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Stable singularity formation for the inviscid primitive
equations

Charles Collot, Slim Ibrahim, and Quyuan Lin

Abstract. The primitive equations (PEs) model large-scale dynamics of the oceans and the atmo-
sphere. While it is by now well known that the three-dimensional viscous PEs are globally well
posed in Sobolev spaces, and that there are solutions to the inviscid PEs (also called the hydrostatic
Euler equations) that develop singularities in finite time, the qualitative description of the blowup
still remains undiscovered. In this paper, we provide a full description of two blow-up mechanisms,
for a reduced PDE that is satisfied by a class of particular solutions to the PEs. In the first one a
shock forms, and pressure effects are subleading, but in a critical way: they localize the singularity
closer and closer to the boundary near the blow-up time (with a logarithmic-in-time law). This first
mechanism involves a smooth blow-up profile and is stable among smooth enough solutions. In the
second one the pressure effects are fully negligible; this dynamics involves a two-parameter family
of nonsmooth profiles, and is stable only by smoother perturbations.

1. Introduction

We consider the three-dimensional inviscid primitive equations (PEs)

ut C uuX C vuY C wuZ C pX ��v D 0; (1a)

vt C uvX C vvY C wvZ C pY C�u D 0; (1b)

pZ C T D 0; (1c)

�t C u�X C v�Y C w�Z D 0; (1d)

uX C vY C wZ D 0; (1e)

set in the domain

D DM � Œ0; 1� D
®
.X; Y;Z/W .X; Y / 2M; 0 � Z � 1

¯
;

where M � R2 is a smooth bounded domain with real analytic boundary. System (1)
is supplemented with the initial value .u0; v0; �0/, and satisfies the relevant geophysical
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boundary conditions (cf. [25]):

w.t; X; Y;Z/ D 0 on Z D 0 and Z D 1;Z 1

0

.u; v/.t; X; Y;Z/ dZ � En D 0 on .X; Y / 2 @M;
(2)

where En is the outward unit normal to @M. System (1) is derived as a formal asymptotic
limit of the small aspect ratio (the ratio of the depth or the height to the horizontal length
scale) from the Boussinesq system (see [1, 29]). With full viscosity, the global existence
of strong solutions for the three-dimensional PEs was first established in [9], and later in
[20,22,27,28]. The above results were extended to the cases with only horizontal viscosity;
see [5–7]. With only vertical viscosity, the ill-posedness in Sobolev spaces is shown in
[33]. This ill-posedness can be overcome by considering additional linear (Rayleigh-like
friction) damping [8], or Gevrey regularity and some convex conditions on the initial data
[16].

In the absence of viscosity, and for adiabatic systems (i.e., constant temperature that
can be set by convention to be zero), system (1) is also called the hydrostatic Euler equa-
tions. Such a system has a loss of horizontal derivative, making local well-posedness in
Sobolev spaces a hard problem for general initial data. Indeed, the linear and nonlinear
ill-posedness in any Sobolev space have been established in [33] and in [19], respectively.
On the other hand, by assuming either real analyticity or some special structures (local
Rayleigh condition) on the initial data, one is able to establish the local well-posedness;
see [2, 3, 17, 18, 24, 25, 30]. Moreover, it was proven that smooth solutions to the invis-
cid PEs, in the absence of rotation, can develop singularities in finite time (cf. [4, 34]).
Recently, it has been shown in [21] that the results about ill-posedness and finite-time
blowup can be extended to the case with rotation.

The different proofs of the singularity formation rely on the proof of the finite-time
blowup for the corresponding two-dimensional model for which the initial data can be
lifted to the full three-dimensional equation, where the well-posedness is applicable. To
get to the two-dimensional system, the idea in [4, 21] is to observe that if � D 0 and
initially �0 D v0 D 0, then any smooth enough solution .u; v; w; �/ to system (1), with
initial data .u0; v0; �0/ and boundary condition (2), must satisfy �.t; X; Y; Z/ � 0 and
v.t; X; Y; Z/ � 0. Moreover, if initially u0 is independent of the Y variable, then any
smooth enough solution remains independent of the Y variable. Therefore, under the
assumption that we have a smooth solution and for the initial data

u0.X; Y;Z/ D u0.X;Z/; v0.X; Y;Z/ D 0; �0.X; Y;Z/ D 0;

we obtain the two-dimensional inviscid PE system (also known as the hydrostatic Euler
equations)

ut C uuX C wuZ C pX D 0; (3a)

pZ D 0; (3b)

uX C wZ D 0: (3c)
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Since system (3) is independent of the Y variable, the horizontal domain M needs to be
Y independent and translation invariant in Y . Hence without loss of generality we may
consider system (3) set on

D D
®
.X;Z/W �L � X � L; 0 � Z � 1

¯
;

and the boundary conditions (2) become

w.t; X; 0/ D w.t; X; 1/ D 0;Z 1

0

u.t;�L;Z/ dZ D

Z 1

0

u.t; L;Z/ dZ D 0:
(4)

From (3c) and (4), we know that

w.t; X;Z/ D �

Z Z

0

uX .t; X; zZ/d zZ;

Z 1

0

uX .t; X;Z/ dZ D 0;

and thus
Z 1

0

u.t; X;Z/ dZ D 0:

(5)

One is able to further simplify system (3). Differentiating (3a) with respect to X , one
obtains

uXt C uuXX C u
2
X C wXuZ C wuXZ C pXX D 0: (6)

Thanks to (5), integrating (6) with respect to Z over the interval Œ0; 1�, an integration by
parts together with (3b), (3c), and (4) enables us to solve for the pressure:

pXX D �

Z 1

0

.u2/XX dZ: (7)

We consider from now on solutions u that are odd in X , i.e., u.X/ D �u.�X/, and
introduce the trace of their horizontal derivative on the central line:

a.t; Z/ D �@Xu.t; 0;Z/: (8)

Differentiating (6) with respect to X , then injecting (5) and (7), and taking X D 0, one
obtains the following closed evolution equation for a:

at � a
2
C

�Z Z

0

a.t; zZ/d zZ

�
aZ C 2

Z 1

0

a2 dZ D 0; (9a)Z 1

0

a.t; Z/ dZ D 0: (9b)

Note that for solutions u having the form

u.t; X;Z/ D �Xa.t; Z/; and thus, uX .t; X;Z/ D �a.t; Z/; (10)

system (3) and the boundary condition (4) for u are equivalent to system (9) for a. We
emphasize here that the term 2

R 1
0
a2 dZ comes from the pressure term.
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Remark 1. In the presence of rotation, i.e., � � 0, choosing �@Xv0.0; Z/ D �, it has
been shown in [21] that a defined in (8) still satisfies system (9).

In [4], a family . m/m>0 of initial data has been constructed for which the corre-
sponding solution a to (9) blows up at time t D 1 with a.t; Z/ D .1 � t /�1 m.Z/.
Lifting this result to a blowup for the original two-dimensional system (3) is however
nontrivial given the lack of a well-posedness result in the class of regularity of the profiles
 m. In addition, perturbation of these solutions seems challenging given their rigidity. On
the other hand, Wong [34] has constructed explicit initial data for (3) that are analytic
and for which the corresponding solution will exhibit a singularity in finite time, making
ku.t; �/kL1 C kpX .t; �/kL1 C kuX .t; �/kL1 infinite at the blow-up time. The purpose of
this paper is to provide precise qualitative properties of the singularity formation.

Our main result is the following, showing the existence and stability of a blow-up
solution for (9) with a smooth profile.

Theorem 1.1 (Smooth blowup). Consider the profile �.z/ D �0.z/ D e�z . Then there
exist ��0 > 0 and ı > 0 such that for all 0 < �0 � ��0 a constant � > 0 exists such that, if
initially

a0.Z/ D
1

�0
�
�Z
�0

�
C Qa0.Z/; 0 � Z � 1; (11)

with
2

3 log.��10 /
� �0 �

3

2 log.��10 /
and k Qa0kC 2.Œ0;1�/ � �; (12)

then there exist T > 0 andC > 0 such that the solution a to (9) with initial data a.t D 0/D
a0 blows up at time T > 0 according to

a.t; Z/ D
1

.T � t /
�
� Z

�.t/

�
C Qa.t; Z/; with �.t/ D

1

jlog.T � t /j
; (13)

where for all t 2 Œ0; T /,

k Qa.t; �/kL1.Œ0;1�/ � C.T � t /
�1
jlog.T � t /j�ı : (14)

Remark 2. • Note that the general solution u (other than (10)) to (1) might not exist
up to time T . If it does, then the divergence k.@Xu/jXD0.t/kL1.Œ0;1�/ ! 1 as t "
T implied by (8), (13), and (14) signals the formation of a shock for u along the
horizontal X -direction at the point .X;Z/ D .0; 0/.

• The pressure term is of lower order compared with the other terms as t " T , but not
negligible. Indeed, the modulation equations for the scaling parameters .�; �/ are8<:�t D �1C C0� C h.o.t.;

�t D �C0
�2

�
C h.o.t.;

C0 D 2

Z 1
0

�20.z/ dz D 1: (15)

Here h.o.t. means higher-order terms. The pressure is thus responsible for the behavior
(13) of � corresponding to a self-similarity of the second kind.
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• Equation (9a) shares similarities with the viscous Prandtl equation on the axis [13]:8̂<̂
:�t � �yy � �

2
C

�Z y

0

�

�
�Y D 0; Y > 0;

�.t; 0/ D 0; �.0; Y / D �0.Y /:

(16)

In [10], a blow-up dynamics is found, for which the viscosity is negligible, where the
singularity forms on a large spatial scale y � �.t/D .T � t /�1=2; see also [11,12,26].
Note that (9) without pressure is (16) without viscosity. Interestingly, the blow-up
dynamics of Theorem 1.1 and that of [10] are genuinely different, due to the absence
of a Dirichlet boundary condition for (9), allowing for a blowup at the boundary, and to
the absence of pressure and confinement z 2 Œ0; 1� in (16), allowing for the transverse
spatial scale � to grow to infinity, so to maintain the divergence-free condition.

• Another instance of a blow-up dynamics with a logarithmic correction for the scale due
to subleading but nonnegligible effects happens for the semilinear heat equation [32].

The existence and uniqueness of analytic solutions of system (1) in the domain D with
boundary condition (2) is established in [25]. By virtue of this, Theorem 1.1, and Remark
1, we have the following corollary regarding the existence of an explicit singular solution
of system (1) satisfying the boundary condition (2).

Corollary 1.2. Consider the profile �.z/ D e�z , and suppose that the initial condition
.u0; v0; �0/ of system (1) with boundary condition (2) satisfies

u0.X; Y;Z/ D �Xa0.Z/ D �X
� 1
�0
�
�Z
�0

�
C Qa0.Z/

�
;

v0.X; Y;Z/ D ��X; �0.X; Y;Z/ D 0;

where a0 is defined as in Theorem 1.1. Then the unique analytic solution blows up at time
T > 0 stated in Theorem 1.1.

In the second result, we study a blow-up regime where the pressure can be neglected
around the blow-up time. We show that this can happen through a two-parameter .ˇ; Q�/
family of nonsmooth profiles.

Theorem 1.3 (Nonsmooth blowup). For any ˇ > 0, there exists a nonsmooth profile func-
tion �ˇ 2 C

1
ˇC1 .Œ0;1// with �ˇ > 0, �ˇ .0/ D 1, and �ˇ decreasing to 0 on Œ0;1/, and

a constant ı > 0 such that the following holds true.
For any Q��0 > 0, there exists ��0 > 0 and for all 0 < �0 � ��0 , a constant � > 0, such

that if initially

a0.Z/ D
1

�0
�ˇ

�Z
�0

�
C Qa0.Z/; 0 � Z � 1; (17)

with
0 < �0 � �

�
0 ; 0 < Q�0 D

�0

�
ˇ
0

� Q��0 ; and k Qa0kC 1.Œ0;1�/ � �; (18)
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then there exist T > 0, Q�1 > 0, C > 0 such that the solution a to (9) with a.t D 0/ D a0
blows up at time T > 0 with

a.t; Z/ D
1

T � t
�ˇ

� Z

�.t/

�
C Qa.t; Z/; with �.t/ D Q�1.T � t /ˇ ; (19)

where for all t 2 Œ0; T /,

k Qa.t/kL1.Œ0;1�/ � C.T � t /
�1Cı : (20)

Remark 3. • The profile �ˇ is almost explicit; see Proposition 3.1. The parameter Q�
comes from the fact that for a fixed ˇ >0 the full family of blow-up profile is .�ˇ;Q�/Q�>0
where �ˇ;Q�.z/ D �ˇ .z= Q�/.

• The fact that it is not smooth is crucial: the soft1 singularity of the initial data plays a
crucial role in the mechanism underlying the (worst) singularity at time T . This is a
feature of the hyperbolic nature of (9). Similar soft singularities playing a role during
finite-time blowup are found for the Burgers equation [12], the nonlinear wave equa-
tion [23], and the incompressible Euler equations [14, 15]. However, the construction
of stable smooth blowup seems in general to be more challenging. For instance, it still
remains open for the three-dimensional Euler equations.

• Compared to Theorem 1.1, the modulation equations for the scale parameters .�; �/
are 8<:�t D �1C Cˇ� C h.o.t.;

�t D �ˇ
�

�
� Cˇ .ˇ C 1/

�2

�
C h.o.t.;

Cˇ D 2

Z 1
0

�2ˇ .z/ dz; (21)

for which the pressure effects (the second terms in the right-hand side of (21)) are
negligible. Comparing (21) and (15), we see that the ˇ D 0 case (15) is critical for
the role of the pressure which drives the blow-up scale � to 0 and slightly slows down
the blow-up speed (through the C0� term in (15)). Interestingly, this critical regime
corresponds in fact to a stable blow-up scenario among smooth solutions.

2. Formal explanations and organization of the paper

2.1. Formal derivation of the blow-up dynamics

In this subsection we detail formal computations that predict the blow-up solutions of
Theorems 1.1 and 1.3. We start by making the hypothesis that u is a blow-up solution of
(9) that satisfies the following assumptions:

Assumption 1:
R 1
0
a2 dZ is of lower order with respect to the other terms in (9);

Assumption 2: The confinement Z 2 Œ0; 1� is irrelevant as the solution is localized
near Z D 0:

1Soft in the sense that it still allows for local-in-time existence of a solution.
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Equation (9) then becomes to leading order,

at � a
2
C

�Z Z

0

a.t; zZ/d zZ

�
aZ D 0; 0 � Z <1: (22)

This new equation (22) possesses a family ¹�ˇ ºˇ�0 of self-similar profiles; see Proposi-
tion 3.1. Namely, for ˇ � 0, for any Q� > 0 (which is a free parameter),

a.t; Z/ D
1

T � t
�ˇ

� Z

Q�.T � t /ˇ

�
is an exact solution of (22). For ˇ D 0 the profile is smooth and explicit:

�0.z/ D e
�z (23)

and for ˇ > 0 the profile is only of Hölder regularity C
1

ˇC1 and there holds as z !1,

�ˇ .z/ � dˇz
� 1
ˇ ; dˇ > 0: (24)

Formal nonsmooth blow-up solutions. If ˇ > 0, for any fixed Q� > 0 we let af.t; Z/ D
1
T�t

�ˇ .
Z

Q�.T�t/ˇ
/ be the exact blow-up solution of the simplified equation (22). Then af is

a formal blow-up solution of the original equation (9). To see it, it suffices to check that
this formal solution is consistent with Assumptions 1 and 2 that we made. We compute
using (24),

j@tafj; a
2
f ; j@

�1
Z af@Zafj � .T � t /

�2; and
ˇ̌̌̌Z 1

0

a2f dZ

ˇ̌̌̌
.

8̂̂<̂
:̂
.T � t /ˇ�2 if 0 < ˇ < 2;

jlogT � t j if ˇ D 2;

1 if ˇ > 2;

and so Assumption 1 is verified. Assumption 2 also holds true due to the decay (24)
of �ˇ as z !1. This formal solution af.t; Z/ D

1
T�t

�ˇ .
Z

Q�.T�t/ˇ
/ then corresponds to

Theorem 1.3.

Formal smooth blow-up solutions. If ˇ D 0 then, for any fixed Q� > 0, af.t; Z/ D
1
T�t

�0.
Z
Q�
/ is no longer a formal blow-up solution of (9). Indeed, j@tafj, a2f and

j@�1Z af@Zafj are of size � .T � t /�2 but so is j
R 1
0
a2f dZj � .T � t /

�2, so that Assump-
tion 1 is no longer valid.

To cope with that issue, we relax the blow-up time T and take a time-dependent
scaling parameter �. We thus consider the refined formal blow-up solution a�f .t; Z/ D
1
�.t/

�0.
Z
�.t/

/, where � and � are to be found. We now compute the leading-order effects of

the term
R 1
0
a2 dZ. We have, using (23),

@ta
�
f D
��t

�2
�0

�Z
�

�
�

�t

��2
Z�00

�Z
�

�
; @�1Z .a

�
f /@Za

�
f D

1

�2
.@�1z .�0/@z�0/

�Z
�

�
;Z 1

0

a�2f D
� CO.e�

1
� /

2�2
:
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Hence, using in addition the identity .@�1z �0/
d
dz
�0 � �

2
0 C �0 D 0, the error E generated

by a�f is

E D @ta
�
f � a

�2
f C @

�1
Z .a

�
f /@Za

�
f C 2

Z 1

0

a�2f dZ

D
��t

�2
�0

�Z
�

�
�

�t

��2
Z�00

�Z
�

�
�
1

�2
�0

�Z
�

�
C
� CO.e�

1
� /

�2
: (25)

We now choose � and � so that a�f is an approximate solution of (9), or equivalently so
that E is suitably small. Since the solution is concentrated near Z D 0, we require that
E.t; 0/D 0 and that @ZE.t; 0/D 0. Injecting (23) into (25), the first requirement imposes
that ��t � 1C � CO.e�

1
� / D 0 and the second that �t C � �t� C 1 D 0. Neglecting the

O.e�
1
� / terms, this leads to the dynamical system8<:�t D �1C �;�t D �

�2

�
:

This dynamical system admits by a direct check solutions .�f.t/; �f.t// such that �f.t/ �

T � t and �f.t/ � 1=jlogT � t j. We thus take as a refined formal blow-up solution
a�f .t; Z/ D

1
�f.t/

�0.
Z
�f.t/

/. We check that j@ta�f j, a
�2
f and j@�1Z a

�
f @Za

�
f j are of size �

.T � t /�2 and j
R 1
0
a�2f dZj � .T � t /�2=jlog T � t j so that Assumption 1 is now satis-

fied. Assumption 2 also holds true since �f ! 0. This formal solution then corresponds to
Theorem 1.1.

2.2. Organization

Section 3 is devoted to the construction in Proposition 3.1 of our family of profiles
.�ˇ /ˇ>0. The proof is similar to [10, Proposition 3.2]. In Section 4 we construct the stable
blowup in the nonsmooth case, where the decay is exponential in time in similarity vari-
ables. The proof uses a bootstrap argument by defining a basin of attraction of the blowup
in Definition 4.2. Our proof goes in three steps. First, we find and solve the modulation
equations in Lemma 4.6 by imposing suitable zero boundary conditions on the perturba-
tion. Next, we estimate the remainder Qa in an interior region in Lemma 4.7. We use a
Lyapunov functional with a spatial weight that penalizes the nonlocal terms inspired from
[10]. Its decay in time is due to the repulsivity of the transport field and potential terms
generated by the �ˇ profile, which results in a spectral-gap-like coercivity, in analogy with
[31]. Last, in Lemma 4.8 we estimate the solution in an exterior region away from the sin-
gularity using the maximum principle. Following the same steps as Section 4, in Section 5
we give the proof of Theorem 1.1. The key difference is due to the modulation equations
in Lemma 5.5, which need to go up to quadratic order in the � equation. The decay rate of
the remainder becomes algebraic in this case. A slightly more refined analysis is needed.
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3. Profiles

In this section we classify self-similar solutions of

at � a
2
C

�Z Z

0

a.t; zZ/d zZ

�
aZ D 0; 0 � Z <1;

of the form
a.t; Z/ D

1

T � t
�ˇ

� Z

.T � t /ˇ

�
for some ˇ � 0. They correspond to solutions of the profile equation

.ˇz C @�1z �/
d

dz
� � �2 C � D 0; z 2 Œ0;1/; (26)

where @�1z �.z/D
R z
0
�. Qz/d Qz. Note that equation (26) has a scaling invariance: if � solves

(26) then so does �Q� defined as �Q�.z/ D �.z= Q�/ for any Q� > 0. The classification of
bounded solutions to (26) is given by the following proposition:

Proposition 3.1. For all ˇ � 0, the following holds true:

• When ˇ > 0, equation (26) has a solution �ˇ 2 C.Œ0;1// \ C1..0;1// satisfying,
for a constant dˇ > 0,

�ˇ .z/ D 1 � z
1

ˇC1 C z
2

ˇC1 C o.z
2

ˇC1 / as z ! 0 (27)
and

�ˇ .z/ D dˇz
� 1
ˇ C o.z

� 1
ˇ / as z !1: (28)

• When ˇ D 0, equation (26) has the explicit solution

�0.z/ D e
�z :

• For all ˇ � 0, if � 2 C.Œ0;1//\ C 1..0;1// solves (26), then either � is unbounded
on Œ0;1/, or � is constant equal to 0 or 1, or there exists Q� > 0 such that �.z/ D
�ˇ .z= Q�/ for all z � 0.

Remark 4. Note that
R1
0
�2 is finite if and only if 0 � ˇ < 2, while

R1
0
.�0/2 is finite

if and only if 0 < ˇ < 1. Note that there might exist solutions to (26) on Œ0;1/ that are
unbounded, but they are not relevant for our purpose.

Proof of Proposition 3.1. We first consider ˇ > 0, and assume that � D �ˇ 2 C.Œ0;1//\
C 1..0;1// solves (26) and is bounded.

Step 1: Preliminary properties. We claim that either � D 0 or � D 1, or 0 < �.z/ < 1 for
all z > 0. To prove it, we let  .z/D ˇzC

R z
0
�. Qz/d Qz, and claim that  .z0/¤ 0 for some

z0 > 0. Indeed, if not then @z D 0, so that � D �ˇ. But this is not a solution to (26).
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Then, defining X D .�;  / with d
dz
X D .@z�; @z / and X.z0/ D X0, we have that X

solves the following ODE whenever  ¤ 0:8̂<̂
:
d

dz
X D

��2 � �
 

; ˇ C �
�
;

X0 D .�.z0/;  .z0//:

(29)

Note that (29) has the explicit solutions .0; C C ˇz/ and .1; C C .ˇ C 1/z/ for some
C 2 R. If X is one of these solutions, since  .z/ D ˇz C

R z
0
�. Qz/ d Qz, then C D 0 and

these are the � D 0 or � D 1 solutions to (26), respectively.
Next, we introduce the sets

Z˙1 D
®
0 < � < 1; ˙ > 0

¯
; Z˙2 D

®
� > 1; ˙ > 0

¯
; Z˙3 D

®
� < 0; ˙ > 0

¯
:

Assuming that � ¤ 0; 1, there exists i 2 ¹1; 2; 3º and � 2 ¹˙º such that X0 2 Z�i . We
claim that all cases except X0 2 ZC1 lead to a contradiction, which will prove the claim of
Step 1.

IfX0 2Z�1 orX 2Z�2 , then we notice by a direct check that both sets are invariant by
the backward flow of (29), so thatX.z/2Z�1 orX.z/2Z�2 for all 0< z < z0. This implies
@z >0 for z < z0 and hence .z/� .z0/< 0which contradicts .z/DˇzC

R z
0
�! 0

as z ! 0.
IfX0 2ZC2 , then this set is invariant by the forward flow of (29), so thatX.z/2ZC2 for

all z > z0. This implies @z�.z/ > 0 and hence 1 < �.z0/� �.z/ for all z � z0. Moreover,
by the boundedness of �, we know �.z/ � C for some C > 1. We then get using (29) that
for z � z0,

@z�.z/ �
�2.z0/ � �.z0/

 .z0/C .ˇ C C/.z � z0/
&

1

1C z
:

Integrating this inequality gives �.z/ ! C1 as z ! 1, a contradiction since � is
bounded.

IfX0 2ZC3 , then we first claim thatX.z/ 2ZC3 for all 0 < z � z0. By contradiction, if
not there would exist 0 < z1 < z0 such that X.z/ 2 ZC3 for z1 < z � z0 and X.z1/ … ZC3 .
In this case, �0.z/ > 0 for all z 2 .z1; z0� so that �.z/ � �.z0/ < 0. As X.z1/ … ZC3 and
�.z1/ < 0 we must have  .z1/ D 0. Since  > 0 on ZC3 , and  .z/ D ˇz C

R z
0
� with

� continuous, we obtain that 0 <  .z/ � C.z � z1/ on .z1; z0� for some constant C > 0.
Hence for z 2 .z1; z0� we have using (29) that

@z� �
�2.z0/ � �.z0/

C.z � z1/
;

which integrated by z implies �.z/! �1 as z # z1, a contradiction.
If X0 2 Z�3 , we get similarly to the ZC3 case that X 2 Z�3 on Œz0;1/. Then @z� < 0

for z � z0, and � diverges to �1 by an argument similar to that used for ZC2 , giving
again a contradiction.
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Step 2: Exact formula. We now assume thanks to Step 1 that 0 < �.z/ < 1 for all z > 0
and hence �0 < 0 and  > 0 on .0;1/. With similar arguments to Step 1 above, we obtain
that �.z/! 0 as z !1, and that �.z/! 1 as z ! 0. In particular, there exists z1 > 0
such that

�.z1/ D
1

2
:

We now perform a change of variables on Œ0;C1/ by defining � such that

d�

dz
D

�

ˇz C
R z
0
�. Qz/ d Qz

; �.z1/ D 1; and H.�/ WD �.z/; (30)

so that the equation (26) becomes H �H 2 C �@�H D 0, whose solution, since H.1/ D
1=2, is

H D .1C �/�1: (31)

Now, differentiating (30) gives

d2z

d�2
D

d

d�

hˇz C R z
0
�. Qz/ d Qz

�

i
D �

1

�

dz

d�
C
dz

d�

ˇ C �.z/

�
D
dz

d�

hˇ
�
�

1

1C �

i
:

After integration this yields, for C an integration constant,

dz

d�
D

C�ˇ

� C 1
: (32)

Using (30) and 0 < ˇz C
R z
0
�. Qz/ d Qz < .1C ˇ/z we obtain that

lim
z#0

log �.z/ D �
Z z1

0

�
ˇz C

Z z

0

�. Qz/ d Qz

��1
dz D �1;

so that limz#0 �.z/D 0. Moreover, we recall that z.� D 1/D z1. These two considerations
and (32) give

z.�/ D C

Z �

0

Q�ˇ

Q� C 1
d Q�; C D z1Cˇ ; Cˇ D

�Z 1

0

Q�ˇ

Q� C 1
d Q�

��1
: (33)

For any z1 > 0, the identities (30), (31), and (33) provide solutions to (26), which are equal
up to the scaling transformation �.�/ 7! �.�= Q�/. We also proved these are the only possible
bounded solutions. To get the asymptotics of � at z ! 0, and z !1, we integrate (33):

z.�/ D C

Z �

0

uˇ

1C u
du D C

X
j�0

.�1/j

ˇ C j C 1
�ˇCjC1 for 0 � � < 1:

This implies that

� D
�ˇ C 1

C

� 1
ˇC1
z

1
ˇC1 CO.z

1C 1
ˇC1 /;



C. Collot, S. Ibrahim, and Q. Lin 328

and consequently, using (30) and (31),

�.z/ D
1

1C z
1

ˇC1
��
ˇC1
C

� 1
ˇC1 CO.z/

� ;
which implies (27) upon choosing z1 D

ˇC1
Cˇ

. Similarly, one can derive the asymptotic as
� (equivalently z)!1.

Step 3: The case ˇ D 0. This can be solved explicitly by separating variables in the dif-
ferential equation (26). Indeed, letting  D @�1z �, we get

  00 D  0. 0 � 1/;

giving the one-parameter family of solutions  D Q�.ez=Q� � 1/ for Q� > 0, i.e., � D e�z=Q� .
This finishes the proof of the proposition.

For the sake of simplicity, we shall first give the proof of Theorem 1.3 for the case of
nonsmooth blowup.

4. Nonsmooth blowup

In this section we focus on the case ˇ > 0.

4.1. Derivation of the rescaled model in self-similar coordinates

Consider the following rescaling for � and � two positive C 1 functions of time:

z D
Z

�.t/
;

ds

dt
D

1

�.t/
; s.0/ D s0: (34)

The following computations are done for all ˇ � 0, with � D �ˇ (we drop the ˇ subscript
to ease notation) given by Proposition 3.1. We write the solution a.t; Z/ of system (9) as

a.t; Z/ D
1

�.s.t//

�
�
� Z

�.s.t//

�
C "

�
s.t/;

Z

�.s.t//

��
D

1

�.s/
.�.z/C ".s; z//: (35)

From the explicit computations,

at D
1

�2

�
�
�s

�
� � �0

�s

�
z �

�s

�
"C "s � "z

�s

�
z
�
;

a2 D
1

�2
.�2 C "2 C 2�"/;�Z Z

0

a.t; zZ/d zZ

�
aZ D

1

�2
.@�1z ��

0
C @�1z �"z C @

�1
z "�

0
C @�1z ""z/;

2

Z 1

0

a2.Z/ dZ D
2�

�2

Z 1
�

0

.� C "/2.z/ dz;
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thanks to (26), system (9) gives

"s �
�s

�
" �

�s

�
z"z � 2�"C @

�1
z �"z C @

�1
z "�

0
� "2 C @�1z ""z

D

��s
�
C 1

�
� C

�
ˇ C

�s

�

�
z�0 � 2�

Z 1
�

0

.� C "/2.z/ dz; (36a)Z 1
�

0

.� C "/.z/ dz D 0: (36b)

The modulation parameters � and � are determined by imposing the following vanish-
ing for the expansion of ", an orthogonality-like condition:´

".s; z D 0/ D 0;

@z".s; z/ D O.z
2

ˇC1
�1
/ as z # 0:

(37)

In order to have the boundary condition ".z D 0/ D 0, (36a) gives the first modulation
equation

�s

�
C 1 D 2�

Z 1
�

0

.� C "/2.z/ dz: (38)

By taking the derivative of (36a) with respect to z, one obtains

"zs �
��s
�
C
�s

�
C �

�
"z C

�
@�1z � �

�s

�
z
�
"zz � �

0"C @�1z "�
00
� ""z C @

�1
z ""zz

D

��s
�
C 1C ˇ C

�s

�

�
�0 C

�
ˇ C

�s

�

�
z�00: (39)

Since near zero �.z/ D 1 � z
1

ˇC1 C z
2

ˇC1 C o.z
2

ˇC1 /, then near zero one has

�0 D
�1

ˇ C 1
z
�ˇ
ˇC1 C

2

ˇ C 1
z
1�ˇ
ˇC1 C o.z

1�ˇ
ˇC1 /;

z�00 D
ˇ

.ˇ C 1/2
z
�ˇ
ˇC1 C

2.1 � ˇ/

.ˇ C 1/2
z
1�ˇ
ˇC1 C o.z

1�ˇ
ˇC1 /:

The second boundary condition in (37) then gives the second modulation equation

�s

�
D �ˇ � .ˇ C 1/

�
1C

�s

�

�
D �ˇ � .ˇ C 1/2�

Z 1
�

0

.� C "/2.z/ dz: (40)

Thus, we can rewrite (39) as

"zs �
��s
�
C
�s

�
C �

�
"z C

�
@�1z � �

�s

�
z
�
"zz � �

0"C @�1z "�
00
� ""z C @

�1
z ""zz

D �.ˇ�0 C .ˇ C 1/z�00/2�

Z 1
�

0

.� C "/2.z/ dz: (41)
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4.2. Bootstrap argument

We now fix once and for all ˇ > 0 and its corresponding profile � D �ˇ given by Propo-
sition 3.1, and pick constants

0 < � < min.ˇ; 1/; ı D 2min.ˇ; 1/ � �: (42)

Our proof of the main result goes using a bootstrap argument. We start by setting up its
framework. The notation C.a1; a2; : : : ; an/ stands for a generic constant that depends on
its arguments a1; : : : ;an and that may change from line to line. Consider a solution a of (9)
written in the self-similar coordinates .s; z/ given by (34), and assume it is decomposed
in the form (35). Therefore, " and "z satisfy (36) and (41), respectively. We control " with
the quantities

E21 .s/ D

Z z�

0

w.z/.@z".s; z//
2 dz;

E2.s/ D sup
z��z� 1

�.s/

j"j:

Here z� � 1 will be fixed later on, and the weight function is chosen to be

w.z/ D z˛e�Kz ; (43)

with K large enough satisfying (76) and (83) below, and ˛ being defined by

˛ D
j1 � ˇj � 2C �

2

ˇ C 1

D

8̂̂̂<̂
ˆ̂:
�ˇ � 1C �

2

ˇ C 1
D �1C

�

2.ˇ C 1/
when 0 < ˇ � 1;

ˇ � 3C �
2

ˇ C 1
D �1C

4.ˇ � 1/C �

2.ˇ C 1/
D 1 �

4

ˇC 1
C

�

2.ˇC 1/
when ˇ > 1:

In particular, notice that �1 < ˛ < 1 is true for any ˇ > 0 and � satisfying (42).

Definition 4.1 (Initial closeness). Let ��0 ; Q�
�
0 > 0. We say that a0 is initially close to the

blow-up profile if there exist 0 < �0 � ��0 and �0 > 0 such that

(i) the initial values of the modulation parameters satisfy (note that the first equation
fixes the value of s0)

�0 D e
�s0 ; Q�0 D �0e

ˇs0 � Q��0 I (44)

(ii) the initial perturbation ".s0; z/ D "0 2 C.Œ0;
1
�0
�/ \ C 1..0; 1

�0
�/, given by the

decomposition (35), satisfies the integral condition (36b), the boundary condition
(37), as well as the two conditions (38) and (40);
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(iii) for some small number  > 0 satisfying conditions (92) and (95) below, "0 satis-
fies

E21 .s0/ D

Z z�

0

w.z/.@z"0.z//
2 dz < e�ıs0 ;

E22 .s0/ D sup
z��z� 1

�0

j"0j
2 <

1

16
e�ıs0 :

(45)

Our task is to show that solutions that are initially close to the blow-up profile in
the sense of Definition 4.1 will stay close to this blow-up profile up to modulation. The
proximity at later times is defined as follows.

Definition 4.2 (Trapped solutions). We say that a solution a.s; z/ is trapped on Œs0; s1�
with s0 < s1 <1 if it satisfies the properties of Definition 4.1 at time s0, and if for some
zK > 1 and for all s 2 Œs0; s1�, a.s; z/ can be decomposed as in (35) with

(i) values of the modulation parameters:

1

zK
e�s < � < zKe�s;

Q�0

zK
e�ˇs < � < Q�0 zKe

�ˇs
I (46)

(ii) decay in time of the remainder in the self-similar variables:

E21 .s/ D

Z z�

0

w"z.s/
2 dz < zK2e�ıs;

E22 .s/ D sup
z��z� 1

�.s/

j".s/j2 < zK2e�ıs :
(47)

The proof of the Theorem 1.3 relies on the following bootstrap proposition.

Proposition 4.3. For any ˇ > 0, 0 < � < min.ˇ; 1/, and ı D 2min.ˇ; 1/� �, there exist
universal constants zK;K; z� � 1 and  > 0 such that the following holds true. For any
Q��0 > 0, there exists s�0 large enough such that for all s0 � s�0 , any solution of (9) which is
initially close to the blow-up profile in the sense of Definition 4.1 is trapped on Œs0;C1/
in the sense of Definition 4.2.

A standard continuity argument implies that for s0 large enough, any solution which
is initially close to the blow-up profile in the sense of Definition 4.1 is trapped in the sense
of Definition 4.2 on some interval Œs0; s1� with s1 > s0. Letting s� > s0 be the supremum
of times s1 > s0 such that the solution is trapped on Œs0; s1�, the purpose now is to show
that s� D C1. The strategy is to study the trapped regime via several lemmas and show
that the solutions cannot escape from the open set defined by Definition 4.2.

Note that the constant s�0 (defined in Proposition 4.3) will be adjusted during the proof:
we will always be able to conclude the proof of the various lemmas by choosing s�0 large
enough. By time-shift invariance, we can always assume the original initial time to be
t D 0. First, let us derive a prioriL1 andL2 bounds of the remainder of trapped solutions.
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Lemma 4.4. Given a solution a of (9) that is trapped on the interval Œs0; s1� in the sense

of Definition 4.2, for all s0 � s � s1, we have for C �.ˇ; �;K; z�/ D C eKz
�
.z�/�˛

.1�˛/K
,Z 1

�

0

"2 dz < C � zK2e�ıs
1

�
(48)

and
sup

0�z� 1
�.s/

j"j2 < C � zK2e�ıs : (49)

Proof. We divide the proof into two steps.

Step 1: A preliminary estimate. We claim that there exists C > 0 such that for all ˛ 2
.�1; 1/ and K � 1, for w given by (43),Z z

0

1

w. Qz/
d Qz �

C

.1 � ˛/Kw.z/
for all z > 0: (50)

Indeed, recallingw.z/D z˛e�Kz , by a rescaling argument and then a change of variables,

sup
z>0

w.z/

Z z

0

1

w. Qz/
d Qz D sup

z>0

w
� z
K

�Z z
K

0

1

w. Qz/
d Qz D

1

K
sup
z>0

z˛e�z
Z z

0

Qz�˛e Qz d Qz: (51)

If ˛ � 0 then for all z > 0,

z˛e�z
Z z

0

Qz�˛e Qz d Qz � e�z
Z z

0

e Qz d Qz � 1: (52)

If ˛ > 0 then an integration by parts gives

z˛e�z
Z z

0

Qz�˛e Qz d Qz D
z

1 � ˛
�
z˛e�z

1 � ˛

Z z

0

Qz1�˛e Qz d Qz:

Now, since z � Qz, we obtain

z˛e�z
Z z

0

Qz�˛e Qz d Qz �
z

1 � ˛
�

e�z

1 � ˛

Z z

0

Qze Qz d Qz D
e�z

1 � ˛
.ez � 1/ �

1

1 � ˛
: (53)

Injecting (52) and (53) into (51) shows (50).

Step 2: Proof of the lemma. For all z 2 Œ0; z��, using the boundary condition ".s; z D 0/D
0, the Cauchy–Schwarz inequality, and (50), from (47) one obtains that

j".s; z/j2 �

�Z z

0

w"2z d Qz

��Z z

0

1

w
d Qz

�
� E21 .s/

�Z z�

0

1

w
d Qz

�
�

C

.1 � ˛/Kw.z�/
E21 � C

�E21 � C
� zK2e�ıs : (54)

This, together with (47), implies (49). Estimate (48) is an immediate consequence of (49)
as Z 1

�

0

"2 dz �
1

�
sup

0�z�z�
j"j2 � C � zK2e�ıs

1

�
:
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We will need the following technical estimate in this section.

Lemma 4.5. Suppose that ˇ > 0, K � 2, and z� � 1. Denote by

A WD

Z z�

0

�0.z/2w.z/

�Z z

0

1

w
. Qz/ d Qz

�
dz

C

Z z�

0

�00.z/2w.z/

�Z z

0

�Z Qz
0

1

w
.�/ d�

� 1
2

d Qz

�2
dz

WD A1 C A2:

For any ˛ 2 .�1; 1/, if w is given by (43) then

A �
C.ˇ/

1 � ˛

8̂̂<̂
:̂
K�1 when 0 < ˇ < 1;

K�1 lnK when ˇ D 1;

K
� 2
ˇC1 when ˇ > 1:

(55)

Proof. We recall that for i D 1; 2,

j@iz�.z/j . z
�

ˇ
ˇC1
C1�i for z � 1; j@iz�.z/j . z

�
ˇC1
ˇ
C1�i for z � 1: (56)

We first consider A1 and decompose:

A1 D A
1
1 C A

2
1 C A

3
1;

A1 D

Z 1
K

0

�0.z/2w.z/

�Z z

0

1

w
. Qz/ d Qz

�
dz;

A21 D

Z 1

1
K

: : : ;

A31 D

Z z�

1

: : :

For 0 < z � K�1 we have w.z/ � z˛ so that using (56),

A11 .
Z K�1

0

z
�

2ˇ
ˇC1

z

1 � ˛
dz . C.ˇ/

K
�2
ˇC1

1 � ˛
:

For K�1 � z � 1 we use (50) and (56) so that

A21 .
Z 1

K�1
z
�

2ˇ
ˇC1

1

K.1 � ˛/
dz .

C.ˇ/

1 � ˛

8̂̂<̂
:̂
K�1 if ˇ < 1;

K�1 logK if ˇ D 1;

K
�2
ˇC1 if ˇ > 1:

For z � 1 we use (50) and (56) so that

A31 .
Z z�

1

z
�
2.ˇC1/
ˇ

1

K
dz .

C.ˇ/

1 � ˛
K�1:
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Summing the three inequalities above shows that

A1 .
C.ˇ/

1 � ˛

8̂̂<̂
:̂
K�1 if ˇ < 1;

K�1 logK if ˇ D 1;

K
�2
ˇC1 if ˇ > 1:

(57)

We turn to A2. For z > 0 we use the Cauchy inequality and that Qz 7!
R Qz
0
1
w
.�/ d� is

increasing to get

w.z/

�Z z

0

�Z Qz
0

1

w
.�/ d�

� 1
2

d Qz

�2
� w.z/

�Z z

0

1 dz

��Z z

0

Z Qz
0

1

w
.�/ d� d Qz

�
� w.z/z

�Z z

0

Z z

0

1

w
.�/ d� d Qz

�
� z2w.z/

Z z

0

1

w. Qz/
d Qz:

Notice using (56) that z�00 has the same asymptotic behavior as �0 near z D 0 and z D1.
Therefore, by repeating a similar calculation, one obtains the same estimate (57) for the
term A2 as for the A1 term. These two estimates show (55).

In the sequel, we reintegrate over time the modulation equations and the various energy
and pointwise estimates, to show that the various upper bounds describing the bootstrap
cannot be saturated. Proposition 4.3 follows immediately from the following three lem-
mas.

Lemma 4.6 (Modulation equations). For any choice of constants zK;K;z� � 1, ; Q��0 > 0,
and 0 < � < min.ˇ; 1/, there exists a large self-similar time s�0 such that for any s0 � s�0 ,
for any solution which is trapped on Œs0; s1�, we have for s 2 Œs0; s1�,ˇ̌̌�s

�
C 1

ˇ̌̌
� Ce�

ı
2 s;

ˇ̌̌�s
�
C ˇ

ˇ̌̌
� Ce�

ı
2 s; (58)

for C > 0 independent of the bootstrap constants, and

1

2
e�s � � �

3

2
e�s;

Q�0

2
e�ˇs � � �

3

2
Q�0e
�ˇs : (59)

Moreover, if s1 D1 then there exists some constants Q�1; Q�1 > 0 such that

� D Q�1.1CO.e
� ı2 s//e�s;

� D Q�1.1CO.e
� ı2 s//e�ˇs :

(60)

Proof. We divide the proof into three steps.
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Step 1: A preliminary estimate. We claim that for s0 large enough, for all s 2 Œs0; s1�,

�

Z 1
�

0

.� C "/2 dz � e�.
ı
2C

�
4 /s : (61)

To prove it, first we use the decay (28) of �.z/ as z !1, and then inject (46) to obtain

�

Z 1
�

0

�2.z/ dz . C.ˇ/

8̂̂<̂
:̂
� if ˇ < 2;

�jlog �j if ˇ D 2;

�
2
ˇ if ˇ > 2;

� C.ˇ; Q�0; zK/

8̂̂<̂
:̂
e�ˇs if ˇ < 2;

se�ˇs if ˇ D 2;

e�2s if ˇ > 2;

� C.ˇ; Q�0; zK/se
�. ı2C

�
2 /s �

1

4
e�.

ı
2C

�
4 /s; (62)

where we used ı
2
C

�
2
D min.ˇ; 1/ for the third inequality, and then took s0 large enough

for the last inequality. Second, using (48) we obtain

�

Z 1
�

0

"2 dz < C � zK2e�ıs �
1

4
e�.

ı
2C

�
4 /s; (63)

where we used � < ı and took s0 large enough for the last inequality. Combining (62),
(63), and the inequality .x C y/2 � 2.x2 C y2/ shows the estimate (61) we claimed.

Step 2: Computing �. We rewrite (38) as

�s C � D 2��

Z 1
�

0

.� C "/2.z/ dz: (64)

Injecting (61) into (64) shows the first inequality in (58). Using (46) and (61) gives

��
R 1
�
0 .� C "/

2 � zKe�.1C
ı
2C

�
4 /s � e�.1C

ı
2 /s for s0 large enough, implying

d

ds
.es�/ D O.e�

ı
2 s/; hence �.s/ D

�
es0�0 C

Z s

s0

O.e�
ı
2 Qs/ d Qs

�
e�s : (65)

Choosing s0 large enough that �1
2
�
R s
s0
O.e�

ı
2 Qs/ d Qs � 1

2
and injecting (44) into (65)

shows
1

2
e�s � �.s/ �

3

2
e�s :

In the case s1 D1, injecting (44) into (65) and rewriting this identity gives

�.s/ D

�
1C

Z 1
s0

O.e�
ı
2 Qs/ d Qs �

Z 1
s

O.e�
ı
2 Qs/ d Qs

�
e�s

WD

�
Q�1 �

Z 1
s

O.e�
ı
2 Qs/ d Qs

�
e�s D Q�1.1CO.e

� ı2 s//e�s :

The two inequalities above show (59) and (60) for �.
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Step 3: Computing �. We rewrite (40) as

�s C ˇ� D �.ˇ C 1/2�
2

Z 1
�

0

.� C "/2.z/ dz:

Reasoning exactly as in Step 2, thanks to (61) and (46) one obtains the second inequality
in (58) and

d

ds
.eˇs�/ D O.e�

ı
2 s/; hence �.s/ D

�
eˇs0�0 C

Z s

s0

O.e�
ı
2 Qs/ d Qs

�
e�ˇs :

Choosing s0 large enough so that �1
2
� Q��10

R s
s0
O.e�

ı
2 Qs/ d Qs � 1

2
and using (44) we get

Q�0

2
e�ˇs � �.s/ �

3

2
Q�0e
�ˇs :

If s1 D1, thanks to (44), one can rewrite

�.s/ D

�
Q�0 C

Z 1
s0

O.e�
ı
2 Qs/ d Qs �

Z 1
s

O.e�
ı
2 Qs/ d Qs

�
e�ˇs

WD Q�1.1CO.e
� ı2 s//e�ˇs :

The two inequalities above show (59) and (60) for �.

Lemma 4.7 (Interior estimate). For any 0< �<min.ˇ;1/ and z� � 1, there existsK� � 1
such that for allK �K� the following holds true. For any constants zK � 1 and ; Q��0 > 0,
there exists a large self-similar time s�0 such that for any s0 � s�0 , for any solution which
is trapped on Œs0; s1�, we have for s 2 Œs0; s1�,

E21 .s/ � 2e
�ıs : (66)

Proof. We recall w.z/D z˛e�Kz and ˛ D j1�ˇ j�2C
�
2

ˇC1
. Multiplying (41) by w"z and inte-

grating over Œ0; z��, one obtains

1

2

d

ds

Z z�

0

w"2z dz �

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz

C

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

�

Z z�

0

�0"w"z dz C

Z z�

0

@�1z "w"z�
00 dz

D �2�

�Z 1
�

0

.� C "/2.z/ dz

�Z z�

0

.ˇ�0 C .ˇ C 1/z�00/w"z dz: (67)

Now we estimate all terms in (67).
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Potential and transport terms. Integrating by parts yields

�

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz C

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

D

�Z z�

0

.� C "/. Qz/ d Qz �
�s

�
z�
�
1

2
w.z�/"2z.z

�/

C

Z z�

0

�
�
3

2
� �

3

2
" �

�s

�
�
1

2

�s

�
�
1

2

�
@�1z � �

�s

�
z C @�1z "

�wz
w

�
w"2z dz: (68)

To deal with the boundary term, we compute that the transport field is outgoing at z�, i.e.,Z z�

0

.� C "/. Qz/ d Qz �
�s

�
z� �

�
ˇ � sup

0�z� 1
�.s/

j"j
�
z� � .ˇ �

p
C � zKe�

ı
2 s0/z� � 0; (69)

where we used (40), (58), and (49), and took s0 sufficiently large. This implies�Z z�

0

.� C "/. Qz/ d Qz �
�s

�
z�
�
1

2
w.z�/"2z.z

�/ � 0: (70)

Now, since w D z˛e�Kz , we know that wz
w
D ˛z�1 �K D

j1�ˇ j�2C
�
2

.ˇC1/z
�K. Using this,

(58), and (49) we get the first identity (where the constant involved in theO. / depends on
zK, ˛, and z�):

� 2
��s
�
C
�s

2�
C
3

2
� C

3

2
"C

1

2
.@�1z � �

�s

�
z C @�1z "/

wz

w

�
D 2C ˇ � 3� CO.e�

ı
2 s/ � .@�1z � C ˇz CO.e

� ı2 sz//.˛z�1 �K/: (71)

We now distinguish between the cases �1 < ˛ � 0 and 0 < ˛ < 1. When �1 < ˛ � 0

using the fact that @�1z � � �z due to �0 < 0, and then � � 1, we get

(71) � 2C ˇ � .3� C ˛�/ � ˛ˇ CO.e�
ı
2 s/ � 2C ˇ � 3 � ˛ � ˛ˇ CO.e�

ı
2 s/

D ˇ � 1 � .ˇ C 1/
� j1 � ˇj � 2C �

2

ˇ C 1

�
CO.e�

ı
2 s/ � ı C

�

2
CO.e�

ı
2 s/;

where we used (42) for the last inequality. When 0 < ˛ < 1 notice that then ˇ > 1, and
by using the fact that � � 1 and that @�1z � � z, one obtains

(71) � 2C ˇ � 3� � ˛.ˇ C 1/CO.e�
ı
2 s/

� �1C ˇ � .ˇ C 1/
� j1 � ˇj � 2C �

2

ˇ C 1

�
CO.e�

ı
2 s/

� 2 �
�

2
CO.e�

ı
2 s/ D ı C

�

2
CO.e�

ı
2 s/:

In summary, for any ˇ > 0, we get the repulsivity estimate

�2
��s
�
C
�s

2�
C
3

2
� C

3

2
"C

1

2

�
@�1z � �

�s

�
z C @�1z "

�wz
w

�
� ı C

�

2
CO.e�

ı
2 s/;
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and hence deduce the spectral-gap-like coercivity estimate

2

Z z�

0

�
�
3

2
� �

3

2
" �

�s

�
�
1

2

�s

�
�
1

2

�
@�1z � �

�s

�
z C @�1z "

�wz
w

�
w"2z dz

�

�
ı C

�

2
CO.e�

ı
2 s/
�
E1.s/: (72)

Injecting (70) and (72) into (68) one finally finds that for the potential and transport terms,

� 2

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz C 2

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

�

�
ı C

�

2
CO.e�

ı
2 s/
�
E1.s/: (73)

Nonlocal terms. Notice that since ".z D 0/ D 0, by the Cauchy–Schwarz inequality, one
obtains that for all z 2 Œ0; z��,

".z/ � E1

�Z z

0

1

w
. Qz/ d Qz

� 1
2

; (74)

@�1z ".z/ D

Z z

0

". Qz/ d Qz � E1

Z z

0

�Z Qz
0

1

w
.�/ d�

� 1
2

d Qz: (75)

For K > 1 large enough so that
lnK
K
� K�

2
3 ; (76)

we introduce the parameter � D min.1
3
; 1
ˇC1

/, and, thanks to (74), (75), and Lemma 4.5,
by the Cauchy–Schwarz inequality, one obtains

2

Z z�

0

j�0"w"zj dz � 2

�Z z�

0

j�0j2w

�Z z

0

1

w
. Qz/ d Qz

�
dz

� 1
2

E21 �
C.ˇ; �/

K�
E21 ; (77)

where the constant C.ˇ; �/ depends on � through ˛, and

2

Z z�

0

j@�1z "w"z�
00
j dz � 2

�Z z�

0

j�00j2w

�Z z

0

�Z Qz
0

1

w
.�/ d�

� 1
2

d Qz

�2
dz

� 1
2

E21

�
C.ˇ; �/

K�
E21 : (78)

Source terms. Finally, we consider

4�

�Z 1
�

0

.� C "/2.z/ dz

�Z z�

0

.ˇ�0 C .ˇ C 1/z�00/w"z dz:

Using (61) one obtains, for C independent of the bootstrap constants,

4�

�Z 1
�

0

.� C "/2.z/ dz

�
� Ce�.

ı
2C

�
4 /s : (79)
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Thanks to Proposition 3.1, one has the crucial cancellation at the origin,

jˇ�0 C .ˇ C 1/z�00j . z
2

ˇC1
�1 as z ! 0:

Since w D z˛e�Kz with ˛ D j1�ˇ j�2C
�
2

ˇC1
, one then has, using Cauchy–Schwarz,Z z�

0

.ˇ�0 C .ˇ C 1/z�00/w"z dz �

�Z z�

0

.ˇ�0 C .ˇ C 1/z�00/2w.z/ dz

� 1
2

E1

� C.ˇ; �; z�; K/E1: (80)

Therefore, using (79) and (80), by Young’s inequality xy � K�x2=2C y2=2K�, one has

4�

�Z 1
�

0

.� C "/2.z/ dz

�Z z�

0

.ˇ�0 C .ˇ C 1/z�00/w"z dz

� C.ˇ; �; z�; K/e�.ıC
�
2 /s C

E21
K�

: (81)

Conclusion. Injecting (73), (77), (78), and (81) into (67) shows

d

ds
E21 C

�
ı C

�

2
�
C.ˇ; �/

K�
� C.ˇ; �;K; z�; zK/e�

ı
2 s
�
E21

� C.ˇ; �; z�; K/e�.ıC
�
2 /s : (82)

Choosing K large enough so that

C.ˇ; �/

K�
�
�

8
; (83)

and s0 large enough so that

C.ˇ; �;K; z�; zK/e�
ı
2 s0 �

�

8
;

we have that (82) becomes

d

ds
.e.ıC

�
4 /sE21 / � C.ˇ; �; z

�; K/e�
�
4 s : (84)

Integrating (84) between s0 and s, using (45) gives

E21 � e
.ıC

�
4 /.s0�s/E21 .s0/C C.ˇ; �; z

�; K/e�.ıC
�
4 /s

< e�ıs C C.ˇ; �; z�; K/e�.ıC
�
4 /s < 2e�ıs;

where we have chosen s0 large enough so that

C.ˇ; �; z�; K/e�
�
4 s0 < :

This is (66).
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Lemma 4.8 (Exterior estimate). For any 0 < � < min.ˇ; 1/ there exists Nz� � 1, such that
the following holds true for all z� � Nz�. For any K � 1 there exists � > 0 such that for
all 0 <  � �, for all zK � 1 and Q��0 > 0, for s�0 large enough, for any s0 � s�0 , for any
solution which is trapped on Œs0; s1�, we have for s 2 Œs0; s1�,

E22 .s/ � e
�ıs : (85)

Proof. We use a standard comparison principle for transport operators, together with a
bootstrap argument to control nonlocal effects. To implement this bootstrap argument, we
assume in addition that on Œs0; s1� there holds

E2.s/ � zK
0e�

ı
2 s (86)

for some constant 0 < zK 0 � zK.

Remark 5. The reason we apply this bootstrap argument here is to make z� independent
of zK (see (92)). This is natural since z�, the boundary between the interior region and the
exterior region, should be independent of the size of the remainder, which is zK.

Clearly, (86) is satisfied if one chooses zK 0 D zK from (47). By applying the modula-
tions (38) and (40), we can rewrite (36a) as

"s CL" D F; (87)

where L is the transport operator (note that it has a nonlinear part)

Lv D �
�s

�
v �

�s

�
zvz � 2�v C @

�1
z �vz � "v C @

�1
z "vz

and the source term is

F D �@�1z "�
0
C 2�

�Z 1
�

0

.� C "/2.z/ dz

�
.�1C � � .ˇ C 1/z�0/:

Step 1: A supersolution for @s CL on Œz�; ��1�. We introduce

f .s; z/ D e�
ı
2 s

and claim that there exists z� large enough such that for s0 large enough, for all s0 � s � s1
and z � z�,

.@s CL/f �
�

4
e�

ı
2 s : (88)

Now we prove (88). We compute using @zf D 0, (58), � . z�1=ˇ as z !1, and (49),

.@s CL/f D
�
�
ı

2
�
�s

�
� 2� � "

�
f

D

�
�
ı

2
C 1CO.e�

ı
2 s/CO.z

� 1
ˇ /CO.

p
C � zKe�

ı
2 s/
�
e�

ı
2 s

�

��
2
CO.e�

ı
2 s/CO.z

� 1
ˇ /CO.C. zK; z�; ˇ; �/e�

ı
2 s/
�
e�

ı
2 s;

where we used ı D 2min.ˇ; 1/� �. This implies (88) upon choosing z� large enough and
then s0 large enough.
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Step 2: Estimate for the source term. We claim that for all z � z� and s0 � s � s1, we
have

jF.s; z/j �
�

8

�1
4
C
zK 0

4

�
e�

ı
2 s : (89)

To prove this inequality, observe that for 0 � z � z� we have using (54) and (66) that

j".z/j .
p
2C �e�

ı
2 s; (90)

while for z � z� one has j".z/j � zK 0e�
ı
2 s thanks to (86). Therefore, thanks to the behavior

of �0 near1, one has

j@�1z "�
0
j � k"kL1zj�

0.z/j � C
�p
2C �e�

ı
2 s C zK 0e�

ı
2 s
�
z
� 1
ˇ

�
�

16

�1
4
C
zK 0

4

�
e�

ı
2 s; (91)

where we choose z� large enough and then  small enough such that

C
p
2C �z

�� 1
ˇ �

�

64
and Cz

�� 1
ˇ �

�

64
: (92)

From Proposition 3.1, we know that j � 1C � � .ˇ C 1/z�0j � C is uniformly bounded.
Therefore using (61) we getˇ̌̌̌

2�

�Z 1
�

0

.� C "/2.z/ dz

�
.�1C � � .ˇ C 1/z�0/

ˇ̌̌̌
. e�.

ı
2C

�
4 /s �

�

64
e�

ı
2 s (93)

for s0 large enough. Summing (91) and (93) implies (89).

Step 3: Applying the comparison principle. Let

f ˙ D ˙
��1
4
C
zK 0

4

�
f � "

�
: (94)

Then using (87), (88), and (89) one computes that, for s � s � s1 and z 2 Œz�; ��1�,

.@s CL/f CD
�1
4
C
zK 0

4

�
.@s CL/f CF �

�1
4
C
zK 0

4

��
4
e�

ı
2 s �

�

8

�1
4
C
zK 0

4

�
e�

ı
2 s � 0:

Similarly, .@s CL/f � � 0. Recall that from (69) we know that the particles are always
moving from region 0 � z � z� to region z� � z � 1

�
. At the boundary z D z� one has

using (90) that

f C.s; z�/ D
�1
4
C
zK 0

4

�
e�

ı
2 s � ".s; z�/ �

�1
4
�
p
2C �

�
e�

ı
2 s � 0

provided that

C
p
2C � �

1

4
: (95)
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Similarly, f �.s; z�/ � 0. At the point z.s/ D 1
�.s/

, the characteristics of the full transport
field stay on the boundary since

d

ds

1

�.s/
D �

�s

�2
D �

�s

�2
C

Z 1
�

0

.� C "/ dz; (96)

where we have used (36b). Thanks to (45), we know initially

f C
�
s0;

1

�0

�
D

�1
4
C
zK 0

4

�
e�

ı
2 s0 � "

�
s0;

1

�0

�
�

�1
4
C
zK 0

4

�
e�

ı
2 s0 �

1

4
e�

ı
2 s0 � 0;

thus f C.s; 1
�.s/

/ � 0 for all s � s0. Similarly f �.s; 1
�.s/

/ � 0. At initial time s D s0, we
have f C.s0; z/� 0 because of (45), and similarly f �.s0; z/� 0. Therefore, one can apply
the maximum principle and obtain that f C.s; z/ � 0 and f �.s; z/ � 0 for all s0 � s � s1
and z� � z � ��1. By their definition (94) this implies

j".s; z/j �
�1
4
C
zK 0

4

�
e�

ı
2 s for all s0 � s � s1 and z� � z � ��1: (97)

Step 4: End of the proof. We first set zK 00 D zK so that (86) is satisfied with constant
zK 0 D zK 00 because of (86). Then we obtain (97) with constant zK 0 D zK 00. This implies that

(86) is satisfied with constant zK 0 D zK 01 given by zK 01 D '. zK
0
0/ with '. zK 0/ D .1C zK 0/=4.

We iterate this procedure, and obtain constants zK2, then zK3; : : : ; zKn such that (86) is
satisfied with constants zK2, then zK3; : : : ; zKn with zKkC1 D '. zKk/. By iterating a finite
(depending on zK) number of times k, we obtain zK 0

k
� 1 and (86) then implies (85).

We can now end the proof of Proposition 4.3.

Proof of Proposition 4.3. We set zK D 3 (or any zK > 1). For any ˇ > 0 and 0 < � <

min.1; ˇ/, we pick z� � Nz� where Nz�.ˇ; �/ is given by Lemma 4.8, then we pickK �K�

where K�.ˇ; �; z�/ is given by Lemma 4.7, and then we pick 0 <  � min.�; 1/ where
�.ˇ; �; z�; K�/ is given by Lemma 4.8.

Then for any Q��0 > 0, there exists s�0 such that the conclusions of Lemmas 4.6, 4.7, and
4.8 are simultaneously valid for all s0 � s�0 .

For such choices of constants, consider an initial data a0 trapped in the sense of Defi-
nition 4.1. We define

s� D sup
®
s1 � s0; a is trapped in the sense of Definition 4.2 on Œs0; s1�

¯
:

If s� D 1, then Proposition 4.3 is proved. We assume by contradiction s� <1. Then,
applying Lemmas 4.6, 4.7, and 4.8 we obtain at time s�,

1

2
e�s

�

� �.s�/ �
3

2
e�s

�

;

E21 .s
�/ � 2e�ıs

�

;

Q�0

2
e�ˇs

�

� �.s�/ �
3

2
Q�0e
�ˇs� ;

E22 .s
�/ � e�ıs

�

:
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Since zK D 3, the bounds of Definitions 4.2 are thus strictly satisfied at time s�, and by
a continuity argument there exists s0 > s� such that these bounds are satisfied on Œs�; s0�.
But this contradicts the definition of s�. Hence s� D1 and Proposition 4.3 is proved.

Remark 6. Notice that when � gets closer to 0, one can get better decay. However, the
decay rates of E1 and E2 cannot reach or be faster than e�ˇs when 0 < ˇ � 1 and e�s

when ˇ > 1. The reasons are that

• for 0 < ˇ � 1, the decay of � is only e�ˇs;

• for ˇ > 1, in order to make (80) integrable near 0, one needs 4
ˇC1
� 2C ˛ > �1,

˛ > ˇ�3
ˇC1

. Such a restriction on ˛ makes the spectral gap in (71) strictly less than 2.

We can now end the proof of Theorem 1.3.

Proof of Theorem 1.3. Pick ˇ > 0. We write � D �ˇ in the proof for simplicity. Choose
then any 0 < � < min.ˇ; 1/ and let the constants zK > 1, K; z� � 1, and  > 0 be given
by Proposition 4.3. For a fixed Q��0 > 0, let s�0 be given by Proposition 4.3 and define
��0 D e

�2s�0 .
Then, with a parameter � to be fixed later on in the proof, let

�0 � �
�
0=2 and Q�0 � Q�

�
0=2; (98)

and an initial datum a0 of the form (17) satisfy (18).

Step 1: Proof assuming a claim. We claim that for � small enough, a0 is initially trapped
in the sense of Definition 4.1, with framework parameters �, zK, K, z�,  , ��0 , Q��0 defined
right above, and decomposition parameters N�0, N�0 to be determined in Step 2. Assum-
ing this claim, we have using Proposition 4.3 that the solution is trapped in the sense of
Definition 4.2 for all s 2 ŒNs0;1/ where Ns0 D log N��10 .

We unwind the self-similar transformation (34) using (60) and define T D
R1
Ns0
�.s/ds

<1 so that

t .s/ D

Z s

Ns0

�.Qs/ d Qs D T �

Z 1
s

Q�1e
�Qs.1CO.e�

ı
2 Qs// d Qs

D T � Q�1e
�s
CO.e�.1C

ı
2 /s/

and hence Q�1e�s D .T � t /CO..T � t /1Cı=2/. We then get using (49) and (60) that

k".s/kL1.0;��1/ � C.T � t /
ı=2; �.s/ D T � t CO..T � t /1Cı=2/;

� D
Q�1

Q�
ˇ
1

.T � t /ˇ CO..T � t /ˇCı=2/:

Back in original variables (35), this implies the desired results (19) and (20) in the theorem
by renaming ı as 2ı and Q�1 as Q�1 Q�

ˇ
1.
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Step 2: Proof of the claim. For N�0; N�0 > 0 we define Na0 and N"0 as

a0.Z/ D
1

�0
�
� Z

�
ˇ
0 Q�0

�
C Qa0.Z/ D

1

N�0
�
� Z

N�
ˇ
0 N�0

�
C Na0.Z/;

N"0.z/ D N�0 Na0. N�
ˇ
0 N�0z/; Z D z N�

ˇ
0 N�0:

Then, introducing � D N�ˇ0 N�0�
�ˇ
0 Q�

�1
0 , we have the two decompositions for 0 < z � 1 ("1

to "4) and 1 � z � N��ˇ0 N�
�1
0 (N"1 and N"2),

N"0.z/ D N"1.z/C N"2.z/ D "1.z/C "2.z/C "3.z/C "4.z/; (99)

N"1.z/ D
N�0

�0
�.�z/ � �.z/; N"2.z/ D N�0 Qa0. N�

ˇ
0 N�0z/; (100)

"1.z/ D
N�0

�0
� 1C N�0 Qa0.0/C z

1
ˇC1

�
1 �
N�0

�0
�

1
ˇC1

�
;

"2.z/ D
� N�0
�0
� 1

�
.�.�z/ � 1C .�z/

1
ˇC1 /;

(101)

"3.z/ D �.�z/ � �.z/C .�
1

ˇC1 � 1/z
1

ˇC1 ; "4 D N�0. Qa0.z N�
ˇ
0 N�0/ � Qa0.0//:

In order for the boundary condition (37) to be satisfied, using the behavior (27) of �.z/ as
z ! 0, we require that "1 D 0. Using (101) this fixes N�0; N�0 in an unique manner via the
identities

N�0 D .�
�1
0 C Qa0.0//

�1
D �0.1CO.� N�0//;

N�0 D �
1C2ˇ
0

N�
�1�2ˇ
0 Q�0 D Q�0.1CO.� N�0//;

(102)

where we used (18). Injecting (102) into (100), using (28) one then obtains that for all
z � 1,

j N"1.z/j .
ˇ̌̌ N�0
�0
� 1

ˇ̌̌
�.�z/C j�z � zj sup

Qz2Œz;�z�

j�0. Qz/j . � N�0z
� 1
ˇ ;

and similarly
j@z N"1.z/j . � N�0z

� 1
ˇ
�1
:

Using (18) we have for z � 1 that j N"2.z/j � N�0� and j@z"2.z/j � � N�
1Cˇ
0 N�0. Injecting these

two inequalities and the two above into the first decomposition in (99) shows

j N"0.z/j. � N�0 and j@z N"0.z/j. � N�0.z�1�
1
ˇ C N�

ˇ
0 N�0/ for all z 2 Œ1; N��ˇ0 N�

�1
0 �: (103)

Next, using the behavior (27) of �.z/ as z ! 0 and then (102), we deduce that for 0 <
z � 1,

j@z"2.z/j .
ˇ̌̌ N�0
�0
� 1

ˇ̌̌
z

2
ˇC1
�1 . � N�0z

2
ˇC1
�1
:

By a similar estimate, j@z"3.z/j. � N�0z
2

ˇC1
�1 for 0< z� 1. Using (18) we obtain j@z"4j.

� N�
1Cˇ
0 N�0. Injecting these inequalities and the one above into the second decomposition
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and "1 D 0 in (99) shows

j@z N"0.z/j . � N�0z
2

ˇC1
�1
C � N�

1Cˇ
0 N�0 for all z 2 .0; 1�: (104)

Combining (103) and (104), using w D z˛e�Kz with ˛ D j1�ˇ j�2C
�
2

ˇC1
> �1 we obtainZ z�

0

w N"20 dz C sup
z��z�N�

�ˇ
0 N�

�1
0

N"20.z/ . �2 N�20 C �
2 N�
2C2ˇ
0 N�20 : (105)

We now check that a0 is initially trapped in the sense of Definition 4.1 with decompo-
sition parameters N�0 and N�0, and framework parameters �, zK, K, z�,  , ��0 , Q��0 defined
right before Step 1. We set Ns0 D log N��10 . Estimates (98) and (102) imply (44) for N�0, Ns0,
N�0, Q��0 , so that Definition 4.1 (i) is indeed satisfied. The fact that "1 D 0 in the second
decomposition in (99) and the inequality (104) show that Definition 4.1 (ii) is satisfied.
Finally, (105) shows that Definition 4.1 (iii) is also satisfied provided � has been chosen
small enough depending only on ��0 and Q��0 . Hence a0 is initially trapped, finishing the
proof of the claim.

5. The smooth blow-up case

In this section, we prove Theorem 1.1. We study the limiting critical case when ˇ D 0, for
which

�ˇD0.z/ D �.z/ D e
�z

(we drop the ˇ subscript in this section to ease notation). When ˇ D 0, the vanishing
condition (37) becomes ´

".s; z D 0/ D 0;

@z".s; z D 0/ D 0;
(106)

and the modulation equations (38) and (40) become

�s

�
C 1 D �

�s

�
D 2�

Z 1
�

0

.� C "/2.z/ dz: (107)

Therefore, one can rewrite (36a) and (39) as

"s �
�s

�
" �

�s

�
z"z � 2�"C @

�1
z �"z C @

�1
z "�

0
� "2 C @�1z ""z

D 2�

�Z 1
�

0

.� C "/2.z/ dz

�
.�1C .z C 1/�/ (108)

and

"zs � .� � 1/"z C
�
@�1z � �

�s

�
z
�
"zz � �

0"C @�1z "�
00
� ""z C @

�1
z ""zz

D �z�2�

Z 1
�

0

.� C "/2.z/ dz: (109)
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The proof of the theorem follows the same strategy as that of Theorem 1.3. It also
relies on a bootstrap argument. However, (107) gives �s D��2 to leading order, hence we
will have to deal with the slower algebraic decay � � s�1 in comparison with the expo-
nential decays involved in the proof of Theorem 1.3. We first need to adjust Definitions
4.1 and 4.2.

We consider the weight
w.z/ D z�2: (110)

Here, since �.z/ D e�z , explicit computations to control nonlocal terms will avoid the
use of a e�Kz factor in the weight.

Definition 5.1 (Initial closeness). Let ��0 > 0 and  > 0. We say that a0 is initially close
to the blow-up profile if there exists �0 > 0 and �0 > 0 such that the decomposition (35)
satisfies

(i) initial values of the modulation parameters (note that this fixes the value of s0):

�0 D s0e
�s0 ;

1

2s0
� �0 �

2

s0
I (111)

(ii) compatibility condition for the initial perturbation: "0 2 C 2.Œ0; 1�0 // satisfies the
boundary conditions (106) and the integral condition (36b);

(iii) initial smallness of the remainder in the self-similar variables: for some small
number  > 0, with w given by (110),

E21 .s0/ D

Z z�

0

w"20 dz < 
2s
� 43
0 ; E22 .s0/ D sup

z��z� 1
�0

j"0j
2 <

1

4
s
� 43
0 : (112)

Definition 5.2 (Trapped solutions). Let s�0 � 0, z� � 1 and  > 0. We say that a solution
a.s;z/ is trapped on Œs0; s1�with s�0 � s0<s1�1 if it satisfies the properties of Definition
5.1 at time s0 and if for all s 2 Œs0; s1�, a.s; z/ can be decomposed as in (35) with

(i) values of the modulation parameters:

1

4
se�s < � < 4se�s;

1

4s
< � <

4

s
I (113)

(ii) decay in time of the remainder in the self-similar variables:

E21 .s/ D

Z z�

0

w"2z dz < s
� 43 ; E22 .s/ D sup

z��z� 1
�.s/

j"j2 < s�
4
3 : (114)

Remark 7. One could show that the decay rate for E1 and E2 is s�1C� for any 0 < � < 1.
Here for simplicity we take s�

2
3 as an example.

The heart of our analysis, as in the case ˇ > 0, is to show that a solution that is initially
trapped will remain globally trapped in self-similar time s.
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Proposition 5.3. There exist universal constants z� � 1,  > 0, and s�0 � 0 such that
the following holds true. For all s0 � s�0 , any solution of (9) which is initially close to
the blow-up profile in the sense of Definition 5.1 is trapped on Œs0;C1/ in the sense of
Definition 5.2.

The proof of Proposition 5.3 necessitates several lemmas that improve strictly all a
priori estimates of Definition 5.2.

Lemma 5.4. For any z� � 1, for s�0 large enough, if a is trapped on Œs0; s1� then for all
s0 � s � s1,

k".s/kL1.Œ0;��1�/ � C.z
�/s�

2
3 (115)

and

�

Z 1
�

0

.� C "/2.z/ dz � 4s�1: (116)

Proof. From the vanishing boundary condition, Cauchy–Schwarz, (110), and (114), for
0 < z � z�,

j".z/j D

ˇ̌̌̌Z z

0

@z" d Qz

ˇ̌̌̌
� E1

sZ z

0

z2 d Qz . s�
2
3 z

3
2 : (117)

This, combined with the second inequality in (114), shows (115). Then, since � D e�z we
estimateZ 1

�

0

.� C "/2.z/ dz �

Z 1
0

�2 dz C 2

Z ��1

0

�"C

Z ��1

0

"2 dz

�
1

2
C 2k"kL1.Œ0;��1/ C �

�1
k"k2

L1.Œ0;��1/
�
1

2
CO.s�1=3/ � 1

for s�0 large enough, where we used (115). The above inequality and (113) show (116).

Lemma 5.5 (Modulation equations). For any z� � 1 and  > 0, there exists a large self-
similar time s�0 such that for any s0 � s�0 , for any solution which is trapped on Œs0; s1�, we
have for s 2 Œs0; s1�, ˇ̌̌�s

�
C 1

ˇ̌̌
� Cs�1;

ˇ̌̌�s
�

ˇ̌̌
� Cs�1; (118)

for C > 0 independent of the bootstrap constants, and

1

2
se�s � � �

3

2
se�s;

1

3s
� � �

3

s
: (119)

Moreover, if s1 D1 then there exists a constant Q�1 > 0 such that

� D Q�1se
�s.1CO.s�

1
3 //; � D

1

s
CO.s�

4
3 /: (120)

Proof. We divide the proof into three steps.



C. Collot, S. Ibrahim, and Q. Lin 348

Step 1: A preliminary estimate. We claim that

2

Z 1
�

0

.� C "/2.z/ dz D 1CO.C.z�/s�
1
3 /: (121)

Indeed, as �.z/ D e�z , we have 2
R1
0
�2 D 1. Hence, using (113) and (115),

2

Z 1
�

0

.� C "/2.z/ dz D 1C 2

Z 1
��1

�2.z/ dz C 4

Z 1
�

0

�".z/ dz C 2

Z ��1

0

"2 dz

D 1CO.e�2�
�1

/CO.k"kL1.Œ0;��1/�/CO.�
�1
k"k2

L1.Œ0;��1/�
/

D 1CO.C.z�/s�
1
3 /:

Step 2: Equation for �. Injecting (121) into (107) gives

�
�s

�2
D 1CO.C.z�/s�

1
3 /: (122)

Multiplying (122) by � and using (113) shows the second inequality in (118). Integrating
(122) with time, we find

1

�
D
1

�0
C s � s0CO.C.z

�/.s
2
3 � s

2
3
0 //D

1

�0
C s � s0CO.C.z

�/s�
1
3 .s � s0//: (123)

Therefore, since ��10 � 2s0, from (111) we infer for s�0 large enough depending on z�,

1

�
� 2s0 C s � s0 CO.C.z

�/s�
1
3 .s � s0//

D s C s0 CO.C.z
�/s�

1
3 .s � s0// � 3s: (124)

One finds similarly using s0=2 � ��10 from (111) that 1
�
� s=3. This and (124) imply the

second inequality in (119). Finally, if s1 D1 then (123) implies ��1 D s CO.s2=3/ and
the second inequality in (120) follows.

Step 3: Equation for �. Injecting (121) into (107) one finds

�s

�
C 1 D

1

s
.1CO.s�

1
3 //.1CO.s�

1
3 // D

1

s
CO.s�

4
3 /:

This implies the first inequality in (118). Since � D O.se�s/ from (113), one has

d

ds

�es�
s

�
D O.s�

4
3 /:

We integrate the above equation with time using �0 D s0e�s0 and find

�.s/ D se�s
�
1C

Z s

s0

O.s�
4
3 / ds

�
D se�s.1CO.s

� 13
0 //:
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This implies the first inequality in (119) for s0 large enough. If s1 D 1 then we set
Q�1 D 1C

R1
s0
O.s�

4
3 / ds and rewrite the above equality as

�.s/ D se�s
�
1C

Z 1
s0

O.s�
4
3 / ds �

Z 1
s

O.s�
4
3 / ds

�
D se�s.�1 CO.s

� 13 //:

This is the first inequality in (120).

Lemma 5.6 (Interior estimate). For any z� � 1 and  > 0, there exists a large self-similar
time s�0 such that for any s0 � s�0 , for any solution which is trapped on Œs0; s1�, we have
for s 2 Œs0; s1�,

E21 .s/ � 2
2s�

4
3 : (125)

Proof. Recall (110). Multiplying (109) by w"z and integrating over Œ0; z��, one obtains
that

1

2

d

ds

Z z�

0

w"2z dz �

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz

C

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

�

Z z�

0

�0"w"z dz C

Z z�

0

@�1z "w"z�
00 dz

D �2�

�Z 1
�

0

.� C "/2.z/ dz

�Z z�

0

z�w"z dz: (126)

We now compute all terms in (67).

Potential and transport terms. Integrating by parts yields

�

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz C

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

D

�Z z�

0

.� C "/. Qz/ d Qz �
�s

�
z�
�
1

2
w.z�/"2z.z

�/

C

Z z�

0

�
�
3

2
� �

3

2
" �

�s

�
�
1

2

�s

�
�
1

2

�
@�1z � �

�s

�
z C @�1z "

�wz
w

�
w"2z dz: (127)

For the boundary term, we know that k"kL1 � C.z�/s�2=3 from (115) and thus using
(118), Z z�

0

.� C "/. Qz/ d Qz �
�s

�
z� � 1 � e�z

�

� k"kL1z
�
CO.C.z�/s�1/

� 1 � e�z
�

� C.z�/s�
2
3 � 0 (128)
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when s0 is large enough. Since the weight function is w D z�2, one has using � D e�z ,
(118), and (115),�

�
3

2
� �

3

2
" �

�s

�
�
1

2

�s

�
�
1

2

�
@�1z � �

�s

�
z C @�1z "

�wz
w

�
D

�
�
3

2
e�z CO.s�

2
3 /C 1CO.s�1/CO.s�1/

�
1

2

�
1 � e�z CO.s�1z/CO.s�

2
3 z/
��
�
2

z

��
D 1 �

3

2
e�z C

1 � e�z

z
CO.s�

2
3 / �

1

2
CO.s�

2
3 / (129)

(where we have used the fact that 1 � e�z � ze�z . Injecting (128) and (129) into (127)
shows

�

Z z�

0

��s
�
C
�s

�
C � C "

�
w"2z dz C

Z z�

0

�
@�1z � �

�s

�
z C @�1z "

�
"zzw"z dz

�

�1
2
CO.s�

2
3 /
�
E1.s/: (130)

The nonlocal terms. By direct computations, using j".z/j � E1

qR z
0
w�1, Cauchy–

Schwarz, and � D e�z , one getsZ z�

0

j�0"w"zj dz �

�Z z�

0

j�0j2w

�Z z

0

1

w
. Qz/ d Qz

�
dz

� 1
2

E21

�

�Z 1
0

1

3
ze�2z dz

� 1
2

E21 D
1

2

r
1

3
E21

and Z z�

0

j@�1z "w"z�
00
j dz �

�Z z�

0

j�00j2w

�Z z

0

�Z Qz
0

1

w
.�/ d�

� 1
2

d Qz

�2
dz

� 1
2

E21

�

�Z 1
0

4

75
z3e�2z dz

� 1
2

E21 D
1

5
p
2

E21 :

The source term. Using (116) and Cauchy–Schwarz,ˇ̌̌̌
�

�Z 1
�

0

.� C "/2.z/ dz

�Z z�

0

z�w"z dz

ˇ̌̌̌
� Cs�1E1

sZ z�

0

z2�2w dz

� Cs�1E1 �
E21
200
C Cs�2:

Conclusion. Injecting (130) and the three inequalities above into (126) yields

d

ds
E21 C

�
1 �

r
1

3
�

p
2

5
�

1

200
� C.z�/s

� 23
0

�
E21 �

C

s2
:
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Choose s0 large enough that C.z�/s�
3
2 �

1
200

. Then 1�
q
1
3
�

p
2
5
�

1
200
� C.z�/s

� 23
0 �

1
8

, and consequently,
d

ds
E21 C

1

8
E21 �

C

s2
:

When s0 is large enough, we have

d

ds
.s2E21e

s
16 /D e

s
16 s2

d

ds
E21 C 2se

s
16E21 C

s2

16
E21e

s
16 � e

s
16 s2

d

ds
E21 C e

s
16
s2

8
E21 �Ce

s
16 :

Integrating both sides from s0 to s, since E21 .s0/ � 
2s
� 43
0 , when s0 is large enough, one

obtains
E21 .s/ �

�
s20E21 .s0/e

s0
16 C Ce

s
16
�
e�

s
16
1

s2
� 22s�

4
3 :

The following lemma is similar to Lemma 4.8.

Lemma 5.7 (Exterior estimate). There exists Nz� � 1, and for any z� � Nz�, a � > 0 such
that for 0 <  � � the following holds true. There exists s�0 large enough such that if a
solution is trapped on Œs0; s1� with s0 � s�0 , for any time s0 � s � s1 we have

E22 .s/ �
1

4
s�

4
3 : (131)

Proof. The proof relies on the maximum principle. We rewrite (108) as

"s CL" D F ; (132)

where the transport operator L (note that it has a nonlinear part) and the source term are

Lv D �
�s

�
v �

�s

�
zvz � 2�v C @

�1
z �vz � "v C @

�1
z "vz ;

F D �@�1z "�
0
C 2�

�Z 1
�

0

.� C "/2.z/ dz

�
.�1C .z C 1/�/:

Step 1: A supersolution for @s CL on Œz�; ��1�. We introduce

f .s; z/ D
1

2
s�

2
3

and claim that there exists z� large enough such that for s0 large enough, for all s0 � s � s1
and z � z�,

.@s CL/f �
s�

2
3

4
: (133)

To prove (133), we compute using (118) and (115),

.@s CL/f D
�
�
2

3s
�
�s

�
� 2e�z � "

�s� 23
2

D .O.s�1/C 1CO.s�1/CO.e�z
�

/CO.s�
2
3 //
s�

2
3

2
;

which implies (133) upon taking z� large enough and then s�0 large enough.
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Step 2: Estimate for the source term. We claim that for z� large enough and then for 
small enough, for all s0 � s � s1 and z 2 Œz�; ��1/,

jF.s; z/j �
s�

2
3

8
: (134)

We now prove this inequality. We inject the improved bootstrap bound (125) into the
computation (117) and get

j".z/j � Cs�
2
3 z

3
2 for z 2 Œ0; z��: (135)

Also, j".z/j � s�
2
3 for z 2 Œz�; ��1/ using (114). Therefore, using �.z/ D e�z ,

j@�1z "�
0
j � k"kL1zj�

0.z/j � C.C.z�/s�
2
3 C s�

2
3 /z�e�z

�

�
s�

2
3

100
; (136)

where we choose z� large enough and then  small enough. Next, using (116), for all
z � z�,ˇ̌̌̌

2�

�Z 1
�

0

.� C "/2.z/ dz

�
.�1C .z C 1/�/

ˇ̌̌̌
� 8s�1.1C .z C 1/e�z/ �

C

s
: (137)

Combining (136) and (137) and taking s�0 large enough shows (134).

Step 3: End of the proof. We introduce

f ˙ D ˙.f � "/: (138)

Then using (132), (133), and (134) one obtains that for s0 � s � s1 and z 2 Œz�; ��1�,

.@s CL/f C D .@s CL/f C F �
s�

2
3

4
�
s�

2
3

8
� 0

and similarly .@s CL/f � � 0:

(139)

Similar to (69), thanks to (120), one has

�
�s

�
z� C

Z z�

0

.� C "/. Qz/ d Qz �
�
� � sup

0�z� 1
�.s/

j"j
�
z�

�

�1
s
CO.s�

4
3 / �
p
C � zKe�

ı
2 s
�
z� � 0;

provided that s0 is large enough. From this we know that the particles are always moving
from region 0 � z � z� to z� � z � 1

�
. At the boundary z D z� one has using (135) that

f C.s; z�/ D
s�

2
3

2
� ".s; z�/ �

�1
2
� Cz�

3
2 s�

2
3

�
s�

2
3 � 0

and similarly f �.s; z�/ � 0;
(140)
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provided  is small enough depending on z�. At initial time s D s0, we have using (112)
that for all z 2 Œz�; ��10 �,

f C.s0; z/ �
s
� 23
0

2
� k"0kL1Œz�;��10 � �

s
� 23
0

2
�
s
� 23
0

4
� 0;

and similarly f �.s0; z/ � 0:

(141)

From (96), we know that the particle on the boundary point z D 1
�

does not move. This
together with (141) implies that f C.s; 1

�
/ � 0 and f �.s; 1

�
/ � 0. Therefore, in view of

(139), (140), and (141) one can apply the maximum principle and obtain that f C.s; z/� 0
and f �.s; z/ � 0 for all s0 � s � s1 and z� � z � ��1. By the definition (138) of f ˙

this implies the desired estimate (131) and completes the proof of the lemma.

We can now end the proof of Proposition 5.3.

Proof of Proposition 5.3. Proposition 5.3 is implied by Lemmas 5.5, 5.6, and 5.7. The
reasoning is similar, and actually simpler since fewer parameters are involved, to the proof
of Proposition 4.3, which was done for the case ˇ > 0. Thus, we omit it.

We can now end the proof of Theorem 1.1.

Proof of Theorem 1.1. We take ˇD 0 and �.z/D �0.z/D e�z . Let the constants z�; s�0 �
1 and  > 0 be given by Proposition 5.3. Then, with � fixed shortly after, let

�0 � �
�
0=2 and

2

3 log.��10 /
� �0 �

3

2 log.��10 /

and an initial datum a0 of the form (11) satisfy (12). We claim that for � > 0 small enough,
there exist parameters N�0 D �0.1C O.�0�// and N�0 D �0.1C O.�0�// such that a0 is
trapped in the sense of Definition 5.1 with framework parameters z�, s�0 ,  defined just
above and decomposition parameters N�0, N�0. The proof of this claim is so similar (and
simpler since the profile is smooth) to the proof of the analogous claim in the proof of
Theorem 1.3 for ˇ > 0, that we omit the details and refer the reader to that proof.

Thus, applying Proposition 5.3, one obtains that the solution a is trapped for all self-
similar times s 2 Œs0;1/. We invert the self-similar transformation (34) using (120) and
define T D

R1
Ns0
�.s/ ds <1 so that

t .s/ D

Z s

Ns0

�.Qs/ d Qs D T �

Z 1
s

Q�1 Qse
�Qs.1CO.Qs�

1
3 // d Qs D T � Q�1se

�s
CO.s

2
3 e�s/;

and hence Q�1se�s D .T � t /CO..T � t /jlog.T � t /j�1=3/. We then get using (115) and
(120) that k"kL1.0;��1/ �C jlog.T � t /j�2=3, �D .T � t /CO..T � t /jlog.T � t /j�1=3/,
and � D jlog.T � t /j�1CO.jlog.T � t /j�4=3/. Injecting these estimates into the original
variables (35) shows the desired estimates (13) and (14) with ı D 1

3
.
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