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Singularities in L!-supercritical Fokker—Planck
equations: A qualitative analysis

Katharina Hopf

Abstract. A class of nonlinear Fokker—Planck equations with superlinear drift is investigated in
the L!-supercritical regime, which exhibits a finite critical mass. The equations have a formal
Wasserstein-like gradient-flow structure with a convex mobility and a free energy functional whose
minimising measure has a singular component if above the critical mass. Singularities and concen-
trations also arise in the evolutionary problem and their finite-time appearance constitutes a primary
technical difficulty. This paper aims at a global-in-time qualitative analysis with main focus on the
isotropic case, where solutions will be shown to converge to the unique minimiser of the free energy
as time tends to infinity. A key step in the analysis consists in properly controlling the singularity
profiles during the evolution. Our study covers the three-dimensional Kaniadakis—Quarati model for
Bose-FEinstein particles, and thus provides a first rigorous result on the continuation beyond blow-up
and long-time asymptotic behaviour for this model.

1. Introduction

This manuscript is concerned with a class of Fokker-Planck equations with superlinear
drift taking the form

3/ =V-(Vf+vh(f), >0 veR?,

FO.0) = fulw) =0, b eRY. (FPy)

where h(f) = f(1 +o|f|") forsomey > 1 ando = 1. For y = 1 and 0 € {£1} this
equation was introduced in the 1990s by Kaniadakis and Quarati [24,25] as a model for
the relaxation to equilibrium of quantum particles of Fermi—Dirac (6 = —1) and Bose—
Einstein (o0 = 1) types. We refer to [9, 20] and references therein for more background
on the physical model. The interest of the mathematics community in problems of the
form (FP, ) mainly stems from their variational structure: for densities f > O the first line
in (FP, ) can formally be written as a continuity equation

90 f =V - (R(/IVEH(f)), (LD
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with §# denoting the variational derivative of the convex integral functional
vf?
#() = | (51 +0(N)dv,
R4 2

where ®(f) = %fof log(lfﬁ) ds and thus ®”(f) = 1/h(f). If 0 = —1 one should
restrict to 0 < f < 1.) Thus, the free energy # (f) is formally dissipated along solutions
%Jf(f) = — [ga h(f)|V8FH(f)|?> dv < 0. Let us note that for 0 = 1 the function ®
is sublinear at infinity, and the natural extension of # to finite, non-negative measures
(cf. [17]) vanishes on Dirac deltas centred at the origin. We further observe that for 0 =
1 the nonlinear mobility A(f) = f(1 + of?) in (1.1) is convex, while it is concave if
o=-—1.

The equation for fermions, where 0 = —1 and y = 1, is mathematically well under-
stood. Here, in any dimension, solutions emanating from suitably regular initial data
0 < fin < 1 remain bounded between 0 and 1, i.e. satisfy 0 < f < 1, consistent with the
well-known Pauli exclusion principle. In the long-time limit they converge to the unique
minimiser of € of the given mass [10, 13], namely to the corresponding (smooth) Fermi—
Dirac distribution. The concavity of the mobility even allows a rigorous meaning to be
given to the above gradient-flow structure with respect to generalised Wasserstein dis-
tances [11, 18], which fails for the convex/non-concave mobilities associated with o = 1.

The bosonic case, where 0 = 1 (and y = 1), is more challenging. Then, equation (FP,,)
becomes L!-supercritical in dimension d > 2, in which case the large-data long-time ana-
lysis has remained open for quite a while. In fact, a first global-in-time rigorous study of
the L!-supercritical regime has only recently been obtained in [8] for a one-dimensional
analogue, i.e. for (Fp,) with 0 =1, d =1, and y > 2, and is based on a Lagrangian
approach and viscosity solution techniques. In the physically most interesting case d = 3
and y = 1, which will be the main focus of this manuscript, no rigorous long-time ana-
lysis exists when o0 = 1, except for [33] which shows finite-time blow-up for large data
by a virial-type contradiction argument. In the L!-critical case, in contrast, solutions are
globally regular [6]. For numerical studies on the singularity formation in the supercritical
case, we refer to [9,32]. The qualitative properties obtained in the present manuscript are
in agreement with the simulations in [9], although our approximation scheme is different
and not restricted to the isotropic case. Let us mention that the uniqueness and stability
properties of the present scheme in the isotropic setting may also be of interest numeric-
ally.

In this paper we perform a rigorous global-in-time existence and qualitative analysis
of (FP,) with o = 1 in the L'-supercritical regime in higher dimensions d > 1, our main
interest being the bosonic three-dimensional Kaniadakis—Quarati model (0 = 1 and d =3,
y = 1); thus, hereafter o = 1. Preservation of the variational structure beyond finite-time
blow-up being a primary concern, we build our analysis on a suitably chosen approxim-
ation scheme that respects the basic mass conservation and structural properties of the
continuity equation (1.1). To begin with, we note that the stationary mass-constrained
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minimisation problem for # is well understood. The minimisers of # for a given mass
have been characterised in [3] and are in fact explicit:

Theorem ([3, Theorem 3.1]). For every m € (0, 00) the functional ¥ has a unique min-
imiser fmin = /Lfn'ﬁ? on the manifold {j. € M4+ (R?): [du = m}.!
This minimiser takes the form

foo,9§€d ifm < mc, where 8 € Rs¢ obeys
Momin = Jrd foo,0(v) dv =m, (1.2)
fcxd +(m—mc)So ifm>me.

Here R
foop@) = (@) (L) = @ T 1)V, feRsp  (13)

and we abbreviated f. ‘= foo,0 as well as me = [ga fe(v)dv € (0, 00].

For general y > 1, the L!-supercritical regime as determined by a dimensional analysis
is given by d — % > (. Observe that this is exactly the regime where the critical mass
m, appearing in the above theorem is finite and where minimisers with singular parts
concentrated at velocity zero emerge. Such singular components are termed Bose—Einstein
condensates in the physics literature (at least when y = 1).

Let us now put the analysis of the present work into context with existing literature
and discuss the main new difficulties. Naturally, several aspects of our approach have
their roots in the work [8]. This is particularly true for the fact that our fundamental
a priori bound consists in a space-uniform temporal Lipschitz estimate (of an integral
quantity) that is propagated in time. Both in [8] and in the present paper, such estimates
are derived by means of suitable comparison principles. However, the approach in [8]
relies on a Lagrangian reformulation of the problem in terms of the pseudo-inverse cumu-
lative distribution function giving access to the powerful instrument of viscosity solution
theory [15]. While in higher dimensions such a reformulation is, in principle, still pos-
sible [9, 12, 19], the structural properties of the resulting problem greatly deteriorate.
Indeed, in higher space dimensions, Lagrangian coordinates are vectorial and the corres-
ponding reformulation leads to a quasilinear degenerate second-order system of equations
(cf. [9, Section 2.1.3]). In such situations, classical comparison techniques are rarely avail-
able. Even in the isotropic case, where a one-dimensional scalar problem can be obtained
for the inverse of a rescaled radial cumulative distribution function [9, Section 2.1.2], the
comparison technique in [8] does not directly generalise to higher dimensions, since for
d > 1 the second-order differential operator in the new variables has an explicit depend-
ence on the unknown (see the comments following (7.3) in [23]).

The new challenges we encounter in higher dimensions are thus mainly of a technical
nature. In particular, the derivation of the universal space profile at {v = 0} for unbounded

'We define J () 1= 0o if [ga [v]>dp = oco.
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densities in Section 3 (applying to isotropic flows) is significantly more delicate than in
the one-dimensional case and requires several intermediate steps. Determining the profile
at the first blow-up time is still quite feasible and, as in the one-dimensional case, amounts
to solving an ordinary differential equation — to be combined, in higher dimensions, with a
bootstrap argument. However, in (FP, ) solutions may regularise after a first blow-up, and
such successions of “blow-ups” and “blow-downs” could in principle be highly oscillatory.
Thus, for a global-in-time analysis a particular challenge lies in gaining information at
general points in time. We should emphasise that the space profile, while of interest in
its own right, encodes a certain time-uniform continuity-at-infinity property that appears
to be vital for proving relaxation to the minimiser py;, in the long-time limit. (Observe
that when only looking at equation (FP,) from a PDE point of view, other stationary
“solutions” consisting of a smooth steady state f. 9 for some 6 > 0, plus a suitably
weighted non-trivial Dirac measure at zero, are conceivable, though unphysical.) Let us
finally point out that, in contrast to [8] where the mass of the condensate component (i.e. of
the singular part of the measure solution, which turns out to be supported in {v = 0}) has
only been shown to be a continuous function of time, the present approach allows us to
infer Lipschitz continuity in the isotropic case and thus refines [8] (cf. [23]). Some of the
basic ideas of this manuscript have been sketched for the one-dimensional model in the
author’s PhD thesis [23, Chapter 5]. As indicated in [23, Section 5.3], when d = 1, the
solutions to be constructed below coincide with those obtained from the viscosity solution
approach in [8].

1.1. Main results

In the subsequent analysis, unless specified otherwise, we assume the following general
hypotheses:

(H1) Ll-supercntlcahty > 1, where y € [1,00), d € N} are fixed parameters.
(H2) Initial data:

e fin>0ae. inRY.

s Either fi, e (LY N L d+1)(]Rd) and f;, is isotropic, or fi, € (Ly° N

éJraH_l)(]R ) for some £ > 3d + 1 is (possibly) anisotropic.

The spaces Lp(Rd) in (H2) are weighted L? spaces with norm ||f||Lp =] +
|- |¢ ) f llL»ra)s see Section 1.3.

For the asymptotic analysis leading to Theorem 1.2 and all subsequent main results, we
further impose the hypothesis % +2—d > 0 (cf. (1.5)), which covers the most interesting
case y = 1, d = 3. For more details on this restriction, we refer to Remark 1.3.

Our results for the nonlinear Fokker—Planck equations (FP,, ) rely on a careful analysis
of the proposed approximation scheme, which is devised in such a way as to preserve
the Fokker—Planck-type gradient-flow structure (1.1). Approximation schemes for con-
tinuation beyond blow-up have been employed in the literature for various other PDE
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problems. Closest to the present situation are perhaps the constructions in [30, 34] for the
two-dimensional Patlak—Keller—Segel model.

Approximation scheme. Pick an even function n € C%!(R) N C*®(R \ {0}) that satisfies
n(s) =n(—s) forall s € R, n(s) = sY fors € [0, 1], n’(s) = 0 for s > 2, and which is further
such that (0, 00) 2 5 > %f) is non-increasing. For ¢ € (0, 1] we let n.(s) := ¢ ¥ n(es) and

he(s) = s(1 + ns(s))
=15+ U(s), where d.(s) = sn.(s). (1.4)

Note that the choice of n implies that s.(s) < he(s) < h(s) foralls >0and0 <&’ <e <.
We then consider the associated Cauchy problem

3 fo =V - (Vfe+vhe(f), t>0,veR?,
J:(0,v) = fin(v) >0, veR?.

For details on the variational structure of (FPy.,) we refer to Section 4. The global exist-
ence of non-negative mild solutions of (FPy ) for suitably regular data can be deduced
using the linear growth of %, at infinity in conjunction with the fact that Fokker—Planck
equations like (FPy,.) (and (FP, )) propagate moments of order higher than 2 (cf. Propos-
ition 2.4 below). The relatively strong decay hypotheses in (H2) are primarily needed to
establish estimates that are independent of & (cf. Proposition 2.6). The notation M 1 (R¢),
£4 and further conventions used in the following proposition are specified in Section 1.3.

(FPy.reg)

Proposition 1.1 (Limiting measure for (FP,)). Suppose (H1), (H2). Then there exists a
non-negative Radon measure . on [0, 00) x R? with the following properties:

(i) Mass-conserving curve: | can be represented as du = du dt for a family of
measures {is}t>0 C M4 (R?) with the property that t — ; is a weakly-* con-
tinuous curve in M4 (R?) that satisfies j1; (R?) = || finll 1 =: m forallt > 0 and
admits a decomposition according to (ii).

(i1) Decomposition: There exists a measurable function a: [0, c0) — [0, m] and a non-
negative function f € L} ([0, 00) x R%) N C12((0,00) x U), U := R% \ {0},
such that for allt > 0

e = a()so + f(t, )L,
where 8y denotes the Dirac measure concentrated at the origin.
The function f is a classical solution of (Fp,) in (0, 00) x U. Moreover,
f is strictly positive in (0, 00) x R? if || fiallt > O in the sense that for all
K cC (0, 00) x R? there exists ¢(K) > 0 such that Sik = c(K)ae in K.

(iii) Approximation property: Denote by f, € C([0,00); (L N L;)(Rd)) the unique
mild solution® of (FPy.ree) (cf. Section 2.1) and let ,u(a) = faifd, where éﬁf’d
denotes the (14d)-dimensional Lebesgue measure on [0, 00) x R¢.

2The approximate solutions f; enjoy further regularity properties, which will be needed in the analysis;
see Section 2 for details.
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Then, along a subsequence ¢ | 0,

e X, d
I win M4 ([0, T] x R?) forall T < oo,
fo = fin C2((0, 00) x U),

loc

where U = R4 \ {0}.

(iv) Unique limit: If fi, is isotropic, the convergence in (iii) is true along any sequence
el 0.

(v) Lipschitz continuity of point mass: If fi, is isotropic,® the map t — ;({0}) is
Lipschitz continuous.

See Section 2.3 for the proof of Proposition 1.1. Later on we show for the isotropic
case that the limiting measure p satisfies (FP,) in the sense of renormalised solutions.
One of the technical difficulties of problem (FP, ) is related to the fact that the function
t — 1 ({0}) in general fails to be monotonic (cf. Section 5.2).

Proposition 1.1 (ii) implies that supp /Liing C {v = 0}. Hence, recalling the sublinearity
of ®(s) as s — oo, we infer that for every ¢ > 0,

H () = H(f(1)).

Since all relevant measures in this work will have singular parts supported at the origin,
we (continue to) denote by the symbol # both the functional acting on densities and the
extended functional acting on non-negative finite measures.

The following result provides a sharp characterisation of the space profile near the
origin of isotropic solutions and, moreover, it is a key ingredient for uniquely identifying
the long-time asymptotic limit. It will be established in Section 3.

Theorem 1.2 (Universal space profile). In addition to (H1), (H2) suppose that
2
—4+2—-d>0. (1.5)
14

Further assume that the initial value fi, is isotropic and let g(t, |v|) = f(t,v), where f
denotes the density of the regular part of the limiting measure obtained in Proposition 1.1.
There exists r« € (0, 1] and a bounded function A € Cy((0,00) x (0, 1)) such that for each
{ > 0 either g(7,-) € L>(0, 1) and there exists a neighbourhood J; C (0,00) of t such
that f|y.xB, is smooth or

g(t,r) = g.(r) + A, r)rz_d forr € (0,ry), (1.6)

where gc(v]) == fe(V) = foo,0(V) (cf (1.3)), i.e. gc(r) = (CD/)_l(—%rz).

3In the anisotropic case, we will see in Section 3 that ¢ > u,({0}) is at least continuous; see Corol-
lary 3.4.
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The radius r« > 0 and the function A € Cp((0, 00)x(0, 1)) can be chosen in such a
way that

g, r) < ge(r)+ A, r)r*? forallr € (0,r) and all f € (0, 00). (1.7)

For all i > 0 satisfying u;({0}) > 0, the second option, i.e. (1.6), must hold true.

See Section 3.3 for the proof of Theorem 1.2. The main challenge is to show the
lower bound g(f,7) > g.(r) + A(f,r)r>=%, r € (0, r+), encoded in (1.6). For its proof
we combine different techniques: based on the global temporal Lipschitz continuity of
the partial mass function, we first establish a partial result on the “stability from below”
of the unbounded steady state f. by employing a bootstrap argument that bears some
elements of classical intersection comparison [21,22]. This step strongly relies on the
radial symmetry assumption. It allows us to infer (1.6) at times 7 where 1;({0}) > 0, for
instance. The full characterisation in Theorem 1.2 is only achieved upon a combination
with specially tailored semi-group estimates for mild solutions along with a contradiction-
type argument. We refer to Remark 3.2 for more details. The upper bound (1.7) also holds
in the anisotropic case (see Remark 1.8 and Corollary 3.4).

We further note that g.(r) = (%)%r_% + O(r_%“) for 0 < r < 1, so that the

remainder O(r2~4 ) in (1.6) is indeed of lower order under condition (1.5). Moreover,
in the expansion for g one can replace the limiting steady state g.(r) by the power law
(%)%r‘% since d > %
Remark 1.3 (The regime (1.5)). In the present work, we focus on the range % +2—-d>0
as it covers the most interesting case of the three-dimensional Kaniadakis—Quarati model
for bosons (y =1, d = 3). If % + 2 —d < 0, the flux into the origin associated with
the nonlinear drift term div(vh( f;)) induced by the unbounded steady state f. vanishes
in the sense that lim, ¢ faB,(o) h(f)v-v d#H41 = 0. Here, #?~! denotes the (d—1)-
dimensional Hausdorff measure and v the outer unit normal to dB, (0), so that v-v = r for
v € dB,(0). Heuristically, this suggests that an upper bound of order f, on the space profile
of the density f'(¢, -) near zero (as asserted in Theorem 1.2 for regime (1.5)) might not be
compatible with the formation of a point mass at the origin in the case % 4+2—-d <0.In
view of Theorem 1.7, asserting in particular the formation of a Dirac mass in finite time
for mass-supercritical data, we conjecture that some new phenomena may be encountered
when (1.5) is violated.

Owing to the strong nonlinearity in the drift, one cannot expect the limiting dens-
ity f to be a distributional solution of (FP,) in (0, 00) x R?. Our analysis leading to
Theorem 1.2 allows us to show that the limiting measure satisfies (FP,) in the sense of
renormalised solutions.

Definition 1.4 (Renormalised solution of (FP,)). Let  be a non-negative Radon measure
on [0, 00) x R? and denote by p = p™¢ + pui" = £(z, v)effd + "2 its Lebesgue

decomposition into regular part ¢ with density f € Llloc([O, o0) x R?) and singular
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part u*"¢. We call i a renormalised solution of (FP,) in (0, 00) x R? with initial data f;,
if du = dy; dt for some weakly- continuous curve [0, 00) 3 ¢ > iy in My (R?) with
preserved mass [ du, = I finll L1 mays if T (f) := min{ £ k} € L2 ([0, o0); loc(Rd)) for
every k > 0, and if for all £ € C°°([0, 00)) with compactly supported derivative &', for
aa. T € (0,00) and all ¥ € C([0, T] x R¥),

T
L sraomuaaa— [ erpoaaw= [ [ enmpaa

T
[ [ hm - VE G ava, i)

As usual, the gradients of f on the RHS of (1.8) are to be understood as V7 ( f) for
k = k(&) large enough such that &'(s) = 0 for s > k (cf. [4, 16]).

Let us emphasise that the above definition of renormalised solutions should be seen
as preliminary. For a “better” and more complete paradigm, the solution concept may
have to be complemented by suitable energy or entropy conditions as it is classical for
conservation laws and nonlinear elliptic/parabolic equations, see [4,5,7,27], where they
are crucial for uniqueness. A general analysis of the question of uniqueness for (Fp, ) is,
however, beyond the scope of the present manuscript and will be left for future research.

Theorem 1.5 (The limit p is a renormalised solution). Assume the hypotheses of The-
orem 1.2. Then the limiting measure | constructed in Proposition 1.1 satisfies (FP,) in the
renormalised sense as specified in Definition 1.4.

The proof of this theorem is given in Section 4.2 and makes use, among other results,
of a local and truncated version of the energy dissipation estimate. The following energy
dissipation identity is crucial for deducing the long-time asymptotic behaviour.

Proposition 1.6 (Energy dissipation (in)equality). Assume (H1), (H2) and use the nota-
tion of Proposition 1.1. Then for all t > 0,

@) — I(fi) < // h(f)l £+ h(f)v? dvde. (19)

When supposing in addition the hypotheses of Theorem 1.2, the stronger balance law
holds true: forallt > s > 0,

H(f(1) = H(f(s)) = — // Ff)' f+h(f)v]*dvdr. (1.10)

See Section 4.3 for the proof of Proposition 1.6.

The long-time behaviour and further transient dynamical properties can be seen as
corollaries of the above results (cf. Section 5 for details). Let us here only highlight the
long-time asymptotics.

Theorem 1.7 (Convergence to minimiser). Assume the hypotheses of Theorem 1.2 and
denote bym = [ fin > 0 the total mass of the initial data. Further let [y = /’Lr(nnlln) denote
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the unique minimising measure of J for the given mass m (cf. equation (1.2)). Then, as
t — 00, H (i) = H (min) and, moreover,

7 = Hmin in M+(Rd) and  1;({0}) = fmin({0}),
J(@) = fuin in CELRT\{0D),
f(t) = fuin in LP(RY)  forany p € [1. %)’

where fuin denotes the density of the regular part of [imin With respect to the Lebesgue
measure.

The proof of this result will be completed in Section 5.1.

Remark 1.8 (Anisotropic case). While the main conclusions in Theorems 1.2, 1.5,
and 1.7 are restricted to the isotropic setting, several of the intermediate results derived
in this paper are proved for anisotropic data. Below, we summarise the most relevant res-
ults obtained for anisotropic data satisfying (H1), (H2), where for simplicity we restrict to
regime (1.5).

(a) Limiting measure & upper bound for density: Convergence of a sequence of
approximate solutions to a mass-conserving curve ¢ — ; = a(t)8o + f(t,-) &4
as detailed in Proposition 1.1 (i)—(iii). The density f(z,-) satisfies the pointwise
bound

1
0< f(t.v) < (2)7|o[77 min{l + C o] 7 274, Gy o743}
forall ¢ > 0, v € R?, and the point mass at the origin ¢ — j;({0}) is continuous;
see Corollaries 3.4 and 2.9.

(b) Energy dissipation inequality: The density f obeys inequality (1.9) for all ¢ > 0.

(c) Finite-time condensation and relaxation to free energy minimiser for certain data:
If f, is bounded below by an admissible isotropic density of supercritical mass,
the limiting measure obtained in (a) exhibits a Dirac mass at the origin after a
finite time and converges, in the long-time limit, to the (singular) minimiser of
the free energy with the same mass.

The crucial compactness property leading to the convergence result in (a) is obtained by
pointwise comparison at the level of the approximate densities with an isotropic envelope.
It is at this point that the stronger decay hypothesis on the data imposed in the anisotropic
case (cf. (H2)) enters, since for this argument the initial data f;; need to lie below an
admissible isotropic envelope f;n, ie. fin < fin. The assertion in (c) follows from sim-
ilar comparison arguments combined with the time-asymptotic results obtained in the
isotropic case. Finally, key to the energy dissipation inequality (b) are the Fokker—Planck-
type variational structure of the regularised problem, lower semi-continuity properties of
the convex free energy, and the strong convergence properties away from the origin in
Proposition 1.1 (iii). This paper leaves open the question of whether the limiting meas-
ure obtained in (a) relaxes to the minimiser of the free energy with the same mass for all
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admissible anisotropic data. While the energy dissipation inequality allows us to conclude
convergence of the density f along a sequence of times fx — 00 to f ¢ for some 6 > 0,
our estimates do not allow us to rule out the case of the parameter 6 being larger than that
of Lmin for a given mass, i.e. the case of a simultaneous presence of a smooth density and
a Dirac mass at zero. The main problem is the lack of sufficiently strong lower bounds
for anisotropic densities in the presence of singularities and concentrations. Such bounds
might possibly be obtained by suitably controlling the change of mass in small neighbour-
hoods of the origin. In the isotropic case, the crucial estimate is (2.18). It follows from the
comparison principle structure of the equation for the partial mass function (2.13).

1.2. Outline

The remaining part of this paper is structured as follows. In Section 2 we establish global
existence for the approximate problem (FPy ., ) as well as uniform estimates, which allow
us to pass to the limit ¢ — 0 in Section 2.3. An important ingredient is the uniform bound
in Proposition 2.6, which is obtained using a comparison technique. Section 3 lies at the
heart of our analysis. Its main purpose is to establish the universal profile asserted in
Theorem 1.2 (see Section 3.3). In Section 4 we introduce entropy tools and use the results
from Section 3 to show, for the isotropic case, the renormalised solution property of (FP,)
as well as the energy dissipation identity. Section 5 concludes with a characterisation of
the long-time asymptotics and some additional remarks.

1.3. Notation

Unless specified otherwise, we adopt the following notation:

. L;(Rd) for p € [1, 00], £ > 0: Weighted L?-space with norm ”f”L{ =1+
| - |6)f||Lp(Rd), where | - | denotes the function v — |v|. The spaces Lf(]Rid) are
Banach spaces.

e C12((0, 00) x R¥): Space of continuously differentiable functions f = f(z, v) that
are twice continuously differentiable with respect to v € R?.

* M, (G): Set of non-negative finite (Radon) measures on a given Borel set G C RY,
N € N. Usually, G = R¢ or G = I x R for an interval I C [0, c0).

* Un X @ in My (G) for py, p € M4+(G) stands for the convergence fG odu, —
fG @ du for all ¢ € Cp(G). This mode of convergence will be referred to as weak-*
convergence of measures. It is induced by a distance on M (G) [2, Section 5.1], [26].

e We write di = du, dr for non-negative Radon measures 4 on [0, o) x R¢ and
we on R9, ¢ >0, with u,(R?) = const. € R if for every ¢ € C.(]0, 00) x R¥)
the function ¢ +— fRd @(t,v) dus(v) is Lebesgue measurable and f[o’oo)de pdu =
f[O,oo) fRd @(r,v) due (v) dr.

o e, psine: Regular and singular part of u € M4 (G) with respect to the Lebesgue
measure on G C RV,
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« £7: d-dimensional Lebesgue measure.

. éﬁfdz (14-d)-dimensional Lebesgue measure on [0, 00) x R?.

* A < B for non-negative quantities A, B stands for A < CB for a fixed constant C €
(0, 00). The relation A > B is defined as B < A.

* 54 = max{s,0} fors € R.

e B, :=B,(0):={veR%|v| <r}.

o gc(r) = f:(v) forr = |v], where f. = foo,0 as defined in (1.3). Equivalently, g.(r) =
(@)~ (~1r2).

2. Approximation scheme

As pointed out in the introduction, local-in-time classical solutions of (FP,) emanating
from initial data that are large in a suitable sense, may cease to exist in L (R¢) after a
finite time. The main purpose of this section is to establish global existence for the approx-
imation scheme (FP,..,) in spaces of suitable regularity, as well as certain compactness
and convergence properties for the corresponding approximate solutions. In the isotropic
case, our scheme obeys a monotonicity property and, as a consequence, gives rise to a
unique limiting measure. Note that this feature may also be of interest from a numerics
point of view. A key ingredient in the analysis is a uniform temporal Lipschitz bound for
the partial mass function of isotropic solutions (see Proposition 2.6).

2.1. Mild solutions

The local-in-time well-posedness of equations (FP,) and (FP, ) in suitably weighted
spaces can conveniently be obtained in the framework of mild solutions using the Duhamel
integral formulation of (FP,,), resp. of (FP, c.), given by

f(t,v) = /Rd F(t,v,w) fin(w) dw
+/O /Rd F(t—s,v, w)(divw(w|f|yf))|(s’w) dw ds, 2.1
feto) = [ (0.0 ) b

t
+ / /d F(t—s,v, w)(divw (wﬁg(fe)))|(s,w) dw ds, 2.2)
o JR

where ¥ = F (¢, v, w) denotes the fundamental solution of the linear Fokker—Planck equa-
tion d,f = V - (Vf + vf), i.e. (cf. [14])

F(t,v,w) = e G, (e'v —w)
with

&1

V(i) = — 1, Gy(E) = @A) Se 5.
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In this subsection we collect several auxiliary results for mild solutions, many of which
can be obtained as in [10]. The reasoning is therefore kept brief.
Using integration by parts, equation (2.1) can formally be rewritten as

Fltov) = /R T (v.w) fi(w) du

t
" / < /Rd Vo F (t=s.v,w) wlfI" flswy dwds.  (2.3)
0

Analogously, we may rewrite equation (2.2). To estimate the integrals appearing on the
RHS of (2.3) we use the semi-group estimates in [10, Appendix A]. By [10, Proposi-
tion A.1] the linear operator

FIf1¢,v) = / Ft,v,w)f(w)dw
R4
enjoys the following smoothing estimates for all ¢ € (0, 7] and T < co:

IVETLA1ONs < Cro) 5 G075 £l 2.4)

forany 1 < p < ¢ <o00,£ >0, and k € Ny, where the constant C7 = Cr(d, g, k) is given
by Cr =C exp((% + k)T) with % + % = 1 and C < oo a universal constant. For the
definition of || - ”sz we refer to Section 1.3.

In the rest of this section, C denotes a constant that may depend on fixed parameters,
but not on time. Constants that additionally depend on the (final) time 7' < co are denoted
by Cr. Any such constants may change from line to line.

We begin with a uniqueness result.

Lemma 2.1 (Uniqueness of mild solutions for (FP,) and (FPy.)). Let p > d. There
exists at most one mild solution f € C([0, T]; (L*° N Lf)(Rd)) of equation (FP,). An
analogous result holds for equation (FP, r..).

Proof. Let f, f e C([0,T]; (L*® N Lf)(Rd)) both satisfy equation (2.3) for ¢ € [0, T'].
Note that since p > d, we have a = % + %% € [0, 1). We may thus estimate for ¢ € [0, T'],
using bound (2.4) and recalling that v(¢) = e?* — 1,

LA (@6) = F @)l
t
<Cr / vt—s) (£ £s,w) — | F17 £ (s, w)lleo ds
0
~ t ~
< CrlA 1+ 171 B rpagans [, G156 = FOli ds,
where we used the fact that v(¢) > 2¢. Invoking the singular Gronwall inequality (see

e.g. [1, Theorem 3.3.1]), we infer that f(z) = f(t) for all ¢ € (0, T'], which shows the
asserted uniqueness. ]
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We now seek to construct solutions taking values in the Banach space
Xew = (L 0 Ly)RY)

for sufficiently large £,n € [1, 00). Global-in-time existence of non-negative mild solutions
to (FP, o) Will be obtained under the additional hypothesis that n = n (£, d) be sufficiently
large; cf. (2.8). The reason for this condition is that our approach to control the L7°-
norm of a local solution relies on an a priori control in L} for n = n(¢, d) large enough;
see the proof of Proposition 2.4. The uniform L} -control of non-negative solutions, see
Lemma 2.3, is a consequence of the Fokker—Planck structure, which naturally ensures the
propagation of higher moment bounds.

The canonical norm on X := X, , will often be abbreviated by || - ||x, i.e. we let

1A x = 11F 1 xe, = maxtllfllzges 1/ Ly 3

Lemma 2.2 (Local existence for (FP,), (FP,..) in X and basic properties). Let
£,n>1. Forany L € (0,00) there exists T = T (L) > 0 such that for every fi, € Xy, with
| finllx,, < L there exists a unique mild solution f € C([0,T]; Xy,) of equation (Fpy).

On any time interval [0, T™), where the local-in-time mild solution exists, one has the
extra regularity t +— v(l)% V()| € Cp((0,T); Xg.1) forevery T € (0, T™).

Furthermore, if fi, > 0, the following additional properties hold true:

(i)  Positivity: f > 0in (0,T*) x R,

(i) Smoothness: f € CY2((0, T*) x R?) and (FPy) holds in the classical sense.

(iii) Mass conservation: || f(t)||p1 = || fullp1 for all t € (0, T*).

(iv)  Preservation of radial symmetry: If fi, is isotropic, sois f(t) forallt € (0,T™).
Given non-negative initial (d)ata fir(li) € Xy i = 1,2, denote by f(i),i = 1,2, the mild
i

solution emanating from f,;" and let [0, T*) be a common time interval of existence. Then

the following properties also hold true:
. 1 2
) L'-contractivity: | fD(t) — fO @)1 < 1 £V — £ P11 forall t € 0,T).
(vi) Comparison: Iffir(ll) < fisz), then fM < £@ jn (0, T*) x R4,
Completely analogous statements hold for the regularised problem (FP, ;c.).

Proof. The proof is similar to that of [10, Theorem 2.5]. Abbreviate X := Xy ,. To prove
the existence of a mild solution f € C([0, T]; X) of (FP,) we show that the operator

t
T = ST+ [ [ 9,5 000wl 7y s

defines a contraction mapping on a closed ball in C([0, T']; X) provided T = T(|| finllx) >
0 is small enough. For this purpose, we rely on (2.4) and estimate

t

ITLAION Ly = Crll finll Ly + CT[O v(t =) [ ISPy ds.
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where | - || (s)]” ! denotes the function w — |w| | f(s, w)|” 1. We next observe that
- TA Ly ey < /}Rd(l + [wM) (A + [wh]f )"+ dw

< /Rd(l + [wMIf ) dw [(1+1- DA |z
= WA Y DA

where the last step uses the fact that y > 1.
Next, we estimate, for p :=d + 1,

1T 1L = Crll fllLge + Cr /Ot (t —s) 23| |- | F T ds
and
I gy = [ 04101970 + [l @) 7 do
<C /I;d(l + |w|(5+1)P)(1 + |w|6[(y+1)p—1])—1|f|dw

X |[(1+ |- [Hf) 3t
1 1
< CIf I IF I

where the last step uses the fact that
C+Dp—Liy+Dp—1]=Llp+p—Lp—Lyp+L=L+d+1—Ld+1)y<1=<n,

which follows from the choice p =d + 1,£ > 1,and y > 1.
In combination, this shows that the mapping 7~ obeys an estimate of the form

ITLAIONx < Crll fullx + CreM f 1 bgorpxy: ¢ €[0T,

for some function k¥ € C([0, 00)) that satisfies «(0) = 0.

Using the above estimates and analogous bounds for the difference 7[f] — 7| f 1
one may now follow [10] to show the contraction mapping property of 7 and deduce the
existence of a fixed point f € C([0, T']; X) for small enough T as asserted in Lemma 2.2.
By construction, this fixed point is a mild solution of (FP,). The extra regularity
t v(t)% V(@) € Cp((0,T); (LT N L%)(Rd)) follows from similar arguments (see
[10, Section 2.2]) combined with the uniqueness of mild solutions in C([0, T]; (L*° N
LY )(R?)) for p > d shown in Lemma 2.1. (Of course, the contraction mapping property,
whose proof we have not presented in full detail, also provides uniqueness.)

Properties (i)—(vi) can be deduced from classical arguments as in [10, Sections 2.3
and 2.4] (see also [28,31]).

The analogous results for the regularised problem (FP, ., ) are obtained along the same
lines using in particular the bound 0 < n.(f) < |f|”, where 7, is defined in the line
above (1.4). [ ]
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Lemma 2.3 (Uniform moment bound). Assume that £ > 1, n > 2, and let fi, € X¢p
be non-negative. Denote by f. € C([0, T*); X; ) the non-negative (local-in-time) mild
solution of (FPy..) as obtained in Lemma 2.2. Then, for all t € [0, T*),

[, 00+ 1l o < Cond)l iy @)

We emphasise that the constant C(n, d) < oo in the above lemma is independent of &
and 7*. Moreover, the bound (2.5) equally holds for the local mild solution of (Fp,).

Proof of Lemma 2.3. Let us first provide the formal argument leading to the above estim-
ate. We abbreviate f := f; and define for k € [0, 00),

Ex(t) = /ﬂ;d lo[* £(z, v) dv.

Then, by Lemma 2.2, Eo(t) = || finll L1 (ra) = Bo. Clearly, By < || finll1-

We now argue inductively and assume that sup,¢[o 7+) Ex—2(f) < Bg— for some
k € [2,n] and a positive constant Bx_, obeying the bound Bg_» < C| finl .3 with C =
C(n,d). Formally, we may then compute

1d

C B0 = _/Rd W20 (V f + vhe(f)) dv

- / div(o[*2v) f dv - / olFhe(f) dv
R4 R4
_ k—2 _ k
<(k 2+d)/Rd|v| fdv /Rd|v| fdv

=(k—24+d)Ex_»()— Ex(t), (2.6)
which implies that
E(t) < max{Ey(0), (k =2+ d)Bix—»} = Bx., t€[0,T*). 2.7

Since k < n, the new upper bound By again satisfies the estimate By < C| finl 1 for
some possibly larger constant C = C(n, d).

We now let k = 2 in the above step to ﬁnéi_lghat sup, E2(t) < max{E»(0),dBo} = B».
By interpolation we infer that Ex () < By B,> =: B forallk € (0,2) and all? € [0, T™).
Observe that By < C| finl,; for all k € (0,2). We may now complete the induction
argument: starting with k —2 = n — 2|n/2] (which lies in [0, 2)) and iterating the above
induction step [n/2] times, we arrive at the bound sup, E, (1) < C(n,d)| finll ;-

Finally, let us note that the computation (2.6) can be made rigorous by introducing
a smooth, compactly supported cut-off function g, R > 1, with pg(v) = @(R™'v) for
some ¢ € Cc"o(IR{d) satisfying 0 < ¢ < 1 and ¢ = 1 on {|v| < 1}. The time derivative of
t % i [v|¥ f(t, v)@r(v) dv then satisfies an inequality which leads to (2.6)—(2.7) in the
limit R — oo. ]
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Global existence for (FPy ,) in Xy , will be obtained under the decay conditions

£>1,

2.8
n>0+d+1. @)

Proposition 2.4 (Global existence for (FPy ). Let € € (0, 1]. Let £, n satisfy (2.8), and
suppose that fin € Xy 5, is non-negative. There exists a unique global-in-time mild solution
Je € C([0,00); Xy,) of the Cauchy problem (FPy, ;).

Note that, as a consequence of Lemma 2.2, the function f, in the above proposition
enjoys additional properties (i)—(iv). In particular, it is a classical solution of (FPy ) in
(0, 00) x R¥.

Proof of Proposition 2.4. Local-in-time well-posedness of (FPy. o) in X := X} , follows
from Lemma 2.2. Thus, for proving global existence it suffices to show that, for ¢ > 0
fixed, || fe(t)|lx cannot blow up in finite time. For this purpose, let 7 < oo and suppose
that f; € C([0,T'); X) is a mild solution of (FP, ) on the interval [0, T"). Since n > 2,
we may invoke Lemma 2.3 to infer that || f¢(¢)| 1 remains bounded uniformly in time:

sup || fe@llpr < C|l finllpy < oo (2.9
t€l0,T)

Next, we let p := d + 1 and estimate for ¢ € [0, T'),

d 1_d
I fellLee = Crll finllLge + CT/o v(t —s) 227 || fene(fe)llpyp, , ds, (2.10)

where we used the fact that || | - |f(')||Lf < 2||f~||LZ+1 for f € LfH(Rd). Since

U+Dp—Llp—1)=L+d+1=<n

and hence (1 + |w|*t)2 < (1 + |w|")(1 + |w[©)?~!, we further have

ey = C@” [ 1wl 71A17 do

< CEOPI Ll fel 7o'

1, P
Hence, using the Young inequality ab < %al’ + %b 7~1_ we deduce

| fene(fllzz,, < C@Ifelly + C@l fellge:

Inserting this bound into (2.10), using (2.9), and applying the generalised Gronwall in-
equality [1, Theorem 3.3.1] yields

| I/e@llzge = Crell finllzge + [ finllLy) exp(Cre).
tef0,T
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where the constants Cr, depend on ¢, T, and fixed parameters. This shows that the
unique local-in-time mild solution can be extended beyond the time 7', and since T €
(0, 00) was arbitrary, the function f; extends to a unique global-in-time mild solution f, €
C ([0, 00); X). [

For later reference, let us note the following consequence of the above theory.

Corollary 2.5 (Short-time consistency). Assume the hypotheses of Proposition 2.4.
Now let f € C([0, T]; X¢,») be a local-in-time mild solution of (Fp,), let 0 < €4 <
(I f leqo,ry:0)) ", and & € (0, €4]. Then, since he(s) = h(s) for s < &=, the function f
is also the unique mild solution f = f; € C([0, T']; X¢,,) of (FP}..c¢) in [0, T]. In particu-
lar, as long as the mild solution of (FP, ) obtained in Lemma 2.2 exists, the scheme { fz },
trivially converges to this solution as ¢ |, 0.

2.2. Uniform bounds

2.2.1. Preliminaries. From now on we assume hypothesis (H2), which imposes a some-
what stronger decay condition on the initial data as compared to Proposition 2.4. In
particular, fi, € Xy ¢+q+1 With £ = d, resp. £ > 3d + 1, if f;, is isotropic, resp. aniso-
tropic. Let us note that the specific regularity conditions in (H2) have been made for
convenience, and we have not attempted to optimise them.

Let f € C([0, T]; X¢¢+4+1) denote the local mild solution of (FP,) obtained in
Lemma 2.2. Then, replacing f by the time-shifted solution f(¢9 + -) emanating from
f(to) for some small 7y € (0, T/2), we may henceforth assume, without loss of general-
ity, the additional regularity f € C12([0, /2] x R?) with V f € C([0, T/2]; L (RY))
and, moreover, that £ is strictly positive in [0, T/2] x R? (if m > 0, the strict positivity
of f(to) follows from [31, Proposition 52.7]).

Thus, from now on we may assume the following stronger version of hypothesis (H2):

(H2) and the local regular solution f of (Fp, ) with f(0) = fin
satisfies /€ C12([0, 7] x RY), V f € C([0, 7]; L¥ (RY)), (H2)

f > 0in [0, 74] x R? for some fixed 7, > 0.

Furthermore, we henceforth denote by f;, € € (0, €], the global mild solution of the
regularised equation (FP, ..,) as obtained in Proposition 2.4, where €, € (0, 1] is chosen
small enough such that

fe= fin[0,7.] foralle € (0,€]. (2.11)

Such an €, exists by virtue of Corollary 2.5.

2.2.2. Isotropic solutions. In this subsection we assume fi, to be isotropic and write
8in(r) = fin(v), |v| = r. By Proposition 2.4 (iv), the global mild solution f; of (FPy ) is
isotropic, allowing us to write g.(¢,r) := f:(¢,v) for r = |v| > 0. Observe that g, satisfies
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the equation

dge =98, (r9 70, g0 + r?he(ge)) in Ry x Ry,

2.12
0= lir%(rd_13rgs + r9he(ge)), @1

where the limit in the last line holds locally uniformly in ¢ € [0, 00).
Our fundamental a priori bound for (FP, ) relies on the fact that, in the isotropic case,
equation (FP,, ,) can be expressed as an evolution equation for the partial mass function

.
M(t,r) = / ge(t, p)p? dp = ¢! /B fetv)dv < M| fillpigay.  (2.13)
0 r

where ¢4 denotes the area of the unit sphere dB; in R¢. The equation for M, is obtained
by multiplying (2.12) by 74! and integrating in r:

0 Me =19, g0 + rha(ge). (2.14)
Using the relations
0, My =r?"g,.
PM, =r?719,g. + @ r_ 1)BrMs,
one arrives at
M, = *M, — @- I)B,Ms +r¢h,(r' 49, M,), >0, reRy,
M (t,0) =0, 1>0, (2.15)
Me(0,r) = Mix(r), reRy.
We note that, as a consequence of (2.11),
M, = M in [0, 7] X [0,00) forall ¢ € (0, €4], (2.16)

where M(t,r) = c;l fBr S(t,v)dv with f € C([0, 74]; Xg7,24+1) denoting the local-in-
time mild solution of (Fp, ). Hence, thanks to the regularity established in Lemma 2.2 and
hypothesis (H2') we can ensure that

M e Ch2([0, 4] x [0,00)) with sup |0, M(z,)||Lo(o.00)) < K <00, (2.17)

7€[0,74]

where the last estimate follows from (2.14) and the regularity f € C([0, 7«]; LZ"(Rd)),
Vf € C([0.w]; LY (RY)).

Proposition 2.6 (Global Lipschitz regularity in time). Suppose that fi, is isotropic and
satisfies the hypotheses in (H2'). Denote by M, the partial mass function (2.13) of the
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global solution f; of (FPy.,) obtained in Proposition 2.4. In particular, M, is a classical
solution of equation (2.15) satisfying (2.16), (2.17) and is such that f, enjoys the uniform
moment bound (2.5) forn = 2d + 1. Then

sup sup |0; M (t,r)| < K, (2.18)
£€(0,e4] t,7>0
where -
m
Ky = max{K, —} <00 (2.19)
Tx

with K as in (2.17) and iit == ¢;'m = ¢! | finll L1 (ma)y-
Proof. Let K, be as in (2.19). We will show by contradiction that

sup (Mg(t,r) — Mc(s,r)) < Kil|t — 5|

£€(0,€x]
forall¢,s,r > 0.
Suppose the last inequality is false for some ¢ > 0. Then there exist ¢1, 51,71 > 0 such

that
Mg(tl,rl) — Mg(sl,rl) — K*|t1 —S1| > 0.

Pick some T > max{t;, s1} + 1. Without loss of generality we further assume that 7" > 7
with 7, being as in (2.16), (2.17). Then, for § > 0 small enough, we have

M (t1,r1) — Ton T M(sy,71) — Kilt; — 1| > 0
and hence
sup (Mg(t, Py — Mo(s.r) — Kalt —s| — —> — _° ) >0,
(t,5,r)€Q T—t T-—s

where Q = (0,T) x (0, T) x (0, 00).
‘We assert that the function

P(t,s,r) = Mc(t,r) — Mc(s,r) — Ki|t — 5| — % 7 8_ .
attains its (positive) supremum in the interior of Q. This can be seen as follows: By the
uniform continuity of M, on [0, T'] x [0, 1] and the fact that M.(-,0) = 0, there exists
r’ > 0 such that P < 0 in [0, T] x [0, T] x [0, r']. Moreover, by (2.16) and (2.17) one
has P < 0in [0, 7] X [0, 7«] X [0, 00). The bound M, < i further shows that P < 0 in
[0,T] x [T —€,T] x[0,00)and in [T — ¢, T] x [0, T] x [0, 00) for some € = €(8,m) > 0.
Next, for all 5 € [z, T] and r € [0, 00), we have P(0,5,7r) <m — Ky7s — % < 0 thanks
to the choice of K. Likewise, P(7,0,r) < —% forallz € [¢t*,T] and r € [0, 00). Hence,
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it remains to rule out the existence of a maximising sequence (#,, S, 1) With r, — oo.
To this end, we take advantage of the bound (2.5) (for n = 2) to estimate

26
Plt,s.r) < c,;lf fuls.v)do — 22
R4\ B, T

1 25

<— )1 dv— =

S T Sy, PO D=
1 28

m”ﬁnﬂL;(Rd) T

Observe that the RHS is negative whenever r > R, for a finite radius Rx = R (|| finll Ll
T, §) large enough. Hence, the same is true for P(z, s, 7).

Thus, the supremum of P must be attained at some interior point p* = (¢,s,7) € Q.
At the point p* we have the optimality conditions

t—s 8
a M t, — K* == 5
t 8( r) It—S| (T—t)2
t—s 8
—9,M,(s, K. — ,
N S(S r)+ |t_s| (T_S)2
and hence 5 P
My (t,r)—ogMc(s, 1) = .
t ( r) (S r) (T—Z)Z + (T—S)Z
Moreover,
0, My(t,1) = 0, Mc(s,r)
and thus

he(r'™4 9, Me(t,1)) = he(r' =40, My (s, 7)) = 0. (2.20)
Further note that 0 > 82 P(t,s,r) = 02M(t,r) — 02 M, (s, 7).
In combination with equation (2.15) we deduce at the point (¢, s,7) = p*,
0=0/M(t,1)— 0sMc(s,r) — (02 M(t, 1) — 02 M (s,7))

N
T(T-1? (T-5s)?

Oa

which is a contradiction. This completes the proof of Proposition 2.6.

Let us remark that, thanks to the smoothness of M,, estimate (2.18) may alternat-
ively be proved by directly considering the equation satisfied by N, := 9, M,, at least
if one assumes a slightly stronger decay hypothesis on f;,. Indeed, notice that positive
constants above sup N, (0, -) of the problem for N, are supersolutions, while negative con-
stants below inf N, (0, -) are subsolutions. And if f. € C([0, T]; LY (R?)) and V f; €
c(o, TY; L‘l?'il(Rd)) for some £ > d, we may use (2.14) to find that N(t,r) — 0 as
r — oo, uniformly in ¢ € [0, T']. |
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The comparison principle underlying the proof of Proposition 2.6 can further be used
to deduce monotonicity in & of M,(¢,r).

Proposition 2.7 (Monotonicity of the scheme). Let the hypotheses of Proposition 2.6
hold. Forany 0 < &' < & < €,

Mé‘/(lir)ZME(tvr)» l»r>0~

Proof. To begin with, we recall that i, < hy whenever 0 < ¢’ < ¢ because of the non-
increase of the function (0, c0) 3 5 > s~V n(s).

The remaining reasoning is similar to the proof of Proposition 2.6. By contradiction,
one assumes that there exist #1, 1 > 0 such that M,(t;,r1) — Mg (1, r1) is positive. Next,
one fixes a finite-time horizon 7 > #; + 1 and picks § > 0 small enough such that the
function

~ 8
P(I,V) = Mg(t,r)—Mg/(t,r)—ﬁ

has a positive supremum on (0, 7) x (0, 00). At an interior maximum point, one uses
elementary calculus as before, where the main difference is that instead of line (2.20), we
have now an inequality

hs(rl_darMs([, r)) - ha’(rl_darMs’([’ I")) = 0.

The conclusion is then obtained by conceptually following the proof of Proposition 2.6.
L]

The bound in Proposition 2.6 combined with the conservation of mass allows us to
infer a uniform pointwise bound of the family { f, }. away from the origin. Let us emphas-
ise that, at this stage, we do not aim for optimal blow-up rates as r | 0. Such sharp rates
will be derived in Section 3.

Lemma 2.8 (Bound away from origin: isotropic case). Assume the hypotheses of Propos-
ition 2.6 and let Ky be as in (2.19). Then for all € € (0, €4, allt > 0, and all r > 0,

ge(t,r) < Zmax{K*,dI%}r_d,
where, as before, we let g.(t, |v]|) = fe(t,v) for fe(t,-) isotropic.

Proof. The inequality s < /. (s) and (2.14) imply the bound ge(t,7) < r ¥ Ky — 119, ge.
Hence,
ge(t.r) < Kur™@  whenever d,g.(t,7) > 0.

Suppose now that 9, g.(f,r) < 0 for some ¢,r > 0.1f d,g.(¢,-) < 0on [2_5r, r], then

d r r
r _ _ ~
gelt.r) 7 = ge(t,r)/fl p?tdp < /,1 g:(t, p)p? " dp < i,
2 dr 2 dr
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where the second step uses the monotonicity of g, (¢, ) on [2_5 r, r] and the third step fol-
1

lows from mass conservation. Otherwise, there exists ro € [27@ r, r] such that 9, g. (¢, p) <

0 for all p € (rg,r] and 0, g.(t, r9) = 0. In this case, we estimate

ge(t. 1) < gelt,ro) < Kurg? < 2Kur™9.

In combination, this shows the bound g.(f, r) < 2 max{Kx, d z%}r_d for all » > 0 and
every t > 0. ]

2.2.3. Anisotropic case. For non-isotropic initial data f;, satisfying (H2") and thus in
particular f;, € Lf(Rd) for some £ > 3d + 1, we consider as in [6] an isotropic envelope
Jin(v) = fin(v) given by

| finllzge

1+ ]9

Since £ — (2d + 1) > d, the isotropic function fin satisfies (H2') and thus in particular the
hypotheses of Proposition 2.4. Invoking this proposition, we obtain non-negative global-
in-time (mild) solutions f, and f; of (FPy ;) emanating from f,, resp. f;n, where by
the comparison property, Proposition 2.4 (vi), fe < ﬁ in [0, c0) x R¥. Thus, the uniform
bound away from zero in the isotropic case (cf. Lemma 2.8) implies a similar result for
anisotropic solutions:

falv) =

Corollary 2.9 (Bound away from origin: anisotropic case). Assume (H2'); thus in par-
ticular fi, € LZO(Rd) for some £ > 3d + 1 if fi, is non-isotropic. There exists a finite
(non-explicit) constant K, only depending on | fi, || L%, £ and fixed parameters such that
forallz > 0 and all v € R? \ {0},

fe(t,v) < 2max{K,, dim}|v|™,
where it = ¢t finll 1.

2.3. Passage to the limit

Proof of Proposition 1.1. For ¢ € (0, €4] let f; be the global-in-time mild solution of
(FP, o) emanating from fi, as constructed in Proposition 2.4. In the rest of this proof
we abbreviate U = R4 \ {0}.

We first show assertions (i)—(iii).

Approximation property (iii) and regularity of f. We assert that for every compact set
G cC (0,00) x U, we have an e-uniform bound of the form

”fs”HH'%’““(G) <Cg (2.21)

for some o € (0, 1), where H'T2-27%(G) denotes the parabolic Holder space with
S -Holder continuous first-order temporal and a-Holder continuous second-order spatial
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derivatives. Inequality (2.21) can be shown using standard results on parabolic regular-
ity [28,29]. To sketch the main points, we first observe that each f; is strictly positive
unless fi, = 0 (cf. [31, Proposition 52.7]) and smooth in (0, co) X R Moreover, as a
consequence of Lemma 2.8, resp. Corollary 2.9, the family { f;} is e-uniformly bounded
in L*°(G). Hence, rewriting (FPy o) as 0; fo = Afe + hl(fe)v - V fe + dhe(f;), The-
orem 11.1 in [28, Chapter III] on linear parabolic equations provides us with an e-uniform
gradient bound ||V f¢||co(g) < Cg. For higher-order spatial derivatives, e-uniform bounds
on G are obtained by applying a similar reasoning to the equation satisfied by d,, f; etc.,
and time regularity follows from the equation itself.

Hence, by the Arzela—Ascoli theorem, there exists a function f € C L2((0, 00) x U),
f =0, such that, upon passing to a subsequence ¢ | 0 (not relabelled),

fo = fin CY2(G) for every G cC (0, 00) x U, (2.22)

and f is a classical solution of (FP,) in (0, 00) x U.
Combining (2.22) with the moment bound in Lemma 2.3 yields, for all p > 0,

lim [ fe (1) = f (Ol L1 @a\B,0) = O (2.23)

locally uniformly in ¢ € [0, c0). Moreover, Fatou’s lemma implies [p4 f(1) < m forallz.

Let us now show that f is strictly positive for non-trivial initial data f;,, i.e. whenever
m > 0. For this purpose, we pick some 6 > 0, define f;* := min{fw g, fin}, and let
{ Y ee(o,e) With €g == (|| foo,0 ||L00(Rd))_1 > 0 denote the family of global-in-time mild
solutions of (FP, ) starting from iff . For € € (0, €] the steady state fu ¢ is a classical
solution of (FP, ..,) with rapid decay as |[v| — oo, and thus in particular a mild solution.
Hence, the comparison principle in Lemma 2.2 (vi) implies that

fe# = min{foo,ﬂ, fé‘}v (2.24)

showing in particular that /* := f is independent of ¢ for & € (0, €] (cf. the argument
in Corollary 2.5). By Lemma 2.2 (ii), f #isa non-negative classical solution of (FPyc,)
(and (FP,)) with initial datum f;¥ # 0. From a classical strong comparison principle (see
e.g. [31, Proposition 52.7]), comparing f# with the zero solution, we deduce that f# is
strictly positive in (0, o0) x R¥. Taking the limit ¢ — 0 in (2.24) along the subsequence
obtained in (2.22) yields f* < f, and thus provides us with a locally uniform positive
lower bound for f away from zero.

The family of measures {4®},, u® = feéﬁf‘i, is tight on any finite-time horizon
as ensured by Lemma 2.3. Hence, by Prokhorov’s theorem, there exists a non-negative
Radon measure j on [0, 00) x R? such that after possibly passing to another subsequence
el 0,

1@ 2 in My ([0, T] x RY) (2.25)

for any T < oo. In fact, due to (2.22), (2.23) and fRd fe(t) = m, the passage to a sub-
sequence ¢ | 0 would not have been necessary at this point (see also the next paragraph).
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Mass-conserving curve and decomposition. By (2.23) the family y,gs) = fo(1) &7 sat-
isfies
lim [ ydul® = / () f(t,v)dv (2.26)
&0 Jrd R4

for all ¥ € Cp(R?) with supp v C R? \ {0}, where the limit is taken along the same
sequence ¢ | 0 as in (2.23). At the same time, the tightness of the family { /Lgs)}g ensures,
upon passing to a subsequence &; | 0 which may (initially) depend on ¢, that ,ugsj ) X Ly
in M4 (R?) for some p1; € M4 (R?) with i;(R?) = m. As a consequence of (2.26), we
have supp(u; — f(t)£%) C {0}, independent of the chosen subsequence gj | 0. Since
s (R4) = m, this entails that i, ({0}) = m — | f(@)lL1wray = a(t). Hence,

we =a(t)so + ()L, >0, (2.27)

and the convergence
1 2y in My (RY) (2.28)

holds for the entire sequence ¢ | 0 as obtained in (2.22)—(2.25). Now let ¢ € C. ([0, 00) x
R%). On the one hand, identity (2.25) implies that

lim @du® =/ @du.
&0 J[0,00)xR4 [0,00)x R4

On the other hand, the function (4(7) := [ga ¢(t,v) duge) (v) admits the uniform bound
|te(t)| < m|l@|lL for all £ > 0 and converges pointwise to [pa @(7, v) du (v) as
¢ | 0. Hence, using dominated convergence for the RHS (in conjunction with the compact
support of ¢ in time), we may pass to the limit ¢ | 0 in the identity

[ ¢du(s)=[ / (1, v) dul® (v) dr
[0,00)xR¥ [0,00) /R4

to deduce the representation dpu = du, df.

To prove the asserted weak-s continuity of the mapping [0, 00) 3  — p; € M4 (R?),
let us first recall that M (R?) endowed with the weak-% topology is metrisable (see
e.g. [2,26]), so that it suffices to show sequential continuity: given 7 > 0 and a sequence
(¢;) satisfying lim; o t; = 7, we need to prove that Kt A My in M4 (R?). By the port-
manteau theorem (see e.g. [26, Theorem 13.16]), it suffices to show for every open subset

O C R? the estimate
/ dus < liminf/ duy; . (2.29)
o j—=o Jo

If 0 € O, then B,(0) C O for p > 0 small enough, and (2.29) holds with an equality.
Indeed, the smoothness of f away from v = 0 and the moment bound in Lemma 2.3

(which implies an analogous bound for the pointwise limit f of f;) ensure that f(¢;) —
£ in LY(R? \ 0), and hence

[am=m= ], f<ﬂ=jgg(m—4d\of(zj>) = jim [ an.
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If 0 ¢ O, inequality (2.29) is equivalent to [,, f(7,v)dv <liminf; [, f(t;,v)dv (by
virtue of (2.27)), and this bound is a consequence of Fatou’s lemma since f(¢;) — f (f)
a.e. in R?. This establishes (2.29).

It remains to prove assertions (iv) and (v).

Unique limit. We now show (iv). In the isotropic case, Proposition 2.7 ensures that the
limit M(1, ) == limgo M(z, ) = ¢ lime_o 1 (B,) is well defined for all 7, r > 0.
Thus, in this case, the limiting density f in (2.22) and hence u can be uniquely recovered
from M, which is independent of the choice of the sequence ¢ | 0. In view of the above
compactness properties, this implies assertion (iv).

Lipschitz continuity of point mass. Restricting to isotropic data, we have for r > 0,

caM(t,r) = /ng)(B,) — uy(By) ase — 0,
Wi (Br) — a(t) asr — 0,

where the first line follows from (2.28) and the fact that supp ;Liing C {0}. Thus, the Lip-
schitz bound (2.18) implies that |a(¢) — a(s)| < ¢4 K«|t — 5|, hence part (v). L]

3. Universal space profile

Equipped with the uniform control (2.18), we will now combine ODE and bootstrap argu-
ments with localised semi-group estimates to study the regularity and the space profile of
the density f near the origin. A rigorous analysis is achieved by working with the family
of approximate solutions f; constructed in Section 2.1. We will show that for isotropic
data the solution at any fixed positive time is either regular and smooth, or the density of
the regular part follows, up to a lower-order term with explicit rate, a universal profile at
the origin that is uniquely determined by the limiting steady state f.. This even slightly
improves the profile obtained in [8] for d = 1.

Throughout this section we assume (H2') and let K, denote the least upper bound
such that inequality (2.18) holds true, i.e.

Ki:= sup sup |9, M(t,1)|. 3.1
£€(0,e4] £>0,r>0
By virtue of Section 2.2.1, it is clear that the main conclusion of the present section,
Theorem 1.2, only requires hypothesis (H2) and not its stronger version (H2').

3.1. Lower and upper bounds

The analysis in this subsection mostly concerns isotropic solutions, for which the uniform
bound (2.18) is available. As introduced in Section 2.2.2, in the isotropic case we write
ge(t,r) = fe(t,v) whenever r = |v| > 0, and likewise g(¢,r) := f(t, v) for the pointwise
limit obtained upon sending ¢ | 0.
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Proposition 3.1 (Lower bound). Abbreviate o, = % In addition to (H1), (H2') suppose
that
ac+2—d >0.

Further assume that the initial value f;, is isotropic. Pickany o € ((d —2) 4, ). Ifd =1,
assume in addition that* o > ﬁ Fora €[a,ac]let §(r) =cyr=%, wherec, = @/\.
Fort > 0and ¢ € (0, €] define

Fe = Fe(t) = sup{r > 0:g.(t, p) < g(p) forall p € (0,r)}.

There exists a constant B < oo and a radius r« € (0, 1] only depending on K (cf. (3.1))
and on y,d, o (but not on ) such that for allt > 0 and all ¢ € (0, €] the following holds:
whenever 7¢(t) € (0, 1), then

ge(t,r)y>g(@r)— Br2—4 forr € (Fe(t), r«).

Remark 3.2. Let us note that for « = « it is (a priori) not clear whether the unboun-
dedness of the limiting function f at some time 7, i.e. || f(?)||Lco(ray = 00, implies that
liminf, ¢ 7:(¢) = 0. This is the main reason why the derivation of the universal lower
bound on the spatial singularity profile in Theorem 1.2 requires several further steps
(cf. Sections 3.2 and 3.3). To rule out fine spike-like singularities in f(¢) near the origin
that are dominated by a subcritical power law, i.e. by Cr~% for some o < «,, we exploit
the fact that such subcritical singularities are smoothed out instantaneously (cf. Propos-
ition 3.5) and so cannot form at a positive time. To deal with potential intermediate
situations (e.g. oscillatory power laws), it is crucial that the stability result in Proposi-
tion 3.1 is valid not only for @ = o, but also for a small range of subcritical exponents «
near o,; see Section 3.3 for details.

Proof of Proposition 3.1. To begin with, we note that for any « € [, a.],
—a<—q<2—-d<4—d—auy.

Now let # > 0 and ¢ € (0, €]. Observe that the radius 7, (¢) may be infinite and that the
assertion of Proposition 3.1 only concerns the case where 7¢(¢) > 0 is small. (If 7.(z) > 1
for all € € (0, €x] and ¢ > 0, the assertion is trivially satisfied for . = 1.) Hence, in the
following we may assume that 7¢(¢) € (0, 1). Then, by continuity, g. (¢, 7:(¢)) = g(F:(?)),
and we may define a radius 7 . > 7, via
Fet) = sup{r € (Fe(t),1): ge(t, p) > %g(p) forall p € (Fs(t),r)}.
To proceed, we abbreviate b, (¢, r) := d; Mc(t, r) and note that (cf. (2.14))

"d_largs + rdhs(gs) = b,.

4In dimension d = 1 condition (H1) reduces to y > 2, which implies that ot > ﬁ
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In the rest of the proof we are concerned with suitably estimating an integrated version
of this differential equation. The following calculations being of a purely spatial type, we
henceforth omit the fixed time argument ¢. Recall that @’ is a primitive of % ie. @ = %

whence

d 0r&e h e(8e) 1-d 1 1=d o=~y +1)
— = ber > —r — Kqr 4
ar ¥ = hig = g 7(se) 8¢

where we used the fact that % h( ) v*+1 for all s > 0. Renaming r by p and
integrating the above inequality in space over p € (re, r) for r € (7, 1] yields

- 1 1 "o _
V' (gul) = (g =~ + 572~ Ko [ P Va6
We next expand for s > 1,
1 1 1
D)=—1logs 7+ 1) =—s5TV+06P)=—5714+03G77).  (3.3)
Y Y Y

Note that the increasing function ®’: (0, 00) — (—00, 0) is bijective and for —1 < § < 0,

(@)713) = (exp(—y8) — )7 = (=) 7 (1 + 0()). (3.4)

Furthermore, we assert that there exists 7o = ro(a, ) € (0,e7!] such that

r2—p2 <r% —p* forall0 < p<r <ro. (3.5)
Inequality (3.5) can be shown as follows: since f := % < 1, concavity yields

Bre-tr—p)<rf —pP forallo<p<r<1.

Upon multiplication by r + p < r# + p#, we deduce frf=1(r2 — p?) < r28 — p?8 _This
implies (3.5), since BrA =1 > 1 forall B € [%, 1] and r € (0,7,] if 7o > O is small enough as
above. (To see the latter, note that Sr#~1 > 1 is equivalent to r < A1 =3 , where §1-# 5 1e!
as B 1 1)

Letting p = 7, in (3.5) we infer from (3.2), also using (3.3) and the identity g.(7;) =

~—a
Cyle ™

1 " _
V(gun) = —57 + 00 ~ K. [ o'y ap
e

whenever 7, < 1 < ro. For p € (Fe, 71,¢) we have ge(p)~ D < 2v+1g(p)~0+D =
C1(y)p*’t®. We will now show that there exists r« € (0, ro] only depending on K.,
o and fixed parameters such that 7 ((f) > ry for all # > 0 and & € (0, 4] for which
7¢(t) € (0, 1). To this end, we let 7,  := min{F#; ¢, r«} for some r, € (0, ro] to be fixed
later. For r € (7, 72,¢] we have

@ (5:(r)) 2 5 (14 KuCi ()P 4 0()),
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The last two terms in the brackets on the RHS behave like O(r2~4+%) for 0 < r < 1,
because 2 —d + a < ay forall @ € [, a.] (if d = 1 it follows from the choice ¢ > ﬁ;
if d > 2 this follows from the condition y > % in (H1), which implies that a(y — 1) >
a(% -1)=%@2-d)>=(2~-d)since2—d <0and o < % < d), where the hidden
constants in O(-) only depend on K and fixed parameters. Hence, using the fact that ®’
is increasing and recalling the expansion (3.4), we infer for r € (7, 72,¢],

gs(") > (q)/)—l(_%rot}’(l + O(r2—d+a)))
= ¢ (14 0G4+ = ¢y~ 4+ 0(>7), (3.6)

Since 2 — d + « > 0, this shows that after possibly decreasing r € (0, ro] (only depending
on K, o, and fixed parameters) we can ensure that g.(¢,r) > %g(r) forall r € (Fe, T2,e],
t > 0, and ¢ € (0, €x]. As a consequence, 71 ¢(t) > 72,¢(¢) and 72 () = 7. This, in turn,
means that inequality (3.6) is valid for all r € (7¢, r«] whenever 7¢(¢) < 1, completing the
proof of Proposition 3.1. ]

Proposition 3.3 (Upper bound). Use the notation and assume the hypotheses of Proposi-
tion 3.1. There exists a finite constant B and a radius ry only depending on K, y, d such
that forallt > 0 and all r € (0, r4),

g(t,r) < ge(r) + Bri~?, (3.7)
where go(r) = (®)~'(—1r?).

Note that, in contrast to the lower bound in Proposition 3.1, the upper bound (3.7) is
formulated only for the limiting function g obtained after sending ¢ | 0.

Proof of Proposition 3.3. We adopt the notation of Proposition 3.1 and its proof, where
2
here it will suffice to consider the choice ¢ = % Thus, we let g(r) = ¢, ¥ and set

re = re(t) = sup{r > 0:g.(t, p) < g(p) forall p € (0,r)}.

Let ry be the radius obtained in Proposition 3.1. For r € (0, r¢(¢)) we trivially have
1
ge(t,r) <gr)= (%rz)_V, or equivalently (cf. (3.3))

¥ (g6(r) < P @) = 31+ 00, € (0.7 0)). (3.8)

The main step in the proof of the upper bound (3.7) is to establish a bound similar to (3.8)
on the interval r € [rg(t), rx) in the case where r¢(¢) < r. Of course, due to the possible
formation of a point mass at the origin, such a bound can in general only be expected to
hold true up to some error term that tends to zero as ¢ |, 0.
If re(t) < r«, we note that as in the proof of Proposition 3.1 we have the formula
d 0r8c . he(ge) ppl-d 1

)= T e T Ry
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Hence, for all r € [rg, ry),

, '~ he(ge) 1-a |
D'(ge =0 e)) — T oy @ be ae-
(&(r)) (80re)) /(rg,r) P h(ge) e /(rg,r) g h(ge) ’

where we omitted the (fixed) time argument ¢. To proceed, we define the set

Jo = Je(t) = {p € [re(t).re): gs(t. p) = '}

On [rg, rx) \ Je we have };l((gs)) = 1, while on J; we only know that 0 < % < 1. Hence,

we may estimate for r € [rg, r«), also using the bound g.(p) = p_% for p € (rg, ry) from
Proposition 3.1,

_2
D' (gs(r)) < D'(cyrs ") —/ pdp + CK, 24t}
(rsJ')\Js
1
=yt o0 -3 S =12 ' Jo) + CKar* 4T3
1
==t C(K*)r“‘“% + re'(Je). (3.9)

Here, we further used (3.3) in the second step and d > = 1n the third step.
Combining (3.9) with (3.8), we deduce (1ndependently of whether rg < ry orry > ry)

1 2
D' (ge(r)) < —51’2(1 + O(rz_d+12')) +re&(Js) forallr € (0,ry),

where O = O(:) only depends on K, and y. Mass conservation, i.e. [pa fo(t) = [ga fin:
implies that limg_o £!(J¢(t)) = 0. Thus, sending ¢ — 0, we infer the bound ®'(g(r)) <

——r2(1 +0(* d+1’)) for all r € (0, r«). Finally, we invoke (3.4) and arrive at

g(r) <cyr T (1+ 00> 0N+ 0() = g () + 0> 4). re(O.r). m

For anisotropic data, the approximate solutions { f;} are dominated by an isotropic
scheme { f;} (cf. Section 2.2.3). Hence, the density f(z, v) of the regular part of the lim-
iting measure in Proposition 1.1 inherits the upper bound obtained above for the isotropic
case.

Corollary 3.4 (Upper bound on space profile: anisotropic case) In addition to (H1), (H2)
suppose that 2 4 2—d > 0. There exists a finite constant B and a radius 7, only depend-
ing on fi, (non -explicitly) and on y, d such that for all > 0 and all v with |v| € (0, 7x),

ft,v) < fe) + Blu~4.

In particular, the point mass at the origin ¢ + ,({0}) = m — [ f(z,-) is continuous (as a
consequence of Lebesgue’s dominated convergence theorem).
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3.2. Instantaneous regularisation

For the nonlinear problem (FP, ) the Lebesgue space LP¢ R%), pe = % is critical (as
regards high values of the density). Thus, for p > p. one would expect equation (FP,) to

enjoy a smoothing property in L?. The following result formalises these heuristics.

Proposition 3.5 (Smoothing out subcritical singularities). Let { fs}ee(0,¢0] be a family of
(suitably regular) non-negative mild solutions of the e-regularised problems (FPy ;c,)’ with
uniformly controlled mass || fe(t)|| g1 < m. Let p > p. = %, let tg > 0, and suppose the
following conditions:

(C1) There exists L < 0o such that || fe(to,")||Lrray < L forall & € (0, go].
(C2) There exists t1 € (tg, to + 1], a constant L’ < oo, and a radius ro € (0, 1] such

that fo(t,v) < L'|v|"% for all t € [to, 1], all v € R? with |v| < ro, and all
g € (0, &)

(C3) For all 7y > 0 there exists L" = L"(Fp) < oo such that fo < L" in [tg, 00) X
{v:|v| = ro} forall e € (0, g9).

Then there exists T =T (L,L’,L"(ry), p,d,y,m) € (0, 1] such that for T:= min{T,t;—to}
and for all T € (0, T,

sup sup [ fe (2, )l oo may < 00 (3.10)
£€(0.c0] tefto+,t0+T]

Proof. We proceed in two steps. In a first step, we derive smoothing estimates based on
the mild formulation (2.2) satisfied by f, where, as in Section 2, the nonlinear term is to
be rewritten analogously to (2.3).

Step 1: Localised smoothing estimate. Fix some sufficiently small €; > 0 such that
Pe o1 2.
p

Let p,g € [p, oo] with p < 4. Then

44 2 2

dy 1 1 1
=4 (%—i—l) <1—e. (3.11)

; _d
Defining b :== 5

T L T -T%) SR P RYCRE)

(5 — 7)(5 + 1) we further have

2\p ¢ 2\p g/2 4qg 2 2\p
We assert that if p, g are sufficiently close in the sense that
ds1 1
b=—<—~—:)(z+1)§1—€1 (3.13)
2\p g/ \2

5The family { f,} does not have to take the same initial data.
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for some €; > 0, there exists an (explicit) strictly increasing function x € C([0, 1]) only
depending on €1, €1, d and on L" and L” := L"(rg) with x(0) = 0, and a finite constant
Cy1 = C1(d) such that for all ¢ € [0, 11 —tp],

Y
Ixti=roy £ 2, < Cill felto. MiLomay + kOIL Nz, ALLNZ, + 1. (3.14)

where 7.9 (z,) = fu(to + 7,-) and

[SIEW

~ ~ 1_1 ~
171z, = 17150 = sup w6255, Laceay-

s€l0,¢]

Proof of Step 1. Let { € C(R¥) with0 < ¢ < 1,¢ = 1 on {Jv| < ro}, supp¢ C Bayy(0).
By the mild solution property of f, we have (cf. Section 2.1)

10 = [ 50w filo ) du
R

+/0 e 9 /Rd Vo F (t=s, v, w) - we (£ (s, w)) dwds.  (3.15)

Y
Using the bound |9,(g)| < |g|*™! (cf. definition (1.4)), the fact that® |w| £, (s, w) <
C(L’,y) for |w| <rgand | fe(s,w)| < L” for |w| > ro forall s € [tg,#1] (cf. (C2) and (C3)),
we now estimate for0 < s <t <t < t1—1y,

/ VoF (t—s, v, w) - (W (£ (s, w))) dw‘
]Rd

= C(L/)/ |VU37(T_S,vaw)|(fs(t0))%+l(s’w) dw
{lwl=ro}

+ C(L")e™™* / Vo 7 (t—s, v, w)|(Jv] + |e" D w — v]) £90) (s, w) dw.
{lw|>ro}

The integrals on the RHS will be handled similarly to the proof of [10, Proposition A.1].

To estimate the LZ(R¢)-norm, Young’s convolution inequality is employed. For the first

term on the RHS we invoke inequality (2.4) and estimate

”/ Vo F (=5, v, w)|(£1) T+ (s, w) dw
R4 Li(RY)

_1l_d(z7-_1 y
= Cv(r—s) ? H ")||(fg(t°))2+1(S)||sz/(%+1)(n«d)
< Cole—s) 3 u(e) HGmPG) ) I

_ _ 41
= Cv(z—s)"%v(s) b||fs(tO)”§, :

6 Any dependence on the fixed parameter y will henceforth not be explicitly indicated.
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Here and below, C denotes a positive constant that only depends on fixed parameters, but

which may change from line to line.

We next estimate
o [ s ol b
{lw[>ro}

Li(R4)

/ Vo F (t—s, v, w)|f€(t°)(s, w) dw
R4 Li(R?)

<
< C\)(‘C—S)_% v(s)

where the second step follows from (2.4).
Finally, the rapid decay of the Fokker—Planck kernel allows us to further estimate

H/ |VoF (t—s, v, )| [e" T w — v] £ (s, w) dw
R4 Li(R4)

< Cv(r—s)fév(s)

see Lemma A.1 for details.
Inserting the above estimates into (3.15), we infer for t <t € [0, 11—10] C [0, 1],

del_1
v(0) 25D L9 ()¢ o ray

’ " 1(272) ’ —a —b
< Cil £ult0)| sy + C(L . L"w(2) ¥ 54 / b(r—5)"v(s)~" ds
0
Y
< £ 7, (1115, + 1),

where once more we used inequality (2.4) as well as the fact that a > % and b > %(% — %).
To proceed we estimate for ¢ € [0, 1], using the bound s < 2s < v(s) < 2e?s forall s € [0,1]

and a change of variables,

ET

(5~

N

sup Cv(1) )/T v(t—s)"%v(s) P ds
0

t€[0,¢]
4(i-L+1-a—b (e e—(1-21) 4=
273 /(I—S)_( —e1)g—(1—€1) 45

0

<C sup

7€[0,¢]
1
< Ctﬂ/ (1—5)"U=eD5=U=) g5 —: « (1),
0

where we abbreviated C = C(L’, L") € (0, 00). In the first line we used inequality (3.11)
and hypothesis (3.13); in the second line we used (3.12).
Hence, for all ¢ € [0, t;—to],

Y
I££5N 2, < Cull feto) I Lo@ay + € OI LN 2, ALL2NZ, + D).

which proves the assertion of Step 1.
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Step 2. We are now ready to complete the proof of Proposition 3.5 using estimate (3.14)
and property (C3) with L” := L"(rp). The idea is to perform a finite number of iterations
in the integrability exponents to eventually upgrade the e-uniform L? bound on f;(zp) to
an g-uniform L bound on f;(f9 + t) for given T > 0 small.

It is elementary to verify that for any p > p > p. and for g := 2p the tuple (p, §)
satisfies the hypotheses of Step 1 with parameter €; only depending on p, y, d and with
é1 = 3. Indeed, for this choice we have % % - %)(% +1)= %% % + %) < % =1-¢y,
showing (3.13). Hence, by Step 1, there exists a strictly increasing function ¥ € C([0, 1])
with k(0) = 0 only depending on p, y, d and on L', L” such that for any p > p, for

g =2p,andallt € [0, t;—1o],
e
12do12r 10z, < CLll a0 lLsay + € OILD Nz 1LD1Z, +1. 3.16)

where £ (r.) i= folto + v.) and | - llz, = |- | o0
In the following, we abbreviate F(f) := || x{jv|<ro} fg(t") Il ;5.5 Thanks to mass control
t
and (C3), we have for any ¢ € [0, 1] and any ¢ > p > 1 the estimate

180z, = F@) + sup v 25 0o S 6) 1
e Nz = sup V(s Xivl>ro} Je  S)lILa(RD)
s€l0,¢]
4(l_1y ”
<F@)+ sup v(s)2'7 @’(m+ L")
s€[0,¢]
< F(t) + Cy, (3.17)

where Cy = C(d)(m + L").
Inequalities (3.16) and (3.17) show that for (p, §) = (p,2p) the function F(t) obeys
a bound of the form

F(1) < B+ k(t)(F(t) + Co)((F(t) + C)* + 1), 1 € [0,11—10)], (3.18)

where B only depends on fixed parameters (here one may choose B = C; L). Since k(0) =
0, there exists, for every B > 0, a unique maximal time 7g € (0, 1] such that

sup k(t) < B > ,
1€[0,Tp] 2B+ Cs)(2B 4+ Cx)z + 1)
ie. B
R
Tg =« (mln{lc(l), B+ Co) (2B + Co' 2 + 1)}),

where k1 denotes the inverse of k. With this choice, we deduce from (3.18) that F (1) <
2B forallt € [0, fB], where YA"B = min{Tp, t;—to}. In particular, for B = By := C; L we
infer ; R

I Xtwi<ro} fe(to + D)llL2» < v(2) *2By, t €[0,T].
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where 7' := YA“B1 . Combined with (C3) and mass control this shows that

sup ||f8(t0)||Loo([rj‘~];L2p(Rd)) < C(r) forallt € (0,7, (3.19)

£€(0,80]
for some non-increasing function C(-), which depends on further fixed parameters. This
argument can be iterated to give the asserted bound (3.10) for the same time T (= TB -
Let us provide some details. Fix some N € N large enough such that 2V p > d. For
> 0 small and (p,§) = (2'p,2T1p), i = 1, the (time-shifted) function F(¢) :=

||X{|v‘5,0}fs(t°+t) ||z, obeys a bound of the form

F(t) < B+«x(@)(F(t) + C#)((F(t) + C#)% + 1), t €[0,61—(to+7)], (3.20)
where B = B(7) < oo is non-increasing in 7 > 0. This allows us to infer (for i = 1) that

sup ||fe(t())||Loo([r,i;];L2i+1p(Rd)) < C(r) forallzt € (0, YA"], (3.21)

£€(0,¢e0]
for a non-increasing function C(-). Observe that, thanks to the non-increase with respect
to T of the constants C(-) and B appearing in (3.19) and (3.20), the locally uniform
bound (3.21) can indeed be achieved on the entire time interval (0, 7] (by iteration), so
that the final time 7 does not need to be decreased. Repeatlng the argument for i =
2,...,N—1, we deduce a bound of the form sup,¢q ¢, ||f5 ||L°O([T 102V p(RA)) = C(7)

forall T € (0, 7). For € (0, T) and f, (f0) replaced by f; 0+ e may now take p =
2N p > max{d, p.} in Step 1, in which case the choice § = oo is admissible. (Indeed,
with this choice we have b = %(g% +3) < 2(% + 1) =1, 50 that (3.13) is fulfilled.)
Arguing similarly to before we infer (3.10). ]

3.3. Space profile
Finally, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Thanks to the short-time regularity for (FP, ), we may assume with-
out loss of generality the strengthened version (H2') of (H2). We fix some o < a, := % as
in Proposition 3.1 and let r. > 0 denote the associated radius obtained in Proposition 3.1.
Now let > 0. We assert that the behaviour of g(f, -) near zero is determined by whether

or not the hypotheses of Case 1 are fulfilled, where Case 1 is determined as follows:

Case 1. There exists @ € [, o), atime fy < £, aradius o € (0,74), and g9 € (0, €] such
that for all & € (0, &o], all r € (0, o], and all ¢ € [fo, {],

1
ge(t.7r) < §9r) =c,r %, wherec, = (%)V (3.22)

Here, {g.} denotes the family of isotropic approximate solutions in radial coordinates.
If Case 1 is fulfilled, Proposition 3.5 implies the existence of a constant § > 0 such
that

sup  sup || fe(t, )L < 00. (3.23)

£€(0,80] re(f—6,f)
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Indeed, since @ < o, we can choose p > p. such that f @ (v) = cylv|™¥ € LP(By),
where B; := {v: |v| < 1}. Hence, combining (3.22) with mass conservation and the uni-
form bound away from the origin (cf. Lemma 2.8), we find that

sup || fe(t.)llr = L
£€(0,&0]
for all ¢ € [fy, /] and some finite constant L. Property (3.22) further guarantees the
bound sup,e(g ¢, Se(t: v) < L’|v|_% for all v € By,, all ¢ € [fo, f], and suitable L' <
oo. Finally, Lemma 2.8 ensures that for all 7y > 0 there exists L”(7p) < oo such that
SUP; -0 SUP,(0.60] Je(f. V) < L”(Fo) whenever |v| > Fo. Hence, for every o € [fop,7) N
[f—l, ﬂ and for p as above, conditions (C1)—(C3) of Proposition 3.5 are satisfied with
t1 = f, which implies (3.23) for suitable § > 0.

It is easy to see that, after possibly decreasing § > 0, the bound (3.23) even holds
with sup, being taken over ¢ € J; := (f — 8,7 + §). (To this end, one may adapt the
estimates in the proof of Proposition 3.5 and choose p = oo in (C1). In this case, the
proof greatly simplifies, condition (C2) is not needed, and one may deduce an estimate of
the form (3.10) even with 7 = 0.) Given this uniform bound, we can argue classically as
in the proof of Proposition 1.1 (iii) to infer the smoothness of the limiting density f on
J; xRY > J; x By.

Case 2. It remains to consider the situation where the hypotheses of Case 1 are not satis-
fied. In this case, we can find sequences

aj Toe, Tf, rid0, & |0,
witha < «; and r; < r4 forall j, in such a way that
ge; (tj,1j) = §@)(r;) forall j e N.
Thus, invoking Proposition 3.1, we infer
ge; (tj, 1) > g r)y=Ccr*? forallr e (rj, 1+). (3.24)

By construction, limj o0 g¢; (¢, 7) = g(t,r) for every r > 0. Hence, sending j — oo in
inequality (3.24) yields

gt r) =@y = Cr* ¢ forallr € (0,rs),
which implies that
g(t,r) > gc(r)— Cr¥ 4 forallr e (0, 7r4).

In view of the upper bound in Proposition 3.3 this completes the proof of the main asser-
tion in Theorem 1.2.

Now let @ = a, in Proposition 3.1 and define 7, correspondingly. If 7 is such that
w1;({0}) > 0, we must have lim,_,q 7(f) = 0. Proposition 3.1 (combined with Proposi-
tion 3.3) thus implies the assertion concerning this case. ]
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4. Renormalised form

4.1. Variational structure

Our subsequent analysis relies on the following gradient-flow structure of the regularised
Fokker—Planck equation (FP, ., ). Such a structure was previously used in [8, Section 3.3]
for the proof of an energy dissipation identity. To proceed, let us recall that ®'(s) =

— I ey do and @(0) = 0.

We define the approximate free energy functional by
v[?
s = [ (5 + @) dv,
R4 2
where @, € C([0, c0)) N C*°((0, 00)) satisfies
D (s) = P(s) fors € [0,e71] 4.1)

and

= Dz 4.2)
&

The function ®, with the above properties can now be obtained by setting ®.(s) =
fos ®/(0) do, where ®(s) is given by

B.

s he(o)

Dl (s) = — do,

with the constant B, > % being such that

B 1 S |
do = ——do.
/; he(@) / ho)

Identity (4.1) is a consequence of the fact that /. (s) = h(s) in [0, &~'], while the second
property in (4.2) follows from the inequality s, < h.

Notice that the functional derivative of J, is given by §H.(f) = %Ivl2 + OL(S),
which allows us to rewrite (FP), ) as

0t fe = div(he(fe)VEH:(fe)).

Lemma 4.1 (Energy dissipation balance for (FP, ..)). Under the hypotheses of Proposi-
tion 2.4, the solutions f; of (FPy.,) obtained therein satisfy for all 0 < s <t < oo,

Ho(f0)) + / fR d%f)w+vhs(fs)|zdvdt=Jeg<fs<s)). 43)

Proof. Recall that f; € C12((0, 00) x R?) is a classical solution of (FPy.,). Hence, the
only task in deriving equation (4.3) lies in appropriately controlling the tails as |v| — oo.
This is a consequence of the moment control of the bounded function f; and follows from
classical arguments; see e.g. [10]. ]
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Lemma 4.2. Suppose (H1), (H2) and use the notation in Proposition 1.1. For anyt > 0,
lign_jglfﬂa(fs(t)) > H(f(2)),

where the liminf is taken along the sequence ¢ |, 0 selected in Proposition 1.1 (iii).

Proof. Since @, > @ (cf. (4.2)), we have [ ®.(f(t)) > [ P(fs(1)). Next, given § > 0,
we let L = L(§) > 0 be large enough such that |®(s)| < §s for s > L. Then

/ O(fu(t.v) dv > / Sfalt ) 11 ry dv + [ AR T
> / S(falt. ) 70,21 dv — m.

where m = [ fi,. First sending ¢ — 0 (using dominated convergence) and then L — oo,
we infer liminfy—¢ [ ®:(fe(t)) = [ ®(f(¢)) — §m and hence

limn / o (fi(1)) = [ S/ (1)).

For the kinetic part, we let 4, := {p < |v] < p~!} for 0 < p < 1 and estimate

[, sero- [ Sweso

< UA WP — fO)
+ p%m + Cpll finll -

where we used mass conservation and the bound ||f(t)||L§, ||f5(t)||L§ <C ||fin||L% < o0
(cf. Lemma 2.3). We deduce limg—¢ [ga 3|0[* fe(t,v) dv = [ga 3|v|* £ (2. v) dv, where
we used the locally uniform convergence in Proposition 1.1 (iii) and the fact that 0 < p < 1
can be taken arbitrarily small. ]

4.2. The limiting measure is a renormalised solution

Proof of Theorem 1.5. The weak-* continuity of the mass-conserving curve ¢ — [, in
My (R9) has already been established in Proposition 1.1.

We next show that 7% (/) = min{ f, k} has a weak derivative V7% (f) € L2 ([0, 00) x
R?). For this purpose, we choose s = 0 and ¢ = T in estimate (4.3) and, letting €, > 0 be
small enough so that, by Lemma 4.2, —H#.(f(T)) < —H(f(T)) + 1 for all ¢ € (0, €],

we infer the g-uniform bound

T
[ [ it I+ e P dvar < 0 = RGN 1. ()

To deduce a bound on V7 ( f¢), we note that

VTR (f)I? < 21T (f)IV fo + vhe (fOII? + 21T (fo)vhe(fo)I?.
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Hence, using the fact that || < 1 and 7;/(s) = 0 for s > k, we deduce from (4.4) for any
R € (0, 00),

T
/0 /< | R}ervk(fg)'zd” dr < C(k)(H (fi) = H(f(T)) + 1) + C(k. R)T. (4.5)

Thanks to the convergence in Proposition 1.1 (iii),

Te(fe) = Ti(f) ae.in[0,00) x RY,
Ti(fe) = Ti(f) in LP.([0,00) x RY)  forall p € [1,00),
and thus, by (4.5), VT (fe) = VT (f) in L2,([0, 00) x RY).

As a consequence,

T
[ VRGP dvdr < COII ) = TN + 1) + CR BT, (46)
0 J{lv|=R}

If the gradients VT ( f;) were known to converge strongly in Lﬁ)c, the renormalised for-
mulation (1.8) could easily be derived from that for f, in the limit ¢ — 0. For general
anisotropic solutions such a result is, however, not available at the moment. The proof
of (1.8) presented below in the isotropic case uses a somewhat different argument that
will be taken up when deriving the entropy balance law (1.10).

Now let £ € C*°([0, 00)) have a compactly supported derivative £, let T < oo, and let
¥ € C2([0, T] x R%). Further let ¢ € C°°([0, 00); [0, 1]) satisfy ¢(r) = 0 for r € [0, 1]
and ¢(r) = 1 for r > 2, and abbreviate ¢,(r) = ¢(r/p) for p € (0, 1]. Then, since f isa
classical solution of (FP,) in (0, 00) x (R? \ {0}), a direct calculation gives

/ ECA(T. N (T. Yep((v]) dv — [ ECmv (0. )ep (o)) dv
R4 R4
T
- / / E(F)0Vp(0]) do dr
0 R4

T
== [ [ TS+ [T S 00 + €T ol dv

v

- /T [0 4w [ rveyod - - Jdvar (47
0 R4

|v]

0
By the dominated convergence theorem and since ¢,(r) ﬁ£—> 1 for all r > 0, the LHS
of (4.7) converges, as p — 0, to

T
L sraomuaaa— [ erwoasw= [ [ e,

Likewise, thanks to the bound (4.6) and the compact support of £”, &' and of ¥, the
dominated convergence theorem allows us to pass to the limit in the first integral on the
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RHS of (4.7), giving the term

T
_/o /Rd(vf +h()v) - [NV Y +E (VY] dvdr.

We are left to show that the last integral in (4.7) vanishes in the limit p | 0. First, since

|h(f)§' (/)] = C(supp§’) < oo and ¢, (|v[) = 0 for [v] = 2p as well as [vg,(Jv])| =
lo~tve’(|p~v|)| < 1, the dominated convergence theorem yields

v

T
‘fo Ad h(f)v- [é/(f)w;,qvw : —] dv dr

|v]

T
f/0 /1;{ COE O vg (Dl dude — 0 as p— 0.

The remaining part of the integral is more delicate. We estimate using the radial symmetry

of f(r,v) (=: g(t.[v])),

‘/OT /R VS [5’(f)w;,(|v|) : |Z_|] dvdr

T 20
<c /0 /0 1E(9)d,gl0~ ¢ (o' )¢ dr di

T
:C/ A(t, p) dt,
0

where we abbreviated
2p d
A = [ I @l o 7 Pl

As a consequence of the bound (2.18), we have |&/(g)r¢ 19, g| < CKx + C(supp &')r?.
We hence infer the following (¢, p)-uniform bound on |A(z, p)|:

2p 2
Acpl=c [" oo niar=c [ 1ol

0 0
Thus, to show that lim, .o fOT A(t, p)dt = 0 it suffices to prove the pointwise convergence
lim, 0 A(t, p) = 0 for (almost) all # € (0, T]. Thanks to Theorem 1.2, only the following
two cases may occur.

Case 1: g(t,0+) = 4oc. In this case, there exists 7, > 0 such that §'(g (¢, r)) = 0 for all
r € (0,r4). Hence, we trivially have lim,—.o A(¢, p) = 0.

Case 2: g(t,-) € L*°. In this case, by Theorem 1.2, there exists a neighbourhood J of ¢
such that f|; ga is smooth. In particular, 9,g(#,-) € L>(0, 1). If d > 1, the conclusion
lim,_. A(t, p) = O then directly follows from the definition of A(z, p), while for d =1
we resort to the fact that sup,.¢(g ) 10,8, 7)| — 0 as p — 0. |
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4.3. Energy dissipation identity

An argument similar to that in the proof of Theorem 1.5 shows that isotropic solutions
satisfy the energy dissipation balance. In the anisotropic case, we obtain an inequality.

Proof of Proposition 1.6. Combining Lemmas 4.1 and 4.2 with the convergence proper-
ties of f; to f in Proposition 1.1 (iii), we readily infer for all # > O the inequality

H(f(1)) +/0 D(f(x))dr = H(fin),

where

D(f) = Ff)'vf +h(f)v|? dv.

It remains to prove that in the isotroplc case the above inequality holds with an equal-
ity. Then the asserted identity (1.10) follows by subtracting on both sides the quantity
H (f(s)), which is then known to equal # ( fin) — fos D(f(r))dr. Thus, in the remainder,
we assume that fi, is isotropic. Moreover, without loss of generality, we may assume
hypothesis (H2'). Otherwise we replace fi, by f(fo) for small zy > 0. From the argu-
ments below we will then obtain the identity J( f(¢)) + ft D(f (r)) dr = H(f(ty)),
and taking the limit ¢y | 0, using monotone convergence for the term f 0 D(f(r))dr and
dominated convergence for J( f(f9)) we will arrive at the assertion.

As in the proof of Theorem 1.5 (cf. Section 4.2), we pick a non-decreasing function
¢ € C*([0, 00); [0, 1]) satisfying ¢(r) = 0 for r € [0, 1] and ¢(r) = 1 for r > 2, and
abbreviate ¢,(r) = ¢(r/p) for p € (0, 1]. Then, defining

>0 = [ [P +@(n]gstluha.

one has
70 Wiy | Lo, '
(f(0) — 3 (fm>—[f Lo + &/ a7 £ + O (uavdr
// h(f)'vf+h(f)v| 9p(lv]) dvdr

N R ) T A A

We note that
n%MMﬂmzﬂum)mmMEa
p—>

Furthermore, monotone convergence gives

i [ [ 9 s nnPehavar = [ [ S w s apavae
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Hence, it remains to prove that the quantity

1
By = [ [SI0F+ ]S +h0) - o) do
satisfies ,
lim | B(z, p)dr = 0. (4.8)
=0 Jo

Using the isotropy of f(z,-) we write

2p 1
B =ca [ 52+ @],z + g o

where c; denotes the area of the unit sphere. We can now argue similarly to the proof
of Theorem 1.5. The function |B(z, p)| is uniformly bounded for (z, p) € [0, ¢] x (0, 1]
thanks to the estimate |(3,g + rh(g))r?~'| < K, and the fact that, by (H2') and Propos-
ition 1.1 (ii), infg s1x (0,17 & =: ¢ > 0. Indeed, note that for (z, p) € [0,7] x (0, 1],

2p 2
Bzl < CQOIK [l nlp™ dr = CRK. [ 19/l
0 0
Identity (4.8) therefore follows from the dominated convergence theorem provided we can
prove the pointwise convergence lim,—.o B(t, p) = O fora.e. t > 0.
Case 1: g(t,04+) = +oo. In this case, we estimate
2
B < CK. [ WD sup (4?4 @/ (g(e))
0 re(0,p)

and note that the sublinearity of ® at infinity implies

sup |3r% + @' (g(r.r))| >0 asp— 0.
r€(0,p)

Hence, lim,_,¢ | B(z, p)| = 0.

Case 2: g(t,-) € L. Here, the assertion lim,_¢ | B(z, p)| = 0 is obtained similarly to
Case 2 of the proof of Theorem 1.5 using the regularity of g(z, -) shown in Theorem 1.2.
(]

5. Long-time behaviour

5.1. Relaxation to equilibrium

Proof of Theorem 1.7. Let

— R 24, 2
D)= [ sV + bR o = [ hHIVSH(E .
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Proposition 1.6 implies that fooo D(f(t))dr < H(fin) —infy, H < oo, and hence there
exists an increasing sequence f;y — oo such that

Jlim D(f(1)) = 0. .1)

The sequence {jis, }x C M4 (R?) of measures of mass m is tight since supy S 1v|?dps,
<C| fm|| L <00 Prokhorov’s theorem thus ensures the existence of a measure (oo €
Mo (RY) Wlth f]Rd dieo = m such that, along a subsequence (not relabelled),

* .
[y, — oo in My (R?) (5.2)

and, moreover, /|v|2dutk —>/|v|2duoo.

At the same time, by Proposition 1.1 (ii), ps, = a(tx)do + f(t)£?, where f satisfies
a time-uniform bound of the form | f(¢,7)| < C(p) for all r > p > 0 (cf. Lemma 2.8,
resp. Corollary 2.9). Thus, the sequence fr(¢) := f(tx + t) obeys an estimate analogous
to (2.21) for G CC (—1, 00) x (R? \ {0}), where we assume without loss of generality
that #; > 1. We may therefore argue similarly to the proof of Proposition 1.1 and invoke
the Arzela—Ascoli theorem to infer the existence of foo € C2(R \ {0}) N L1(R¥) such
that, after possibly passing to another subsequence,

f(te) = foo in CZ(RY\ {0}). (5.3)

Notice that U = foo£? and supp uan® C {0}, as a consequence of (5.2) and (5.3).
We will now show that (1o, agrees with the minimiser of # of mass m. To this end,

let A(s) = exp(®/(s)) = m and note that
yy1+2/y
;‘;(SS)) _sd +Ss2) > (1457 >1

for all s € (0, o0). Hence,

D)= [ IO () + o ao

h(f)
a ACf)?

> /Rd [VA(S) + vA(f)|* dv.

MV (f) + A(f)v[*dv

Thanks to the convergence (5.1), the last estimate applied to f := f(¢x) implies that
VA(f(tx)) + vA(f(t)) — 0in L2(RY).
At the same time, using (5.3), we may pass to the limit in the sense of distributions

VA () + vA(f (1)) = VA(foo) + vA(foo) in D'(RP\{O}).
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Thus, VA( fso) + vA(fao) = 0in D'(R\{0}), and hence V(e2 " 1( f»)) = 0in R4\ {0}.
This implies that ®'( foo) + %|v|2 = —0 for a constant § € R, where the sign of 6 fol-
lows from the fact that @ < 0. Hence, foo(v) = (®)"1(=1[v[> = 0) = foo0(v). To
determine 6, recall that jtoo(R?) = m. Thus, if [ foo.0l L1 (may < m, then oo ({0}) > 0.
In this case the convergence (5.2), combined with the time-uniform upper bound
sup,-¢ f(t,v) <C|v|”v € L1(B,,), which follows from Theorem 1.2, resp. Corollary 3.4,
implies the existence of k € N such that p, ({0}) > 0 for all kK > k. Invoking Theorem 1.2
once more (now using the radial symmetry assumption), we find that (1.6) holds true for
all such #; and, owing to the convergence (5.3), we conclude that & = 0. If on the other
hand || feo,6llL1 () = m, there is no excess mass and we must have (oo = foopL?. In
conclusion, we have shown that the measure (o, coincides with the unique minimiser
Mmin = /Lr(n'fln) of mass m.

From the convergence properties established so far we infer limg_, o H (i) =
H (min)- Since t — J (j4;) is non-increasing, this immediately yields

lim Jf(ut) = t'71€(I‘Lmin)~
t—>00

Combining this result with the above compactness properties, mass conservation, and the
uniqueness of the minimiser ;Lr(n':'n) , one can easily deduce the remaining convergence prop-
erties along any sequence ¢ — oo as asserted in Theorem 1.7. Here, also recall the bounds
sup;~.o f(t.v) < [v] 77 for [v] < ru, f(t.v) 1 for [v] = r. and sup, IfOlzy <

||fin||L§7 which guarantee lim;— oo it ({0}) = 1100 ({0}) and lim o0 || f(#) — foo,6 ||Lp(Rd)
=Oforp€[l,%. L]

5.2. Long-time and transient properties

Let us briefly point out some implications of the above analysis on further qualitative
dynamical properties, restricting for consistency to the isotropic case. If m < m,, The-
orem 1.7 along with Theorem 1.2 implies the eventual regularity of u; after some suffi-
ciently large time 7' > 1. However, using a contradiction argument, finite-time blow-up
and the formation of a condensate (i.e. u,({0}) > 0 for some ¢ > 0) can be shown to
occur for any size of the mass m > 0 by choosing the smooth initial data sufficiently
concentrated near the origin (cf. [8,33]). Hence, there exist flows exhibiting transient con-
densates with singular parts compactly supported in time. On the other hand, whenever
m > m¢, the above theory implies the eventual formation of a condensate: there exists
T > 1 such that u,({0}) > 0 for all + > T. This is a consequence of the convergence
lims o0 ¢ ({0}) = min({0}). It is also possible to infer information on the spatiotemporal
features of singularity formation and regularisation using rescaling methods. We refer
to [23, Chapter 5.2], where such dynamics have been shown to be of “type II” for the
one-dimensional case.

Finally, we note that finite-time condensation in the mass-supercritical case and con-
vergence to the entropy minimiser can also be deduced in the anisotropic setting if fi,
admits a mass-supercritical isotropic lower barrier, i.e. fi, > f;¥ for some non-negative
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radially symmetric function f* with f > me. In this case, the density f(¢, ) is
squeezed between two isotropic barriers Wthh, by virtue of Theorem 1.7, both converge
to f. ast — oo.

5.3. Concluding remark

The comparison principle structure provides us with a priori bounds that allow for a
detailed characterisation of the singularities which isotropic flows starting from regular
data may exhibit (and even gives uniqueness in the one-dimensional case [8, 23], resp.
convergence of the scheme to a unique limit in higher dimensions). However, one may not
expect such a structure to persist in more complex situations. Particularly with regard
to the study of uniqueness and stability properties in the presence of singularities, it
would be interesting to see whether variational problems like (FP,, ) allow for more robust
approaches.

A. Auxiliary estimate

Recall that F (¢, v, w) = e¥ G, (e'v — w), v(t) = e*' — 1, G, (§) = (2nl)_%e_%

Lemma A.1. Let T < 1 andlet g € [1,00]. There exists C = C(q,d) < oo such that for
allt € (0,T],

[, mcomtiew=lis@lan] = <Clflu)

Li(RY)
_1
=Cv@®) 2| fllpaway. (A1)

Proof. The second bound in (A.1) is trivial.
To verify the first inequality, we compute for ¢ € (0, T'],

197 vl = ol | )] o

4 di gt 1 lefv —w| _
— av(r) " Fee Qu(t)) 3 /R dz—\/T(t)

— 2 € Uw
— @rv() te ”’/Rdz% S fet w0,

" le™"w — v | f(w)|dw

Iw—vl | f(e'®)| di

Now the asserted inequality follows upon an application of Young’s convolution inequal-
ity, [la * bllza < llallLt[1bllza- n
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