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The compressible Euler equations in a physical vacuum:
A comprehensive Eulerian approach

Mihaela Ifrim and Daniel Tataru

Abstract. This article is concerned with the local well-posedness problem for the compressible
Euler equations in gas dynamics. For this system we consider the free boundary problem which
corresponds to a physical vacuum. Despite the clear physical interest in this system, the prior work
on this problem is limited to Lagrangian coordinates, in high-regularity spaces. Instead, the objective
of the present work is to provide a new, fully Eulerian approach to this problem, which provides a
complete, Hadamard-style well-posedness theory for this problem in low-regularity Sobolev spaces.
In particular, we give new proofs for existence, uniqueness, and continuous dependence on the data
with sharp, scale-invariant energy estimates, and a continuation criterion.

1. Introduction

In this article we study the dynamics of the free boundary problem for a compressible gas.
In the simplest form, the gas is contained in a moving domain �t with boundary �t , and
is described via its density � � 0 and velocity v. The evolution of the Eulerian variables
.�; v/ is given by the compressible Euler equations´

�t Cr.�v/ D 0;

�.vt C .v � r/v/Crp D 0;
(1.1)

with the constitutive law
p D p.�/:

In the present paper we will consider constitutive laws of the form

p.�/ D ��C1; � > 0: (1.2)

(Here, for expository reasons, we use � C 1 rather than � as the exponent, as it is more
common in the literature.)

Heuristically one can view this system as a coupled system consisting of a wave equa-
tion for the pair .�;r � v/ and a transport equation for ! D curl v. In this interpretation, a
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key physical quantity is the propagation speed cs for the wave component. This is called
the speed of sound, and is given by

c2s D p
0.�/:

We consider this system in the presence of vacuum states, i.e. the density � is allowed
to vanish. The gas is located in the domain �t WD ¹.t; x/ j �.t; x/ > 0º, whose boundary
�t is moving. The defining characteristic in the case of a gas, versus the fluid case, is that
the density vanishes on the free boundary �t , which is thus described by

�t D @�t WD
®
.t; x/ j �.t; x/ D 0

¯
:

In this context, the decay rate of the sound speed near the free boundary plays a funda-
mental role both in the gas dynamics and in the analysis. In essence, one expects that
there is a single stable, nontrivial physical regime, which is called physical vacuum, and
corresponds to the sound speed decay rate

c2s .t; x/ � d.x; �t /: (1.3)

Property (1.3) will propagate in time for as long asrv 2L1, which will be the case for all
solutions considered in this article. We remark that in particular such a bound guarantees
a bi-Lipschitz fluid flow.

To provide some intuition for this we note that the acceleration of particles on the free
boundary is exactly given by ���1rc2s , which is normal to the boundary. Heuristically,
because of this, property (1.3) yields the correct balance which allows the free boundary
to move with a bounded velocity and acceleration while interacting with the interior, as
follows:

• A faster fallout rate for the sound speed would cause the boundary particles to simply
move independently and linearly with the outer particle speed. This can only last for
a short time, until the faster waves inside overtake the boundary and likely lead to a
more stable regime where (1.3) holds. See for instance the results in this direction in
[24], but also the dispersive scenario discussed in [11].

• A slower fallout rate would cause an infinite initial acceleration of the boundary, likely
leading again to the same pattern.

A fundamental observation concerning physical vacuum is that relation (1.3) guarantees
that linear waves with speed cs can reach the free boundary �t in finite time. Because
of this, in the above flow the motion of the boundary is strongly coupled to the wave
evolution and is not just a self-contained evolution at leading order.

There are two classical approaches in fluid dynamics, using either Eulerian coordi-
nates, where the reference frame is fixed and the fluid particles are moving, or using
Lagrangian coordinates, where the particles are stationary but the frame is moving. Both
of these approaches have been extensively developed in the context of the compressible
Euler equations, where the local well-posedness problem is very well understood.
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By contrast, the free boundary problem corresponding to the physical vacuum has
been far less studied and understood. Because of the difficulties related to the need to
track the evolution of the free boundary, all the prior work is in the Lagrangian setting and
in high-regularity spaces which are only indirectly defined.

Our goal in this paper is to provide a new, complete, low-regularity approach for this
free boundary problem which is fully within the Eulerian framework. In particular, our
work contains the following steps, each of which represents original, essential advances
in the study of this problem:

(a) We prove the uniqueness of solutions with very limited regularity1 v 2 Lip, � 2
Lip. More generally, at the same regularity level we prove stability, by showing
that bounds for a certain distance between different solutions can be propagated
in time.

(b) We develop the Eulerian Sobolev function space structure where this problem
should be considered, providing the correct, natural scale of spaces for this evo-
lution.

(c) We prove sharp, scale-invariant energy estimates within the above-mentioned
scale of spaces, which show that the appropriate Sobolev regularity of solutions
can be continued for as long as we have uniform bounds at the same scale v 2 Lip.

(d) We give a simpler, more elegant proof of existence for regular solutions, fully
within the Eulerian setting, based on the above energy estimates.

(e) We devise a nonlinear Littlewood–Paley-type method to obtain rough solutions
as unique limits of smooth solutions, also proving the continuous dependence of
the solutions on the initial data.

At a conceptual level, we also remark that in our approach the study of the linearized
problem plays the main role, whereas the energy bounds for the full system are seen as
secondary, derived estimates. This is unlike in prior works, where the linearized equation
is relegated to a secondary role if it appears at all.

1.1. The material derivative and the Hamiltonian

The derivative along the particle trajectories Dt is called the material derivative and is
defined as

Dt D @t C v � r:

With this notation system (1.1) is rewritten as´
Dt�C �rv D 0;

�Dtv Crp D 0:

1In an appropriately weighted sense in the case of �; see Theorem 1.



M. Ifrim and D. Tataru 408

Differentiating once more in the first equation we obtain

D2
t � � �r.�

�1p0.�/r�/ D �Œ.r � v/2 � Tr.rv/2�;

which at leading order is a wave equation for � with propagation speed cs , and where r � v
can be viewed as a dependent variable.

On the other hand, for the vorticity ! D curl v one can use the second equation to
obtain the transport equation

Dt! D �! � rv � .rv/
T!:

The last two equations show that indeed one can interpret the Euler equations as a
coupled system consisting of a wave equation for the pair .�;rv/ and a transport equation
for ! D curl v.

This problem admits a conserved energy, which in a suitable setting can be interpreted
as a Hamiltonian (see [3, 10, 22])

E D

Z
�t

e dx;

where the energy density e is given by

e D
1

2
�v2 C �h.�/;

with the specific enthalpy h defined by

h.�/ D

Z �

0

p.�/

�2
d�:

1.2. The good variables

The pair of variables .�; v/ is convenient to use if � D 1. However, for other values of �
in (1.2) we can make a better choice. To understand that, we compute the sound speed

c2s D .� C 1/�
� :

This should have linear behavior near the boundary. Because of this, it is more convenient
to use r D r.�/ defined by

r 0 D ��1p0.�/;

which gives

r D
� C 1

�
��

as a good variable instead of �.
Written in terms of .r; v/ the equations become´

rt C vrr C �r
0rv D 0;

vt C .v � r/v Crr D 0:
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In our case we have �r 0 D �r so we rewrite the above system as´
rt C vrr C �rrv D 0;

vt C .v � r/v Crr D 0;
(1.4)

or, using material derivatives, ´
Dtr C �rrv D 0;

Dtv Crr D 0:
(1.5)

We will work with this system for the rest of the paper.

1.3. Energies and function spaces

Given the constitutive law (1.2), the conserved energy is

E D

Z
1

�
��C1 C

1

2
�v2 dx:

Switching to the .r; v/ variables and adjusting constants, we obtain

E D

Z
r
1��
�

�
r2 C

� C 1

2
rv2

�
dx: (1.6)

This will not be directly useful in solving the equation, but will give us a good idea for
the higher-order function spaces we will have to employ. Based on this, we introduce the
energy space H with norm

k.s; w/k2H D

Z
r
1��
� .jsj2 C �r jwj2/ dx (1.7)

for functions .s; v/ defined a.e. within the fluid domain �t . Importantly, we note that the
constants above do not match (1.6), and instead have been adjusted to match the energy
functional for the linearized equation, which is discussed in Section 3. The two compo-
nents of the H space as weighted L2 spaces are given by

H D L2.r
1��
� / � L2.r

1
� /:

For higher regularity, we take our cue from the second-order wave equation, which
has the leading operator c2s� D r�, which is naturally associated to the acoustic metric2

g D r�1 dx2 in �t : (1.8)

2Technically one should add a k�1 factor here.
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Correspondingly, we define the higher-order Sobolev spaces H2k for distributions within
the fluid domain �t to have norms

k.s; w/k2
H2k D

jˇ j�˛�kX
jˇ j�2k

kr˛@ˇ .s; w/k2H ;

where ˛ is implicitly restricted to 0 � ˛ � k. More generally, for all real k � 0 one
can define by interpolation the spaces H2k . These spaces and their properties are further
discussed in the next section.

1.4. Scaling and control parameters

Equation (1.4) admits the scaling law

.r.t; x/; v.t; x//! .��2r.�t; �2x/; ��1v.�t; �2x//: (1.9)

We use this scaling to track the order of factors in multilinear expressions, introducing a
counting device based on scaling:

(i) r and v have degree �1, respectively �1
2

.

(ii) r has order 1 and Dt has order 1
2

.

The order of a multilinear expression is defined as the sum of the orders of each factor.
In this way, all terms in each of the equations have the same order. This property remains
valid if we either differentiate the equations in x, t or apply the material derivative Dt .

Corresponding to the above spaces and scaling we identify the critical space H2k0

where k0 is given by3

2k0 D d C 1C
1

�
:

This has the property that its (homogeneous) norm is invariant with respect to the above
scaling.

Associated to this Sobolev exponent we introduce the scale-invariant time-dependent
pointwise control norm

A D krr �N kL1 C kvk PC
1
2
; (1.10)

where N is a given nonzero vector. Here, N can be chosen as N D rr.x0/ for some
fixed point x0, where r.x0/ D 0. The motivation for using such an N , rather than just
krrkL1 , is that the latter is a scale-invariant quantity of fixed, unit size. On the other
hand, the A defined above can be harmlessly assumed to be small simply by working in a
small neighborhood of the reference point x0. Such a localization is allowed in the study
of compressible Euler systems because of the finite speed of propagation. The control
parameter A will play a leading role in elliptic estimates at fixed time, and, in order to
avoid cumbersome notation, will be implicitly assumed to be small in all of our analysis.

3In general this will not be an integer.



Compressible Euler in a physical vacuum 411

For the energy estimates we will also introduce a second time-dependent control norm
which is associated with the space H2k0C1, namely

B D krrk
zC
0; 12
C krvkL1 ; (1.11)

where the zC 0;
1
2 norm is given by

kf k
zC
0; 12
D sup
x;y2�t

jf .x/ � f .y/j

r.x/
1
2 C r.y/

1
2 C jx � yj

1
2

:

This scales like the PC
1
2 norm, but it is weaker in that it only uses one derivative of r away

from the free boundary.
The role of B will be to control the growth rate for our energies, while also allowing

for a secondary dependence of the implicit constants on A.

1.5. The main results

Our main result is a well-posedness result for the compressible Euler evolution (1.4).
However, it is more revealing to break the result down into several components. We begin
with the uniqueness result, which requires least regularity.

Theorem 1 (Uniqueness). For every Lipschitz initial data .r0; v0/ satisfying the nonde-
generacy condition jrr0j > 0 on �0, system (1.4) admits at most one solution .r; v/ in the
class

v 2 C 1x ; rr 2
zC
0; 12
x :

In other words, uniqueness holds in the class of solutions .r; v/ for which B remains
finite. One can further relax this to B 2 L1t . We note that only the spatial regularity is
specified in the theorem, as the time regularity can then be obtained from the equations.
Also the nondegeneracy condition is only given at the initial time, but it can be easily
propagated to later times given our regularity assumptions.

To the best of our knowledge, this is the first uniqueness proof for this problem which
applies directly in the Eulerian setting, and also the first uniqueness result at low, scale-
invariant4 regularity.

Remark 1.1. The result in Theorem 1 can be seen as a subset of Theorem 5 in Section 4.
There we go one step further, and prove that a suitable nonlinear distance between two
solutions is propagated along the flow, under the same assumptions as in Theorem 1.

Next we consider the well-posedness question. Here we define the phase space

H2k
D
®
.r; v/ j .r; v/ 2 H2k

¯
:

4Scale invariance corresponds to the assumption B 2 L1t .
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One should think of this in a nonlinear fashion, as an infinite-dimensional manifold, as the
H2k norms depend on �t and thus on r . The topology on this manifold is discussed in
the next section. Now we can state our main well-posedness result:

Theorem 2 (Well-posedness). System (1.1) is locally well posed in the space H2k for
k 2 R with

2k > 2k0 C 1: (1.12)

The well-posedness result should be interpreted in a quasilinear fashion, i.e. including

• existence of solutions .r; v/ 2 C Œ0; T IH2k �;

• uniqueness of solutions in a larger class; see Theorem 1 above;

• weak Lipschitz dependence on the initial data, relative to a new, nonlinear distance
functional introduced in Section 4;

• continuous dependence of the solutions on the initial data in the H2k topology.

The last question we consider is that of continuation of the solutions, which is where
our control norms are critically used. This is closely related to the energy estimates for
our system:

Theorem 3. For each integer k � 0 there exists an energy functional E2k with the fol-
lowing properties:

(a) Coercivity: As long as5 A� 1, we have

E2k.r; v/ � k.r; v/k2
H2k :

(b) Energy estimates for solutions to (1.1):

d

dt
E2k.r; v/ .A Bk.r; v/k2H2k :

By Grönwall’s inequality this implies the bound

k.r; v/.t/k2
H2k . e

R T
0 C.A/B.s/ dsk.r; v/.t/.0/k2

H2k : (1.13)

Remark 1.2. These energies are constructed in an explicit fashion only for integer k.
Nevertheless, as a consequence, in our analysis in the last section of the paper, it follows
that bounds of the form (1.13) hold also for all noninteger k > 0. However, we do this
using a mechanism which is akin to a paradifferential expansion, without constructing an
explicit energy functional as provided by the above theorem in the integer case.

A consequence of the last result is the following continuation criteria for solutions to
(1.1), which holds regardless of whether k is an integer:

5Recall that we can harmlessly assume A small.
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Theorem 4. Let k be as in (1.12). Then the H2k solutions to (1.1) given by Theorem 2
can be continued for as long as A remains bounded and B 2 L1t .

Here we implicitly make a topological assumption and exclude the possibility that two
gas bubbles at some point touch each other, or that the free boundary self-intersects. This
latter possibility is prohibited at small scales by our result, but certainly not at large scales.

This result is consistent with the standard continuation results for quasilinear hyper-
bolic systems in the absence of a free boundary. But for the physical vacuum free boundary
problem, this work is the first where anything close to such a continuation result has been
proved.

1.6. Historical comments

The study of the compressible Euler evolutions has a long history, and also considerable
interest from the physical side. Allowing for vacuum states introduces many added layers
of difficulty to the problem, whose nature greatly depends on the behavior of the sound
speed near the vacuum boundary. Within this realm, physical vacuum represents the natu-
ral boundary condition for compressible gases. Below we begin with a brief discussion of
the broader context, and then we focus on the problem at hand.

1.6.1. Compressible Euler flows. The compressible Euler equations are classically con-
sidered as a symmetric hyperbolic system, and as such, local well-posedness has long
been known; see e.g. [14] and also the Euler-oriented analysis in [20]. The local solutions
can be obtained using the energy method, and relying solely on the energy requires initial
data local regularity .�0; v0/ 2 H s with s > d

2
C 1, with the continuation criteriaZ 1

0

kr.�; v/kL1 <1:

By now it is known that these results can be improved by taking advantage of Strichartz
estimates for wave equations. In the irrotational case, for instance, the result of [25] applies
directly and yields the sharp local well-posedness result, for6 s > dC1

2
. In the rotational

case, it is not yet clear what would be the optimal condition on the vorticity which would
allow for a similar improvement; see the results in [9] and [28].

1.6.2. Vacuum states in compressible Euler flows. Vacuum states correspond to allow-
ing for the density to vanish in some regions. Here, one should think of having a particle
region �t , and a vacuum region, separated by a moving free boundary �t D @�t . There
are two major physical scenarios, distinguished by the boundary behavior of the density
�, or equivalently of the sound speed cs:

(1) fluid flows, where the pressure is constant on the free boundary, describing a bal-
ance of forces, and the density and implicitly the sound speed are assumed to have
a nonzero, positive limit there;

6Here, d D 3; 4; 5.
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(2) gas flows, where the density decays to zero near the free boundary; this is our
main focus in this paper.

Both are free boundary problems associated to compressible Euler, but their natures
are very different. Fluid flows were considered in [4] and [16], and also the incompressible
limit was investigated in [17].

Now we turn our attention to our present interest, namely the gas flows. Heuristically
one distinguishes several potential scenarios when comparing the sound speed cs with the
distance d� to the vacuum boundary:

(a) Rapid decay corresponds to
cs . d�t :

In this case the vacuum boundary evolves linearly, and internal waves cannot reach the
boundary arbitrarily fast. Thus this geometry persists at least for a short time, and the
local well-posedness problem can even be studied using the standard tools of symmetric
hyperbolic systems; see for instance [2,8,18], as well as the alternative approach in [1,21]
and the one-dimensional analysis in [19]. Thus this case cannot be thought of as a true
free boundary problem. Furthermore, after a finite time, the internal waves will reach the
boundary [19], and this geometry breaks down.

(b) Slow decay corresponds to
cs � d�t :

This is where the problem indeed becomes a genuine free boundary problem, as internal
waves can reach the boundary arbitrarily fast, and then the flow of the free boundary
becomes strongly coupled with the internal flow. One might think that there is a range of
possible decay rates, for instance like

cs � d
ˇ
�t
; 0 < ˇ < 1:

However, both physical and mathematical considerations seem to indicate that among
these there is a single stable decay rate, which corresponds to ˇ D 1

2
. This is commonly

referred to as physical vacuum. The other values of ˇ are expected to be unstable, with the
solutions instantly falling into the stable regime; but this is all a conjecture at this point,
and likely there will be significant differences between the cases ˇ < 1

2
and ˇ > 1

2
.

1.6.3. The physical vacuum scenario. We turn now our attention to the problem at hand,
i.e. the physical vacuum scenario. The easier one-dimensional setting was considered first,
in [6] followed by [12]. While some energy estimates are formally obtained in [6] and a
procedure to construct solutions is provided, the functional structure there does not pro-
vide a direct description of the initial data space. This issue is remedied in [12], which
first introduces the Lagrangian counterparts of the scale of spaces we are also using here,
and provides both existence and uniqueness results in sufficiently regular spaces.

More recently, the three-dimensional case was considered in several papers. Energy
estimates for � D 1 were formally derived in [5]. This was followed by an existence proof
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proposed in [7], which is based a parabolic regularization. However, the functional setting
is similar to their prior one-dimensional paper, and some steps are merely claimed rather
than proved, for instance the difference bound, which also, as stated, requires additional
regularity for the solutions compared to the existence result. Independently, [13] offers an
alternative existence and uniqueness proof for arbitrary � > 0, this time within the correct
scale of weighted Sobolev spaces, using an iterative argument for the existence part, and
with a different approach to the energy estimates.

All the results described above are in the Lagrangian setting, and aim to give existence
and uniqueness results in sufficiently regular function spaces. In addition to the limitations
mentioned above, no attempt is made to provide any continuous dependence results, nor
to transfer the results to the physical, Eulerian framework.

By contrast, our results in the present paper are fully developed within the Eulerian
setting, at low regularity, in all dimensions and for all � > 0. In this context we provide
completely new arguments for existence, uniqueness, and continuous dependence of the
solutions on the initial data, i.e. a full well-posedness theory in the Hadamard sense. In
addition, we prove a family of sharp, scale-invariant energy estimates, which in particular
yield optimal continuation criteria at the level of krvkL1 , consistent with the well-known
results for hyperbolic systems in the absence of the free boundary. Despite the fact that we
only construct energy functionals corresponding to integer Sobolev spaces, we neverthe-
less are able to use these estimates to obtain energy estimates in fractional Sobolev spaces
as well, nicely completing the theory up to the optimal Sobolev thresholds.

1.7. An outline of the paper

The article has a modular structure, where, for the essential part, only the main results of
each section are used later.

1.7.1. Function spaces and interpolation. The starting point, in the next section, is to
describe the appropriate functional setting for our analysis, represented by the H2k scale
of weighted Sobolev spaces. These are associated to the singular Riemannian metric (1.8)
under the sole assumption that the boundary �t is Lipschitz, with r as a nondegenerate
defining function. A similar scale of spaces was introduced in [13] in the Lagrangian
setting, though under more regularity assumptions. However, since in the Eulerian setting
the boundary is moving, the corresponding state space H2k for .r; v/ is seen here akin to
an infinite-dimensional manifold.

We remark on the dual role of r , as a defining function of the boundary implicitly as a
weight on one hand, and as one of the dynamical variables on the other hand; for our low-
regularity analysis we carefully decouple these two roles, in order to avoid cumbersome
bootstrap loops.

Interpolation plays a significant role in our study. First, this occurs at the level of the
H2k scale of spaces, and it allows us to work with fractional Sobolev spaces without
having to directly prove energy estimates in the fractional setting, using expansions which
are akin to paradifferential ones but done at the level of the nonlinear flow. Second, we
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also interpolate between the H2k spaces and the pointwise bounds captured by our control
parameters A and B . It is this last tool which allows us to work at low regularity and to
obtain sharp, scale-invariant energy estimates.

1.7.2. The linearized equation and transition operators. In Section 3 we consider the
linearized equation, which is modeled as a linear evolution in the time-dependent weighted
L2 space H . We view this as the main tool in the analysis of the nonlinear evolution,
rather than the direct nonlinear energy estimates as in all prior work (except for [13], to
some extent). This later helps us not only to prove nonlinear energy estimates for single
solutions, but also to compare different solutions, which is critical both for our uniqueness
proof and for our construction of rough solutions as strong limits of smooth solutions. We
remark that at the level of the linearized variables .s; w/, there is no longer any boundary
condition on the moving free boundary �t ; this is closely related to the prior comment
about uncoupling the roles of r .

Next, using the linearized equation, we obtain the transition operators L1 and L2,
which act at the level of the two linearized variables s, respectively w, and should be
though of as the degenerate elliptic leading spatial part of the wave evolution for s, respec-
tively r �w. We call them transition operators because they tie the successive spaces H2k

and H 2kC2 on our scale in a coercive, invertible fashion. These operators play a lead-
ing role in both the higher-order energy estimates and in the regularization used for our
construction of regular solutions.

1.7.3. Difference estimates and the uniqueness result. The aim of Section 4 is to con-
struct a nonlinear difference functional which allows us to track the distance between two
solutions roughly at the level of the H norm. This is akin to the difference bounds in a
weaker topology which are common in the study of quasilinear problems.

This is one of the centerpieces of our analysis, and to the best of our knowledge this
is the first time such a construction has been successfully carried out in a free boundary
setting. The fundamental difficulty is that we are seeking to not only compare functions on
different domains, but also to track the evolution in time of this distance. This difficulty is
translated into the nonlinear character of our difference functional; some delicate, careful
choices are made there, which ultimately allow us to propagate this distance forward in
time.

1.7.4. Higher-order energy estimates. The aim of Section 5 is to establish energy esti-
mates in integer-index Sobolev spaces on our H2k scale. We define the nonlinear energy
functionals E2k using suitable vector fields applied to the equation. This energy has two
components, a wave component and a transport component, which correspond to the
heuristic (partial) decoupling of the evolution into a wave part for r and r � v and a trans-
port part for the vorticity !. Our proof of the energy estimates is split in a modular fashion
into two parts, where we successively (i) prove the coercivity of our energy functional and
(ii) track the time evolution of the energy.
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The coercivity bound is obtained inductively in k, using the transition operatorsL1 and
L2 as key tools. The main part of the proof of the propagation bound happens at the level
of the wave component, where we identify Alihnac-style “good variables” .s2k ; w2k/,
which are shown to solve the linearized equation modulo perturbative source terms.

Our energy functionals are to some extent the Eulerian counterparts of energies pre-
viously constructed in [7, 13] in the Lagrangian setting and at higher regularity. They are
closer in style to [7], though the coercivity part is largely missing there and as a conse-
quence some of the functional setting is incomplete/incorrect. The analysis in [13], on
the other hand, corresponds to combining the two steps above. This leads to a more com-
prehensive energy functional, where the coercivity part is relatively straightforward, but
instead moves the difficulty to the propagation part, which becomes considerably more
complex.

1.7.5. Existence of regular solutions. The aim of Section 6 is to prove the existence
theorem in the context of regular solutions. The scheme we propose here is constructive,
using a time discretization via an Euler-type method to produce good approximate solu-
tions. However, a naive implementation of Euler’s method loses derivatives; to rectify this
we precede the Euler step by (i) a regularization on a suitable scale and (ii) a separate
transport part.7 The challenge is to control the energy growth at each step of the way. This
is more delicate for the regularization, which has to be done carefully using the elliptic
transition operators L1 and L2.

We note that our construction is very different from any other approaches previously
used in analyzing this problem; they all relied on parabolic regularizations. Our construc-
tion is simpler and more direct, though not without interesting subtleties. It is also better
tailored to the physical structure of the equations, which makes this approach more robust
and also successful in the relativistic counterpart of our problem.

1.7.6. Rough solutions as limits of regular solutions. The last section of the paper aims
to construct rough solutions as strong limits of smooth solutions. This is achieved by
considering a family of dyadic regularizations of the initial data, which generates corre-
sponding smooth solutions. For these smooth solutions we control on one hand higher
Sobolev norms H2N , using our energy estimates, and on the other hand the L2-type dis-
tance between consecutive ones, which is at the level of the H norms. Combining the
high- and the low-regularity bounds directly yields rapid convergence in all H2k1 spaces
below the desired threshold, i.e. for k1 < k. To gain strong convergence in H2k we use
frequency envelopes to more accurately control both the low and the high Sobolev norms
above. This allows us to bound differences in the strong H2k topology. A similar argument
yields continuous dependence of the solutions in terms of the initial data also in the strong
topology, as well as our main continuation result in Theorem 4.

7This bit is optional but does simplify the analysis.
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2. Function spaces

The aim of this section is to introduce the main function spaces where we will consider
the free boundary problem for the compressible gas. These are Sobolev-type spaces of
functions inside the gas domain �t , with weights depending on r , or equivalently on
the distance to the free boundary. We begin with a more general discussion of weighted
Sobolev spaces in Lipschitz domains, and then specialize to the function spaces that are
needed in our problem.

2.1. Weighted Sobolev spaces

As a starting point, in a domain � � Rd with Lipschitz boundary � and nondegenerate
defining function r we introduce a two-parameter family of weighted Sobolev spaces (see
[26, 27] for a more general take on this):

Definition 2.1. Let � > �1
2

and j � 0. Then the space H j;� D H j;� .�/ is defined as
the space of all distributions in � for which the following norm is finite:

kf k2
H j;� WD

X
j˛j�j

kr�@˛f k2
L2
:

By complex interpolation, one also defines corresponding fractional Sobolev spaces
H s;� for s � 0 and � > �1

2
. This yields a double family of interpolation spaces.

Some comments are in order here:

• At this point, all we assume about the geometry of the problem is that the boundary �
is Lipschitz, and that r is a nondegenerate defining function for � , i.e. proportional to
the distance to � . Different choices for r yield the same space with different but equiv-
alent norms. Without any restriction in generality, we can assume that r is Lipschitz
continuous.

• The requirement � > �1
2

corresponds to the fact that no vanishing assumptions on the
boundary � are made for any of the elements in our function spaces.

• If � D 0 then one recovers the classical Sobolev spaces H k;0 D H k .

• If j D 0 these are weighted L2 spaces, H 0;� D L2.r2� /.

Next, we establish some key properties of these spaces. First, we have the Hardy-type
embeddings (see the book [15] for a broader view):

Lemma 2.2. Assume that s1 > s2 � 0 and �1 > �2 > �12 with s1 � s2 D �1 � �2. Then
we have

H s1;�1 � H s2;�2 :

Proof. By interpolation and reiteration it suffices to prove the result when s1 � s2 D 1,
both integers. Thus we will show that

H j;�
� H j�1;��1; j � 1; � >

1

2
:
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It suffices to prove the result in dimension nD 1; then all the higher dimensions will follow
by considering foliations of � with parallel one-dimensional lines which are transversal
to � .

Here, r is the distance function to the boundary of �. Setting � D Œ0;1/, r is point-
wise equivalent to x, and in particular givesZ

�

.r��1/2j@j�1x f j2 dx �

Z
�t

.x��1/2j@j�1x f j2 dx:

The inclusion follows from the following integration by parts:Z
�

.x��1/2j@j�1x f j2 dx D

Z
�t

� x2��1
2� � 1

�0
j@j�1x f j2 dx

D @j�1x f j2
� x2��1
2� � 1

�ˇ̌̌
x2@�

�
2

2� � 1

Z
�

x2��1j@j�1x f j j@jxf j dx:

The boundary term vanishes, and we can now apply the Cauchy–Schwarz inequality to
obtain

kf kH j�1;��1 �
2

2� � 1
kf kH j;� :

As a corollary of the above lemma we have embeddings into standard Sobolev spaces:

Lemma 2.3. Assume that � > 0 and � � j . Then we have

H j;�
� H j�� : (2.1)

In particular, by standard Sobolev embeddings, we also have Morrey-type embeddings
into C s spaces:

Lemma 2.4. We have

H j;�
r � C s; 0 � s � j � � �

d

2
;

where the equality can hold only if s is not an integer.

2.2. Weighted Sobolev norms for compressible Euler

Our starting point here is the conserved energy for our problem, namely

E.r; v/ D

Z
�t

r
1��
�

�
r2 C

� C 1

2
rv2

�
dx:

Even more importantly, in our study of the linearized equation (see Section 3), for
linearized variables .s; w/ we use the weighted L2-type energy functional

Elin.s; w/ D

Z
�t

r
1��
� .jsj2 C �r jwj2/ dx:
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Based on this, we define our baseline space H with norm

k.s; w/k2H D Elin.s; w/:

In terms of the H s;� spaces discussed earlier, or weighted L2 spaces, we have

H D H 0; 1��2� �H 0; 12� D L2.r
1��
� / � L2.r

1
� /:

Next we define a suitable scale of higher-order Sobolev spaces for our problem. To
understand the balance between weights and derivatives we consider the leading-order
operator, if we write the wave part of our system as a second-order equation for r . At
leading order this yields the wave operator

D2
t � �r�;

which is naturally associated with the Riemannian metric (1.8) in �t .
So, to the above L2-type space H we need to add Sobolev regularity based on powers

of r�, or equivalently, relative to the metric g defined above. Hence we define the higher-
order Sobolev spaces H2k ,

H2k
WD H 2k;kC 1��

2� �H 2k;kC 1
2� ; k � 0

of pairs functions defined inside �t . These form a one-parameter family of interpolation
spaces. The H2k spaces have the obvious norm if k is a nonnegative integer; for instance
one can set

k.s; w/k2
H2k WD

jˇ j�˛�kX
jˇ j�2k

kr˛@ˇ .s; w/k2H ;

where ˛ is also restricted to nonnegative integers.
On the other hand, if k is not an integer then the corresponding norms are Hilbertian

norms defined by interpolation. Since in the Hilbertian case all interpolation methods
yield the same result, for the H2k norm we will use a characterization which is akin to a
Littlewood–Paley decomposition, or to a discretization of the J method of interpolation.
Precisely, we have the following lemma:

Lemma 2.5. Let 0 < k < N . Then H2k can be defined as the space of distributions .s; v/
which admit a representation

.s; w/ D

1X
lD0

.sl ; wl /

with the property that the following norm is finite:

jjj¹.sl ; wl /ºjjj
2
WD

1X
lD0

22klk.sl ; wl /k
2
H C 2

2l.k�N/
k.sl ; wl /k

2
H2N ; (2.2)

and with equivalent norm defined as

k.s; w/k2
H2k WD inf jjj¹.sl ; wl /ºjjj2;

where the infimum is taken with respect to all representations as above.
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2.3. The state space H2k

As already mentioned in the introduction, the state space H2k is defined for k > k0 (i.e.
above scaling) as the set of pairs of functions .r; v/ defined in a domain �t in Rn with
boundary �t with the following properties:

(i) Boundary regularity: �t is a Lipschitz surface.

(ii) Nondegeneracy: r is a Lipschitz function in x�t , positive inside�t , and vanishing
simply on the boundary �t .

(iii) Regularity: The functions .r; v/ belong to H2k .

Since the domain �t itself depends on the function r , one cannot think of H2k as a
linear space, but rather as an infinite-dimensional manifold. As time varies in our evo-
lution, so does the domain, so we are interested in allowing the domain to vary in H2k .
However, describing a manifold structure for H2k is beyond the purposes of our present
paper, particularly since the trajectories associated with our flow are merely expected to
be continuous with values in H2k . For this reason, here we will limit ourselves to defining
a topology on H2k .

Definition 2.6. A sequence .rn; vn/ converges to .r; v/ in H2k if the following conditions
are satisfied:

(i) Uniform nondegeneracy: jrrnj � c > 0.

(ii) Domain convergence: krn � rkLip ! 0.

(iii) Norm convergence: For each " > 0 there exist smooth functions . Qrn; Qvn/ in �n,
respectively . Qr; Qv/ in � so that

. Qrn; Qvn/! . Qr; Qv/ in C1;

while
k. Qrn; Qvn/ � .rn; vn/kH2k.�n/

� ":

We remark that the last condition in particular provides both a uniform bound for the
sequence .rn; vn/ in H2k.�n/, as well as an equicontinuity-type property, which ensures
that a nontrivial portion of their H2k norms cannot concentrate on thinner layers near the
boundary. This is akin to the conditions in the Kolmogorov–Riesz theorem for compact
sets in Lp spaces.

This definition will enable us to achieve two key properties of our flow:

• Continuity of solutions .r; v/ as functions of t with values in H2k .

• Continuous dependence of solutions .r; v/ 2 CtH2k on the initial data .r0; v0/ 2 H2k .

2.3.1. Sobolev spaces and control norms. An important threshold for our energy esti-
mates corresponds to the uniform control parameters A and B given by (1.10) and (1.11),
respectively. Of these, A is at scaling, while B is one-half of a derivative above scaling.
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Thus, by Lemma 2.4 we will have the bounds

A . k.r; v/kH2k ; k > k0 D
d C 1

2
C

1

2�
; (2.3)

respectively

B . k.r; v/kH2k ; k > k0 C
1

2
D
d C 2

2
C

1

2�
: (2.4)

2.3.2. The regularity of the free boundary. Another property to consider for our flow,
in dimension n � 2, is the regularity of the free boundary, as well as the regularity of the
velocity restricted to the free boundary. This is given by trace theorems and the embedding
(2.1):

Lemma 2.7. Suppose that .r; v/ 2 H2k and that 2k � 1
�

is not an even integer. Then �t
has regularity

�t 2 H
k� 1

2� :

If in addition 1
�

is also not an odd integer then the velocity restricted to �t has class

v 2 H
k�1
2 �

1
2� .�t /:

These properties are provided here only for comparison purposes, and play no role
in the sequel. This is because in this problem one cannot view the evolution of the free
boundary as a stand-alone flow, not even at leading order. In particular, a priori this veloc-
ity does not suffice to transport the regularity of �t ; instead the boundary evolution should
be viewed as a part of the interior evolution. Indeed, we will see that there is some inter-
esting cancellation arising from the structure of the equations which facilitates this.

2.4. Regularization and good kernels

An important ingredient in our construction of solutions to our free boundary evolution is
to have good regularization operators associated to each dyadic frequency scale 2h, h � 0.
These operators will need to accomplish two distinct goals:

• Fixed domain regularization: Given .s; v/ 2 H2k.�/, construct regularizations .sh;
wh/ within the same H2j .�/ scale of spaces.

• State and domain regularization: Given .r;v/2H2k , where the first component defines
a domain �, construct regularizations .rh; vh/ within the H2j scale of spaces, where
the regularized domains �h are defined by rh, �h WD ¹x 2 Rd j rh.x/ > 0º.

We begin with some heuristic considerations and notation. Given a dyadic frequency
scale h, our regularizations will need to select frequencies � with the property that r�2 .
22h, which would require kernels on the scale

ıx � r
1
2 2�h:
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�

2�2h �Œ>h�

2�2h�Œh�

2�2h

�Œ<h�

z�Œh�

Figure 1. Boundary layers associated to frequency scale 2h.

However, if we are too close to the boundary, i.e. r � 2�2h, then we run into trouble with
the uncertainty principle, as we would have ıx� r . Because of this, we select the spatial
scale r . 2�2h and the associated frequency scale 22h as cutoffs in this analysis.

To describe this process, it is convenient to decompose a neighborhood of the boundary
� into boundary layers. Using Figure 1, we denote the dyadic boundary layer associated
to the frequency 2h by

�Œh� D
®
x 2 �; r.x/ � 2�2h

¯
;

the corresponding full boundary strip by

�Œ>h� D
®
x 2 �; r.x/ . 2�2h

¯
;

and the corresponding interior region by

�Œ<h� D
®
x 2 �; r.x/ & 2�2h

¯
:

We will also use dyadic enlargements of �, denoted by

z�Œh� D
®
x 2 Rd ; d.x;�/ � c2�2h

¯
;

with a small universal constant c, and

z�Œ>h� D
®
x 2 Rd ; d.x; �/ � c2�2h

¯
:

Given a domain � with a nondegenerate Lipschitz defining function r , and .s; w/
functions in �, we will define regularizations .sh; wh/ associated to the h dyadic scale
using smooth kernels Kh,

.sh; wh/.x/ D ‰h.s; v/ WD

Z
Kh.x; y/.s; w/.y/ dy:
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The heuristic discussion above leads to the following notion of good kernels:

Definition 2.8. The family of kernels Kh are called good regularization kernels if the
following properties are satisfied:

(i) Domain and localization:
KhW z�Œh� ��! R

with support properties

suppKh �
®
.x; y/ 2 z�Œh� ��<h; jx � yj . ıyh WD 2�2h C 2�hr.y/

1
2
¯
:

(ii) Size and regularity:

j@˛x@
ˇ
yK

h.x; y/j . .2�2h C 2�hr.y/
1
2 /�N�j˛j�jˇ j; j˛j C jˇj � 4N;

where N is large enough.

(iii) Approximate identity: Z
Kh.x; y/ dy D 1;Z

Kh.x; y/.x � y/˛ dy D 0; 1 � j˛j � 2N: (2.5)

Notably, the first property will allow us to define the regularizations .sh; wh/ in the
extended domain z�Œh�, with dyadic mapping properties as follows:

• For j < h, the regularizations .sh; wh/ in �Œj � are determined by .s; w/ also in �Œj �.

• For the h layers, the regularizations .sh; wh/ in z�Œ>h� are determined by .s; w/ only
in �Œh�.

Thus our regularization operators use their inputs only outside the 2�2h boundary layer,
but provide outputs in a 2�2h enlargement of the domain �. Such a property is critical in
order to have good domain regularization properties.

The role of the third property on the other hand is to ensure that polynomials of suf-
ficiently small degree are reproduced by our regularizations. This will later provide good
low-frequency bounds for differences of successive regularizations.

Regularization kernels with these properties can be easily constructed:

Lemma 2.9. Good regularization kernels exist.

Proof. We outline the steps in the kernel construction, leaving the details for the reader:

(a) We consider a unit vector e which is uniformly transversal to the boundary, out-
ward oriented. Such an e can be chosen locally, and kernels constructed based on
a local choice of e can be assembled using a partition of unity in the first variable.

(b) Given such an e, we consider a smooth bump function � with properties as fol-
lows:
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• the support of � is such that

supp� � B.e; ı/; ı � 1;

• its average is 1: Z
�.x/ dx D 1;

• and it has zero momentsZ
x˛�.x/ dx D 0; 1 � j˛j . N:

(c) For each dyadic scale m we consider a shifted regularizing kernel

Km0 .x � y/ D 2
2md�.22m.x � y//

on the 2�2m scale, which is accurate to any order.
Correspondingly, we also consider a partition of unity in �,

1 D

1X
mD0

�m;

where the functions �m select the region�Œm� and are smooth on the 2�2m scale.
Given a fixed dyadic scale h, we adapt this partition of unity to h,

1 D �>h C

hX
mD0

�m;

where the first term �>h can be extended by 1 to the exterior of �.

(d) We define the regularization kernels

Kh.x; y/ WD �>h.x/K
h
0 .x � y/C

hX
mD0

�m.x/K
m
0 .x � y/;

which are still accurate to any order. It is easily verified that these kernels have
the desired properties.

Next we prove bounds for our regularizations in H2k spaces:

Proposition 2.10. The following estimates hold for good regularization kernels whenever
r1 is a nondegenerate defining function with jr � r1j � 2�2h:

(a) Regularization bound:

k‰h.s; w/k
H
2kC2j
r1

. 22jhk.s; w/k
H2k
r
; j � 0; (2.6)



M. Ifrim and D. Tataru 426

(b) Difference bound:

k.‰hC1 �‰h/.s; w/k
H
2kC2j
r1

. 22jhk.s; w/k
H2k
r
; �k � j � 0; (2.7)

(c) Error bound:

k.I �‰h/.s; w/k
H
2kC2j
r

. 22jhk.s; w/k
H2k
r
; �k � j � 0: (2.8)

Here we recall that the regularized functions‰h.s; v/ are defined on the larger domain
z�Œh�. This is what allows us to measure them with respect to a perturbed domain �1 D
¹r1 > 0º as long as the two boundaries are within O.2�2h/ of each other.

Proof of Proposition 2.10. By interpolation we can assume that k and j are both integers.
Because of the support properties of Kh, we can prove the desired estimate separately in
each boundary layer �Œl�, for 0 � l � h, and then separately for z�Œ>h�. For instance, in
the case of (2.6) we will show that

k‰h.s; w/kH2kC2j .�Œl�/ . 22hj k.s; w/kH2k.�Œl�/;

where the domain-restricted norms are interpreted as the square integral of the appropriate
quantities over the restricted domains.8

The above localization allows us to fix the r-dependent localization scale ıxD 2�.hCl/

for ‰h, which becomes akin to a scaling parameter. Even better, we can localize further
to a ball Bıx � �Œl� and show that

k‰h.s; w/kH2kC2j .Bıx/
. 22jhk.s; w/kH2k.2Bıx/

:

Consider one component of the norm on the left, namely the maximal one, and show that

kr
kCj
1 @2.kCj /‰h.s; w/kHr1 .Bıx/

. krk@2k.s; w/kHr .Bıx/:

To avoid distracting technicalities, consider first the case l < h, where the weights are
constant and can be dropped. Then the above inequality becomes

k@2.kCj /‰hukL2.Bıx/ . 22j.hCl/k@2kukL2.2Bıx/: (2.9)

The difficulty here is that we only have control over the derivatives of u (here u can be
replaced by either s or w). We can bypass this difficulty using (a higher-order version of)
the Poincaré inequality in Bır , which allows us to find a polynomial P of degree 2k � 1
so that

k@b.u � P /kL2.Bıx/ . ıx2k�bk@2kukL2.Bıx/; 0 � b < 2k:

8In a standard fashion, we also need to allow the domain on the right to be a slight enlargement of the
domain on the left.
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Property (2.5) shows that KhP D P , therefore in (2.9) we can replace u by u � P , for
which we have better control of the lower Sobolev norms. Then estimate (2.9) easily
follows.

Minor adjustments to this argument are needed in �Œh�. Then ıx � 2�2h, and we can
still freeze r in the input region to r D 2�2h. On the other hand, in the output region we
have r1 . 2�2h, which still allows us to drop the rk1 weight. The Poincaré inequality still
applies. The only difference is that the weight in the H norm on the left might be singular.
However, this weight is nevertheless square integrable near the boundary, which suffices
due to the fact that in effect inBıx we can obtain pointwise control for @2kC2j‰h.u�P /.

Now we consider case (b). There the same localization applies, and the main difference
in the proof is that now for a polynomial P of degree at most 2N we have

.‰hC1 �‰h/P D 0:

This in turn allows us to also substitute u by u � P in (2.9) when j is negative. The rest
of the argument is identical.

Finally, for the bound (2.8) we simply add up (2.7) for scales > h.

Given a rough state .r; v/ 2 H2k , we can use the above lemma to construct a regular-
ized state .rh; vh/ as follows:

(a) We define the regularized functions .rh; vh/ in the larger domain z�Œh� by

.rh; vh/ D ‰h.r; v/:

(b) We restrict .rh; vh/ to the set9 �h WD ¹rh > 0º.

Such a strategy works provided that the domain z�Œh� is large enough to allow rh to tran-
sition to negative values before reaching the boundary of its domain. We will see that this
is indeed true provided that k is above the scaling exponent k0. Our main result is stated
below. For better accuracy, we use the language of frequency envelopes to state it.

Proposition 2.11. Assume that k > k0. Then given a state .r; v/ 2 H2k , there exists a
family of regularizations .rh; vh/ 2H2k , so that the following properties hold for a slowly
varying frequency envelope ch 2 `2 which satisfies

kchk`2 .A k.r; v/kH2k : (2.10)

(i) Good approximation:

.rh; vh/! .r; v/ in C 1 � C
1
2 as h!1;

and
krh � rkL1.�/ . 2�2.k�k0C1/h: (2.11)

9Here and below we use subscripts for � as in �� D ¹r� > 0º to indicate the domain associated to a
function r�, and the superscripts �Œ�� to select various boundary layers.
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(ii) Uniform bound:
k.rh; vh/kH2k .A k.r; v/kH2k : (2.12)

(iii) Higher regularity:

k.rh; vh/kH2kC2j
h

. 22hj ch; j > 0: (2.13)

(iv) Low-frequency difference bound:

k.rhC1; vhC1/ � .rh; vh/kHQr . 2�2hkch; j Qr � r j � 2�2h: (2.14)

Proof. To start with, we will assume that .rh; vh/ are defined in the larger set z�Œh� using
good regularization kernels Kh,

.rh; vh/ D ‰h.r; v/:

By Sobolev embeddings we know that

.r; v/ 2 C 1Ck�k0 � C
1
2Ck�k0.�/:

This easily implies the uniform bound for .rh; vh/ in C 1 � C
1
2 . z�Œh�/, as well as the

convergence in the same topology to .r; v/ in �. It also implies the pointwise bound
(2.11). This in turn shows that on the boundary � we have jrhj . 2�2.k�k0C1/h, therefore
the zero set �h D ¹rh D 0º is within distance 2�2.k�k0C1/h from � , and thus within z�Œh�.
This ensures that .rh; vh/ restricted to �h D ¹rh > 0º is a well-defined state.

Next we consider the bound (2.12). In view of the difference bound (2.11), this is a
consequence of (2.6) with r1 D rh and j D 0.

It remains to prove (2.13) and (2.14). If we were to replace ch by 1 on the right, this
would also follow from Proposition 2.10. To gain the extra decay associated with a fre-
quency envelope, for the functions .r; v/we will use the interpolation space representation
given by Lemma 2.5 with N sufficiently large,

.r; v/ D

1X
lD0

.sl ; wl /; (2.15)

for which the norm in (2.2) is finite. Accordingly, we can choose a slowly varying fre-
quency envelope cl so that

k.sl ; wl /kH � 2
�2lkcl ; k.sl ; wl /kH2N � 22l.N�k/cl ; (2.16)

with X
c2l . k.r; v/k2H2k :

The frequency envelope cl above is the one we will use in the proposition. Property (2.10)
is then automatically satisfied.
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Proof of (2.13). Our starting point is again the decomposition (2.15)–(2.16) for .r; v/, but
now we separate the contributions of l � k and l > k.

(a) Low-frequency components l < k: Using the ‰h bounds in Proposition 2.10, the
bounds for .rl ; vl / carry over to ‰h.rl ; vl /, namely

k‰h.sl ; wl /kH � 2
�2lkcl ; k‰

h.sl ; wl /kH2N � 22l.N�k/cl :

Then by interpolation we have

k‰h.sl ; wl /kH2kC2j . 22lj cl : (2.17)

(b) High-frequency components l � k: Here we discard the H2N bound, and instead
estimate directly

kKh.sl ; wl /kH2kC2j . 22h.jCk/k.sl ; wl /kH . 22jh22.h�l/j cl : (2.18)

Combining (2.17) and (2.18), we obtain

kKh.r; v/kH2kC2j .
X
l�h

22lj cl C
X
l>h

22jh22.h�l/j cl . ch

as needed.

Proof of (2.14). We follow the same strategy as above, where we still can use all the ‰h

bounds in Proposition 2.10, but with the difference that now we also have access to the
difference bound in (2.7).

Starting with the decomposition (2.15)–(2.16) for .r; v/, we observe that the H bound
for .rl ; vl / suffices in the high-frequency case l � h. It remains to consider the low-
frequency case l < h, where we will have to rely instead on the H2N norm. Precisely,
by (2.7) we have

k@hK
h.rl ; vl /kH . 2�2Nhk.rl ; vl /kH2N ; (2.19)

which again, combined with (2.16), suffices after dyadic l summation.

2.5. Interpolation inequalities

Next we consider Lp interpolation-type inequalities, which are critical to prove our sharp,
scale-invariant energy estimates.

For clarity and later use we provide a more general interpolation result. Our main
result, which applies in any Lipschitz domain � with a nondegenerate defining function
r , is as follows:

Proposition 2.12. Let �0; �m 2 R and 1 � p0; pm � 1. Define

�j D
j

m
;

1

pj
D
1 � �j

p0
C
�j

pm
; �j D �0.1 � �j /C �m�j ;
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and assume that

m � �m � d
� 1

pm
�
1

p0

�
> ��0; �j > �

1

pj
:

Then for 0 < j < m we have

kr�j @jf kLpj . kr�0f k1��jLp0 kr
�m@mf k

�j
Lpm : (2.20)

Remark 2.13. One particular case of the above proposition which will be used later is
when p0 D p1 D p2 D 2, with the corresponding relation between the exponents of the
r�j weights.

As the objective here is to interpolate between the L2-type Hm;� norm and L1

bounds, we will need the following straightforward consequence of Proposition 2.12:

Proposition 2.14. Let �m > �12 and

m � �m �
d

2
> 0:

Define

�j D
j

m
;

1

pj
D
�j

2
; �j D �m�j :

Then for 0 < j < m we have

kr�j @jf kLpj . kf k1��jL1 kr
�m@mf k

�j

L2
:

We will also need the following two variations of Proposition 2.14:

Proposition 2.15. Let �m > �12 and

m �
1

2
� �m �

d

2
> 0:

Define

�j D �m�j ; �j D
2j � 1

2m � 1
;

1

pj
D
�j

2
:

Then for 0 < j < m we have

kr�j @jf kLpj . kf k1��j
PC
1
2

kr�m@mf k
�j

L2
:

And the second variation:

Proposition 2.16. Let �m > m�2
2

and

m �
1

2
� �m �

d

2
> 0:
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Define

�j D �m�j �
1

2
.1 � �j /; �j D

j

m
;

1

pj
D
�j

2
:

Then for 0 < j < m we have

kr�j @jf kLpj . kf k1��j
zC
0; 12

kr�m@mf k
�j

L2
:

Here, the role of the lower bound on �m is to ensure that �j > � 1
pj

for all intermedi-
ate j , where the j D 1 constraint is the strongest.

We will use the last two propositions for .r; v/, where the pointwise bound comes from
the control norms A and B .

Proof of Proposition 2.12. We begin with several simplifications. First we note that it suf-
fices to prove the case m D 2 and j D 1. Then the general case follows by reiteration.
Indeed, the case m D 2 allows us to compare any three consecutive norms

kr�jC1@jC1f kLpjC1 � kr
�j @jf k

1
2

L
pj kr

�jC2@jC2f k
1
2

L
pjC2 ;

and then the main estimates (2.20) follow from combining the above bounds.
A second simplification is to observe that we can also reduce the problem to the one-

dimensional case, which we state in the following lemma:

Lemma 2.17. Let pj 2 Œ1;1�, and �j 2 R with j D 0; 2, so that

1

p2
C

1

p0
D

2

p1
; and �0 C �2 D 2�1;

and with
2 � d

� 1
p2
�
1

p0

�
> �2 � �0; �1 > �

1

p1
:

Then the following inequality holds:

kx�1@f kLp1 . kx�0f k
1
2

Lp0 kx
�2@2f k

1
2

Lp2 : (2.21)

To see that the n-dimensional case reduces to the one-dimensional case, we consider a
constant vector field X which is transversal to the boundary, apply (2.21), with x replaced
by r , on every X line �y in �, where y denotes the transversal direction. We raise it to
the power p and integrate in y. This yields

kr�1Xf k
p1
Lp1 .�/

.
Z
kr�0f k

p1
2

Lp0 .�y/
kr�2X2f k

p1
2

Lp2 .�y/
dy

. kr�0f k
p1
2

Lp0 .�/
kr�2X2f k

p1
2

Lp2 .�/
;

where at the second step we have used the Hölder inequality. The full n-dimensional bound
is obtained by applying the above estimate for a finite number of vector fields X which (i)
are transversal to the boundary and (ii) span Rn. It remains to prove the last Lemma 2.17:
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Proof of Lemma 2.17. This interpolation inequality is a weighted Gagliardo–Nirenberg–
Sobolev inequality; see[23]. One main ingredient in the original proof given in [23] for
the unweighted case, is the following inequality due to P. Ungar:

Proposition 2.18. On an interval I , whose length is denoted by �, one has

kuxk
p1
Lp1 .I /

. �
1Cp1�

p1
p2 kuxxk

p1
Lp2 .I /

C �
�.1Cp1�

p1
p2
/
kuk

p1
Lp0 .I /

;

where pj 2 Œ1;1�, j D 0; 2

The heuristic interpretation of Proposition (2.18) is that the average of the first deriva-
tive of a function is controlled by its pointwise values, and its variation is controlled by its
second derivative. This observation yields the balance between the parameters m, �0, �1,
and �2 in Lemma 2.21. We will use the same result here to prove (2.21).

The first step is to use a dyadic spatial decomposition of RC, such that the interval
I in Proposition 2.18 is fully contained in a generic interval Œr; 2r�, where r D 2k , and
k 2 Z. Using Proposition (2.18), we have

r�1p1k@f k
p1
Lp1 .I /

D kx�1@f k
p1
Lp1 .I /

. rp1.�1��2/�
1Cp1�

p1
p2 kx�2@2f k

p1
Lp2 .I /

C r .�1��0/p1�
�.1Cp1�

p1
p0
/
kx�0f k

p1
Lp0 .I /

:

To get from this inequality to (2.21) it would be convenient to know that the last two terms
in the above inequality are comparable in size. One can try to achieve this by increasing
the size of the interval I until this is true. The difficulty is when this cannot be done
without going past the dyadic interval size. So the natural strategy is to consider the dyadic
decomposition of interval Œ0;1� and compare the Lp2 and Lp0 norms in each of these
dyadic intervals.

If on any such dyadic interval we get

r
p1.�1��2/C1Cp1�

p1
p2 kx�2@2f k

p1
Lp2 .Œr;2r�/

� r
.�1��0/p1�.1Cp1�

p1
p2
/
kx�0f k

p1
Lp0 .Œr;2r�/

(2.22)

then we subdivide this interval into pieces where these two terms are comparable, and
complete the proof of (2.21) within this interval.

Unfortunately this may not be the case in all dyadic subintervals. To rectify this we
introduce slowly varying frequency envelopes ¹c2

k
º for kx�2@2f kLp2 , respectively ¹c0

k
º

for kx�0f kLp0 , so that the following properties hold:

• Control norm:

kx�2@2f kLp2 .ŒIk �/ � c
2
k and kx�0f kLp0 .ŒIk �/ � c

0
k :
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• lp2 and lp0 summability:X
k

.c2k/
p2 � kx�2@2f k

p2
Lp2 and

X
k

.c0k/
p0 � kx�0f k

p0
Lp0 :

• Slowly varying:
c0
k

c0j
. 2ıjj�kj and

c2
k

c2j
. 2ıjj�kj

for ı small and positive.

Now, we compare again as in (2.22):

2
k¹p1.�1��2/C1Cp1�

p1
p2
º
.c2k/

p1 � 2
k¹.�1��0/p1�.1Cp1�

p1
p2
/º
.c0k/

p1 ;

2
k¹1C.�1��2/C

1
p1
� 1
p2
º
c2k � 2

k¹.�1��0/�1�.
1
p1
� 1
p2
/º
c0k ; (2.23)

which holds if and only if

c2k � 2
k¹.�2��0�2/C

1
p2
� 1
p0
º
c0k :

In the dyadic regions where this holds we finish the proof, as discussed above, by subdivid-
ing the dyadic intervals and applying Proposition 2.18. To see where the switch happens
we observe that c2

k
is slowly varying whereas the right-hand side of the inequality above

decreases exponentially, as k grows. Then we can find a unique k0 where the two are
comparable,

c2k0 � 2
k0¹.�2��0�2/C

1
p2
� 1
p0
º
c0k0 : (2.24)

Then (2.23) holds for k � k0, which implies that

kx�1@f k
p1
Lp1 .Ik/

. .c0kc
2
k/

p1
2 : (2.25)

It remains to consider the case when k < k0, where we are simply going to obtain a
pointwise bound for @f . Selecting a favorable point x0 2 Ik0 , i.e. where

@f .x0/ . 2�k0
Z
Ik0

j@f j dx . 2
�. 1p1

C�1/k0
kx�1@f kLp1 .Ik0 /

; (2.26)

we estimate for x 2 Ik1 with k1 < k0:

j@f .x/j . j@f .x0/j C
Z x0

x

j@2f j dx

. j@f .x0/j C
k0X
kDk1

Z
Ik

j@2f j dx

. j@f .x0/j C
k0X
kDk1

2
k.
p2�1
p2
��2/
kx�2@2f kLp2 .Ik/
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. j@f .x0/j C
k0X
kDk1

2
k.
p2�1
p2
��2/.c2k/

. j@f .x0/j C 2.k0�k1/.�
p2�1
p2
C�2C2ı/C

� 2
k0.

p2�1
p2
��2/.c2k/

. j@f .x0/j C .x0=x/.�
p2�1
p2
C�2C2ı/C

� 2
k0.

p2�1
p2
��2/.c2k/:

Now we estimate using the bound above

kx�1@f k
p1
Lp1 .Œ0;x0�/

D

Z x0

0

xp1�1.@f /p1 dx

. x
p1�1C1
0 j@f .x0/j

p1 C 2
k0p1.

p2�1
p2
C�1��2/x0.c

2
k/; (2.27)

where the integral converges since the exponents obey the restriction dictated by the scal-
ing in (1.9), and ı is sufficiently small. To finish the proof we observe that by (2.24) and
(2.26), the right-hand side of (2.27) is comparable to the right-hand side of (2.25) when
k D k0.

This concludes the proof of Lemma 2.17.

The proof of the Proposition 2.14 follows as a straightforward consequence.

Proof of Proposition 2.15. This is largely similar to the proof of Proposition 2.12, so we
omit the details and only describe the key differences. The reduction to the case m D 2
is similar, using also the m D 2 case of Proposition 2.12, at least if we allow p2 to be
arbitrary rather than 2. The one-dimensional reduction is also similar. Thus we are left
with having to prove the following analogue of Lemma 2.17:

Lemma 2.19. Let pj 2 Œ1;1�, and �j 2 R with j D 1; 2, so that

1

p2
D

3

p1
and �2 D 3�1;

and with
3

2
�
1

p2
> �2; �1 > �

1

p1
:

Then the following inequality holds:

kx�1@f kLp1 . kf k
2
3

PC
1
2

kx�2@2f k
1
3

Lp2 :

This lemma is proved using the following analogue of Proposition 2.18, which is a
straightforward exercise:

Proposition 2.20. On an interval I , whose length is denoted by �, one has

kuxk
p1
Lp1 .I /

. �
1Cp1�

p1
p2 kuxxk

p1
Lp2 .I /

C �
� 12 .1Cp1�

p1
p2
/
kuk

p1

PC
1
2 .I /

;

where pj 2 Œ1;1�, j D 0; 2.
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The proof of Proposition 2.15 is concluded.

Proof of Proposition 2.16. This is also similar to the proof of Proposition 2.12, so we
omit the details and only describe the key differences. The reduction to the case m D 2
uses again the m D 2 case of Proposition 2.12, and the one-dimensional reduction is also
similar. Thus we are left with having to prove the following analogue of Lemma 2.17:

Lemma 2.21. Let pj 2 Œ1;1�, and �j 2 R with j D 1; 2, so that

1

p2
D

2

p1
and �2 �

1

2
D 2�1;

and with

2 �
d

p2
> �2 C

1

2
; �1 > �

1

p1
:

Then the following inequality holds:

kx�1@f kLp1 . kf k
1
2

zC
0; 12

kx�2@2f k
1
2

Lp2 :

This lemma is proved in the same fashion as Lemma 2.17 directly using Proposi-
tion 2.18 for f C c with well-chosen constants c.

3. The linearized equations

This section is devoted to the study of the linearized equations, which have the form´
@ts C v � rs C w � rr C �.sr � v C rr � w/ D 0;

@tw C .v � r/w C .w � r/v Crs D 0:
(3.1)

Using the material derivative, these equations are written in the form´
Dts C w � rr C �.sr � v C rr � w/ D 0;

Dtw C .w � r/v Crs D 0:
(3.2)

Here, .s; w/ are functions defined within the time-dependent gas domain �. Notably, no
boundary conditions on .s; w/ are imposed or required on the free boundary � .

3.1. Energy estimates and well-posedness

We first consider the question of proving well-posedness and energy estimates for the
linearized equations:

Proposition 3.1. Let .r; v/ be a solution to the compressible Euler equations (1.4) in
the moving domain �t . Assume that both r and v are Lipschitz continuous, and that r
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vanishes simply on the free boundary. Then the linearized equation (3.2) is well posed in
H , and the following energy estimate holds for all solutions .s; w/:ˇ̌̌ d

dt
k.s; w/k2H

ˇ̌̌
. krvkL1k.s; w/k2H : (3.3)

Here we estimate the absolute value of the time derivative of the linearized energy, in
order to guarantee both forward and backward energy estimates; these are both needed to
prove well-posedness.

Proof of Proposition 3.1. We recall the time-dependent weighted H norm,

k.s; w/k2H D

Z
r
1��
� .jsj2 C �r jwj2/ dx:

To compute its time derivative, we use the material derivative in a standard fashion. For
later reference we state the result in the following lemma:

Lemma 3.2. Assume that the time-dependent domain �t flows with Lipschitz velocity v.
Then the time derivative of the time-dependent volume integral is given by

d

dt

Z
�.t/

f .t; x/ dx D

Z
�t

Dtf C f r � v.t/ dx:

Using the above lemma, we compute

d

dt
k.s; w/k2H D ��

Z
�t

r
1�k
k rv.jsj2 C 2r jwj2/ dx

� 2

Z
�t

r
1��
� .s.w � rr C �rr � w/C �rwrs/ dx:

We observe that the last integral is zero. The computation is straightforward and follows
from integration by parts:

�2

Z
r
1��
� .sw � rr C �rr.sw// dx D 0;

as the boundary terms vanish on � .
The first integral includes the bounded term r � v. It follows right away that the energy

norm will indeed control it, and the desired energy estimate (3.3) follows.
The well-posedness result will follow in a standard fashion from a similar estimate

for the adjoint equation, interpreted as a backward evolution in the dual space H�. We
identify H� D H by Riesz’s theorem, with respect to the associated inner product in H :˝

.s; w/; .Qs; zw/
˛
H
D

Z
�t

r
1��
� .s Qs C �rw zw/ dx;
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Then the adjoint system associated to (3.1), with respect to this duality, is easily com-
puted to be ´

Dt Qs C �rr zw C zwrr D 0;

Dt zw � zwrv CrQs D 0:
(3.4)

Modulo bounded, perturbative terms, this is identical to the direct system (3.2), therefore
the backward energy estimate for the adjoint problem (3.4) follows directly from (3.3).

In particular, we note that, due to translations in time and space symmetries, the lin-
earized estimate applies to the functions .s;w/D .rr;rv/, as well as .s;w/D .@tr; @tv/.

3.2. Second-order transition operators

We remark that discarding therv terms from the equations we obtain a reduced linearized
equation, ´

Dts C w � rr C �rr � w D 0;

Dtw Crs D 0;

which is also well posed in H . For many purposes it is useful to also rewrite the linearized
equation as a second-order evolution. We will only seek to capture the leading part, up
to terms of order 1. Starting from the above reduced linearized equation, we compute
second-order equations where we discard the rv terms arising from commuting Dt and
r.

Then for s we obtain the reduced second-order equation (which would be exact if v
were constant)

D2
t s � L1s; L1s D �r�s Crr � rs;

which for � D 1 yields
L1 D rrr:

On the other hand, for w we similarly obtain

D2
t w � L2w; L2w D �r.rr � w/Cr.rr � w/:

The operators L1 and L2 will play an important role in the analysis of the energy func-
tionals in the next section. An important observation is that they are symmetric operators
in the L2 spaces which occur in our energy functional Elin and in the norm H . For a more
in-depth discussion we separate them:

Lemma 3.3. Assume that r is Lipschitz continuous in the domain �, and nondegenerate
on the boundary � . Then the operatorL1, defined as an unbounded operator in the Hilbert
space H 0; 1��� D L2.r

1��
� /, with

D.L1/ WD
®
f 2 L2.r

1��
� / j L1f 2 L

2.r
1��
� / in the distributional sense

¯
;

is a nonnegative, self-adjoint operator.
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The proof is relatively standard and is left for the reader. Later in the paper, see
Lemma 5.2, we prove that L1 is coercive, and that it satisfies good elliptic bounds, which
in particular will allow us to identify the domain of L2 C L3 as

D.L1/ D H
2; 1C�2� ;

which is the first component of the H2 space.
Next we turn our attention to the operator L2. This is also a symmetric operator, this

time in the space L2.r
1
� /, which is the second component of H . However, it lacks full

coercivity as L2w only controls the divergence of w. For this reason, we will match it
with a second operator which controls the curl of w, namely

L3 D �r
� 1� div r1C

1
k curl D � div r curlCrr curl ;

so that L2L3 D L3L2 D 0. Then the operator L2 C L3 has the right properties:

Lemma 3.4. Assume that r is Lipschitz continuous in �, and nondegenerate on the
boundary � . Then the operatorL2CL3, defined as an unbounded operator in the Hilbert
space L2.r

1
� /, with

D.L2 C L3/ WD
®
f 2 L2.r

1
� / j .L2 C L3/f 2 L

2.r
1
� / in the distributional sense

¯
;

is a nonnegative, self-adjoint operator.

Later in the paper, as a consequence of Lemma 5.2, it follows thatL2CL3 is coercive,
and that it satisfies good elliptic bounds, which in particular will allow us to identify the
domain of L2 C L3 as

D.L2 C L3/ D H
2; 1C3�2� ;

which is the second component of the H2 space.

Remark 3.5. For the most part, we will think of L1 and L2 in a paradifferential fashion,
i.e. with the r-dependent coefficients localized at a lower frequency than the argument.
The exact interpretation of this will be made clear later on.

4. Difference bounds and the uniqueness result

Our aim here is to prove L2 difference bounds for solutions, which could heuristically be
seen as integrated10 versions of the estimates for the linearized equation in the previous
section. As a corollary, this will yield the uniqueness result in Theorem 1.

10Along a one-parameter C 1 family of solutions.



Compressible Euler in a physical vacuum 439

For this we consider two solutions .r1; v1/ and .r2; v2/ for our main system (1.4), and
seek to compare them. Inspired by the linearized energy estimate, we seek to produce a
similar weighted L2 bound for the difference

.s; w/ D .r1 � r2; v1 � v2/:

The first difficulty we encounter is that the two solutions may not have the same
domain. The obvious solution is to consider the differences within the common domain,

� D �1 \�2:

The domain � no longer has a C 1 boundary. However, if we assume that the two bound-
aries �1 and �2 are close in the Lipschitz topology, then� still has a Lipschitz boundary �
which is close to C 1. To measure the difference between the two solutions on the common
domain, we introduce the following distance functional:11

DH

�
.r1; v1/; .r2; v2/

�
D

Z
�t

.r1 C r2/
��1

�
.r1 � r2/

2
C �.r1 C r2/.v1 � v2/

2
�
dx;

where � D 1
�

throughout the section. We remark that the weight r1 C r2 vanishes on �
only at points where �1 and �2 intersect. Away from such points, both r1C r2 and r1 � r2
are nondegenerate; precisely, we have

jr1.x0/ � r2.x0/j D r1.x0/C r2.x0/; x0 2 �t :

Since both r1 and r2 are assumed to be uniformly Lipschitz and nondegenerate, it follows
that this relation extends to a neighborhood of x0,

jr1.x/ � r2.x/j � r1.x0/C r2.x0/; jx � x0j � r1.x0/C r2.x0/:

Then the first term in DH yields a nontrivial contribution in this boundary region:

Lemma 4.1. Assume that r1 and r2 are uniformly Lipschitz and nondegenerate, and close
in the Lipschitz topology. Then we haveZ

�t

jr1 C r2j
�C2d� . DH

�
.r1; v1/; r2; v2/

�
: (4.1)

One can view the integral in (4.1) as a measure of the distance between the two bound-
aries, with the same scaling as DH .

Now we can state our main estimate for differences of solutions:

Theorem 5. Let .r1; v1/ and .r2; v2/ be two solutions for system (1.4) in Œ0; T �, with
regularityrrj 2 zC 0;

1
2 , vj 2C 1, so that rj are uniformly nondegenerate near the boundary

and close in the Lipschitz topology, j D 1; 2. Then we have the uniform difference bound

sup
t2Œ0;T �

DH

�
.r1; v1/.t/; .r2; v2/.t/

�
. DH

�
.r1; v1/.0/; .r2; v2/.0/

�
:

11We do not prove or claim that this defines a metric.
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We remark that

DH

�
.r1; v1/; .r2; v2/

�
D 0 iff .r1; v1/ D .r2; v2/:

Thus, our uniqueness result in Theorem 1 can be viewed as a consequence of the above
theorem.

The remainder of this section is devoted to the proof of the theorem.

4.1. A degenerate difference functional

The distance functional DH which was introduced above is effective in measuring the
distance between the two boundaries because it is nondegenerate at the boundary. This,
however, turns into a disadvantage when we seek to estimate its time derivative. For this
reason, in the energy estimates for the difference it is convenient to replace it by a seem-
ingly weaker functional, where the weights do vanish on the boundary. Our solution is to
replace the r1 C r2 weights in DH with symmetric expressions in r1 and r2, which agree
to second order with r1 C r2 where r1 D r2, and also which vanish on �t D @�t .

Precisely, we will consider the modified difference functional

zDH

�
.r1; v1/; .r2; v2/

�
WD

Z
�t

.r1 C r2/
��1

�
a.r1; r2/.r1 � r2/

2
C �b.r1; r2/.v1 � v2/

2
�
dx; (4.2)

where for now the weights a and b are chosen as follows as functions of � D r1 C r2 and
� D r1 � r2:

(1) They are smooth, homogeneous, nonnegative functions of degree 0, respectively
1, even in �, in the region ¹0 � j�j < �º.

(2) They are connected by the relation �a D 2b.

(3) They are supported in ¹j�j < 1
2
�º, with a D 1 in j�j < 1

4
�.

For almost all the analysis these conditions will suffice. Later, almost of the end of the
section, we will add one additional condition, see (4.12), and show that such a condition
can be enforced.

Our objective now is to compare the two difference functionals. Clearly zDH . DH .
The next lemma proves the converse.

Lemma 4.2. Assume that A D A1 C A2 is small. Then

DH

�
.r1; v1/; .r2; v2/

�
�A zDH

�
.r1; v1/; .r2; v2/

�
: (4.3)

Proof. We need to prove the “.” inequality. To do that, we observe that by foliating�.t/
with lines transversal to � , the bound (4.3) reduces to the one-dimensional case. Denoting
the distance to the boundary by r and the value of r1 C r2 on the boundary by r0, we have
the relations

r1 C r2 � r C r0; a �
r

r C r0
; b � r:
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Then
zDH �

Z 1
0

r.r C r0/
��2

�
.r1 � r2/

2
C �.r0 C r/.v1 � v2/

2
�
dr:

On the other hand,

DH �

Z 1
0

.r C r0/
��1

�
.r1 � r2/

2
C �.r0 C r/.v1 � v2/

2
�
dr C r�C20 :

In the region where r � r0 we have jr1 � r2j � r0. Then we can evaluate the first part in
the zDH integral by Z cr0

0

r.r C r0/
��2.r1 � r2/

2 dr � r�C20 ;

thereby obtaining the integral in (4.1). Conversely, we haveZ cr0

0

.r C r0/
��1.r1 � r2/

2 dr � r�C20 ;

which gives the desired bound for the missing part of the first term of DH .
It remains to compare the v1 � v2 terms, where we also need to focus on the region

r � r0. Denote

Nv WD

−
r�r0

.v1 � v2/ dr

for which we can estimate
j Nvj2 . r���10

zDH :

Then for smaller r we can use the Hölder C
1
2 norm to estimate

jv1 � v2j
2 . j Nvj2 C Ar0:

Hence Z r0

0

.r C r0/
� .v1 � v2/

2 dr . r�C10 .j Nvj2 C Ar0/ . zDH ;

as needed.

4.2. The energy estimate

The second step in the proof of Theorem 5 is to track the time evolution of the degenerate
energy zDH :

Proposition 4.3. We have

d

dt
zDH

�
.r1; v1/; .r2; v2/

�
. .B1 C B2/DH

�
.r1; v1/; .r2; v2/

�
:

In view of Lemma 4.2, the conclusion of the theorem then follows if we apply the
Grönwall inequality.
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Proof of Proposition 4.3. To compute the time derivative of zDH .t/we use material deriv-
atives. But we have two of those, D1

t and D2
t , and it is essential to do the computations in

a symmetric fashion, so we will use the averaged material derivative

Dt D
1

2
.D1

t CD
2
t /:

Using equations (1.5), we compute difference equations

Dt .r1 � r2/ D �
�

2
.r1 � r2/r.v1 C v2/ �

�

2
.r1 C r2/r.v1 � v2/

�
1

2
.v1 � v2/r.r1 C r2/; (4.4)

Dt .v1 � v2/ D �r.r1 � r2/ �
1

2
.v1 � v2/r.v1 C v2/: (4.5)

We will also need a symmetrized sum equation

Dt .r1 C r2/ D �
�

2
.r1 C r2/r.v1 C v2/ �

�

2
.r1 � r2/r.v1 � v2/

�
1

2
.v1 � v2/r.r1 � r2/: (4.6)

We use these relations to compute the time derivative of the energy, using Lemma 3.2 with
v WD 1

2
.v1 C v2/. We have

jrv1j C jrv2j . B WD B1 C B2;

so the contribution of the r � v term is directly estimated by BDH .t/, and so are the
contributions of the first term in (4.4), the first two terms in (4.6), as well as the second
term in (4.5). Hence we obtain

d

dt
zDH .t/ D I1 C I2 C I3 CO.B/DH .t/;

where the contributions Ij are as follows:

(i) I1 represents the contributions of the averaged material derivative applied to the
first factor .r1 C r2/��1 via the third term (4.6), namely

I1 D �
� � 1

2

Z
.r1 C r2/

��2
�
a.r1; r2/.r1 � r2/

2
C �b.r1; r2/.v1 � v2/

2
�

� .v1 � v2/r.r1 � r2/ dx:

We separate the two terms as
I1 D J

a
1 CO.J2/;

where

J a1 D �
� � 1

2

Z
.r1 C r2/

��2a.r1; r2/.r1 � r2/
2.v1 � v2/r.r1 � r2/ dx
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and
J2 D

Z
.r1 C r2/

��1
jv1 � v2j

3 dx:

(ii) I2 represents the contributions of the averaged material derivative applied to the a
and b factors via the third12 terms in (4.4) and (4.6), namely

I2 D �
1

2

Z
.r1 C r2/

��1
�
a�.r1; r2/.r1 � r2/

2
C �b�.r1; r2/.v1 � v2/

2
�

� .v1 � v2/r.r1 � r2/ dx

�
1

2

Z
.r1 C r2/

��1
�
a�.r1; r2/.r1 � r2/

2
C �b�.r1; r2/.v1 � v2/

2
�

� .v1 � v2/r.r1 C r2/ dx:

We also split this into
I2 D J

b
1 C J

c
1 CO.J2/;

where

J b1 D �
1

2

Z
.r1 C r2/

��1a�.r1; r2/.r1 � r2/
2.v1 � v2/r.r1 � r2/ dx;

J c1 D �
1

2

Z
.r1 C r2/

��1a�.r1; r2/.r1 � r2/
2.v1 � v2/r.r1 C r2/ dx:

(iii) I3 represents the contribution of the averaged material derivative applied to the
quadratic factors .r1 � r2/2 and .v1 � v2/2 via the second and third terms in (4.4) and the
first term in (4.5):

I3 D ��

Z
.r1 C r2/

��1
�
a.r1; r2/.r1 � r2/.r1 C r2/r.v1 � v2/

C 2b.r1; r2/.v1 � v2/r.r1 � r2/
�
dx

�

Z
.r1 C r2/

��1a.r1; r2/.r1 � r2/.v1 � v2/r.r1 � r2/ dx:

This is the main term, where we expect to see the same cancellation as in the case of
the linearized equation. At this place we need the matching condition between a and b,
namely 2b D .r1C r2/a. Substituting this in and integrating by parts, we obtain an almost
full cancellation unless the derivative falls on a, namely

I3 D �

Z
.r1 C r2/

� .r1 � r2/.v1 � v2/ra.r1; r2/ dx D J
d
1 C J

e
1 ;

12The contributions of the first and second terms in (4.4) and (4.6) are directly bounded byO.B/DH .t/.
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where
J d1 D �

Z
.r1 C r2/

�a�.r1; r2/.r1 � r2/.v1 � v2/r.r1 C r2/ dx;

J e1 D �

Z
.r1 C r2/

�a�.r1; r2/.r1 � r2/.v1 � v2/r.r1 � r2/ dx:

The above analysis shows that

d

dt
zDH .t/ � J

a
1 C J

b
1 C J

c
1 C J

d
1 C J

e
1 CO.J2/CO.B1 C B2/DH .t/:

Hence, to prove (4.2), it remains to estimate the error terms,

J a1 C J
b
1 C J

c
1 C J

d
1 C J2 .A .B1 C B2/DH .t/:

A. The bound for J2. We begin with the bound for J2, which is simpler and will also be
needed later. As in Lemma 4.2, we can reduce the problem to the one-dimensional case
by foliating � with parallel lines nearly perpendicular to its boundary � . Again denoting
the distance to the boundary by r and the value of r1 C r2 on the boundary by r0, we have

DH .t/ D

Z 1
0

.r C r0/
��1

�
.r1 � r2/

2
C .r C r0/.v1 � v2/

2
�
dr C r�C20 :

Then, to estimate J2, it suffices to prove the L3 bound in the following interpolation
lemma:

Lemma 4.4. Let � > 0 and r0 > 0. Then we have the following interpolation bound in
Œr0;1/:

kr
��1
3 wk3

L3
. kr

�
2wk2

L2
kw0kL1 :

The lemma is applied with w D v1 � v2. Note that by direct integration the same
bound holds in all dimensions. Thus we obtain the following corollary:

Corollary 4.5. In the context of our problem we have

kr
��1
3 wk3

L3
. BDH .t/:

The same bound also holds if all norms are restricted to any horizontal cylinder (i.e.
transversal to �).

Proof. We think of this as some version of a Hardy-type inequality. The proof is based on
a similar argument, seen before in Section 2. We interpret r as being pointwise equivalent
with x and get

kr
��1
3 wkL3.0;1/ � kx

��1
3 wkL3.0;1/:

To get the result we integrate by parts and use the Hölder inequality as follows:Z 1
0

x��1w3 dx D �
3

�

Z 1
0

x�w2w0 dx:

Since we assumed that w0 2 L1.0;1/, we indeed get

kr
��1
3 wkL3.0;1/ �

3

�
kw0kL1kr

�
2wk2

L2
:
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B. The bound for J a
1

, J b
1

, J c
1

, J d
1

, and J e
1

. We group like terms and set

J a1 C J
b
1 C J

e
1 WD J

�
1 ; J c1 C J

d
1 WD J

C
1 ;

where we can express J�1 and JC1 in the form

J�1 D

Z
.r1 C r2/

��2a˙.r1; r2/.r1 � r2/
2.v1 � v2/r.r1 � r2/ dx;

with a� smooth and 0-homogeneous,

a�.r1; r2/D�
� � 1

2
a.r1; r2/�

1

2
.r1C r2/a�.r1; r2/C �.r1C r2/

2.r1� r2/
�1a�.r1; r2/;

respectively

JC1 D

Z
.r1 C r2/

�aC.r1; r2/.r1 � r2/.v1 � v2/r.r1 C r2/ dx;

with aC smooth and �1-homogeneous,

aC.r1; r2/ D
�
� �

1

2

�
a�.r1; r2/:

Here we have used the fact that a is 0-homogeneous, which yields �a� C �a� D 0. Also
we remark that a� vanishes in a conical neighborhood of � D 0, therefore we can also
think of the JC1 integrand as being at least cubic in r1 � r2.

Heuristically, one might think that after another round of integration by parts one might
place the derivative in J�1 either on v1 � v2, in which case we get good Grönwall terms,
or on r1 C r2, where we just discard it and reduce the problem to estimating an integral of
the form

J1 D

Z
�

.r0 C r/
��3
jv1 � v2j jr1 � r2j

3 dx:

Unfortunately such a strategy works only if � 2 .0; 1�; for larger � a problem arises,
having to do with potentially large contributions within a thin boundary layer.

Instead, to address the full range of �, we will develop the idea of separating a care-
fully selected boundary layer, where we provide a direct argument, whereas outside this
boundary layer we can use the simpler integration by parts idea above.

To understand our choice of the boundary layer, we consider first the much simpler
case when r1 � r2 D 0 and r.r1 � r2/ D 0 on the boundary, where r0 D 0 and

jr.r1 � r2/j . Br
1
2 ; jr1 � r2j . Br

3
2 : (4.7)

Then the estimate for J1 above reduces to the one-dimensional case, where we can simply
argue by the Hölder inequality:

J1 . kr
��1
3 .v1 � v2/kL3kr

2
9��

8
9 .r1 � r2/k

3

L
9
2

. kr
��1
3 .v1 � v2/kL3kr

��1
2 .r1 � r2/k

4
3

L2
kr�

3
2 .r1 � r2/k

2
3

L1k.r1 � r2/=rkL1

. BDH : (4.8)



M. Ifrim and D. Tataru 446

�2

�1

�
r0

cr3�in

Figure 2. The boundary layer of variable thickness cr3.

Unfortunately, in general the bound (4.7) will not hold, and we will separate the region
where it holds and the region where it does not hold.

Our boundary layer will depend on B , and will roughly be defined as the complement
of the region where (4.7) holds, with the additional proviso that it must have thickness at
least r0. For a rigorous definition, we start with the function r3 defined on the boundary �
of � as follows:

r3 D Cr0 C .B
�1r0/

2
3 C .B�1jr.r1 � r2/j/

2; (4.9)

where C is a fixed large universal constant. Then we define our boundary layer, based on
Figure 2, as

�in
D � \

[
x2�

B.x; cr3.x//;

as well as its enlargement

z�in
D � \

[
x2�

B.x; 4cr3.x//:

Here, c is a small universal constant.
We want this boundary layer to have a locally uniform geometry. This is ensured by a

slowly-varying-type property of the function r3.

Lemma 4.6. We have

jr3.x/ � r3.y/j . r
1
2
3 .x/jx � yj

1
2 C jx � yj C r

1
2
0 r

1
2
3 :

Proof. We consider each of the three components of r3 in (4.9). For the first one we simply
use the Lipschitz bound for r0. For the second one, we use the zC 0;

1
2 bound on rr1 and

rr2 to estimate

jr0.x/ � r0.y/j . jx � yj jrr0j C B.jx � yj
3
2 C r0.x/

1
2 jx � yj/

. B.jx � yjr
1
2
3 C jx � yj

3
2 /;

which suffices. Finally, for the last term we have

jr.r1 � r2/.x/ � r.r1 � r2/.y/j . B.r
1
2
0 .x/C jx � yj

1
2 /;

which is again enough.
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This property ensures that �in and z�in are separate:

Lemma 4.7. There exists a smooth cut-off function 0 � � � 1 in � with the following
properties:

(a) Support: � D 1 in �in and � D 0 in � n z�in.

(b) Regularity: j@˛�.x/j . .r1 C r2/
�j˛j.

Proof. For y 2 � we define the function

G.y/ D min
x2�
jx � yjr3.x/

�1

so that �in, z�in are described by

�in
D
®
G.y/ � c

¯
; z�in

D
®
G.y/ � 4c

¯
:

Then we can use the function G to describe the separation between �in and � n z�in. Pre-
cisely, it suffices to show that we can control the Lipschitz constant for G in the transition
region,

c � G.y/ � 4c ) jrG.y/j . r�1:

Since G is an infimum, it suffices to show the same for each of its defining functions.
Equivalently, it suffices to show that if y is in the transition region then

c � jx � yjr3.x/
�1
� 4c ) r.y/ . r3.x/:

Let z be the closest point to y on the boundary, so that r.y/ � jy � zj. Then the first
relation implies that

jx � zj � 8cr3.x/:

Since c is small, Lemma 4.6 shows that r3.z/ � r3.x/. Since we are in the transition
region, we must also have

jx � zj � cr3.z/;

as needed.

Finally, we verify that we have good control over r1 � r2 on the outer region:

Lemma 4.8. The good bound (4.7) holds outside �in.

Proof. Let y 62 �in, and x be the closest point to y on the boundary. Then

r.y/ � jx � yj � cr3.x/:

Using the zC 0;
1
2 bound for r.r1 � r2/ along the Œx; y� line, we have

jr.r1 � r2/.z/ � r.r1 � r2/.x/j . B.r0.x/
1
2 C jz � xj

1
2 /:
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If we use this directly we obtain

jr.r1 � r2/.y/j . jr.r1 � r2/.x/j C B.r0.x/
1
2 C jz � xj

1
2 /

. B.r3.x/
1
2 C jy � xj/ . Br.y/

1
2 :

If instead we integrate it between x and y then we obtain

j.r1 � r2/.y/j . r0.x/C jx � yj jr.r1 � r2/.x/j C B.r0.x/
1
2 jx � yj C jx � yj

3
2 /

. Br3.x/
3
2 C Br3.x/

1
2 jx � yj C B.r0.x/

1
2 jx � yj C jx � yj

3
2 /

. Br
3
2
3 :

Now we use the cutoff � to split each of the above integrals in two, and estimate each
of them in turn.

B.1. The estimate in the outer region. Here we insert the cutoff .1 � �/ in each of the
two integrals J˙1 , and integrate by parts in J�1 . Precisely, the outer part of J�1 is

J
�;out
1 D

Z
.1 � �/.r1 C r2/

��2a�.r1; r2/.r1 � r2/
2.v1 � v2/r.r2 � r1/ dx:

The �-dependent part of the integrand is

�2a�.�; �/r�:

In order to be able to integrate by parts, we define a function c.�; �/ in the region of
interest j�j < � by

@�c.�; �/ D �
2a�.�; �/; c.�; 0/ D 0:

By definition, c is smooth, homogeneous of order three, and satisfies

jc.�; �/j . �3; j@�c.�; �/j . ��1�3:

Then we can write

�2a.�; �/r� D rc.�; �/ � @�c.�; �/r�:

We substitute this in J�;out
1 to obtain

J
�;out
1 D

� � 1

2

Z
.1 � �/.r1 C r2/

��2.v1 � v2/rc dx

C

Z
.1 � �/.r1 C r2/

��2c�.v1 � v2/r�dx:

In the first integral we integrate by parts. If the derivative falls on v1 � v2 we get a Grön-
wall term. Else, it falls on �, which we discard, or on �, where we use Lemma 4.7. Hence
we obtain

J
�;out
1 .

Z
�n�in

.r0 C r/
��3
jv1 � v2j jr1 � r2j

3 dx CO.B1 C B2/DH .t/:

In view of Lemma 4.8, we can estimate the integral as in (4.8) and conclude.

The argument for J b;out
1 is similar but simpler, as no integration by parts is needed.
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B.2. The estimate in the boundary layer region. To fix scales, we use the slowly varying
property of r3 in Lemma 4.6 to partition z�in into cylinders Cx0 centered at some point
x0 2 � , with radius 4cr3.x0/ and similar height, and correspondingly, we partition our
integrals using an appropriate locally finite partition of unity,

� D
X

�x0 ;

where each �x0 is smooth on the r3.x0/ scale. Within this cylinder we will think of r3 as
a constant, r3 D r3.x0/.

Denoting

J
�;x0
1 D

Z
Cx0

�x0.r1 C r2/
��2a�.r1; r2/.r1 � r2/

2.v1 � v2/r.r1 � r2/ dx;

and similarly for JC1 , our objective will be to show that in each such component we have

J
˙;x0
1 . BD

x0
H
; (4.10)

where Dx0
H

denotes the integral in DH but with the added cutoff �x0 . After summation
over x0 this will give the desired estimate. We will consider separately the cases when B
is small or large.

As a prerequisite to the proof of (4.10), we consider pointwise difference bounds
within Cx0 . We begin with r1 � r2. By construction, within Cx0 we have

jr.r1 � r2/j . Br
1
2
3 ; jr1 � r2j . Br

3
2
3 :

In particular, this yields

r0 . Br
3
2
3 ;

and the improved pointwise bound

jr1 � r2j . r0 C Brr
1
2
3 ; (4.11)

where we observe that r0 need not be constant on the boundary within Cx0 .
Depending on the relative size of B and r3 we will distinguish two scenarios:

Lemma 4.9. One of the following two scenarios applies in Cx0 :

(a) Either r0.x0/� r3, in which case we must have B
p
r3 . 1,

(b) or r0 � r3, in which case we must have B
p
r0 & 1.

We will refer to the first case as the small B case and the second as the large B case.

Proof of Lemma 4.9. We start by comparing r0.x0/with r3. If r3 � r0, then we must have

r0 & .B�1r0/
2
3 ;

and further B & .r0/
� 12 , which places us in case (b).
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If r3 � r0.x0/, then we have two nonexclusive possibilities. Either we have

r3 � .B
�1r0/

2
3 � r0;

which yields B2 � r20 r
�3
3 � r�13 , placing us in case (a), or we have

r3 � B
�2
jr.r1 � r2/j

2 . B�2;

which places us again in case (b).

In addition to bounds for r1 � r2, we also need bounds for v1 � v2. We will show that
within the same cylinder we have a good uniform bound for v1 � v2:

Lemma 4.10. Within Cx0 we have

jv1 � v2j . Br3 C .D
x0
H
/
1
2 r
�
�C1
2

3 r
� d�12
3 :

Proof. Denote by .v1 � v2/avg the average of v1 � v2 in the region

zCx0 D Cx0 \
®
r & 1

2
r3.x/

¯
;

which represents an interior portion of Cx0 away from the boundary. We estimate this
using the distance Dx0

H
, where we observe that within zCx0 we have b � r3. Then we

obtain
rd3 r

�
3 .v1 � v2/avg . D

x0
H
:

To obtain the full bound for v1 � v2 we combine this with the B Lipschitz bound, which
yields

jv1 � v2j . Br3 C j.v1 � v2/avgj

within the full cylinder Cx0 .

B.2.a. The case of large B. We recall that in this case we have the relations r3 D r0 and
B
p
r0 & 1. Consider J�;x01 first. We discard the gradient terms, bound r1 � r2 by r0, and

use Lemma 4.10 for v1 � v2. This yields

J
�;x0
1 . rd0 r

�
0 .Br0 C .D

x0
H
/
1
2 r
�
�C1
2

0 r
� d�12
0 /:

On the other hand, a localized version of (4.1) yields

r�C20 . r
�.d�1/
0 D

x0
H
:

Combining the last two bounds gives

J
�;x0
1 . D

x0
H
.B C r

� 12
0 / . BD

x0
H
;

as needed. The argument for JC;x01 is identical.
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B.2.b. The case of small B. We recall that this corresponds to r0 � r3 and B
p
r3 . 1.

This is the more difficult case.
The first observation concerning the cylinder Cx0 is that r1 � r2 is large there on

average, of size Br
3
2
3 . This is reflected in a bound from below for Dx0

H
:

Lemma 4.11. Assume we are in the small B case. Then we have

B2r�C33 rd�13 . D
x0
H
:

Proof. We approximate r1 � r2 near x0 with its linear expansion,

.r1 � r2/.y/ D r0 Cr.r1 � r2/.x0/.y � x0/CO.B.r
1
2
0 C jx0 � yj

1
2 /jx0 � yj/:

Within Cx0 this can be simplified to

.r1 � r2/.y/ D r0 Cr.r1 � r2/.x0/.y � x0/CO.Br
1
2
3 jx0 � yj/:

Now we consider a small interior ball

B D B.x0 C 2rN; r/; r0 < r < cr3;

where we have a � 1 and r1 C r2 � r , and use Dx0
H

to estimate

r��1
Z
B

jr0 Cr.r1 � r2/.x0/.y � x0/j
2 dy . r��1rd .Br

3
2 /2 CD

x0
H
:

The integral on the left is easily evaluated, to get

r��1rd .r20 C r
2
jr.r1 � r2/.x0/j

2/ . r��1rd .Br
3
2 /2 CD

x0
H
:

We can compare the constants on the left and the first term on the right. We know that

r3 � max
®
.B�1r0/

2
3 ; .B�1jr.r1 � r2/.x0/j/

2
¯
:

If the first quantity on the right is larger, then

r0 D Br
3
2
3

and we obtain
r��1rd .Br

3
2

3 /
2 . r��1rd .Br

3
2 /2 CD

x0
H
:

Choosing r D cr3 with a small constant c, the first term on the right is absorbed on the
left and we arrive at the desired conclusion.

If the second quantity on the right is larger, then

jr.r1 � r2/.x0/j D Br
1
2

3 ;

and we obtain
r��1rd r2.Br

1
2
3 /
2 . r��1rd .Br

3
2 /2 CD

x0
H
:

Hence we can conclude exactly as before.
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The above lemma allows us to slightly improve Lemma 4.10 to the following lemma:

Lemma 4.12. Assume that B is small. Then within Cx0 we have

jv1 � v2j . .D
x0
H
/
1
2 r
�
�C1
2

3 r
� d�12
3 :

We are now ready to estimate the first integral:

J
�;x0
1 .

Z
Cx0

.r0 C r/
��2.r1 � r2/

2
jv1 � v2j jr.r2 � r1/j dx

. Br
1
2
3 r
�
�C1
2

3 r
� d�12
3 .D

x0
H
/
1
2

Z
Cx0

.r0 C r/
��2.r0 C Brr

1
2
3 /
2 dr dx0

. Br
1
2
3 r
�
�C1
2

3 r
� d�12
3 .D

x0
H
/
1
2

�Z
r�C10 dx0 C r

d�1
3 B2r�C23

�
. Br

1
2
3 r
�
�C1
2

3 r
� d�12
3 .D

x0
H
/
1
2 rd�13 ..Br

3
2
3 /
�C1
C B2r�C23 /

. .D
x0
H
/
1
2B2r

d�1
2

3 r
�C3
2

3 ..B
p
r3/

�
C B
p
r3/

. BD
x0
H
:

It remains to estimate JC;x01 , which we recall here:

J
C;x0
1 D C

Z
�x0��

�a�.v1 � v2/r�dx; C D � �
1

2
:

Aside from the obvious cancellation when � D 1
2

, we would like to integrate by parts in
order to move the derivative away from �. To implement this integration by parts, we need
an auxiliary function c.�; �/ so that

@�c.�; �/ D �
�a�:

Suppose we have such a function c which is smooth, homogeneous of order � , and sup-
ported in j�j . j�j < �. Then integration by parts yields

J
C;x0
1 D C

Z
�x0�c�.�; �/.v1 � v2/r�dx

D �C

Z
�x0�c.�; �/r � .v1 � v2/ dx

� C

Z
�x0.c.�; �/C �c�.�; �//.v1 � v2/r� dx

� C

Z
�c.�; �/.v1 � v2/r�x0 dx:

In the first integral we bound r � .v1 � v2/ by B , and then bound the rest by Dx0
H

since
� � � in the support of the integrand. The second integral is similar to J a;x01 . Finally, in
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the third integral the gradient of �x0 yields an r�13 factor, and we can estimate it using
Lemma 4.12 and the bound (4.11) for r1 � r2 by

. r�13

Z
Cx0

.r1 � r2/
�C2
jv1 � v2j dx

. rd�13 .r3r
�C2
0 C .B

p
r3/

�C2r�C33 /.D
x0
H
/
1
2 r
�
�C1
2

3 r
� d�12
3

. BD
x0
H ;

where at the last step we bound r0 . Br
3
2
3 twice, r0 � r3 for the rest of r0; and then use

Lemma 4.11; the powers of r3 will all cancel, as predicted by scaling considerations.
It remains to show that we can find such a function c. This is where a convenient

choice of a helps. Precisely, we want a to be nonnegative, even in �, supported in j�j < �
and equal to 1 when j�j � �. To avoid boundary terms in the integration by parts, we
will choose c with similar support. But we also want c to be smooth and homogeneous,
and then we will have an issue at � D 0, unless we can arrange for c to also be supported
away from � D 0. But this will happen only ifZ

��a� d� D 0: (4.12)

Lemma 4.13. There exists a good choice for a which satisfies (4.12).

Proof. We will take advantage of the fact that the function �� is increasing, as follows.
We start with a choice a0 for a which is nonincreasing. That would make the integral in
(4.12) positive. To correct this we use a nonnegative, compactly supported bump function
a1. Its contribution will be negative, as it can be seen integrating by parts:Z

��a1;� d� D �
1

� C 1

Z
��C1a1 d�:

Then we choose a D a0 C Ca1, with C > 0 chosen so that the two contributions to the
integral in (4.12) cancel.

The proof of Proposition 4.3 is concluded.

5. Energy estimates for solutions

Our objective here is to prove Theorem 3. More precisely, we aim to establish uniform
control over the H2k norm of the solutions .v; r/ in terms of the similar norm of the initial
data, with growth estimated in terms of the control parameters A;B . The key to this is to
characterize these norms using energy functionals constructed with suitable vector fields
naturally associated to the evolution.
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5.1. The div-curl decomposition

A first step in our analysis is to understand the structure of our system of equations. In
the nondegenerate case, it is known that at leading order the compressible Euler equations
decouple into a wave equation for .r;r � v/ and a transport equation for!D curlv. We will
show that the same happens here. Of course, algebraically the computations are identical.
However, interpreting the coupling terms as perturbative is far more delicate in the present
context.

We begin with a direct computation, which yields the following second-order wave
equation for r :

D2
t r D �r�r C �

2r jr � vj2 C �rv.rv/T;

with speed of propagation (sound speed)

cs D �r;

where r � v corresponds to the (material) velocity

��r � v D r�1Dtr:

On the other hand, for the vorticity we obtain the transport equation

Dt! D �!rv � .rv/
T!:

These two equations are coupled, so it is natural to consider them at matched regularity
levels, but we will use different energy functionals to capture their contributions to the
energy.

5.2. Vector fields

Our energy estimates will be obtained by applying a number of well-chosen vector fields to
the equation in a suitable fashion, so that the differentiated fields obtained as the outcome
solve the linearized equation with perturbative source terms. We do this separately for the
wave component and for the transport part:

(a) Vector fields for the wave equation: Here we use all the vector fields which com-
mute with the wave equation at the leading order. There are two such vector fields, which
generate an associated algebra:

(a1) the material derivative Dt : this has order 1
2

,

(a2) the tangential derivatives �ij D ri@j � rj @i : these have order 1.

We will only useDt in this article, but note that a similar analysis works for the tangential
derivatives.

(b) Vector fields for the transport equation: Here we have more flexibility in our
choices, again generating an algebra:

(b1) the material derivative Dt : this has order 1
2

,
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(b2) all regular derivatives @, of order 1,

(b3) multiplication by r , which has order �1.

To avoid negative orders here, one may replace r by r@2, which has order 1.

5.3. The energy functional

Here we define energy functionals E2k.r; v/ of order k, i.e. which involve combinations
of vector fields of orders up to k. We will set this up as the sum of a wave and a transport
component,

E2k.r; v/ D E2kw .r; v/CE
2k
t .r; v/:

(a) The wave energy: Here we want to use operators of the form

D
j
t ; j � 2k

applied to the solution .r; v/. However, we would like to have these defined in terms of
the data at each fixed time, rather than dynamically. Algebraically this is easily achieved
by reiterating the equation. We define

.rj ; vj / D .D
j
t r;D

j
t v/;

which should be viewed as discussed above, as nonlinear13 functions of .r; v/ at fixed
time.

One might hope that these functions should be good approximate solutions for the
linearized equations. Unfortunately, this is not exactly the case even for .r1; v1/. This is
because, unlike @, Dt does not exactly generate an exact symmetry of the equation. The
solution to this difficulty is to work with associated good variables, obtained by adding
suitable corrections to them. We denote these good variables by .sj ; wj /, and define them
as follows:

(i) j D 0: .s0; w0/ D .r; v/.

(ii) j D 1: .s1; w1/ D @t .r; v/.

(iii) j D 2: .s2; w2/ D .r2 C
1
2
jrr j2; v2/.

(iv) j � 3: .sj ; wj / D .rj � rr � wj�1; vj /.

We now define the wave component of the energy as

E2kw .r; v/ D
X
j�k

k.s2j ; w2j /k
2
H ;

13Strictly speaking, at leading order these are linear expressions, so the better terminology would be
quasilinear.
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where we recall that H defined in (1.7) represents the natural energy functional for the
linearized equation. In the sequel we will use these good variables only for even j , but for
the sake of completeness we have listed them for all j .

(b) The transport equation: Here we consider a simpler energy, namely

E2kt .r; v/ D k!k
2

H2k�1;kC 1�
;

which at leading order scales in the same way as the wave energy above. One can think
of this energy as the outcome of applying vector fields up to and including order k to the
vorticity !.

5.4. Energy coercivity

Our goal here is to prove the equivalence of the energy E2k with the H2k size of .r; v/.

Theorem 6. Let .r; v/ be smooth functions in x� so that r is positive in � and uniformly
nondegenerate on � D @�. Then we have

E2k.r; v/ �A k.r; v/k
2
H2k :

Proof. (a) We begin with the easier part “.”. This is obvious for the vorticity component
so it remains to discuss the wave component.

We consider the expressions for .s2k ; w2k/. These are both linear combinations of
multilinear expressions in r and rv with the following properties:

• They have order k � 1, respectively k � 1
2

.

• They have exactly 2k derivatives.

• They contain at most k C 1, respectively k factors of r or its derivatives.

These properties suffice in order to be able to distribute the powers of r and use the inter-
polation inequalities in Proposition 2.14. We will demonstrate this in the case of s2k ; the
case of w2k is similar. A multilinear expression in s2k has the form

M D ra
JY
jD1

@nj r

LY
lD1

@mlv;

where nj � 1, ml � 1, X
nj C

X
ml D 2k;

and14

aC J C L=2 D k C 1:

We seek to split
a D

X
bj C

X
cl ;

14Here we allow for J D 0 or K D 0, in which case the corresponding products are omitted.
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and correspondingly

M D

JY
jD1

rbj @nj r

LY
lD1

rcl @mlv;

so that we can apply our interpolation inequalities from Proposition 2.14, respectively
Proposition 2.15. These will give bounds of the form

krbj @nj rk
L
pj .r

1��
� /

. A
1� 2

pj k.r; v/k

2
pj

H2k ;
1

pj
D
nj � 1 � bj

2.k � 1/
;

respectively

krcl @ml rk
Lql .r

1��
� /

. A
1� 2

ql k.r; v/k
2
ql

H2k ;
1

ql
D
ml �

1
2
� cl

2.k � 1/
;

where the denominators represent the orders of the expressions being measured, so they
add up to k � 1 as needed.

It only remains to verify that the bj and the cl can be chosen in the range where our
interpolation estimates apply, which is

0 � bj � .nj � 1/
k

2k � 1
;

respectively

0 � cl � .ml �
1
2
/
k C 1

2

2k � 1
2

:

To verify that we can satisfy these conditions we needX
.nj � 1/

k

2k � 1
C

X
.ml �

1
2
/
k C 1

2

2k � 1
2

� a:

But the sum on the left is evaluated by

�

�X
nj C

X
ml � J �L

�
k

2k � 1
D .2k � J �L/

k

2k � 1
� .aC k � 1/

k

2k � 1
� a

using a � k. Here, equality holds only if a D k, J D 1, and L D 0, i.e. for the leading
linear case.

(b) We continue with the “&” part. To do this we will argue inductively, relating .s2j ;w2j /
with .s2j�2; w2j�2/. This is done using the transition operators L1 and L2 introduced
earlier.

Lemma 5.1. For j � 2 we have a pair of homogeneous recurrence-type relations

s2j D L1s2j�2 C f2j ; w2j D L2w2j�2 C g2j ; (5.1)

where f2j and g2j are also multilinear expressions as above, of order j � 1, respectively
j � 1

2
, but with the additional property that they are non-endpoint, i.e. they contain at

least two factors of the form @2Cr or @1Cv.
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Proof. We begin with the first relation, for which we first discuss the generic case j � 3.
We begin expanding the expression of s2j , and then continue calculating the left-hand side
of (5.1). We have

s2j D .�r�Crr � r/.r2j�2 � rr � w2j�3/C f2j : (5.2)

The left-hand side expands as

s2j D r2j � rr � w2j�1 D D
2j
t r � rr �D

2j�1
t v: (5.3)

Each of the two terms appearing in the expression above can be further analyzed. For the
first term on the right-hand side in (5.3) we have

D
2j
t r D D

2j�2
t .D2

t r/ D D
2j�2
t .�r�r C �2r jr � vj2 C �rv.rv/T/: (5.4)

The last two terms already satisfy the non-endpoint property, so we are left to process the
first term on the right-hand side of (5.4) further:

D
2j�2
t .�r�r/ D �

2j�2�mX
mD0

�
2j � 2

m

�
D
2j�2�m
t rDm

t �r:

We note that Dm
t �r gives at least @2Cr derivatives, and for any m ¤ 2j � 2 the claim

is obvious, as we have that one material derivative on r will produce @1Cv derivatives.
Hence, the more difficult case is when m D 2j � 2; we discuss it further:

�rD
2j�2
t �r D �rD

2j�3
t .Dt�r/ D �rD

2j�3
t .Dt�r/: (5.5)

We commute the material derivative with the Laplacian using the formula

ŒDt ; �� D ��v � r � rvr
2; (5.6)

and (5.5) gives

�rD
2j�2
t �r D �rD

2j�3
t .Dt�r/

D �rD
2j�3
t .�Dtr ��v � rr � rvr

2r/

D �rD
2j�3
t .�Dtr/ � �rD

2j�3
t .�v � rr/ � �rD

2j�3
t .rvr2r/: (5.7)

The last term in the expression above gets absorbed into f2j . For the next-to-last term we
have

��rD
2j�3
t .�vrr/ D ��r

2j�3X
kD0

�
2j � 3

�

�
D
2j�3�k
t .�v/Dk

t .rr/:

We distribute and commute all the material derivatives to observe that all but one term
is readily in f2j (commuting Dt with r, or even better with � gives rise to rv � r,
respectively (5.6) terms, which ensures the non-endpoint property), namely

�D
2j�3
t .�v/rr:
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For this we need to commute the material derivatives with �:

D
2j�3
t .�v/rr D �.D

2j�3
t /vrr

D ŒD
2j�3
t ; ��vrr C�.D

2j�3
t v/rr

D ŒD
2j�3
t ; ��vrr C�v2j�3rr: (5.8)

The first term above is in f2j and the last term is part of the expression in (5.2).
For the first term in (5.7), we commute D2j�3

t with the Laplacian:

�rD
2j�3
t .�Dtr/ D �r

®
�D

2j�3
t .Dtr/C ŒD

2j�3
t ; ��Dtr

¯
:

We observe that the first term on the right-hand side above is �r�D2j�3
t .Dtr/ D

�r�r2j�2 which is one of the terms on the right-hand side of the expansion in (5.2).
The last term is included in f2j , as the commutator ŒD2j�3

t ; ��, for j � 2, will produce
at least one of each term in ¹rv;rrº.

We now deal with the last term in (5.3):

�rr �D
2j�1
t v D �rr �D

2j�2
t .�rr/

D rr �D
2j�3
t .Dtrr/

D rr �D
2j�3
t .ŒDt ;r�r CrDtr/

D rr �D
2j�3
t .�rv � rr CrDtr/: (5.9)

For the first term on the right-hand side of (5.9) we get

�rr �D
2j�3
t .rv � rr/ D �rr �

2j�3X
kD0

�
2j � 3

k

�
D
2j�3�k
t .rv/Dk

t rr

D �rr �

2j�3X
kD0

�
2j � 3

k

�
D
2j�3�k
t .rv/Dk�1

t .Dtrr/;

where we can, by inspection, see that almost all the terms are in f2j , except for the case
k D 0, i.e. the term D

2j�3
t .rv/rr . As before, we have

D
2j�3
t .rv/rr D ŒD

2j�3
t ;r�vrr CrrrD

2j�3
t v D ŒD

2j�3
t ;r�vrr Crrrv2j�3;

where the first term is in f2j and the last one (together with rr from (5.9)) gives another
term in (5.2), namely

rrrv2j�3rr: (5.10)

Lastly, we return to the last term in (5.9),

rr �D
2j�3
t .rDtr/;
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which we rewrite as

rr �D
2j�3
t .rDtr/ D rr � .ŒD

2j�3
t ;r�Dtr Cr.D

2j�2
t r//

D rr � ŒD
2j�3
t ;r�.Dtr/Crr � rr2j�2:

This finishes the proof of (5.1) for the s2j formula in the case j � 3: the first term is part
of f2j and the last one appears in (5.2).

The argument for the case j D 2 is similar. The only difference occurs at the very
end, where we collect the contribution of the last term in (5.8) (with the corresponding �r
factor) and the expression in (5.10) and rewrite them as follows:

�rrr�rr Crrr2rrr D L1.
1
2
jrr j2/C �r jr2r j2;

where the last term goes into f4.
For thew2j there is no difference in the case j D 2. The formula we are asked to show

is
w2j D �r.rr � w2j�2/Cr.rr � w2j�2/C g2j : (5.11)

As before, we expand the left-hand side of (5.11) and peel off the terms that belong to
g2j , and then inspect that the remaining terms match its right-hand side:

w2j DD
2j�1
t .Dtv/D�D

2j�1
t .rr/D�D

2j�2
t .Dtrr/D�D

2j�2
t .rDtr Crv � rr/;

which gives

w2j D �
®
rD

2j�2
t .rr � v/C ŒD

2j�2
t ;r�.rr � v/

¯
�D

2j�2
t .rv � rr/ WD IC IIC III:

The commutator term II gets absorbed into g2j . For I we note that all but one of the terms
have the non-endpoint property, namely �r.rrD2j�2

t v/ D �r.rrw2j�2/, which is part
of the right-hand side of (5.11). Lastly, for III we have

D
2j�2
t .rv � rr/ D

2j�2�mX
mD0

�
2j � 2

m

�
D
2j�2�m
t .rv/ �Dm

t .rr/:

The case m D 0 gives

D
2j�2
t .rv/ � rr D .rD

2j�2
t v C ŒD

2j�2
t ;r�v/ � rr:

The commutator term belongs to g2j , and hence we are left with

rv2j�2 � rr;

which is again part of the right-hand side of (5.11).

To take advantage of the above recurrence lemma, we will need a pair of elliptic esti-
mates for the operators L1, L2. There is one small matter to address, which is that we
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would like these bounds to depend only on our control parameter A, whereas L2 contains
second derivatives of r in the coefficients. This can be readily rectified by replacing L2 by

QL2 D �rrr C rrr;

or in coordinates, to avoid ambiguity in notation,

. QL2/ij D �@ir@j C @j r@i :

We note that the difference between L2w and QL2w is the expression r2rw, whose con-
tribution can be harmlessly placed in g2j in (5.1).

Set
� WD

1

2�
:

Then we have the following lemma:

Lemma 5.2. Assume that A is small. Then the following elliptic estimates hold:

ksk
H
2;�C 12

. kL1sk
H
0;�� 12

C ksk
H
0;�C 12

; (5.12)

respectively

kwkH2;�C1 . k QL2wkH0;� C k curlwkH1;�C1 C kwkH0;�C1 (5.13)

and
kwkH2;�C1 . k. QL2 C L3/wkH0;� C kwkH0;�C1 : (5.14)

Remark 5.3. We note that in essence this estimate has a scale-invariant nature. The lower-
order term added on the right plays no role in the proof, and can be dropped if either
.s; w/ are assumed to have small support (by the Poincaré inequality), or if we use the
corresponding homogeneous norms on the left.

We will in fact need a more general result, where theL1 and QL2 operators are replaced
by Lb1 and QLb2, respectively, where b > 0:

Corollary 5.4. The results in Lemma 5.2 also hold when L1 and QL2 are replaced by Lb1
and QLb2, for b > 0, where

Lb1 D .�rr C .1C b�/rr/ � r;
QLb2 WD �rrr C .1C �b/rrr:

This is a direct consequence of the proof of Lemma 5.2, rather than of the lemma.

Proof of Lemma 5.2. We first observe that the bound (5.13) is a direct consequence of
(5.14) since L3w is a function of curlw. Hence it suffices to prove (5.12) and (5.14).

Before we delve fully into the proof, we note that we have the relatively standard
weaker elliptic bounds

ksk
H
2;�C 12

.A kL1sk
H
0;�� 12

C ksk
H
1;�� 12

;
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respectively
kwkH2;�C1 .A k. QL2 C L3/wkH0;� C kwkH1;� :

For these bounds we only need integration by parts, treating the first-order terms in both
L1 and QL2 CL3 perturbatively, and using only the pointwise bound for rr . We leave this
straightforward computation to the reader.

Taking the above bounds into account, our bounds (5.12) and (5.14) reduce to the
scale-invariant estimates

krsk
H
0;�C 12

. kL1sk
H
0;�� 12

;

respectively
krwkH0;�C1 . k. QL2 C L3/wkH0;� :

We consider (5.12) first, where we proceed using a simple integration by parts. To
avoid differentiating r twice, we assume that at some point rr.x0/ D en. Then in our
domain we have

jrr � enj . A� 1:

We computeZ
r
1��
� .�rr C rr/rs � @ns dx D

Z
�r

1
��s@ns C r

1��
� .j@nsj

2
CO.A/jrsj2/ dx

D
1

2

Z
r
1��
� jrsj2 CO.A/jrsj2 dx;

which suffices by the Cauchy–Schwarz inequality.
Next we consider the bound (5.13) for the v component, where

r
1
� .. QL2 C L3/w/i D �Œ@ir@jwj C @j r.@jwi � @iwj /�

C @j r@iwj C @j r.@jwi � @iwj /

D �Œ@j .r
1
�C1@jwi /C r

1
� .@ir@jwj � @j r@iwj /�:

We use a computation similar to the one before, integrating by parts and using the fact that
all the tangential derivatives of r are O.A/ and its normal derivative is 1CO.A/:Z

r
1
� . QL2 C L3/w � @nw dx

D �

Z
�r

1
�C1@jwi@n@jwi C r

1
�
�
.@ir@jwj � @j r@iwj /@nwi CO.A/jrwj

2
�
dx

D �

Z
r
1
�

h1
2

�1
�
C 1

�
j@jwi j

2
C @jwj @nwn � @nwj @jwn CO.A/jrwj

2
i
dx:

We claim that the above expression can be bounded from below by

� .1 �O.A//

Z
r
1
� jrwj2 dx:
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To see that, we cancel the two j@nwnj2 terms, and restricting indices below to k;m ¤ n,
we have to show that

�

Z
r
1
� .@kwk@nwn � @nwk@kwn/ dx .

1

2

Z
r
1
� Œj@jwi j

2
CO.A/jrwj2� dx: (5.15)

Indeed, we can bound the expression on the left by Cauchy–Schwarz as

�

Z
r
1
� .@kwk@nwn � @nwk@kwn/ dx

.
1

2

Z
r
1
�

�ˇ̌̌̌n�1X
kD1

@kwk

ˇ̌̌̌2
C j@nwnj

2
C

n�1X
kD1

.j@nwkj
2
C @kwnj

2/

�
dx:

If we can establish that the first term on the right admits the equivalent representationZ
r
1
�

ˇ̌̌̌n�1X
kD1

@kwk

ˇ̌̌̌2
dx D

Z
r
1
�

� n�1X
k;mD1

@kwm@mwk CO.A/jrwj
2

�
dx;

then (5.15) follows by one more application of Cauchy–Schwarz. This last bound, in turn,
reduces to the relation

Ikm WD

Z
r
1
� .@kwm@mwk � @mwm@kwk/ dx D O.A/

Z
r
1
� jrwj2 dx: (5.16)

In the model case r D xn, the left-hand side is exactly zero, integrating by parts. In the
general case, we arrive at almost the same result after a more careful integration by parts:

Ikm D

Z
r
1
�C1@n.@kwm@mwk � @mwm@kwk/ dx CO.A/

Z
r
1
� jrwj2 dx

D

Z
r
1
�C1@k.@nwm@mwk � @mwm@nwk/C @m.@nwk@kwm � @kwk@nwm/ dx

CO.A/

Z
r
1
� jrwj2 dx

D O.A/

Z
r
1
� jrwj2 dx:

This concludes the proof of (5.16), and thus the proof of the lemma.

The above setup suffices in order to prove our coercivity bounds. We will successively
establish the estimates

k.s2j�2; w2j�2/kH2k�2jC2

. k.s2j ; w2j /kH2k�2j CO.A/k.r; v/kH2k ; 1 � j � k: (5.17)

Concatenating these bounds we get the desired estimates in the theorem, where the errors
are absorbed using the smallness condition A� 1.
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The case j D k follows directly from Lemma 5.2 above, using the interpolation esti-
mates to get smallness for .f2k ; g2k/, in the sense that

k.f2k ; g2k/kH .A Ak.r; v/kH2k :

The case 2 � j < k requires an additional argument. Precisely, we will seek to apply
Lemma 5.2 to functions .s; w/ of the form

s D Ls2j�2; w D Lw2j�2;

where L is any operator in the right class,

L D ra@b; 2a � b � 2.k � j /:

To do that, we need to have a good relation between L.s2j ; w2j / and L.s2j�2;

w2j�2/. To achieve this, we apply L in (5.1). For s2j this yields

L1Ls2j�2 D Ls2j � ŒL;L1�s2j�2 � Lf2j ;

where we need to examine the commutator term more closely. To keep the analysis simple
it suffices to argue by induction on a, beginning with a D 0. All terms in the commutator,
where at least one r factor gets differentiated twice, are non-endpoint terms, and can be
estimated by interpolation. All terms in the commutator where two r factors get differen-
tiated are taken care of by the induction in a. Finally, all terms where only one r term is
differentiated are also taken care of by the induction in a, unless aD 0. Thus if a > 0 then
all commutator terms are estimated either as error terms or via the induction hypothesis.

So the only nontrivial case is when a D 0. In this case it is convenient to consider a
frame .x0; xn/ adapted to the free surface, so that

j@0r j . A; j@nr � 1j . A:

Then all commutators with tangential derivatives are error terms, and the only nontrivial
commutator terms are those with @n. For these, we write modulo good O.A/ error terms

Œ@bn; L1� � b�@
b�1
n � brr � r@bn C b@

b�1
n .@0/2:

The contribution of the first term on the right can be included in L1, akin to a conjugation.
The contribution of the second term on the right can be viewed as an induction term if we
phrase the argument as an induction in the number b of normal derivatives. Then we can
write

@bnL1 � L
b
1@
b
n;

where
Lb1 D .�rr C .1C b�/rr/ � r;

for which we can still apply the analysis in Lemma 5.2.
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Finally, we consider the case j D 1, where the relation in Lemma 5.1 is not exactly
true, but it is essentially true once we differentiate at least twice. Precisely, we compute

s2 D �r�r C
1

2
jrr j2 C rO.jrvj2/:

Instead of comparing s2 with L1s0, we compare Ls2 with L1Ls0, where as before
L D ra@b . Here we must have b � 2, so we begin with the case a D 0 and b D 2. For
tangential derivatives we get modulo O.A/ error terms

@bs2 � L1@
bs0;

while for normal derivatives
@bns2 � L

b
1@
b
ns0:

From here on the argument is similar to the j > 2 case.
The analysis is similar in the case of L2, which, we recall, has the form

L2 D r.�rr C rr/:

For this we can write a similar conjugation relation, again modulo O.A/ perturbative and
induction terms,

@bnL2 � L
b
2@
b
n;

where
Lb2 D r.�rr C .1C �b/rr/:

Substituting Lb2 with QLb2, we can then apply the elliptic bounds in Corollary 5.4.

5.5. Energy estimates

Here we prove energy estimates in H2k for solutions .r; v/. We recall the equations:´
rt C vrr C �rrv D 0;

vt C .v � r/v Crr D 0;

or, with Dt , ´
Dtr C �rrv D 0;

Dtv Crr D 0:

We will also use the transport equation for ! D curl v,

Dt! D �! � rv � .rv/
T!:

Now we consider the higher Sobolev norms H2k . For these we will prove the follow-
ing:
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Theorem 7. The energy functional E2k in H2k has the following two properties:

(a) Norm equivalence:
E2k.r; v/ �A k.r; v/k

2
H2k :

(b) Energy estimate:
d

dt
E2k.r; v/ .A Bk.r; v/k2H2k :

The first part of the theorem, i.e. the coercivity, was proved in the previous subsection.
To prove the second part of the theorem we will separately estimate the time derivative
of each component in E2k . The first step in that is to derive the equations satisfied by the
functions used in the definition of the energy.

.I/ The wave component. Here we will show that .s2k ; w2k/ is a good approximate solu-
tion to the linearized equation:

Lemma 5.5. Let k � 1. The functions .s2k ; w2k/ solve the equations´
Dts2k C w2k � rr C �rrw2k D f2k ;

Dtw2k Crs2k D g2k ;
(5.18)

where f2k and g2k are non-endpoint15 multilinear expressions in r , rv of order k � 1
2

,
respectively k, with exactly 2k C 1 derivatives.

Proof. The assertions about the order and the number of derivatives are obvious. It r-
mains to show that no single factor in f2k , respectively g2k has order larger than k � 1,
respectively k � 1

2
. In other words, we want to see that each product in f2k , respectively

g2k , has at least two factors of the form @2Cr or @1Cv.
We begin with f2k :

f2k D Dt .D
2k
t r � rr �D

2k�1
t v/Crr �D2k

t v C �rrD
2k
t v

D ��.D2k
t .rrv/ � rrD

2k
t v/ �Dt .rr/D

2k�1
t v:

The first term has a commutator structure involving ŒD2k
t ; rr� which yields at least a rv

coefficient. The same happens with Dtrr in the second term.
We continue with g2k :

g2k D D
2kC1
t v Cr.D2k

t r � rr �D
2k�1
t v/

D �D2k
t rr CrD

2k
t r � rr � rD

2k�1
t Cr

2rrD2k�1
t v:

Here we are commutingD2k
t with r, which yields at least a rv term. The only case when

we do not get the desired structure is if the commutator occurs at the level of the last Dt ,

ŒD2k
t ;r� D ŒD

2k�1
t ;r�Dt CD

k�1
t ŒDt ;r�:

15We recall that this means that there is no single factor in f2k , respectively g2k which has order larger
than k � 1, respectively k � 1

2
. Equivalently, each of them has at least two @2Cr or @v factors.
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The contribution of the first term is always balanced. However, for the second term we
have

ŒDt ;r�r D �rv � rr:

Thus we get a possibly unbalanced contribution if all of D2k�1
t applies to v. We obtain

g2k D @ir@jD
2k�1
t vi � @ir@jD

2k�1
t vi C balanced D balanced:

The computation for k D 1 is similar but simpler, and it is omitted.

.II/ The transport component. Here, the functions whose weighted L2 norms we are try-
ing to propagate are denoted by !2k , and have the form

!2k D r
a@b!; jbj � 2k � 1; b � a D k � 1:

For these functions we have the following lemma:

Lemma 5.6. The functions !2k are approximate solutions for the transport equation

Dt!2k D h2k ; (5.19)

where the h2k are non-endpoint multilinear expressions in r , rv of order 2k with exactly
k derivatives.

Proof. We compute the transport equation

Dt!2k D h2k ;

where we write schematically

h2k D Dt .r
k@2k�1!/ D ŒDt ; r

k@2k�1�! � rk@2k�1.rv/2:

This proves that all terms in h2k are balanced, since all commutators include rv factors.

To conclude the proof of the energy estimates it remains to bound the time derivative
of the linearized energies

k.s2k ; w2k/k
2
H ; k!2kk

2
L2�

by .A Bk.r; v/kH2k . In view of our energy estimates for the linearized equation, respec-
tively the transport equation, in order to obtain the desired estimate it suffices to bound
the source terms .f2k ; g2k/, respectively h2k :

Lemma 5.7. The expressions f and g above satisfy the scale-invariant bounds

k.f2k ; g2k/kH C kh2kkH0;� .A Bk.r; v/kH2k : (5.20)
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Proof. This follows using our interpolation inequalities in Propositions 2.14, 2.15, and
2.16, following the same argument as in part (a) of the proof of Theorem 6.

The control parameter A gives L1 control at degree 0, i.e. for krrkL1 and kvk
PC
1
2

,
and B gives L1 control at degree 1

2
, i.e. for krvkL1 and krrk

zC
0; 12

.
We consider the factors in each multilinear expression in f2k , g2k , and h2k as follows.

The factors of order �1
2

(i.e. the r factors) are interpreted as weights, and distributed
to the other factors. The factors of order 0 in f2k , g2k , h2k (i.e. @r factors) are directly
estimated inL1 byA and discarded. The factors of maximum order are estimated directly
by k.r; v/kH2k . The intermediate factors can be estimated in Lp norms in two ways, by
interpolating the H2k norm with A, or by interpolating with B .

Overall the product needs to be estimated in L2, using exactly one k.r; v/kH2k factor.
Then a scaling analysis shows that we will have to use exactly oneB norm, i.e. for instance
for monomials f m

2k
of order m in f2k we have

kf m2kkH0;�� 12
. Am�2Bk.r; v/kH2k :

This is exactly as in the proof of Theorem 6 (a); the details are left for the reader.

6. Construction of regular solutions

This section contains the first part of the proof of our well-posedness result; precisely, here
we give a constructive proof of existence of regular solutions. The rough solutions will be
obtained in the following section as unique limits of regular solutions.

Given initial data .r0; v0/ with regularity

.r0; v0/ 2 H2k ;

where k is assumed to be sufficiently large, we will construct a local-in-time solution with
a lifespan depending on the H2k size of the data. Unlike all prior works on this problem,
which use parabolic regularization methods in Lagrangian coordinates, here we propose a
new approach, implemented fully within the setting of the Eulerian coordinates.

Our novel method is loosely based on nonlinear semigroup methods, where an approx-
imate solution is constructed by discretizing the problem in time. Then the challenge is to
carry out a time step construction which, on one hand, is as simple as possible, but where,
on the other hand, the uniform-in-time energy bounds survive. In a classical semigroup
approach this would require solving an elliptic free boundary problem, with very precise
estimates. At the other extreme, in a pure ODE setting one could simply use an Euler-type
method. The Euler method cannot work here, because it would lose derivatives. A better
alternative would be to combine an Euler method with a transport part; this would reduce,
but not eliminate, the loss of derivatives.

The idea of our approach is to retain the simplicity of the Euler + transport method,
while preventing the loss of derivatives by an initial regularization step. Then the regular-
ization step becomes the more delicate part of the argument, because it also needs to have
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good energy bounds. To achieve that, we carry out the regularization in a paradifferential
fashion, but in a setting where we are avoiding the use of complicated classes of pseudo-
differential operators. Thus, in a nutshell, our solution is to divide and conquer, splitting
the time step into three:

• regularization,

• transport,

• Euler’s method,

where the role of the first two steps is to improve the error estimate in the third step.
To summarize, our approach provides a new, simpler method to construct solutions in

the context of free boundary problems. Further, we believe it will prove useful in a broader
class of problems.

6.1. A few simplifications

To keep our construction as simple as possible, we observe here that we can make a few
simplifying assumptions:

(i) By finite speed of propagation and Galilean invariance, we can assume that v van-
ishes and r is linear outside a small compact set.

(ii) Given the reduction in step (i), the coercivity bound (5.14) proved in Lemma 5.2
carries over to the operator L2 C L3. This yields a natural div-curl orthogonal decompo-
sition for v in H ,

v D L2.L2 C L3/
�1
C L3.L2 C L3/

�1v WD v1 C v2;

where the first component is a gradient and the second depends only on curl v. In particu-
lar, it follows that we have

k curl vk2
H2k�1; 1�

D k curl v2k2
H2k�1; 1�

�

kX
jD0

k.L2 C L3/
j v2k

2

H0; 1�

� k curl vk2
H0; 1�

C

kX
jD1

kL
j
3vk

2

H0; 1�
;

where we refer the reader to Lemma 6.5 below for the second step. This allows us to make
the simplified choice

E2kt .r; v/ D k curl vk2
H0; 1�

C

kX
jD1

kL
j
3vk

2

H0; 1�
(6.1)

for the transport component of the energy.
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6.2. Construction of approximate solutions

Given a small time step " > 0 and initial data .r0; v0/ 2 H2k , we will produce a discrete
approximate solution .r.j"/; v.j"//, with the following properties:

• Norm bound: We have

E2k
�
r..j C 1/"/; v..j C 1/"/

�
� .1C C"/E2k

�
r..j"/; v.j"//

�
:

• Approximate solution:´
r..j C 1/"/ � r.j"/C "

�
v.j"/rr.j"/C �r.j"/r � v.j"/

�
D O."1C/;

v..j C 1/"/ � v.j"/C "
�
.v.j"/ � r/v.j"/Crr.j"/

�
D O."1C/:

The first property will ensure a uniform energy bound for our sequence. The second
property will guarantee that in the limit we obtain an exact solution. There we can use a
weaker topology, where the exact choice of norms is not so important.

Having such a sequence of approximate solutions, it will be a fairly simple matter to
produce, as the limit on a subsequence, an exact solution .r; v/ on a short time interval
which stays bounded in the above topology. The key point is the construction of the above
sequence. It suffices to carry out a single step:

Theorem 8. Let k be a large enough integer such that the following energy bound holds:

E2k.r0; v0/ �M; (6.2)

and "� 1. Then there exists a one step iterate .r1; v1/ with the following properties:

(1) Norm bound: We have

E2k.r1; v1/ � .1C C.M/"/E2k.r0; v0/: (6.3)

(2) Approximate solution:´
r1 � r0 C "Œv0rr0 C �r0rv0� D O."

2/;

v1 � v0 C "Œ.v0 � r/v0 Crr0� D O."
2/:

(6.4)

The remainder of this subsection is devoted to the proof of this theorem.
We begin with a straightforward observation, namely that a direct iteration (Euler’s

method) loses derivatives. A better strategy would be to separate the transport part; this
reduces (halves) the derivative loss, but does not fully eliminate it. However, if we precede
this by an initial regularization step, then we can avoid the loss of derivatives altogether.
In a nutshell, this will be our strategy. We begin with the outcome of the regularization
step.

Proposition 6.1. Given .r0; v0/ 2 H2k as in (6.2), there exists a regularization .r; v/ with
the following properties:

r � r0 D O."
2/; v � v0 D O."

2/; (6.5)
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respectively
E2k.r; v/ � .1C C"/E2k.r0; v0/; (6.6)

and
k.r; v/kH2kC2 . "�1M: (6.7)

We postpone for the moment the proof of the proposition, and instead we show how
to use it to prove the result in Theorem 8.

Proof of Theorem 8. Here we construct .r1; v1/ starting from .r; v/ given by the last
proposition. Naively, the remaining steps are the Euler iteration´

r1 D r � "�rrv;

v1 D v � "rr;

and the flow transport
x1 D x C "v.x/: (6.8)

The important point is that these two steps cannot be carried out separately, as each of them
taken alone seems to be unbounded. Instead, taken together there is an extra cancellation
to be taken advantage of, which is the direct analogue of a similar cancellation in the
energy estimates. Using the transport as above, .r1; v1/ are defined as´

r1.x1/ D r.x/ � "�r.x/rv.x/;

v1.x1/ D v.x/ � "rr.x/:

It remains to show that these have the properties in the proposition. We begin by
observing that

r1.x1/ D r.x/.1CO."//;

so these can be used interchangeably as weights. We also have

dx1 D dx.1CO."//;

so the same can be said for the measures of integration.
We successively compute Dt derivatives of .r1; v1/ in terms of similar derivatives of

.r; v/. We will work with operators of the formD
2j
t . As before, when applied to a data set

.r; v/, these are interpreted as multilinear partial differential expressions, as if they were
applied to a solution and then re-expressed, using the equations, in terms of the initial
data. In particular, we recall that the expressions D2j

t r and D2j
t v have orders .j � 2/=2,

respectively .j � 1/=2.
Switching from derivatives in x to derivatives in x1 is done by repeated applications

of the chain rule, which involves the Jacobian

J D .I C "Dv/�1:
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Thus, in this calculation we will not only produce multilinear expressions, but also powers
of J . To describe errors, we will enhance our standard notion of order by assigning the
order �1

2
to "; this is natural because, as a time step, " can be thought of as the dual

variable to Dt . Such a choice will ensure that the expression "rv has order 0, and that all
our relations below are homogeneous. Then we have the following lemma:

Lemma 6.2. (a) The following algebraic relations hold:´
D
2j
t r1.x1/ D D

2j
t r.x/C "D

2jC1
t r.x/C "2R2j .r; v; "rv/.x/;

D
2j
t v1.x1/ D D

2j
t v.x/C "D

2jC1
t v.x/C "2V2j .r; v; "rv/.x/;

where Rj and Vj are multilinear expressions in .r;rv; "rv/ and their derivatives, and
also J , with the following properties:

• v does not appear undifferentiated.

• They have order 2, respectively j C 1=2.

• In addition to powers of J , they contain exactly 2j C 2 derivatives applied to factors
of r , v or "rv.

• They are balanced, i.e. they contain at least two @2Cr or @1Cv factors.

(b) Similar relations hold for ! D curl v and its weighted derivatives !2j ,

!2j;1.x1/ D !2j .x/ � "h2j � "
2W2j .!; v; "rv/.x/;

where h2j is as in (5.19) and W2j has the same properties as R2j and V2j above.

Proof. We prove part (a), as part (b) is similar. As discussed earlier, transcribing the
expression Dj

t r1.x1/ in terms of r and v is based on repeated application of the chain
rule, which involves the Jacobian

J D .I C "Dv/�1;

and yields contributions of order zero. Thus one easily obtains´
D
j
t r1.x1/ D D

j
t r.x/C " zRj .r; v; "rv/.x/;

D
j
t v1.x1/ D D

j
t v.x/C " zVj .r; v; "rv/.x/;

where zRj and zVj are multilinear expressions in .r;rv; "rv/ and with added powers of J
and which have order .j � 1/=2, respectively j=2, and exactly j C 1 derivatives applied
to factors of r , v or "rv.

It remains to identify the coefficients of the " terms, which are

. zRj .r;rv; 0/; zVj .r;rv; 0//:

Identifying " with time t , and redenoting .r1; v1/ D .r.t/; v.t//, we have

. zRj .r;rv; 0/; zVj .r;rv; 0// D
d

dt
.D

j
t r.x/;D

j
t v.x//tD0:
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But by construction the functions .r.t/;v.t// solve the equation at t D 0, so the desired
identification holds.

Returning to the proof of the theorem, we note that the above lemma already gives
the bound (6.4) in the uniform topology. It remains to prove the bound (6.3), where we
have to compare E2k.r; v/ with E2k.r1; v1/. We recall that these energies have the wave
component and the curl component. These are treated in a similar way, so we will focus on
the wave component, which is more interesting. For this we need to compare the L2-type
norms of the good variables

k.s2k ; w2k/k
2
Hr
; k.s1;2k ; w1;2k/k

2
Hr1

:

The lower-order norms also need to be compared, but that is a straightforward matter. Note
that these norms are represented as integrals over different domains. However, we identify
these domains via (6.8), and we compare the corresponding densities accordingly.

For exact solutions, the good variables solve the linearized equations with source terms
(5.18). For our iteration, the above lemma yields a similar relation with additional source
terms, ´

s2k;1 D s2k � ".w2k � rr C �rrw2k/ � "f2k C "
2R2k ;

w2k;1 D w2k � "rs2k � "g2k C "
2V2k ;

where f2k , g2k are perturbative source terms as in Lemma 5.5, and .R2k ; V2k/ are as in
the lemma above. The terms .f2k ; g2k/ satisfy the bound (5.20) in Lemma 5.7, which we
recall here:

k.f2k ; g2k/kH .A Bk.r; v/kH2k ;

which is what allows us to treat them as perturbative.
In a similar fashion, Lemma 5.7 shows that the expressions .R2k ; V2k/ satisfy

k.R2k ; V2k/kH .A Bk.r; v/kH2kC1 :

Since these terms have an "2 factor, the bound (6.7) also allows us to treat them as pertur-
bative.

It remains to estimate the main expression, for which we compute

E1 D k.s2k � ".w2k � rr C �rrw2k/; w2k � "rs2k/.x1/k
2
Hr1

D k.s2k � ".w2k � rr C �rrw2k/; w2k � "rs2k/k
2
Hr
C C.M/"

D k.s2k ; w2k/k
2
H � 2"

˝
.s2k ; w2k/; .w2k � rr C �rrw2k ;rs2k/

˛
H

C "2k.w2k � rr C �rrw2k ;rs2k/k
2
H C C.M/":

The second term can be seen to vanish after integrating by parts; this is the same cancella-
tion seen in the proof of the energy estimates for the linearized equation. The third term,
on the other hand, can be estimated as an error term via (6.7),

k.w2k � rr C �rrw2k ;rs2k/kH . k.s2k ; w2k/k
1
2

H
k.s2k ; w2k/k

1
2

H2 .M "�1:

This concludes the proof of the theorem.
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Now we return to the proof of our regularization result in Proposition 6.1.

Proof of Proposition 6.1. We begin with a heuristic discussion, for which the starting
point and the first candidate is the regularization already constructed in Proposition 2.11,
with the matched parabolic frequency scale 2�2h D ". This will satisfy properties (6.5)
and (6.7), but it is not accurate enough for (6.6).

To improve on this and construct a better regularization we need to understand its
effect on the energies, and primarily on the leading energy term which is k.s2k ; w2k/k2H .
For this we need to better understand the expressions for .s2k ; w2k/. We saw earlier that
we have the approximate relations

s2k � L1s2k�2; w2k � L2w2k�2;

so one might expect that we have

s2k � L
k
1r; w2k � L

k
2v:

However, this is not exactly accurate, as one can see by considering the first relation for
k D 1. There

s2 D �r�r C
1

2
jrr j2;

whereas
L1r D �r�r C jrr j

2:

To rectify this discrepancy, we will interpret the operators L1 and L2 in a paradifferential
fashion, i.e. decouple the r appearing in the coefficients of L1 and L2 from the r in
the argument of Lk1 . Instead, the r in the coefficients will be harmlessly replaced with a
regularized version of itself, call it r�, and correspondingly L1 and L2 will be replaced
by L�1 , L�2 . Then we will be able to write approximate relations of the form

s2 � L
�
1 .r � r�/C s

�
2 ;

and further,
s2k � .L

�
1 /
k.r � r�/C s

�
2k ;

and similarly for w2k .
Based on these considerations, we will construct our regularization as follows:

• Start with the initial state .r0; v0/ 2 H2k .

• Produce two initial regularizations rC and r� of r0, on scales hC > h > h�, with
slightly larger domains, and then restrict them to �� D ¹r� > 0º.

• Use the self-adjoint operators L1 and L2CL3 associated to r� to regularize the high-
frequency part .rC � r�; vC � v�/ within �� below frequency 2h.

• Obtain the h-scale regularization . Qr; Qv/ of .r0; v0/ in��, by adding the low-frequency
part .r�; v�/ to the regularized high-frequency part.

• Decrease Qr by a small constant cDO."4/ and set .r;v/D . Qr � c; Qv/, in order to ensure
that � WD ¹r > 0º � ��.
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1. A formal computation and the good variables. Both to motivate the definition of
our regularization and as a tool to prove we have the correct regularization, here we con-
sider the question of comparing the good variables .s0

2k
; w0

2k
/ associated to .r0; v0/ with

.Qs2k ; zw2k/ associated to . Qr; Qv/. The lemma below is purely algebraic, and makes no refer-
ence to the relation between .r0; v0/ and . Qr; Qv/.

Each term in .s2k ; w2k/ is a multilinear expression of the same order in .r; v/, so we
will view the difference

.s02k ; w
0
2k/ � .Qs2k ; zw2k/

as a multilinear expression in .r0 � Qr; v0 � Qv/ and . Qr; Qv/. Heuristically, we will think of
the first expression as the high-frequency part of .r0; v0/ and the second expression as
the low-frequency part. Since we are working here in high regularity, the intuition is that
high–high terms will be better behaved and can be assigned to the error. Explicitly, we
write ´

s0
2k
D Qs2k CDs2k. Qr; Qv/.r0 � Qr; v0 � Qv/C F2k ;

w0
2k
D zw2k CDw2k. Qr; Qv/.r0 � Qr; v0 � Qv/CG2k ;

(6.9)

where Ds2k and Dw2k stand for the differentials of s2k and w2k as functions of .r; v/.
This is akin to a paradifferential expansion of .s0

2k
; w0

2k
/. In this expansion all terms on

each line have the same order, which is k � 1, respectively k � 1
2

, and .F2k ; G2k/ are at
least bilinear in the difference .r0 � Qr; v0 � Qv/.

The high–high terms .F2k ; G2k/ will play a perturbative role in our analysis. This
leaves us with the terms which are linear in the difference, i.e. the low–high terms involv-
ing the two differentials Ds2k and Dw2k . We will further simplify this by observing that
the low–high terms where the low-frequency factor is differentiated (i.e. has order > 0)
are also favorable. This leaves us only with low–high terms with top order in the high-
frequency factor in the leading part. These terms are identified in the following lemma:

Lemma 6.3. We have the algebraic relations´
Ds2k. Qr; Qv/.r0 � Qr; v0 � Qv/ D .L1. Qr//

k.r0 � Qr/C zF2k ;

Dw2k. Qr; Qv/.r0 � Qr; v0 � Qv/ D .L2. Qr//
k.v0 � Qv/C zG2k ;

(6.10)

where the error terms . zF2k ; zG2k/ are linear in .r0 � Qr; v0 � Qv/,

zF2k D D
1
2k. Qr; Qv/.r0 � Qr; v0 � Qv/;

zG2k D D
2
2k. Qr; Qv/.r0 � Qr; v0 � Qv/;

whose coefficients are multilinear differential expressions in . Qr; Qv/ which contain at least
one factor with order > 0, i.e. @2C Qr or @1C Qv.

We remark that combining (6.9) and (6.10) we obtain the expansion´
s0
2k
D Qs2k C .L1. Qr//

k.r0 � Qr/C F2k C zF2k ;

w0
2k
D zw2k C .L2. Qr//

k.v0 � Qv/CG2k C zG2k ;
(6.11)
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where all terms on each line are multilinear expressions in .r0 � Qr; v0 � Qv/ and . Qr; Qv/ of
order k � 1, respectively k � 1

2
, and whose multilinear error terms have either

(a) (high–high) two difference factors, i.e. .F2k ; G2k/, or

(b) (low–high balanced) exactly one difference factor, and at least one nondifference
factor with order > 0, i.e. . zF2k ; zG2k/.

One should think of the above expansions as paradifferential linearizations, but imple-
mented without using the paraproduct formalism.

Proof of Lemma 6.3. Our starting point is provided by relations (5.1), differentiated with
respect to .r; v/. This yields

Ds2j D L1.r/Ds2j�2 �DL1.r/s2j�2 CDf2j ; j � 2:

Since the expression f2j is balanced, its differential can be included in D1
2k

. Similarly,
the second expression on the right also has terms of order > 0 in .r; v/. Thus we get

Ds2j D L1.r/Ds2j�2 C zF2j ; j � 2: (6.12)

Next we turn our attention to the case j D 1, where we have

s2 D �r�r �
1

2
jrr j2 C f2;

therefore
Ds2 D �r�C ��r � rrr CDf2;

where the second and fourth terms are admissible errors, so we also get (6.12). Then the
conclusion of the lemma follows by reiterated use of (6.12). The argument for w2k is
similar.

2. Regularizations for .r0; v0/. We begin with the dyadic frequency scale h matching
the time step ", in a parabolic fashion, namely 2�2h D ". As mentioned earlier, the direct
regularization .rh; vh/ of .r0; v0/ given by Proposition 2.11 is not a sufficiently accurate
regularization, in that it satisfies properties (6.5) and (6.7), but not necessarily (6.6).

Nevertheless, we will still use Proposition 2.11 to bracket our desired regularization
as follows. Starting with the frequency scale h we define a lower- and a higher-frequency
scale

1� h� < h < hC;

where h� and hC will be chosen later to satisfy a specific set of constraints. We remark
for now that this is a soft choice, in that there is a large range of parameters that will work.

Correspondingly we consider the regularizations given by Proposition 2.11, denoted
by

.rC; vC/ D .r
hC ; vh

C

/; .r�; v�/ D .r
h� ; vh

�

/:
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r� D 0
�

2�2h
�

2�2h
C

�� �

rC

r�

2�2h
�.k�k0C1/

Figure 3. Domains associated with the regularization scheme.

These regularizations are defined on the enlarged domains z�Œh
C�, respectively z�Œh

��; see
Figure 3. We will use them on the domain �� D ¹r� > 0º. By Proposition 2.11, this
domain’s boundary is at distance at most 2�2h

�.k�k0C1/ from the original boundary �0.
To ensure that .rC; vC/ are defined on this domain, we will impose the constraint

hC < h�.k � k0 C 1/: (6.13)

We will think of .r�; v�/ as a “sub”-regularization, which has to be a part of . Qr; Qv/,
and of .rC; vC/ as a “super”-regularization, in that . Qr; Qv/ will be a regularization of it. We
arrive at .r; v/ in two steps:

(i) We define our first regularization . Qr; Qv/ as smooth functions in �� as follows:

Qr WD r� C �".L1.r�//.rC � r�/;

Qv WD v� C �"..L2 C L3/.r�//.vC � v�/;

where �".�/ WD �.�"/, with � a smooth, positive bump function with values in
.0; 1/ and the following asymptotics:

�.�/ � 1 � � near � D 0;

�.�/ � 1=� near � D1:
(6.14)

(ii) The functions . Qr; Qv/ in �� are not yet the desired regularizations as Qr does not
vanish on the boundary ��. If it were negative there, we would simply restrict
them to � D ¹r > 0º. Unfortunately, all we know is that for some large C we
have

j Qr j � 2�2Ch on ��:

Then we define
.r; v/ WD . Qr � 2�2Ch; Qv/

restricted to � D ¹r > 0º as our final regularization.
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3. Bounds for the regularization . Qr; Qv/. To start with, we have the bounds for .r˙; v˙/
from Proposition 2.11. So here we consider the bounds for . Qr; Qv/.

Lemma 6.4. Assume that k.r0; v0/kH2k �M . Then the following estimates hold for . Qr; Qv/
in ��:

k. Qr; Qv/k
H
2kC2j
r�

.M 22hj ; j D 0; 1; (6.15)

respectively
k.rC � Qr; vC � Qv/kH2k�2

r�
.M 2�2h: (6.16)

Proof. With L1 D L1.r�/ and similarly for L2 and L3, we have the obvious bounds

k.L
kCj
1 Qr; .L2 C L3/

kCj
Qv/kH . 22hj .k.Lk1rC; .L2 C L3/

kvC/kH

C k.Lk1r�; .L2 C L3/
kv�/kH /

.M 22hj :

Then (6.15) follows from elliptic bounds for L1, respectively L2 C L3, which for conve-
nience we collect in the next lemma:

Lemma 6.5. Assume that r satisfies

k.r; 0/kH2k �M

and
k.r; 0/kH2kC2j �M22hj ; 0 < j � N:

Then we have the estimates

k.s; w/kH2k .M
kX
lD0

k.Ll1s; .L2 C L3/
lw/kH ; (6.17)

respectively

k.s; w/kH2kC2j .M "�2j
kCjX
lD0

k.Ll1s; .L2 C L3/
lw/kH ; 0 < j � N: (6.18)

Proof. The estimates in (6.17), respectively (6.18) will follow from the bounds

k.s; w/kH2m .M k.L1s; .L2 C L3/w/kH2m�2 ; 1 � m � k � 1; (6.19)

respectively

k.s; w/kH2kC2j .M k.L1s; .L2 C L3/w/kH2kC2j�2

C

j�1X
lD0

2�2h.j�l/k.s; w/kH2mC2l ; j � 1: (6.20)
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The bounds for s and the bounds for w are independent of each other. As the arguments
are similar, we will prove the bounds for s and leave the bounds for w for the reader. We
begin with (6.19), where we have to estimate

kskH2m;mC� ; � D
� � 1

2�
:

To achieve this we will inductively bound the norms

kskHmCa;aC� ; a D 0;m:

For the induction step, we need to bound

kLskH2;� ;

where L D ra�1@m�2Ca is an operator of order m � 1. By Lemma 5.2 we have

kLskH2;�C1 . kL1LskH0;� . kL1skH2m�2;�Cm C kŒL;L1�skH0;� :

The commutator ŒL;L1� has orderm, but at most 2m� 1 derivatives. Hence by the Hölder
inequality and interpolation we can estimate

kŒL;L1�skH0;� . kskHmCa�1;aC��1 : (6.21)

Thus we obtain

kskHmCa;aC� . kL1skHm�2;m�1C� C kskHmCa�1;aC��1 ;

which concludes the induction step.
It remains to consider the initial case a D 0, where we simply take L D @m�1. Here

we argue as in the proof of Theorem 6, more precisely the bound (5.17); in an adapted
frame we split the derivatives into normal and tangential, L D @bn@

c
� , and conjugate

LL1 D L
b
1LCR;

where the remainder R has O.A/ contributions only,

kRskH0;� .M AkskHm;� : (6.22)

Applying Lemma 5.2 for Lb1 we obtain

kskHm;� . kL1skHm�2;m�1C� C AkskHm;� ;

where the error term on the right can be absorbed on the left.
Now turning our attention to the s component of (6.20), the argument is entirely sim-

ilar, with a slight modification in the commutator bounds (6.21) and (6.22). These are in
turn replaced by

kŒL;L1�skH0;� . kskH jCkCa�1;aC��1

C

j�1X
lD0

2�2h.l�j /kskH2kC2l;kClC� ; L D ra�1@kCj�2Ca;
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respectively

kRskH0;� .M AkskH2kC2l;� C

j�1X
lD0

2�2h.l�j /kskH2kC2l;kClC� ; L D @kCj�1:

The O.A/ terms in the last bound arise exactly as before when exactly one L derivative
applies to the r factor in L1. All other contributions have fewer derivatives on s, and are
estimated by the Hölder inequality and Sobolev embeddings. The negative 2�k powers
only arise when more than 2k derivatives apply to the r factors in L1, which means that
fewer derivatives apply to s. The details are somewhat tedious but routine, and are omitted.

We now return to the proof of Lemma 6.4, and turn our attention to the bound (6.16).
We have

.rC � Qr; vC � Qv/ D
��
I � �".L1.r�//

�
.rC � r�/; .I � �".L2 C L3/.r�//.vC � v�/

�
:

Hence, given the properties of �", and the above lemma, we have the H bound

k.rC � Qr; vC � Qv/kH2k�2
r�

. 2�2hk.L1.r�/
k.rC � r�/; .L2 C L3/.r�/

k.vC � v�/kHr�

.M 2�2h:

4. Comparing the energies for .r0; v0/ and . Qr; Qv/. Here, the first energy is taken in
the domain �0, while the second is taken in ��. Our objective is to prove the following
result:

Lemma 6.6. Assume that k is large enough, and that hC and h� are suitably chosen
relative to h. Then we have

E2k. Qr; Qv/ � .1C C"/E2k.r0; v0/: (6.23)

The proof below consists of several steps, each of which will require various con-
straints on hC and h�. These are then collected at the end of the proof in (6.35). For
orientation, one could simply think of the case h� D h=2 and hC D Ch with C � k � k0.

Proof of Lemma 6.6. These energies have two components: the wave energy and the trans-
port energy. We will focus on the wave component in the sequel, as the argument for the
transport part is similar but considerably simpler. For the wave component we need to
compare the good variables .s0

2k
; w0

2k
/, respectively .Qs2k ; zw2k/, associated to .r0; v0/,

respectively . Qr; Qv/, and their H norms,

k.s02k ; v
0
2k/k

2
Hr

vs. k.Qs2k ; Qv2k/k2Hr�
: (6.24)

We note that in the second expression we are using the Hr� norm, as r� is the defining
function for the domain�� where .Qs2k ; Qv2k/ are defined. As we seek to compare functions
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on different domains, it is natural to restrict them to a common domain. To understand this
choice, we recall that the two free boundaries �0 and �� are at distance� 2�2h

�.k�k0C1/

of each other, and the two weights are at a similar distance within the common domain,

jr � r�j � 2�2h
�.k�k0C1/:

For the difference of the two weights to only yield O."/ errors, we will restrict our com-
parison to the region �Œ<h

�.k�k0/C1��h
0 , where we have

jr � r�j � "r in �Œ<h
�.k�k0C1/�h�

0 :

Outside this region we will simply neglect the contribution to the first norm in (6.24). On
the other hand, we will seek to make the second norm small in this region. For this to
work, we first need to make sure that the neglected region is within the . Qr; Qv/ boundary
layer, which has width 2�2h. Thus we require that

2h < h�.k � k0 C 1/:

But in addition to that, we also want the second norm to be " small in this region. Within
a fixed layer ��;Œh1� with h1 < h this norm is

k.Qs2k ; Qv2k/k
2

Hr� .�
�;Œh1�/

.M 2
2
� .h�h1/; (6.25)

which is a consequence of the fact that we are integrating a function which is smooth on
the 2�2h scale, over a thinner region. This is "2 D 2�4h small if

h1 > h.1C 2�/: (6.26)

Hence we obtain
k.Qs2k ; Qv2k/kHr� .�

Œ>h�.k�k0C1/�h�
0 /

. "2; (6.27)

provided that
h�.k � k0 C 1/ > 2h.1C �/: (6.28)

Within �Œ<h
�.k�k0C1/�h�

0 we use Lemma 6.3, more precisely its consequence (6.11),
in order to compare .s0

2k
; w0

2k
/, respectively .Qs2k ; zw2k/. There we seek to estimate the

errors perturbatively. We begin with .F2k ; G2k/:

Lemma 6.7. Assume that .r0; v0/ 2H2k , with sizeM and that . Qr; Qv/ are defined as above.
Then we have the error bounds

k.F2k ; G2k/kHr .�
Œ<h�.k�k0C1/�h�
0 /

.M "2:

The proof of this lemma is similar to the proof of Lemma 5.7, using interpolation
inequalities, and is omitted. Here, the region where we evaluate the norm is less important,
and serves only to ensure that r0 and r� are both defined and comparable there. The gain
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comes from the fact that the difference .r � Qr; v � Qv/ is small at low frequency, which
comes from (6.16) combined with the bounds for the differences .r0 � rC; v0 � vC/ in
Proposition 2.11. The power "2 requires k > k0C 2, but one can gain more if k is assumed
to be larger.

Next we consider the expressions . zF2k ; zG2k/:

Lemma 6.8. Assume that .r0; v0/ 2H2k , with sizeM and that . Qr; Qv/ are defined as above.
Then we have the error bounds

k. zF2k ; zG2k/kHr .�
Œ<h�.k�k0C1/�h�
0 /

. k.rC � Qr; vC � Qv/kH2k�1 C "
2C.M/: (6.29)

Proof. We recall that the expressions . zF2k ; zG2k/ are balanced multilinear expressions in
. Qr; Qv/, respectively .r0 � Qr; v0 � Qv/, linear in the second component, containing exactly 2k
derivatives, and of order k � 1, respectively k � 1

2
. The fact that they are balanced allows

us to estimate them using the Hölder inequality and interpolation as in Lemma 5.7, by

k. zF2k ; zG2k/kH .A0; QA .B0 C A0 zB/k. Qr; Qv/kH2k�1 C zBk.r0 � Qr; v0 � Qv/kH2k�1 ;

where A0, B0, respectively QA, zB are control parameters associated to . Qr; Qv/, respectively
.r0 � Qr; v0 � Qv/.

Here, the first component . Qr; Qv/ is localized at frequencies below 2h, while the second
is localized at frequencies above 2h. In particular, it follows that A0, B0 are small,

A0 C B0 . "2;

so their contributions go into the second term on the right in (6.29).
On the other hand, QA and zB are merely bounded .M 1. We split

.r0 � Qr; v0 � Qv/ D .r0 � rC; v0 � vC/C .rC � Qr; vC � Qv/:

The first term is localized at frequencies � 2h
C

so using the bounds in Proposition 2.10
we have

k.r0 � rC; v0 � vC/kH2k�1 .M 2�h
C

;

which can be made smaller than "2 if hC > 4h. The proof of the lemma is concluded.

Using the above two lemmas together with (6.27), we obtain our first relation between
the two energies,

k.Qs2k ; Qv2k/k
2
Hr�
� k.s02k ; v

0
2k/k

2
Hr
CMk.rC � Qr; vC � Qv/kH2k�1 C C.M/"

� 2
˝�
L1. Qr/

k.r0 � Qr1/; L2. Qr/
k.v0 � Qv/

�
; .Qs2k ; zw2k/

˛
Hr� .�

Œ<2h�.k�k0/�
0 /

:

This is not yet satisfactory, but we can improve it further. We first observe that in the above
inner product we can harmlessly replace the operators L1. Qr/ and L2. Qr/ by L1.r�/ and
L2.r�/ respectively. Precisely, we have the difference bound

k.L1. Qr/
k
� L1.r�/

k/.r0 � Qr/; .L2. Qr/
k
� L2.r�/

k/.v0 � Qv//k
Hr� .�

Œ<2h�.k�k0/�
0 /

.M ":



Compressible Euler in a physical vacuum 483

This is a consequence of interpolation inequalities and the Hölder inequality due to the fact
that both differences Qr � r� and ..r0 � Qr/; .v0 � Qv// are concentrated at high frequencies
and have small O."C / pointwise size. The details are left for the reader. We arrive at

k.Qs2k ; Qv2k/k
2
Hr�

� k.s02k ; v
0
2k/k

2
Hr
CMk.rC � Qr; vC � Qv/kH2k�1 C C.M/"

� 2
˝�
L1.r�/

k.r0 � Qr/; L2.r�/
k.v0 � Qv/

�
; .Qs2k ; zw2k/

˛
Hr� .�

Œ<2h�.k�k0/�
0 /

: (6.30)

A second simplification is that we can replace .r0; v0/ by .rC; vC/ in the inner product.
For this we need to show that˝�

L1.r�/
k.rC � r0/; L2.r�/

k.vC � v0/
�
; .Qs2k ; zw2k/

˛
Hr� .�

Œ<2h�.k�k0/�
0 /

.M ":

We first insert a cut-off �Œ2h
�.k�k0/� function in the differences on the left, associated to

the same boundary layer, which equals 1 further inside and 0 closer to the boundary. This
is allowed because the second factor in the inner product is already " small in the cut-off
region, while the first one is still bounded in Hr� in the same region, provided that the
cutoff is lower frequency than the rC � r0 frequency,

h�.k � k0/ < h
C: (6.31)

One should compare this to (6.13); together these bounds give the allowed range for hC.
With this substitution, we are left with proving that˝�

L1.r�/
kıCr; L2.r�/

kıCv
�
; .Qs2k ; zw2k/

˛
Hr� .�

�/
.M ";

where
ıCr D �Œ2h

�.k�k0/�.rC � r0/; ıCv D Œ�Œ2h
�.k�k0/�.vC � v0/�:

Since L1 and L2 are self-adjoint, we can move one of them to the right. This becomes˝�
L1.r�/

k�1ıCr; L2.r�/
k�1ıCv

�
;
�
L1.r�/Qs

1
2k ; L2.r�/ zw

1
2k

�˛
Hr� .�

�/
.M ":

Now the left factor has size 2�2h
C

and the right factor has size 22h. This yields an "2 gain
provided that

hC > 4h: (6.32)

Thus, we can replace .r0; v0/ by .rC; vC/ in (6.30), to obtain

k.Qs2k ; Qv2k/k
2
Hr�

� k.s02k ; v
0
2k/k

2
Hr
C C.M/k.rC � Qr; vC � Qv/kH2k�1

r�
C C.M/"

� 2
˝�
L1.r�/

k.rC � Qr/; L2.r�/
k.vC � Qv/

�
; .Qs2k ; zw2k/

˛
Hr� .�

Œ<2h�.k�k0/�
0 /

:
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Once this is done, the expression on the left in the inner product is defined on the entire
domain ��, and we can harmlessly extend the inner product to the full region as the
expression on the right in the inner product is already " small there. We get

k.Qs2k ; zw2k/k
2
Hr�

� k.s02k ; v
0
2k/k

2
Hr
C C.M/k.rC � Qr; vC � Qv/kH2k�1 C C.M/"

� 2
˝�
L1.r�/

k.rC � Qr/; L2.r�/
k.vC � Qv/

�
; .Qs2k ; zw2k/

˛
Hr� .�

�/
: (6.33)

The next step is to apply the expansion (6.11) for the expression on the right in the
inner product to write´

Qs2k D s
�
2k
C .L1.r�//

k. Qr � r�/C F
�
2k
C zF �

2k
;

zw2k D w
�
2k
C .L2.r�//

k. Qv � v�/CG
�
2k
C zG�

2k
:

By the counterpart of Lemma 6.7 the error terms .F �
2k
; G�

2k
/ will be " small, so their

contribution to (6.33) can be included in the expression C.M/".
For the contribution of . zF �

2k
; zG�

2k
/ we integrate by parts one instance of L1, respec-

tively L2, to bound it by

k.L1.r�/
k�1.rC � Qr/; L2.r�/

k�1.vC � Qv//kHr�
k.L1.r�/ zF

�
2k ; L2.r�/

zG�2k/kHr�

.M k.rC � Qr; vC � Qv/kH2k�2
r�
k. Qr � r�; Qv � v�/kH2kC1

r�

.M 2�2hk. Qr � r�; Qv � v�/kH2kC1
r�

:

Finally, for the contribution of .s�
2k
; w�

2k
/ we can integrate again by parts to obtain˝

.rC � Qr; vC � Qv/;
�
L1.r�/

ks�2k ; L2.r�/
kw�2k

�˛
Hr� .�

�/
.M ";

provided that
.k � 1/h > kh�:

Thus (6.33) becomes

k.Qs2k ; Qv2k/k
2
Hr�

� k.s02k ; v
0
2k/k

2
Hr
C C.M/"

C C.M/.k.rC � Qr; vC � Qv/kH2k�1
r�
C 2�2hk. Qr � r�; Qv � v�/kH2kC1

r�
/

� 2
˝�
L1.r�/

k.rC � Qr1/; L2.r�/
k.vC � Qv/

�
;�

L1.r�/
k. Qr � r�/; L2.r�/

k. Qv � v�/
�˛

Hr�
:

Now our choice of . Qr; zw/ guarantees that the inner product is positive. Combining the
above bound with its counterpart for the transport energy (this is where our choice (6.1)
simplifies matters), we further obtain

E2k. Qr; Qv/

� E2k.r0; v0/C C.M/"

C C.M/.k.rC� Qr; vC� Qv/kH2k�1
r�
C 2�2hk. Qr � r�; Qv� v�/kH2kC1

r�
/ � 2I; (6.34)
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where
I D

˝�
L1.r�/

k.rC � Qr1/; .L2 C L3/.r�/
k.vC � Qv/

�
;

.L1.r�//
k. Qr � r�/; .L2 C L3/.r�/

k. Qv � v�/
˛
Hr�

is still positive. Finally, we use the positivity of I to estimate the two remaining terms on
the right. Precisely, using properties (6.14) of the multiplier � in the definition of . Qr; Qv/, as
well as the ellipticity of L1, respectively L2 C L3 in the two components of H , we have

I & 22hk.rC � Qr; vC � Qv/k
2

H2k�1
r�

C 2�2hk.r� � Qr; v� � Qv/k
2

H2kC1
r�

:

Hence, applying the Cauchy–Schwarz inequality in (6.34) we finally obtain

E2k. Qr; Qv/ � E2k.r0; v0/C C.M/";

as desired.
This concludes the proof of (6.23), provided that the scales hC and h� were chosen so

that the constraints (6.13), (6.28), (6.31), (6.32) are all satisfied. We recall them all here:

h� <
k � 1

k
h; hC > 4h;

h�.k � k0/ > h
�
1C

1

�

�
;

h�.k � k0/ < h
C < h�.k � k0 C 1/:

(6.35)

Then the parameters hC and h� can be chosen e.g. as follows:

(a) set h� D h=2,

(b) take k large enough so that the second constraint holds,

(c) choose hC in the range given by the third constraint.

5. Comparing the energies of . Qr; Qv/ and .r; v/. To recall our setting here, the functions
. Qr; Qv/ are defined in the domain �� and are localized at frequency � 2h scale, but cannot
be thought of as a state because Qr does not vanish on the boundary ��. Instead, we have

j Qr j . 2�2.k�k0/h
�

on ��:

To rectify this, we decrease Qr by a small constant and set

.r; v/ D . Qr � c; Qv/; c D 2�2.k�k0/h
�

;

so that the level set � D ¹r D 0º is fully contained within ��. Then we aim to prove that
the energies do not change much:

Lemma 6.9. We have the energy bound

E2k.r; v/ . E2k. Qr; Qv/COM ."/:
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Proof. We separate a boundary layer �Œ>h1�, with h1 > h to be chosen later, where we
verify directly that the norm on the left is O."/. Outside this layer, we directly compare
the associated good variables.

For the first step we use (6.25), which suffices if we impose constraint (6.26), which
we recall here:

h1 > h
�
1C

1

�

�
:

For the second step, we simply note that the good variables are identical except for the r
factors, where we replace r1 by r1 � c. Hence it suffices to ensure that

c . "r1 in �Œ<h1�;

which yields
.k � k0/h

� > hC h1:

These two constraints for h1 are again compatible if k is large enough. The proof of the
lemma is concluded.

Now combining the outcomes of Lemmas 6.6 and 6.9, it follows that our final regular-
ization .r; v/ satisfies the bound (6.6). It also satisfies (6.5) and (6.7) due to Lemma 6.4;
there one can harmlessly substitute the weight r� by r since .r; v/ are smooth on the "2

scale, which is larger than c. Thus the proof of Proposition 6.1 is concluded.

6.3. Construction of regular exact solutions

Here we use the approximate solutions above. Given initial data .r0; v0/ so that

k.r0; v0/kH2k �M;

applying the successive iterations above we obtain approximate solutions .r"; v"/ defined
at " steps, so that

E2k.r"; v"/..j C 1/"/ . .1C C.M/"/E2k.r"; v"/.j"/:

By the discrete Grönwall inequality, it follows that these approximate solutions are defined
uniformly up to a time T D T .M/, with uniform bounds

k.r"; v"/kH2k .M 1; t 2 Œ0; T �: (6.36)

On the other hand, in a weaker topology we have

.r"; v"/..j C 1/"/ � .r"; v"/.j"/ D O."/:

Hence by Arzelà–Ascoli we get uniform convergence on a subsequence to a function .r;v/
in a C j norm, uniformly in t . Passing to the limit in the relation (6.4), it follows that .r; v/
solves our equation. Finally, taking weak limits in the norms in (6.36) we also obtain an
energy bound on .r; v/,

k.r; v/.t/kH2k .M 1; t 2 Œ0; T �:
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7. Rough solutions

Our goal in this section is to construct rough solutions as limits of smooth solutions, and
conclude the proof of Theorem 2. In terms of a general outline, the argument here is
relatively standard, and involves the following steps:

(1) We regularize the initial data.

(2) We prove uniform bounds for the regularized solutions.

(3) We prove convergence of the regularized solutions in a weaker topology.

(4) We prove convergence in the strong topology by combining the weak difference
bounds with the uniform bounds in a frequency envelope fashion.

The main difficulty we face is that our phase space is not linear, and at each stage we have
to compare functions on different domains.

7.1. Regularizing the initial data

Given rough initial data .r0; v0/ 2 H2k , our first task is to construct an appropriate family
of regularized data, depending smoothly on the regularization parameter. Here, it suffices
to directly use the family of regularizations provided by Proposition 2.11.

7.2. Uniform bounds and the lifespan of regular solutions

Once we have the regularized data sets .rh0 ; v
h
0 /, we consider the corresponding smooth

solutions .rh; vh/ generated by the smooth data .rh0 ; v
h
0 /. A priori these solutions exist on

a time interval that depends on h. Instead, we would like to have a lifespan bound which
is independent of h. To obtain this, we use a bootstrap argument for our control parameter
B for .rh; vh/, which depends on h and t .

For a large parameter B0, to be chosen later, we will make the bootstrap assumption

B.t; h/ � 2B0; t 2 Œ0; T �; 0 � h � h0:

The solutions .rh; vh/ can be continued for as long as this is satisfied. We will prove that
we can improve this bootstrap assumption provided that T is small enough, T � T0, but
with T0 independent of h � h0. Here, h0 is finite but arbitrarily large; its role is simply to
ensure that we run the bootstrap argument on finitely many quantities at once.

Our choice of T0 will be quite straightforward:

T0 �
1

B0
:

In view of our energy estimates in Theorem 3 and the Grönwall inequality, this guarantees
uniform energy bounds for the solutions .rh; vh/ in all integer Sobolev spaces H2l in
Œ0; T �.

We remark that the bound (2.12) does not directly propagate unless k is an integer.
Indeed, in that case one could immediately close the bootstrap at the level of the H2k
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norm using the embeddings (2.3) and (2.4). The goal of the argument that follows is to
establish the H2k bound for noninteger k, by working only with energy estimates for
integer indices.

Combining Theorem 3 with (2.13) we obtain the higher energy bound in Œ0; T �,

k.rh; vh/kH2kC2j
h

. 22hj ch; j > 0; j C k 2 N: (7.1)

Next we consider the bound (2.14), which we reinterpret in a discrete fashion as a differ-
ence bound

D..rh0 ; v
h
0 /; .r

hC1
0 ; vhC10 // . 2�4hkc2h:

We can also propagate this bound by Theorem 5, to obtain, also in Œ0; T �, the estimate

D..rh; vh/; .rhC1; vhC1// . 2�4hkc2h: (7.2)

Our objective now is to combine the bounds (7.1) and (7.2) to obtain a uniform H2k

bound
k.rh; vh/kH2k . M WD k.r0; v0/kH2k : (7.3)

To prove this, we would naively like to consider a representation of the form

.rh; vh/ D .r1; v1/C

h�1X
lD1

.r lC1 � r l ; vlC1 � vl /;

where we can estimate the successive terms in both H and H2N . The difficulty we face is
that these functions have different domains. Hence the first step is to use the bounds (7.1)
and (7.2) to compare these domains.

Lemma 7.1. Assume that rh and rhC1 are nondegenerate, and that (7.2) holds. Then we
have

d.�h; �hC1/ . 2�h.2Cı/; ı > 0:

Proof. We use the uniform nondegeneracy property for the functions rh to compare these
domains. If r D d.�h; �hC1/, then we can find a ball Bcr in the common domain so that

rh; rhC1; jrh � rhC1j � r in Bcr:

Then we obtain

rdC1C
1
� . D..rh; vh/; .rhC1; vhC1// . 2�4hkc2h;

or equivalently
r2�0 . 2�4hkc2h:

Since k > k0, we obtain

r . 2�h.2Cı/; ı > 0:
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Now we return to our expansion for .rh; vh/. To compare functions which are
defined on a common domain, we replace the functions .r l ; vl / with their regulariza-
tions ‰l .r l ; vl /. Their domain includes an additional 2�2l boundary layer, which by the
previous Lemma 6.9 suffices in order to cover the domain�h for all h > l . Then we write

.rh; vh/ D ‰0.r0; v0/C
X

‰lC1.r lC1; vlC1/ �‰l .r l ; vl /C .I �‰h/.rh; vh/;

and claim that this decomposition is as in Lemma 2.5.
The first term is trivial. For the last one we use the boundedness of ‰h in H2k and the

bound (2.19) integrated in h to write

k.I �‰h/.rh; vh/kH2N . k.rh; vh/kH2N ;

respectively
k.I �‰h/.rh; vh/kH . 2�2Nhk.rh; vh/kH2N ;

for a fixed large enough integer N , which together suffice in order to place this term into
.sh; wh/, with norm ch.

For later use, we state the remaining bound for intermediate l as a separate result:

Lemma 7.2. For any nondegenerate r with jr � r l j� 2�2l we have the difference bounds

k‰lC1.r lC1; vlC1/ �‰l .r l ; vl /kHr
. 2�2lkcl ;

k‰lC1.r lC1; vlC1/ �‰l .r l ; vl /kH2N
r

. 22l.N�k/cl :

As a corollary of this lemma, we remark that via Sobolev embeddings we also get
uniform difference bounds:

Corollary 7.3. In the region z�Œl� have

k‰lC1.r lC1; vlC1/ �‰l .r
l ; vl /k

C
3
2 �C 1

. 2�2ıl ; ı > 0:

This will serve later in the study of convergence of the regularized solutions.

Proof of Lemma 7.2. We split

‰lC1.r lC1; vlC1/�‰l .r l ; vl /D .‰lC1 �‰l /.r lC1; vlC1/�‰l .r lC1 � r l ; vlC1 � vl /:

For the first term we use again the boundedness of ‰l and then (2.19) to conclude that

k.‰lC1 �‰l /.r lC1; vlC1/kH2N . k.r lC1; vlC1/kH2N . 22l.N�k/cl

and
k.‰lC1 �‰l /.r lC1; vlC1/kH . 2�2lN k.r lC1; vlC1/kH2N . 2�2lkcl ;

as needed.
For the second term we use again the H2N boundedness, but for the H bound we use

instead the difference bound (7.2) together with the H bound

k‰l .r lC1 � r l ; vlC1 � vl /k2H . D..r lC1; vlC1/; .r l ; vl //;

and conclude using (7.2).
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By the above lemma we can place the telescopic term into .sl ; wl /, with norm cl ,
and thus, by Lemma 2.5, we obtain the desired bound (7.3) and conclude our bootstrap
argument.

7.3. The limiting solution

Here we show that the limit
.r; v/ D lim

h!1
.rh; vh/

exists, first in a weaker topology and then in the strong H2k topology.
As before, the smooth solutions .rh; vh/ do not have common domains. However, by

Lemma 7.1 the limit
� D lim

h!1
�h

exists, has a Lipschitz boundary � , and further we have

d.�; �h/ . 2�h.2Cı/:

For this reason, it is convenient to consider instead the limit

.r; v/ D lim
h!1

‰h.rh; vh/;

where the functions on the right are all defined in �. Indeed, by Lemma 7.2 we see that
we have convergence in H , and, by interpolation, in H2k1 for all k1 < k.

To obtain convergence in H2k
r , we write

.r; v/ D ‰0.r0; v0/C

1X
jD0

‰lC1.r lC1; vlC1/ �‰l .r l ; vl /;

and view the telescopic sum as a generalized Littlewood–Paley decomposition of .r; v/.
Then Lemma 7.2 shows that .r; v/ is in H2k , with norm

k.r; v/kH2k . kchkl2 :

We also see that we have convergence in H2k , namely

k‰l .r l ; vl / � .r; v/kH2k . kc�lkl2 ! 0:

We also show that we have strong convergence of .rh; vh/ in H2k in the sense of
Definition 2.6. Indeed, it suffices to compare it with the constant sequence ‰l .rm; vm/.
Then for l � m we have

k.r l ; vl / �‰m.rm; vm/kH2k . kc�mkl2 ! 0:

The same relations also show the continuity of .r; v/ in H2k as functions of time.
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7.4. Continuous dependence

We consider a sequence of initial data .r .n/0 ; v
.n/
0 / which converges to .r0; v0/ in H2k in

the sense of Definition 2.6, and will show that the corresponding solutions .r .n/; v.n//
converge to .r; v/.

The first observation is that the H2k convergence implies H2k uniform boundedness
for .r .n/0 ; v

.n/
0 /, which in turn implies a uniform lifespan bound for the solutions, as well

as a uniform bound in H2k .
Our strategy to prove convergence is to compare this family of solutions with the limit

.r; v/ via the regularizations used in the construction of rough solutions. Precisely, denote
by .r .n/;h0 ; v

.n/;h
0 /, respectively .rh0 ; v

h
0 / the regularized data sets, for which we have the

obvious convergence
.r
.n/;h
0 ; v

.n/;h
0 /! .rh0 ; v

h
0 / in C1:

These are also uniformly bounded in H2k and thus have a uniform lifespan.
Denoting by c.n/

h
corresponding frequency envelopes for .r .n/0 ; v

.n/
0 /, we have the dif-

ference bounds
k‰h.r .n/;h; v.n/;h/ � .r .n/; v.n//kH2k . c

.n/

�h
:

To finish the proof we need to establish two facts:

• For each " > 0, the frequency envelopes c.n/
h

can be chosen so that16

lim sup
h!1

sup
n
c
.n/

�h
� ":

• We have the C1 convergence

‰h.r .n/;h; v.n/;h/! ‰h.rh; vh/:

(i) Equicontinuity of frequency envelopes: This is easily achieved via the decomposition

.r
.n/
0 ; v

.n/
0 / D .r smooth

0 ; vsmooth
0 /COH2k ."/;

which holds for each ". The smooth part yields envelopes which are uniformly decreasing,
and the error term yields "-sized envelopes.

(ii)C1 convergence: Here we have uniform H2N bounds for the sequence .r .n/;h;v.n/;h/,
as well as weak convergence, in the sense that

D..r .n/;h; v.n/;h/; .rh; vh//! 0:

The last property implies domain convergence. Then we have L2 convergence away from
a 2�2h boundary layer, which in turn shows convergence of the regularizations in C1.

16One can do better than that and ensure that the limit is zero, but that is not needed for our argument.
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7.5. The lifespan of rough solutions

Here we complete the proof of our last result in Theorem 4. Thus, we consider rough
initial data .r0; v0/ 2H2k and a corresponding solution .r; v/ in a time interval Œ0; T / with
the property that Z T

0

B.t/ dt D C <1:

By the local well-posedness result, in order to prove the theorem it suffices to show that
we have a uniform bound

sup
t2Œ0;T �

k.r; v/kH2k <1:

We consider the regularized data .rh0 ; v
h
0 / and the corresponding solutions .rh; vh/.

By the continuous dependence theorem we know that these solutions converge to .r; v/ in
Œ0; T /, and in particular their lifespans T h satisfy

lim inf
h!1

T h � T:

What we do not have is a uniform bound for their corresponding control parameters Bh.
To rectify this, we consider a large parameter h0, to be chosen later, and we will show
that, for h > h0, the solutions .rh; vh/ persist up to time T with uniform boundsZ T

0

Bh.t/ dt � 2C; h � h0: (7.4)

If that were the case, then by the local well-posedness proof it would follow that the solu-
tions .rh;vh/ remain uniformly bounded in H2k and converge to .r;h/, thereby concluding
the proof.

To establish the bound (7.4) we will run a bootstrap argument. Precisely, we assume
that on a time interval Œ0; T0� with T0 < T we have a uniform boundZ T0

0

Bh.t/dt � 4C; h � h0:

Then we will show that in effect we must have the better boundZ T0

0

Bh.t/dt � 2C; h � h0: (7.5)

That would suffice, for then the local well-posedness argument would yield a uniform
bound for .rh; vh/ in H2k and thus allow us to expand the interval Œ0; T0� on which the
bootstrap assumption holds, uniformly with respect to h � h0.

Our goal now is to compare Bh and B . Precisely, we aim to show that

Bh . C1B C C22
�ıh; ı > 0; (7.6)
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with a universal constant C1, but C2 depending both on the initial data size and on C
above. This suffices to establish (7.5), because we are allowed to choose the threshold h0
sufficiently large, depending on parameters which are fixed in the problem.

The tools we have at our disposal are

(i) a high-frequency bound, provided by our energy estimates in Theorem 3, namely
(7.1),

(ii) the difference bound (7.2).

The constants in both bounds depend exactly on the H2k norm initial data and on C
above.

The difficulty we have in comparing Bh and B is that the two solutions are supported
in different domains �, respectively �h. However, the difference bound (7.2) allows us
to apply Lemma 7.1 to conclude that the two domains are at distance . 2�h.2Cı/. Thus,
rather than comparing .r; v/ and .rh; vh/, it is better to compare their regularizations
‰h.r; v/ and ‰h.rh; vh/, which are defined on 2�2h enlargements of the domains, which
in particular cover the union of � and �h. By a slight abuse of notation, we will identify
their domains.

We begin with ‰h.r; v/, for which we have the straightforward bound

kr‰h.r; v/k
zC
0; 12 �L1

� C1B: (7.7)

This is where the universal constant C1 appears.
Next we compare ‰h.r; v/ and ‰h.rh; vh/. Here we take a telescopic sum,

‰h.r; v/ �‰h.rh; vh/ D

1X
lDh

‰h.r lC1; vlC1/ �‰h.r l ; vl /:

Using the difference bound (7.2), we can estimate the successive terms in all H2m
rh

norms,

k‰h.r lC1; vlC1/ �‰h.r l ; vl /kH2m

rh
. cl2

�2kl22mh; m � 0;

which after summation yields

k‰h.r; v/ �‰h.r l ; vl /kH2m

rh
. cl2

�2kh22mh; m � 0:

Now we can use Sobolev embeddings to conclude that17

kr.‰h.r; v/ �‰h.rh; vh//k
zC
0; 12 �L1

. 2�ıh: (7.8)

Finally, using (7.1), we compare ‰h.rh; vh/ with .rh; vh/, also estimating the low
frequencies,

k.rh; vh/ �‰h.rh; vh/kH2m

rh
. cl2

�2kh22mh; m � 0:

17From Sobolev embeddings we get in effect a PC
1
2 bound for the first component.
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Using Sobolev embeddings again, we conclude that

kr..rh; vh/ �‰h.rh; vh//k
zC
0; 12 �L1

. 2�ıh: (7.9)

Now (7.6) is obtained by combining (7.7), (7.8), and (7.9), and the proof of the theorem
is concluded.
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