (;) (o)™ (Z) = qeor + Okt - .

from which we deduce the identity

Ak o® ¢ = ar(1- ) + Or oAk 09 - Ax09. (5.1

By using decomposition (5.7) we see that

with a symmetric matrix Qg o for k = 1, 2. Moreover, gx o = = «ay is positive and

n

(A§™U. )2 =Y {(p1H1Q1,041,00¥1. A1,00,91) 2
I=1

+ (02H2 02,042,001 ¥2, A2,001%2) 12}
+ {(aé‘, Oz + (prHion V(- 91), V(- 91)) 2
+ (02 Haaa V(1 92), V(L - 92)) 2

2p1p2Hioq L.

( ©-V)A-91).8)
p1Hr00 + poHio L

( 20102 Ha0p
p1Hza + poHiog

=11 + L.

(©v-V)1-92).8) |

Here, I; > O since Q1,9 and Q5 o are nonnegative, and

L= [ (a8 4 pr e |V (1§ + paHaaal V(1)
Rn

2p1p2|v]
p1Hzan + poHio

(Hion V(1 9r0)] + Haoa| V(1 42)DIE]} dx,

so that it is sufficient to show the positivity of the matrix

a __ p1ppHjoy |v| __ p1ppHrap |v|
p1Hza2+p2Hio p1Hza2+p2Hio
— | ___pip2Hion H
Ao = p1Hz00+p2Hyay vl priion 0
——_ppbha 0 o2 Haat

p1Hraz+p2Hiog
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From Sylvester’s criterion and since pg Hy o is positive for k = 1, 2, the positivity of the
matrix U is equivalent to

det Ao = a(pr Hioq)(p2 Hraz)

p1p2Hra2
—,01H10l1(
p1Hzas + po Hyog

P1P2 2
_ i o ( _ ) > 0.
(prHyo1)(p2 Hz02) (@ p1Han + po Hyioq !

p12Hyo v )2

2
|v|) - ,02H2012(
p1Hzas + poHion

Since v = u, — uy, under the stability condition (4.8) we have the positivity of 2y, so
that in view of (5.7) and the positivity of the matrix A o for k = 1,2 we finally obtain the
equivalence

(AF™U. U)p2 > €122 + (V91122 + V62l

Therefore, (Ag“’dU , U) ;2 would provide a useful mathematical energy function.

5.2. Symmetrization of the linearized equations

We still consider the linearized equations (4.1) with frozen coefficients. However, for later
use we define ¢; and ¢, in place of (4.5) by

{431 = ($1,0. 91,1, - P1.N)T,
b2 = ($2,0: 2.1, P2n)T.

Then the linearized equations have the form

Li(HD) 08 +uy - VE) — Ay (H) Ay = 0,
1 (Hy) (3, + uy - VE) — A2 (Hy)Ady = 0,
—p1ly(Hy) - 0:1 + (u1 - V)y)

+0202(Ha) - (392 + (w2 - V)2) +al =0,

(5.8)

where

Li(H)) = (,HE HY, ..., H?N, L(Hy) = (1, H', B2, ..., HV)T (5.9

and .
Al(Hl) — (*HIZ(H-]H-I) ,
2 1 <N
G +1’) + 0=h= (5.10)
Ax(Ho) = (—H”"”’f“) .
() pitp+1 72 0<i,j<N*

In the following, for simplicity we abbreviate I (Hy) and Ay (Hy) as Iy and Ay for k =
1, 2. We are going to show that the system can be transformed into a positive symmetric
system of the form

Ay, U + AU =0, (5.11)
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where U = (f 1.92)7, A4 is the positive operator defined in the previous section with

slight modification, and A is a skew-symmetric operator in L?(R"). As before, we put

v = uy — u; and define u by (5.5). Furthermore, we introduce the notation

_ paHio 0, — p1Hz0

- ’ 2 = ’
p1Hran + pa Hio p1Hra 4+ po Hiaq

0 (5.12)

where o7 and «, are positive constants defined by (4.7). Then we have u = 6,u; + 61u>
and 67 + 6, = 1. We can also express u1 and u5 in terms of # and v as

uy =u—0v, ux=u+6v.

Applying A to the third equation in (5.8) and differentiating the first and the second equa-
tions with respect to 7, we obtain

0 —pulf polf 92¢ 0 '
—-p1ly  p1A; 0 Adipy | + | —prli(uy - V) 0:¢
p2l> o p2A2) \Ad;p> p2l2(uz - V)
a —plllT(ul . V) pzlg(llz . V) .
+10 (0] (0] AU = 0.
0 (0] 0]
In view of this, we introduce a symmetric matrix
-1
90 41 4 0 —pil{  p2ly
q1 Q11 le = —,0111 ,01A1 0 s (5.13)
g2 021 0O» p2l> 0 pA

where Q7, = Q11, 03, = Q2,and O], = Q21. Moreover, we have

—oili-q1 +p2la-q2 =1, Ai1q1 = qoli,  A2q2 = —qol>,
p141011 =1d+ p1l1q], p2A4202 =1d — p2lrq],
A1012 =lq), A2021 = —byq]

and by Cramer’s rule,

HiHyoy0n —qo (3 qo 01
do = — , g = =——, bL-q»= = —.
p1Hzo + po Hyoy Hyiay p1 Hyar  p2
Using this notation we have
. 0
—P1A1A3z¢1) (—PlAl 0 ) (111 On le) .
]+ —p1li(uy - V) | 0,
—0r A2 AD 0 —pr A
p2A2A0:¢> p242) \q2 Q21 Q22 ool (it - V)
a —pilTm, -V 1Yu, -V
—p1A1 ) 91 Qu Q12 puli(u-V) - ol (2 -V) .
i O o on) |0 0 o |avu
p2A42/) \q2 21 22 0 0 0

=0.
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Here, we see that

0
—-p1dr O g1 On Qu)\ | _ ) _ (Ol
( 0 —,OzAZ) ((12 021 sz) ( prli(any V)) B (Gzpzlz) @ V).

p2l2(uz - V)
—p1l{(uy -V Tu, -V
—p14; o 91 Ou Q2 a —pily(uy-V)  paly (uz-V)
p2A42) \42 21 22/ \ 0 o

= 4o (_aplll oLy V) —pip2lil (us - V))
aprly,  —p1p2balf(uy - V) 3Ll (uy V) )’
so that
—P1A1A3t(é1 —01p1l1(v- V)até.
—p2A2 A0 — O2p202(v - V)0,

SURYY: —pthl{ (1Y) prpalil (uz - V)) (431)
= qoa AL + Al ). (5.14
awa (L0, ) 6 van (LGS P ) A () 619
On the other hand, taking the Euclidean inner product of the first and the second equations
in (5.8) with —p;4; and p,¢,, respectively, we obtain
02(3:& +uy - V) + qopily - Ay = 0,
013, +uz - V) = qopalz - Apa =0,

which are equivalent to
0:C +u-VE +qoA(pily - $1 — pala - §2) = 0,
01620 - VE —qoA(O1p1l1 - 1 + 020202 - ¢2) = 0.
It follows from the second equation in (5.15) that

(5.15)

Oipily -3 + O2pala - 012 = g 0162 - V)ATID,E.
Therefore, we obtain
ad &+ (v-V)(O1p1ly - ;91 + 020202 - 3, 2)
=—a((- V)¢ + qoA(pily - $1 — p2lz - $2))
— 01620 - V)2 (g5 @-V)AT' + (ouly - b1 — p2la-§2)).  (5.16)
We proceed to symmetrize the second term in the right-hand side of (5.14):

. (_p%llllT(ul V) p1p2lil (us - V)) A (¢1)
prp2lalf (uy - V) —p3hly(uy - V) @2

2 T T H
—pilil; 01,021112) (¢1)

= u-VYA "
10 (01,021211T —p3baly ( ) o2

leflll’lr QZPI,OZIIIZT) (¢1)
n AT,
do (—91,01,021211T —92,051212T @-¥) $2
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where

91,0%1111T 92,01;021112T) A ((15'1) (plll ) ; ;
M — 9 l . l .
6]0( 0, 01021211T —92,<)§lzlzT (V2 —ooly qoAO1p1l1 - @1 + 02020 - P2)

_ p1l1 :
= 9192 (—pzlz) (U . V)C

In the above calculation, we used the second equation in (5.15). Therefore,

—p1A1 A ¢y — O1p1 1y (v - V)DL ( p1lh ) : ( p1ly ) 2
. . = a A + 9 9 v - V
(—P2A2A3t¢2 — 020205(v - V)0: & 1o —p2l> §+ 616 —p2l ( )¢

27 4T T ;
—pilily plPZIllz) (¢1)
+ u-V)A(l%L ).
1o (,01;021211T —p3hl) @) (03]

Summarizing the above calculations, if we define the symmetrizer Ag"d by

a Or1p1lf (v-V) Grpalf(v-V)
AFY = —0101li(v- V)  —p1A1A 0 , (5.17)
—020202(v - V) o —p2A2A

then we obtain
Amedy, U

ad: L+ (v-V)(Oipils - ?tqsl + 020217 - 9:92)
= —91[)111(”'V)atQ—PlAlAat(I?l
—020205(v - V)3, & — p2 Az Ad; @2

—u-Vv —610,0111TA qopzlzTA

=da qulllA 0] 0] U
—qop2l2 A o o
45 0102(v - V)2 (u-V)AT!  —010:011{ (v- V) O162p2l3(v- V) \
+ 6102p111 (v - V)? —qopt I (u-V)A  qoprp2lily(u-V)A | U.
—6162p215(v - V)? qop1p2lal{ (- VYA  —qop3laly (u-V)A

Therefore, U satisfies the symmetric system (5.11) with a skew-symmetric operator A
defined by

u-v qoprl{ A —qop2l3 A

A=a —qoplllA (0] 0]
qop2l2 A o) o
qo_191 82(1) . V)Z(u . V)Ail 91 92,0111T(v . V)z —91 szzlzT(v . V)z
+ —0102p11, (v - V)? qopfllllT(u-V)A —qo,olpzlllzT(u-V)A
01020202 (v - V)? —qop1p2l I (- V)A  qop3laly (- V)A

For the positive symmetric system (5.11), we can apply the standard theory for partial
differential equations to show its well-posedness of the initial value problem. Moreover,
these considerations help us to analyze the nonlinear problem (2.14)—(2.16).
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6. Analysis of related operators

We go back to consider the nonlinear problem, that is, the Kakinuma model (2.14)—(2.16).
We introduce the following second-order differential operators Ly ;; = L1;;(H1) (i, =
0,1,...,N)and Ly ;; = L5 ;;(H»,b) (i,j =0,1,...,N*):

1 23i+)+1 4ij 23i+7)—1
Ly -:—V-(—H Dty ) S A (6.1
Lij @1, T I $1,j ) + it )—1h ¢1,. (6.1)
1 +pj+1 pj Pi+p;
Lo .=_v.(—H1’t PiTi g, : — — 1 g PiThi 'Vb)
2,ijP2,j pitp 41 2 ¥2,j b+ s 2 P2,j
Di pi+pj
— H Vb -V, ;i
Pi + P 2 ©2,)
b PP PRl vp g, . 6.2)
pi+pi—1 ’

Then we have (Lg;;)* = Lk, j; for k = 1,2, where (Lg ;;)* is the adjoint operator of
Lg,;j in L?(R™). We also use uy and wy for k = 1,2 defined by (4.2) and (4.3), which
represent approximately the horizontal and the vertical components of the velocity field on
the interface from the water region Q2 (¢), respectively. Then the Kakinuma model (2.14)—
(2.16) can be written simply as

N
HEY9: 5+ Ligj(H)$; =0 fori =0,1,....N,
Jj=0
N*
—HJ'0,. L+ Y Lpij(Hp b)pp; =0 fori =0,1,....N*,
j=0

N
j 1
—Pl{z HY 001 + 80+ §(|u1|2 + wf)}
j=0
N* 1
+p2{2) Hy dighn,j + 88 + - (luaf + w%)} =0.
j=

Moreover, introducing @1 = (¢1,0, P1.15----P1.8) " @2 = (¢2.0.P2.15- ... P2.n+)T, and

L(Hy) =, H H, ..., H?N)T, Ly(Hy) = (L1,ij(H1))o<i,j<N- 63)
Ly(Hy) = (1, HP', HP? ..., HIN)Y, Ly(Hy, b) = (Laij (Ha, b))o<i,j<N*»
we can write the Kakinuma model (2.14)—(2.16) more simply as
I1(H1)9:¢ + L1(Hy)¢$1 = 0,

—1,(H2)0:¢ + Lo(H2, b)) =0,

o (H) B+ gE 4 Sl + ) (64)

+p2{a(Ha) - 0is + 6+ 3 (ual + )} =0,
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By eliminating 9, ¢ from the Kakinuma model, we obtain N + N * + 1 scalar relations

N
> Ly (H)r,j — HE Loj (Hi)$r,j) =0

Jj=0

Jj=0
N*

j=0 j=0

N
> Lioj(H)rj + Y Laoj(Hab)gaj = 0.

fori =1,2,..., N,

N*
Z(LZ,ij(Hva)¢2,j — HzpiLz,Oj(Hz,b)(ﬁz’j) = 0 fori = 1,2,... ,N*,

These are compatibility conditions for the existence of the solution to the Kakinuma
model, and exactly the same as the compatibility conditions (2.18)—(2.20). Introducing
further linear operators £1; = £1,;(H;) (i =0,1,..., N) acting on ¢; = (¢1,0, ...,

ein)Tand £5; = £, (Hz,b) (i =0,1,...,N*)acting on @2 = (¢2,0, - .-

N

L10(H)e1 =Y Lio;(H)er.
j=0

L1,i(Hy)e:

N
=Y (Luij(H)@1,j = Hi' L1,oj (HDg1,5)

=0
N*

£20(Ha,b)ps = ZLz,Oj(Hz,b)%,j,
=0

£, (Hz,b)p2
N*

Jj=0

the compatibility conditions can be written simply as

fori =1,2,...

= Z(L2,ij (Ha,b)p2,j — HY' L2 oj(Hz, b)g, ;) fori =1,2,...

C1i(H)1 =0  fori=12,....N,
L2:(Ha b)ps =0 fori =1,2,...,N*,
Li,0(H1)p1 + £2,0(H2,b)¢p> = 0.

) 902,N*)T as
N,
(6.5)
N*
(6.6)

We proceed to derive evolution equations for ¢; and ¢,. To this end, we differentiate
the above compatibility conditions with respect to ¢ and use equations of the Kakinuma

model to eliminate d,¢. Then we obtain

é(il’,-(Hl)atq)l =F1,i f0ri=l,2,...,N,
efz,,'(Hz,b)at¢2 = Fz,,’ fori = 1,2, . ..,N*,
L1,0(H1)0:¢91 + L£2,0(H2,b0)0:¢2 = F3,

6.7)
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where
3§€1, )
Fl,i=_ : 191 fori =1,2,...,N,
3
F;=- 2 (Hz,b)[iz o(H2,b)$ol¢p, fori =1,2,...,N*,
3&@
Fy=— 1°<H1)[x10<H1)¢11¢1
8:2
20 (Hz, b)[£2,0(H2,b)$2]P-.

Here, we note that F3 can be written in divergence form as

N*
P =9 {iotig) S HY Vg, + (Lao(Hab)pe) S HY V¢2,,}
Jj=0 Jj=0

On the other hand, the last equation in the Kakinuma model can be written as

—p1li(H1) - 0:1 + p2l2(Hz) - 0192 = Fu, (6.8)
where { |
Fo=pi{gt + 5 (ml + v} = pa{st + Sl + wd).

In view of these evolution equations (6.7)—(6.8) for ¢; and ¢», we will consider the fol-
lowing equations for ¢; and ¢»:

zl,i(Hl)‘Pl = fl,i fori = 1,2,...,N,
£2,i(Ha,b)ps = fo; fori=1,2,...,N*,

(6.9)
L1,0(H)@1 + L2,0(H2,b)p2 =V - f3,
—p1li(Hy) - @1 + p2la(H2) - @2 = fa.

In the following we will use the notation @ = (¢1,1,...,¢1,8)" and @5 = (p2,1, ...,

@a.n+)T, and we put f = (fi,1,--., fin)Tand £y = (f21,--., fan+)".

Lemma 6.1. Let ¢y and ¢y be positive constants. There exists a positive constant C =
C(co, c1) depending only on ¢y and ¢y such that for any Hy, Hy, Vb € L*°(R") satisfying
Hi(x), Hy(x) > co and |Vb(x)| < c1, any regular solution (@1, ¢2) to (6.9) satisfies

prIVerollZ + 1011170 + p2(IVe2,0l72 + 11951151

N
1 2741
<c(- (V, HY 'y )
= C(- X (Ve gy Ve

j=

+ o1(f1. 012 + p2(f5. 9512 + p2(V - f3.1,(H>) "PZ)LZ)-
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Proof. We introduce a dummy variable 7 as

n=—L1,0(H)e1.
Then we can rewrite the equations in (6.9) as
nli(Hy) + Li(H)e1 = f1 =, fi1,.... fin)"
—nl(Hy) + Ly(Ha.b)ps = fo = (0, fo1..... fan)" + (V- f3)l2(H>).
—p1l1(Hy) - 91 + p2l2(H2) - 92 = fa,

that is,
0 —orli(H)T  pala(Ho)T n J4
p1li(Hy)  pi1L1(Hy) 0 o1 =1p,mf1
—p2l>(H>) o p2L2(Hz,b)) \@2 2 f2

By taking the L2-inner product of this equation with (1, @1, ¢2)T, we see that

p1(L1(H1)@1,91)12 + p2(La(Ha, D)@z, 92) 12
(fa-mr2 + p1(f1. 0112 + p2(f2.902) 12

N 1 '
_ V£, gY+ly )
;( fa 2 11 PLi),,

+ p1(f1. 0Dz + p2(f5. 0512 + 02(V - f3.1(H2) - 92) 2.

Here, by direct calculation we have

N

(Li(H)@1, 912 = Y (L1 (H)@1,j, 9101
i,j=0

H, N _ 2 N ] 2
/ dx/ HZ(ZZWU) + (Zzizz"lw,i) }dz
R 0 i=0 i=0

H; N . .
:/ dx/ Z(Z4Z|V<P1,i|2+i2241_2‘/’ii)d2
R” 0 =0

N
~ / D (HEH Ve P +i2HE 7 ) dx, (6.10)
R i=0
where we used the fact that {z%'};,—o . n and {z%~1};;

dent. We also have

N are both linearly indepen-

..........

N*
(La(H2.0)@2.92)12 = Y (L2ij(Ha.b)ga j. 92.)12
i,j=0
H>
=/ dx/ {
R” 0 -

2 N* 2
+ (Zpini_l(Pz,i) }dz.
i=0

N*
> PV — pizP T 9y Vb)
i=0
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If {zPi,zPi=1}; .. N are linearly independent, then we have

(L2(H2,b)@2,92)12

/R,, d"f Z (2P0 + p222P2|VBG2,) + 2P 2g2 ) dz

/Z {2 V0, P+ pPHS (14 [VBIP)g3  } d (611

Otherwise, for example, in the case p; =i (i = 0,..., N) we obtain

(L2(H2,b)92, 92)12
H, ((N*—1

= dx
LS

N* 2

+ (Zpiz”"_lwz,i) } dz
i=0

N*—1

H, . .
2/ dx/ { > 2Veai — (i + De2iv1 VO + 22V Voo v+
R Jo U5,

2
2 (Vai — (i + Dg2,i+1Vb) 4 2V Vo, y

_,’_le 2(i— 1) 2 }dZ

N*—1
~ / { > HF Vo — (i + Deaip1 VhI> + H3V 4 Ve ye?
" Lizo
+leHzl 1<p22,}dx. (6.12)
A similar estimate holds in other cases. These estimates give the desired one. ]

Although this lemma gives an a priori bound of the solution to (6.9), the equations
in (6.9) do not have good symmetry. In order to give an existence theorem to (6.9) with
robust elliptic estimates, it is better to rewrite them in a symmetric form by introducing a
good unknown variable. We introduce scalar functions ¢; and ¢, as

o1 =UL(H) - ¢1. @2 =0L(H)- ¢. (6.13)

We also introduce the second-order differential operators P;;(H;) (i = 1,..., N)
and Q;(H,) acting on R" -valued functions o7 = (o1,1. ... ,(pl,N)T and P, ;(Ha,,b)
(i=1,...,N*) and Q,(H,) acting on RV" -valued functions 0= (P21, 2 N*)T
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as
N
Pri(H)@y = > {(L1j(Hy) — HY Ly o; (H)¢1,
j=1
—(L1,i0(Hy) — leiLl,oo(Hl))(Hfj%,j)}, (6.14)
N .
Q1(Hy)e| = Z{Ll,o;'(Hl)fﬂl,j - Ll,oo(Hl)(lejfﬂl,j)},
j=1
and
N*
Py i(Hp. bY@y = Y {(Laj(Hy.b) — HY Lo oj(Ha.b))p2
j=1
—(La,io(Ha,b) — HY L3 00(Ha, b)) (Hy ¢2,7)},  (6.15)
N*
0>(H>,b)¢, = Z{Lz,Oj(Hz,b)fpz,j — Looo(Ha,b)(HY ¢2,)),
j=1

respectively, and put
Pi(H)¢y = (PLi(H)@,, ... Piv (H)Y)'
Py(Ha, b)9y = (P2,1(H2, b)), ..., P2 n+(Ha, b)h)".
Then we see easily that Py (H,) and P,(H,,b) are symmetric in L?(R") and that
Q1(H1)e) + Li,oo(H1)(I1(Hy) - 01) fori =0,
Pri(H)@ + (Q1(H)*(Ii(H1) - ¢1))i fori =1,...,N,

02(H2, D)9, + Lo oo(Hz, b)(1x(H2) - ¢2) fori =0,
Pz,i(Hz, b)(p/z —+ ((Qz(Hz, b))*(lz(Hz) . ‘PZ))i fOI'i = 1, ey N*,

L1,i(Hy)e:

£2,i(Ha,b)p>

where Q* denotes an adjoint operator of Q in L2(R"). Therefore, we can rewrite (6.9) as

Pi(Hy)e) + (Q1(H1) ¢1 = f1,

Py(Ha,b)9) + (Q2(Ha2,b))* 02 = f2,

Q1(H1)ey + Lioo(H)¢r + Q2(H2,b)95 + Laoo(H2, D)2 = V- f3,
—p1¢1 + P22 = fa.

These equations for (¢, @1, @5, ¢2) do not yet have good symmetry. But, it follows from
the last equation that

202 = p1¢1 + fa.
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Using this we can remove ¢, from the equations and obtain

p1 P1(H)@) + p1(Q1(H1))* o1 = p1 Fy,

p2P2(Hy, b)), + p1(Q2(Hz. b)) ¢1 = p2 Fa,

p1Q1(H)@ + p1Q2(Ha, b)py + p1(Li,00(H1) + 5- L 00(Ha, b))gr
=p1V - F3,

where
1 . 1
Fi=fi, Fa=f>— p—(Qz(Hz,b)) Ja. F3= f3+ p—H2Vf4- (6.16)
2 2

These equations for (¢, 5. ¢1) have good symmetry and can be written in the matrix
form

v p1F1
P& oy | = p2F2 |, (6.17)
®1 p1V - F3
where
p1P1(Hy) o p1(Q1(Hy))*
PE.b) = 0 p2P2(H>, b) p1(Q2(H2,b))* , (6.18)

p101(Hy) p102(H>,b) Pl(Ll,OO(H1)+%LZ,OO(HZ»b))

which is symmetric in L2(R"). Moreover, P(¢, b) is positive in L2(R") as shown in the
following lemma.

Lemma 6.2. Let ¢y, ¢y be positive constants. There exists a positive constant C = C(cy,
c1) depending only on co and cy such that if &, b € W (R?) satisfy Hy(x), Ha(x) > co
and Hy(x) + |VH(x)| + |Vb(x)| < c1, then for any ¢ = (¢}, 95, ¢1)T we have

(PE.b)@. )2 = CHpill@ 7 + p2ll051150 + P11V 7o)

Proof. Given ¢ = (¢}, 95, ¢1)", we define ¢1,0 and ¢, ¢ by

N N*
2j L1 j
$1,0 = ¢1 — Z H¢1j. ¢20= E‘Pl - Z Hzpl ¥2,j
j=1 j=1

and put @; = (¢1,0. 1,1, - - - ,(pl,N)T and @2 = (¢2,0, 2,1, - - - ,(pz,N*)T. Then we have
¢ =hL(H) @1 = 21(H) - 92, so that

p1li(Hy) - @1 — p2la(H2) - @2 = 0.
We also define F; = (F11,..., Fin)T, F2 = (Fa1,..., F2 n+)T, and F3 by

F, 0]
Fy | =P(.b) | 0,
F; ¥1
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Then we have

plil,i(Hl)(ol :Fl,i for i :1,2,...,N,
pzxz,i(Hz,b)(pz = F2,i fori = 1,2,...,N*,
p1€1,0(H1)@1 + p2Lr0(Ha, b)psr = Fs.

Now we introduce a dummy variable 7 as
n=—-L,0(H)e1.
Then it follows from the above equations that
—p1l1(Hy) - @1 + p2l2(Hz) - 92 = 0,
p1(nli(Hy) + Li(H1)e1) = f1.
p2(=nl2(Ha) + L2(H2.b)p2) = fo + 22 1(H2) F3,

where f1 = (0, F1,1,. .., FLN)T and f> = (0, F> 1, ..., Fz,N*)T. These equations can be
written in the matrix form

0 —prli(H)'  pala(H2)T n 0
p1li(Hy)  p1L1(Hy) 0 01| = [
—p2l2(H>) 0 p2La2(Hz, b)) \@2 fot BL(H2)F;

By taking the L2-inner product of this equation with (1, @1, @2)T we see that

pr(L1(H)@1,91)r2 + p2(L2(Hz, b)@2, 92) 12
= (fr1.o0r> + (f2,02)2 + %(lz(Hz)F&(oz)u
= (F1.9) 12 + (F2.95) 12 4+ (F3.01)12
= (P(.0)9.9) 2.
which gives, by (6.10) and (6.11) or (6.12),
(P, ). 9)r2 = pr(ll@) 151 + IVer0ll72) + p2(ll05 1151 + IVe2,0172)-
Since |V ||i2 < ll¢} ||§_I1 + ||Vg01,0||22, we obtain the desired estimate. |

By this lemma, the explicit expression (6.18) of the operator P(¢, b), and the standard
theory of elliptic partial differential equations, we can obtain the following lemma.

Lemma 6.3. Let py, p2, h1, ha, co, M be positive constants and m an integer such that
m > % + 1. There exists a positive constant C = C(p1, p2, h1, ha, co, m) such that if ¢
and b satisfy

1EIam + [1Dlwme < M,
Hi(x) =h; —{(x) =co, Ha(x)=hy+¢(x)—b(x)>cy forx eR",
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then for any Fy, F; € H*™' and F3 € H* with k € {0,1,...,m — 1}, there exists a
solution (¢!, 95, 1) of (6.17) satisfying

1@} @)l gr+1 + IVorllge < CUI(Fr. F2) | gri-1 + | F3ll ge)-

Moreover, the solution is unique up to an additive constant to ¢1.

We proceed to consider the solvability of (6.9). Given f{, f,, f3, fa, we define Fy,
F», F5 by (6.16), for which there exists a solution (¢/. ¢5. ¢1) to (6.17), define ¢;,9 and

¢2,0 by

N N*
j P1 ; 1
‘P1,0=¢1—2H121<P1,j, ¢2,0=E¢1—ZH5’¢2J+E]‘4,

j=1 j=1

and put @1 = (¢1,0,91.1,---,91.n8)" and @2 = (¢2.0,92.1,- - -, P2.n+) . Then we see that
(@1, @2) is a solution to (6.9). More precisely, we obtain the following lemma.

Lemma 6.4. Under the hypothesis of Lemma 6.3, for any f| = (fi,1,..., in)L fo =

(fots oo fon)T, f3, and fy satisfying f, f5 € H*"V and f3,V fs € H* with k €
{0,1,...,m — 1}, there exists a solution (@1, ¢2) to (6.9) satisfying

1@ @) Izt + 1(V@10. V2,0l e < CUST - D ar—r + 1(f3. V )l o).

where C = C(p1, p2, h1, ha, co, m). Moreover, the solution is unique up to an additive
constant of the form (€ pa, €p1) to (¢1,0, ¢2,0)-

7. Construction of the solution

In this section we will prove Theorem 2.1, one of the main theorems in this paper. One pos-
sible strategy to construct the solution of the initial value problem to the Kakinuma model
(2.14)—(2.16) would consist in firstly transforming the equations into a quasilinear positive
symmetric system, that is, a quasilinear version of the positive symmetric system (5.11),
secondly applying the method of parabolic regularization to construct the solution of the
transformed system, and finally to show that the solution to the transformed system is
in fact the solution of the Kakinuma model if we further impose the compatibility con-
ditions (2.18)—(2.18) on the initial data. Here, in order to avoid the heavy computations
that would be involved when following this strategy, we find it more convenient to instead
apply the method of parabolic regularization to the Kakinuma model directly.

7.1. Parabolic regularization of the equations

We recall that the Kakinuma model (2.14)—(2.16) can be written compactly as (6.4), that
is,
Li(H)0,S+ Li(Hy)p1 =0,
—1,(H2)0:{ + La(Hz,b)pa = 0, (7.1)
—p1li(Hy) - 0:¢1 + p2la(Hz) - 0,2 = F,
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where ¢1 = (¢1,0,P1,15- - P1,N) " D2 = (h2,0, 2,15+ - -, P2, n*) T, Ix and Ly fork = 1,2
are defined in (6.3), and

1 1
F = pifgt+ 5 (m P +wd} - pa{gt + (o + wh}. (72)

Here uy and wy for k = 1,2 are defined by (4.2) and (4.3) respectively. We regularize the
Kakinuma model by adding artificial viscosity terms as

Iy(H1)(3:C —eAl) + L1 (H1)$p1 = 0,
—1y(H2)(0:§ — eAl) + La(Ha,b)¢pr = 0, (7.3)
—p1li(Hy) - (0:91 — eAP1) + p2la(H) - (3,92 — eA¢) = F

We are going to show the existence of the solution to the initial value problem for this
regularized Kakinuma model under the initial conditions

& @1.92)1=0 = (§(0). 1(0)- D2(0))- (7.4)

For this regularized Kakinuma model, the compatibility conditions for the existence of the
solution have the same form as the original Kakinuma model, that is,

C1i(H)1 =0  fori=12,....N,
L2i(Hab)ps =0 fori =1,2,....N*, (1.5)
Li,0(H1)p1 + £20(Ha,b)pr =0,

where £ ;(Hy) fori =0,1,..., N and £, ;(H>,b) fori =0,1,..., N* are defined
in (6.5). Here, we note the identities

[0:, £1,i (H1)]$p1 = f1,i(, $1)0:¢ fori =1,2,...,N,
[0/, £2,i(H2, D)2 = f2.:(C, $2,b)3,& fori =1,2,...,N*,
[0, L1,0(H1)]P1 + [0, £2,0(H2,b)]p2 = =V - (v03;:0),

where v = u, — u; and

N

2i it . i+ i—
i€ ¢1) = —Z{ﬁ[ﬂz(lﬂ)mﬁl,_/ + 4ijH2OT 1)¢1,j},
j=0

N*
pi i+ PiPj ,pi+pi-1
Fi(€$2.0) = Yo AFg BV Aoy = EELHTITIY - (g VD)
= bt pj

i+pj—1 i+pi—2
—piH)"" P TN Ny + pipiHy' (1+|Vb|2)¢z,j},

and

(A, L1 (HDIp1 = f1,i(C DAL+ f1i(C 1) fori =1,2,...,N,
[A. &2 (Ha.D)l$2 = f2i(5. $2.D)AL + f2i (. $2.b) fori =1,2,....N*,
[A, L10(HD]p1 + [A, £20(H2,D)|p2 = =V - (WAL) + f3(C, 1, 62.D),
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where

n

Fri@dn) = S A0 L1 (HDYd1 + (1001 f1i (€ $1)}
=1

fri(C.§2.b) = Z{[az, L2i (Ha. D)2 + 010) fr.i(C. $2.5)

=1

—07((0:b) f2,i (. 2. b))
N*
DPiDj pi+pj
+ 0j|—————H V. Vb
;, l< (pi +p)pj ° ($2.5V0i0)
Db
pi + pj

)
i j

HY N - Vs

n

A1 928 = S {0, 1o (HOW1 + 1. Lo, DN

I=1

N*
+V- (—(81§)(81v) + 0 ((8lb)u2 +3 H;’f¢2,jva,b))}.

J=1

We also note that f3(Z, ¢1, 2, b) can be written in a divergence form as

f3(8.01.902.0) =V - f3(8, 1. 92.b),

where

n

N N*
F5(.61.92.b) = Z{(azz) S HY Vg + Y HY (i) Vorb

=1 j=o0 j=1

N*
+ @b —010) Y (HY Vi — pyHy' ™ (d12.;)Vb)
j=0

N*
- @) orw) + on @ubuz + 3 Vb ) |

j=1

Therefore, applying the operator d, — €A to (7.5) we obtain

£1,i(H1)(0:$1 — A1)

=—fl,i(§,¢1)(3t§—8A§)+8fl,i(§,¢1) fori =1,2,..., N,
£L2,i(H2,D)(0:p2 — eAd2)

= —f2i(5,$2.0)(8:5 — eAD) + & 2, (C. b2, b) fori =1,2,...,N*,
L1,0(H1)(0:P1 — eAP1) + L2,0(H2,b)(3:$2 — eAd)

=V (0, —eAl) + ef3(,, 91,92, b)).

(7.6)
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On the other hand, we have N + N* + 2 evolution equations for one scalar function ¢. To
select an appropriate evolution equation for ¢, we will use the notation defined by (5.13).
We note that they depend on the unknown functions H; and H,. Taking Euclidean inner
products of the first and the second equations in (7.3) with p1q; and p»q», respectively,
adding the resulting equations, and using the relation —p;1; - g1 + p2l> - g2 = 1, we obtain

9:5 —eAL = Go. (1.7)
where
Go = p191 - L1(H1)$1 + p2q2 - L2(H2, D) >,
Plugging this into (7.6) and noting the last equation in (7.3), we have

L£1,i(H1)(0:91 — eAd1)

= —/f1i(¢.$1)Go + e f1i (5. $1) fori =1,2,....N,
£2,i(Hz,b)(0: 92 — eAd2)

= —f2i(5,92.0)Go + £ /24 (5. $2.b) fori =1,2,... N*,
L1,0(H1)(0:91 — A1) + L2,0(H2,D) (32 — eAd2)

= V- (vGo +¢f3(5,91.92,D)),
—p1li(Hy) - (0:91 — A1)

+p202(Hz) - (3,92 — eAd2) = F.

Therefore, thanks to Lemma 6.4 we obtain

091 —eAd = Gy,
0:92 — eAds = G,

where G; = (G1,0,G1.1,...,G1.n)" and Gy = (G20, G2 1, ..., Gy n*)T are defined as
a solution to the following equations:

£1,;(H)Gy = —f1,;(6.61)Go + ef1,:(C, ¢1) fori =1,2,...,N,
£2,i(H2,b)G>

= —f2:(C,02.0)Go + efo,i (L, d2,b)  fori =1,2,...,N*  (7.10)
L1,0(H1)G1 + £2,0(H2,b)G2 =V - (vGo + & f3(, 91,92, b)),
—p1li(H1) - G1 + p2l2(Hz) - G2 = F.

(7.8)

(7.9)

Precisely speaking, (G, G,) are defined uniquely up to an additive constant of the form
(€p2,€p1) to (Gy,0, G2,0). However, this indeterminacy does not cause any difficulties
in the following arguments.

Remark 7.1. The equations in (7.9) are valid even in the case ¢ = 0, that is, any regu-
lar solutions to the Kakinuma model (2.14)—(2.15) satisfy (7.9) with ¢ = 0. Particularly,
0:Px (x,0) for k = 1,2 can be expressed in terms of the initial data ({(o). @ 1(0). $2(0)) and
the bottom topography b.
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7.2. Existence of the solution to the regularized problem
Lemma 7.2. Let g, p1, p2, h1, ha, co be positive constants and m an integer such that

m > 5 + 1. For any initial data ({0, §1(0). $2(0)) and bottom topography b satisfying

é‘(o)’ V¢1,0(0), V¢2,0(0) € Hmv ¢/1(0)’ ¢/2(()) € Hm+17 b € Wm+2,007
h1 =8y (x) = co, ha+Eey(x) —b(x)>co forx eR",

and for any € > 0 there exists a maximal existence time T, € (0, +00] such that the initial
value problem (7.7), (1.9), and (7.4) has a unique solution ({°, @3, §5) satisfying

£5. Vs 0. Vs 0 € C(I0.Te): H™),  ¢7.95 € C([0.T,); H™).

Proof. We evaluate the right-hand sides of the equations, that is, the terms Gg, G, and
G,,. To this end, suppose that (¢, ¢, ¢>) and b satisfy

{ 1. V1.0, 92.0) lm + @5 95)llrmes + [1Blgmszce < M. o

hy—C¢(x)>c1, hy+¢(x)—b(x)>c; forx eR".
Then we see that

1Gollzm—1 + I Cf7. 3. ) Imm=r + NCFL D lm=2 + [ Fllm < C(M.c1),
where f{ = (f1,1(¢, 1). ..., f1,8(C, ¢1)) and so on. Therefore, by Lemma 6.4 we have
[(VG1,0,VG2,0)llgm—1 + I(Gy, Gy)|lam < C(M, ¢y, ),

where we notice for further use that C(M, c1, ¢) is bounded uniformly with respect to
¢ € (0, 1]. We obtain the desired result by the standard theory of the heat equation. ]

Lemma 7.3. Suppose that the initial data ({(o), $1(0), P2(0)) and the bottom topogra-
phy b satisfy the hypotheses in Lemma 7.2 and the compatibility conditions (7.5). Then
the solution ((°, @9, ¢5) constructed in Lemma 7.2 satisfies the regularized Kakinuma
model (7.3).

Proof. By the construction of the solution, we easily see that it satisfies (7.8) and in par-
ticular the last equation in (7.3). Therefore, it is sufficient to show that it also satisfies the
first two equations in (7.3). By (7.7) and (7.8), we have

(9 — eA)(£1,(H)$p1) =0  fori =1,2,....N,

(3, - 8A)($2’,’(Hz,b)¢2) =0 fori = 1,2,... ,N*,
(0; —eA)(L1,0(H1)P1 + L2,0(H2, b)p2) =0,

so that by the uniqueness of the solution to the initial value problem of the heat equa-
tion, if the initial data satisfy the compatibility conditions (7.5), then the solution also
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satisfies (7.5) for all ¢ € [0, T). Particularly, we obtain

{—11(H1)(151,0(H1)¢1) + Li(H)¢p1 =0,
—1(Hy)(£2,0(H2.D)¢2) + La(Hz, b)pr = 0,

so that by the last equation in the compatibility conditions (7.5) we have

{—II(HI)(&,O(HI)M + Li(H)¢r =0, (7.12)

L(Hy)(L1,0(Hy)$1) + Lo(Hp, b)d, = 0.
Taking Euclidean inner products of the first and the second equations with p;q; and p>q»,
respectively, adding the resulting equations, and using the relation —p;1; - q1 + p2l2 - g2 =
1, we obtain

Li,0(H)o1 + p1g1 - Li(H)$1 + p292 - Lo(Hz. D)2 =0,

which together with (7.7) implies

L1,0(H )P = —(0,8 — eAl).

Plugging this into (7.12), we see that the solution satisfies the first two equations in (7.3).
(]

7.3. Uniform bound of the solution to the regularized problem

We proceed to derive estimates concerning solutions (£, ¢, ¢5) to the regularized Kak-
inuma model (7.3), uniform with respect to the regularized parameter ¢ € (0, 1] and for
a time interval independent of ¢. To this end, we make use of the good symmetric struc-
ture of the Kakinuma model based on the analysis of Section 5.1. In order to simplify the
notation we write (£, @1, @) in place of (£, @7, ¢5).

In view of (6.1) and (6.2) we decompose L;(H1)¢q and L,(H>, b)¢, into their prin-
cipal parts and remainder parts as

Ly(H)$1 = —Ay(H)A¢y + L (Hy)(uy - VO) + LY (Hp)éy. (7.13)
Ly(Ha, b)) = —Ax(Ha)A¢py — I (Ho)(uy - V) + LIZOW(HZ, b)¢,, (7.14)
where the matrices A1 (H1), A2(H>) are given by (5.10), L™ (H1) = (LYY, (H1))o<i,j <N
and L5 (Ha, b) = (LYY;(H2,b))o<i,j<N+ are given by
4ij 23i+j)—1
L' (H = g y
1,1]( 1)<P1,1 2(1 +])_1 1 @1,]
ow i j i i—1
LYY, (Ha.b)pa,; = Vb - (HY PN gy j — pi HY P gy VD)
Pj pi+p;j pi pi+pj
b P Pty (g, vy — P gPtPigy vy,
pi+p ! pi+tp /
DPiDj i+pji—1
L 1T T (14 VD) g,

pit+pi—1
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Let us recall the definitions of # in (5.5), and 6; and 6, in (5.12), so that
uy =u—01v, u,=u+ 6v.
Therefore, we can rewrite the first two equations in (7.3) as
{ L(HD)@:E — eAL + (u— 619) - VE) = A (H) Ay + L™ (H)gr = 0,
—(H2)(3:¢ — eAL + (1 + 62v) - VE) — A2 (H2)Ad + LYY (Hz, b)po = 0.

Let 8 = (B1,..., Bn) be a multi-index satisfying |8| < m. Applying the differential oper-
ator 3# to these equations and noting the relation (v - V) = —(v - V)* — (V - v), we have

p1l1(3,;8P — eALP +u-VIP) + (v V)* (0160:1:1¢P)

—Zal(mAlal(bf) = Fy.

=1

(7.15)
—p2l>(3:8P — eALP +u-VEP) + (v V)* (02021207

— Z al(p2A231¢g) =Fp.
=1

where ¢8 = 98¢, ¢£ = 08¢y fork = 1,2, and

Fipg=p {—[8’3,11]Go — 88, Lul]ve

—~(V-0)01 1% + [v-V,60,1]¢°

~ Y OrAne + 19, 41)Ags — aﬂLa"W(Hl)m},
=1

Frp = pz{[aﬁ,lz]Go + [02, Lul1V¢

~(V-0)0:¢P + [v-V,6,L,]¢°

= 01 A2)009E + 9P Ax] Ao — 0P L (1, b)¢2}.

=1

In the above calculation, we used (7.7). Similarly, applying the differential operator 3# to
the last equation in (7.3), we have

—pily - (3,0F —eAG? + u-V)PP) + pi61ly - (v- V)P
+ ol - (095 — eAPE + (u-V)PE) + p262ly - (v - V)PE + alf
= Fop. (7.16)
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where
N*
a= Pz(Zpini_l(Gz,i +uy Vo)
i=0
N*
+ > pilpi — DHY (w2 —uz - Vb)o,i + g)
i=0

N N

+ pl(Zzin"‘%Gl,,- oy Vo) —wi Y 202 = DH Vg —

i=0 i=0

Fop = Pl{(aﬂll(Hl) — @, L (H1)P Hy) - Gy + [0°;1,(H1), Gy

N
+uy -y ([0°:1h(Hy). Vo]

j=0
+ (91 (HY) — @y 1y (H1))PP Hy) Vb )

N
—wi Y ([0%, 61,1198, 11, (Hy)

j=0
+ (020w, 11, (H1) — (0,11, (H1))9® H1)1,5)

+ %([aﬁﬂll»ul] + [3‘9:w1»w1])}

- Pz{(aﬂ L(Hz) — (0,1 (H2))PL) - Ga + [0P; 12 (H>), G

N*

+uy - Z([aﬂ;lz’j (HZ), V¢2J]

j=0
+ (0812, (H>) = O, o, (H2) 0P Ha) Vo,
— (8%, 0,12, ; (H2)]¢2,; Vb
— (9 011,12, (Ha) = O, 2, (H2))0P Ho) s VD)

N*

+wz Y (08, ¢2,/10m, 1, (Ho)

j=0
+ (000,12, (Ha) — (93,12, (H2))0P Hy) 2. )

1
+ 5([83; u, llz] + [aﬁQ Wy, wz])}.
In the above calculation, we used (7.9) and the notation

{ll (Hy) = (l1.0(Hy). l1 1 (Hy). ... Ly (HD)T,
I (Hy) = (I2,0(H2), 12,1(H>2), ..., L n+(H))T,

299

)
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and the notation for the symmetric commutator [0 u, v] = 08 (u - v) — (Pu) - v —u -
(98 v). We can rewrite (7.15) and (7.16) in matrix form as

A0, UP —eAUP + (u-V)UP) + ADNUP = Fy, (7.17)
where
ﬁi Fop
Ul =|¢?|. Fe=|[Fp].
4 Frp
and
0 —pudf p2ly

Ar =1 ph o o |,
—,0212 (0] (0]

a P1 GlllT(v . V) ,029215(1) . V)
AT = (- V)* (o161l -) =3 7= 0i(p1A10; ) o
(v-V)*(p262l2-) o — > =1 01(p2A429;+)

Here, we note that A; is a skew-symmetric matrix and Ag“’d is symmetric in L2(R").
Concerning the positivity of Ag“’d, we have the following lemma.

Lemma 7.4. Let cy and Cy be positive constants. Then there exists C = C(cg, Cp) > 0
such that if a, Hy, H,, and v satisfy

lallzo + I (H, H)lzos + ollze < Co, o1
Hi(x) >cy, Hy(x)>co forx eR", )
and the stability condition
a(x) — P1p2 [v(x)|> >co >0 forx eR", (7.19)

p1Hz(x)az + p2 Hi(x)oy
then for any U = (f, é1.92)T, we have the equivalence
CTHIE. V1. V)72 = (AF*U.U)12 = CIIE. V1. Vo) 72
Proof. Introducing diagonal matrices D1 (Hy) and D,(H>) as
{ Dy(Hy) = diag(1, H2, H},..., H?N),
D> (H,) = diag(1, HI', HY*, ... . HJV"),

we have
Ar(Hy) = Hie D (Hp) Ao Dk (Hi), k=1,2,

where 4 ¢ and A5 are constant matrices defined by

1 1
Ay = (—) o A= ( ) - )
2(i + j) + 1/o<i,j<N pi + pj +1/0=i,j<N*
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We also have
1- Dy (Hp)px = L (Hy) - ., k =1,2.

Therefore,

n
5000z = (@ Dz + 30 3 (puHi Ao D Do)

I=1k=1,2

+2 Z (o Orly - (v - V)(bka é)LZ

k=1,2

n
=Y > (o HkQr0Ak,0Didi$i. Axo Dicdidi) 12

I1=1k=1,2
+ @l D2+ D Ao Heo (e ® V) i, (I ® V) )12
k=12
+ 200k v - (e ® V) e, )12}
=1 + I,

where we used identity (5.7). Since Q1,0 and Q> ¢ are nonnegative and in view of
I, > / {afz + Z {ox Heo | (e ® V) ic|> — 21k |v] | (I ® V) e Ifl}} dx
R k=12
and the analysis in Section 5.1, we can show the desired equivalence. [

Lemma 7.5. Let g, p1, p2, h1, ha, co, Mo be positive constants and m an integer such
that m > % + 1. There exist a positive time T and a positive constant C such that if initial

data (£, 91(0), P2(0)) and bottom topography b satisfy
1€ Vé1,00): V2,00 m + (D] g)- D50 lzrm+1 + [Dllwm+2.00 < Mo,
h1 =) (x) > 2co,  ha + {y(x) —b(x) >2¢co forx €R”,

the stability condition (7.19) with cqg replaced by 2cq, and the compatibility conditions
(7.5), then for any ¢ € (0, 1] the solution (%, ¢35, §35) constructed in Lemmas 7.2 and 7.3
satisfies

sup ([1C°(0). Vi o(1). Vb3 o (D) Iim + 11(@7'. 65) [ 77m+1)

0<t<T
t T
be fo 15 (1), Vs (), VS| Zymn f < C.

Proof. Once again we simply write U = (¢, @1, ¢2)T in place of (£¢, ¢, ¢5)T. We define
an energy function &,,(¢) by

Em(t) = D {AFNPU@). P U))12 + 11(0P 9 (1), 0P 950172}

|Bl=<m
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We assume that the solution ({(2), ¢1(2), ¢2(2)) satisfies (7.18) and the stability condi-
tion (7.19) for 0 < ¢ < T. Then the energy function &,,(¢) is equivalent to

Ep(t) = [(6(t), Vor1,0(0), V2,0 D lzm + (970, @5 D I7m1-

Furthermore, we assume that

t

En(t) +¢ / Epy1(v)dr < My (7.20)
0

for 0 <t < T, where the constant M; and the time T will be determined later. In the
following we simply write the constants depending only on (g, p1, p2, 1, h2, co, Co, My)
as C; and the constants depending also on M; as C,. They may change from line to line.
Then it holds that

Ci'Ej(t) < &;(t) < C1E;(1)

for j =0,1,2,.... We are going to evaluate the evolution of the energy function &,,(¢).
To this end, we take the L2-inner product of (7.17) with 3, U# — e AU® + (u - V)U® and
use integration by parts to get

1d -
5E(flg“’dUﬂ, UP)a + &) (AF™ 0, U 0,UP)2
=1

1 n
= 5 (0 GNP UP) 12 — ey (10, ATNUP, U7 2 = (AT UL, (- V)UP) 12
=1

+ (Fog. 9 Go+ (- V)P)p2 + D (Fip. P Gr + (- V)12,
k=12

Here, we see that
([0, AgUP  UP) 2
= ((3;a)¢P, ¢P)
+2 3 @ Olf - NGL 2P + 3 ST o (04007 . 019712

k=12 I=1k=1,2
([01. Ag™IUP . 0,UP)
= ((0a)¢? . tP) 2
+ 3 {0 Ol (0 - VBL . 01882 + (P 101 Ol (v - V)09 12

k=1,2

+ 3 (9400185 . 0,090 2.

k=1,2/=1



Kakinuma model for interfacial gravity waves: Structures and well-posedness 303
(AP (- V)UP)2
1
= —5((V- @u)¢?, &P)

=" (VP Ol (0 -V 2 + (P [ V). Ol (v - V)IBE) 2}
k=12

n 1 .
= 2 Y ol (Aktndf (@) )$f) 2+ 5 (- V)" 400,07 0197) .2}
k=1,21=1
so that for 1 < || < m we have

1d

n
2E(Agmduﬂ, UP)pa+e) (AT, U 0,U°),

=1
1
< Co(1 + 8Ep11(1)2) + | Fopll a1 187 Go + (u - V)P || g

+ 3 1Feplzz0P G + (u-V)gy |12
k=1,2

< Co(1 + £Emi1(1)?). (7.21)

A similar estimate can be obtained in the case || = 0 more directly. On the other hand, it
follows from (7.9) that

1d
53 1@V 92017 + el (Vo7 Ve IE = 3 (0°Gp. o)}z < Ca.
k=12

Therefore, we obtain

d 1
3 Em(0) F eEpar (1) < Ca(1 + Emi1(1)2),

which yields
t
Em() + ¢ / Ems1(2)dt < Cy + Cat.
0

Putting My =2C; and taking 7" > 0 so that C, T < C;, we obtain by a continuity argument
that (7.20) holds for0 <¢ < T.

It remains to show that (¢(z), ¢1(7), ¢2(?)) satisfies (7.18) and the stability condi-
tion (7.19) for 0 <t < T. By the Sobolev embedding theorem, (7.7), and (7.9), we see
that

G ) = Eo @)+ S (Vi (x. 1) — Vi ()] + |84 (x.1) — o) (X))

k=12

<c (||¢(r) oyl

+ 3 IV (t) — Vil amr + 19 0) - ¢;<0)||Hm-1))

k=1,2



V. Duchéne and T. Iguchi 304

< ¢ /0 (||atc<r)||Hm-1 + 3 (V0 k@)l mer + ||a,¢;<r)||Hm—1)) dr

k=1,2
t
<c / (1(Go. VG1.0. VGa.0) (D)l gm-1 + |(Gl. G| + Emar (1)F) do
0
< Co(t + Ver), (7.22)

which yields (7.18), except for the estimate for a, by taking 7" > 0 sufficiently small.
We now turn to the stability condition (7.19). In order to evaluate d;a, we need to obtain
estimates for 9, G;. for k = 1,2. Differentiating (7.10) with respect to ¢, we have

£1,:(H1)0:Gy = g1 fori =1,2,...,N,
£2,i(H2,0)0:Gy = g2; fori =1,2,...,N*,
L1,0(H1)0:Gy + £2,0(H2,0)0:G2 =V - g3,
—p1l1(H1) - 9:G1 + p2l2(H>) - 0, G2 = ga,

where
g1, = —[0:, £1,:(H1)]Gy

—3: (f1,i(¢. 91)Go — e f1:(C, $1)) fori =1,2,...,N,
82,i = _[8ts fz,i (Hz, b)]Gz

~3:(f2,i (¢, $2.0)Go — € f2, (L, $2.b)) fori =1,2,...,N*,

N N*
g = (3z§)(—ZH12’VG1,j +) (H'VGy, —Pijj_le,ij))
=0 i=0

+0:(vGo + £ f3(C, 01,92, b)),
ga = p1[d¢, 11 (H1)"1G1 — p2[d¢, 1 (H2)"|G, + 9, F.

Therefore, by Lemma 6.4 with k = m — 2 we obtain

[(V0:G1,0.V:G2,0)lgm—2 + (3:G{, 3, G3) || gm—
< C(|l(g1. g2)llgm—3 + (g3, Vga)ll pm—2)
< Co([[(3:£, Vs 91,0, VO $2,0) [ rm—1 + [|(3: 7. 0:95) | ).

On the other hand, it follows from (7.7) and (7.9) that

[0:8, V3r¢1,0, VO:r2,0)lgm—1 + 13,97, 3:95) | ez
< (Go.VG1,0,VG20) |l gm-1 + (G{. G lam

+ e(1(¢, V1,0, Vo2,0) lgm+1 + (@7, 5) | gm+2)
< Co(1 + eEps1(1)?).
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Thus,

[call ggm—1 < Co2(|[(8:8, VIr1,0. V2,0, 0:G1. 0:Gy) | gm—1 + [|(3:D], :95) || rm)
< G(1+ 8Em+1(t)%)»

so that ]
la(x,t) —a(x,0)| < C1/ |0za(T)|| gm-1 dT < Ca(t + ~&t).
0

This together with (7.22) yields (7.18) and the stability condition (7.19) by taking 7 > 0
sufficiently small. This completes the proof. ]

Once we obtain this kind of uniform estimate, compactness arguments allow us to pass
to the limit ¢ — 4-0 in the regularized problem (7.3) and (7.4). By construction, the limit
(&, 91, Po) satisfies (2.14)—(2.17) and

§.V10, Voo € L0, T; H™)NC([0,T]: H™ ),
@195 € L0, T: H™)nC([0.T]: H™),
L 3BV, 08V, € Cy([0,T]; L?)

for any multi-index B satisfying || = m. It remains to show that the above weak conti-
nuity in time can be replaced by strong continuity. To this end, we use the technique by
Majda [24], that is, we make use of the energy estimate. See also Majda and Bertozzi [25].
For each ¢ € [0, T'] we introduce an inner product

(0, VU1, Va), (i1, V1, V)i = ATV, V)12

with V = (, ¥1, ¥2)T and V = (7, ¥1., ¥2)", and denote the corresponding norm by
| - |ls, which is equivalent to the standard L?-norm by Lemma 7.4. By using the energy
estimate corresponding to (7.21), for any multi-index B satisfying || = m we can show
the continuity of |[(8¢(¢), 38V (1), ¥V, (1))||; in ¢ € [0, T]. Particularly, for each
to € [0, T] we have

Jim ([(P£(1), 9P V1), ” Vo () 1o = 11(0°¢ (10), " Vb1 (10), 9 Vb (10)) -
Since we already knew weak continuity, this gives strong continuity, that is, we have
3L, 9PV, 0PV, € C([0, T); L?). Thus, Theorem 2.1 follows.

8. Hamiltonian structure

In this section we will show that the Kakinuma model (2.14)—(2.16) also enjoys a Hamil-
tonian structure analogous to the one exhibited by Benjamin and Bridges [1] on the full
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interfacial gravity waves. We recall that the Kakinuma model can be written simply as

I1(H)0,S + Li(Hy)$p1 =0,
—1,(H2)0: + Lyo(Hz,b)p2 =0, (8.1
—p1li(Hy) - 0,91 + p2la(H2) - 0,2 = F

where ¢1 = (¢1,0. 91,1, . $1.8) ", 2 = ($2,0. 92,1, ... p2.4+)", [ and Ly fork = 1,2
are defined by (6.3), and F is defined by

F=plgt+ (|(V<I>“"*’)|Z e? + (0:0):=)?) |
— o8t + S (TSI + (@05 )) ) 8.2)
Here, ®{"" and &5 are approximate velocity potentials defined by (1.4).

8.1. Hamiltonian

As was expected, the Hamiltonian would be the total energy. In terms of our variables
(¢, @1, ¢2), the total energy EX is given by

EX(C. b1, §2) = / K (b1 o) dx., 83)
Rn

where the density of the energy eX = eX(¢, @1, @) is given by

hy 1 ) . ¢ 1 . .
e = /; §p1(|V<I>‘ipp|2 + (3:7)?) dz +/ Ep2(|vq>2‘°p|2 + (39, 957)?) dz

—ho+b
1
+ E(Pz — p1)g¢?
- | L
— H2(1+])+1V . V X
2p1i,-zzo(2(i+j)+1 : P YL

4ij
—‘]Hz(l+l) 1¢1 ¢1 ])

2(1 +J)
i+pj+1
+ '02 Z ( Hy Vo, -V,
i,j=0 pi +pj + 1

2

_ o —fp HP1+PJ¢2lVb V¢2]
i j

i i—1
LN (VP

i j

1
+ 5 (02 = p1)gl. (8.4)
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By integration by parts, we also have

XL Pr1.92) = /1;n (%PILI(HI)‘I’I 1+ %Psz(szb)%"I)z + é(ﬂz —Pl)g§2> dx.

In view of the symmetry of the operators L;(H;) and L,(H», b), we can easily calculate
the variational derivatives of this energy functional and obtain

8:€X(L. p1,¢2) = —F,
86, E5(8. 91.92) = p1L1(H1)$1, (8.5)
86,E5(C. 91.92) = p2L2(Ha. b)¢o.

Therefore, the Kakinuma model (8.1) can be written as

0 prli(H)T  —pala(Hp)T ¢ 8:EX(L.91.92)
—,Olll(Hl) 0] (0] 8, ¢1 = 8¢18K(§,¢1,¢2) . (86)
p2l2(H3) o o [/} 84,5 (L. 1. 92)

As we will see later, the canonical variables of the Kakinuma model are the surface
elevation ¢ and ¢ given by

¢ = p2®5 |,z — p1 DY’ |z2¢ = p2la(Ha) - @2 — p1li(Hy) - 1, 8.7

which is the canonical variable for the full interfacial gravity waves found by Benjamin
and Bridges [1] with (®1, ®,) replaced by (&, ®5"). Then the compatibility condi-
tions (2.18)—(2.20) and (8.7) are written in the form

£1.:i(H1)$1 =0 fori =1,2,..., N,
L0i(Hab)ps =0 fori =1,2,...,N*,
L1,0(H1)P1 + L2,0(H2,b)ps = 0,
—p1li(H1) - ¢1 + p2la(H) - 2 = .

Therefore, it follows from Lemma 6.4 that once the canonical variables (£, ¢) are given

in an appropriate class of functions, ¢7 = (¢1,1,....d1,8)", @5 = (P21, ..., P2 n*)T,
V1,0, Va0 can be determined uniquely. In other words, these variables depend on the
canonical variables (¢, ¢) and b, and furthermore they depend on ¢ linearly. Although the
solution (¢, ¢>) to the above equations is not unique, we will denote the solution by

¢1 =81 b)p, ¢2 = 82(¢,D)¢.

This abbreviation causes no confusion in the following calculations. Since we will fix b,
we simply write S1(¢) and S»(¢) in place of S1(¢, b) and S»(¢, b) for simplicity. Now,
we define the Hamiltonian to the Kakinuma model as

FEE ¢) = 5L S1(0), S2(0)¢), (8.9)

which is uniquely determined from (¢, ¢).

(8.8)
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8.2. Hamilton’s canonical form

We proceed to show that the Kakinuma model (8.1) is equivalent to Hamilton’s canonical
form with the Hamiltonian defined by (8.9). In the following, we fix b € W™ with
m > 3 + 1 and put

Uyt = {é‘ € H™;infyegn (h1 — C(x)) > 0 and infyern (hy + {(x) — b(x)) > 0},

which is an open set in H™. We also use the function space H* = {¢p;Vp € H™ 1}, For
Banach spaces X and Y, we denote by B(X;Y) the set of all linear and bounded operators
from X into Y. By Lemma 6.4, we easily see the following lemma.

Lemma 8.1. Let m be an integer such thatm > 5 + 1 and b € W™, For each { € U}l
and fork = 1,2, ..., m, the linear operators

$10): HY 5 ¢ > ¢y € H* x (HF)Y,

S$2(0): H* 5 ¢ > 2 € H* x (HN,

wghere (@1, P2) is the solution 10 (8.%), are defined. Moreover, we have S1({) € B(Iflk;
H* x (H*)NY) and $,(¢) € B(H*; H* x (H*)N™).

Formal!y, Uk = D¢ Sy ({)[f]gb, the Fréchet derivative of Sy ({)¢ with respect to ¢

applied to ¢ for k = 1, 2 satisfy
L1 (H)V1 = Dy, L1, (H)[C]o fori =1,2,....N,
£2i(Hy, b)¥r2 = —Dp, €2 (Hy, b)[C]py  fori =1,2,...,N*,
L10(H)V1 + L2.0(Ha, b)¥ra

= Dy, L1,0(H) {91 — Dp, L2,0(Ha, b)[L]$2.
—p1li(Hy) - Y1 + p2la(Ha) - ¥

= —(p1(0m, 11 (HY)) - ¢1 + p2(3m,12(H2)) '¢2)§
with¢; = S;({)¢ for j = 1,2, wherefori =1,..., N,

N

Dy, £1i(H)[E)$1 = D (Do, Lij (H)[E] — HY Dy, Ly o (H1)[E]
j=0

(8.10)

- 2iH12i_léLl,0j(H1))¢l,j,
Dig, Ly (H)[Eprj = =V - CHY Vg ) + 41 EHTT 0,
and so on. By using these equations together with Lemma 6.4 and standard arguments,

we can justify the Fréchet differentiability of Si({) with respect to ¢ for k = 1, 2. More
precisely, we have the following lemma.

Lemma 8.2. Let m be an integer such that m > 5 + 1 and b € W™, Then the maps
UM ¢ 81(8) € BUTR; HY x (HY)N) and U 5 ¢ — $5(0) € B(H*; H* x (HF)N")
are Fréchet differentiable for k = 1,2, ..., m, and (8.10) holds.
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We proceed to calculate the variational derivatives of the Hamiltonian X (¢, ¢), which
are given by the following lemma.

Lemma 8.3. Let m be an integer such that m > 5 + 1 and b € W™, Then the map

Up' x H'> &, @) = HE(, @) € R is Fréchet differentiable and the variational deriva-
tives of the Hamiltonian are

8 HX (L. ) = —L1,0(H) 1.
8 I, 9) = (8:€)(C. 1. 92)
+(£1,0(H)P1) (p1Or, 1) (H1) - 1 + p2(0m,12) (Hz) - §2),
where ¢ = Si(¢) fork =1,2.

Proof. Let us calculate Fréchet derivatives of the Hamiltonian 71X (¢, ¢). Let us consider
first U™ x H? 5 (¢, ¢) = HX(L. ¢). Forany ¢ € H?, we see that

Dy (¢, $) (9]

= (D, EX)(C, S1(D)¢. S2(O)P)[S1(0)P] + (D, EX)(C, S1(8), S2()$)[S2(0)¢]

= ((64,E5)(C. 91.92). S1(D)P) 12 + ((56,EX)(C. $1.92). S2()p) 2

= (p1L1(H1)$1. S1(0)$) 12 + (p2L2(Ha. b)2. S2(0)) 12

= (p1li(H)(£1,0(H)$1). S1(0)$) ;> — (p2la(H2) (L1,0(H1)$1). S2(0)) 2

= (L£1,0(H)$1. p1l1(Hy) - S1(0) — p2la(H2) - $2(D)$)2

= —(£10(H)$1.4)2.
Where we used (8.5) and Lemma 8.1. The above calculations are also valid when (¢, ¢) €
H'x H! prov1ded we replace the L2-inner products with the X'-X duahty product,
where X = H! x (HY)N or X = H' x (H")N" for the first lines, and X = H for the

last line. This gives the first equation oof the lemma.
Similarly, for any ({, ¢) € Uy" x H?and ¢ € H™ we see that

D3N, $)E] = (DX S1(0)¢, S2(D)P)E]
+ (Dg, E¥)(. $1(0)$. $2(8)p)[ D S1(D[E1¢]
+ (Dg,€) (. $1(0)$. S2(0)$)[De S2(0)[E]¢]
= ((8:E") (. $1.62). D12 + (59, E)(C. $1.62). D¢ S1(D)[p) 12
+ ((8,€%)(C. 1. 92). D¢ S2(0)[E]$) 12

Here, we have
(56, E9)(C. D1, 92). DeS1(D)E1P) 2 + (B9, EX) (. D1, 92). De S2(D)IE])

= (p1L1(H1)$1. D S1(DIE18) 2 + (p2L2(Ha. D)2, D¢ S2(D)[{14)
= (L1,0(HD@1. p1l (H1) - DeS1()[{)p — p2la(Ha) - D¢ S2(0)[E]9) -
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= (L1,0(HD®1. (01 @r, 1) (HY) - 1 + p200m,12) (H2) - $2)8) 5
= ((L1.0(HD$1) (010m, 1) (H1) - $1 + p2(0m,12) (Ha) - $2).8) 5.

where we used the identity

pili(Hy) - D¢ S1(D)[El¢ — pala(Ha) - DeS>()[E]g
= (p1Qm 1) (H1) - 1 + p20m, 1) (H>) - $2) ¢,

stemming from (8.10). Again, the above identities are still valid for ({, ¢) € Up" x H!
provided we replace the L2-inner products with suitable duality products. This concludes
the proof of the Fréchet differentiability, and the second equation of the lemma. ]

Now we are ready to show another main result in this paper.

Theorem 8.4. Let m be an integer such that m > 5 + 1 and b € W™ . Then the Kak-
inuma model (2.14)—(2.16) is equivalent to Hamilton’s canonical equations

SHK SHK
;¢ = TR 0ip = T (8.11)

with HX defined by (8.9) as long as (-,t) € Uyt and ¢ (-,1) € H'. More precisely, for any
regular solution (¢, 1, ¢2) to the Kakinuma model (2.14)—(2.16), if we define ¢ by (8.7),
then (¢, ¢) satisfies Hamilton’s canonical equations (8.11). Conversely, for any regular

solution (¢, ¢) to Hamilton’s canonical equations (8.11), if we define ¢ and ¢, by ¢y =
Si ()¢ for k = 1,2, then (¢, ¢1, ¢2) satisfies the Kakinuma model (2.14)—(2.16).

Proof. Suppose that (¢, ¢, @) is a solution to the Kakinuma model (2.14)—(2.16). Then
it satisfies (8.6), and in particular

0/ =—L1,0(H)P1. (8.12)

Moreover, it follows from (8.7) and (8.6) that

019 = p2la(H2) - 0,¢2 — p1l1(Hy) - 0191
+ (p2(0r, 12 (H2)) - §2 + p1(0m, L1 (H1)) - ¢1)9:C
= —(8:€5)(¢. 9192)
— (L1,0(H)$1) (o1 Om, 11 (HY)) - §1 + p2(0m1,12(H2)) - ¢2).

These equations together with Lemma 8.3 show that (¢, ¢) satisfies (8.11).

Conversely, suppose that (¢, ¢) satisfies Hamilton’s canonical equations (8.11) and put
or = Sk (&) for k = 1,2. Then it follows from (8.11) and Lemma 8.3 that we have (8.12).
This fact and Lemma 8.1 imply the equations

{ll(Hoatc + Li(H))¢$; =0,
—15(H3)0:¢ + L2(H2,b)¢p = 0.
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We see also that

—p1li(Hy) - 091 + p2la(H2) - 092
3¢ — (p1(0m, 1) (H1) - @1 + p2(0m,12) (H2) - $2) 9, ¢
= 8850, ¢192) = F

where we used (8.11), (8.12), Lemma 8.3, and (8.5). Therefore, (¢, ¢1, ¢2) satisfies (8.1),
that is, the Kakinuma model (2.14)—(2.16). [ ]

9. Conservation laws

The Kakinuma model (2.14)—(2.16) has conservative quantities: the excess of mass
Jrn € dx and the total energy EX(E, @1, ¢2) given by (8.3). Moreover, in the case of a
flat bottom in the lower layer, the momentum given by

MU @1, 92) =// p1 VPP dx dz—i—// p2 VP dx dz
Q1(2) Q3 ()
— [ VEnn(H) 81+ pala(t) - g2 dx
Rn
(Vo dx
Rn
is also conserved for the Kakinuma model. Here, we also give the corresponding flux

functions to these conservative quantities.
We have two forms of conservation of mass by (2.14) and (2.15) with i = 0, that is,

9L+ V- Z( T +1 f-"“wl,j):o, ©.1)

Dj 1,p;
3L+ V- HY ', . — ELgPig, Vb)) = 0. 9.2
¢ 2 :(1+l g = LHT 42, 98) ©:2)

Proposition 9.1. Any regular solution (¢, 1, @2) to the Kakinuma model (2.14)—(2.16)
satisfies the conservation of energy

e+ V. =0,

where the energy density e¥ is defined by (8.4) and the corresponding flux fX is given by

N
1 L
X 2(+j)+1
= -~ H Vo  )(9,b
fe P1 112::( 2(1 +])+1 1 ¢1,]>( t¢1,l)
+ HPi+Pj+1V 1 le+p, vb)(3
P2 Z ( Di +p] +1 2 ¢2,] i +p] ¢ )( z¢2,)

i,j=0
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Proof. By using F defined by (8.2), we see that

3,eK = —Faté'

N
1 2(i+j)+1
B 2 Vo -V .
+ p1 ;(2(1. T )+1 1 o1,; tP1,i

4ij 2(i+j)-1
2(1 + ]) -1 1 ¢1,_/ t¢lsl

i+pj+1
+ {( HPTPityg, .
i,j=0
Pj HP1+171¢ Vb) Vo
Pt + pj
Di pi+p;
(P g,
pi + pj 2 J
PiDj pi+pi—1 2 ) }
H 1 Vb 19 )
+Pi+[7j—1 2 (1 +|VDb")p2,j )0:¢2.i

=—F9{—V- £+ p1Li(H)$1-3:¢1 + p2Lo(Ha, )¢ - 0:¢2,
so that, by (8.1),

35+ V- fX=—F3,+p1Li(H)$1-9:1 + p2L2(Ha, b)p2 - 3,92

= (=F —p1ly(Hy) - 0,91 + p2l2(H>) - 0:¢2)0:¢
= 0,

which is the desired identity. ]

Proposition 9.2. Suppose that the bottom in the lower layer is flat, that is, b = 0. Then any
regular solution (§,¢1,¢2) to the Kakinuma model (2.14)—(2.16) satisfies the conservation

of momentum
dm* +V.-FK =

where the momentum density m® and the corresponding flux matrix FX are given by

K'=(Vp = (V(02l2(H) - 2 — p1li(Hy) - ¢1),

FX = —(£0:(pala(Ha) - ¢2 — p1l1 (Hy) - 1) + €¥)1d
N

1 23 +7)+1
E - H Vo, @ Vi i
+p1A e 2(! +]) T 1 ¢1,1 ® ¢l,]
P1+Pj+1
+ Voo @ Voo, ;.
pP1 E pl +p] PO—— H, $2,i $2,;

i,j=0
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Proof. Forl =1,2,...,n, we see by (8.1) that

0:(80;¢) — 01(80:) = (0:8)(p2l2(H2) - 0192 — p1l1(H1) - 0;1)
—(018)(p2l2(H2) - 0:¢2 — p111(Hy) - 0:91)

= p2L2(H2,0)p2 - 0192 + p1 L1 (Hy )1 - 0191 — (0,0 F
N

1 2(i+j)+1
==V E [— . Vo : )9 '
{pli —~ (2(1' T+ ¢1,z> 191,

i+pj+1
+ P2 ( Hy V¢2,‘)al¢2,'} + Ry,
t]ZO Pi +p/+l 2 l /

where F is given by (8.2) and
N 1 o
R = (*H2(z+1)+lv V) )
1 PliJZZ:O TN $1,i 191,

4ij 2(i+j)—-1
2(l + J) -1 1 ¢1,l l¢1,]

1 +pj+1
n § (o HI TP g Vi,
P2 P ¢2,i 192,

Dipj i+
+ Di _|_lp.]_1 217 b ¢2,81¢2 j) - (31§)F
i J

N
1 1 20 +j)+1
=91 (—H DG, Voo
1{2,01 UZ:O Wt 1, - Vou,j
4ij 2(+j)—-1
tair ot )
AT - Pt

i+pji+1
+ § ( HY P4, Ve,
102 i +P] +1 2 ¢2,z ¢2,]

Pipj i+pj—1
o H ¢2,i¢z,j)}+Rz.
i j

Here, we have
= _Pl Z 20+])V¢1z Vou,j +4lJH2(l+j 1)¢1z¢1,1)3l§
i,j=0
N*
1 pi+pj pi+pj—2
— 5P > (HY" PN -V + pipiH, $2,i¢2,7)01¢ — For¢
i,j=0

1
= (p2 — p1)gLdi¢ = 81(5(132 - pl)géz),

so that R; = d;eX. These identities yield the desired one. ]
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